WorldWideScience

Sample records for mutant fbn1 allele

  1. Analysis of FBN1 allele expression by dermal fibroblasts from Marfan syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Putman, E.A.; Cao, S.N.; Milewicz, D.M. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Screening for mutations in the FBN1 cDNA from Marfan patient cell strains has detected mutations in only 10-15% of patients. In an attempt to explain this poor detection rate, we examined FBN1 allele expression and fibrillin synthesis by 26 cell strains from Marfan patients. DNA from the patients and 10 controls was assessed for the presence of a polymorphic Rsa I restriction site in the 3{prime} untranslated region of the FBN1 gene. Twelve of 26 patient and 5 of 10 control DNAs were heterozygous. Fibroblast RNA from the heterozygous cell strains was reverse-transcribed and subsequently PCR amplified using a [{sup 32}P]-labelled primer, digested with Rsa I and analyzed. Although 3 samples showed no transcript from one allele by ethidium bromide staining, a Betagen scanner detected low levels (10-15%) of that allele. In addition, there was unequal expression of the two alleles in three other patients; for example, only 30% expression from one allele. The remaining patients and the controls had equal expression of each allele. Fibrillin protein synthesis by fibroblasts from these heterozygous patients was also examined. After a 30 minute pulse with [{sup 35}S]-cysteine, cell lysates were collected and proteins analyzed by SDS-PAGE. The amount of fibrillin produced relative to a reference protein was determined using a Betagen scanner. Fibrillin protein synthesis was reduced in 2 of the 3 patients with very low RNA production from one of the FBN1 alleles. All other Marfan and control cell strains showed normal amounts of fibrillin synthesized. The low expression levels from one allele may contribute to, but not fully account for, the low detection rate of FBN1 mutations. Interestingly, protein synthesis levels were not affected in 4 of 6 cell strains demonstrating low levels of RNA expression.

  2. Production of a Marfan cellular phenotype by expressing a mutant human fibrillin allele on a normal human or murine genetic background

    Energy Technology Data Exchange (ETDEWEB)

    Eldadah, Z.A.; Dietz, H.C. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Brenn, T. [Stanford Univ. Medical Center, CA (United States)] [and others

    1994-09-01

    The Marfan Syndrome (MFS) is a heritable disorder of connective tissue caused by defects in fibrillin (FBN1), a 350 kD glycoprotein and principal component of the extracellular microfibril. Previous correlations of mutant transcript level and disease severity suggested a dominant negative model of MFS pathogenesis. To address this hypothesis we assembled an expression construct containing the mutant allele from a patient with severe MFS. This mutation causes skipping of FBN1 exon 2 and a frame shift, leading to a premature termination codon in exon 4. The predicted peptide would thus consist of 55 wild type and 45 missense amino acids. The construct was stably transfected into cultured human and mouse fibroblasts, and several clonal cell populations were established. Human and mouse cells expressing the truncated peptide exhibited markedly diminished fibrillin deposition and disorganized microfibrillar architecture by immunofluorescence. Pulse-chase analysis of these cells demonstrated normal levels of fibrillin synthesis but substantially decreased fibrillin deposition into the extracellular matrix. These data illustrate that expression of a mutant FBN1 allele, on a background of two normal alleles, is sufficient to disrupt normal fibrillin aggregation and reproduce the MFS cellular phenotype. This provides confirmation of a dominant negative model of MFS pathogenesis and may offer mutant allele knockout as a strategy for gene therapy. In addition, these data underscore the importance of the FBN1 amino-terminus in normal multimer formation and suggest that expression of the human extreme 5{prime} FBN1 coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Indeed, transgenic mice harboring this mutant allele have been produced, and phenotype analysis is currently in progress.

  3. Four novel FBN1 mutations: Significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, H.C.; McIntosh, I.; Pyeritz, R.E.; Francomano, C.A. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Sakai, L.Y.; Corson, G.M.; Chalberg, S.C. (Oregon Health Sciences Univ., Portland (United States))

    1993-08-01

    Defects of fibrillin (FBN1), a glycoprotein component of the extracellular microfibril, cause Marfan syndrome. This disorder is characterized by marked inter- and intrafamilial variation in phenotypic severity. To understand the molecular basis for this clinical observation, the authors have screened the fibrillin gene (FBN1) on chromosome 15, including the newly cloned 5[prime] coding sequence, for disease-producing alterations in a panel of patients with a wide range of manifestations and clinical severity. All the missense mutations identified to date, including two novel mutations discussed here, are associated with classic and moderate to severe disease and occur at residues with putative significance for calcium binding to epidermal growth factor (EGF)-like domains. In contrast, two new mutations that create premature signals for termination of translation of mRNA and are associated with reduction in the amount of mutant allele transcript produce a range of phenotypic severity. The patient with the lowest amount of mutant transcript has the mildest disease. These data support a role for altered calcium binding to EGF-like domains in the pathogenesis of Marfan syndrome and suggest a dominant negative mechanism for the pathogenesis of this disorder. 26 refs., 6 figs., 1 tab.

  4. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  5. MDE heteroduplex analysis of PCR products spanning each exon of the fibrillin (FBN1) gene greatly increases the efficiency of mutation detection in the Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nijbroek, G.; Dietz, H.C. [Johns Hopkins Univ. School of Med., Baltimore, MD (United States); Pereira, L.; Ramirz, F. [Mount Sinai School of Med., New York, NY (United States)

    1994-09-01

    Defects in fibrillin (FNB1) cause the Marfan syndrome (MFS). Classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and a significant number of FBN1 mutations have been identified in affected individuals. Using a standard method of mutation detection, SSCP analysis of overlapping RT-PCR amplimers that span the entire coding sequence, the general experience has been a low yield of identifiable mutations, ranging from 10-20%. Possible explanations included low sensitivity of mutation screening procedures, under-representation of mutant transcript in patient samples either due to deletions or mutant alleles containing premature termination codons, clustering of mutations in yet uncharacterized regions of the gene, including regulatory elements, or genetic heterogeneity. In order to compensate for a potential reduced mutant transcript stability, we have devised a method to screen directly from genomic DNA. The intronic boundaries flanking each of the 65 FBN1 exons were characterized and primer pairs were fashioned such that all splice junctions would be included in the resultant amplimers. The entire gene was screened for a panel of 9 probands with classic Marfan syndrome using mutation detection enhancement (MDE) gel heteroduplex analysis. A mutation was identified in 5/9 (55%) of patient samples. All were either missense mutations involving a cysteine residue or small deletions that did not create a frame shift. In addition, 10 novel polymorphisms were found. We conclude that the majority of mutations causing Marfan syndrome reside in the FBN1 gene and that mutations creating premature termination codons are not the predominant cause of inefficient mutation detection using RT-PCR. We are currently modifying screening methods to increase sensitivity and targeting putative FBN1 gene promoter sequences for study.

  6. A new mouse model for marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of Fbn1 expression.

    Directory of Open Access Journals (Sweden)

    Bruno L Lima

    2010-11-01

    Full Text Available Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans. Heterozygotes for the mutant Fbn1 allele mgΔloxPneo, carrying the same internal deletion of exons 19-24 as the mgΔ mouse model, present defective microfibrillar deposition, emphysema, deterioration of aortic wall and kyphosis. However, the onset of a clinical phenotypes is earlier in the 129/Sv than in C57BL/6 background, indicating the existence of genetic modifiers of MFS between these two mouse strains. In addition, we characterized a wide clinical variability within the 129/Sv congenic heterozygotes, suggesting involvement of epigenetic factors in disease severity. Finally, we show a strong negative correlation between overall levels of Fbn1 expression and the severity of the phenotypes, corroborating the suggested protective role of normal fibrillin-1 in MFS pathogenesis, and supporting the development of therapies based on increasing Fbn1 expression.

  7. Clinical and linkage study of a large family with simple ectopia lentis linked to FBN1

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M.J.; Roberts, J.; Partington, M.W. [Newcastle and Northern New South Wales Genetics Service (Australia); Colley, P.W. [John Hunter Hospital, Newcastle (Australia); Hollway, G.E.; Kozman, H.M.; Mulley, J.C. [Adelaide Children`s Hospital, North Adelaide (Australia)

    1994-10-15

    Simple ectopia lentis (EL) was studied in a large family, by clinical examination and analysis of linkage to markers in the region of FBN1, the gene for fibrillin which causes Marfan syndrome on chromosome 15. No patient had clinical or echocardiographic evidence of Marfan syndrome, although there was a trend towards relatively longer measurements of height; lower segment; arm span; middle finger, hand, and foot length in the affected members of the family, compared with unaffected sibs of the same sex. Analysis of linkage to intragenic FBN1 markers was inconclusive because they were relatively uninformative. Construction of a multipoint background map from the CEPH reference families identified microsatellite markers linked closely to FBN1 which could demonstrate linkage of EL in this family to the FBN1 region. LINKMAP analysis detected a multipoint lod score of 5.68 at D15S119, a marker approximately 6 cM distal to FBN1, and a multipoint lod score of 5.04 at FBN1. The EL gene in this family is likely to be allelic to Marfan syndrome, and molecular characterization of the FBN1 mutation should now be possible. 25 refs., 6 figs., 2 tabs.

  8. Homozygous and compound heterozygous mutations in the FBN1 gene: unexpected findings in molecular diagnosis of Marfan syndrome.

    Science.gov (United States)

    Arnaud, Pauline; Hanna, Nadine; Aubart, Mélodie; Leheup, Bruno; Dupuis-Girod, Sophie; Naudion, Sophie; Lacombe, Didier; Milleron, Olivier; Odent, Sylvie; Faivre, Laurence; Bal, Laurence; Edouard, Thomas; Collod-Beroud, Gwenaëlle; Langeois, Maud; Spentchian, Myrtille; Gouya, Laurent; Jondeau, Guillaume; Boileau, Catherine

    2017-02-01

    Marfan syndrome (MFS) is an autosomal-dominant connective tissue disorder usually associated with heterozygous mutations in the gene encoding fibrillin-1 (FBN1). Homozygous and compound heterozygous cases are rare events and have been associated with a clinical severe presentation. Report unexpected findings of homozygosity and compound heterozygosity in the course of molecular diagnosis of heterozygous MFS and compare the findings with published cases. In the context of molecular diagnosis of heterozygous MFS, systematic sequencing of the FBN1 gene was performed in 2500 probands referred nationwide. 1400 probands carried a heterozygous mutation in this gene. Unexpectedly, among them four homozygous cases (0.29%) and five compound heterozygous cases (0.36%) were identified (total: 0.64%). Interestingly, none of these cases carried two premature termination codon mutations in the FBN1 gene. Clinical features for these carriers and their families were gathered and compared. There was a large spectrum of severity of the disease in probands carrying two mutated FBN1 alleles, but none of them presented extremely severe manifestations of MFS in any system compared with carriers of only one mutated FBN1 allele. This observation is not in line with the severe clinical features reported in the literature for four homozygous and three compound heterozygous probands. Homozygotes and compound heterozygotes were unexpectedly identified in the course of molecular diagnosis of MFS. Contrary to previous reports, the presence of two mutated alleles was not associated with severe forms of MFS. Although homozygosity and compound heterozygosity are rarely found in molecular diagnosis, they should not be overlooked, especially among consanguineous families. However, no predictive evaluation of severity should be provided. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Identification of five novel FBN1 mutations by non-radioactive single-strand conformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Qian, C.; Comeau, K.; Francke, U. [Stanford Univ. Medical Center, Stanford, CA (United States)

    1994-09-01

    Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by variable manifestations in skeletal, cardiovascular and ocular systems. Mutations in the fibrillin gene on chromosome 15 (FBN1) have been shown to cause MFS. To examine the relationship between FBN1 gene mutations, fibrillin protein function and MFS phenotypes, we screened for alternations in the fibrillin coding sequence in fibroblast derived cDNA from MFS patients. To date, abnormally migrating bands in more than 20 unrelated MFS patients have been identified by using non-radioactive single-strand conformation analysis and silver staining. Five altered bands have been directly sequenced. Two missense mutations and three splice site mutations have been identified. Both missense mutations substitute another amino acid for a cysteine residue (C1402W and C1672R) in EGF-like motifs of the fibrillin polypeptide chain. The two splice site mutations are at nucleotide positions 6994+1 (G{yields}A), and 7205-2 (A{yields}G) and result in in-frame skipping of exon 56 and 58, respectively. Skipping of exon 56 occurs in 50% of mutant transcripts. Use of a cryptic splice site 51 bp upstream of the normal donor site results in half of the mutant transcripts containing part of exon 56. Both products contain in-frame deletions. Another splice site mutation, identified by exon screening from patient genomic DNA using intron primers, is at nucleotide position 2293+2 (T{yields}A), but the predicted exon skipping has not been detected at the RT-PCR level. This may be due to instability of the mutant transcript. Including the mutations reported here, a total of 8 out of 36 published FBN1 gene mutations involve exon skipping. It may be inferred that FBN1 exon skipping plays an important pathogenic role in MFS.

  10. A Novel Heterozygous Intronic Mutation in the FBN1 Gene Contributes to FBN1 RNA Missplicing Events in the Marfan Syndrome

    Directory of Open Access Journals (Sweden)

    Mario Torrado

    2018-01-01

    Full Text Available Marfan syndrome (MFS is an autosomal dominantly inherited connective tissue disorder, mostly caused by mutations in the fibrillin-1 (FBN1 gene. We, by using targeted next-generation sequence analysis, identified a novel intronic FBN1 mutation (the c.2678-15C>A variant in a MFS patient with aortic dilatation. The computational predictions showed that the heterozygous c.2678-15C>A intronic variant might influence the splicing process by differentially affecting canonical versus cryptic splice site utilization within intron 22 of the FBN1 gene. RT-PCR and Western blot analyses, using FBN1 minigenes transfected into HeLa and COS-7 cells, revealed that the c.2678-15C>A variant disrupts normal splicing of intron 22 leading to aberrant 13-nt intron 22 inclusion, frameshift, and premature termination codon. Collectively, the results strongly suggest that the c.2678-15C>A variant could lead to haploinsufficiency of the FBN1 functional protein and structural connective tissue fragility in MFS complicated by aorta dilation, a finding that further expands on the genetic basis of aortic pathology.

  11. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons

    Energy Technology Data Exchange (ETDEWEB)

    Nijbroek, G.; Sood, S.; McIntosh, I. [John Hopkins Univ. School of Medicine, Baltimore, MD (United States)] [and others

    1995-07-01

    Mutations in the gene encoding fibrillin-1 (FBN1), a component of the extracellular microfibril, cause the Marfan syndrome (MFS). This statement is supported by the observations that the classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and that a significant number of FBN1 mutations have been identified in affected individuals. We have now devised a method to screen the entire coding sequence and flanking splice junctions of FBN1. On completion for a panel of nine probands with classic MFS, six new mutations were identified that accounted for disease in seven (78%) of nine patients. Nine additional new mutations have been characterized in the early stages of a larger screening project. These 15 mutations were equally distributed throughout the gene and, with one exception, were specific to single families. One-third of mutations created premature termination codons, and 6 of 15 substituted residues with putative significance for calcium finding to epidermal growth factor (EGF)-like domains. Mutations causing severe and rapidly progressive disease that presents in the neonatal period can occur in a larger region of the gene than previously demonstrated, and the nature of the mutation is as important a determinant as its location, in predisposing to this phenotype. 56 refs., 5 figs., 3 tabs.

  12. Differential allelic expression of a fibrillin gene (FBNI) in patients with Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, D.; Lynch, J.; Sykes, B. [Univ. of Oxford (United Kingdom); Firth, H. [Churchill Hospital, Oxford (United Kingdom); Child, A. [St. George`s Hospital Medical School, London (United Kingdom)

    1994-09-01

    Marfan syndrome is a connective-tissue disorder affecting cardiovascular, skeletal, and ocular systems. The major Marfan locus has been identified as the FBN1 gene on chromosome 15; this codes for the extracellular-matrix protein fibrillin, a 350-kD constituent of the 8-10-nm elastin-associated microfibrils. The authors identified five MFS patients who were heterozygous for an RsaI restriction-site dimorphism in the 3{prime} UTR of the FBN1 gene. This expressed variation was used to distinguish the mRNA output from each of the two FBN1 alleles in fibroblast cultures from these five patients. Three of the patients were shown to produce <5% of the normal level of FBN1 transcripts from one of their alleles. This null-allele phenotype was not observed in 10 nonmarfanoid fibroblast cell lines. 26 refs., 4 figs.

  13. Beneficial Outcome of Losartan Therapy Depends on Type of FBN1 Mutation in Marfan Syndrome.

    Science.gov (United States)

    Franken, Romy; den Hartog, Alexander W; Radonic, Teodora; Micha, Dimitra; Maugeri, Alessandra; van Dijk, Fleur S; Meijers-Heijboer, Hanne E; Timmermans, Janneke; Scholte, Arthur J; van den Berg, Maarten P; Groenink, Maarten; Mulder, Barbara J M; Zwinderman, Aeilko H; de Waard, Vivian; Pals, Gerard

    2015-04-01

    It has been shown that losartan reduces aortic dilatation in patients with Marfan syndrome. However, treatment response is highly variable. This study investigates losartan effectiveness in genetically classified subgroups. In this predefined substudy of COMPARE, Marfan patients were randomized to daily receive losartan 100 mg or no losartan. Aortic root dimensions were measured by MRI at baseline and after 3 years. FBN1 mutations were classified based on fibrillin-1 protein effect into (1) haploinsufficiency, decreased amount of normal fibrillin-1, or (2) dominant negative, normal fibrillin-1 abundance with mutant fibrillin-1 incorporated in the matrix. A pathogenic FBN1 mutation was found in 117 patients, of whom 79 patients were positive for a dominant negative mutation (67.5%) and 38 for a mutation causing haploinsufficiency (32.5%). Baseline characteristics between treatment groups were similar. Overall, losartan significantly reduced aortic root dilatation rate (no losartan, 1.3±1.5 mm/3 years, n=59 versus losartan, 0.8±1.4 mm/3 years, n=58; P=0.009). However, losartan reduced only aortic root dilatation rate in haploinsufficient patients (no losartan, 1.8±1.5 mm/3 years, n=21 versus losartan 0.5±0.8 mm/3 years, n=17; P=0.001) and not in dominant negative patients (no losartan, 1.2±1.7 mm/3 years, n=38 versus losartan 0.8±1.3 mm/3 years, n=41; P=0.197). Marfan patients with haploinsufficient FBN1 mutations seem to be more responsive to losartan therapy for inhibition of aortic root dilatation rate compared with dominant negative patients. Additional treatment strategies are needed in Marfan patients with dominant negative FBN1 mutations. http://www.trialregister.nl/trialreg/index.asp; Unique Identifier: NTR1423. © 2015 American Heart Association, Inc.

  14. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    Directory of Open Access Journals (Sweden)

    Malgorzata Sierant

    2011-01-01

    Full Text Available RNA interference (RNAi technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G alleles of human Presenilin1 gene (PSEN1. This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide.

  15. ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.

    Directory of Open Access Journals (Sweden)

    Gaynor Miller

    2010-02-01

    Full Text Available Fibrillins 1 (FBN1 and 2 (FBN2 are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.As part of a large-scale N-ethyl-N-nitrosourea (ENU mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2(fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.

  16. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  17. Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events.

    Science.gov (United States)

    Baudhuin, Linnea M; Kotzer, Katrina E; Lagerstedt, Susan A

    2015-03-01

    Marfan syndrome is a systemic disorder that typically involves FBN1 mutations and cardiovascular manifestations. We investigated FBN1 genotype-phenotype correlations with aortic events (aortic dissection and prophylactic aortic surgery) in patients with Marfan syndrome. Genotype and phenotype information from probands (n = 179) with an FBN1 pathogenic or likely pathogenic variant were assessed. A higher frequency of truncating or splicing FBN1 variants was observed in Ghent criteria-positive patients with an aortic event (n = 34) as compared with all other probands (n = 145) without a reported aortic event (79 vs. 39%; P Marfan syndrome patients with FBN1 truncating and splicing variants.Genet Med 17 3, 177-187.

  18. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Directory of Open Access Journals (Sweden)

    Gerhard Sengle

    2015-06-01

    Full Text Available Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that

  19. An integrative computational analysis provides evidence for FBN1-associated network deregulation in trisomy 21

    Directory of Open Access Journals (Sweden)

    Mireia Vilardell

    2013-06-01

    Although approximately 50% of Down Syndrome (DS patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS. The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS. Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%, such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

  20. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Characterization of a Weak Allele of Zebrafish cloche Mutant

    Science.gov (United States)

    Ma, Ning; Huang, Zhibin; Chen, Xiaohui; He, Fei; Wang, Kun; Liu, Wei; Zhao, Linfeng; Xu, Xiangmin; Liao, Wangjun; Ruan, Hua; Luo, Shenqiu; Zhang, Wenqing

    2011-01-01

    Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche 172 (clo 172) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo 172 mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo 172 mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo s5 mutant. In contrast, primitive myeloid cells were totally lost in clo 172 mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo 172 mutant, confirmed by the dramatic decrease of lyc in clo 172 runx1w84x double mutant. Collectively, the clo 172 mutant is a weak allele compared to the clo s5 mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene. PMID:22132109

  2. Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection

    International Nuclear Information System (INIS)

    Zapparoli, Giada V; Jorissen, Robert N; Hewitt, Chelsee A; McBean, Michelle; Westerman, David A; Dobrovic, Alexander

    2013-01-01

    The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity. We developed a highly sensitive probe-free quantitative mutant-allele detection method, Quantitative Threefold Allele-Specific PCR (QuanTAS-PCR), that is performed in a closed-tube system, thus eliminating the manipulation of PCR products. QuantTAS-PCR uses a threefold approach to ensure allele-specific amplification of the mutant sequence: (i) a mutant allele-specific primer, (ii) a 3′dideoxy blocker to suppress false-positive amplification from the wild-type template and (iii) a PCR specificity enhancer, also to suppress false-positive amplification from the wild-type template. Mutant alleles were quantified relative to exon 9 of JAK2. We showed that the addition of the 3′dideoxy blocker suppressed but did not eliminate false-positive amplification from the wild-type template. However, the addition of the PCR specificity enhancer near eliminated false-positive amplification from the wild-type allele. Further discrimination between true and false positives was enabled by using the quantification cycle (Cq) value of a single mutant template as a cut-off point, thus enabling robust distinction between true and false positives. As 10,000 JAK2 templates were used per replicate, the assay had a sensitivity of 1/10 -4 per replicate. Greater sensitivity could be reached by increasing the number of replicates analysed. Variation in replicates when low mutant-allele templates were present necessitated the use of a statistics-based approach to estimate the load of mutant JAK2 copies. QuanTAS-PCR showed comparable quantitative results when validated against a

  3. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait

    Directory of Open Access Journals (Sweden)

    Pham Anh-Tung

    2010-09-01

    Full Text Available Abstract Background The alteration of fatty acid profiles in soybean [Glycine max (L. Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the

  4. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait.

    Science.gov (United States)

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2010-09-09

    The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation

  5. Genetic variants in FBN-1 and risk for thoracic aortic aneurysm and dissection.

    Science.gov (United States)

    Iakoubova, Olga A; Tong, Carmen H; Rowland, Charles M; Luke, May M; Garcia, Veronica E; Catanese, Joseph J; Moomiaie, Remo M; Sotonyi, Peter; Ascady, Gyorgy; Nikas, Demitrios; Dedelias, Panagiotis; Tranquilli, Maryann; Elefteriades, John A

    2014-01-01

    A recent genome wide association study (GWAS) by LeMaire et al. found that two single nucleotide polymorphisms (SNPs), rs2118181 and rs10519177 in the FBN-1 gene (encoding Fibrillin-1), were associated with thoracic aortic dissection (TAD), non-dissecting thoracic aortic aneurysm (TAA), and thoracic aortic aneurysm or dissection (TAAD); the largest effect was observed for the association of rs2118181 with TAD. We investigated whether rs2118181 and rs10519177 were associated with TAD, TAA, and TAAD in the Yale study. The genotypes of rs2118181 and rs10519177 were determined for participants in the Yale study: 637 TAAD cases (140 TAD, 497 TAA) and 275 controls from the United States, Hungary, and Greece. The association of the genotypes with TAD, TAA and TAAD were assessed using logistic regression models adjusted for sex, age, study center and hypertension. In the Yale study, rs2118181 was associated with TAD: compared with non-carriers, carriers of the risk allele had an unadjusted odds ratio for TAD of 1.80 (95% CI 1.15-2.80) and they had odds ratio for TAD of 1.87 (95% CI 1.09-3.20) after adjusting for sex, age, study center and hypertension. We did not find significant differences in aortic size, a potential confounder for TAD, between rs2118181 risk variant carriers and non-carriers: mean aortic size was 5.56 (95% CI: 5.37-5.73) for risk variant carriers (CC+CT) and was 5.48 (95% CI: 5.36-5.61) for noncarriers (TT) (p = 0.56). rs2118181 was not associated with TAA or TAAD. rs10519177 was not associated with TAD, TAA, or TAAD in the Yale study. Thus, the Yale study provided further support for the association of the FBN-1 rs2118181SNP with TAD.

  6. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, E.A.; Cho, M.; Milewicz, D.M. [Univ. of Texas-Houston Medical School, Houston, TX (United States)] [and others

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  7. Genetic testing of the FBN1 gene in Chinese patients with Marfan/Marfan-like syndrome.

    Science.gov (United States)

    Yang, Hang; Luo, Mingyao; Chen, Qianlong; Fu, Yuanyuan; Zhang, Jing; Qian, Xiangyang; Sun, Xiaogang; Fan, Yuxin; Zhou, Zhou; Chang, Qian

    2016-08-01

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder typically involving the ocular, skeletal and cardiovascular systems, and aortic aneurysms/dissection mainly contributes to its mortality. Here, we performed genetic testing of the FBN1 gene in 39 Chinese probands with Marfan/Marfan-like syndrome and their related family members by Sanger sequencing. In total, 29 pathogenic/likely pathogenic FBN1 mutations, including 17 novel ones, were identified. In addition, most MFS patients with aortic disease (62%) had a truncating or splicing mutation. These results expand the FBN1 mutation spectrum and enrich our knowledge of genotype-phenotype correlations. Genetic testing for MFS and its related aortic diseases is increasingly important for early intervention and treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. BMP15 Prevents Cumulus Cell Apoptosis Through CCL2 and FBN1 in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Bo Zhai

    2013-07-01

    Full Text Available Background: Bone morphogenetic protein-15 (BMP15 is a maternal gene necessary for mammalian reproduction. BMP15 expression increased in oocytes accompanied by follicle growth and development. The function and regulation mechanism of BMP15 in porcine cumulus cell apoptosis process is still unclear now. Methods: In this study, flow cytometry (FCM was used to analyze the effects of BMP15 with different concentrations to cumulus cell apoptosis. High-throughput sequencing technology was carried out to screen regulatory genes linked closely with BMP15. In order to confirm the function of (MCP-1/CCL2 and FBN1 in cumulus cell apoptosis, RNA interference (RNAi method was used to inhibit the expression of (MCP-1/CCL2 and FBN1. Apoptosis and proliferation of cumulus cell treated with siRNA transfection technology were measured by FCM, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, quantitative real time-PCR (RT-qPCR and western blotting. Results: The results showed that the apoptosis levels of cumulus cell treated by BMP15 decreased significantly in a dose-dependent manner. The expression of related genes protein 1 (MCP-1/CCL2 and fibrillin1 (FBN1 were both regulated by BMP15. After transfection, the proliferation of porcine cumulus cells increased significantly and apoptosis of cumulus cells was prevented while FBN1 was silenced after BMP15 treatment. The proliferation of cumulus cells decreased significantly and apoptosis rate of cumulus cells increased significantly while CCL2 was silenced. Conclusion: The results obtained in this study firstly demonstrated that CCL2 and FBN1 are important regulatory factors of BMP15 in preventing cumulus cell apoptosis in porcine ovaries.

  9. FBN1 gene mutation defines the profibrillin to fibrillin processing site and segregates with tall stature in a family

    Energy Technology Data Exchange (ETDEWEB)

    Grossfield, J.; Cao, S.; Milewicz, D. [Univ. of Texas Medical School, Houston, TX (United States)] [and others

    1994-09-01

    Dermal fibroblasts from a 13-year-old boy with skeletal features of the Marfan syndrome were used to study fibrillin synthesis and processing. Synthesis and secretion of profibrillin was normal but only half of the secreted profibrillin was converted to fibrillin, an extracellular proteolytic processing that removes a 20 kDa fragment from the protein. All the secreted profibrillin was processed to fibrillin in control cells. Only the processed form of fibrillin was deposited into the extracellular matrix in both the proband`s and the control cells. Electron microscopic examination of rotary shadowed microfibrils made by the proband`s fibroblasts were indistinguishable from control cells. Screening exons in the 3{prime} end of the FBN1 gene revealed a heterozygous C to T transition at nucleotide 5482 of the FBN1 cDNA changing R 1828 to W. This mutation disrupts a known consensus sequence recognized by a cellular protease and is located in the carboxy terminus at a site predicted to remove a 19 kD fragment. The proband and his 22-year-old brother, also heterozygous for the mutation, have had normal echocardiograms and ophthalmologic exams. The mutation segregated in the proband`s three generation family with autosomal dominant inheritance of height (> 90th percentile) and no known cardiovascular or ocular problems, including the 67-year-old grandmother (exams pending). The mutation was not found in 90 chromosomes from unrelated individuals. In summary, (1) the mutation identifies the cleavage site for the conversion of profibrillin to fibrillin; (2) the characterized mutation segregates in the family with tall stature without known cardiovascular or ocular problems; (3) this mutation potentially defines the phenotype associated with a {open_quotes}null{close_quotes} allele for the FBN1 gene.

  10. A FBN1 mutation association with different phenotypes of Marfan syndrome in a Chinese family.

    Science.gov (United States)

    Li, Yapeng; Xu, Jianhua; Chen, Mingjie; Du, Binbin; Li, Qiaoli; Xing, Qinghe; Zhang, Yanzhou

    2016-09-01

    Previous studies demonstrated that patients with different FBN1 mutations often present more considerable phenotypic variation compared to different members of the related family carrying a same mutation. The purpose of our study was to identify pathogenic mutation and provide more information about genotype-phenotypic correlations in a large Chinese family with Marfan syndrome. 15 related family members from a Chinese 4-generation pedigree with Marfan syndrome underwent physical, ophthalmologic, radiological and cardiovascular examinations. The propositus has De Bakey III aortic dissection and didn't fulfill the revised Ghent criteria for Marfan syndrome. Nine family members have ectopia lentis and their echocardiogram was normal. Five other family members have no evidence of Marfan syndrome. Genomic DNA was isolated from blood leukocytes. The exome sequencing was employed on the propositus, then the Sanger sequencing was conducted for mutation verification in other 14 participants of this family. The causative mutation in FBN1 discovered in the propositus was a known heterozygous missense mutation, c.1633T>G (p.R545C), in exon 14 (NM 000138). This same mutation was also identified in all 9 ectopia lentis patients and one unaffected 8-year-old girl. However, the same mutation was not discovered in other 4 unaffected family members. Our data enhance the information of genotype-phenotype correlation owing to FBN1 mutations. To our current knowledge, we firstly reported that the same FBN1 mutation, c. 1633C>T (Arg545Cys), was detected simultaneously in three different cardinal phenotypes (ectopia lentis, aortic dissection and unaffected) within one family. The unaffected girl with FBN1 mutation may presumably represent a rare case of nonpenetrance. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  12. Hearing loss associated with enlarged vestibular aqueduct and zero or one mutant allele of SLC26A4.

    Science.gov (United States)

    Rose, Jane; Muskett, Julie A; King, Kelly A; Zalewski, Christopher K; Chattaraj, Parna; Butman, John A; Kenna, Margaret A; Chien, Wade W; Brewer, Carmen C; Griffith, Andrew J

    2017-07-01

    To characterize the severity and natural history of hearing loss, and the prevalence of having a cochlear implant in a maturing cohort of individuals with enlarged vestibular aqueduct (EVA) and zero or one mutant allele of SLC26A4. Prospective cohort study of subjects ascertained between 1998 and 2015 at the National Institutes of Health Clinical Center. Study subjects were 127 individuals (median age, 8 years; range, 0-59 years) with EVA in at least one ear. Ears with EVA and zero or one mutant allele of SLC26A4 had mean 0.5/1/2/4-kHz pure-tone averages of 62.6 and 52.9 dB HL, respectively, in contrast to EVA ears with two mutant alleles of SLC26A4 (88.1 dB HL; P zero, one, and two mutant alleles, respectively (P = .00833). This association was not independent (P = .534) but reflected underlying correlations with age at time of first audiogram (P = .003) or severity of hearing loss (P = .000). Ears with EVA and zero or one mutant allele of SLC26A4 have less severe hearing loss, no difference in prevalence of fluctuation, and a lower prevalence of cochlear implantation in comparison to ears with two mutant alleles of SLC26A4. NA Laryngoscope, 127:E238-E243, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Frequency of the MDR1 mutant allele associated with multidrug sensitivity in dogs from Brazil

    Directory of Open Access Journals (Sweden)

    Monobe MM

    2015-04-01

    Full Text Available Marina M Monobe,1 João P Araujo Junior,2 Kari V Lunsford,3 Rodrigo C Silva,4 Camilo Bulla41Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, 2Department of Microbiology and Immunology, Biosciences Institute, Sao Paulo State University (UNESP, Botucatu, Brazil; 3Department of Clinical Sciences and Animal Health Center, 4Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi, MS, USAAbstract: To date, a 4-bp deletion in the MDR1 gene has been detected in more than ten dog breeds, as well as in mixed breed dogs, in several countries, however information regarding this mutation in dogs from Brazil is lacking. For this reason, 103 Collies, 77 Border Collies, 76 Shetland Sheepdogs, 20 Old English Sheepdogs, 55 German Shepherds, 16 Australian Shepherds, and 53 Whippets from Brazil were screened for the presence of the mutation. The heterozygous mutated genotype, MDR1 (+/−, frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 50.5% (95% CI =41.1%–59.9%, 31.3% (95% CI =8.6%–53.2%, and 15.8% (95% CI =7.7%–23.9%, respectively. Homozygous mutated genotype, MDR1 (−/−, was detected only in Collies 35.9%. The MDR1 allele mutant frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 61.2% (95% CI =54.8%–67.5%, 15.6% (95% CI =3.1%–28.2%, and 7.9% (95% CI =3.7%–12.1%, respectively. Additionally, even free of the mutant allele, the maximum mutant prevalence (MMP in that population, with 95% CI, was 3.8%, 5.2%, 5.4%, and 13.8% for Border Collies, German Shepherds, Whippets, and Old English Sheepdogs, respectively. In this way, this information is important, not only for MDR1 genotype-based breeding programs and international exchange of breeding animals of predisposed breeds, but also for modification of drug therapy for breeds at risk.Keywords: P-glycoprotein, MDR1 mutation, ivermectin, dog, drug

  14. The Impact of Collisions on the Ability to Detect Rare Mutant Alleles Using Barcode-Type Next-Generation Sequencing Techniques

    Directory of Open Access Journals (Sweden)

    Jenna VanLiere Canzoniero

    2017-07-01

    Full Text Available Barcoding techniques are used to reduce error from next-generation sequencing, with applications ranging from understanding tumor subclone populations to detecting circulating tumor DNA. Collisions occur when more than one sample molecule is tagged by the same unique identifier (UID and can result in failure to detect very-low-frequency mutations and error in estimating mutation frequency. Here, we created computer models of barcoding technique, with and without amplification bias introduced by the UID, and analyzed the effect of collisions for a range of mutant allele frequencies (1e−6 to 0.2, number of sample molecules (10 000 to 1e7, and number of UIDs (4 10 -4 14 . Inability to detect rare mutant alleles occurred in 0% to 100% of simulations, depending on collisions and number of mutant molecules. Collisions also introduced error in estimating mutant allele frequency resulting in underestimation of minor allele frequency. Incorporating an understanding of the effect of collisions into experimental design can allow for optimization of the number of sample molecules and number of UIDs to minimize the negative impact on rare mutant detection and mutant frequency estimation.

  15. Molecular analysis of mutant and wild type alcohol dehydrogenase alleles from Drosophila

    International Nuclear Information System (INIS)

    Batzer, M.A.

    1988-01-01

    Wild type alcohol dehydrogenase polypeptides (ADH) from Drosophila melanogaster transformants were examined using western blots and polyclonal antiserum specific for Drosophila melanogaster ADH. Mutants induced in Drosophila spermatozoa at the alcohol dehydrogenase (Adh) locus using X-rays, 1-ethyl-1-nitrosourea (ENU) or ethyl methanesulfonate (EMS) were characterized using genetic complementation tests, western blots, Southern blots, northern blots and enzymatic amplification of the Adh locus. Genetic complementation tests showed that 22/30 X-ray-induced mutants, and 3/13 ENU and EMS induced mutants were multi-locus deficiencies. Western blot analysis of the intragenic mutations showed that 4/7 X-ray-induced mutants produced detectable polypeptides, one of which was normal in molecular weight and charge. In contrast 8/10 intragenic ENU and EMS induced mutants produced normal polypeptides. Southern blot analysis showed that 5/7 intragenic X-ray induced mutants and all 10 of the intragenic ENU and EMS induced mutants were normal with respect to the alleles they were derived from

  16. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Directory of Open Access Journals (Sweden)

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  17. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  18. BRAF Gene Copy Number and Mutant Allele Frequency Correlate with Time to Progression in Metastatic Melanoma Patients Treated with MAPK Inhibitors.

    Science.gov (United States)

    Stagni, Camilla; Zamuner, Carolina; Elefanti, Lisa; Zanin, Tiziana; Bianco, Paola Del; Sommariva, Antonio; Fabozzi, Alessio; Pigozzo, Jacopo; Mocellin, Simone; Montesco, Maria Cristina; Chiarion-Sileni, Vanna; De Nicolo, Arcangela; Menin, Chiara

    2018-06-01

    Metastatic melanoma is characterized by complex genomic alterations, including a high rate of mutations in driver genes and widespread deletions and amplifications encompassing various chromosome regions. Among them, chromosome 7 is frequently gained in BRAF -mutant melanoma, inducing a mutant allele-specific imbalance. Although BRAF amplification is a known mechanism of acquired resistance to therapy with MAPK inhibitors, it is still unclear if BRAF copy-number variation and BRAF mutant allele imbalance at baseline can be associated with response to treatment. In this study, we used a multimodal approach to assess BRAF copy number and mutant allele frequency in pretreatment melanoma samples from 46 patients who received MAPK inhibitor-based therapy, and we analyzed the association with progression-free survival. We found that 65% patients displayed BRAF gains, often supported by chromosome 7 polysomy. In addition, we observed that 64% patients had a balanced BRAF -mutant/wild-type allele ratio, whereas 14% and 23% patients had low and high BRAF mutant allele frequency, respectively. Notably, a significantly higher risk of progression was observed in patients with a diploid BRAF status versus those with BRAF gains [HR, 2.86; 95% confidence interval (CI), 1.29-6.35; P = 0.01] and in patients with low percentage versus those with a balanced BRAF mutant allele percentage (HR, 4.54; 95% CI, 1.33-15.53; P = 0.016). Our data suggest that quantitative analysis of the BRAF gene could be useful to select the melanoma patients who are most likely to benefit from therapy with MAPK inhibitors. Mol Cancer Ther; 17(6); 1332-40. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis

    Science.gov (United States)

    Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu; Hu, Jennifer F.; Ramroop, Johnny; Kellner, Stefanie M.; Benton, Matthew A.; Govind, Shubha; Dedon, Peter C.; Sternglanz, Rolf; Lai, Eric C.

    2015-01-01

    N6-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon–codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease. PMID:26516084

  20. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes.

    Science.gov (United States)

    Chung, Brian Hon-Yin; Lam, Stephen Tak-Sum; Tong, Tony Ming-For; Li, Susanna Yuk-Han; Lun, Kin-Shing; Chan, Daniel Hon-Chuen; Fok, Susanna Fung-Shan; Or, June Siu-Fong; Smith, David Keith; Yang, Wanling; Lau, Yu-Lung

    2009-07-01

    Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.

  1. Rapid genotyping assays for the 4-base pair deletion of canine MDR1/ABCB1 gene and low frequency of the mutant allele in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2012-01-01

    P-glycoprotein, encoded by the MDR1 or ABCB1 gene, is an integral component of the blood-brain barrier as an efflux pump for xenobiotics crucial in limiting drug uptake into the central nervous system. Dogs homozygous for a 4-base pair deletion of the canine MDR1 gene show altered expression or function of P-glycoprotein, resulting in neurotoxicosis after administration of the substrate drugs. In the present study, the usefulness of microchip electrophoresis for genotyping assays detecting this deletion mutation was evaluated. Mutagenically separated polymerase chain reaction (MS-PCR) and real-time PCR assays were newly developed and evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies dogs in Japan to determine the allele frequency in this breed. Microchip electrophoresis showed advantages in detection sensitivity and time saving over other modes of electrophoresis. The MS-PCR assay clearly discriminated all genotypes. Real-time PCR assay was most suitable for a large-scale survey due to its high throughput and rapidity. The genotyping survey demonstrated that the carrier and mutant allele frequencies were 0.49% and 0.25%, respectively, suggesting that the mutant allele frequency in Border Collies is markedly low compared to that in the susceptible dog breeds such as rough and smooth Collies.

  2. Efficient Identification of Causal Mutations through Sequencing of Bulked F2 from Two Allelic Bloomless Mutants of Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    Yinping Jiao

    2018-01-01

    Full Text Available Sorghum (Sorghum bicolor Moench, L. plant accumulates copious layers of epi-cuticular wax (EW on its aerial surfaces, to a greater extent than most other crops. EW provides a vapor barrier that reduces water loss, and is therefore considered to be a major determinant of sorghum's drought tolerance. However, little is known about the genes responsible for wax accumulation in sorghum. We isolated two allelic mutants, bloomless40-1 (bm40-1 and bm40-2, from a mutant library constructed from ethyl methane sulfonate (EMS treated seeds of an inbred, BTx623. Both mutants were nearly devoid of the EW layer. Each bm mutant was crossed to the un-mutated BTx623 to generated F2 populations that segregated for the bm phenotype. Genomic DNA from 20 bm F2 plants from each population was bulked for whole genome sequencing. A single gene, Sobic.001G228100, encoding a GDSL-like lipase/acylhydrolase, had unique homozygous mutations in each bulked F2 population. Mutant bm40-1 harbored a missense mutation in the gene, whereas bm40-2 had a splice donor site mutation. Our findings thus provide strong evidence that mutation in this GDSL-like lipase gene causes the bm phenotype, and further demonstrate that this approach of sequencing two independent allelic mutant populations is an efficient method for identifying causal mutations. Combined with allelic mutants, MutMap provides powerful method to identify all causal genes for the large collection of bm mutants in sorghum, which will provide insight into how sorghum plants accumulate such abundant EW on their aerial surface. This knowledge may facilitate the development of tools for engineering drought-tolerant crops with reduced water loss.

  3. Dominant hemimelia and En-1 on mouse chromosome 1 are not allelic.

    Science.gov (United States)

    Higgins, M; Hill, R E; West, J D

    1992-08-01

    Previous studies have shown that En-1, a homeobox-containing gene, maps close to or at the Dh locus in the mouse. Since homeobox-containing genes are key genes in the control of development the close proximity of En-1 to the developmentally significant gene Dh raised the possibility that the Dh mutation represented a mutant allele of En-1. A genetic analysis involving En-1, Dh, and other chromosome 1 markers (Emv-17, ln and Pep-3) shows that although Dh and En-1 are closely linked they are separable by recombination (4/563). The likely gene order and recombination frequencies of these loci are: ln (5.2 +/- 0.9) Emv-17 (1.1 +/- 0.4) Dh (0.7 +/- 0.4) En-1 (3.0 +/- 0.7) Pep-3. This shows that Dh is not a mutant allele of En-1.

  4. Identification of a novel FBN1 gene mutation in a large Pakistani family with Marfan syndrome

    NARCIS (Netherlands)

    Micheal, S.; Khan, M.I.; Akhtar, F.; Weiss, M.M.; Islam, F.; Ali, M.; Qamar, R.; Maugeri, A.; Hollander, A.I. den

    2012-01-01

    PURPOSE: To describe a novel mutation in the fibrillin-1 (FBN1) gene in a large Pakistani family with autosomal dominant Marfan syndrome (MFS). METHODS: Blood samples were collected of 11 family members affected with Marfan syndrome, and DNA was isolated by phenol-extraction. The coding exons of

  5. [Double mutant alleles in the EXT1 gene not previously reported in a teenager with hereditary multiple exostoses].

    Science.gov (United States)

    Cammarata-Scalisi, Francisco; Cozar, Mónica; Grinberg, Daniel; Balcells, Susana; Asteggiano, Carla G; Martínez-Domenech, Gustavo; Bracho, Ana; Sánchez, Yanira; Stock, Frances; Delgado-Luengo, Wilmer; Zara-Chirinos, Carmen; Chacín, José Antonio

    2015-04-01

    Hereditary forms of multiple exostoses, now called EXT1/EXT2-CDG within Congenital Disorders of Glycosylation, are the most common benign bone tumors in humans and clinical description consists of the formation of several cartilage-capped bone tumors, usually benign and localized in the juxta-epiphyseal region of long bones, although wide body dissemination in severe cases is not uncommon. Onset of the disease is variable ranging from 2-3 years up to 13-15 years with an estimated incidence ranging from 1/18,000 to 1/50,000 cases in European countries. We present a double mutant alleles in the EXT1 gene not previously reported in a teenager and her family with hereditary multiple exostoses.

  6. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.

    Science.gov (United States)

    Gaudin, Amelie C M; McClymont, Sarah A; Soliman, Sameh S M; Raizada, Manish N

    2014-02-14

    There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole

  7. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    Science.gov (United States)

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  8. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Zamani

    2014-01-01

    Full Text Available Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker’s results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism.

  9. Observational cohort study of ventricular arrhythmia in adults with Marfan syndrome caused by FBN1 mutations.

    Directory of Open Access Journals (Sweden)

    Ali Aydin

    Full Text Available Marfan syndrome is associated with ventricular arrhythmia but risk factors including FBN1 mutation characteristics require elucidation.We performed an observational cohort study of 80 consecutive adults (30 men, 50 women aged 42±15 years with Marfan syndrome caused by FBN1 mutations. We assessed ventricular arrhythmia on baseline ambulatory electrocardiography as >10 premature ventricular complexes per hour (>10 PVC/h, as ventricular couplets (Couplet, or as non-sustained ventricular tachycardia (nsVT, and during 31±18 months of follow-up as ventricular tachycardia (VT events (VTE such as sudden cardiac death (SCD, and sustained ventricular tachycardia (sVT. We identified >10 PVC/h in 28 (35%, Couplet/nsVT in 32 (40%, and VTE in 6 patients (8%, including 3 with SCD (4%. PVC>10/h, Couplet/nsVT, and VTE exhibited increased N-terminal pro-brain natriuretic peptide serum levels(P10/h and Couplet/nsVT also related to increased indexed end-systolic LV diameters (P = .024 and P = .020, to moderate mitral valve regurgitation (P = .018 and P = .003, and to prolonged QTc intervals (P = .001 and P = .006, respectively. Moreover, VTE related to mutations in exons 24-32 (P = .021. Kaplan-Meier analysis corroborated an association of VTE with increased NT-proBNP (P<.001 and with mutations in exons 24-32 (P<.001.Marfan syndrome with causative FBN1 mutations is associated with an increased risk for arrhythmia, and affected persons may require life-long monitoring. Ventricular arrhythmia on electrocardiography, signs of myocardial dysfunction and mutations in exons 24-32 may be risk factors of VTE.

  10. Characterization of a New Pink-Fruited Tomato Mutant Results in the Identification of a Null Allele of the SlMYB12 Transcription Factor.

    Science.gov (United States)

    Fernandez-Moreno, Josefina-Patricia; Tzfadia, Oren; Forment, Javier; Presa, Silvia; Rogachev, Ilana; Meir, Sagit; Orzaez, Diego; Aharoni, Aspah; Granell, Antonio

    2016-07-01

    The identification and characterization of new tomato (Solanum lycopersicum) mutants affected in fruit pigmentation and nutritional content can provide valuable insights into the underlying biology, as well as a source of new alleles for breeding programs. To date, all characterized pink-pigmented tomato fruit mutants appear to result from low SlMYB12 transcript levels in the fruit skin. Two new mutant lines displaying a pink fruit phenotype (pf1 and pf2) were characterized in this study. In the pf mutants, SlMYB12 transcripts accumulated to wild-type levels but exhibited the same truncation, which resulted in the absence of the essential MYB activation domain coding region. Allelism and complementation tests revealed that both pf mutants were allelic to the y locus and showed the same recessive null allele in homozygosis: Δy A set of molecular and metabolic effects, reminiscent of those observed in the Arabidopsis (Arabidopsis thaliana) myb11 myb12 myb111 triple mutant, were found in the tomato Δy mutants. To our knowledge, these have not been described previously, and our data support the idea of their being null mutants, in contrast to previously described transcriptional hypomorphic pink fruit lines. We detected a reduction in the expression of several flavonol glycosides and some associated glycosyl transferases. Transcriptome analysis further revealed that the effects of the pf mutations extended beyond the flavonoid pathway into the interface between primary and secondary metabolism. Finally, screening for Myb-binding sites in the candidate gene promoter sequences revealed that 141 of the 152 co-down-regulated genes may be direct targets of SlMYB12 regulation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Clinical relevance of IDH1/2 mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group

    Science.gov (United States)

    Ferret, Yann; Boissel, Nicolas; Helevaut, Nathalie; Madic, Jordan; Nibourel, Olivier; Marceau-Renaut, Alice; Bucci, Maxime; Geffroy, Sandrine; Celli-Lebras, Karine; Castaigne, Sylvie; Thomas, Xavier; Terré, Christine; Dombret, Hervé; Preudhomme, Claude; Renneville, Aline

    2018-01-01

    Assessment of minimal residual disease has emerged as a powerful prognostic factor in acute myeloid leukemia. In this study, we investigated the potential of IDH1/2 mutations as targets for minimal residual disease assessment in acute myeloid leukemia, since these mutations collectively occur in 15–20% of cases of acute myeloid leukemia and now represent druggable targets. We employed droplet digital polymerase chain reaction assays to quantify IDH1R132, IDH2R140, and IDH2R172 mutations on genomic DNA in 322 samples from 103 adult patients with primary IDH1/2 mutant acute myeloid leukemia and enrolled on Acute Leukemia French Association (ALFA) - 0701 or -0702 clinical trials. The median IDH1/2 mutant allele fraction in bone marrow samples was 42.3% (range, 8.2 – 49.9%) at diagnosis of acute myeloid leukemia, and below the detection limit of 0.2% (range, <0.2 – 39.3%) in complete remission after induction therapy. In univariate analysis, the presence of a normal karyotype, a NPM1 mutation, and an IDH1/2 mutant allele fraction <0.2% in bone marrow after induction therapy were statistically significant predictors of longer disease-free survival. In multivariate analysis, these three variables remained significantly predictive of disease-free survival. In 7/103 (7%) patients, IDH1/2 mutations persisted at high levels in complete remission, consistent with the presence of an IDH1/2 mutation in pre-leukemic hematopoietic stem cells. Five out of these seven patients subsequently relapsed or progressed toward myelodysplastic syndrome, suggesting that patients carrying the IDH1/2 mutation in a pre-leukemic clone may be at high risk of hematologic evolution. PMID:29472349

  12. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene

    NARCIS (Netherlands)

    Soppe, W.J.J.; Jacobsen, S.E.; Alonso-Blanco, C.; Jackson, J.P.; Kakutani, T.; Koornneef, M.; Peeters, A.J.M.

    2000-01-01

    The transition to flowering in Arabidopsis thaliana is delayed in fwa mutant plants. FWA was identified by loss-of-function mutations in normally flowering revertants of the fwa mutant, and it encodes a homeodomain-containing transcription factor. The DNA sequence of wild-type and fwa mutant alleles

  13. Two Patients with Severe Short Stature due to a FBN1 Mutation (p.Ala1728Val) with a Mild Form of Acromicric Dysplasia.

    Science.gov (United States)

    de Bruin, Christiaan; Finlayson, Courtney; Funari, Mariana F A; Vasques, Gabriela A; Lucheze Freire, Bruna; Lerario, Antonio M; Andrew, Melissa; Hwa, Vivian; Dauber, Andrew; Jorge, Alexander A L

    2016-01-01

    Acromicric dysplasia (AD) and geleophysic dysplasia 2 (GD2) belong to the category of acromelic dysplasia syndromes, consisting of severe short stature, short hands and feet and skin thickening. Both can result from missense mutations in the transforming growth factor beta 5 domain of the fibrillin-1 gene (FBN1). Two patients (P1 age 10, and P2 age 7) from unrelated families presented to their endocrinologist with severe short stature (approx. -4 SDS). They were otherwise asymptomatic and only had mild facial dysmorphisms. Extensive endocrine work-up did not reveal an underlying etiology. Exome sequencing was performed in each family. Exome sequencing identified the presence of the same heterozygous missense variant c.C5183T (p.Ala1728Val) in the FBN1 gene in both P1 and P2. This variant was previously reported in a patient with GD2 and associated cardiac valvulopathy and hepatomegaly. Detailed clinical re-examination, cardiac and skeletal imaging did not reveal any abnormalities in P1 or P2 other than mild hip dysplasia. This report broadens the phenotypic spectrum of growth disorders associated with FBN1 mutations. Identical mutations give rise to a wide phenotypic spectrum, ranging from isolated short stature to a more classic picture of GD2 with cardiac involvement, distinct facial dysmorphisms and various skeletal anomalies. © 2016 S. Karger AG, Basel.

  14. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 1. Chlorophyll Mutations in Allelic tw Mutants and Their Revertants

    International Nuclear Information System (INIS)

    Vaitkuniene, V.

    1995-01-01

    Genotypical environment is an essential factor determining the mutability of mutants of the same type. Decreased chlorophyll mutant frequency was a common characteristic of all tested tw type (tw, tw 1 , tw 2 ) mutants induced in barley c. 'Auksiniai II'. The mutability of all the tested revertants was close to that of the initial c. 'Auksiniai II'. (author). 9 refs., 2 tabs

  15. Dural ectasia and FBN1 mutation screening of 40 patients with Marfan syndrome and related disorders: role of dural ectasia for the diagnosis.

    Science.gov (United States)

    Attanasio, Monica; Pratelli, Elisa; Porciani, Maria Cristina; Evangelisti, Lucia; Torricelli, Elena; Pellicanò, Giannantonio; Abbate, Rosanna; Gensini, Gian Franco; Pepe, Guglielmina

    2013-07-01

    Marfan syndrome is an autosomal dominant disorder of connective tissue caused by mutations in the gene encoding fibrillin-1 (FBN1), a matrix component of microfibrils. Dural ectasia, i.e. enlargement of the neural canal mainly located in the lower lumbar and sacral region, frequently occurs in Marfan patients. The aim of our study was to investigate the role of dural ectasia in raising the diagnosis of Marfan syndrome and its association with FBN1 mutations. We studied 40 unrelated patients suspected for MFS, who underwent magnetic resonance imaging searching for dural ectasia. In all of them FBN1 gene analysis was also performed. Thirty-seven patients resulted affected by Marfan syndrome according to the '96 Ghent criteria; in 30 of them the diagnosis was confirmed when revaluated by the recently revised criteria (2010). Thirty-six patients resulted positive for dural ectasia. The degree of dural ectasia was grade 1 in 19 patients, grade 2 in 11 patients, and grade 3 in 6 patients. In 7 (24%) patients, the presence of dural ectasia allowed to reach a positive score for systemic feature criterion. Twenty-four patients carried an FBN1 mutation, that were represented by 13 missense (54%), and 11 (46%) mutations generating a premature termination codon (PTC, frameshifts and stop codons). No mutation was detected in the remaining 16 (6 patients with MFS and 10 with related disorders according to revised Ghent criteria). The prevalence of severe (grade 2 and grade 3) involvement of dura mater was higher in patients harbouring premature termination codon (PTC) mutations than those carrying missense-mutations (8/11 vs 2/13, P = 0.0111). Our data emphasizes the importance of dural ectasia screening to reach the diagnosis of Marfan syndrome especially when it is uncertain and indicates an association between PTC mutations and severe dural ectasia in Marfan patients. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Science.gov (United States)

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit.

    Science.gov (United States)

    Chen, Mao; Yao, Bing; Yang, Qiangbing; Deng, Jichao; Song, Yuning; Sui, Tingting; Zhou, Lina; Yao, HaoBing; Xu, Yuanyuan; Ouyang, Hongsheng; Pang, Daxin; Li, Zhanjun; Lai, Liangxue

    2018-04-09

    Various clinical differences have been observed between patients with the FBN1 gene mutation and those with the classical Marfan phenotype. Although FBN1 knockout (KO) or dominant-negative mutant mice are widely used as an animal model for Marfan syndrome (MFS), these mice cannot recapitulate the genotype/phenotype relationship of Marfanoid-progeroid-lipodystrophy (MPL) syndrome, which is caused by a mutation in the C-terminus of fibrillin-1, the penultimate exon of the FBN1 gene. Here, we describe the generation of a rabbit MPL model with C-terminal truncation of fibrillin-1 using a CRISPR/Cas9 system. FBN1 heterozygous ( FBN1 Het) rabbits faithfully recapitulated the phenotypes of MFS, including muscle wasting and impaired connective tissue, ocular syndrome and aortic dilation. Moreover, skin symptoms, lipodystrophy, growth retardation and dysglycemia were also seen in these FBN1 Het rabbits, and have not been reported in other animal models. In conclusion, this novel rabbit model mimics the histopathological changes and functional defects of MPL syndrome, and could become a valuable model for studies of pathogenesis and drug screening for MPL syndrome. © 2018. Published by The Company of Biologists Ltd.

  18. Compound-heterozygous Marfan syndrome

    NARCIS (Netherlands)

    van Dijk, F. S.; Hamel, B. C.; Hilhorst-Hofstee, Y.; Mulder, B. J. M.; Timmermans, J.; Pals, G.; Cobben, J. M.

    2009-01-01

    We report two families in which the probands have compound-heterozygous Marfan syndrome (MFS). The proband of family I has the R2726W FBN1 mutation associated with isolated skeletal features on one allele and a pathogenic FBN1 mutation on the other allele. The phenotype of the compound-heterozygous

  19. Parental somatic and germ-line mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts

    NARCIS (Netherlands)

    Putnam, E. A.; Park, E. S.; Aalfs, C. M.; Hennekam, R. C.; Milewicz, D. M.

    1997-01-01

    Congenital contractural arachnodactyly (CCA) is an autosomal dominant disorder that is phenotypically related to the Marfan syndrome. CCA has recently been shown to result from mutations in the FBN2 gene, which encodes an elastin-associated microfibrillar protein called fibrillin-2. Two siblings are

  20. Real-time PCR genotyping assay for canine progressive rod-cone degeneration and mutant allele frequency in Toy Poodles, Chihuahuas and Miniature Dachshunds in Japan.

    Science.gov (United States)

    Kohyama, Moeko; Tada, Naomi; Mitsui, Hiroko; Tomioka, Hitomi; Tsutsui, Toshihiko; Yabuki, Akira; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Mizukami, Keijiro; Yamato, Osamu

    2016-03-01

    Canine progressive rod-cone degeneration (PRCD) is a middle- to late-onset, autosomal recessive, inherited retinal disorder caused by a substitution (c.5G>A) in the canine PRCD gene that has been identified in 29 or more purebred dogs. In the present study, a TaqMan probe-based real-time PCR assay was developed and evaluated for rapid genotyping and large-scale screening of the mutation. Furthermore, a genotyping survey was carried out in a population of the three most popular breeds in Japan (Toy Poodles, Chihuahuas and Miniature Dachshunds) to determine the current mutant allele frequency. The assay separated all the genotypes of canine PRCD rapidly, indicating its suitability for large-scale surveys. The results of the survey showed that the mutant allele frequency in Toy Poodles was high enough (approximately 0.09) to allow the establishment of measures for the prevention and control of this disorder in breeding kennels. The mutant allele was detected in Chihuahuas for the first time, but the frequency was lower (approximately 0.02) than that in Toy Poodles. The mutant allele was not detected in Miniature Dachshunds. This assay will allow the selective breeding of dogs from the two most popular breeds (Toy Poodle and Chihuahua) in Japan and effective prevention or control of the disorder.

  1. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes

    Directory of Open Access Journals (Sweden)

    Josh Lewis Stern

    2017-12-01

    Full Text Available A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2 on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival.

  2. Targeted Disruption of V600E-Mutant BRAF Gene by CRISPR-Cpf1

    Directory of Open Access Journals (Sweden)

    Meijia Yang

    2017-09-01

    Full Text Available BRAF-V600E (1799T > A is one of the most frequently reported driver mutations in multiple types of cancers, and patients with such mutations could benefit from selectively inactivating the mutant allele. Near this mutation site, there are two TTTN and one NGG protospacer-adjacent motifs (PAMs for Cpf1 and Cas9 CRISPR nucleases, respectively. The 1799T > A substitution also leads to the occurrence of a novel NGNG PAM for the EQR variant of Cas9. We examined the editing efficacy and selectivity of Cpf1, Cas9, and EQR variant to this mutation site. Only Cpf1 demonstrated robust activity to induce specific disruption of only mutant BRAF, not wild-type sequence. Cas9 recognized and cut both normal and mutant alleles, and no obvious gene editing events were observed using EQR variant. Our results support the potential applicability of Cpf1 in precision medicine through highly specific inactivation of many other gain-of-function mutations. Keywords: Cpf1, targeted therapy, BRAF V600E

  3. ARID1B is a specific vulnerability in ARID1A-mutant cancers.

    Science.gov (United States)

    Helming, Katherine C; Wang, Xiaofeng; Wilson, Boris G; Vazquez, Francisca; Haswell, Jeffrey R; Manchester, Haley E; Kim, Youngha; Kryukov, Gregory V; Ghandi, Mahmoud; Aguirre, Andrew J; Jagani, Zainab; Wang, Zhong; Garraway, Levi A; Hahn, William C; Roberts, Charles W M

    2014-03-01

    Recent studies have revealed that ARID1A, encoding AT-rich interactive domain 1A (SWI-like), is frequently mutated across a variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, an ARID1A homolog whose gene product is mutually exclusive with ARID1A in SWI/SNF complexes, as the number 1 gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation in both cancer cells and primary cells. We also find that ARID1A and ARID1B are frequently co-mutated in cancer but that ARID1A-deficient cancers retain at least one functional ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers.

  4. Allele-specific characterization of alanine: glyoxylate aminotransferase variants associated with primary hyperoxaluria.

    Directory of Open Access Journals (Sweden)

    Melissa D Lage

    Full Text Available Primary Hyperoxaluria Type 1 (PH1 is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT, which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele.

  5. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes.

    Science.gov (United States)

    Stern, Josh Lewis; Paucek, Richard D; Huang, Franklin W; Ghandi, Mahmoud; Nwumeh, Ronald; Costello, James C; Cech, Thomas R

    2017-12-26

    A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT) gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI) is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2) on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations.

    Science.gov (United States)

    Jeselsohn, Rinath; Bergholz, Johann S; Pun, Matthew; Cornwell, MacIntosh; Liu, Weihan; Nardone, Agostina; Xiao, Tengfei; Li, Wei; Qiu, Xintao; Buchwalter, Gilles; Feiglin, Ariel; Abell-Hart, Kayley; Fei, Teng; Rao, Prakash; Long, Henry; Kwiatkowski, Nicholas; Zhang, Tinghu; Gray, Nathanael; Melchers, Diane; Houtman, Rene; Liu, X Shirley; Cohen, Ofir; Wagle, Nikhil; Winer, Eric P; Zhao, Jean; Brown, Myles

    2018-02-12

    Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER + ) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A Medicago truncatula Tobacco Retrotransposon Insertion Mutant Collection with Defects in Nodule Development and Symbiotic Nitrogen Fixation1[W][OA

    Science.gov (United States)

    Pislariu, Catalina I.; D. Murray, Jeremy; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; A. Benedito, Vagner; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E.; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S.; Chen, Rujin; Udvardi, Michael K.

    2012-01-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod−), 51 mutants with totally ineffective nodules (Nod+ Fix−), 17 mutants with partially ineffective nodules (Nod+ Fix+/−), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/− Fix−), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/− Fix+), and 11 supernodulating mutants (Nod++Fix+/−). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN’T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod− lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging. PMID:22679222

  8. Genetic analyses of nonfluorescent root mutants induced by mutagenesis in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1987-01-01

    Nonfluorescent root mutants in soybean [Glycine max (L.) Merr.] are useful as markers in genetic studies and in tissue culture research. Our objective was to obtain mutagen-induced nonfluorescent root mutants and to conduct genetic studies with them. Thirteen nonfluorescent mutants were detected among 154016 seedlings derived from soybean lines treated with six mutagens. One of these mutants, derived from Williams treated with 20 kR gamma rays, did not correspond to any of the known (standard) nonfluorescent spontaneous mutants. This is the first mutagen-induced nonfluorescent root mutant in soybean. It was assigned Genetic Type Collection no. T285 and the gene symbol fr5 fr5. The fr5 allele was not located on trisomics A, B, or C and was not linked to five chlorophyll-deficient mutants (y9, y11, y12, y13, and y20-k2) or flower color mutant w1. The remaining nonfluorescent root mutants were at the same loci as known spontaneous mutants; i.e., four had the fr1 allele, five had the fr2 allele, and three had the fr4 allele

  9. Consequences of Marfan mutations to expression of fibrillin gene and to the structure of microfibrils

    Energy Technology Data Exchange (ETDEWEB)

    Peltonen, L.; Karttunen, L.; Rantamaeki, T. [NPHI, Helsinki (Finland)] [and others

    1994-09-01

    Marfan syndrome (MFS) is a dominantly inherited connective tissue disorder which is caused by mutations in the fibrillin-1 gene (FBN1). Over 40 family-specific FBN1 mutations have been identified. We have characterized 18 different heterozygous mutations including amino acid substitutions, premature stop, and splicing defects leading to deletions or one insertion, and one compound heterozygote with two differently mutated FBN1 alleles inherited from his affected parents. To unravel the consequences of FBN1 mutations to the transcription of FBN1 gene, we have measured the steady state levels of mRNA transcribed from the normal and mutated alleles. The missense mutations do not affect the transcription of the allele while the nonsense mutation leads to lower steady state amount of mutated allele. For the dissection of molecular pathogenesis of FBN1 mutations we have performed rotary shadowing of the microfibrils produced by the cell cultures from MFS patients. The cells from the neonatal patients with established mutations produced only disorganized fibrillin aggregates but no clearly defined microfibrils could be detected, suggesting a major role of this gene region coding for exons 24-26 in stabilization and organization of the bead structure of microfibrils. From the cells of a rare compound heterozygote case carrying two different mutations, no detectable microfibrils could be detected whereas the cells of his parents with heterozygous mutations were able to form identifiable but disorganized microfibrils. In the cells of an MFS case caused by a premature stop removing the C-terminus of fibrillin, the microfibril assembly takes place but the appropriate packing of the microfibrils is disturbed suggesting that C-terminae are actually located within the interbead domain of the microfibrils.

  10. Two mutant alleles of the human cytochrome P-450dbl gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs

    International Nuclear Information System (INIS)

    Skoda, R.C.; Gonzalez, F.L.; Demierre, A.; Meyer, R.A.

    1988-01-01

    The debrisoquine polymorphism is a clinically important genetic defect of drug metabolism affecting 5-10% of individuals in Caucasian populations. It is inherited as an autosomal recessive trait. A full-length cDNA for human cytochrome P-450db1, the deficient enzyme (also designated P450IID1 for P450 family II subfamily D isozyme 1), has recently been cloned. Leukocyte DNA from extensive metabolizers (EMs) or poor metabolizers (PMs) of debrisoquine was examined by Southern analysis. Two polymorphic restriction fragments were associated with the PM phenotype when DNAs from 24 unrelated PM and 29 unrelated EM individuals were probed with P-450db1 cDNA after digestion with Xba I restriction endonuclease and Southern blotting. Seventy-five percent of PMs had either the 44-kb or the 11.5-kb fragment or both. Segregation of these restriction fragment length polymorphisms in the families of six PM probands demonstrated that each of the two fragments is allelic with the 29-kb fragment present in all EM individuals and suggests that they identify two independent mutated alleles of the P-450db1 gene (designated P450C2D1). The Xba I 44-kb fragment and 11.5-kb fragment were in linkage disequilibrium with restriction fragment length polymorphisms generated by four and five additional restriction endonucleases, respectively, which can be used to identify the same mutant alleles for the P-450db1 gene

  11. Hungarian Marfan family with large FBN1 deletion calls attention to copy number variation detection in the current NGS era

    Science.gov (United States)

    Ágg, Bence; Meienberg, Janine; Kopps, Anna M.; Fattorini, Nathalie; Stengl, Roland; Daradics, Noémi; Pólos, Miklós; Bors, András; Radovits, Tamás; Merkely, Béla; De Backer, Julie; Szabolcs, Zoltán; Mátyás, Gábor

    2018-01-01

    Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current next-generation sequencing (NGS) era. PMID:29850152

  12. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome.

    Science.gov (United States)

    Ahmed, Zubair M; Riazuddin, Saima; Aye, Sandar; Ali, Rana A; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B

    2008-10-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3-11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.

  13. Genetic analysis of plant height in induced mutants of aromatic rice

    International Nuclear Information System (INIS)

    Kole, P.C.

    2005-01-01

    Inheritance of plant height in five gamma-ray induced mutants of aromatic rice cultivar Gobindabhog was studied through 6 x 6 diallel cross and segregation analyses. Diallel analysis revealed presence of additive and non-additive gene action with the preponderance of the latter. Proportion of dominant and recessive alleles was distributed unequally among the parents. The direction of dominance was towards tallness. The number of groups of genes was found to be three. The segregation analysis indicated the role of a single major recessive gene for height reduction in three mutants and, in another mutant, a single major recessive gene with negative modifiers. The other semi-dwarf mutant had two major recessive genes with almost equal effect in height reduction. The mutant allele(s) of the latter two mutants were non-allelic to sd sub(1) gene, which could be used as an alternative source of Dee Gee Woo Gen to widen the genetic diversity in semi-dwarfism [it

  14. Genetic analysis of rice semidwarf mutant Tad-M-1

    International Nuclear Information System (INIS)

    Wang Naiyuan; Yang Rencui

    1995-01-01

    This paper dealed with the inheritance of the rice semidwarf of Tad-M-,a mutant line bred from traditional indica rice Variety Tadukan by radiation. The results indicated that semidwarf of Tad-M-1 was controlled by one pair of recessive gene, which was nonallelic to sd-1 gene of variety Aijiaonante and sd-g gene of variety Xinguiai and allelic to the semidwarf gene of Yunnan japonica variety Xueheaizao and Sichuan indica variety Yizila.The possible uses of Tad-M-1 in rice breeding was also discussed

  15. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 2. Comparison of Various Mutants

    International Nuclear Information System (INIS)

    Balchiuniene, L.

    1995-01-01

    Spontaneous and gamma-induced mutability was compared in two groups of genetically unstable barley ear structure mutants - tweaky spike (tw) and branched ear (be). Instability in different loci causes different levels of spontaneous and gamma-induced mutability. A high spontaneous level of chlorophyll mutations is peculiar to be-ust mutants. It is suggested that the high level of induced chlorophyll mutations in allelic tw mutants is a result of better surviving of chlorophyll mutation carriers in the genotypical-physiological environment created by mutant tw alleles. (author). 6 refs., 2 tabs

  16. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Montag, Judith; Syring, Mandy; Rose, Julia; Weber, Anna-Lena; Ernstberger, Pia; Mayer, Anne-Kathrin; Becker, Edgar; Keyser, Britta; Dos Remedios, Cristobal; Perrot, Andreas; van der Velden, Jolanda; Francino, Antonio; Navarro-Lopez, Francesco; Ho, Carolyn Yung; Brenner, Bernhard; Kraft, Theresia

    2017-08-01

    HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.

  17. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery.

    Science.gov (United States)

    Giannelli, Serena G; Luoni, Mirko; Castoldi, Valerio; Massimino, Luca; Cabassi, Tommaso; Angeloni, Debora; Demontis, Gian Carlo; Leocani, Letizia; Andreazzoli, Massimiliano; Broccoli, Vania

    2018-03-01

    P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.

  18. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    Full Text Available Allele-specific gene silencing by RNA interference (RNAi is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi, the design and assessment of small interfering RNA (siRNA duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs against mutant alleles of the human Prion Protein (PRNP gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs, of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense

  19. Ultraviolet-induced reversion of cyc1 alleles in radiation-sensitive strains of yeast. III. rev 3 mutant strains

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Crhistensen, R.B.

    1979-01-01

    The role of rev3 gene function in uv-induced mutagenesis in the yeast Saccharomyces cerevisiae has been examined by determining the reversion of 12 well-defined cyc1 mutations in diploid strains homozygous for the rev3-1 or rev3-3 allale. The 12 cyc1 alleles include one ochre, one amber, four initiation, two proline missense, and four frameshift mutations. We find that the rev3 mutations reduce the frequency of UV-induced reversion of all of the cyc1 alleles, though different classes of alleles respond to a different extent. These results imply that the rev3 gene function is required for the production of a wide variety of mutational events, though probably not all, and show that each of the three rev loci have different mutational phenotypes. Such diverse phenotypes are not predicted by the unitary model for bacterial mutagenes, suggesting that this is at best an incomplete description of eukaryotic mutagenesis

  20. Genetic and agronomic evaluation of induced semi-dwarf mutants of rice

    International Nuclear Information System (INIS)

    Rutger, J.N.

    1984-01-01

    Induced semi-dwarf mutants have played an important role in California's rapid shift from nearly all tall rice varieties in 1978 to nearly all semi-dwarf varieties at present. In 1981 over half of the California rice area was planted with semi-dwarf varieties carrying the induced mutant semi-dwarfing gene sd 1 , while much of the other half was planted to a variety deriving its semi-dwarfism from IR8. The sd 1 mutant is allelic to the major semi-dwarfing gene in DGWG and IR8. Current objectives are to determine the inheritance of new semi-dwarf mutants, including allelism tests with sd 1 , and to evaluate the agronomic potential of nonallelic sources and of double-dwarfs. To date semi-dwarf mutants from 10 varieties have been partially or completely evaluated. At least three nonallelic semi-dwarfing genes, sd 1 , sd 2 , and sd 4 , have been described. Rather than attempt to determine all possible allelic relationships of new mutants, crosses are being made only to the reference sd 1 source, since sd 1 , still seems to be the most productive semi-dwarfing gene source. However, nonallelic semi-dwarf mutants in the varieties M5 and Labelle may be useful if genetic vulnerability from widespread usage of the sd 1 source becomes a problem. (author)

  1. Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus

    International Nuclear Information System (INIS)

    Bruggemann, E.; Handwerger, K.; Essex, C.; Storz, G.

    1996-01-01

    Ionizing radiation is expected to produce mutants with deletions or other chromosomal rearrangements. These mutants are useful for a variety of purposes, such as creating null alleles and cloning genes whose existence is known only from their mutant phenotype; however, only a few mutations generated by ionizing radiation have been characterized at the molecular level in Arabidopsis thaliana. Twenty fast neutron-generated alleles of the Arabidopsis HY4 locus, which encodes a blue light receptor, CRY1, were isolated and characterized. Nine of the mutant alleles displayed normal genetic behavior. The other 11 mutant alleles were poorly transmitted through the male gametophyte and were lethal in homozygous plants. Southern blot analysis demonstrated that alleles of the first group generally contain small or moderate-sized deletions at HY4, while alleles of the second group contain large deletions at this locus. These results demonstrate that fast neutrons can produce a range of deletions at a single locus in Arabidopsis. Many of these deletions would be suitable for cloning by genomic subtraction or representational difference analysis. The results also suggest the presence of an essential locus adjacent to HY4. (author)

  2. A novel mutation (C1425Y) in the FBN2 gene in a father and son with congenital contractural arachnodactyly.

    Science.gov (United States)

    Chen, Ying; Lei, Yun-Ping; Zheng, Hong-Xiang; Wang, Wei; Cheng, Hong-Bo; Zhang, Jing; Wang, Hong-Yan; Jin, Li; Li, Hong

    2009-06-01

    Congenital contractural arachnodactyly (Beals syndrome) is a rare autosomal dominantly inherited connective tissue disorder characterized by flexion contractures, arachnodactyly, crumpled ears, and mild muscular hypoplasia. Here, a father and son with congenital contractural arachnodactyly features were identified. After sequencing 15 exons (22 to 36) of the FBN2 gene, a novel mutation (C1425Y) was found in exon 33. This de novo mutation presented first in the father and was transmitted to his son, but not in the other 14 unaffected family members and 365 normal people. The C1425Y mutation occurs at the 19th cbEGF domain. Cysteines in this cbEGF domain are rather conserved in species, from human down to ascidian. The cbEGF12-13 in human FBN1 was employed as the template to perform homology modeling of cbEGF18-19 of human FBN2 protein. The mutation has also been evaluated by further prediction tools, for example, SIFT, Blosum62, biochemical Yu's matrice, and UMD-Predictor tool. In all analysis, the mutation is predicted to be pathogenic. Thus, the structure destabilization by C1425Y might be the cause of the disorder.

  3. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.

    Science.gov (United States)

    Lawrence, C W; O'Brien, T; Bond, J

    1984-01-01

    The UV-induced reversion of two his4 frameshift alleles was much reduced in rad6 mutants of Saccharomyces cerevisiae, an observation that is consistent with the hypothesis that RAD6 function is required for the induction of all types of genetic alteration in misrepair mutagenesis. The reversion of these his4 alleles, together with two others of the same type, was also reduced in rev1 and rev3 mutant strains; in these, however, the extent of the reduction varied considerably with test allele used, in a manner analogous to the results in these strains for base repair substitution test alleles. The general features of UV-induced frameshift and substitution mutagenesis therefore appear quite similar, indicating that they may depend on related processes. If this conclusion is correct, greater attention must be given to integrating models which account for the production of nucleotide additions and deletions into those concerning misrepair mutagenesis.

  4. Frequencies distribution of dihydrofolate reductase and dihydropteroate synthetase mutant alleles associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum population from Hadhramout Governorate, Yemen.

    Science.gov (United States)

    Bamaga, Omar A A; Mahdy, Mohammed A K; Lim, Yvonne A L

    2015-12-22

    Malaria in Yemen is mainly caused by Plasmodium falciparum and 25% of the population is at high risk. Sulfadoxine-pyrimethamine (SP) had been used as monotherapy against P. falciparum. Emergence of chloroquine resistance led to the shift in anti-malarial treatment policy in Yemen to artemisinin-based combination therapy, that is artesunate (AS) plus SP as first-line therapy for uncomplicated malaria and artemether-lumefantrine as second-line treatment. This study aimed to screen mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes associated with SP resistance among P. falciparum population in Hadhramout governorate, Yemen. Genomic DNA was extracted from dried blood spots of 137 P. falciparum isolates collected from a community-based study. DNA was amplified using nested polymerase chain reaction (PCR) and subsequently sequenced for Pfdhfr and Pfdhps genes. Sequences were analysed for mutations in Pfdhfr gene codons 51, 59, 108, and 164 and in Pfdhps gene codons 436, 437, and 540. A total of 128 and 114 P. falciparum isolates were successfully sequenced for Pfdhfr and Pfdhps genes, respectively. Each Pfdhfr mutant allele (I51 and N108) in P. falciparum population had a frequency of 84%. Pfdhfr R59 mutant allele was detected in one isolate. Mutation at codon 437 (G437) in the Pfdhps gene was detected in 44.7% of falciparum malaria isolates. Frequencies of Pfdhfr double mutant genotype (I51C59N108I164) and Pfdhfr/Pfdhps triple mutant genotype (I51C59N108I164-S436G437K540) were 82.8 and 39.3%, respectively. One isolate harboured Pfdhfr triple mutant genotype (I51, R59, N108, I164) and Pfdhfr/Pfdhps quadruple mutant genotype (I51R59N108I164-S436G437K540). High frequencies of Pfdhfr and Pfdhps mutant alleles and genotypes in P. falciparum population in Hadhramout, Yemen, highlight the risk of developing resistance for SP, the partner drug of AS, which subsequently will expose the parasite to AS monotherapy increasing then the

  5. Genetic analysis and molecular detection of the corn endosperm mutants induced by space flight

    International Nuclear Information System (INIS)

    Zhang Caibo; Zhou Yuanyuan; Wang Hanyu; Wang Hongwei; Wang Shengqing; Rong Tingzhao; Cao Moju

    2013-01-01

    In this study, two maize inbred lines 08-641 and 18-599 were carried into cosmic space by recoverable satellite 'Shijian 8', grain shrunken transparently and opaquely mutants were selected as experimental materials and their soluble sugar content in kernel were measured by annthrone colorimetry. The content of soluble sugar in mutant st1 kernels began to rise in 10 days after pollination, to reach the peak in 25 days and significantly higher than the contrast 08-641, while in mutant sol kernels it began to rise in 10 days after pollination, to reach the peak in 20 days and significantly higher than the contrast 18-599. The results of genetic analysis and allelism test showed that the trait in both mutants was all controlled by a single recessive gene, the mutant st1 was allelic to the su1 and the mutant sol was allelic to the sh2. DNA sequence alignment found 2 single-base mutations in 2 and 13 exon of su1 gene in the mutant st1 and 3 single-base mutations in 2, 5 and 16 exon of sh2 gene in mutant so1 leading to the change in amino acid sequences. So it is inferred that starch biosynthesis in the mutants may be blocked by these mutations, which lead to the increase of soluble sugar content in kernel. (authors)

  6. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST)

    International Nuclear Information System (INIS)

    Morgenthaler, Stephan; Thilly, William G.

    2007-01-01

    A method is described to discover if a gene carries one or more allelic mutations that confer risk for any specified common disease. The method does not depend upon genetic linkage of risk-conferring mutations to high frequency genetic markers such as single nucleotide polymorphisms. Instead, the sums of allelic mutation frequencies in case and control cohorts are determined and a statistical test is applied to discover if the difference in these sums is greater than would be expected by chance. A statistical model is presented that defines the ability of such tests to detect significant gene-disease relationships as a function of case and control cohort sizes and key confounding variables: zygosity and genicity, environmental risk factors, errors in diagnosis, limits to mutant detection, linkage of neutral and risk-conferring mutations, ethnic diversity in the general population and the expectation that among all exonic mutants in the human genome greater than 90% will be neutral with regard to any effect on disease risk. Means to test the null hypothesis for, and determine the statistical power of, each test are provided. For this 'cohort allelic sums test' or 'CAST', the statistical model and test are provided as an Excel (TM) program, CASTAT (C) at http://epidemiology.mit.edu. Based on genetics, technology and statistics, a strategy of enumerating the mutant alleles carried in the exons and splice sites of the estimated ∼25,000 human genes in case cohort samples of 10,000 persons for each of 100 common diseases is proposed and evaluated: A wide range of possible conditions of multi-allelic or mono-allelic and monogenic, multigenic or polygenic (including epistatic) risk are found to be detectable using the statistical criteria of 1 or 10 ''false positive'' gene associations per 25,000 gene-disease pair-wise trials and a statistical power of >0.8. Using estimates of the distribution of both neutral and gene-inactivating nondeleterious mutations in humans and

  7. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.

    Science.gov (United States)

    Robson, F; Costa, M M; Hepworth, S R; Vizir, I; Piñeiro, M; Reeves, P H; Putterill, J; Coupland, G

    2001-12-01

    CONSTANS promotes flowering of Arabidopsis in response to long-day conditions. We show that CONSTANS is a member of an Arabidopsis gene family that comprises 16 other members. The CO-Like proteins encoded by these genes contain two segments of homology: a zinc finger containing region near their amino terminus and a CCT (CO, CO-Like, TOC1) domain near their carboxy terminus. Analysis of seven classical co mutant alleles demonstrated that the mutations all occur within either the zinc finger region or the CCT domain, confirming that the two regions of homology are important for CO function. The zinc fingers are most similar to those of B-boxes, which act as protein-protein interaction domains in several transcription factors described in animals. Segments of CO protein containing the CCT domain localize GFP to the nucleus, but one mutation that affects the CCT domain delays flowering without affecting the nuclear localization function, suggesting that this domain has additional functions. All eight co alleles, including one recovered by pollen irradiation in which DNA encoding both B-boxes is deleted, are shown to be semidominant. This dominance appears to be largely due to a reduction in CO dosage in the heterozygous plants. However, some alleles may also actively delay flowering, because overexpression from the CaMV 35S promoter of the co-3 allele, that has a mutation in the second B-box, delayed flowering of wild-type plants. The significance of these observations for the role of CO in the control of flowering time is discussed.

  8. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of PMS1-1 and PMS1-2

    International Nuclear Information System (INIS)

    Williamson, M.S.; Game, J.C.; Fogel, S.

    1985-01-01

    The PMS1 mutants, isolated on the basis of sharply elevated meiotic prototroph frequencies for two closely linked HIS4 alleles, display pleiotropic phenotypes in meiotic and mitotic cells. Two isolates carrying recessive mutations in PMS1 were characterized. They identify a function required to maintain low postmeiotic segregation (PMS) frequencies at many heterozygous sites. In addition, they are mitotic mutators. In mutant diploids, spore viability is reduced, and among survivors, gene conversion and postmeiotic segregation frequencies are increased, but reciprocal exchange frequencies are not affected. The conversion event pattern is also dramatically changed in multiply marked regions in PMS1 homozygotes. The PMS1 locus maps near MET4 on chromosome XIV. The PMS1 gene may identify an excision-resynthesis long patch mismatch correction function or a function that facilitates correction tract elongation. The PMS1 gene product may also play an important role in spontaneous mitotic mutation avoidance and correction of mismatches in heteroduplex DNA formed during spontaneous and UV-induced mitotic recombination. Based on meiotic recombination models emphasizing mismatch correction in heteroduplex DNA intermediates, this interpretation is favored, but alternative interpretations involving longer recombination intermediates in the mutants are also considered

  9. Phosphorus Partitioning of Soybean Lines Containing Different Mutant Alleles of Two Soybean Seed-Specific Adenosine Triphosphate-Binding Cassette Phytic Acid Transporter Paralogs

    Directory of Open Access Journals (Sweden)

    Jason D. Gillman

    2013-03-01

    Full Text Available Seed phytate is a repository of P and minerals in soybean [ (L. Merr.] seeds that limits P and mineral bioavailability for monogastric animals (e.g., humans, swine [], and poultry [especially chicken, ] due to insufficient digestive tract phytase activity. We previously identified epistatic recessive mutations affecting two paralogous adenosine triphosphate-binding cassette phytic acid transporter genes (one a nonsense mutation in and the other a missense mutation in as the molecular genetic basis in the ethyl methanesulfonate (EMS-induced mutant low phytate soybean line M153. An additional mutant low phytate line, M766, contained one single nucleotide polymorphism within the ninth intron of the locus as well as a nonsense mutation in . The objectives of this research were to clarify the genetics underlying the low phytate phenotype in line M766 and to determine P partitioning in new combinations of mutant alleles from M766 and M153. Inheritance of nonsense alleles affecting both ( genes (one from M153 and one from M766 led to the production of viable seeds that contained transgressive reductions in total seed phytate and significantly higher levels of inorganic phosphate than has been reported for nontransgenic soybean material and will allow efficient molecular selection of soybeans with even greater reductions of phytate for improved quality soybean meal.

  10. Dwarf mutant of rice variety Seratus Malam

    International Nuclear Information System (INIS)

    Mugiono, P. S.; Soemanggono, A.M.R.

    1989-01-01

    Full text: Seeds of 'Seratus Malam', a local tall upland variety with long panicles and high yield potential were irradiated with 10-50 krad gamma rays in 1983. From 50,000 M 2 plants, 130 semidwarf mutants and 1 dwarf mutant were selected. The dwarf mutant M-362 was obtained from the 10 krad treatment. The mutant shows about 50% reduction in plant height, but also in number of productive tillers. Thus the yield per plant is also significantly less. However, the mutant gene is not allelic to DGWG and therefore may be useful in cross breeding. (author)

  11. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong; Zhan, Xiangqiang; Xu, Xiaoming; Cui, Peng; Zhu, Jian-Kang; Xia, Yiji; Xiong, Liming

    2015-01-01

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros11. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros11 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  12. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets

    KAUST Repository

    Zhang, ShouDong

    2015-12-15

    HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros11. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros11 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.

  13. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    Science.gov (United States)

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  14. A new mutant gene su-1 in corn obtained by irradiation with low doses of gamma rays

    International Nuclear Information System (INIS)

    Diaconu, P.

    1993-01-01

    This paper provides a description of a sugar corn mutant obtained by irradiation of wetted kernels of Romanesc de Studina variety with low doses of gamma rays (300 R). This mutant influences the structure of the endosperm similarly to the su-1 genes developed spontaneously which resulted in the corn variety Zea mays saccharata thousands of years ago. Although the mutant is a multiple allele of the su-1 locus in chromosome IV it differs widely from the spontaneous mutant. The length of the ears is much reduced, varying between 4 and 6 cm, with numbers of kernels per ear varying between 45 and 72. Attempts to improve the cob size and the number of kernels by breeding and propagation in an insulated area led to no result. Crossing the mutants with the sugar hybrid Delicious resulted in sugar type progeny which confirms the common position of the mutant gene induced by irradiation and the spontaneous su-1 gene. The progenies of sugar mutant x Delicious are 38-43 % lower in cob vigor and 36-46% lower in kernel number. (author). 2 figs, 2 tab., 16 refs

  15. The glossyhead1 allele of acc1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis

    KAUST Repository

    Lu, Shiyou

    2011-09-23

    A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C 20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. © 2011 American Society of Plant Biologists. All Rights Reserved.

  16. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  17. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    Science.gov (United States)

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  18. Diminished levels of allelic losses by homologous recombination in radiation-hypersensitive cells

    International Nuclear Information System (INIS)

    Tatsumi, K.; Abe, M.; Hoki, Y.; Kubo, E.; Muto, M.; Araki, R.; Sato, K.

    2003-01-01

    Mitotic recombination (MR) due to somatic crossing-over is a predominant mechanism for allelic losses in mammalian cells either spontaneous or radiation-induced. A selectable mutation assay accompanying real-time detection PCR was developed to analyze the second step in loss-of-function mutations employing a human lympho-blastoid cell line derived from an obligate heterozygote of 2,8-dihydroxyadenine urolithiasis, adenine phosphoribosyltransferase (APRT) deficiency with a nonsense mutation at exon 3 of the gene. 68 % of spontaneously arising 2,6-diaminopurine resistance (DAP r ) mutant clones were associated with loss of heterozygosity (LOH), while 92 % of 2 Gy gamma-ray induced mutant clones were so associated. Investigation of gene dosage revealed that about one half of the spontaneously arising mutant clones and two-thirds of those induced by gamma-rays showed reduction to homozygosity of the constitutionally inactivated APRT allele. In an ataxia telangiectasia (AT) cell subline in which a new inactivation mutation had been introduced into one APRT allele by ICR-191, MR rarely occurred and exclusively deletions predominated in both spontaneous and X-ray induced DAP r mutants with LOH. A similar assay system was also developed with C3H mouse FM3A mammary tumor cells, SR-1, carrying a C .T transition at exon 5 of an APRT allele. In an XRCC7 (DNA-PKcs) deficient subline of SR-1, SX9 , spontaneous mutation frequencies for the Aprt locus (8AA r ) was 10 -3 , which was about 10 times higher than that in parental SR-1 cells. Mutation frequencies induced by X-rays comparably increased in a dose-dependent manner for the Aprt locus in both cell lines. Against our expectation, the lack of an NHEJ pathway of DNA double strand break repair resulted in a lower proportion (11.1 %) of MR with deletions (77.8 %) as the molecular cause for 8AA r mutations following X-irradiation, while virtually all of X-ray induced 8AA r mutant clones were MR in the control SR-1 cells. Factors

  19. Gamma-radiation Mutagenesis in Genetically Unstable Barley Mutants. Pt. 3. Effects of Aging in Various Genotypes

    International Nuclear Information System (INIS)

    Balchiuniene, L.

    1995-01-01

    Gamma-irradiation effect was tested on the grain material of normal-initial barley c. 'Auksiniai II' and allelic mutants tw 1 and tw 2 . Dependence of the aging effects on genotype was obvious, especially in survival test. Differences were observed even on allelic mutants. These observations are important for the preservation strategy of plant genetical resources. (author). 11 refs., 3 tabs

  20. Availability of Micro-Tom mutant library combined with TILLING in molecular breeding of tomato fruit shelf-life.

    Science.gov (United States)

    Okabe, Yoshihiro; Asamizu, Erika; Ariizumi, Tohru; Shirasawa, Kenta; Tabata, Satoshi; Ezura, Hiroshi

    2012-06-01

    Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding.

  1. Availability of Micro-Tom mutant library combined with TILLING in molecular breeding of tomato fruit shelf-life

    Science.gov (United States)

    Okabe, Yoshihiro; Asamizu, Erika; Ariizumi, Tohru; Shirasawa, Kenta; Tabata, Satoshi; Ezura, Hiroshi

    2012-01-01

    Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding. PMID:23136532

  2. Characterization of reduced height mutant of emmer wheat var. NP200 (Triticum dicoccum)

    International Nuclear Information System (INIS)

    Suman, Sud; Nayeem, K.A.; Bhagwat, S.G.

    2006-01-01

    Full text: Emmer wheat commonly known as Khapli is cultivated on limited area in Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra and Gujarat. Although cultivation of emmer wheat is confirmed to a small area, improvement work in this species is gaining importance because of its potential for diabetic patients and high dietary fibre in comparison to durum and bread wheats. Emmer wheat cultivar NP200 is a selection from local wheats of Andhra Pradesh. The cultivar NP200 is tall and is prone to lodging leading to yield loss. Therefore, systematic effort to improve cultivar NP200 is needed with the objective to reduce height and introduce lodging tolerance and to improve harvest index. The cultivar NP200 was irradiated with γ-rays. A reduced height mutant with vigorous growth and high tillering was found in M2 population. The mutant was designated as HW1095. The progeny of mutant in M3 showed 35.7 percent reduction in height as compared to parent. The HW1095 mutant was subjected to gibberellic acid treatment at seedling stage and was found to be insensitive to gibberellic acid. An allele specific marker for major dwarfing gene Rht B1b was used to check the status of dwarfing gene in semi dwarf emmer (DDK1009, DDK1025, HW5013, HW5301 and MACS2961) and tall emmer (Np200 and NP201), semi dwarf durums (HD4502, HD4530, MACS2846) along with dwarf mutant (HW1095). The validity of primer in semi dwarf durums and emmer for Rht B 1b gene was found to be perfect. The parent variety NP200 showed presence of wild type allele (Rht B1a) with the primer pair BF-WR1. All semi dwarf emmer showed a band of 237 bp with primer pair BF-MR1. However, mutant (HW1095) showed absence of amplification for both Rht B1a and Rht B1b alleles with respective primer pairs. The results indicated that the reduced height mutant carried a mutation different than from the existing allele (Rht B1b)

  3. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens

    International Nuclear Information System (INIS)

    Boyd, J.B.; Golino, M.D.; Nguyen, T.D.; Green, M.M.

    1976-01-01

    Thirteen X-linked mutants have been isolated in Drosophila melanogaster which render male and homozygous female larvae sensitive to the mutagen methyl methanesulfonate. Their characterization and preliminary assignment to functional groups is described. Four of these mutants are alleles of mei-41. Like previously isolated alleles of this locus, these mutants reduce fertility and increase loss and nondisjunction of the X-chromosome in homozygous females. The remaining mutants have been tentatively assigned to six functional groups (two mutants to the mus(1)101 locus, two to mus(1)102, two to mus(1)103, and one each to mus(1)104, mus(1)105, and mus(1)106. Several of the complementation groups can be distinguished on the basis of nondisjunction and cross sensitivity to mutagens. Females homozygous for the mei-41, mus(1)101 and mus(1)102 mutants exhibit elevated levels of nondisjunction. Mutants belonging to complementation groups mei-41, mus(1)101, and mus(1)104 are sensitive to nitrogen mustard (HN2) in addition to their MMS sensitivity. Among these mutants there is currently a direct correlation between sensitivity to HN2, sensitivity to 2-acetylaminofluorene and a deficiency in post-replication repair. Only the mei-41 mutants are hypersensitive to uv radiation, although several of the mutants exhibit sensitivity to γ-rays. Semidominance is observed in female larvae of the mei-41, mus(1)104, and mus(1)103 mutants after exposure to high concentrations of MMS. The properties of the mutants generally conform to a pattern which has been established for related mutants in yeast

  4. Enhanced specificity of TPMT*2 genotyping using unidirectional wild-type and mutant allele-specific scorpion primers in a single tube.

    Directory of Open Access Journals (Sweden)

    Dong Chen

    Full Text Available Genotyping of thiopurine S-methyltransferase (TPMT is recommended for predicting the adverse drug response of thiopurines. In the current study, a novel version of allele-specific PCR (AS-PCR, termed competitive real-time fluorescent AS-PCR (CRAS-PCR was developed to analyze the TPMT*2 genotype in ethnic Chinese. This technique simultaneously uses wild-type and mutant allele-specific scorpion primers in a single reaction. To determine the optimal conditions for both traditional AS-PCR and CRAS-PCR, we used the Taguchi method, an engineering optimization process that balances the concentrations of all components using an orthogonal array rather than a factorial array. Instead of running up to 264 experiments with the conventional factorial method, the Taguchi method achieved the same optimization using only 16 experiments. The optimized CRAS-PCR system completely avoided non-specific amplification occurring in traditional AS-PCR and could be performed at much more relaxed reaction conditions at 1% sensitivity, similar to traditional AS-PCR. TPMT*2 genotyping of 240 clinical samples was consistent with published data. In conclusion, CRAS-PCR is a novel and robust genotyping method, and the Taguchi method is an effective tool for the optimization of molecular analysis techniques.

  5. Temperature sensitive riboflavin mutants of Penicillium vermiculatum Dangeard

    International Nuclear Information System (INIS)

    Mitra, J.; Chaudhari, K.L.

    1974-01-01

    Two temperature sensitive UV induced riboflavin mutants rib 1 and rib 6 have been physiologically and genetically characterized. The two mutants behave differently with regard to their temperature sensitivity. The rib 1 mutant exhibits a leaky growth in minimal medium between 15 0 C and 30 0 C but grows well when the medium is supplemented with riboflavin. At 35 0 C the growth response of the mutant is at its max. and at 40 0 C and below 15 0 C it ceases to grow. The rib 6 mutant which is red brown in colour shows wild type character at temp. below 25 0 C in minimal medium but requires riboflavin at 30 0 C and above. Heterokaryotic analysis revealed the nonallelic nature of the two temperature mutants. Genetic tests of allelic relationship between riboflavin markers by crossing were also done. (author)

  6. Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

    Directory of Open Access Journals (Sweden)

    Shotland Lawrence I

    2004-09-01

    Full Text Available Abstract Background Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10. TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3. Methods We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3. Results We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues. Conclusion Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449 of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.

  7. HLA Dr beta 1 alleles in Pakistani patients with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Naqi, N.; Ahmed, T.A.; Bashir, M.M.

    2011-01-01

    Objective: To determine frequencies of HLA DR beta 1 alleles in rheumatoid arthritis in Pakistani patients. Study Design: Cross sectional / analytical study. Place and Duration of Study: Department of Immunology, Armed Forces Institute of Pathology, Rawalpindi in collaboration with Rheumatology departments of Military Hospital, Rawalpindi and Fauji Foundation Hospital, Rawalpindi, from January 2009 to January 2010. Methodology: HLA DR beta 1 genotyping of one hundred Pakistani patients, diagnosed as having RA as per American College of Rheumatology revised criteria 1987, was done. HLA DR beta 1 genotyping was carried out at allele group level (DR beta 1*01-DR beta 1*16) by sequence specific primers in RA patients. Comparison of HLA DR beta 1 allele frequencies between patients and control groups was made using Pearson's chi-square test to find possible association of HLA DR?1 alleles with RA in Pakistani rheumatoid patients. Results: HLA DR beta 1*04 was expressed with significantly increased frequency in patients with rheumatoid arthritis (p <0.05). HLA DR?1*11 was expressed statistically significantly more in control group as compared to rheumatoid patients indicating a possible protective effect. There was no statistically significant difference observed in frequencies of HLA DR beta 1 allele *01, DR beta 1 allele *03, DR beta 1 allele *07, DR beta 1 allele *08, DR beta 1 allele *09, DR beta 1 allele *10, DR beta 1 allele *12, DR beta 1 allele *13, DR beta 1 allele *14, DR?1 allele *15 and DR beta 1 allele *16 between patients and control groups. Conclusion: The identification of susceptible HLA DR beta 1 alleles in Pakistani RA patients may help physicians to make early decisions regarding initiation of early intensive therapy with disease modifying anti rheumatic medicines and biological agents decreasing disability in RA patients. (author)

  8. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  9. Differences in relative amounts of two novel mutant HEXA transcripts in a juvenile TSD Druze patient

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, L.; Navon, R. [Tel Aviv Univ. (Israel)]|[Sapir Medical Center, Kfar Sava (Israel)

    1994-09-01

    An Israeli-Druze patient with juvenile Tay-Sachs disease, born to first cousins, was found to be a compound heterozygote for two novel mutant HEXA alleles. SSCP analysis of the parents` genomic DNA revealed alterations in both exons 5 and 8. Direct sequencing showed a novel missense mutation T{sup 835}{r_arrow}C (Ser{sup 279}{r_arrow}Pro) in exon 8, of maternal origin. The mutant allele of paternal origin carried a novel double mutation in exon 5, (i) a C{sup 496} deletion, resulting in a frameshift and eventually a stop codon, (ii) a C{sup 496}{r_arrow}G transition which is a silent mutation. Both these latter mutations occur in the same codon. New restriction sites for ScrFI were introduced into the two mutant alleles, enabling rapid screening for their presence. In order to detect differences of the relative levels of the transcripts originating from the two mutant alleles, we applied allele-specific transcripts polymerase chain reaction (AST-PCR) to the RNA extractions prepared from the heterozygous parents (each carry a normal and mutant allele). In order to distinguish between the transcripts originating from the normal allele and those originating from each of the mutant alleles, the transcripts were digested by ScrFI. A severe depletion of the mRNA coded by the allele carrying the mutation in exon 5 was found. The phenomena corresponds with citations in the literature in cases of stop mutations. The allele carrying the transversion in exon 8, contrary to our expectations, also had a distinctly lower level of transcripts. The AST-PCR approach offers a molecular tool to study allele-specific gene expression in heterozygous individuals.

  10. Characterization of the Pseudomonas aeruginosa recA analog and its protein product: rec-102 is a mutant allele of the P. aeruginosa PAO recA gene

    Energy Technology Data Exchange (ETDEWEB)

    Kokjohn, T.A.; Miller, R.V.

    1987-04-01

    We cloned a 2.3-kilobase-pair fragment of the Pseudomonas aeruginosa PAO chromosome which is capable of complementing recA mutations of Escherichia coli. The recA-complementing activity was further localized to a 1.5-kilobase-pair PvuII-HindIII fragment. Southern blot analysis under conditions of high stringency indicated that DNA sequence homology is shared by the E. coli recA gene and the P. aeruginosa recA analog. The cloned recA analog was shown to restore resistance to methyl methanesulfonate, nitrofurantoin, and UV irradiation to E. coli recA mutants. Upon introduction of the cloned P. aeruginosa gene, these mutants regained recombination proficiency in HfrH-mediated conjugation and the ability to induce lambda prophages and SOS functions (din gene transcription) after exposure to DNA-damaging agents. Lambda prophage carrying a cI ind mutation was not inducible, suggesting that the mechanism of induction of these SOS functions by the P. aeruginosa RecA analog is similar to that by the activated E. coli RecA protein. The product of the recA analog was identified in minicells as a protein of approximately 47,000 daltons. Western blot analysis using anti-E. coli RecA antibody demonstrated that this protein is antigenically cross-reactive with the E. coli recA protein. The recA-containing fragment was cloned into the broad-host-range vector pCP13 and introduced into Rec- strains of P. aeruginosa containing the rec-102 allele. The plasmid was shown to restore recombination proficiency in FP5-mediated conjugations and to restore resistance to UV irradiation and methyl methanesulfonate to these Rec- mutants. It was shown that a wild-type allele of rec-102 is necessary for UV-mediated induction of D3 and F116 prophages. The cloned recA analog restored the UV inducibility of these prophages in rec-102 mutants.

  11. Characterization of the Pseudomonas aeruginosa recA analog and its protein product: rec-102 is a mutant allele of the P. aeruginosa PAO recA gene

    International Nuclear Information System (INIS)

    Kokjohn, T.A.; Miller, R.V.

    1987-01-01

    We cloned a 2.3-kilobase-pair fragment of the Pseudomonas aeruginosa PAO chromosome which is capable of complementing recA mutations of Escherichia coli. The recA-complementing activity was further localized to a 1.5-kilobase-pair PvuII-HindIII fragment. Southern blot analysis under conditions of high stringency indicated that DNA sequence homology is shared by the E. coli recA gene and the P. aeruginosa recA analog. The cloned recA analog was shown to restore resistance to methyl methanesulfonate, nitrofurantoin, and UV irradiation to E. coli recA mutants. Upon introduction of the cloned P. aeruginosa gene, these mutants regained recombination proficiency in HfrH-mediated conjugation and the ability to induce lambda prophages and SOS functions (din gene transcription) after exposure to DNA-damaging agents. Lambda prophage carrying a cI ind mutation was not inducible, suggesting that the mechanism of induction of these SOS functions by the P. aeruginosa RecA analog is similar to that by the activated E. coli RecA protein. The product of the recA analog was identified in minicells as a protein of approximately 47,000 daltons. Western blot analysis using anti-E. coli RecA antibody demonstrated that this protein is antigenically cross-reactive with the E. coli recA protein. The recA-containing fragment was cloned into the broad-host-range vector pCP13 and introduced into Rec- strains of P. aeruginosa containing the rec-102 allele. The plasmid was shown to restore recombination proficiency in FP5-mediated conjugations and to restore resistance to UV irradiation and methyl methanesulfonate to these Rec- mutants. It was shown that a wild-type allele of rec-102 is necessary for UV-mediated induction of D3 and F116 prophages. The cloned recA analog restored the UV inducibility of these prophages in rec-102 mutants

  12. Characterization of novel Sorghum brown midrib mutants from an EMS-mutagenized population.

    Science.gov (United States)

    Sattler, Scott E; Saballos, Ana; Xin, Zhanguo; Funnell-Harris, Deanna L; Vermerris, Wilfred; Pedersen, Jeffrey F

    2014-09-02

    Reducing lignin concentration in lignocellulosic biomass can increase forage digestibility for ruminant livestock and saccharification yields of biomass for bioenergy. In sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses, brown midrib (bmr) mutants have been shown to reduce lignin concentration. Putative bmr mutants isolated from an EMS-mutagenized population were characterized and classified based on their leaf midrib phenotype and allelism tests with the previously described sorghum bmr mutants bmr2, bmr6, and bmr12. These tests resulted in the identification of additional alleles of bmr2, bmr6, and bmr12, and, in addition, six bmr mutants were identified that were not allelic to these previously described loci. Further allelism testing among these six bmr mutants showed that they represented four novel bmr loci. Based on this study, the number of bmr loci uncovered in sorghum has doubled. The impact of these lines on agronomic traits and lignocellulosic composition was assessed in a 2-yr field study. Overall, most of the identified bmr lines showed reduced lignin concentration of their biomass relative to wild-type (WT). Effects of the six new bmr mutants on enzymatic saccharification of lignocellulosic materials were determined, but the amount of glucose released from the stover was similar to WT in all cases. Like bmr2, bmr6, and bmr12, these mutants may affect monolignol biosynthesis and may be useful for bioenergy and forage improvement when stacked together or in combination with the three previously described bmr alleles. Copyright © 2014 Sattler et al.

  13. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time.

    Science.gov (United States)

    Lasho, Terra L; Pardanani, Animesh; McClure, Rebecca F; Mesa, Ruben A; Levine, Ross L; Gilliland, D Gary; Tefferi, Ayalew

    2006-12-01

    MPLW515L/K and JAK2V617F can co-exist in myelofibrosis with myeloid metaplasia (MMM). The chronology of clonal emergence was studied in three such cases using serially stored bone marrow. At diagnosis, a major MPL515 mutant clone was accompanied by a minor JAK2V617F clone in all three instances. At 25 time points over a period of 4-8 years, allele burden fluctuated but remained high for MPLW515L/K and low for JAK2V617F. We conclude that MPLW515L/K and JAK2V617F are both early events in MMM and allele burden, rather than the mere presence of these mutations, might be relevant to phenotypic variation in myeloproliferative disorders.

  14. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    Directory of Open Access Journals (Sweden)

    Fernando Calahorro

    Full Text Available Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C and worm NLG-1 (R437C proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA, both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1 or pan-muscular (myo-3 specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  15. Increased BRAF Heterodimerization Is the Common Pathogenic Mechanism for Noonan Syndrome-Associated RAF1 Mutants

    Science.gov (United States)

    Wu, Xue; Yin, Jiani; Simpson, Jeremy; Kim, Kyoung-Han; Gu, Shengqing; Hong, Jenny H.; Bayliss, Peter; Backx, Peter H.

    2012-01-01

    Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1D486N. Raf1D486N/+ (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1D486N-expressing cells compared with controls. RAF1D486N, as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations. PMID:22826437

  16. Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Prakash, S.

    1977-01-01

    We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad6, rad52, rad55 and rad57 were found among these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to uv or x rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to uv and x rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups

  17. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A. (Novartis)

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  18. Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant.

    Directory of Open Access Journals (Sweden)

    Fabian Runkel

    Full Text Available BACKGROUND: Inositol 1,4,5trisphosphate (IP(3 and diacylglycerol (DAG are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia, whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab that resulted from the insertion of an intracisternal A particle (IAP into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab alleles are phenotypically normal. However, the presence of one Plcd3(mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9olt1Pas and the Plcd3(mNab mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.

  19. Analysis of Yellow Striped Mutants of Zea mays Reveals Novel Loci Contributing to Iron Deficiency Chlorosis

    Directory of Open Access Journals (Sweden)

    David Chan-Rodriguez

    2018-02-01

    Full Text Available The micronutrient iron (Fe is essential for photosynthesis, respiration, and many other processes, but it is only sparingly soluble in aqueous solution, making adequate acquisition by plants a serious challenge. Fe is a limiting factor for plant growth on approximately 30% of the world’s arable lands. Moreover, Fe deficiency in humans is a global health issue, affecting 1.62 billion people, or about 25% of the world’s population. It is imperative that we gain a better understanding of the mechanisms that plants use to regulate iron homeostasis, since these will be important targets for future biofortification and crop improvement strategies. Grasses and non-grasses have evolved independent mechanisms for primary iron uptake from the soil. The grasses, which include most of the world’s staple grains, have evolved a distinct ‘chelation’ mechanism to acquire iron from the soil. Strong iron chelators called phytosiderophores (PSs are synthesized by grasses and secreted into the rhizosphere where they bind and solubilize Fe(III. The Fe(III-PS complex is then taken up into root cells via transporters specific for the Fe(III-PS complex. In this study, 31 novel, uncharacterized striped maize mutants available through the Maize Genetics Cooperation Stock Center (MGCSC were analyzed to determine whether their mutant phenotypes are caused by decreased iron. Many of these proved to be either pale yellow or white striped mutants. Complementation tests were performed by crossing the MGCSC mutants to ys1 and ys3 reference mutants. This allowed assignment of 10 ys1 alleles and 4 ys3 alleles among the novel mutants. In addition, four ys∗ mutant lines were identified that are not allelic to either ys1 or ys3. Three of these were characterized as being non-allelic to each other and as having low iron in leaves. These represent new genes involved in iron acquisition by maize, and future cloning of these genes may reveal novel aspects of the grass iron

  20. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    Science.gov (United States)

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in

  1. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  2. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects.

    Science.gov (United States)

    Swain, Swadhin; Roy, Shweta; Shah, Jyoti; Van Wees, Saskia; Pieterse, Corné M; Nandi, Ashis K

    2011-12-01

    Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  3. Performance of a new quantitative method for assessing dural ectasia in patients with FBN1 mutations and clinical features of Marfan syndrome

    International Nuclear Information System (INIS)

    Soeylen, Bahar; Schmidtke, Joerg; Arslan-Kirchner, Mine; Hinz, Kerstin; Prokein, Jana; Becker, Hartmut

    2009-01-01

    This study presents a comparison of established methods for measuring dural ectasia with a new quantitative method of assessing this clinical feature. Seventeen patients with an identified mutation in FBN1 were examined for dural ectasia. The results were compared with 17 age- and sex-matched controls. Our images were also evaluated using the two methods of quantifying dural ectasia, namely those of Ahn et al. and of Oosterhof et al. With our method, 80% MFS1 patients and 7% controls fulfilled the criterion for dural ectasia. Using the method of Oosterhof et al., dural ectasia was found in 88% patients with MFS1 and in 47% controls. Using the method of Ahn et al. 76% patients with Marfan syndrome and 29% controls showed dural ectasia. We present a novel quantitative method of evaluating MRT images for dural ectasia, which, in our own patient cohort, performed better than those previously described. (orig.)

  4. Performance of a new quantitative method for assessing dural ectasia in patients with FBN1 mutations and clinical features of Marfan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Soeylen, Bahar; Schmidtke, Joerg; Arslan-Kirchner, Mine [Hannover Medical School, Institute of Human Genetics, Hannover (Germany); Hinz, Kerstin [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Vivantes Klinikum Neukoelln, Institut fuer Radiologie und Interventionelle Therapie, Berlin (Germany); Prokein, Jana [Hannover Medical School, Institute for Biometrics, Hannover (Germany); Becker, Hartmut [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany)

    2009-06-15

    This study presents a comparison of established methods for measuring dural ectasia with a new quantitative method of assessing this clinical feature. Seventeen patients with an identified mutation in FBN1 were examined for dural ectasia. The results were compared with 17 age- and sex-matched controls. Our images were also evaluated using the two methods of quantifying dural ectasia, namely those of Ahn et al. and of Oosterhof et al. With our method, 80% MFS1 patients and 7% controls fulfilled the criterion for dural ectasia. Using the method of Oosterhof et al., dural ectasia was found in 88% patients with MFS1 and in 47% controls. Using the method of Ahn et al. 76% patients with Marfan syndrome and 29% controls showed dural ectasia. We present a novel quantitative method of evaluating MRT images for dural ectasia, which, in our own patient cohort, performed better than those previously described. (orig.)

  5. Production and characterization of radiation-sensitive meiotic mutants of Coprinus cinereus

    International Nuclear Information System (INIS)

    Zolan, M.E.; Tremel, C.J.; Pukkila, P.J.

    1988-01-01

    We have isolated four gamma-sensitive mutants of the basidiomycete Coprinus cinereus. When homozygous, two of these (rad 3-1 and rad 9-1) produce fruiting bodies with very few viable basidiospores, the products of meiosis in this organism. A less radiation-sensitive allele of RAD 3, rad 3-2, causes no apparent meiotic defect in homozygous strains. Quantitative measurements of oidial survival of rad 3-1;rad 9-1 double mutants compared to the single mutants indicated that rad 3-1 and rad 9-1 mutants are defective in the same DNA repair pathway. In the pew viable basidiospores that are produced by these two strains, essentially normal levels of meiotic recombination can be detected. None of the mutants exhibits increased sensitivity to UV radiation. Cytological examination of meiotic chromosomes from mutant and wild-type fruiting bodies showed that rad 3-1 homozygous strains fail to condense and pair homologous chromosomes during prophase I. Although rad 9-1 strains are successful at chromosome pairing, meiosis is usually not completed in these mutants

  6. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    Science.gov (United States)

    Irani, Vida R; Lee, Sun-Hwa; Eckstein, Torsten M; Inamine, Julia M; Belisle, John T; Maslow, Joel N

    2004-01-01

    Background Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL) of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. Methods To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA) gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt) rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. Results In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. Conclusion We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH) resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis, biosynthesis, or drug

  7. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    Directory of Open Access Journals (Sweden)

    Belisle John T

    2004-09-01

    Full Text Available Abstract Background Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. Methods To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. Results In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. Conclusion We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis

  8. Complex mosaic CDKL5 deletion with two distinct mutant alleles in a 4-year-old girl.

    Science.gov (United States)

    Boutry-Kryza, Nadia; Ville, Dorothée; Labalme, Audrey; Calender, Alain; Dupont, Jean-Michel; Touraine, Renaud; Edery, Patrick; des Portes, Vincent; Sanlaville, Damien; Lesca, Gaetan

    2014-08-01

    Mutations of the CDKL5 gene cause early epileptic encephalopathy. Patients manifest refractory epilepsy, beginning before the age of 3 months, which is associated with severe psychomotor delay and features that overlap with Rett syndrome. We report here a patient with mosaicism for CDKL5 exonic deletion, with the presence of two mutant alleles. The affected 4-year-old girl presented with infantile spasms, beginning at the age of 9 months, but subsequent progression of the disease was consistent with the classical CDKL5-related phenotype. A deletion of exons 17 and 18 was suspected on the basis of Multiplex Ligation Probe Amplification analysis, but unexpected results for cDNA analysis, which showed the presence of an abnormal transcript with the deletion of exon 18 only, led us to suspect that two distinct events might have occurred. We used custom array-CGH to determine the size and breakpoints of these deletions. Exon 18 was deleted from one of the abnormal alleles, and exon 17 was deleted from the other. A Fork Stalling and Template Switching (FoSTeS) mechanism was proposed to explain the two events, given the presence of regions of microhomology at the breakpoints. We propose here an original involvement of the FoSTeS mechanism to explain the co-occurrence of these two events in the CDKL5 gene in a single patient. This patient highlights the difficulties involved in the detection of such abnormalities, particularly when they occur in a mosaic state and involve two distinct mutational events in a single gene. © 2014 Wiley Periodicals, Inc.

  9. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa).

    Science.gov (United States)

    Zhao, Jing; Chen, Hongyi; Ren, Ding; Tang, Huiwu; Qiu, Rong; Feng, Jinglei; Long, Yunming; Niu, Baixiao; Chen, Danping; Zhong, Tianyu; Liu, Yao-Guang; Guo, Jingxin

    2015-11-01

    Initiation of flowering, also called heading, in rice (Oryza sativa) is determined by the florigens encoded by Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Early heading date 1 (Ehd1) regulates Hd3a and RFT1. However, different rice varieties have diverged alleles of Ehd1 and Hd3a/RFT1 and their genetic interactions remain largely unclear. Here we generated three segregating populations for different combinations of diverged Ehd1 and Hd3a/RFT1 alleles, and analyzed their genetic interactions between these alleles. We demonstrated that, in an ehd1 mutant background, Hd3a was silenced, but RFT1 was expressed (although at lower levels than in plants with a functional Ehd1) under short-day (SD) and long-day (LD) conditions. We identified a nonfunctional RFT1 allele (rft1); the lines carrying homozygous ehd1 and Hd3a/rft1 failed to induce the floral transition under SD and LD conditions. Like Hd3a, RFT1 also interacted with 14-3-3 proteins, the florigen receptors, but a nonfunctional RFT1 with a crucial E105K mutation failed to interact with 14-3-3 proteins. Furthermore, analyses of sequence variation and geographic distribution suggested that functional RFT1 alleles were selected during rice adaptation to high-latitude regions. Our results demonstrate the important roles of RFT1 in rice flowering and regional adaptation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT∗3A, TPMT∗2): Mechanisms for the genetic polymorphism of TPMT activity

    OpenAIRE

    Tai, Hung-Liang; Krynetski, Eugene Y.; Schuetz, Erin G.; Yanishevski, Yuri; Evans, William E.

    1997-01-01

    TPMT is a cytosolic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds, including medications such as mercaptopurine and thioguanine. TPMT activity exhibits autosomal codominant genetic polymorphism, and patients inheriting TPMT deficiency are at high risk of potentially fatal hematopoietic toxicity. The most prevalent mutant alleles associated with TPMT deficiency in humans have been cloned and characterized (TPMT∗2 and TPMT∗3A), but the mechanisms for ...

  11. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein.

    Science.gov (United States)

    Michalko, Jaroslav; Glanc, Matouš; Perrot-Rechenmann, Catherine; Friml, Jiří

    2016-01-01

    The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.

  12. Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles.

    Science.gov (United States)

    Yao, Ni; Paez, Alix V; White, Pamela J

    2009-03-11

    Four corn types with different doses of mutant amylose-extender (ae) and floury-1 (fl1) alleles, in the endosperm, including no. 1, aeaeae; no. 2, fl1fl1fl1; no. 3, aeaefl1; and no. 4, fl1fl1ae, were developed for use in making Hispanic food products with high resistant starch (RS) content. The RS percentages in the native starch (NS) of 1-4 were 55.2, 1.1, 5.7, and 1.1%, respectively. All NS were evaluated for pasting properties with a rapid viscoanalyzer (RVA) and for thermal properties with a differential scanning calorimeter (DSC). NS 1 had a low peak viscosity (PV) caused by incomplete gelatinization, whereas NS 3 had the greatest PV and breakdown of all four starch types. On the DSC, NS 2 had the lowest onset temperature and greatest enthalpy. NS 1 and 3 had similar onset and peak temperatures, both higher than those of NS 2 and 4. The gel strength of NS heated with a RVA was evaluated by using a texture analyzer immediately after RVA heating (fresh, RVA-F) and after the gel had been stored at 4 degrees C for 10 days (retrograded, RVA-R). NS 1 gel was watery and had the lowest strength (30 g) among starch gel types. NS 3 gel, although exhibiting syneresis, had greater gel strength than NS 2 and 4. The structures of the NS, the RS isolated from the NS (RS-NS), the RS isolated from RVA-F (RS-RVA-F), and the RS isolated from RVA-R (RS-RVA-R) were evaluated by using size exclusion chromatography. NS 1 had a greater percentage of amylose (AM) (58.3%) than the other NS (20.4-26.8%). The RS from all NS types (RS-NS) had a lower percentage of amylopectin (AP) and a greater percentage of low molecular weight (MW) AM than was present in the original NS materials. The RS-RVA-R from all starches had no AP or high MW AM. The percentages of longer chain lengths (DP 35-60) of NS were greater in 1 and 3 than in 2 and 4, and the percentages of smaller chain lengths (DP 10-20) were greater in 2 and 4 than in 1 and 3. In general, NS 3 seemed to have inherited some pasting

  13. Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice

    International Nuclear Information System (INIS)

    Seigne, Christelle; Fontanière, Sandra; Carreira, Christine; Lu, Jieli; Tong, Wei-Ming; Fontanière, Bernard; Wang, Zhao-Qi; Zhang, Chang Xian; Frappart, Lucien

    2010-01-01

    Mutations of the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that Men1 disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the Men1 mutant mice. To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 Men1 +/- mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort. Six Men1 +/- mice (12.8%) developed prostate cancer, including two adenocarcinomas and four in situ carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the Men1 gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type Men1 allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a Men1 target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice. Our work suggests the possible involvement of Men1 inactivation in the tumorigenesis of the prostate gland

  14. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY.

    Science.gov (United States)

    Urrutia, Inés; Martínez, Rosa; López-Euba, Tamara; Velayos, Teresa; Martínez de LaPiscina, Idoia; Bilbao, José Ramón; Rica, Itxaso; Castaño, Luis

    2017-01-01

    The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY. 160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY) were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4); 1 risk allele (DR3 or DR4); 2 risk alleles (DR3 and/or DR4). Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7-48.6) and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29-0.96) and OR 0.06 (95% CI: 0.02-0.18), respectively. The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4) reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.

  15. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY.

    Directory of Open Access Journals (Sweden)

    Inés Urrutia

    Full Text Available The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY.160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4; 1 risk allele (DR3 or DR4; 2 risk alleles (DR3 and/or DR4.Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7-48.6 and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29-0.96 and OR 0.06 (95% CI: 0.02-0.18, respectively.The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4 reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.

  16. Semi-dwarf mutants in triticale and wheat breeding

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1984-01-01

    The triticale lines Beagle and DR-IRA have been subjected to ionizing irradiation and chemical mutagenesis in order to produce semi-dwarf mutants. Beagle is 100 cm tall and DR-IRA 80 cm under average field conditions. A bulk then pedigree method is currently represented by 158 single plots of M 6 (or in some cases M 7 ) mutants that are from 5 to 35 cm shorter than the control variety. The shortest mutants are 65 cm in height. Forty of these mutants are also earlier flowering than the control varieties. Replicated yield testing will be conducted on confirmed mutants in 1983. Response to gibberellic acid of these mutants will also be determined. The Cornerstone male-sterility mutant (ms1c) on chromosome arm 4Aα has been combined with the GA-insensitive/reduced height gene Gai/Rht1 which is also on chromosome arm 4Aα. The ms1c mutant has also been combined with Gai/Rht2 on chromosome 4D and with both Gai/Rht1 and Gai/Rht2. The combination ms1c and Gai/Rht1 has been chosen as the basis of a composite cross. Thirteen varieties were tested with GA 3 and seven (Warigal, Aroona, Oxley, Banks, Avocet, Matipo and Toquifen) which contain Gai/Rht1 were crossed with ms1c Gai/Rht1 and entered into an interpollinating F 2 . The entire composite is homozygous for this semi-dwarf allele and selection will be practiced for increased height on a GA-insensitive background. (author)

  17. Identification of a Gravitropism-Deficient Mutant in Rice

    Directory of Open Access Journals (Sweden)

    He Yan

    2017-03-01

    Full Text Available A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate (EMS mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginning of germination, and the prostrate growth phenotype ran through the whole life duration. Tiller angle and tiller number of M96 increased significantly in comparison with the wild type. Tissue section observation analysis indicated that asymmetric stem growth around the second node occurred in M96. Genetic analysis and gene mapping showed that M96 was controlled by a single recessive nuclear gene, tentatively termed as gravitropism-deficient M96 (gdM96, which was mapped to a region of 506 kb flanked by markers RM5960 and InDel8 on the long arm of chromosome 11. Sequencing analysis of the open reading frames in this region revealed a nucleotide substitution from G to T in the third exon of LOC_Os11g29840. Additionally, real-time fluorescence quantitative PCR analysis showed that the expression level of LOC_Os11g29840 in the stems was much higher than in the roots and leaves in M96. Furthermore, the expression level was more than four times in M96 stem than in the wild type stem. Our results suggested that the mutant gene was likely a new allele to the reported gene LAZY1. Isolation of this new allele would facilitate the further characterization of LAZY1.

  18. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Evaluation of semi-dwarf mutants in triticale and wheat breeding programmes

    International Nuclear Information System (INIS)

    Driscoll, C.J.

    1982-01-01

    A number of short-statured triticale plants were selected in M 4 following gamma-ray or EMS treatment of seed of Beagle and DR-IRA triticales. Selection for homozygous mutants will be attempted in M 5 . The Cornerstone male sterility mutant mslc is being combined with the three GA-insensitive, reduced-height mutants Gai/Rht1, Gai/Rht2 and Gai/Rht3 in order to establish a composite cross based on homozygosity of a given Gai/Rht allele. This would allow selection for minor genes for increased height on a GA-insensitive, reduced-height background. (author)

  20. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  1. Identification of tms-26 as an allele of the gcaD gene, which encodes N-acetylglucosamine 1-phosphate uridyltransferase in Bacillus subtilis

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1992-01-01

    -acetylglucosamine 1-phosphate, the substrate of the uridyltransferase activity, was elevated more than 40-fold in the mutant strain at the permissive temperature compared with the level in the wild-type strain. During a temperature shift, the level of UDP-N-acetylglucosamine, the product of the uridyltransferase...... activity, decreased much more in the mutant strain than in the wild-type strain. An Escherichia coli strain harboring the wild-type version of the tms-26 allele on a plasmid contained increased N-acetylglucosamine 1-phosphate uridyltransferase activity compared with that in the haploid strain...

  2. Molecular characterization of thymidine kinase mutants of human cells induced by densely ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A; Little, J B

    1989-04-01

    In order to characterize the nature of mutants induced by densely ionizing radiations at an autosomal locus, the authors have isolated a series of 99 thymidine kinase (tk) mutants of human TK6 lymphoblastoid cells iraadiated with either fast neutrons or accelerated argon ions. Individual muant clones were examined for alterations in their restriction fragment pattern after hybridization with a human cDNA probe for tk. A restriction fragment length polymorphism (RFLP) allowed identification of the active tk allele. Among the neutron-induced mutants, 34/52 exhibited loss of the previously active allele while 6/52 exhibited intragenic rearrangements. Among the argon-induced mutants 27/46 exhibited allele loses and 10/46 showed rearrangements within the tk locus. The remaining mutants had restriction patterns indistinguishable from the TK6 parent. Each of the mutant clones was further examined for structural alterations within the c-erbAl locus which has been localized to chromosome 17q11-q22, at some unknown distance from the human tk locus at chromosome 17q21-q22. A substantial proportion (54%) of tk mutants induced by densely ionizing radiation showed loss of the c-erb locus on the homologous chromosome, suggesting that the mutations involve large-scale genetic changes. (author). 51 refs.; 2 figs.; 6 tabs.

  3. Fibrillin levels in a severely affected Marfan syndrome patient with a null allele

    Energy Technology Data Exchange (ETDEWEB)

    Boxer, M.; Withers, A.P.; Al-Ghaban, Z. [Univ. of Wales, Cardiff (United Kingdom)]|[Ninewells Hospital and Medical School, Dundee (United Kingdom)] [and others

    1994-09-01

    Marfan syndrome is an autosomal dominantly inherited connective tissue disorder characterized by defects in the cardiovascular, skeletal and ocular systems. A patient was first examined in 1992 having survived an acute sortic dissection with subsequent composite repair and insertion of a prosthetic aortic valve. Clinical examination revealed arachnodactyly, narrow, high arched palate with dental crowding, an arm span exceeding her height by 10.5 cm, joint laxity and bilateral lens subluxation. Analysis of the family showed affected members in three generations and the fibrillin gene, FBN1, was shown to segregate with the disease when using polymorphic markers including an RsaI polymorphism in the 3{prime}-untranslated region of the gene. Analysis of patient mRNA for this RsaI polymorphism by RT-PCR (reverse transcriptase-PCR) amplification and restriction enzyme digestion of the PCR products showed that the copy of the gene segregating with the disease was not transcribed. No low level expression of this allele was observed despite RT-PCR amplification incorporating radioactively labelled dCTP, thus revealing a null allele phenotype. Western blotting analysis of fibrillin secreted by the patient`s dermal fibroblasts using fibrillin-specific antibodies showed only normal sized fibrillin protein. However, immunohistochemical studies of the patient`s tissue and fibroblasts showed markedly lowered levels in staining of microfibrillar structures compared with age-matched controls. This low level of expression of the protein affected in Marfan syndrome in a patient with such severe clinical manifestations is surprising since current understanding would suggest that this molecular phenotype should lead to a mild clinical disorder.

  4. Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome.

    Science.gov (United States)

    Franken, Romy; Teixido-Tura, Gisela; Brion, Maria; Forteza, Alberto; Rodriguez-Palomares, Jose; Gutierrez, Laura; Garcia Dorado, David; Pals, Gerard; Mulder, Barbara Jm; Evangelista, Artur

    2017-11-01

    The effect of FBN1 mutation type on the severity of cardiovascular manifestations in patients with Marfan syndrome (MFS) has been reported with disparity results. This study aims to determine the impact of the FBN1 mutation type on aortic diameters, aortic dilation rates and on cardiovascular events (ie, aortic dissection and cardiovascular mortality). MFS patients with a pathogenic FBN1 mutation followed at two specialised units were included. FBN1 mutations were classified as being dominant negative (DN; incorporation of non-mutated and mutated fibrillin-1 in the extracellular matrix) or having haploinsufficiency (HI; only incorporation of non-mutated fibrillin-1, thus a decreased amount of fibrillin-1 protein). Aortic diameters and the aortic dilation rate at the level of the aortic root, ascending aorta, arch, descending thoracic aorta and abdominal aorta by echocardiography and clinical endpoints comprising dissection and death were compared between HI and DN patients. Two hundred and ninety patients with MFS were included: 113 (39%) with an HI- FBN1 mutation and 177 (61%) with a DN- FBN1 . At baseline, patients with HI- FBN1 had a larger aortic root diameter than patients with DN- FBN1 (HI: 39.3±7.2 mm vs DN: 37.3±6.8 mm, p=0.022), with no differences in age or body surface area. After a mean follow-up of 4.9±2.0 years, aortic root and ascending dilation rates were increased in patients with HI- FBN1 (HI: 0.57±0.8 vs DN: 0.28±0.5 mm/year, p=0.004 and HI: 0.59±0.9 vs DN: 0.30±0.7 mm/year, p=0.032, respectively). Furthermore, patients with HI- FBN1 tended to be at increased risk for the combined endpoint of dissection and death compared with patients with DN- FBN1 (HR: 3.3, 95% CI 1.0 to 11.4, p=0.060). Patients with an HI mutation had a more severely affected aortic phenotype, with larger aortic root diameters and a more rapid dilation rate, and tended to have an increased risk of death and dissections compared with patients with a DN

  5. Chloroquine clinical failures in P. falciparum malaria are associated with mutant Pfmdr-1, not Pfcrt in Madagascar.

    Directory of Open Access Journals (Sweden)

    Valérie Andriantsoanirina

    2010-10-01

    Full Text Available Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1 act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44% appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites 60% of isolates, but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6. The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days. In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important, particularly regarding the evolution and spread of Pfmdr-1 alleles in P. falciparum populations under changing drug pressure which may have important

  6. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  7. Novel rapid genotyping assays for neuronal ceroid lipofuscinosis in Border Collie dogs and high frequency of the mutant allele in Japan.

    Science.gov (United States)

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Kawahara, Natsuko; Hayashi, Daisuke; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2011-11-01

    Neuronal ceroid lipofuscinosis (NCL) constitutes a group of recessively inherited lysosomal storage diseases that primarily affect neuronal cells. Such diseases share certain clinical and pathologic features in human beings and animals. Neuronal ceroid lipofuscinosis in Border Collie dogs was first detected in Australia in the 1980s, and the pathogenic mutation was shown to be a nonsense mutation (c.619C>T) in exon 4 in canine CLN5 gene. In the present study, novel rapid genotyping assays including polymerase chain reaction (PCR)-restriction fragment length polymorphism, PCR primer-induced restriction analysis, mutagenically separated PCR, and real-time PCR with TaqMan minor groove binder probes, were developed. The utility of microchip electrophoresis was also evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies in Japan using these assays to determine the current allele frequency in Japan, providing information to control and prevent this disease in the next stage. All assays developed in the current study are available to discriminate these genotypes, and microchip electrophoresis showed a timesaving advantage over agarose gel electrophoresis. Of all assays, real-time PCR was the most suitable for large-scale examination because of its high throughput. The genotyping survey demonstrated that the carrier frequency was 8.1%. This finding suggested that the mutant allele frequency of NCL in Border Collies is high enough in Japan that measures to control and prevent the disease would be warranted. The genotyping assays developed in the present study could contribute to the prevention of NCL in Border Collies.

  8. Paternal or Maternal Uniparental Disomy of Chromosome 16 Resulting in Homozygosity of a Mutant Allele Causes Fanconi Anemia.

    Science.gov (United States)

    Donovan, Frank X; Kimble, Danielle C; Kim, Yonghwan; Lach, Francis P; Harper, Ursula; Kamat, Aparna; Jones, MaryPat; Sanborn, Erica M; Tryon, Rebecca; Wagner, John E; MacMillan, Margaret L; Ostrander, Elaine A; Auerbach, Arleen D; Smogorzewska, Agata; Chandrasekharappa, Settara C

    2016-05-01

    Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation-carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis. © 2016 WILEY PERIODICALS, INC.

  9. Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yanase, Sumino; Ishii, Naoaki

    2008-01-01

    The hormetic effect, which extends the lifespan by various stressors, has been confirmed in Caenorhabditis elegans (C. elegans). We have previously reported that oxidative stress resistance in a long-lived mutant age-1 is associated with the hormesis. In the age-1 allele, which activates an insulin/insulin-like growth factor-1 (Ins/IGF-1) signaling pathway, the superoxide dismutase (SOD) and catalase activities increased during normal aging. We now demonstrate changes in the mitochondrial superoxide radical (O 2 - ) levels of the hormetic conditioned age-related strains. The O 2 - levels in age-1 strain significantly decreased after intermittent hyperoxia exposure. On the other hand, this phenomenon was not observed in a daf-16 null mutant. This hormesis-dependent reduction of the O 2 - levels was observed even if the mitochondrial Mn-SOD was experimentally reduced. Therefore, it is indicated that the hormesis is mediated by events that suppress the mitochondrial O 2 - production. Moreover, some SOD gene expressions in the hormetic conditioned age-1 mutant were induced over steady state messenger ribonucleic acid (mRNA) levels. These data suggest that oxidative stress-inducible hormesis is associated with a reduction of the mitochondrial O 2 - production by activation of the antioxidant system via the Ins/IGF-1 signaling pathway. (author)

  10. Semi-dwarf mutant lines of hexaploid triticale

    International Nuclear Information System (INIS)

    Pidra, M.

    1989-01-01

    A spring form of hexaploid secondary triticale ADD 143/71, bred by MOGILEVA at the Plant Breeding Station at Uhretice was used for the mutagen treatment. The mutation experiment started in 1979. Seeds were treated with a 0.8 mM water solution of N-methyl-N-nitrosourea (MNH) (CETL and RELICHOVA, unpublished). From 180 M 1 plants, one spike was harvested per plant. A random sample of these seeds was sown as M 2 in 1980 and several plants with shorter main culm were selected. Selfed progenies of eight mutant plants designated ADD 143-m1, ADD 143-m2, ADD 143-m3 etc. were further tested in M 3 and M 4 . There were significant differences in culm length and in some other characters between the original line and the mutant lines. Especially the line m8 looks like a promising source of semi-dwarfness for breeding programmes of hexaploid triticale. During 1985-1987 genetic analysis was performed on the ADD 143/71 and the mutant lines m2, m6, m7 and m8, which suggest that their mutant genes are allelic and recessive

  11. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    Science.gov (United States)

    Zhu, Y; Lin, E C

    1988-05-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose.

  12. Hitchhiking and Selective Sweeps of Plasmodium falciparum Sulfadoxine and Pyrimethamine Resistance Alleles in a Population from Central Africa▿ †

    Science.gov (United States)

    McCollum, Andrea M.; Basco, Leonardo K.; Tahar, Rachida; Udhayakumar, Venkatachalam; Escalante, Ananias A.

    2008-01-01

    Sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum is encoded by a number of mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes. Here, we have characterized point mutations in dhfr and dhps and microsatellite loci around dhfr on chromosome 4 and dhps on chromosome 8 as well as neutral markers on chromosomes 2 and 3 in 332 samples from Yaoundé, Cameroon. The triple mutant dhfr haplotype that originated in Southeast Asia is the most predominant in this sample set, but we also find additional independent haplotypes at low frequency and an incipient process of genetic differentiation among alleles of Southeast Asian origin. As reported for other African populations, we find evidence of a selective sweep for resistant dhfr mutants in this Cameroonian population due to drug selection. Although we find evidence for a selective sweep in dhps mutants associated with SP resistance, the dynamics of dhps mutants appear different than those observed for dhfr mutants. Overall, our results yield support for the use of microsatellite markers to track resistant parasites; however, the detection of resistant dhfr alleles in low frequency, the evidence of divergence among dhfr alleles that share a common evolutionary origin, and the distinct dynamics of resistant dhps alleles emphasize the importance of comprehensive, population-based investigations to evaluate the effects of drug selection on parasite populations. PMID:18765692

  13. An allele of the crm gene blocks cyanobacterial circadian rhythms.

    Science.gov (United States)

    Boyd, Joseph S; Bordowitz, Juliana R; Bree, Anna C; Golden, Susan S

    2013-08-20

    The SasA-RpaA two-component system constitutes a key output pathway of the cyanobacterial Kai circadian oscillator. To date, rhythm of phycobilisome associated (rpaA) is the only gene other than kaiA, kaiB, and kaiC, which encode the oscillator itself, whose mutation causes completely arrhythmic gene expression. Here we report a unique transposon insertion allele in a small ORF located immediately upstream of rpaA in Synechococcus elongatus PCC 7942 termed crm (for circadian rhythmicity modulator), which results in arrhythmic promoter activity but does not affect steady-state levels of RpaA. The crm ORF complements the defect when expressed in trans, but only if it can be translated, suggesting that crm encodes a small protein. The crm1 insertion allele phenotypes are distinct from those of an rpaA null; crm1 mutants are able to grow in a light:dark cycle and have no detectable oscillations of KaiC phosphorylation, whereas low-amplitude KaiC phosphorylation rhythms persist in the absence of RpaA. Levels of phosphorylated RpaA in vivo measured over time are significantly altered compared with WT in the crm1 mutant as well as in the absence of KaiC. Taken together, these results are consistent with the hypothesis that the Crm polypeptide modulates a circadian-specific activity of RpaA.

  14. A Comprehensive Dataset of Genes with a Loss-of-Function Mutant Phenotype in Arabidopsis1[W][OA

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-01-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms. PMID:22247268

  15. Breeding cultivars of barley and mustard containing biochemical mutants

    Energy Technology Data Exchange (ETDEWEB)

    Oram, R N [Division of Plant industry, CSIRO, Canberra (Australia)

    1990-01-01

    Full text: The inactivation of dominant and co-dominant alleles is becoming increasingly important in changing the composition of seed carbohydrates, protein, oil, fibre and secondary products to suit modern food and feed technologies. In barley, breeding lines adapted to south-eastern Australian conditions have been developed containing a waxy endosperm from the Japanese variety 'Sumire Mochi', the high lysine gene lys from cv. 'Hiproly' of Ethiopia, and the induced high lysine mutant gene lys 3a from 'Risoe 1508'. The improved mutant lines yield 12-34% less than the highest yielding feed barley. The lys and lys 3a alleles suppress the formation of prolamins, the waxy allele inhibits the formation of amylose. It seems difficult to modify the background genotype to fully compensate for the reduction of major storage carbohydrate or protein compounds. However, waxy barleys have uses in some human foods and a premium can be paid to producers. The grain of the provisionally-patented waxy cultivar Wasiro is suitable for pearling. It contains 5% {beta}-glucan (soluble fibre) and therefore should be as effective as oat bran for reducing blood cholesterol. In Indian mustard (Brassica juncea), three cultivars differing in date of maturity, each containing the spontaneous mutant alleles for low erucic acid levels in the seed oil, have been developed to produce a high quality, mildly flavoured cooking/salad oil. The concentration of glucosinolates in the seed meal must be reduced to make it palatable and non-toxic to pigs and poultry. Three B. juncea lines were treated in up to four successive generations with gamma rays or EMS. 60,000 seed samples were analysed in subsequent generations. Two induced mutants with reduced glucosinolate concentrations are now available besides 4 naturally-occurring sources with only little reduced yields. Recombination may give a high-yielding low erucic acid and low glucosinolate variety of B. juncea. (author)

  16. Breeding cultivars of barley and mustard containing biochemical mutants

    International Nuclear Information System (INIS)

    Oram, R.N.

    1990-01-01

    Full text: The inactivation of dominant and co-dominant alleles is becoming increasingly important in changing the composition of seed carbohydrates, protein, oil, fibre and secondary products to suit modern food and feed technologies. In barley, breeding lines adapted to south-eastern Australian conditions have been developed containing a waxy endosperm from the Japanese variety 'Sumire Mochi', the high lysine gene lys from cv. 'Hiproly' of Ethiopia, and the induced high lysine mutant gene lys 3a from 'Risoe 1508'. The improved mutant lines yield 12-34% less than the highest yielding feed barley. The lys and lys 3a alleles suppress the formation of prolamins, the waxy allele inhibits the formation of amylose. It seems difficult to modify the background genotype to fully compensate for the reduction of major storage carbohydrate or protein compounds. However, waxy barleys have uses in some human foods and a premium can be paid to producers. The grain of the provisionally-patented waxy cultivar Wasiro is suitable for pearling. It contains 5% β-glucan (soluble fibre) and therefore should be as effective as oat bran for reducing blood cholesterol. In Indian mustard (Brassica juncea), three cultivars differing in date of maturity, each containing the spontaneous mutant alleles for low erucic acid levels in the seed oil, have been developed to produce a high quality, mildly flavoured cooking/salad oil. The concentration of glucosinolates in the seed meal must be reduced to make it palatable and non-toxic to pigs and poultry. Three B. juncea lines were treated in up to four successive generations with gamma rays or EMS. 60,000 seed samples were analysed in subsequent generations. Two induced mutants with reduced glucosinolate concentrations are now available besides 4 naturally-occurring sources with only little reduced yields. Recombination may give a high-yielding low erucic acid and low glucosinolate variety of B. juncea. (author)

  17. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    Science.gov (United States)

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  18. Potential Use of a Weak Ethylene Receptor Mutant, Sletr1-2, as Breeding Material To Extend Fruit Shelf Life of Tomato.

    Science.gov (United States)

    Mubarok, Syariful; Okabe, Yoshihiro; Fukuda, Naoya; Ariizumi, Tohru; Ezura, Hiroshi

    2015-09-16

    Mutations in the ethylene receptor gene (SlETR1), Sletr1-1 and Sletr1-2, are effective in reducing ethylene sensitivity and improving fruit shelf life. In this study the effect of Sletr1-1 and Sletr1-2 mutations was investigated in F1 hybrid lines. These two mutants and control were crossed with four commercial pure-line tomatoes. The Sletr1-1 mutation showed undesirable pleiotropic effects in the F1 hybrid lines. The Sletr1-2 mutation was effective in improving fruit shelf life of F1 hybrid lines for 4-5 days longer. It was also effective in improving fruit firmness without change in fruit size, ethylene production, respiration rate, and total soluble solids or a great reduction in fruit color, lycopene, and β-carotene, although the titratable acidity was increased by Sletr1-2 mutation. These results indicate that the Sletr1-2 mutant allele has the potential to improve fruit shelf life via incorporation in tomato breeding programs.

  19. Nicotiana plumbaginifolia hlg mutants have a mutation in a PHYB-type phytochrome gene: they have elongated hypocotyls in red light, but are not elongated as adult plants.

    Science.gov (United States)

    Hudson, M; Robson, P R; Kraepiel, Y; Caboche, M; Smith, H

    1997-11-01

    Two new allelic mutants of Nicotiana plumbaginifolia have been isolated which display a hypocotyl which is long (hlg) when seedlings are grown in continuous white light (W). This can be accounted for by the decreased response to red light (R) of the hypocotyl elongation rate in these mutants. Responses to other wavelengths are unaffected in the mutants. When grown in white light, mature hlg mutants are not elongated with respect to the wild-type; they also bolt and flower later. The shade-avoidance responses to red/far red ratio (R:FR) are intact in these mutants. Both mutants are deficient in phyB-like polypeptide that is immunodetectable in the wild-type; both have wild-type levels of a phyA-like polypeptide. These alleles are inherited in a partially dominant manner, and correspond to single-base missense mutations in a gene highly homologous to N. tabacum PHYB, which codes for a phytochrome B-type photoreceptor. One allele, hlg-1, has an introduced amino acid substitution; this may define a residue essential for phytochrome protein stability. The other allele, hlg-2, has a stop codon introduced C-terminal to the chromophore binding domain. As these phyB mutants are unaffected in shade-avoidance responses, but deficient in perception of R, it is concluded that the phyB absent in these mutants is responsible for R perception in the N. plumbaginifolia seedling, but is not a R:FR sensor in light-grown plants.

  20. High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes.

    Science.gov (United States)

    Lochlainn, Seosamh Ó; Amoah, Stephen; Graham, Neil S; Alamer, Khalid; Rios, Juan J; Kurup, Smita; Stoute, Andrew; Hammond, John P; Østergaard, Lars; King, Graham J; White, Phillip J; Broadley, Martin R

    2011-12-08

    Targeted Induced Loci Lesions IN Genomes (TILLING) is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM) analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs) and insertion/deletions (IN/DELs) enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations) from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  1. High Resolution Melt (HRM analysis is an efficient tool to genotype EMS mutants in complex crop genomes

    Directory of Open Access Journals (Sweden)

    Lochlainn Seosamh Ó

    2011-12-01

    Full Text Available Abstract Background Targeted Induced Loci Lesions IN Genomes (TILLING is increasingly being used to generate and identify mutations in target genes of crop genomes. TILLING populations of several thousand lines have been generated in a number of crop species including Brassica rapa. Genetic analysis of mutants identified by TILLING requires an efficient, high-throughput and cost effective genotyping method to track the mutations through numerous generations. High resolution melt (HRM analysis has been used in a number of systems to identify single nucleotide polymorphisms (SNPs and insertion/deletions (IN/DELs enabling the genotyping of different types of samples. HRM is ideally suited to high-throughput genotyping of multiple TILLING mutants in complex crop genomes. To date it has been used to identify mutants and genotype single mutations. The aim of this study was to determine if HRM can facilitate downstream analysis of multiple mutant lines identified by TILLING in order to characterise allelic series of EMS induced mutations in target genes across a number of generations in complex crop genomes. Results We demonstrate that HRM can be used to genotype allelic series of mutations in two genes, BraA.CAX1a and BraA.MET1.a in Brassica rapa. We analysed 12 mutations in BraA.CAX1.a and five in BraA.MET1.a over two generations including a back-cross to the wild-type. Using a commercially available HRM kit and the Lightscanner™ system we were able to detect mutations in heterozygous and homozygous states for both genes. Conclusions Using HRM genotyping on TILLING derived mutants, it is possible to generate an allelic series of mutations within multiple target genes rapidly. Lines suitable for phenotypic analysis can be isolated approximately 8-9 months (3 generations from receiving M3 seed of Brassica rapa from the RevGenUK TILLING service.

  2. Mutant DD genotype of NFKB1 gene is associated with the susceptibility and severity of coronary artery disease.

    Science.gov (United States)

    Luo, Jun-Yi; Li, Xiao-Mei; Zhou, Yun; Zhao, Qiang; Chen, Bang-Dang; Liu, Fen; Chen, Xiao-Cui; Zheng, Hong; Ma, Yi-Tong; Gao, Xiao-Ming; Yang, Yi-Ning

    2017-02-01

    Nuclear factor κappa B (NF-κB) is an important transcription factor in the development and progression of coronary artery disease (CAD). Recent evidence suggests that -94 ATTG ins/del mutant in the promoter of NFKB1 gene is an essential functional mutant. The present study demonstrated the frequencies of the del/del (DD) genotype and del (D) allele were significantly higher in CAD patients than in controls. CAD patients carrying mutant DD genotype had worse stenosis of diseased coronary arteries compared to those carrying ins/ins (II) or ins/del (ID) genotype. Plasma levels of endothelial nitric oxide synthase (eNOS) were lower, while inflammatory cytokine incnterlukin-6 (IL-6) was higher in CAD patients with DD genotype than those with II or ID genotype (both PDD genotype HUVECs) were more susceptible to H 2 O 2 -induced apoptosis, which was accompanied with a decreased Bcl-2 expression. Further, mutant HUVECs had lower eNOS but higher IL-6 mRNA levels and decreased phosphorylation of eNOS under H 2 O 2 -stimulation (both PDD genotype of NFKB1 gene is associated with the risk and severity of CAD. Dwonregulation of NF-κB p50 subunit leads to exacerbated endothelial dysfunction and apoptosis and enhanced inflammatory response that is the potential underlying mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Field Performance of Five Soybean Mutants Under Drought Stress Conditions and Molecular Analysis Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Y Yuliasti

    2017-08-01

    Full Text Available The objectives of this research wereto evaluate (1 the performance of soybean mutant lines under drought stress conditions, and(2 the genetic diversity and relationship among the mutant lines using SSR markers.The field evaluation was conducted during the dry season of 2011 and 2012 at the experimental Farm of Mataram University, West Nusa Tenggara, Indonesia. The field experiment was set up in a randomized block design. Ten mutant lines and two control varieties were evaluated in four replications. Genetic distance among evaluated lines were determined based on allelic diversity analysis using 40 simple sequence repeat (SSR loci. Under drought stress conditions, two mutant lines, Kdl3 and Kdl8,showed a better performance compared to the other ones. The high yielding mutant lines were Kdl3and Kdl8, which yielded 1.75 t ha-1and 1.69 t ha-1, respectively, compared to the parent and national control, Panderman 1.43 t ha-1 and Muria 1.32 t ha-1. These mutant linesrequired 30.75 to 32days to flower and 79.75 to 83.75 day to harvest with relatively short plant height 28.25 and 23.35 cmrespectively. Those mutant characters were better than those of the other three mutants, the original parents, and the control soybean species. Since the evaluated soybean mutant lines yielded more under drought stress conditions than the standard varieties, they can be used and registered as drought-tolerant soybean mutants. Moreover, the evaluated soybean accessions showed a wide genetic distance. The accessions were clustered into two groups according to their genetic background, namelygroup I (the Panderman with three mutant lines and group II (the Muria with two mutant lines. Twenty-three out of 40 evaluated SSR loci, including AW31, BE806, CMAC7L, S080, S126, S57, S171, S224, S285, S294, S393, S294, S383, S511, S511, S520, S540, S547, S551, S571, S577, and S578, provided polymorphic alleles between the parents and their mutants and could be used to differentiate

  4. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status

    DEFF Research Database (Denmark)

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression...

  5. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Science.gov (United States)

    Takei, Hiraku; Morishita, Soji; Araki, Marito; Edahiro, Yoko; Sunami, Yoshitaka; Hironaka, Yumi; Noda, Naohiro; Sekiguchi, Yuji; Tsuneda, Satoshi; Ohsaka, Akimichi; Komatsu, Norio

    2014-01-01

    A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  6. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay.

    Directory of Open Access Journals (Sweden)

    Hiraku Takei

    Full Text Available A gain-of-function mutation in the myeloproliferative leukemia virus (MPL gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs. The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5% of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.

  7. Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, Ambystoma mexicanum.

    Science.gov (United States)

    Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal

    2017-01-31

    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.

  8. Long-term control of HIV-1 in hemophiliacs carrying slow-progressing allele HLA-B*5101.

    Science.gov (United States)

    Kawashima, Yuka; Kuse, Nozomi; Gatanaga, Hiroyuki; Naruto, Takuya; Fujiwara, Mamoru; Dohki, Sachi; Akahoshi, Tomohiro; Maenaka, Katsumi; Goulder, Philip; Oka, Shinichi; Takiguchi, Masafumi

    2010-07-01

    HLA-B*51 alleles are reported to be associated with slow disease progression to AIDS, but the mechanism underlying this association is still unclear. In the present study, we analyzed the effect of HLA-B*5101 on clinical outcome for Japanese hemophiliacs who had been infected with HIV-1 before 1985 and had been recruited in 1998 for this study. HLA-B*5101(+) hemophiliacs exhibited significantly slow progression. The analysis of HLA-B*5101-restricted HIV-1-specific cytotoxic T-lymphocyte (CTL) responses to 4 HLA-B*-restricted epitopes in 10 antiretroviral-therapy (ART)-free HLA-B*5101(+) hemophiliacs showed that the frequency of Pol283-8-specific CD8(+) T cells was inversely correlated with the viral load, whereas the frequencies of CD8(+) T cells specific for 3 other epitopes were positively correlated with the viral load. The HLA-B*5101(+) hemophiliacs whose HIV-1 replication had been controlled for approximately 25 years had HIV-1 possessing the wild-type Pol283-8 sequence or the Pol283-8V mutant, which does not critically affect T-cell recognition, whereas other HLA-B*5101(+) hemophiliacs had HIV-1 with escape mutations in this epitope. The results suggest that the control of HIV-1 over approximately 25 years in HLA-B*5101-positive hemophiliacs is associated with a Pol283-8-specific CD8(+) T-cell response and that lack of control of HIV-1 is associated with the appearance of Pol283-8-specific escape mutants.

  9. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme

  10. Identification and Map-Based Cloning of the Light-Induced Lesion Mimic Mutant 1 (LIL1) Gene in Rice.

    Science.gov (United States)

    Zhou, Qian; Zhang, Zhifei; Liu, Tiantian; Gao, Bida; Xiong, Xingyao

    2017-01-01

    The hypersensitive response (HR) is a mechanism by which plants prevent the spread of pathogen. Despite extensive study, the molecular mechanisms underlying HR remain poorly understood. Lesion mimic mutants (LMMs), such as LIL1 that was identified in an ethylmethane sulfonate mutagenized population of Indica rice ( Oryza sativa L. ssp. Indica ) 93-11, can be used to study the HR. Under natural field conditions, the leaves of LIL1 mutant plants exhibited light-induced, small, rust-red lesions that first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. Histochemical staining indicated that LIL1 lesions displayed an abnormal accumulation of reactive oxygen species (ROS) and resulted from programmed cell death (PCD). The LIL1 mutants also displayed increased expression of defense-related genes and enhanced resistance to rice blast fungus ( Magnaporthe grisea ). Genetic analysis showed that mutation of LIL1 created a semi-dominant allele. Using 1,758 individuals in the F 2 population, LIL1 was mapped in a 222.3 kb region on the long arm of chromosome 7. That contains 12 predicted open reading frames (ORFs). Sequence analysis of these 12 candidate genes revealed a G to A base substitution in the fourth exon of LOC_Os07g30510, a putative cysteine-rich receptor-like kinase (CRK), which led to an amino acid change (Val 429 to Ile) in the LIL1 protein. Comparison of the transcript accumulation of the 12 candidate genes between LIL1 and 93-11 revealed that LOC_Os07g30510 was up-regulated significantly in LIL1 . Overexpression of the LOC_Os07g30510 gene from LIL1 induced a LIL1 -like lesion phenotype in Nipponbare. Thus, LIL1 is a novel LMM in rice that will facilitate the further study of the molecular mechanisms of HR and the rice blast resistance.

  11. Specific TP53 Mutants Overrepresented in Ovarian Cancer Impact CNV, TP53 Activity, Responses to Nutlin-3a, and Cell Survival

    Directory of Open Access Journals (Sweden)

    Lisa K. Mullany

    2015-10-01

    Full Text Available Evolutionary Action analyses of The Cancer Gene Atlas data sets show that many specific p53 missense and gain-of-function mutations are selectively overrepresented and functional in high-grade serous ovarian cancer (HGSC. As homozygous alleles, p53 mutants are differentially associated with specific loss of heterozygosity (R273; chromosome 17; copy number variation (R175H; chromosome 9; and up-stream, cancer-related regulatory pathways. The expression of immune-related cytokines was selectively related to p53 status, showing for the first time that specific p53 mutants impact, and are related to, the immune subtype of ovarian cancer. Although the majority (31% of HGSCs exhibit loss of heterozygosity, a significant number (24% maintain a wild-type (WT allele and represent another HGSC subtype that is not well defined. Using human and mouse cell lines, we show that specific p53 mutants differentially alter endogenous WT p53 activity; target gene expression; and responses to nutlin-3a, a small molecular that activates WT p53 leading to apoptosis, providing “proof of principle” that ovarian cancer cells expressing WT and mutant alleles represent a distinct ovarian cancer subtype. We also show that siRNA knock down of endogenous p53 in cells expressing homozygous mutant alleles causes apoptosis, whereas cells expressing WT p53 (or are heterozygous for WT and mutant p53 alleles are highly resistant. Therefore, despite different gene regulatory pathways associated with specific p53 mutants, silencing mutant p53 might be a suitable, powerful, global strategy for blocking ovarian cancer growth in those tumors that rely on mutant p53 functions for survival. Knowing p53 mutational status in HGSC should permit new strategies tailored to control this disease.

  12. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  13. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.

    Science.gov (United States)

    Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria

    2017-08-01

    The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects

  14. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  15. Nonsense mutants in the bacteriophage T4D v gene

    Energy Technology Data Exchange (ETDEWEB)

    Minderhout, L van; Grimbergen, J; Groot, B de [Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica en Chemische Mutagenese; Cohen (J.A.) Instituut voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1975-09-01

    Ten UV-sensitive mutants of T4D with the v phenotype were isolated. Of these ten mutants, two are amber and two opal. In UV curves and in photoreactivation and multiplicity reactivation experiments the nonsense mutants show the v phenotype in su/sup -/ hosts and almost the T4/sup +/ phenotype in su/sup +/ hosts. The mutations are located between rl and e and are alleles of v/sub 1/. In crosses with irradiated and non-irradiated phages the recombinant frequency is not reduced by uvs5. Amber uvs5 propagated in CR63 su/sup +/ is with B su/sup -/ just as sensitive to UV as uvs5 propagated in B su/sup -/, which permits the conclusion that the capsid of T4 phage particles does not contain the v gene product.

  16. Characterization of two second-site mutations preventing wild type protein aggregation caused by a dominant negative PMA1 mutant.

    Directory of Open Access Journals (Sweden)

    Pilar Eraso

    Full Text Available The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.

  17. Readressing the role of Toll-like receptor-4 alleles in inflammatory bowel disease: colitis, smoking, and seroreactivity.

    Science.gov (United States)

    Manolakis, Anastassios C; Kapsoritakis, Andreas N; Kapsoritaki, Anastasia; Tiaka, Elisavet K; Oikonomou, Konstantinos A; Lotis, Vassilis; Vamvakopoulou, Dimitra; Davidi, Ioanna; Vamvakopoulos, Nikolaos; Potamianos, Spyros P

    2013-02-01

    Toll-like receptor (TLR) polymorphisms, and especially TLR-4 Asp299Gly and TLR-4 Thr399Ile, have been linked with Crohn's disease (CD) and to a lesser extent with ulcerative colitis (UC), CD behavior, and compromised seroreactivity to microbial antigens. Available data, however, are conflicting. To address these issues, the distribution of TLR-4 polymorphic alleles was assessed in patients with UC, CD, and healthy controls (HC), considering patient and disease characteristics as well as related serological markers. TLR-4 Asp299Gly and TLR-4 Thr399Ile polymorphisms were determined in 187 UC and 163 CD patients and 274 randomly selected HC. C reactive protein, anti-Saccharomyces cerevisiae mannan antibodies, anti-mannobioside carbohydrate antibodies, anti-laminariobioside carbohydrate antibodies IgG, and anti-chitobioside carbohydrate antibodies (ACCA) IgA levels were also assessed. UC and especially pancolitis patients carried the mutant alleles more frequently compared to CD patients and HC or UC patients with different disease extents (P = 0.002 and P ACCA IgA were lower in inflammatory bowel disease (IBD) patients carrying the mutant compared to those with wild-type alleles (0.075 ACCA IgA levels. Smoking reduces the extent of UC, even in the presence of mutant alleles.

  18. Progression of Hepatic Adenoma to Carcinoma in Ogg1 Mutant Mice Induced by Phenobarbital

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    2017-01-01

    Full Text Available The carcinogenic potential of phenobarbital (PB was assessed in a mouse line carrying a mutant Mmh allele of the Mmh/Ogg1 gene encoding the enzyme oxoguanine DNA glycosylase (Ogg1 responsible for the repair of 8-hydroxy-2′-deoxyguanosine (8-OHdG. Mmh homozygous mutant (Ogg1−/− and wild-type (Ogg1+/+ male and female, 10-week-old, mice were treated with 500 ppm PB in diet for 78 weeks. Hepatocellular carcinomas (HCCs were found in PB-treated Ogg1−/− mice, while Ogg1+/+ animals developed only hepatocellular adenomas (HCAs at the same rate. This was coordinated with PB-induced significant elevation of 8-OHdG formation in DNA and cell proliferation in adjacent liver of Ogg1−/− mice. Proteome analysis predicted activation of transcriptional factor Nrf2 in the livers and HCAs of PB-administered Ogg1+/+ mice; however, its activation was insufficient or absent in the livers and HCCs of Ogg1−/− mice, respectively. Significant elevation of phase I and II metabolizing enzymes was demonstrated in both Ogg1−/− and Ogg1+/+ animals. Treatment of Ogg1−/− mice with PB resulted in significant elevation of cell proliferation in the liver. These results indicate that PB induced progression from HCA to HCC in Ogg1−/− mice, due to persistent accumulation of DNA oxidative base modifications and suppression of Nrf2-mediated oxidative stress response, resulting in significant elevation of cell proliferation.

  19. Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Andrea L Frump

    Full Text Available More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH. More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations. These comprise 40% of HPAH mutations and are predicted to express BMPR2 mutant products. However expression of endogenous NMD negative BMPR2 mutant products and their effect on protein trafficking and signaling function have never been described. Here, we characterize the expression and trafficking of an HPAH-associated NMD negative BMPR2 mutation that results in an in-frame deletion of BMPR2 EXON2 (BMPR2ΔEx2 in HPAH patient-derived lymphocytes and in pulmonary endothelial cells (PECs from mice carrying the same in-frame deletion of Exon 2 (Bmpr2 (ΔEx2/+ mice. The endogenous BMPR2ΔEx2 mutant product does not reach the cell surface and is retained in the endoplasmic reticulum. Moreover, chemical chaperones 4-PBA and TUDCA partially restore cell surface expression of Bmpr2ΔEx2 in PECs, suggesting that the mutant product is mis-folded. We also show that PECs from Bmpr2 (ΔEx2/+ mice have defects in the BMP-induced Smad1/5/8 and Id1 signaling axis, and that addition of chemical chaperones restores expression of the Smad1/5/8 target Id1. These data indicate that the endogenous NMD negative BMPRΔEx2 mutant product is expressed but has a folding defect resulting in ER retention. Partial correction of this folding defect and restoration of defective BMP signaling using chemical chaperones suggests that protein-folding agents could be used therapeutically in patients with these NMD negative BMPR2 mutations.

  20. A sorghum (Sorghum bicolor mutant with altered carbon isotope ratio.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor mutant with a low δ13C characteristic. A mutant (named Mut33 with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT. The back-cross (BC1F1 progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used

  1. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type

  2. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kakehi

    Full Text Available Thermospermine acts in negative regulation of xylem differentiation and its deficient mutant of Arabidopsis thaliana, acaulis5 (acl5, shows excessive xylem formation and severe dwarfism. Studies of two dominant suppressors of acl5, sac51-d and sac52-d, have revealed that SAC51 and SAC52 encode a transcription factor and a ribosomal protein L10 (RPL10, respectively, and these mutations enhance translation of the SAC51 mRNA, which contains conserved upstream open reading frames in the 5' leader. Here we report identification of SAC53 and SAC56 responsible for additional suppressors of acl5. sac53-d is a semi-dominant allele of the gene encoding a receptor for activated C kinase 1 (RACK1 homolog, a component of the 40S ribosomal subunit. sac56-d represents a semi-dominant allele of the gene for RPL4. We show that the GUS reporter activity driven by the CaMV 35S promoter plus the SAC51 5' leader is reduced in acl5 and restored by sac52-d, sac53-d, and sac56-d as well as thermospermine. Furthermore, the SAC51 mRNA, which may be a target of nonsense-mediated mRNA decay, was found to be stabilized in these ribosomal mutants and by thermospermine. These ribosomal proteins are suggested to act in the control of uORF-mediated translation repression of SAC51, which is derepressed by thermospermine.

  3. Genetic studies with morphological mutants of Aspergillus niger

    International Nuclear Information System (INIS)

    Roy, Ponty; Das, Arati

    1979-01-01

    Three classes of coloured mutations, viz., fawn, yellow and green, occurred recurrently among the population following UV- and γ-radiation from Co 60 of a wild Aspergillus niger strain 350. Ten mutants were picked up and complementation tests were performed by growing them in pairwise combinations. In two cases, allelic mutants of the same colour were observed. All these mutants were again grown in pairwise crosses with a brown A. niger mutant of different lineage. A poor heterokaryotic growth was, however, observed in one combination which later produced a diploid heterozygous nucleus. It segregated spontaneously to develop a large variety of colonies ranging from haploidy to diploidy including aneuploids. These have been analysed genetically and the possible explanations have been given. (auth.)

  4. GST M1-T1 null allele frequency patterns in geographically assorted human populations: a phylogenetic approach.

    Directory of Open Access Journals (Sweden)

    Senthilkumar Pitchalu Kasthurinaidu

    Full Text Available Genetic diversity in drug metabolism and disposition is mainly considered as the outcome of the inter-individual genetic variation in polymorphism of drug-xenobiotic metabolizing enzyme (XME. Among the XMEs, glutathione-S-transferases (GST gene loci are an important candidate for the investigation of diversity in allele frequency, as the deletion mutations in GST M1 and T1 genotypes are associated with various cancers and genetic disorders of all major Population Affiliations (PAs. Therefore, the present population based phylogenetic study was focused to uncover the frequency distribution pattern in GST M1 and T1 null genotypes among 45 Geographically Assorted Human Populations (GAHPs. The frequency distribution pattern for GST M1 and T1 null alleles have been detected in this study using the data derived from literatures representing 44 populations affiliated to Africa, Asia, Europe, South America and the genome of PA from Gujarat, a region in western India. Allele frequency counting for Gujarat PA and scattered plot analysis for geographical distribution among the PAs were performed in SPSS-21. The GST M1 and GST T1 null allele frequencies patterns of the PAs were computed in Seqboot, Gendist program of Phylip software package (3.69 versions and Unweighted Pair Group method with Arithmetic Mean in Mega-6 software. Allele frequencies from South African Xhosa tribe, East African Zimbabwe, East African Ethiopia, North African Egypt, Caucasian, South Asian Afghanistan and South Indian Andhra Pradesh have been identified as the probable seven patterns among the 45 GAHPs investigated in this study for GST M1-T1 null genotypes. The patternized null allele frequencies demonstrated in this study for the first time addresses the missing link in GST M1-T1 null allele frequencies among GAHPs.

  5. Sex-specific allelic transmission bias suggests sexual conflict at MC1R.

    Science.gov (United States)

    Ducret, Valérie; Gaigher, Arnaud; Simon, Céline; Goudet, Jérôme; Roulin, Alexandre

    2016-09-01

    Sexual conflict arises when selection in one sex causes the displacement of the other sex from its phenotypic optimum, leading to an inevitable tension within the genome - called intralocus sexual conflict. Although the autosomal melanocortin-1-receptor gene (MC1R) can generate colour variation in sexually dichromatic species, most previous studies have not considered the possibility that MC1R may be subject to sexual conflict. In the barn owl (Tyto alba), the allele MC1RWHITE is associated with whitish plumage coloration, typical of males, and the allele MC1RRUFOUS is associated with dark rufous coloration, typical of females, although each sex can express any phenotype. Because each colour variant is adapted to specific environmental conditions, the allele MC1RWHITE may be more strongly selected in males and the allele MC1RRUFOUS in females. We therefore investigated whether MC1R genotypes are in excess or deficit in male and female fledglings compared with the expected Hardy-Weinberg proportions. Our results show an overall deficit of 7.5% in the proportion of heterozygotes in males and of 12.9% in females. In males, interannual variation in assortative pairing with respect to MC1R explained the year-specific deviations from Hardy-Weinberg proportions, whereas in females, the deficit was better explained by the interannual variation in the probability of inheriting the MC1RWHITE or MC1RRUFOUS allele. Additionally, we observed that sons inherit the MC1RRUFOUS allele from their fathers on average slightly less often than expected under the first Mendelian law. Transmission ratio distortion may be adaptive in this sexually dichromatic species if males and females are, respectively, selected to display white and rufous plumages. © 2016 John Wiley & Sons Ltd.

  6. Allelic Variation of Bile Salt Hydrolase Genes in Lactobacillus salivarius Does Not Determine Bile Resistance Levels▿ †

    Science.gov (United States)

    Fang, Fang; Li, Yin; Bumann, Mario; Raftis, Emma J.; Casey, Pat G.; Cooney, Jakki C.; Walsh, Martin A.; O'Toole, Paul W.

    2009-01-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host. PMID:19592587

  7. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    OpenAIRE

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reac...

  8. Deletion mutant defines DQ beta variants with DR4 positive DQw3 positive haplotypes

    International Nuclear Information System (INIS)

    Nepom, B.S.; Kim, S.J.; Nepom, G.T.

    1986-01-01

    We describe the production of an HLA deletion mutation by radiation mutagenesis of a DR4- and DQw3-homozygous, Dw4- and Dw14-heterozygous cell line designed to analyze polymorphisms associated with DR4 and DQw3. Southern blot analysis confirms a deletion of class I and class II genes on one haplotype. Variation in DQ beta alleles associated with DQw3 was previously described by characteristic RFLP patterns for a DQ beta bene. One pattern, which correlated precisely with A-10-83 monoclonal antibody reactivity (TA10), defined an allele which we call DQ''3.1''. The mutant cell line has lost the polymorphic bands on Southern blots corresponding to the DQ''3.1'' allele, while the intact Dw14 haplotype retains the alternate allele at DQ beta which is DQw-3 positive. TA10-negative. These data demonstrate the segregation of two DQw3 positive DQ beta allelic variants, both associated with DR4, which can be distinguished on the basis of both RFLP and monoclonal antibody reactivity

  9. A de novo mosaic mutation in SPAST with two novel alternative alleles and chromosomal copy number variant in a boy with spastic paraplegia and autism spectrum disorder.

    Science.gov (United States)

    Matthews, A M; Tarailo-Graovac, M; Price, E M; Blydt-Hansen, I; Ghani, A; Drögemöller, B I; Robinson, W P; Ross, C J; Wasserman, W W; Siden, H; van Karnebeek, C D

    2017-10-01

    Here we report a 12 year old male with an extreme presentation of spastic paraplegia along with autism and dysmorphisms. Whole exome sequencing identified a predicted pathogenic pair of missense variants in SPAST at the same chromosomal location, each with a different alternative allele, while a chromosome microarray identified a 1.73 Mb paternally inherited copy gain of 1q21.1q21.2 resulting in a blended phenotype of both Spastic paraplegia 4 and 1q21.1 microduplication syndrome. We believe that the extreme phenotype observed is likely caused by the presence of cells which contain only mutant SPAST, but that the viability of the patient is possible due mosaicism of mutant alleles observed in different proportions across tissues. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker.

    Science.gov (United States)

    Okoń, S; Kowalczyk, K; Miazga, D

    2012-05-01

    Photoperiod response is a major determinant of the duration of growth stages in common wheat. In common wheat, many genes play a role in determining flowering time, but the Ppd genes located on the homoeologous group 2 play a major role. Of these Ppd-B1 is located on the short arm of 2B. In 107 common wheat cultivars grown in Poland and neighboring countries, the identification of Ppd-B1 alleles using in-del analysis by using a CAPS markers was investigated. 87 cultivars were shown to carry dominant Ppd-B1 alleles. This shows that Ppd-B1 alleles is have been widely used in common wheat breeding programme in these countries. Recessive ppd-B1 alleles were found only in 20 cultivars (12 Polish, 5 former Soviet Union, 2 German, 1 Swedish).

  11. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    Leah R. Vincent

    2018-04-01

    Full Text Available Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2 variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cror clinical isolates (H041 and F89 into a Cros strain (FA19 by allelic exchange and showed that the resultant Cror mutants were significantly outcompeted by the Cros parent strain in vitro and in a murine infection model. Four Cror compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo. One of these compensatory mutants (LV41C displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnBG348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq analysis of FA19 penA41 acnBG348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cror gonococcal strains that increase metabolism to ameliorate their fitness deficit.

  12. Long-Term Control of HIV-1 in Hemophiliacs Carrying Slow-Progressing Allele HLA-B*5101▿ †

    Science.gov (United States)

    Kawashima, Yuka; Kuse, Nozomi; Gatanaga, Hiroyuki; Naruto, Takuya; Fujiwara, Mamoru; Dohki, Sachi; Akahoshi, Tomohiro; Maenaka, Katsumi; Goulder, Philip; Oka, Shinichi; Takiguchi, Masafumi

    2010-01-01

    HLA-B*51 alleles are reported to be associated with slow disease progression to AIDS, but the mechanism underlying this association is still unclear. In the present study, we analyzed the effect of HLA-B*5101 on clinical outcome for Japanese hemophiliacs who had been infected with HIV-1 before 1985 and had been recruited in 1998 for this study. HLA-B*5101+ hemophiliacs exhibited significantly slow progression. The analysis of HLA-B*5101-restricted HIV-1-specific cytotoxic T-lymphocyte (CTL) responses to 4 HLA-B*-restricted epitopes in 10 antiretroviral-therapy (ART)-free HLA-B*5101+ hemophiliacs showed that the frequency of Pol283-8-specific CD8+ T cells was inversely correlated with the viral load, whereas the frequencies of CD8+ T cells specific for 3 other epitopes were positively correlated with the viral load. The HLA-B*5101+ hemophiliacs whose HIV-1 replication had been controlled for approximately 25 years had HIV-1 possessing the wild-type Pol283-8 sequence or the Pol283-8V mutant, which does not critically affect T-cell recognition, whereas other HLA-B*5101+ hemophiliacs had HIV-1 with escape mutations in this epitope. The results suggest that the control of HIV-1 over approximately 25 years in HLA-B*5101-positive hemophiliacs is associated with a Pol283-8-specific CD8+ T-cell response and that lack of control of HIV-1 is associated with the appearance of Pol283-8-specific escape mutants. PMID:20410273

  13. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-09-01

    Full Text Available A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension (ASPE assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA, H272 and 272Y of the Succinate dehydrogenase iron–sulfur subunit gene (SdhB, I365 and 365S of the putative osmosensor histidine kinase gene (BcOS1, and F412 and 412S of the 3-ketoreductase gene (erg27. This assay was first established and optimized with eight plasmid templates containing the DNA sequence variants BenA-E198, BenA-198A, SdhB-H272, SdhB-272Y, BcOS1-I365, BcOS1-365S, erg27-F412, and erg27-412S. Results indicated that none of the probes showed cross-reactivity with one another. The minimum limit of detection for these genotypes was one copy per test. Four mutant plasmids were mixed with 10 ng/μL wild-type genomic DNA in different ratios. Detection sensitivity of mutant loci was 0.45% for BenA-E198A, BcOS1-I365S, and erg27-F412S, and was 4.5% for SdhB-H272Y. A minimum quantity of 0.1 ng of genomic DNA was necessary to obtain reliable results. This is the first reported assay that can simultaneously detect mutations in BenA, SdhB, BcOS1, and erg27.

  14. Suspension Array for Multiplex Detection of Eight Fungicide-Resistance Related Alleles in Botrytis cinerea.

    Science.gov (United States)

    Zhang, Xin; Xie, Fei; Lv, Baobei; Zhao, Pengxiang; Ma, Xuemei

    2016-01-01

    A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea . Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene ( BenA ), H272 and 272Y of the Succinate dehydrogenase iron-sulfur subunit gene ( SdhB) , I365 and 365S of the putative osmosensor histidine kinase gene ( BcOS1 ), and F412 and 412S of the 3-ketoreductase gene ( erg27 ). This assay was first established and optimized with eight plasmid templates containing the DNA sequence variants BenA- E198, BenA- 198A, SdhB- H272, SdhB- 272Y, BcOS1- I365, BcOS1- 365S, erg27 -F412, and erg27 -412S. Results indicated that none of the probes showed cross-reactivity with one another. The minimum limit of detection for these genotypes was one copy per test. Four mutant plasmids were mixed with 10 ng/μL wild-type genomic DNA in different ratios. Detection sensitivity of mutant loci was 0.45% for BenA- E198A, BcOS1- I365S, and erg27 -F412S, and was 4.5% for SdhB- H272Y. A minimum quantity of 0.1 ng of genomic DNA was necessary to obtain reliable results. This is the first reported assay that can simultaneously detect mutations in BenA , SdhB , BcOS1 , and erg27 .

  15. Association between diabetes type 1 and DQB1 alleles in a case-control study conducted in Montevideo, Uruguay.

    Science.gov (United States)

    Mimbacas, Adriana; Pérez-Bravo, Francisco; Hidalgo, Pedro C; Javiel, Gerardo; Pisciottano, Carmen; Grignola, Rosario; Jorge, Ana María; Gallino, Juan Pablo; Gasagoite, Jackeline; Cardoso, Horacio

    2003-03-31

    We studied HLA DQB1 allele frequencies and the relative risk (RR) of various genotypes in 72 type 1 diabetic patients and 40 control individuals in Uruguay. This is a tri-racial (Caucasian, Black and Indo-American) mixed population. The products of the polymerase chain reaction amplifications were hybridized with oligonucleotides by allele-specific oligonucleotide reverse or dot blot methods. Significant differences between these two groups were observed only for allele DQB1*0302 (35%, RR = 7.34, P<0.001). The frequency of the alleles carrying a non-aspartic acid residue at position 57 was significantly higher in the diabetic patients (85 vs 53%, P<0.001). In contrast, the frequency of Asp alleles was negatively associated with type 1 diabetes (RR = 0.20, P<0.001). The genotype DQB1*0302/DQB1*0201 (33%, RR = 5.41, P<0.05) was positively associated with this disease. The genotype frequencies associated with type 1 diabetes in our population were significantly different from what is known for Caucasian and Black populations as well as compared with another admixed population, from Chile.

  16. The Analysis of A Frequent TMPRSS3 Allele Containing P.V116M and P.V291L in A Cis Configuration among Deaf Koreans

    Directory of Open Access Journals (Sweden)

    Ah Reum Kim

    2017-10-01

    Full Text Available We performed targeted re-sequencing to identify the genetic etiology of early-onset postlingual deafness and encountered a frequent TMPRSS3 allele harboring two variants in a cis configuration. We aimed to evaluate the pathogenicity of the allele. Among 88 cochlear implantees with autosomal recessive non-syndromic hearing loss, subjects with GJB2 and SLC26A4 mutations were excluded. Thirty-one probands manifesting early-onset postlingual deafness were sorted. Through targeted re-sequencing, we detected two families with a TMPRSS3 mutant allele containing p.V116M and p.V291L in a cis configuration, p.[p.V116M; p.V291L]. A minor allele frequency was calculated and proteolytic activity was measured. A p.[p.V116M; p.V291L] allele demonstrated a significantly higher frequency compared to normal controls and merited attention due to its high frequency (4.84%, 3/62. The first family showed a novel deleterious splice site variant—c.783-1G>A—in a trans allele, while the other showed homozygosity. The progression to deafness was noted within the first decade, suggesting DFNB10. The proteolytic activity was significantly reduced, confirming the severe pathogenicity. This frequent mutant allele significantly contributes to early-onset postlingual deafness in Koreans. For clinical implication and proper auditory rehabilitation, it is important to pay attention to this allele with a severe pathogenic potential.

  17. Allele frequencies of AVPR1A and MAOA in the Afrikaner population

    Directory of Open Access Journals (Sweden)

    J. Christoff Erasmus

    2015-07-01

    Full Text Available The Afrikaner population was founded mainly by European immigrants that arrived in South Africa from 1652. However, female slaves from Asia and Africa and local KhoeSan women may have contributed as much as 7% to this population’s genes. We quantified variation at two tandem repeats to see if this historical founder effect and/or admixture could be detected. The two loci were chosen because they are in the promoters of genes of neurotransmitters that are known to be correlated with social behaviour. Specifically, arginine vasopressin receptor 1A’s (AVPR1A RS3 locus has been shown to correlate with age of sexual onset and happiness in monogamous relationships while the tandem repeat in the promoter of the monoamine oxidase A (MAOA gene correlates with reactive aggression. The Afrikaner population contained more AVPR1A RS3 alleles than other Caucasoid populations, potentially reflecting a history of admixture. Even though Afrikaners have one of the lowest recorded non-paternity rates in the world, the population did not differ at AVPR1A RS3 locus form other European populations, suggesting a non-genetic explanation, presumably religion, for the low non-paternity rate. By comparing population allele-frequency spectra it was found that different studies have confused AVPR1A RS3 alleles and we make some suggestions to rectify these mistakes in future studies. While MAOA allele frequencies differed between racial groups, the Afrikaner population showed no evidence of admixture. In fact, Afrikaners had more 4-repeat alleles than other populations of European origin, not fewer. The 4-repeat allele may have been selected for during colonisation.

  18. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects.

    Science.gov (United States)

    Nakamura, Tsutomu; Sakaeda, Toshiyuki; Horinouchi, Masanori; Tamura, Takao; Aoyama, Nobuo; Shirakawa, Toshiro; Matsuo, Masafumi; Kasuga, Masato; Okumura, Katsuhiko

    2002-04-01

    The effect of the C3435T mutation at exon 26 of the MDR1 gene on the expression levels of MDR1 messenger ribonucleic acid (mRNA) was evaluated by means of real-time polymerase chain reaction in 51 biopsy specimens of duodenum obtained from 13 healthy Japanese subjects. The mRNA levels of MDR1 were 0.38 +/- 0.15, 0.56 +/- 0.14, and 1.13 +/- 0.42 (mean value +/- SE) in the subjects with the homozygote of wild-type allele (C/C), compound heterozygote with mutant T allele (C/T), and the homozygote of the mutant allele (T/T), respectively, reasonably explaining the lower digoxin serum concentration after administration of a single oral dose to subjects harboring a mutant T allele. Good correlation (r =.797; P CYP3A4 in the individual biopsy specimens. This finding suggested a lower plasma concentration of the substrates for CYP3A4 in subjects harboring the C3435T mutation of the MDR1 gene.

  19. Homologous series of induced early mutants in indican rice. Pt.1. The production of homologous series of early mutants

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    1999-01-01

    The percentage of homologous series of early mutants induced from the same Indican rice variety were almost the same (1.37%∼1.64%) in 1983∼1993, but the ones from the different eco-typical varieties were different. The early variety was 0.73%, the mid variety was 1.51%, and the late variety was 1.97%. The percentage of homologous series of early mutants from the varieties with the same pedigree and relationship were similar, but the one from the cog nation were lower than those from distant varieties. There are basic laws and characters in the homologous series of early mutants: 1. The inhibited phenotype is the basic of the homologous series of early mutants; 2. The production of the homologous series of early mutants is closely related with the growing period of the parent; 3. The parallel mutation of the stem and leaves are simultaneously happened with the variation of early or late maturing; 4. The occurrence of the homologous series of early mutants is in a state of imbalance. According to the law of parallel variability, the production of homologous series of early mutants can be predicted as long as the parents' classification of plant, pedigree and ecological type are identified. Therefore, the early breeding can be guided by the law of homologous series of early mutants

  20. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    Science.gov (United States)

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  1. Genetic variation of maize (Zea mays L.) mutants based on ssr analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hongni, Qin; Yilin, Cai; Chunrong, Yang; Guoqiang, Wang [Maize Research Institute of Southwest University, Chongqing (China)

    2008-12-15

    52 SSR primers that gave stable profiles amplified in sample of the Maize inbred line '082' and its 48 mutants were selected from 97 primers, and produced 170 polymorphic amplified fragments. The average number of allele per SSR locus was 3.27 with a range from 2 to 6. The polymorphism information content for the SSR loci varied from 0.039 to 0.715 with an average of 0.327. Genetic similarities among the 49 materials ranged from 0.377 to 1.000 with an average of 0.823. The 49 materials were divided into 6 groups by UPGMA. The results indicated that distinct variation existed among mutants. (authors)

  2. Genetic variation of maize (Zea mays L.) mutants based on ssr analysis

    International Nuclear Information System (INIS)

    Qin Hongni; Cai Yilin; Yang Chunrong; Wang Guoqiang

    2008-01-01

    52 SSR primers that gave stable profiles amplified in sample of the Maize inbred line '082' and its 48 mutants were selected from 97 primers, and produced 170 polymorphic amplified fragments. The average number of allele per SSR locus was 3.27 with a range from 2 to 6. The polymorphism information content for the SSR loci varied from 0.039 to 0.715 with an average of 0.327. Genetic similarities among the 49 materials ranged from 0.377 to 1.000 with an average of 0.823. The 49 materials were divided into 6 groups by UPGMA. The results indicated that distinct variation existed among mutants. (authors)

  3. CYP1A1, CYP1A2, SULT1A1 AND SULT1E1 ALLELIC POLYMORPHISM IN CASE OF GENITAL ENDOMETRIOSIS

    Directory of Open Access Journals (Sweden)

    Konstantin Sergeevich Kublinskiy

    2016-02-01

    Up-to-date molecular and genetic analyses reveal that women predisposed to genital endometriosis possess Allele G and Genotypes AG and GG of the polymorphic option A-4889G of the CYP1A1 gene and Allele A and Genotypes CA and AA of the polymorphic option C-734A of the CYP1A2 gene. The polymorphism of the promoter regions of the SULT1A1 (G-638A and SULT1E1 (C-174T genes is not associated with genital endometriosis in women.

  4. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.

    Directory of Open Access Journals (Sweden)

    Andrew Chen

    Full Text Available Most of the natural variation in wheat vernalization response is determined by allelic differences in the MADS-box transcription factor VERNALIZATION1 (VRN1. Extended exposures to low temperatures during the winter (vernalization induce VRN1 expression and promote the transition of the apical meristem to the reproductive phase. In contrast to its Arabidopsis homolog (APETALA1, which is mainly expressed in the apical meristem, VRN1 is also expressed at high levels in the leaves, but its function in this tissue is not well understood. Using tetraploid wheat lines with truncation mutations in the two homoeologous copies of VRN1 (henceforth vrn1-null mutants, we demonstrate that a central role of VRN1 in the leaves is to maintain low transcript levels of the VRN2 flowering repressor after vernalization. Transcript levels of VRN2 were gradually down-regulated during vernalization in both mutant and wild-type genotypes, but were up-regulated after vernalization only in the vrn1-null mutants. The up-regulation of VRN2 delayed flowering by repressing the transcription of FT, a flowering-integrator gene that encodes a mobile protein that is transported from the leaves to the apical meristem to induce flowering. The role of VRN2 in the delayed flowering of the vrn1-null mutant was confirmed using double vrn1-vrn2-null mutants, which flowered two months earlier than the vrn1-null mutants. Both mutants produced normal flowers and seeds demonstrating that VRN1 is not essential for wheat flowering, which contradicts current flowering models. This result does not diminish the importance of VRN1 in the seasonal regulation of wheat flowering. The up-regulation of VRN1 during winter is required to maintain low transcript levels of VRN2, accelerate the induction of FT in the leaves, and regulate a timely flowering in the spring. Our results also demonstrate the existence of redundant wheat flowering genes that may provide new targets for engineering wheat

  5. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4+

    Science.gov (United States)

    Ranatunga, Nimna S.; Forsburg, Susan L.

    2016-01-01

    The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+. Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure. PMID:27473316

  6. Generation of New Hairless Alleles by Genomic Engineering at the Hairless Locus in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Heiko Praxenthaler

    Full Text Available Hairless (H is the major antagonist within the Notch signalling pathway of Drosophila melanogaster. By binding to Suppressor of Hairless [Su(H] and two co-repressors, H induces silencing of Notch target genes in the absence of Notch signals. We have applied genomic engineering to create several new H alleles. To this end the endogenous H locus was replaced with an attP site by homologous recombination, serving as a landing platform for subsequent site directed integration of different H constructs. This way we generated a complete H knock out allele HattP, reintroduced a wild type H genomic and a cDNA-construct (Hgwt, Hcwt as well as two constructs encoding H proteins defective of Su(H binding (HLD, HiD. Phenotypes regarding viability, bristle and wing development were recorded, and the expression of Notch target genes wingless and cut was analysed in mutant wing discs or in mutant cell clones. Moreover, genetic interactions with Notch (N5419 and Delta (DlB2 mutants were addressed. Overall, phenotypes were largely as expected: both HLD and HiD were similar to the HattP null allele, indicating that most of H activity requires the binding of Su(H. Both rescue constructs Hgwt and Hcwt were homozygous viable without phenotype. Unexpectedly, the hemizygous condition uncovered that they were not identical to the wild type allele: notably Hcwt showed a markedly reduced activity, suggesting the presence of as yet unidentified regulatory or stabilizing elements in untranslated regions of the H gene. Interestingly, Hgwt homozygous cells expressed higher levels of H protein, perhaps unravelling gene-by-environment interactions.

  7. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons.

    Science.gov (United States)

    Miranda-Vizuete, Antonio; Fierro González, Juan Carlos; Gahmon, Gabriele; Burghoorn, Jan; Navas, Plácido; Swoboda, Peter

    2006-01-23

    Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX-1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior-most intestinal cells. TRX-1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx-1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild-type. The identification and characterization of TRX-1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.

  8. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens

    Science.gov (United States)

    McGrann, Graham R. D.; Steed, , Andrew; Burt, Christopher; Nicholson, Paul; Brown, James K. M.

    2015-01-01

    Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens. PMID:25873675

  9. Association of primary biliary cirrhosis with the allele HLA-DPB1*0301 in a German population.

    Science.gov (United States)

    Mella, J G; Roschmann, E; Maier, K P; Volk, B A

    1995-02-01

    The major histocompatibility complex class II alleles at the HLA-DPB1 locus were investigated in 32 German Caucasoid patients with primary biliary cirrhosis (PBC) and compared with those from 47 normal control patients using molecular genotyping techniques. The second exon of the HLA-DPB1 gene was amplified by polymerase chain reaction (PCR) and hybridized with 25 sequence-specific oligonucleotides (SSOs) to assign the HLA-DPB1 alleles on the basis of known sequence variations, according to the protocols of the Eleventh International Histocompatibility Workshop. A strong association of PBC was found with the allele HLA-DPB1*0301. The allele HLA DPB1*0301 was present in 50% (16 of 32) of the patients with PBC compared with 13% (6 of 47) of normal controls (P corrected < .015), whereas the other HLA-DPB1 alleles showed no significant differences in both groups. The relative risk (RR) estimate for the allele HLA-DPB1*0301 was 6.8 (95% confidence limits: 2.27 to 20.57). In summary, this study clearly demonstrates an association of PBC with the HLA-DPB1*0301 allele in German Caucasoids and may add new data to the immunogenetic background of PBC, suggesting a contribution of the HLA-DPB1 gene to the genetic susceptibility of the disease.

  10. Allele variants of HLA II genes DRB1 and DQB1 regarding risk for type 1 diabetes mellitus in population of Bashkortostan

    Directory of Open Access Journals (Sweden)

    Shamilevna Avzaletdinova

    2012-09-01

    Full Text Available Aims. To estimate significance of HLA II DRB1 and DRB2 allele variants for development of type 1 diabetes mellitus (T1DM in Bashkortostanpopulation (ethnical Russians, Tatar, Bashkir. Materials and methods. We analyzed DNA of 323 patients with T1DM and 683 healthy controls. DNA was derived from venous bloodsamples by phenol-chloroform extraction. DRB1 and DQB1 gene typing was performed by PCR method. Amplification products wereidentified with electrophoresis on a 1% agarose gel. Statistica for Windows v6.0 and MS Excel 98 software were applied for statisticalprocessing of acquired data. Results. Common markers of high risk for T1DM were found to be DRB1*04, DRB1*17, genotype DRB1*04/*17. On the contrary,lower risk was associated with DRB1*15 allele. In ethnical Russians lower risk of T1DM is also determined by DRB1*11 allele andDRB1*01 in Tatars. Predisposition by DQB1-alleles in Russians and Bashkir realizes only within DRB1*04/*17 genotype. However,in Tatar subpopulation DQB1*0302 is an independent risk marker of T1DM development. Conclusion. Common low risk markers for all three ethnic groups are DQB1*0301, DQB1*0602-08 alleles. Their presence negates riskof disease in all studied subpopulations even within DRB1*04/*17-genotype.

  11. Evaluation and genetic analysis of semi-dwarf mutants in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Awan, M.A.; Cheema, A.A.; Tahir, G.R.

    1984-01-01

    Four semi-dwarf mutants namely DM16-5-1, DM16-5-2, DM-2 and DM107-4 were derived from the local tall basmati cultivar. The mode of reduction of internode length was studied in DM107-4. The reduction in culm length was due to a corresponding but disproportionate reduction in all the internodes. It was inferred that reduction in internode length contributes more towards reduction in height as compared to the reduction in the total number of internodes. The effect of semi-dwarfism on some yield components (panicle characters) was studied in two semi-dwarf mutants viz. DM16-5-1 and DM107-4 compared to Basmati 370. A marginal reduction in the panicle axis, primary branches per panicle, secondary branches per primary branch per panicle, spikelets borne on secondary branches and total number of spikelets per panicle was observed in DM16-5-1, whereas, a significant reduction of these characters was observed in DM107-4. Evaluation of the semi-dwarf mutants with respect to grain yield and harvest index showed that all the mutants possess high yield potential with higher harvest index values compared to the parent cultivar. Genetic analysis for plant height in 4x4 diallel involving semi-dwarf mutants revealed that mutant DM107-4 carries mainly recessive alleles while mutant DM16-5-1 showed some dominance effects as assessed through the estimates of genetic components of variation and Vr,Wr graph analysis. The semi-dwarf mutants have good potential for use as parents in cross-breeding programmes. (author)

  12. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content.

    Science.gov (United States)

    Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D

    2011-09-01

    The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds. Two genes encoding FAD2-1A and FAD2-1B were identified to be expressed specifically in seeds during embryogenesis and have been considered to hold an important role in controlling the seed oleic acid content. A total of 22 soybean plant introduction (PI) lines identified to have an elevated oleic acid content were characterized for sequence mutations in the FAD 2-1A and FAD2-1B genes. PI 603452 was found to contain a deletion of a nucleotide in the second exon of FAD2-1A. These important SNPs were used in developing molecular marker genotyping assays. The assays appear to be a reliable and accurate tool to identify the FAD 2-1A and FAD2-1B genotype of wild-type and mutant plants. PI 603452 was subsequently crossed with PI 283327, a soybean line that has a mutation in FAD2-1B. Interestingly, soybean lines carrying both homozygous insertion/deletion mutation (indel) FAD2-1A alleles and mutant FAD2-1B alleles have an average of 82-86% oleic acid content, compared to 20% in conventional soybean, and low levels of linoleic and linolenic acids. The newly identified indel mutation in the FAD2-1A gene offers a simple method for the development of high oleic acid commercial soybean varieties.

  13. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  14. HLA-DQA1 and HLA-DQB1 allele diversity and its extended haplotypes in Madeira Island (Portugal).

    Science.gov (United States)

    Spínola, H; Lemos, A; Couto, A R; Parreira, B; Soares, M; Dutra, I; Bruges-Armas, J; Brehm, A

    2017-02-01

    This study shows, for the first time, high-resolution allele frequencies of HLA-DQA1 loci in Madeira Island (Portugal) and allows us to better understand and refine present knowledge on DQB1 variation, with the identification of several alleles not previously reported in this population. Estimates on haplotype profile, involving HLA-A, HLA-B, HLA-DRB1, HLA-DQA1 and HLA-DQB1, are also reported. © 2016 John Wiley & Sons Ltd.

  15. Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria

    Directory of Open Access Journals (Sweden)

    Hong Ming Huang

    2017-09-01

    Full Text Available Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host–parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1 which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845, and the other a truncated Ank-1 protein (MRI96570. Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570 mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845 caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host–parasite interactions, which could be the basis of future studies.

  16. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Science.gov (United States)

    Challa, Anil K; Boitet, Evan R; Turner, Ashley N; Johnson, Larry W; Kennedy, Daniel; Downs, Ethan R; Hymel, Katherine M; Gross, Alecia K; Kesterson, Robert A

    2016-01-01

    Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr) cause oculocutaneous albinism (OCA1) in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA) as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray) and chandana (Sanskrit for sandalwood). These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  17. Novel Hypomorphic Alleles of the Mouse Tyrosinase Gene Induced by CRISPR-Cas9 Nucleases Cause Non-Albino Pigmentation Phenotypes.

    Directory of Open Access Journals (Sweden)

    Anil K Challa

    Full Text Available Tyrosinase is a key enzyme in melanin biosynthesis. Mutations in the gene encoding tyrosinase (Tyr cause oculocutaneous albinism (OCA1 in humans. Alleles of the Tyr gene have been useful in studying pigment biology and coat color formation. Over 100 different Tyr alleles have been reported in mice, of which ≈24% are spontaneous mutations, ≈60% are radiation-induced, and the remaining alleles were obtained by chemical mutagenesis and gene targeting. Therefore, most mutations were random and could not be predicted a priori. Using the CRISPR-Cas9 system, we targeted two distinct regions of exon 1 to induce pigmentation changes and used an in vivo visual phenotype along with heteroduplex mobility assays (HMA as readouts of CRISPR-Cas9 activity. Most of the mutant alleles result in complete loss of tyrosinase activity leading to an albino phenotype. In this study, we describe two novel in-frame deletion alleles of Tyr, dhoosara (Sanskrit for gray and chandana (Sanskrit for sandalwood. These alleles are hypomorphic and show lighter pigmentation phenotypes of the body and eyes. This study demonstrates the utility of CRISPR-Cas9 system in generating domain-specific in-frame deletions and helps gain further insights into structure-function of Tyr gene.

  18. Distribution of HIV-1 resistance-conferring polymorphic alleles SDF ...

    Indian Academy of Sciences (India)

    Polymorphic allelic variants of chemokine receptors CCR2 and CCR5, as well as of stromal-derived factor-1 SDF-1, the ligand for the chemokine receptor CXCR4, are known to have protective effects against HIV-1 infection and to be involved with delay in disease progression. We have studied the DNA polymorphisms at ...

  19. Polymorphic variations in IL-1β, IL-6 and IL-10 genes, their circulating serum levels and breast cancer risk in Indian women.

    Science.gov (United States)

    Pooja, Singh; Chaudhary, Preeti; Nayak, Lakshma V; Rajender, Singh; Saini, Karan Singh; Deol, Debashish; Kumar, Sandeep; Bid, Hemant Kumar; Konwar, Rituraj

    2012-10-01

    Cytokines are known as important regulators of the entire gamut of cancer from initiation, invasion and metastasis. This fact and plethora of gene polymorphism data prompted us to investigate cytokine gene polymorphisms in breast cancer (BC) patients. Selected polymorphisms in the IL-1β [-511 T>C (rs16944) and +3954 C>T (rs1143634)]; IL-6 [-174 G>C (rs1800795)]; IL-10 [-1082 A>G (rs1800896), -819 T>C (rs1800871) and -592 A>C (rs1800872)] genes were genotyped in 200 BC patients and 200 healthy volunteers in a case-control study using PCR-RFLP and direct DNA sequencing techniques. Peripheral cytokine levels were measured using ELISA. Allele and genotype data were analyzed for significance of differences between cases and controls using Chi-Square [χ(2)] test. Two sided P-values of less than 0.05 were considered to be statistically significant. Peripheral level of all three cytokines did not show any significant difference between cases and controls. Allele and genotype frequency of IL-1β [-511 T>C (rs16944)] did not show any difference between cases and controls. On the other hand mutant allele and genotype at IL-1β [+3954 C>T (rs1143634)] associated with increased risk of BC. This was also true for pre-menopausal cases and for mutant genotype in post-menopausal cases. Mutant allele and genotypes at IL-6 [-174 G>C (rs1800795)] appeared to be protective in nature such that controls had a higher frequency of both mutant alleles and genotypes. None of the three SNPs in IL-10 gene associated with risk of BC, except significant association of mutant allele and genotypes of -1082 A>G (rs1800896) polymorphism with postmenopausal BC. Mutant allele and genotype at IL-1β [+3954 C>T (rs1143634)] site associated with increased BC risk, while mutant allele and genotypes at IL-6 [-174 G>C (rs1800795)] polymorphism appeared to be protective. Also, there was significant association of mutant allele and genotypes of IL-10 [-1082 A>G (rs1800896)] with postmenopausal BC. None of

  20. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis.

    Science.gov (United States)

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-07-01

    Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5'- and 3'-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients.Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3'-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5'-UTR polymorphisms).For neither the 3'- nor the 5'-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance.The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold, in our population

  1. Characterization of Novel Sorghum brown midrib Mutants from an EMS-Mutagenized Population

    OpenAIRE

    Sattler, Scott E.; Saballos, Ana; Xin, Zhanguo; Funnell-Harris, Deanna L.; Vermerris, Wilfred; Pedersen, Jeffrey F.

    2014-01-01

    Reducing lignin concentration in lignocellulosic biomass can increase forage digestibility for ruminant livestock and saccharification yields of biomass for bioenergy. In sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses, brown midrib (bmr) mutants have been shown to reduce lignin concentration. Putative bmr mutants isolated from an EMS-mutagenized population were characterized and classified based on their leaf midrib phenotype and allelism tests with the previously describe...

  2. Natural Arabidopsis brx loss-of-function alleles confer root adaptation to acidic soil.

    Science.gov (United States)

    Gujas, Bojan; Alonso-Blanco, Carlos; Hardtke, Christian S

    2012-10-23

    Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun

    2011-04-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  4. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun; Baek, Dongwon; Oh, Dongha; Park, Jiyoung; Hong, Hyewon; Kim, Woeyeon; Bohnert, Hans Jü rgen; Bressan, Ray Anthony; Park, Hyeongcheol; Yun, Daejin

    2011-01-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  5. Candidate Cancer Allele cDNA Collection | Office of Cancer Genomics

    Science.gov (United States)

    CTD2 researchers at the Broad Institute/DFCI have developed a collection of plasmids including mutant alleles found in sequencing studies of cancer. It includes somatic variants found in lung adenocarcinoma and across other cancer types. The clones enable researchers to characterize the function of the cancer variants in a high throughput experiments. These plasmids are collectively called the “Broad Target Accelerator Plasmid Collections”.

  6. IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation

    Science.gov (United States)

    Oktay, Yavuz; Ülgen, Ege; Can, Özge; Akyerli, Cemaliye B.; Yüksel, Şirin; Erdemgil, Yiğit; Durası, İ. Melis; Henegariu, Octavian Ioan; Nanni, E. Paolo; Selevsek, Nathalie; Grossmann, Jonas; Erson-Omay, E. Zeynep; Bai, Hanwen; Gupta, Manu; Lee, William; Turcan, Şevin; Özpınar, Aysel; Huse, Jason T.; Sav, M. Aydın; Flanagan, Adrienne; Günel, Murat; Sezerman, O. Uğur; Yakıcıer, M. Cengiz; Pamir, M. Necmettin; Özduman, Koray

    2016-01-01

    The single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17–16.52; 95% CI) for IDH-mutated gliomas and 12.85 (5.94–27.83; 95% CI) for IDH-mutated, 1p/19q co-deleted gliomas. Decreasing strength with increasing anaplasia implied a modulatory effect. No somatic mutations were noted at this locus in 114 blood-tumor pairs, nor was there a copy number difference between risk-allele and only-ancestral allele carriers. CCDC26 RNA-expression was rare and not different between the two groups. There were only minor subtype-specific differences in common glioma driver genes. RNA sequencing and LC-MS/MS comparisons pointed to significantly altered MYC-signaling. Baseline enhancer activity of the conserved region specifically on the MYC promoter and its further positive modulation by the SNP risk-allele was shown in vitro. Our findings implicate MYC deregulation as the underlying cause of the observed association. PMID:27282637

  7. Sensorimotor learning in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Lalonde, R; Strazielle, C

    2011-04-15

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex and neocortex were compared with non-ataxic controls on two tests of motor coordination: rotorod and grid climbing. Even at the minimal speed of 4 rpm and unlike controls, none of the Dab1(scm) mutants reached criterion on the constant speed rotorod. In contrast, Dab1(scm) mutants improved their performances on the vertical grid over the course of the same number of trials. Thus, despite massive cerebellar degeneration, sensorimotor learning for equilibrium is still possible, indicating the potential usefulness of the grid-climbing test in determining residual functions in mice with massive cerebellar damage. Copyright © 2010. Published by Elsevier B.V.

  8. Meiotic UV-sensitive mutant that causes deletion of duplications in neurospora

    International Nuclear Information System (INIS)

    Newmeyer, D.; Galeazzi, D.R.

    1978-01-01

    The meiotic-3 (mei-3) mutant of Neurospora crassa has several effects: (1) when homozygous, it almost completely blocks meiosis and ascospore formation, (2) it is sensitive to uv, (3) its growth is inhibited by histidine, and (4) it increases the instability of nontandem duplications. This was shown for duplications produced by five different rearrangements and was demonstrated by two different criteria. The effects on meiosis and duplication instability are expressed strongly at 25 0 ; the effects on sensitivity to uv and to histidine are expressed strongly at 38.5 0 but only slightly at 25 0 . Nevertheless, all four effects were shown to be due to a single gene. Mei-3 is not allelic with previously reported uv-sensitive mutants. Two other results were obtained that are not necessarily due to mei-3: (1) a cross involving mei-3 produced a new unlinked meiotic mutant, mei-4, which is not sensitive to uv or histidine, and (2) a burst of several new mutants occurred in a different mei-3 stock, including a partial revertant to mei-3. Mei-3 has previously been shown to cause frequent complete loss of a terminal duplicate segment, beginning exactly at the original rearrangement breakpoint. Possible mechanisms are discussed by which a uv-sensitive mutant could cause such precise deletions

  9. A Gly1127Ser mutation in an EGF-like domain of the Fibrillin-I gene is a risk factor for ascending aortic aneurysm and dissection

    Energy Technology Data Exchange (ETDEWEB)

    Francke, U.; Berg, M.A.; Tynan, K. [Stanford Univ. Medical Center, CA (United States)] [and others

    1995-06-01

    Ascending aortic disease, ranging from mild aortic root enlargement to aneurysm and/or dissection, has been identified in 10 individuals of a kindred, none of whom had classical Marfan syndrome (MFS). Single-strand conformation analysis of the entire fibrillin-1 (FBN1) cDNA of an affected family member revealed a G-to-A transition at nucleotide 3379, predicting a Gly1127Ser substitution. The glycine in this position is highly conserved in EGF-like domains of FBN1 and other proteins. This mutation was present in 9 of 10 affected family members and in 1 young unaffected member but was not found in other unaffected members, in 168 chromsomes from normal controls, and in 188 chromosomes from other individuals with MFS or related phenotypes. FBN1 intragenic marker haplotypes ruled out the possibility that the other allele played a significant role in modulating the phenotype in this family. Pulse-chase studies revealed normal fibrillin synthesis but reduced fibrillin deposition into the extracellular matrix in cultured fibroblasts from a Gly1127Ser carrier. We postulate that the Gly1127Ser FBN1 mutation is responsible for reduced matrix deposition. We suggest that mutations such as this one may disrupt EFG-like domain folding less drastically than do substitutions of cysteine or of other amino acids important for calcium-binding that cause classical MFS. The Gly 1127Ser mutation, therefore, produces a mild form of autosomal dominantly inherited weakness of elastic tissue, which predisposes to ascending aortic aneurysm and dissection later in life. 33 refs., 6 figs.

  10. Genetics of dwarfness in induced mutants of hexaploid triticale and its response to exogenous GA3

    International Nuclear Information System (INIS)

    Reddy, V.D.; Reddy, G.M.

    1991-01-01

    Genetics of dwarfism in two induced mutant (d 1 and d 2 ) of hexaploid triticale, DTS 330, revealed that this trait is governed by single recessive gene. Both d 1 and d 2 were allelic to each other and d 1 was dominant over d 2 . Both d 1 , d 2 and their F 1 showed no response to exogenous GA 3 , whereas, DTS 330, d 1 x DTS 330 and d 2 x DTS 330 were responsive. The endogenous levels of GA 3 were more in the dwarf mutants than control, suggesting that dwarfness in these may be due to a partial block in the GA utilizing mechanism, rather than a block in GA biosynthesis. (author). 5 refs., 2 tabs

  11. DRD2 A1 allele and P300 abnormalities in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Blum, K. [Univ. of Texas Health Science Center, San Antonio, TX (United States)]|[PATH Foundation, Princeton, NJ (United States); Wood, R.; Sheridan, L.P.J. [Univ. of Texas Health Science Center, San Antonio, TX (United States)] [and others

    1994-09-01

    Obesity is a heterogeneous and prevalent disorder having both inheritable and environmental components. The role of the dopamine system in P300 has been implicated. We genotyped 193 neuropsychiatrically ill patients with and without comorbid drug and alcohol/abuse/dependence and obesity for the prevalence of the A1 allele of the DRD2 gene. We found a significant linear trend ({chi}{sup 2} = 40.4, df=1, p<0.00001) where the percent prevalence of the A1 increased with increasing polysubstance abuse. Where the A1 allele was found in 44% of 40 obese subjects, the A1 allele prevalence was found in as much as 91% of 11 obese subjects with comorbid polysubstance abuse. 53 obese subjects having a mean body weight (BMI) of 34.6{+-}8.2 were mapped for brain electrical activity and compared with 15 controls with a BMI of 22.3{+-}3.0 (P<.001). The P3 amplitude was significantly different (two tailed; t=3.24, df=16.2, P = 0.005), whereas P3 latency was not significant. Preliminarily, we found a significant decreased P3 amplitude correlated with parental polysubstance abuse (p=0.4) with prolongation of P3 latency correlated with the three risk factors of parental substance abuse, chemical dependency and carbohydrate bingeing (P<0.02). Finally, in a small sample, the A1 allele was present in 25% of probands having 0 risk compared to 66% in those obese subjects with any risk. This work represents the first electrophysiological data to implicate P3 abnormalities in a subset of obesity and further confirms an association of the DRD2 gene and a electrophysiological marker previously indicated to have predictive value in vulnerability to addictive behaviors.

  12. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants.

    Science.gov (United States)

    Käfer, E; Mayor, O

    1986-07-01

    To identify genes which affect DNA repair and possibly recombination in Aspergillus nidulans, mutants hypersensitive to methyl methanesulphonate (MMS) were induced with ultraviolet light (UV) or gamma-rays. About half of them contained associated translocations and many were hypersensitive to UV and/or defective in meiosis. Two are alleles of the known uvsB gene while most others define new genes. In addition, among available uvs mutants many were found to be MMS-sensitive. Some of the various uncharacterized ones were identified as alleles of known uvs, but 5 of them were mapped in 2 new genes, uvsH and uvsJ. To identify functional and epistatic groups, mutants from each uvs gene were tested for effects on recombination and mutation, and double mutant uvs strains were compared for UV survival to their component single mutant strains. 3 epistatic pairs were identified, (1) uvsF and H, (2) uvsB and D, and (3) uvsC and E. Conclusive interpair tests were difficult, because such double mutant combinations were frequently lethal or nearly so. The first pair, uvsF and H, shared some of the properties of excision-defective mutants, both uvs being very highly sensitive to UV for mutation as well as survival. But unlike such mutants, uvsH was also sensitive to gamma-rays and defective in meiosis. Both uvs showed normal levels of meiotic recombination, but greatly increased spontaneous mitotic crossing-over, being the most "hyperrec" types among all uvs. The second pair, uvsB and uvsC, which was similarly hyperrec showed only slight increases of UV-induced mutation (less than 2-fold). As a main effect, these uvs caused very high frequencies of unbalanced, unstable segregants from diploid conidia (30 X), but few of these were recognizable aneuploids. The third pair, uvsC and E, which are known to be rec- for gene conversion, caused reduced mitotic crossing-over in diploids and increased levels of haploid segregants. These mutants are spontaneous mutators, but showed less UV

  13. The circling mutant Pcdh15roda is a new mouse model for hearing loss.

    Science.gov (United States)

    Torres, Adriana Amorim; Rzadzinska, Agnieszka K; Ribeiro, Andrea Frozino; Silva, Daniel Almeida da Silva E; Guénet, Jean-Louis; Massironi, Sílvia Maria Gomes; Godard, Ana Lúcia Brunialti

    2013-01-01

    Mouse mutagenesis is a key tool for studying gene function and several mutant alleles have been described and constitute mouse models for human hereditary diseases. Genetic hearing loss represents over 50% of all hearing loss cases in children and, due to the heterogeneity of the disorder, there is still a demand for the isolation and characterization of new genes and alleles. Here we report phenotypic and molecular characterization of a new mouse model for hereditary hearing loss. The mutant rodador, isolated by Massironi and colleagues in 2006, presents an autosomal recessive disorder characterized by deafness and balance dysfunction associated with abnormal stereocilia in the inner ear. The mutation was mapped to mouse chromosome 10, and characterization of the gene Pcdh15 revealed an AT-to-GC transition in intron 23 of mutant animals. The alteration led to the switch of a dinucleotide ApA for ApG, creating a novel intronic acceptor splice site, which leads to incorporation of eight intronic bases into the processed mRNA and alteration of the downstream reading frame. In silico analysis indicated that the mutated protein is truncated and lacks two cadherin domains, and the transmembrane and cytoplasmic domains. Real Time PCR analyses revealed a significantly reduced Pcdh15 mRNA level in the brain of mutant mice, which might be due to the mechanism of non-sense mediated decay. In man, mutations in the orthologue PCDH15 cause non-syndromic deafness and Usher Syndrome Type 1F, a genetic disorder characterized by hearing loss and retinitis pigmentosa. Rodador mouse constitutes a new model for studying deafness in these conditions and may help in the comprehension of the pathogeneses of the disease, as well as of the mechanisms involved in the morphogenesis and function of inner ear stereocilia. This is a new ENU-induced allele and the first isolated in a BALB/c background. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Paternally expressed Peg3 controls maternally expressed Zim1 as a trans factor.

    Directory of Open Access Journals (Sweden)

    An Ye

    Full Text Available The expression of two adjacent imprinted genes, Peg3 and Zim1, is inversely correlated: down-regulation of Peg3 coinciding with up-regulation of Zim1. The current study characterized this inverse correlation using a mutant allele targeting Peg3. According to the results, the mutation on the paternal allele of Peg3 resulted in a dramatic increase in the transcription levels of the maternal allele of Zim1, suggesting the involvement of unknown trans factors in this trans-allelic event. Subsequent ChIP experiments revealed that the protein encoded by Peg3 itself binds to the zinc finger exon of Zim1, which is modified with the repression mark H3K9me3. Interestingly, the levels of H3K9me3 on Zim1 are also reduced in the mutant cells lacking the protein PEG3, suggesting potential roles for PEG3 in establishing H3K9me3 on Zim1. Reintroducing PEG3 into the mutant cell restored down-regulation of Zim1, confirming the predicted repressor role for Peg3 on Zim1. Overall, these results demonstrated that paternally expressed Peg3 controls maternally expressed Zim1 as a trans factor. The current study also provides the first case for the trans-allelic interaction of two oppositely imprinted genes through their gene products.

  15. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    Science.gov (United States)

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  16. A novel mouse Fgfr2 mutant, hobbyhorse (hob, exhibits complete XY gonadal sex reversal.

    Directory of Open Access Journals (Sweden)

    Pam Siggers

    Full Text Available The secreted molecule fibroblast growth factor 9 (FGF9 plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob, which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6 genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  17. [Mutant alleles associated to chloroquine and sulfadoxine-pyrimethanime resistance in Plasmodium falciparum of the Ecuador-Peru and Ecuador-Colombia borders].

    Science.gov (United States)

    Arróspide, Nancy; Hijar-Guerra, Gisely; de Mora, Doménica; Diaz-Cortéz, César Eduardo; Veloz-Perez, Raúl; Gutierrez, Sonia; Cabezas-Sánchez, César

    2014-04-01

    The frequency of mutations in pfCRT and DHFR/DHPS genes of Plasmodium falciparum associated with resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated in 83 strains from the districts of Esmeralda and Machala, located on the borders of Ecuador-Peru and Ecuador-Colombia in 2002. Polymerase chain reaction (PCR), conventional and its variants, was used. Mutations in the pfCRT gene were found in more than 90% of the samples from Esmeralda and Machala. For the DHFR gene, 90% of the strains were mutant samples from Esmeralda, 3 were double mutations and 1 was a triple mutation. In Machala, 25% were simple mutant forms and 75% mixed mutant forms (wild forms/mutant). In conclusion, resistance to chloroquine has been fixed in strains carrying K76T pfCRT mutation, whereas genetic imprinting for resistance to pyrimethamine is evolving, particularly in the district of Esmeralda.

  18. Human Leukocyte Antigen Class II Alleles (DQB1 and DRB1 as Predictors for Response to Interferon Therapy in HCV Genotype 4

    Directory of Open Access Journals (Sweden)

    Olfat Shaker

    2013-01-01

    Full Text Available Human leukocyte antigens class II play an important role in immune response against HCV. We investigated whether HLA class II alleles influence susceptibility to HCV infection and response to interferon therapy. HLA-DRB1 and -DQB1 loci were genotyped using PCR-SSO Luminex technology. According to our regimen, 41 (66% of patients achieved sustained virological response to combined treatment of IFN and ribavirin. Frequencies of DQB1*0313 allele and DRB1*04-DRB1*11, DQB1*0204-DQB1*0313, DQB1*0309-DQB1*0313, and DQB1*0313-DQB1*0319 haplotypes were significantly more frequent in nonresponders than in responders. In contrast, DQB1*02, DQB1*06, DRB1*13, and DRB1*15 alleles were significantly more frequent in responders than in nonresponders. Similarly, DRB1*1301, DRB1*1361, and DRB1*1369 alleles and DRB1*1301-DRB1*1328, DRB1*1301-DRB1*1361, DRB1*1301-DRB1*1369, DRB1*1328-DRB1*1361, and DRB1*1328-DRB1*1369 haplotypes were significantly found only in responders. Some alleles and linkages showed significantly different distributions between patient and healthy groups. These alleles may be used as predictors for response to treatment or to susceptibility to HCV infection in the Egyptian population.

  19. The pht4;1-3 mutant line contains a loss of function allele in the Fatty Acid Desaturase 7 gene caused by a remnant inactivated selection marker-a cautionary tale.

    Science.gov (United States)

    Nilsson, Anders K; Andersson, Mats X

    2017-01-01

    A striking and unexpected biochemical phenotype was found in an insertion mutant line in the model plant Arabidopsis thaliana . One of two investigated insertion mutant lines in the gene encoding the phosphate transporter PHT4;1 demonstrated a prominent loss of trienoic fatty acids, whereas the other insertion line was indistinguishable from wild type in this aspect. We demonstrate that the loss of trienoic fatty acids was due to a remnant inactive negative selection marker gene in this particular transposon tagged line, pht4;1-3 . This constitutes a cautionary tale that warns of the importance to confirm the loss of this type of selection markers and the importance of verifying the relationship between a phenotype and genotype by more than one independent mutant line or alternatively genetic complementation.

  20. Response of the pearly eye melon fly Bactrocera cucurbitae (Coquillett)(Diptera:Tephritidae) mutant to host-associated visual cues

    Science.gov (United States)

    We report on a pearly eye mutant (PEM) line generated from a single male Bactrocera cucurbitae collected in Kapoho, Hawaii. Crossing experiments with colony wild-type flies indicate that the locus controlling this trait is autosomal and the mutant allele is recessive. Experiments with females to ass...

  1. TET2, ASXL1, IDH1, and IDH2 Single Nucleotide Polymorphisms in Turkish Patients with Chronic Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Nur Soyer

    2017-06-01

    Full Text Available We aimed to determine the genotype distribution, allele frequency, and prognostic impact of IDH1/2, TET2, and ASXL1 single nucleotide polymorphisms (SNPs in myeloproliferative neoplasms (MPNs. TET2 (rs763480, ASXL1 (rs2208131, and IDH1 (rs11554137 variant homozygous genotype frequencies were found at rates of 1.5%, 9.2%, and 2.3%, respectively. No IDH2 SNP was identified. IDH1 and TET2 frequencies were 5% in essential thrombocythemia (ET and 1.7% in ET and 5% in primary myelofibrosis (PMF, respectively. ASXL1 frequencies were 8.3%-10% in MPN subgroups. The TET2 mutant allele T and ASXL1 mutant allele G had the highest frequencies with 0.272 in the PMF and 0.322 in the polycythemia vera (PV group, respectively. There was no impact of the SNPs on prognosis. IDH1 frequency in MPNs was found similar to the literature. ASXL1 frequencies were similar between ET, PV, and PMF patients. The ASXL1 and TET2 allele frequencies of the Turkish population are similar to those of the European population. The role of SNPs in MPNs might be further evaluated in larger multicenter studies.

  2. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Takaaki Daimon

    Full Text Available Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs. JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.

  3. Allele mining across DREB1A and DREB1B in diverse rice ...

    Indian Academy of Sciences (India)

    Low temperature stress is one of the major limiting factors affecting rice productivity in higher altitudes. DREB1A and ..... to isolate useful alleles from related genotypes. A total of ... work also suggests that DREB induction and cold response.

  4. The DNA repair capability of cdc9, the saccharomyces cerevisiae mutant defective in DNA ligase

    International Nuclear Information System (INIS)

    Johnston, L.H.

    1979-01-01

    The cell cycle mutant, cdc9, in the yeast Saccharomyces cerevisiae is defective in DNA ligase with the consequence to be deficient in the repair of DNA damaged by methyl methane sulphonate. On the other hand survival of cdc9 after irradiation by γ-rays is little different from that of the wild-type, even after a period of stress at the restrictive temperature. The mutant cdc9 is not allelic with any known rad or mms mutants. (orig./AJ) [de

  5. Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression.

    Directory of Open Access Journals (Sweden)

    Carol A Soderlund

    Full Text Available Sequencing the transcriptome can answer various questions such as determining the transcripts expressed in a given species for a specific tissue or condition, evaluating differential expression, discovering variants, and evaluating allele-specific expression. Differential expression evaluates the expression differences between different strains, tissues, and conditions. Allele-specific expression evaluates expression differences between parental alleles. Both differential expression and allele-specific expression have been studied for heterosis (hybrid vigor, where the hybrid has improved performance over the parents for one or more traits. The Allele Workbench software was developed for a heterosis study that evaluated allele-specific expression for a mouse F1 hybrid using libraries from multiple tissues with biological replicates. This software has been made into a distributable package, which includes a pipeline, a Java interface to build the database, and a Java interface for query and display of the results. The required input is a reference genome, annotation file, and one or more RNA-Seq libraries with optional replicates. It evaluates allelic imbalance at the SNP and transcript level and flags transcripts with significant opposite directional allele-specific expression. The Java interface allows the user to view data from libraries, replicates, genes, transcripts, exons, and variants, including queries on allele imbalance for selected libraries. To determine the impact of allele-specific SNPs on protein folding, variants are annotated with their effect (e.g., missense, and the parental protein sequences may be exported for protein folding analysis. The Allele Workbench processing results in transcript files and read counts that can be used as input to the previously published Transcriptome Computational Workbench, which has a new algorithm for determining a trimmed set of gene ontology terms. The software with demo files is available

  6. MLH1-93 G/a polymorphism is associated with MLH1 promoter methylation and protein loss in dysplastic sessile serrated adenomas with BRAFV600E mutation.

    Science.gov (United States)

    Fennell, Lochlan J; Jamieson, Saara; McKeone, Diane; Corish, Tracie; Rohdmann, Megan; Furner, Tori; Bettington, Mark; Liu, Cheng; Kawamata, Futoshi; Bond, Catherine; Van De Pols, Jolieke; Leggett, Barbara; Whitehall, Vicki

    2018-01-05

    Sessile serrated adenomas with BRAF mutation progress rapidly to cancer following the development of dysplasia (SSAD). Approximately 75% of SSADs methylate the mismatch repair gene MLH1, develop mismatch repair deficiency and the resultant cancers have a good prognosis. The remaining SSADs and BRAF mutant traditional serrated adenomas (TSA) develop into microsatellite stable cancers with a poor prognosis. The reason for this dichotomy is unknown. In this study, we assessed the genotypic frequency of the MLH1-93 polymorphism rs1800734 in SSADs and TSAs to determine if the uncommon variant A allele predisposes to MLH1 promoter hypermethylation. We performed genotyping for the MLH1-93 polymorphism, quantitative methylation specific PCR, and MLH1 immunohistochemistry on 124 SSAD, 128 TSA, 203 BRAF mutant CRCs and 147 control subjects with normal colonoscopy. The minor A allele was significantly associated with a dose dependent increase in methylation at the MLH1 promoter in SSADs (p = 0.022). The AA genotype was only observed in SSADs with MLH1 loss. The A allele was also overrepresented in BRAF mutant cancers with MLH1 loss. Only one of the TSAs showed loss of MLH1 and the overall genotype distribution in TSAs did not differ from controls. The MLH1-93 AA genotype is significantly associated with promoter hypermethylation and MLH1 loss in the context of SSADs. BRAF mutant microsatellite stable colorectal cancers with the AA genotype most likely arise in TSAs since the A allele does not predispose to methylation in this context.

  7. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants.

    Directory of Open Access Journals (Sweden)

    Sven Vilain

    2012-01-01

    Full Text Available Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC; however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I-associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling.

  8. Characterization of five new mutants in the carboxyl-terminal domain of human apolipoprotein E: No cosegregation with severe hyperlipidemia

    Energy Technology Data Exchange (ETDEWEB)

    Maagdenberg, A.M.J.M. van den; Bruijn, I.H. de; Hofker, M.H.; Frants, R.R. (Leiden Univ. (Netherlands)); Knijff, P. de; Smelt, A.H.M.; Leuven, J.A.G.; van' t Hooft, F.; Assmann, G.; Havekes, L.M. (Univ. Hospital, Leiden (Netherlands)); Weng, Wei; Funke, H. (Westfalische Wilhelms-Universitaet, Muester (Germany))

    1993-05-01

    Assessment of the apolipoprotein E (apoE) phenotype by isoelectric focusing of both hyperlipidemic and normolipidemic individuals identified five new variants. All mutations were confined to the downstream part of the APOE gene by using denaturing gradient gel electrophoresis (DGGE). Sequence analysis revealed five new mutations causing unique amino acid substitutions in the carboxyl-terminal part of the protein containing the putative lipid-binding domain. Three hyperlipoproteinemic probands were carriers of the APOE*2(Va1236[r arrow]Glu) allele, the APOE*3(Cys112-Arg; Arg251[r arrow]Gly) allele, or the APOE*1(Arg158[r arrow]Cys; Leu252[r arrow]Glu) allele. DGGE of the region encoding the receptor-binding domain was useful for haplotyping the mutations at codons 112 and 158. Family studies failed to demonstrate cosegregation between the new mutations and severe hyperlipoproteinemia, although a number of carriers for the APOE*3(Cys112[r arrow]Arg; Arg251[r arrow]Gly) allele and the APOE*1(Arg158-Cys; Leu252[r arrow]Glu) allele expressed hypertriglyceridemia and/ or hypercholesterolemia. Two other mutant alleles, APOE*4[sup [minus

  9. A novel fibrillin-1 mutation in an egyptian marfan family: A proband showing nephrotic syndrome due to focal segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Haggar

    2017-01-01

    Full Text Available Marfan syndrome (MFS, the founding member of connective tissue disorder, is an autosomal dominant disease; it is caused by a deficiency of the microfibrillar protein fibrillin-1 (FBN1 and characterized by involvement of three main systems; skeletal, ocular, and cardiovascular. More than one thousand mutations in FBN1 gene on chromosome 15 were found to cause MFS. Nephrotic syndrome (NS had been described in very few patients with MFS being attributed to membranoproliferative glomerulonephritis secondary to infective endocarditis. Focal segmental glomerulosclerosis (FSGS had been reported in NS in conjunction with MFS without confirming the diagnosis by mutational analysis of FBN1. We hereby present an Egyptian family with MFS documented at the molecular level; it showed a male proband with NS secondary to FSGS, unfortunately, we failed to make any causal link between FBN dysfunction and FSGS. In this context, we review the spectrum of renal involvements occurring in MFS patients.

  10. Conserved role of unc-79 in ethanol responses in lightweight mutant mice.

    Directory of Open Access Journals (Sweden)

    David J Speca

    2010-08-01

    Full Text Available The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt, disrupts the homolog of the Caenorhabditis elegans (C. elegans unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans.

  11. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  12. Clear Plaque Mutants of Lactococcal Phage TP901-1

    DEFF Research Database (Denmark)

    Kot, Witold; Kilstrup, Mogens; Vogensen, Finn K.

    2016-01-01

    We report a method for obtaining turbid plaques of the lactococcal bacteriophage TP901-1 and its derivative TP901-BC1034. We have further used the method to isolate clear plaque mutants of this phage. Analysis of 8 such mutants that were unable to lysogenize the host included whole genome...

  13. In Vivo-Selected Compensatory Mutations Restore the Fitness Cost of Mosaic penA Alleles That Confer Ceftriaxone Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Vincent, Leah R; Kerr, Samuel R; Tan, Yang; Tomberg, Joshua; Raterman, Erica L; Dunning Hotopp, Julie C; Unemo, Magnus; Nicholas, Robert A; Jerse, Ann E

    2018-04-03

    Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cro r ) clinical isolates (H041 and F89) into a Cro s strain (FA19) by allelic exchange and showed that the resultant Cro r mutants were significantly outcompeted by the Cro s parent strain in vitro and in a murine infection model. Four Cro r compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnB G348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnB G348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cro r gonococcal strains that increase metabolism to ameliorate their fitness deficit. IMPORTANCE The emergence of ceftriaxone-resistant (Cro r ) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of

  14. Serrated leaf mutant in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.; Ghulam, Sarwar; Yousaf, Ali; Saleem, M.

    1988-01-01

    Dry dormant seeds of mungbean (Vigna radiata (L) Wilczek) were treated with gamma rays (15, 30 and 60 kR). The serrated leaf mutation was noticed in M 2 of cultivar Pak 32 treated with 60 kR. Cf 14 plants, 3 showed the altered leaf structure and the others were normal. The feature of this mutant was the deep serration of leaflet margins. The mutant had large thick leaflets with prominent venation. The mutant bred true in the M 3 and successive generation. Details of the morphological characteristics of the mutant are presented. The mutant exhibited slower growth particularly during the early stages of development, flowered later and attained shorter height. There was an increase in the number of pods, in seed weight and in seed protein content, but number of seed per pod was considerably reduced. The seed coat colour showed a change from green to yellowish green. In the mutant's flowers the stamina were placed much below the stigma level and the stigma sometimes protruded the corolla. Outcrossing of 4% recorded in some of the mutant lines revealed a reduced cleistogamy. The low number of seeds per pod in the mutant could be due to reduced pollen fertility. The mutant behaved as monogenic recessive. The symbols SL/sl are proposed for this allelic pair. The mutant may have use as a green manure crop because of its large foliage and for the breeders as a genetic marker

  15. Deficient and Null Variants of SERPINA1 Are Proteotoxic in a Caenorhabditis elegans Model of α1-Antitrypsin Deficiency.

    Directory of Open Access Journals (Sweden)

    Erin E Cummings

    Full Text Available α1-antitrypsin deficiency (ATD predisposes patients to both loss-of-function (emphysema and gain-of-function (liver cirrhosis phenotypes depending on the type of mutation. Although the Z mutation (ATZ is the most prevalent cause of ATD, >120 mutant alleles have been identified. In general, these mutations are classified as deficient (<20% normal plasma levels or null (<1% normal levels alleles. The deficient alleles, like ATZ, misfold in the ER where they accumulate as toxic monomers, oligomers and aggregates. Thus, deficient alleles may predispose to both gain- and loss-of-function phenotypes. Null variants, if translated, typically yield truncated proteins that are efficiently degraded after being transiently retained in the ER. Clinically, null alleles are only associated with the loss-of-function phenotype. We recently developed a C. elegans model of ATD in order to further elucidate the mechanisms of proteotoxicity (gain-of-function phenotype induced by the aggregation-prone deficient allele, ATZ. The goal of this study was to use this C. elegans model to determine whether different types of deficient and null alleles, which differentially affect polymerization and secretion rates, correlated to any extent with proteotoxicity. Animals expressing the deficient alleles, Mmalton, Siiyama and S (ATS, showed overall toxicity comparable to that observed in patients. Interestingly, Siiyama expressing animals had smaller intracellular inclusions than ATZ yet appeared to have a greater negative effect on animal fitness. Surprisingly, the null mutants, although efficiently degraded, showed a relatively mild gain-of-function proteotoxic phenotype. However, since null variant proteins are degraded differently and do not appear to accumulate, their mechanism of proteotoxicity is likely to be different to that of polymerizing, deficient mutants. Taken together, these studies showed that C. elegans is an inexpensive tool to assess the proteotoxicity of

  16. Improvements to a Markerless Allelic Exchange System for Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Roger D Plaut

    Full Text Available A system was previously developed for conducting I-SceI-mediated allelic exchange in Bacillus anthracis. In this system, recombinational loss of a chromosomally-integrated allelic exchange vector is stimulated by creation of a double-stranded break within the vector by the homing endonuclease I-SceI. Although this system is reasonably efficient and represents an improvement in the tools available for allelic exchange in B. anthracis, researchers are nonetheless required to "pick and patch" colonies in order to identify candidate "exchangeants." In the present study, a number of improvements have been made to this system: 1 an improved I-SceI-producing plasmid includes oriT so that both plasmids can now be introduced by conjugation, thus avoiding the need for preparing electro-competent cells of each integration intermediate; 2 antibiotic markers have been changed to allow the use of the system in select agent strains; and 3 both plasmids have been marked with fluorescent proteins, allowing the visualization of plasmid segregation on a plate and obviating the need for "picking and patching." These modifications have made the process easier, faster, and more efficient, allowing for parallel construction of larger numbers of mutant strains. Using this improved system, the genes encoding the tripartite anthrax toxin were deleted singly and in combination from plasmid pXO1 of Sterne strain 34F2. In the course of this study, we determined that DNA transfer to B. anthracis could be accomplished by conjugation directly from a methylation-competent E. coli strain.

  17. Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles

    Directory of Open Access Journals (Sweden)

    Lorenza Dalla Costa

    2018-01-01

    Full Text Available Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1, the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system “microvine” and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

  18. Persistent HPV16/18 infection in Indian women with the A-allele (rs6457617) of HLA-DQB1 and T-allele (rs16944) of IL-1β -511 is associated with development of cervical carcinoma.

    Science.gov (United States)

    Dutta, Sankhadeep; Chakraborty, Chandraditya; Mandal, Ranajit Kumar; Basu, Partha; Biswas, Jaydip; Roychoudhury, Susanta; Panda, Chinmay Kumar

    2015-07-01

    The aim of this study was to understand the association of human papillomavirus (HPV) type 16/18 infection and polymorphisms in the HLA-DQB1 (rs6457617) and IL-1β -511 (rs16944) loci with the development of uterine cervical cancer (CaCx). The distribution of HLA-DQB1 G > A and IL-1β -511 C/T polymorphisms was determined in HPV-negative cervical swabs from normal women (N = 111) and compared with cervical swabs of HPV-cleared normal women (once HPV infected followed by natural clearance of the infection, N = 86), HPV16/18-positive cervical intraepithelial neoplasia (CIN, N = 41) and CaCx biopsies (N = 107). The A-allele containing genotypes (i.e. G/A and A/A) of HLA-DQB1 was significantly associated with CaCx compared with HPV-negative [OR = 2.56(1.42-4.62), p = 0.001] or HPV-cleared [OR = 2.07(1.12-3.87), p = 0.01] normal women, whereas the T-allele containing genotypes (i.e. C/T and T/T) of IL-1β showed increased risk of CIN [OR = 3.68(0.97-16.35), p = 0.03; OR = 3.59(0.92-16.38), p = 0.03] and CaCx development [OR = 2.03(1.03-5.2), p = 0.02; OR = 2.25(0.96-5.31), p = 0.04] compared with HPV-negative or HPV-cleared normal women. Considering these two loci together, it was evident that the T- and A-alleles rendered significantly increased susceptibility for development of CIN and CaCx compared with HPV-negative and HPV-cleared normal women. Moreover, the T-allele of IL-1β showed increased susceptibility for CIN [OR = 3.62(0.85-17.95), p = 0.04] and CaCx [OR = 2.39(0.91-6.37), p = 0.05] development compared with the HPV-cleared women, even in the presence of the HLA-DQB1 G-allele. Thus, our data suggest that persistent HPV16/18 infection in the cervix due to the presence of the HLA-DQB1 A-allele and chronic inflammation due to the presence of the IL-1β -511 T-allele might predispose women to CaCx development.

  19. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Directory of Open Access Journals (Sweden)

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  20. Investigating the relationship between FMR1 allele length and cognitive ability in children: a subtle effect of the normal allele range on the normal ability range?

    Science.gov (United States)

    Loat, C S; Craig, G; Plomin, R; Craig, I W

    2006-09-01

    The FMR1 gene contains a trinucleotide repeat tract which can expand from a normal size of around 30 repeats to over 200 repeats, causing mental retardation (Fragile X Syndrome). Evidence suggests that premutation males (55-200 repeats) are susceptible to a late-onset tremor/ataxia syndrome and females to premature ovarian failure, and that intermediate alleles ( approximately 41-55 repeats) and premutations may be in excess in samples with special educational needs. We explored the relationship between FMR1 allele length and cognitive ability in 621 low ability and control children assessed at 4 and 7 years, as well as 122 students with high IQ. The low and high ability and control samples showed no between-group differences in incidence of longer alleles. In males there was a significant negative correlation between allele length and non-verbal ability at 4 years (p = 0.048), academic achievement in maths (p = 0.003) and English (p = 0.011) at 7 years, and IQ in the high ability group (p = 0.018). There was a significant negative correlation between allele length and a standardised score for IQ and general cognitive ability at age 7 in the entire male sample (p = 0.002). This suggests that, within the normal spectrum of allele length, increased repeat numbers may have a limiting influence on cognitive performance.

  1. Two alleles of the AtCesA3 gene in Arabidopsis thaliana display intragenic complementation.

    Science.gov (United States)

    Pysh, Leonard D

    2015-09-01

    Cellulose is the most abundant biomolecule on the planet, yet the mechanism by which it is synthesized by higher plants remains largely unknown. In Arabidopsis thaliana (L.) Heynh, synthesis of cellulose in the primary cell wall requires three different cellulose synthase genes (AtCesA1, AtCesA3, and AtCesA6-related genes [AtCesA2, AtCesA5, and AtCesA6]). The multiple response expansion1 (mre1) mutant contains a hypomorphic AtCesA3 allele that results in significantly shorter, expanded roots. Crosses between mre1 and another allele of AtCesA3 (constitutive expression of VSP1, cev1) yielded an F1 with roots considerably longer and thinner than either parent, suggesting intragenic complementation. The F2 generation resulting from self-crossing these F1 showed three different root phenotypes: roots like mre1, roots like cev1, and roots like the F1. The segregation patterns of the three root phenotypes in multiple F2 and F3 generations were determined. Multiple characteristics of the roots and shoots were analyzed both qualitatively and quantitatively at different developmental stages, both on plates and on soil. The trans-heterozygous plants differed significantly from the parental mre1 and cev1 lines. The two alleles display intragenic complementation. A classic genetic interpretation of these results would suggest that cellulose synthesis requires homo-multimerization of cellulose synthase monomers. © 2015 Botanical Society of America.

  2. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  3. Novel Escherichia coli umuD′ Mutants: Structure-Function Insights into SOS Mutagenesis

    Science.gov (United States)

    McLenigan, Mary; Peat, Thomas S.; Frank, Ekaterina G.; McDonald, John P.; Gonzalez, Martín; Levine, Arthur S.; Hendrickson, Wayne A.; Woodgate, Roger

    1998-01-01

    Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′. PMID:9721309

  4. Functional rescue of mutant ABCA1 proteins by sodium 4-phenylbutyrate.

    Science.gov (United States)

    Sorrenson, Brie; Suetani, Rachel J; Williams, Michael J A; Bickley, Vivienne M; George, Peter M; Jones, Gregory T; McCormick, Sally P A

    2013-01-01

    Mutations in the ATP-binding cassette transporter A1 (ABCA1) are a major cause of decreased HDL cholesterol (HDL-C), which infers an increased risk of cardiovascular disease (CVD). Many ABCA1 mutants show impaired localization to the plasma membrane. The aim of this study was to investigate whether the chemical chaperone, sodium 4-phenylbutyrate (4-PBA) could improve cellular localization and function of ABCA1 mutants. Nine different ABCA1 mutants (p.A594T, p.I659V, p.R1068H, p.T1512M, p.Y1767D, p.N1800H, p.R2004K, p.A2028V, p.Q2239N) expressed in HEK293 cells, displaying different degrees of mislocalization to the plasma membrane and discrete impacts on cholesterol efflux, were subject to treatment with 4-PBA. Treatment restored localization to the plasma membrane and increased cholesterol efflux function for the majority of mutants. Treatment with 4-PBA also increased ABCA1 protein expression in all transfected cell lines. In fibroblast cells obtained from low HDL-C subjects expressing two of the ABCA1 mutants (p.R1068H and p.N1800H), 4-PBA increased cholesterol efflux without any increase in ABCA1 expression. Our study is the first to investigate the effect of the chemical chaperone, 4-PBA on ABCA1 and shows that it is capable of restoring plasma membrane localization and enhancing the cholesterol efflux function of mutant ABCA1s both in vitro and ex vivo. These results suggest 4-PBA may warrant further investigation as a potential therapy for increasing cholesterol efflux and HDL-C levels.

  5. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis.

    Science.gov (United States)

    Petti, Carloalberto; Hirano, Ko; Stork, Jozsef; DeBolt, Seth

    2015-09-01

    Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Absence-like and tonic seizures in aspartoacylase/attractin double-mutant mice.

    Science.gov (United States)

    Gohma, Hiroshi; Kuramoto, Takashi; Matalon, Reuben; Surendran, Sankar; Tyring, Stephen; Kitada, Kazuhiro; Sasa, Masashi; Serikawa, Tadao

    2007-04-01

    The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.

  7. Identification of symbiotically defective mutants of Lotus japonicus affected in infection thread growth

    DEFF Research Database (Denmark)

    Lombardo, Fabien; Heckmann, Anne Birgitte Lau; Miwa, Hiroki

    2006-01-01

    During the symbiotic interaction between legumes and rhizobia, the host cell plasma membrane and associated plant cell wall invaginate to form a tunnel-like infection thread, a structure in which bacteria divide to reach the plant root cortex. We isolated four Lotus japonicus mutants that make...... infection pockets in root hairs but form very few infection threads after inoculation with Mesorhizobium loti. The few infection threads that did initiate in the mutants usually did not progress further than the root hair cell. These infection-thread deficient (itd) mutants were unaffected for early...... symbiotic responses such as calcium spiking, root hair deformation, and curling, as well as for the induction of cortical cell division and the arbuscular mycorrhizal symbiosis. Complementation tests and genetic mapping indicate that itd2 is allelic to Ljsym7, whereas the itd1, itd3, and itd4 mutations...

  8. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors.

    Directory of Open Access Journals (Sweden)

    Bijay S Jaiswal

    Full Text Available BACKGROUND: Oncogenic RAS is a highly validated cancer target. Attempts at targeting RAS directly have so far not succeeded in the clinic. Understanding downstream RAS-effectors that mediate oncogenesis in a RAS mutant setting will help tailor treatments that use RAS-effector inhibitors either alone or in combination to target RAS-driven tumors. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have investigated the sufficiency of targeting RAS-effectors, RAF, MEK and PI3-Kinase either alone or in combination in RAS mutant lines, using an inducible shRNA in vivo mouse model system. We find that in colon cancer cells harboring a KRAS(G13D mutant allele, knocking down KRAS alone or the RAFs in combination or the RAF effectors, MEK1 and MEK2, together is effective in delaying tumor growth in vivo. In melanoma cells harboring an NRAS(Q61L or NRAS(Q61K mutant allele, we find that targeting NRAS alone or both BRAF and CRAF in combination or both BRAF and PIK3CA together showed efficacy. CONCLUSION/SIGNIFICANCE: Our data indicates that targeting oncogenic NRAS-driven melanomas require decrease in both pERK and pAKT downstream of RAS-effectors for efficacy. This can be achieved by either targeting both BRAF and CRAF or BRAF and PIK3CA simultaneously in NRAS mutant tumor cells.

  9. [Cloning and sequencing of KIR2DL1 framework gene cDNA and identification of a novel allele].

    Science.gov (United States)

    Sun, Ge; Wang, Chang; Zhen, Jianxin; Zhang, Guobin; Xu, Yunping; Deng, Zhihui

    2016-10-01

    To develop an assay for cDNA cloning and haplotype sequencing of KIR2DL1 framework gene and determine the genotype of an ethnic Han from southern China. Total RNA was isolated from peripheral blood sample, and complementary DNA (cDNA) transcript was synthesized by RT-PCR. The entire coding sequence of the KIR2DL1 framework gene was amplified with a pair of KIR2DL1-specific PCR primers. The PCR products with a length of approximately 1.2 kb were then subjected to cloning and haplotype sequencing. A specific target fragment of the KIR2DL1 framework gene was obtained. Following allele separation, a wild-type KIR2DL1*00302 allele and a novel variant allele, KIR2DL1*031, were identified. Sequence alignment with KIR2DL1 alleles from the IPD-KIR Database showed that the novel allele KIR2DL1*031 has differed from the closest allele KIR2DL1*00302 by a non-synonymous mutation at CDS nt 188A>G (codon 42 GAG>GGG) in exon 4, which has caused an amino acid change Glu42Gly. The sequence of the novel allele KIR2DL1*031 was submitted to GenBank under the accession number KP025960 and to the IPD-KIR Database under the submission number IWS40001982. A name KIR2DL1*031 has been officially assigned by the World Health Organization (WHO) Nomenclature Committee. An assay for cDNA cloning and haplotype sequencing of KIR2DL1 has been established, which has a broad applications in KIR studies at allelic level.

  10. Genetic and Biochemical Analysis of Intragenic Complementation Events among Nitrate Reductase Apoenzyme-Deficient Mutants of Nicotiana Plumbaginifolia

    OpenAIRE

    Pelsy, F.; Gonneau, M.

    1991-01-01

    Intragenic complementation has been observed between apoenzyme nitrate reductase-deficient mutants (nia) of Nicotiana plumbaginifolia. In vivo as in vitro, the NADH-nitrate reductase (NR) activity in plants heterozygous for two different nia alleles was lower than in the wild type plant, but the plants were able to grow on nitrate as a sole nitrogen source. NR activity, absent in extracts of homozygous nia mutants was restored by mixing extracts from two complementing nia mutants. These obser...

  11. Detection of MPL mutations by a novel allele-specific PCR-based strategy.

    Science.gov (United States)

    Furtado, Larissa V; Weigelin, Helmut C; Elenitoba-Johnson, Kojo S J; Betz, Bryan L

    2013-11-01

    MPL mutation testing is recommended in patients with suspected primary myelofibrosis or essential thrombocythemia who lack the JAK2 V617F mutation. MPL mutations can occur at allelic levels below 15%, which may escape detection by commonly used mutation screening methods such as Sanger sequencing. We developed a novel multiplexed allele-specific PCR assay capable of detecting most recurrent MPL exon 10 mutations associated with primary myelofibrosis and essential thrombocythemia (W515L, W515K, W515A, and S505N) down to a sensitivity of 2.5% mutant allele. Test results were reviewed from 15 reference cases and 1380 consecutive specimens referred to our laboratory for testing. Assay performance was compared to Sanger sequencing across a series of 58 specimens with MPL mutations. Positive cases consisted of 45 with W515L, 6 with S505N, 5 with W515K, 1 with W515A, and 1 with both W515L and S505N. Seven cases had mutations below 5% that were undetected by Sanger sequencing. Ten additional cases had mutation levels between 5% and 15% that were not consistently detected by sequencing. All results were easily interpreted in the allele-specific test. This assay offers a sensitive and reliable solution for MPL mutation testing. Sanger sequencing appears insufficiently sensitive for robust MPL mutation detection. Our data also suggest the relative frequency of S505N mutations may be underestimated, highlighting the necessity for inclusion of this mutation in MPL test platforms. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    Science.gov (United States)

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Distribution of a pseudodeficiency allele among Tay-Sachs carriers

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, J.; Grebner, E.E. (Thomas Jefferson Univ., Philadelphia, PA (United States)); Boogen, C. (Univ. of Essen Medical School (Germany))

    1993-08-01

    Recently Triggs-Raine et al. (1992) identified a new mutation in the gene coding for the [alpha]-subunit of [beta]-hexosaminidase A (hex A), the enzyme whose deficiency causes Tay-Sachs disease. This mutation, a C[sub 739]-to-T transition in exon 7, results in an altered enzyme that is active (albeit at reduced levels) in cells but that has essentially no activity in serum. This so-called pseudodeficient allele was first detected in compound heterozygotes who also carried a Tay-Sachs disease allele and therefore had no detectable hex A in their serum but who were in good health. Carriers of this apparently benign mutation are generally indistinguishable from carriers of a lethal mutation by means of routine enzyme-based screening tests, because the product of the pseudodeficient allele is not detectable in serum and has decreased activity in cells. This suggests that some individuals who have been classified as Tay-Sachs carriers are actually carriers of the pseudodeficient allele and are not at risk to have a child affected with Tay-Sachs disease. The pseudodeficient allele may also be responsible for some inconclusive diagnoses, where leukocyte values fall below the normal range but are still above the carrier range. The fact that there are now two mutant alleles (the psuedodeficient and the adult) that are indistinguishable from the lethal infantile mutations by means of enzyme assay yet that are phenotypically very different and that together may account for as much as 12% of enzyme-defined carriers on the basis of the data here suggests that DNA analysis should be part of a comprehensive screening program. It will be particularly useful to identify the mutations in couples at risk, before they undergo prenatal diagnosis. DNA analysis will also resolve some inconclusive diagnoses.

  14. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.

    Science.gov (United States)

    Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi

    2004-10-01

    Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.

  15. The HLA-B*39 allele increases type 1 diabetes risk conferred by HLA-DRB1*04:04-DQB1*03:02 and HLA-DRB1*08-DQB1*04 class II haplotypes.

    Science.gov (United States)

    Mikk, M-L; Kiviniemi, M; Laine, A-P; Härkönen, T; Veijola, R; Simell, O; Knip, M; Ilonen, J

    2014-01-01

    To further characterise the effect of the HLA-B*39 allele on type 1 diabetes risk we assessed its role in different HLA-DR/DQ haplotypes and genotypes using 1764 nuclear families with a diabetic child collected in the framework of the Finnish Paediatric Diabetes Register. HLA assays were based on sequence specific hybridization using lanthanide labelled oligonucleotide probes. Transmissions of major HLA-DR/DQ haplotypes with and without the HLA-B*39 allele to diabetic index cases were analysed by direct haplotype and allele counting. The HLA-B*39 allele significantly increased the disease risk conferred by DRB1*04:04-DQA1*03-DQB1*03:02 and (DR8)-DQB1*04 haplotypes. The same effect was observed on genotype level as disease association for the HLA-B*39 allele was observed in multiple genotypes containing DRB1*04:04-DQA1*03-DQB1*03:02 or (DR8)-DQB1*04 haplotypes. Finally we considered the two common subtypes of the HLA-B*39 allele, B*39:01 and B*39:06 and observed their unequal distribution when stratified for specific DR-DQ haplotypes. The risk for type 1 diabetes conferred by certain DR/DQ haplotypes is modified by the presence of the HLA-B*39 and this confirms the independent disease predisposing effect of the HLA-B*39 allele. The results can be applied in enhancing the sensitivity and specificity of DR/DQ based screening programs for subjects at disease risk. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  16. Analysis of a lin-42/period Null Allele Implicates All Three Isoforms in Regulation of Caenorhabditis elegans Molting and Developmental Timing

    Directory of Open Access Journals (Sweden)

    Theresa L. B. Edelman

    2016-12-01

    Full Text Available The Caenorhabditis elegans heterochronic gene pathway regulates the relative timing of events during postembryonic development. lin-42, the worm homolog of the circadian clock gene, period, is a critical element of this pathway. lin-42 function has been defined by a set of hypomorphic alleles that cause precocious phenotypes, in which later developmental events, such as the terminal differentiation of hypodermal cells, occur too early. A subset of alleles also reveals a significant role for lin-42 in molting; larval stages are lengthened and ecdysis often fails in these mutant animals. lin-42 is a complex locus, encoding overlapping and nonoverlapping isoforms. Although existing alleles that affect subsets of isoforms have illuminated important and distinct roles for this gene in developmental timing, molting, and the decision to enter the alternative dauer state, it is essential to have a null allele to understand all of the roles of lin-42 and its individual isoforms. To remedy this problem and discover the null phenotype, we engineered an allele that deletes the entire lin-42 protein-coding region. lin-42 null mutants are homozygously viable, but have more severe phenotypes than observed in previously characterized hypomorphic alleles. We also provide additional evidence for this conclusion by using the null allele as a base for reintroducing different isoforms, showing that each isoform can provide heterochronic and molting pathway activities. Transcript levels of the nonoverlapping isoforms appear to be under coordinate temporal regulation, despite being driven by independent promoters. The lin-42 null allele will continue to be an important tool for dissecting the functions of lin-42 in molting and developmental timing.

  17. A PP2C-1 Allele Underlying a Quantitative Trait Locus Enhances Soybean 100-Seed Weight

    Institute of Scientific and Technical Information of China (English)

    Xiang Lu; Yong-Cai Lai; Wei-Guang Du; Wei-Qun Man; Shou-Yi Chen; Jin-Song Zhang; Qing Xiong; Tong Cheng; Qing-Tian Li; Xin-Lei Liu; Ying-Dong Bi; Wei Li; Wan-Ke Zhang; Biao Ma

    2017-01-01

    Cultivated soybeans may lose some useful genetic loci during domestication.Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits.In this study,through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44,and mapping of quantitative trait loci for seed weight,we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size.PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes.We found that PP2C-1 is associated with GmBZR1,a soybean ortholog of Arabidopsis BZR1,one of key transcription factors in brassinosteroid (BR) signaling,and facilitate accumulation of dephosphorylated GmBZR1.In contrast,the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function.Moreover,we showed that GmBZR1 could promote seed weight/size in transgenic plants.Through analysis of cultivated soybean accessions,we found that 40% of the examined accessions do not have the PP2C-1 allele,suggesting that these accessions can be improved by introduction of this allele.Taken together,our study identifies an elite allele PP2C-1,which can enhance seed weight and/or size in soybean,and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.

  18. HLA-DRB1 alleles in four Amerindian populations from Argentina and Paraguay

    Science.gov (United States)

    2009-01-01

    The major histocompatibility complex (MHC) is one of the biological systems of major polymorphisms. The study of HLA class II variability has allowed the identification of several alleles that are characteristic to Amerindian populations, and it is an excellent tool to define the relations and biological affinities among them. In this work, we analyzed the allelic distribution of the HLA-DRB1 class II locus in four Amerindian populations: Mapuche (n = 34) and Tehuelche (n = 23) from the Patagonian region of Argentina, and Wichi SV (n = 24) and Lengua (n = 17) from the Argentinean and Paraguayan Chaco regions, respectively. In all of these groups, relatively high frequencies of Amerindian HLA-DRB1 alleles were observed (DRB1*0403, DRB1*0407, DRB1*0411, DRB1*0417, DRB1*0802, DRB1*0901, DRB1*1402, DRB1*1406 and DRB1*1602). However, we also detected the presence of non-Amerindian variants in Mapuche (35%) and Tehuelche (22%). We compared our data with those obtained in six indigenous groups of the Argentinean Chaco region and in a sample from Buenos Aires City. The genetic distance dendrogram showed a clear-cut division between the Patagonian and Chaco populations, which formed two different clusters. In spite of their linguistic differences, it can be inferred that the biological affinities observed are in concordance with the geographic distributions and interethnic relations established among the groups studied. PMID:21637670

  19. Isolation and charactarization of T-DNA-insertion Mutants of Arabidopsis thaliana that are Tolerant to Salt

    International Nuclear Information System (INIS)

    Njoroge, N.C.; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    In order to provide an insight into physiological mechanisms underlying salt tolerance in plants,T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were screened on media containing 150-175 millimolar sodium chloride (mM Nacl) for an ability to germinate with formation of two green expanded cotyledons.Under these saline conditions the wild-type (WT) seeds of A.thaliana do not germinate. Two different mutants,NN3 and NN143 were isolated. Genetic analysis of the F1 and F2 generations indicates that the salt tolerance trait in mutant NN3 is recessive and dominant in mutant NN143. Allelism test indicates that mutants NN3 and NN143 are not allelic to each other, but they are alleic to aba and abi mutants respectively. When subjected to water stress imposed by 175mM Nacl for two weeks,kanamycin homozygous seeds of mutants NN3 and NN143 attained germination levels of 97% and 65% respectively. At this concentration of salt, the wild-type seeds are incapable of germination. On 300mM mannitol, a non-ionic osmoticum, mutants NN143 and NN3 and wild type attained a germination levels of 77%, 95% and 2% respectively. The biomass of mutant NN3 seedlings grown on a medium containing 150 mM NaCl was significanlly greater than that of mutant NN143.Between 104 and 145 hours after germination on media containing 175 mM NaCl and 300mM mannitol,germination levels of mutant NN3 were significantly higher than those of mutant NN143.However, both attain the same level of germination after 200 hours. Mutant NN43 is capable of germination on a medium containing 2-6 μM (micromolar) abscisic acid (ABA) with germination ranging from 11to100%. After two weeks on 2 μ ABA, it attained 100% germination and the wild type and mutant NN3 did not germinate. The biomass of NN143 seedlings grown on ABA-free medium and those grown on 2 μM ABA were not significantly different. In presence of both 1μABA and 250mM mannitol, mutant NN143 seedlings achieved 60% germination compared to 93

  20. Postmortem diagnosis of Marfan syndrome in a case of sudden death due to aortic rupture: Detection of a novel FBN1 frameshift mutation.

    Science.gov (United States)

    Wang, Yunyun; Chen, Shu; Wang, Rongshuai; Huang, Sizhe; Yang, Mingzhen; Liu, Liang; Liu, Qian

    2016-04-01

    To investigate the sudden death of a 36-year-old Chinese man, a medicolegal autopsy was performed, combining forensic pathological examinations and genetic sequencing analysis to diagnose the cause of death. Genomic DNA samples were extracted from blood and subjected to high-throughput sequencing. Major findings included a dilated aortic root with a ruptured and dissected aorta and consequent tamponade of the pericardial sac. Moreover, arachnodactyly and other skeletal deformities were noted. By sequencing the fibrillin-1 gene (FBN1), five genetic variations were found, including four previously known single nucleotide polymorphisms (SNPs) and a novel frameshift mutation, leading to the diagnosis of Marfan syndrome. The frameshift mutation (c.4921delG, p.glu1641llysFsX9) detected in exon 40 led to a stop codon after the next 8 amino acids. The four SNPs included a splice site mutation (c.3464-5 G>A, rs11853943), a synonymous mutation (p.Asn625Asn, rs25458), and two missense mutations (p.Pro1148Ala, rs140598; p.Cys472Tyr, rs4775765). Genetic screening was recommended for the relatives as it was reported that the father and brother of the deceased had died at the ages of 40 and 25, respectively, from sudden cardiac failure. The son of the deceased lacked the relevant mutations. This report emphasizes the important contribution of medicolegal postmortem analysis on the molecular pathogenesis study of Marfan syndrome and early diagnosis of at-risk relatives. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers

    NARCIS (Netherlands)

    Bovy, A.G.; Angenent, G.C.; Dons, H.J.M.; Altvorst, van A.

    1999-01-01

    The Arabidopsis thaliana etr1-1 allele, capable of conferring ethylene insensitivity in a heterologous host, was introduced into transgenic carnation plants. This gene was expressed under control of either its own promoter, the constitutive CaMV 35S promoter or the flower-specific petunia FBP1

  2. Response to imazapyr and dominance relationships of two imidazolinone-tolerant alleles at the Ahasl1 locus of sunflower.

    Science.gov (United States)

    Sala, Carlos A; Bulos, Mariano; Altieri, Emiliano; Weston, Brigitte

    2012-02-01

    Imisun and CLPlus are two imidazolinone (IMI) tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of different alleles at the same locus, Ahasl1-1 and Ahasl1-3, respectively. This paper reports the level of tolerance expressed by plants containing both alleles in a homozygous, heterozygous and in a heterozygous stacked state to increasing doses of IMI at the enzyme and whole plant levels. Six genotypes of the Ahasl1 gene were compared with each other in three different genetic backgrounds. These materials were treated at the V2-V4 stage with increasing doses of imazapyr (from 0 to 480 g a.i. ha(-1)) followed by an assessment of the aboveground biomass and herbicide phytotoxicity. The estimated dose of imazapyr required to reduce biomass accumulation by 50% (GR(50)) differed statistically for the six genotypes of the Ahasl1 gene. Homozygous CLPlus (Ahasl1-3/Ahasl1-3) genotypes and materials containing a combination of both tolerant alleles (Imisun/CLPlus heterozygous stack, Ahasl1-1/Ahasl1-3) showed the highest values of GR(50), 300 times higher than the susceptible genotypes and more than 2.5 times higher than homozygous Imisun materials (Ahasl1-1/Ahasl1-1). In vitro AHAS enzyme activity assays using increasing doses of herbicide (from 0 to 100 μM) showed similar trends, where homozygous CLPlus materials and those containing heterozygous stacks of Imisun/CLPlus were statistically similar and showed the least level of inhibition of enzyme activity to increasing doses of herbicide. The degree of dominance for the accumulation of biomass after herbicide application calculated for the Ahasl1-1 allele indicated that it is co-dominant to recessive depending on the imazapyr dose used. By the contrary, the Ahasl1-3 allele showed dominance to semi dominance according to the applied dose. This last allele is dominant over Ahasl1-1 over the entire range of herbicide rates tested. At the level of enzymatic activity, however, both alleles showed

  3. Histological Characterization of the Dicer1 Mutant Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Saeed Akhtar

    2015-01-01

    Full Text Available DICER1, a multidomain RNase III endoribonuclease, plays a critical role in microRNA (miRNA and RNA-interference (RNAi functional pathways. Loss of Dicer1 affects different developmental processes. Dicer1 is essential for retinal development and maintenance. DICER1 was recently shown to have another function of silencing the toxicity of Alu RNAs in retinal pigment epithelium (RPE cells, which are involved in the pathogenesis of age related macular degeneration. In this study, we characterized a Dicer1 mutant fish line, which carries a nonsense mutation (W1457Ter induced by N-ethyl-N-nitrosourea mutagenesis. Zebrafish DICER1 protein is highly conserved in the evolution. Zebrafish Dicer1 is expressed at the earliest stages of zebrafish development and persists into late developmental stages; it is widely expressed in adult tissues. Homozygous Dicer1 mutant fish (DICER1W1457Ter/W1457Ter have an arrest in early growth with significantly smaller eyes and are dead at 14–18 dpf. Heterozygous Dicer1 mutant fish have similar retinal structure to that of control fish; the retinal pigment epithelium (RPE cells are normal with no sign of degeneration at the age of 20 months.

  4. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    Science.gov (United States)

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  5. Identification of a new defective SERPINA1 allele (PI*Zla palma) encoding an alpha-1-antitrypsin with altered glycosylation pattern.

    Science.gov (United States)

    Hernández-Pérez, José M; Ramos-Díaz, Ruth; Pérez, José A

    2017-10-01

    Alpha-1-antitrypsin (AAT) deficiency is a genetic condition that arises from mutations in the SERPINA1 gene and predisposes to develop pulmonary emphysema and, less frequently, liver disease. Occasionally, new defective SERPINA1 alleles are detected as an outcome of targeted-screening programs or case-findings. This study began with a female patient showing bronchial hyperreactivity. Serum level and phenotype for AAT was analysed by immunonephelometry and isoelectric focusing electrophoresis. The SERPINA1 gene of the proband was genotyped by PCR amplification and DNA sequencing. Analysis of AAT deficiency was extended to the proband's family. An abnormal AAT variant that migrated to a more cathodal position than PiZ AAT was detected in the proband's serum. Genetic analysis demonstrated that proband is heterozygous for a new defective SERPINA1 allele (PI*Z la palma ) characterized by the c.321C > A (p.Asn83Lys) mutation in the M1Val213 background. This mutation abolishes the N-glycosylation site in position 83 of the mature AAT. Eight relatives of the proband are carriers of the PI*Z la palma allele and four of them have shown symptoms of bronchial asthma or bronchial hyperreactivity. The mean α1AT level in the serum of PI*MZ la palma individuals was 87.1 mg/dl. The reduction in circulating AAT levels associated to the PI*Z la palma allele was similar to that of PI*Z allele, representing a risk of impairment in lung function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.

    Science.gov (United States)

    Siddarth, Manushi; Datta, Sudip K; Ahmed, Rafat S; Banerjee, Basu D; Kalra, Om P; Tripathi, Ashok K

    2013-07-01

    CYP1A1 is an important xenobiotic metabolizing enzyme, present in liver and kidney. Expression of CYP1A1 enzyme increases manifold when kidney cells are exposed to nephrotoxins/chemicals leading to oxidative stress-induced cell damage. To study the association of CYP1A1 gene polymorphism in patients of chronic kidney disease with unknown etiology (CKDU), we recruited 334 CKDU patients and 334 age and sex matched healthy controls. CYP1A1*2A and *2C polymorphisms were studied by PCR-RFLP and allele specific-PCR respectively. Subjects carrying at least one mutant allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) were shown to be associated with 1.4-2-fold increased risk of CKDU. Also, genotypic combinations of hetero-/homozygous mutants of CYP1A1*2A (TC, CC) with hetero-/homozygous mutant genotypes of CYP1A1*2C (AG, GG) i.e. TC/AG (pCKDU with an odd ratio ranging 1.8-3.3 times approximately. This study demonstrates association of CYP1A1 polymorphisms with CKDU. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Studies on leaf mutants of Pea. (Part) I. Morphology, performance and somatic chromosomes

    International Nuclear Information System (INIS)

    Kaul, M.L.H.; Anjali, A.

    1988-01-01

    Three recessive non-allelic mutant genes alter foliar morphology of pea when present singly and in combination. Gene acacia replaces tendrils by a terminal leaflet, afila replaces leaflets by tendrils and cochleata replaces stipules by spoon shaped appendages. In combination, these genes drastically alter leaf morphology; plants can be identified only after flowering. The mutant genes influence shoot height, floral organ number, maturity period, grain yield and seed protein production; inter- and intra-genotypic variability in certain metric traits is significant. Influence of cochleata gene over floral form and function is considerable. In terms of seed yield and protein content, breeding value of all the mutants except of acacia is low because these mutant genes represent foreign untuned genes in pea genome. Segregation deficit is maximum in triple gene mutant with highly impaired fertility and low seed production. Somatic chromosome number in all the mutants and recombinants is 14; in morphology the chromosomes do not differ from the initial line, Bonneville. (author). 9 refs., 4 tabs

  8. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity

    Science.gov (United States)

    Hellgren, Olof; Atkinson, Carter T.; Bensch, Staffan; Albayrak, Tamer; Dimitrov, Dimitar; Ewen, John G.; Kim, Kyeong Soon; Lima, Marcos R.; Martin, Lynn; Palinauskas, Vaidas; Ricklefs, Robert; Sehgal, Ravinder N. M.; Gediminas, Valkiunas; Tsuda, Yoshio; Marzal, Alfonso

    2015-01-01

    Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host-resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.

  9. Impairment of Infectivity and Immunoprotective Effect of a LYT1 Null Mutant of Trypanosoma cruzi▿

    Science.gov (United States)

    Zago, M. Paola; Barrio, Alejandra B.; Cardozo, Rubén M.; Duffy, Tomás; Schijman, Alejandro G.; Basombrío, Miguel A.

    2008-01-01

    Trypanosoma cruzi infection of host cells is a complex process in which many proteins participate but only a few of these proteins have been identified experimentally. One parasite factor likely to be involved is the protein product of LYT1, a single-copy gene cloned, sequenced, and characterized by Manning-Cela et al. (Infect. Immun. 69:3916-3923, 2001). This gene was potentially associated with infectivity, since the deletion of both LYT1 alleles in the CL Brenner strain (the wild type [WT]) resulted in a null mutant T. cruzi clone (L16) that shows an attenuated phenotype in cell culture models. The aim of this work was to characterize the infective behavior of L16 in the insect vector and murine models. The infection of adult Swiss mice with 103 trypomastigotes of both clones revealed a significant reduction in infective behavior of L16, as shown by direct parasitemia, spleen index, and quantitation of tissue parasite burden, suggesting the loss of virulence in the null mutant clone. Although L16 blood counts were almost undetectable, blood-based PCRs indicated the presence of latent and persistent infection during all of the study period and epimastigotes were reisolated from hemocultures until 12 months postinfection. Nevertheless, virulence was not restored in L16 by serial passages in mice, and reisolated parasites lacking the LYT1 gene and bearing the antibiotic resistance genes revealed the stability of the genetic manipulation. Histopathological studies showed a strong diminution in the muscle inflammatory response triggered by L16 compared to that triggered by the WT group, consistent with a lower tissue parasite load. A strong protection against a virulent challenge in both L16- and WT-infected mice was observed; however, the immunizing infection by the genetically modified parasite was highly attenuated. PMID:17938222

  10. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    Directory of Open Access Journals (Sweden)

    Fresno Manuel

    2011-07-01

    Full Text Available Abstract Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II, to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus, infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  11. D1S80 (pMCT118) allele frequencies in a Malay population sample from Malaysia.

    Science.gov (United States)

    Koh, C L; Lim, M E; Ng, H S; Sam, C K

    1997-01-01

    The D1S80 allele frequencies in 124 unrelated Malays from the Malaysian population were determined and 51 genotypes and 19 alleles were encountered. The D1S80 frequency distribution met Hardy-Weinberg expectations. The observed heterozygosity was 0.80 and the power of discrimination was 0.96.

  12. Deletion map of CYC1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast

    International Nuclear Information System (INIS)

    Sherman, F.; Jackson, M.; Liebman, S.W.; Schweingruber, A.M.; Stewart, J.W.

    1975-01-01

    Mutants arising spontaneously from sporulated cultures of certain strains of yeast, Saccharomyces cerevisiae, contained deletions of the CYC1 gene which controls the primary structure of iso-1-cytochrome c. At least 60 different kinds of deletions were uncovered among the 104 deletions examined and these ranged in length from those encompassing only two adjacent point mutants to those encompassing at least the entire CYC1 gene. X-ray-induced recombination rates of crosses involving these deletions and cyc1 point mutants resulted in the assignment of 211 point mutants to 47 mutational sites and made it possible to unambiguously order 40 of these 47 sites. Except for one mutant, cyc1-15, there was a strict colinear relationship between the deletion map and the positions of 13 sites that were previously determined by amino acid alterations in iso-1-cytochromes c from intragenic revertants

  13. Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment.

    Science.gov (United States)

    Fang, Qing; Giordimaina, Alicia M; Dolan, David F; Camper, Sally A; Mustapha, Mirna

    2012-04-01

    Hypothyroidism is a cause of genetic and environmentally induced deafness. The sensitivity of cochlear development and function to thyroid hormone (TH) mandates understanding TH action in this sensory organ. Prop1(df) and Pou1f1(dw) mutant mice carry mutations in different pituitary transcription factors, each resulting in pituitary thyrotropin deficiency. Despite the same lack of detectable serum TH, these mutants have very different hearing abilities: Prop1(df) mutants are mildly affected, while Pou1f1(dw) mutants are completely deaf. Genetic studies show that this difference is attributable to the genetic backgrounds. Using embryo transfer, we discovered that factors intrinsic to the fetus are the major contributor to this difference, not maternal effects. We analyzed Prop1(df) mutants to identify processes in cochlear development that are disrupted in other hypothyroid animal models but protected in Prop1(df) mutants by the genetic background. The development of outer hair cell (OHC) function is delayed, but Prestin and KCNQ4 immunostaining appear normal in mature Prop1(df) mutants. The endocochlear potential and KCNJ10 immunostaining in the stria vascularis are indistinguishable from wild type, and no differences in neurofilament or synaptophysin staining are evident in Prop1(df) mutants. The synaptic vesicle protein otoferlin normally shifts expression from OHC to IHC as temporary afferent fibers beneath the OHC regress postnatally. Prop1(df) mutants exhibit persistent, abnormal expression of otoferlin in apical OHC, suggesting delayed maturation of synaptic function. Thus, the genetic background of Prop1(df) mutants is remarkably protective for most functions affected in other hypothyroid mice. The Prop1(df) mutant is an attractive model for identifying the genes that protect against deafness.

  14. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2018-02-01

    The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFRα levels in GBM cells, that was enhanced by sodium valproate. Knock down of Beclin1 or of ATG5 prevented neratinib and neratinib combined with sodium valproate / AR42 from reducing the expression of mutant N-RAS in established PDX and fresh PDX models of ovarian cancer and melanoma, respectively. Neratinib and the drug combinations caused the co-localization of mutant RAS proteins and ERBB2 with Beclin1 and cathepsin B. The drug combination activated the AMP-dependent protein kinase that was causal in enhancing HMG Co A reductase phosphorylation. Collectively, our data reinforce the concept that the irreversible ERBB1/2/4 inhibitor neratinib has the potential for use in the treatment of tumors expressing mutant RAS proteins.

  15. Potent inhibition of HIV-1 replication by a Tat mutant.

    Directory of Open Access Journals (Sweden)

    Luke W Meredith

    Full Text Available Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.

  16. Matching NLR Immune Receptors to Autoimmunity in camta3 Mutants Using Antimorphic NLR Alleles

    DEFF Research Database (Denmark)

    Lolle, Signe; Greeff, Christiaan; Petersen, Klaus

    2017-01-01

    result from inappropriate NLR activation because mutations in plant guardees could trigger corresponding NLR guards. To explore these hypotheses, we expressed 108 dominant-negative (DN) Arabidopsis NLRs in various lesion mimic mutants, including camta3, which exhibits autoimmunity. CAMTA3 was previously...

  17. Distortion of maternal-fetal angiotensin II type 1 receptor allele transmission in pre-eclampsia.

    Science.gov (United States)

    Morgan, L; Crawshaw, S; Baker, P N; Brookfield, J F; Broughton Pipkin, F; Kalsheker, N

    1998-01-01

    OBJECTIVE: To investigate the fetal angiotensin II type 1 receptor genotype in pre-eclampsia. DESIGN: Case-control study. POPULATION: Forty-one maternal-fetal pairs from pre-eclamptic pregnancies and 80 maternal-fetal pairs from normotensive pregnancies. METHODS: Maternal and fetal DNA was genotyped at three diallelic polymorphisms, at nucleotides 573, 1062, and 1166, in the coding exon of the angiotensin II type 1 receptor gene, and at a dinucleotide repeat polymorphism in its 3' flanking region. RESULTS: Allele and genotype frequencies at the four polymorphic regions investigated did not differ between pre-eclamptic and normotensive groups, in either fetal or maternal samples. Mothers heterozygous for the dinucleotide repeat allele designated A4 transmitted this allele to the fetus in 15 of 18 informative pre-eclamptic pregnancies and in eight of 26 normotensive pregnancies. This was greater than the expected probability in pre-eclamptic pregnancies (p=0.04) and less than expected in normotensive pregnancies (p<0.005). The 573T variant, which is in partial linkage disequilibrium with the A4 allele, showed a similar distortion of maternal-fetal transmission. CONCLUSION: Angiotensin II type 1 receptor gene expression in the fetus may contribute to the aetiology of pre-eclampsia. It is unclear whether susceptibility is conferred by the fetal genotype acting alone, or by allele sharing by mother and fetus. Possible mechanisms for the effect of the angiotensin II type 1 receptor gene are suggested by the association of the 573T variant with low levels of surface receptor expression on platelets. If receptor expression is similarly genetically determined in the placenta, responsiveness to angiotensin II may be affected, with the potential to influence placentation or placental prostaglandin secretion. PMID:9719367

  18. Plasminogen Activator Inhibitor-1 (PAI-1) gene 4G/5G alleles frequency distribution in the Lebanese population.

    Science.gov (United States)

    Shammaa, Dina M R; Sabbagh, Amira S; Taher, Ali T; Zaatari, Ghazi S; Mahfouz, Rami A R

    2008-09-01

    Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor of fibrinolysis. Increased plasma PAI-1 levels play an essential role in the pathogenesis of cardiovascular risk and other diseases associated with thrombosis. The 4G/5G polymorphism of the PAI-1 promoter region has been extensively studied in different populations. We studied 160 healthy unrelated Lebanese individuals using a reverse hybridization PCR assay to detect the 5G/5G, 4G/5G and, 4G/4G genotypes of the PAI-1 gene and the frequencies of the 4G and 5G alleles. We found that 4G/5G genotype was the most prevalent (45.6%) followed by 5G/5G (36.9%) and 4G/4G (17.5%). The frequencies of the 4G and 5G alleles were calculated to be 0.403 and 0.597, respectively. Compared to other ethnic communities, the Lebanese population was found to harbour a relatively high prevalence of the rare 4G allele. This, in turn, may predispose this population to develop cardiovascular diseases and other thrombotic clinical conditions. This study aids to enhance our understanding of the genetic features of the Lebanese population.

  19. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Fabio Carrilho Galvão

    Full Text Available The putative eukaryotic translation initiation factor 5A (eIF5A is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1 and deoxyhypusine hydroxylase (Lia1 catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1 and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of m

  20. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@qst.go.jp [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nozawa, Shigeki [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Narumi, Issay [Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193 (Japan); Oono, Yutaka [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2017-01-15

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or {sup 60}Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30–110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  1. Leukemogenic Ptpn11 allele causes defective erythropoiesis in mice.

    Directory of Open Access Journals (Sweden)

    Tatiana Usenko

    Full Text Available Src homology 2 (SH2 domain-containing phosphatase 2 (SHP2, encoded by PTPN11, regulates signaling networks and cell fate in many tissues. Expression of oncogenic PTPN11 in the hematopoietic compartment causes myeloproliferative neoplasm (MPN in humans and mice. However, the stage-specific effect(s of mutant Ptpn11 on erythroid development have remained unknown. We found that expression of an activated, leukemogenic Ptpn11 allele, Ptpn11D61Y, specifically in the erythroid lineage causes dyserythropoiesis in mice. Ptpn11D61Y progenitors produce excess cKIT+ CD71+ Ter119- cells and aberrant numbers of cKITl° CD71+ erythroblasts. Mutant erythroblasts show elevated activation of ERK, AKT and STAT3 in response to EPO stimulation, and MEK inhibitor treatment blocks Ptpn11D61Y-evoked erythroid hyperproliferation in vitro. Thus, the expression of oncogenic Ptpn11 causes dyserythropoiesis in a cell-autonomous manner in vivo.

  2. Functionally Complete Excision of Conditional Alleles in the Mouse Suprachiasmatic Nucleus by Vgat-ires-Cre.

    Science.gov (United States)

    Weaver, David R; van der Vinne, Vincent; Giannaris, E Lela; Vajtay, Thomas J; Holloway, Kristopher L; Anaclet, Christelle

    2018-04-01

    Mice with targeted gene disruption have provided important information about the molecular mechanisms of circadian clock function. A full understanding of the roles of circadian-relevant genes requires manipulation of their expression in a tissue-specific manner, ideally including manipulation with high efficiency within the suprachiasmatic nuclei (SCN). To date, conditional manipulation of genes within the SCN has been difficult. In a previously developed mouse line, Cre recombinase was inserted into the vesicular GABA transporter (Vgat) locus. Since virtually all SCN neurons are GABAergic, this Vgat-Cre line seemed likely to have high efficiency at disrupting conditional alleles in SCN. To test this premise, the efficacy of Vgat-Cre in excising conditional (fl, for flanked by LoxP) alleles in the SCN was examined. Vgat-Cre-mediated excision of conditional alleles of Clock or Bmal1 led to loss of immunostaining for products of the targeted genes in the SCN. Vgat-Cre + ; Clock fl/fl ; Npas2 m/m mice and Vgat-Cre + ; Bmal1 fl/fl mice became arrhythmic immediately upon exposure to constant darkness, as expected based on the phenotype of mice in which these genes are disrupted throughout the body. The phenotype of mice with other combinations of Vgat-Cre + , conditional Clock, and mutant Npas2 alleles also resembled the corresponding whole-body knockout mice. These data indicate that the Vgat-Cre line is useful for Cre-mediated recombination within the SCN, making it useful for Cre-enabled technologies including gene disruption, gene replacement, and opto- and chemogenetic manipulation of the SCN circadian clock.

  3. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.).

    Science.gov (United States)

    Hanzawa, Eiko; Sasaki, Kazuhiro; Nagai, Shinsei; Obara, Mitsuhiro; Fukuta, Yoshimichi; Uga, Yusaku; Miyao, Akio; Hirochika, Hirohiko; Higashitani, Atsushi; Maekawa, Masahiko; Sato, Tadashi

    2013-11-20

    Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.

  4. Generation of an allelic series of knock-in mice using recombinase-mediated cassette exchange (RMCE).

    Science.gov (United States)

    Roebroek, Anton J M; Van Gool, Bart

    2014-01-01

    Molecular genetic strategies applying embryonic stem cell (ES cell) technologies to study the function of a gene in mice or to generate a mouse model for a human disease are continuously under development. Next to (conditional) inactivation of genes the application and importance of approaches to generate knock-in mutations are increasing. In this chapter the principle and application of recombinase-mediated cassette exchange (RMCE) are discussed as being a new emerging knock-in strategy, which enables easy generation of a series of different knock-in mutations within one gene. An RMCE protocol, which was used to generate a series of different knock-in mutations in the Lrp1 gene of ES cells, is described in detail as an example of how RMCE can be used to generate highly efficiently an allelic series of differently modified ES cell clones from a parental modified ES cell clone. Subsequently the differently modified ES cell clones can be used to generate an allelic series of mutant knock-in mice.

  5. HLA-DRB1 allele association with rheumatoid arthritis susceptibility and severity in Syria.

    Science.gov (United States)

    Mourad, Jamil; Monem, Fawza

    2013-02-01

    Rheumatoid arthritis (RA) is a complex multifactorial chronic disease. The importance of human leukocyte antigen as a major genetic risk factor for RA was studied worldwide. Although it is widely distributed in different Syrian areas, studies of human leukocyte antigen (HLA) alleles' role are absent. The aim of our study was to determine the association of HLA-DRB1 alleles with the susceptibility and severity of RA in Syria. Eighty-six RA patients and 200 healthy controls from Syria were genotyped using polymerase chain reaction with sequence-specific primer (PCR-SSP). Anti-CCP antibodies were measured by ELISA. Rheumatoid factor (RF), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS-28) values were obtained from patients' medical records. DAS-28 was used to assess the clinical severity of the patients. The HLA-DRB1*01, *04, and *10 frequencies showed a strong association with the disease susceptibility (OR = 2.29, 95% CI = 1.11-4.75, P = 0.022; OR = 3.16, 95% CI = 2.0 -4.8, P < 0.0001; OR = 2.43, 95% CI = 1.07-5.51, P = 0.029 respectively), while the frequencies of HLA-DRB1*11, and *13 were significantly lower in RA patients than in controls (OR = 0.49, 95% CI = 0.3-0.8, P = 0.004; OR = 0.32, 95% CI = 0.15-0.69, P = 0.002, respectively). The other HLA-DRB1 alleles showed no significant difference. The frequency of anti-CCP antibodies was higher in shared epitope (SE) positive patients compared with SE-negative patients (OR = 5.5, 95% CI = 2-15.1, P = 0.00054). DAS-28 of RA patients didn't show significant difference between the SE negative and the SE positive groups. Our results indicate that HLA-DRB1*01, *04, and *10 alleles are related with RA, while HLA-DRB1*11 and *13 protect against RA in the Syrian population.

  6. Mannose-binding lectin variant alleles and HLA-DR4 alleles are associated with giant cell arteritis

    DEFF Research Database (Denmark)

    Jacobsen, Soren; Baslund, Bo; Madsen, Hans O.

    2002-01-01

    /GCA, MBL variant alleles were associated with signs of increased inflammatory activity and clinical signs of arteritic manifestations. This was not found for HLA-DR4 alleles. These findings indicate that HLA-DR4 and MBL are contributing to the pathophysiology of GCA at different levels in the disease...... alleles in controls, patients with PMR only, and patients with GCA was 37, 32, and 53% (p = 0.01), respectively. HLA-DRB1*04 was found in 47% of patients with PMR only and in 54% of patients with GCA, which differed significantly from the 35% found in controls (p = 0.01). HLA-DR4 alleles were...... not associated with any clinical phenotypes of PMR/GCA, whereas MBL variant alleles were associated with cranial arteritis, high erythrocyte sedimentation rate, and low B-hemoglobin. CONCLUSION: We found MBL variant alleles and HLA-DR4 alleles to be weak susceptibility markers for GCA. In patients with PMR...

  7. Evaluation of some mutant lines of rice induced by gamma radiation treatment 1. mean performance of rice mutants in M4 generation

    International Nuclear Information System (INIS)

    El-Banna, M.N.; El-Wakil, H.M.F.; Ebaid, R.A.; Sallam, R.A.

    2009-01-01

    Grains of eight rice mutants; SC 1, SC 6, RTY 1, RTY 3, HY 14, HYI 17, EH 4 and HYPI 22 were secured from Botany Department Faculty of Agriculture Cairo university. The procedures and the methodology for induction these mutants as well as the original mean performance of such mutants are presented else where; Sabbour, (1989) and Sabbour etal. (2002). Grains were sown (M4 generation) at the experimental farm in Itai EI-Baroud Agricultural Research Station Behaira Governorate Agricultural Research Center (ARC) in the summer season (2007). The mean performance of such mutants was studied during M4 generation. The most exciting results were as follows: the selected line SC 1 showed in M4 generation superior agronomic and yield traits. Sc 1 mutant line is not bred truly and it need more generations to reach stability. SC 6 in M4 generation showed considerable number of individuals scored low mean values toward the negative direction and lowering the overall trait mean performance. The rice lines RTY 1 and RTY 3 proved that, the average number of fertile tillers per plant of the selected lines maintained previously recorded mean values of M3 generation in M4. The traits showed significant differences among their progeny that recorded high CV% values as compared with those showed no significant differences. The rice lines HY 14 and HYI 17 showed a true breeding signs and no more breeding generations are required. Rice lines EH 4, showed a considerable reduction in number of days elapsed from date of cultivation till harvest. As, this mutant maintained 86.58 days till heading. Rice mutant line HYPI 22 did not bred truly for the original selected traits (high yield and high protein content) and it still need more generations of selection to reach considerable stability

  8. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    Science.gov (United States)

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  9. Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease

    DEFF Research Database (Denmark)

    Aziz, N A; Jurgens, C K; Landwehrmeyer, G B

    2009-01-01

    OBJECTIVE: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the HD gene (HTT). We aimed to assess whether interaction between CAG repeat sizes in the mutant and normal allele could affect disease severity and progression. METHODS: Using...... with less severe symptoms and pathology. CONCLUSIONS: Increasing CAG repeat size in normal HTT diminishes the association between mutant CAG repeat size and disease severity and progression in Huntington disease. The underlying mechanism may involve interaction of the polyglutamine domains of normal...

  10. Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants

    Directory of Open Access Journals (Sweden)

    Yuki Miyamoto

    2016-03-01

    Full Text Available The data is related to the research article entitled “Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics” [1]. In addition to hypomyelinating leukodystrophy (HLD 4 (OMIM no. 612233, it is known that spastic paraplegia (SPG 13 (OMIM no. 605280 is caused by HSPD1’s amino acid mutation. Two amino acid mutations Val-98-to-Ile (V98I and Gln-461-to-Glu (Q461E are associated with SPG13 [2]. In order to investigate the effects of HSPD1’s V98I or Q461E mutant on mitochondrial morphological changes, we transfected each of the respective mutant-encoding genes into Cos-7 cells. Either of V98I or Q461E mutant exhibited increased number of mitochondria and short length mitochondrial morphologies. Using MitoTracker dye-incorporating assay, decreased mitochondrial membrane potential was also observed in both cases. The data described here supports that SPG13-associated HSPD1 mutant participates in causing aberrant mitochondrial morphological changes with decreased activities. Keywords: SPG13, HSPD1, Mitochondrion, Morphological change

  11. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars.

    Science.gov (United States)

    Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2013-09-01

    The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9-9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that 'Purple Straw' and 'Tohoku 118' were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.

  12. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development.

    Science.gov (United States)

    Mozer, B A

    2001-05-15

    Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins. Copyright 2001 Academic Press.

  13. Alleles of Ppd-D1 gene in the collection of Aegilops tauschii accessions and bread wheat varieties

    Directory of Open Access Journals (Sweden)

    Babenko D. O.

    2012-04-01

    Full Text Available Light period significantly influences on the growth and development of plants. One of the major genes of photoperiod sensitivity is Ppd-D1, located on the chromosome 2D. The aim of the work was to determine the alleles and molecular structure of Ppd-D1 gene in samples from the collection of Ae. tauschii accessions, which have different flowering periods, and in 29 Ukrainian wheat varieties. Methods. We used methods of allele-specific PCR with primers to the Ppd-D1 gene, sequencing and Blast-analysis. Results. The collection of Ae. tauschii accessions and several varieties of winter and spring wheat was studied. The molecular structure of the allelic variants (414, 429 and 453 b. p. of Ppd-D1b gene was determined in the collection of Aegilops. tauschii accessions. Conclusions. The Ppd-D1a allele was present in all studied varieties of winter wheat. 60 % of spring wheat is characterized by Ppd-D1b allele (size of amplification products 414 b. p.. Blast-analysis of the sequence data banks on the basis of the reference sequence of sample k-1322 from the collection of Ae. tauschii accessions has shown a high homology (80 to 100 % between the nucleotide sequences of PRR genes, that characterize the A and D genomes of representatives of the genera Triticum and Aegilops.

  14. Trehalose, glycogen and ethanol metabolism in the gcr1 mutant of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Hamamci, H.

    2003-01-01

    Since Gcr1p is pivotal in controlling the transcription of glycolytic enzymes and trehalose metabolism seems to be one of the control points of glycolysis, we examined trehalose and glycogen synthesis in response to 2 % glucose pulse during batch growth in gcr1 (glucose regulation-1) mutant lacking...... fully functional glycolytic pathway and in the wild-type strain. An increase in both trehalose and glycogen stores was observed 1 and 2 h after the pulse followed by a steady decrease in both the wild-type and the gcr1 mutant. The accumulation was faster while the following degradation was slower in gcr......1 cells compared to wild-type ones. Although there was no distinct glucose consumption in the mutant cells it seemed that the glucose repression mechanism is similar in gcr1 mutant and in wild-type strain at least with respect to trehalose and glycogen metabolism....

  15. Mutant IDH1 Promotes Glioma Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Beatrice Philip

    2018-05-01

    Full Text Available Summary: Isocitrate dehydrogenase 1 (IDH1 is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM. A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled proneural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease. : Philip et al. show that mutant IDH1 cooperates with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote gliomagenesis in vivo in a mouse model of glioma. These tumors resemble proneural human mutant IDH1 glioblastoma and exhibit enhanced sensitivity to PARP inhibition in combination with chemotherapy. Keywords: IDH1, Cdkn2a, Atrx, Pten, glioma, mouse model, RCAS/TVA

  16. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  17. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  18. Characterization of a family of gamma-ray-induced CHO mutants demonstrates that the ldlA locus is diploid and encodes the low-density lipoprotein receptor

    International Nuclear Information System (INIS)

    Sege, R.D.; Kozarsky, K.F.; Krieger, M.

    1986-01-01

    The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene

  19. Mutanlallemand (mtl and Belly Spot and Deafness (bsd are two new mutations of Lmx1a causing severe cochlear and vestibular defects.

    Directory of Open Access Journals (Sweden)

    Georg Steffes

    Full Text Available Mutanlallemand (mtl and Belly Spot and Deafness (bsd are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3' splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl or LIM2-domain (bsd, which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system.

  20. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.).

    Science.gov (United States)

    Kiss, Tibor; Balla, Krisztina; Veisz, Ottó; Láng, László; Bedő, Zoltán; Griffiths, Simon; Isaac, Peter; Karsai, Ildikó

    2014-01-01

    Heading of cereals is determined by complex genetic and environmental factors in which genes responsible for vernalization and photoperiod sensitivity play a decisive role. Our aim was to use diagnostic molecular markers to determine the main allele types in VRN - A1 , VRN - B1 , VRN - D1 , PPD - B1 and PPD - D1 in a worldwide wheat collection of 683 genotypes and to investigate the effect of these alleles on heading in the field. The dominant VRN - A1 , VRN - B1 and VRN - D1 alleles were present at a low frequency. The PPD - D1a photoperiod-insensitive allele was carried by 57 % of the cultivars and was most frequent in Asian and European cultivars. The PPD - B1 photoperiod-insensitive allele was carried by 22 % of the genotypes from Asia, America and Europe. Nine versions of the PPD - B1 -insensitive allele were identified based on gene copy number and intercopy structure. The allele compositions in PPD - D1 , PPD - B1 and VRN - D1 significantly influenced heading and together explained 37.5 % of the phenotypic variance. The role of gene model increased to 39.1 % when PPD - B1 intercopy structure was taken into account instead of overall PPD - B1 type (sensitive vs. insensitive). As a single component, PPD - D1 had the most important role (28.0 % of the phenotypic variance), followed by PPD - B1 (12.3 % for PPD - B1 _overall, and 15.1 % for PPD - B1 _intercopy) and VRN - D1 (2.2 %). Significant gene interactions were identified between the marker alleles within PPD - B1 and between VRN - D1 and the two PPD1 genes. The earliest heading genotypes were those with the photoperiod-insensitive allele in PPD - D1 and PPD - B1 , and with the spring allele for VRN - D1 and the winter alleles for VRN - A1 and VRN - B1 . This combination could only be detected in genotypes from Southern Europe and Asia. Late-heading genotypes had the sensitivity alleles for both PPD1 genes, regardless of the allelic composition of the VRN1 genes. There was a 10-day difference in

  1. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Functional conservation of the Drosophila gooseberry gene and its evolutionary alleles.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The Drosophila Pax gene gooseberry (gsb is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.

  3. Novel deletion alleles carrying CYP21A1P/A2 chimeric genes in Brazilian patients with 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Guerra-Júnior Gil

    2010-06-01

    Full Text Available Abstract Background Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P. In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency. Methods We used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study. Results An allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4A Taq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different

  4. Genotypic and allelic variability in CYP19A1 among populations of African and European ancestry.

    Directory of Open Access Journals (Sweden)

    Athena Starlard-Davenport

    Full Text Available CYP19A1 facilitates the bioconversion of estrogens from androgens. CYP19A1 intron single nucleotide polymorphisms (SNPs may alter mRNA splicing, resulting in altered CYP19A1 activity, and potentially influencing disease susceptibility. Genetic studies of CYP19A1 SNPs have been well documented in populations of European ancestry; however, studies in populations of African ancestry are limited. In the present study, ten 'candidate' intronic SNPs in CYP19A1 from 125 African Americans (AA and 277 European Americans (EA were genotyped and their frequencies compared. Allele frequencies were also compared with HapMap and ASW 1000 Genomes populations. We observed significant differences in the minor allele frequencies between AA and EA in six of the ten SNPs including rs10459592 (p<0.0001, rs12908960 (p<0.0001, rs1902584 (p = 0.016, rs2470144 (p<0.0001, rs1961177 (p<0.0001, and rs6493497 (p = 0.003. While there were no significant differences in allele frequencies between EA and CEU in the HapMap population, a 1.2- to 19-fold difference in allele frequency for rs10459592 (p = 0.004, rs12908960 (p = 0.0006, rs1902584 (p<0.0001, rs2470144 (p = 0.0006, rs1961177 (p<0.0001, and rs6493497 (p = 0.0092 was observed between AA and the Yoruba (YRI population. Linkage disequilibrium (LD blocks and haplotype clusters that is unique to the EA population but not AA was also observed. In summary, we demonstrate that differences in the allele frequencies of CYP19A1 intron SNPs are not consistent between populations of African and European ancestry. Thus, investigations into whether CYP19A1 intron SNPs contribute to variations in cancer incidence, outcomes and pharmacological response seen in populations of different ancestry may prove beneficial.

  5. Analysis of AtCry1 and Mutants

    Science.gov (United States)

    Burdick, Derek; Purvis, Adam; Ahmad, Margaret; Link, Justin J.; Engle, Dorothy

    Cryptochrome is an incredibly versatile protein that influences numerous biological processes such as plant growth, bird migration, and sleep cycles. Due to the versatility of this protein, understanding the mechanism would allow for advances in numerous fields such as crop growth, animal behavior, and sleep disorders. It is known that cryptochrome requires blue light to function, but the exact processes in the regulation of biological activity are still not fully understood. It is believed that the c-terminal domain of the protein undergoes a conformational change when exposed to blue light which allows for biological function. Three different non-functioning mutants were tested during this study to gain insight on the mechanism of cryptochrome. Absorbance spectra showed a difference between two of the mutants and the wild type with one mutant showing little difference. Immunoprecipitation experiments were also conducted to identify the different c-terminal responses of the mutants. By studying non functioning mutants of this protein, the mechanism of the protein can be further characterized. This two-month research experience in Paris allowed us to experience international and interdisciplinary collaborations in science and immerse in a different culture. The Borcer Fund for Student Research, Xavier University, Cincinnati, OH, and John Hauck Foundation.

  6. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly.

    Science.gov (United States)

    Hemenway, C S; Dolinski, K; Cardenas, M E; Hiller, M A; Jones, E W; Heitman, J

    1995-11-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.

  7. Common breast cancer risk alleles and risk assessment

    DEFF Research Database (Denmark)

    Näslund-Koch, C; Nordestgaard, B G; Bojesen, S E

    2017-01-01

    general population were followed in Danish health registries for up to 21 years after blood sampling. After genotyping 72 breast cancer risk loci, each with 0-2 alleles, the sum for each individual was calculated. We used the simple allele sum instead of the conventional polygenic risk score......, as it is likely more sensitive in detecting associations with risks of other endpoints than breast cancer. RESULTS: Breast cancer incidence in the 19,010 women was increased across allele sum quintiles (log-rank trend test; p=1*10(-12)), but not incidence of other cancers (p=0.41). Age- and study-adjusted hazard...... ratio for the 5(th) vs. 1(st) allele sum quintile was 1.82(95% confidence interval;1.53-2.18). Corresponding hazard ratios per allele were 1.04(1.03-1.05) and 1.05(1.02-1.08) for breast cancer incidence and mortality, similar across risk factors. In 50-year old women, the starting age for screening...

  8. Neurospora crassa ncs-1, mid-1 and nca-2 double-mutant ...

    Indian Academy of Sciences (India)

    logue of Neuronal Calcium Sensor-1 has a role in growth, cal- cium stress tolerance, and ultraviolet survival. Genetica 139,. 885–894. Lew R. R., Abbas Z., Anderca M. I. and Free S. J. 2008 Phe- notype of a mechanosensitive channel mutant, mid-1, in a fil- amentous fungus, Neurospora crassa. Eukaryot. Cell. 7, 647–. 655.

  9. [The differences of the effects of Vrd1 and Ppd-D1 gene alleles on winterhardiness, frost resistance, and yield in winter wheat].

    Science.gov (United States)

    Mokanu, N V; Faĭt, V I

    2008-01-01

    The influence of allelic differences of Vrd1 and Ppd-D1 genes on winterhardiness, frost resistance, yield and its components was studied in recombinant-inbred F5 lines of Odesskaya 16/Bezostaya 1. From 9 to 15% differences in the resistance of recombinant-inbred lines were determined by alternative alleles of Vrd1 gene and 10-16% of Ppd-D1 gene. Interaction of vrd1 and Ppd-D1a alleles led to the higher winterhardiness and frost resistance of tillered plants during the winter. At the same time the significant increase of the period to heading, plant height and the tendency of yield reduction were revealed for vrd1 vrd1 Ppd-D1a Ppd-D1a lines when compared to the lines of Vrd1 Vrd1 Ppd-D1a Ppd-D1a genotype.

  10. Dyslexia risk variant rs600753 is linked with dyslexia-specific differential allelic expression of DYX1C1

    Directory of Open Access Journals (Sweden)

    Bent Müller

    2018-02-01

    Full Text Available Abstract An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

  11. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    Science.gov (United States)

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  12. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Relative frequencies of DRB1*11 alleles and their DRB3 associations in five major population groups in a United States bone marrow registry.

    Science.gov (United States)

    Tang, T F; Huang, A Y; Pappas, A; Slack, R; Ng, J; Hartzman, R J; Hurley, C K

    2000-08-01

    One hundred sixty-one individuals from each of five US population groups, Caucasians (CAU), African Americans (AFA), Asians/Pacific Islanders (API), Hispanics (HIS), and Native Americans (NAT), were randomly selected from a volunteer bone marrow registry database consisting of 14,452 HLA-DRB1*11 positive individuals. This sampling provided at least an 80% probability of detecting a rare allele that occurred at 1% in the DRB1*11 positive population. Samples were typed for DRB1*11 alleles by polymerase chain reaction-sequence specific oligonucleotide probe typing (PCR-SSOP). A total of 10 DRB1*11 alleles out of 27 possible alleles were detected. The distribution and diversity of DRB1*11 alleles varied among populations although DRB1*1101 was the predominant DRB1*11 allele in all populations. Caucasians were the least diversified; only four common alleles (DRB1*1101-*1104) were observed. As well as the four common alleles, other groups also carried one or two other less frequent alleles including DRB1*1105 (API), *1106 (API), *1110 (AFA), *1114 (HIS), *1115 (NAT), and *1117 (AFA). A subset (418) of these individuals were also typed for DRB3 alleles. Most (97.6%) showed a strong association of DRB1*11 with DRB3*0202.

  14. Modification of barley powdery mildew resistance controlled by the gene M1-a212

    International Nuclear Information System (INIS)

    Torp, J.; Joergensen, J.H.

    1989-01-01

    Full text: The barley line Sultan 5 carries resistance gene M1-a12. Seeds were treated with EMS or NaN 3 . Among 10381 M 1 -spike progenies inoculated with M1-a12 a-virulent isolates of Erysiphe graminis, 25 segregated for less resistant infection type. Among 10 mutants analyzed, 9 had mutant allels of M1-a12 and one had a recessive mutant gene in a different locus acting as a ''suppressor'' of M1-a12. (author)

  15. Genetic control of some morphological mutants in sunflower [Helianthus annuus L.

    International Nuclear Information System (INIS)

    Nabipour, A.; Sarrafi, A.; Yazdi-Samadi, B.

    2004-01-01

    Inheritance study of induced mutants is an important tool in genetic and breeding programs. Sunflower is one of the most important oil crops for which mutant collection is meager. Seeds of sunflower line AS-613 were irradiated with gamma rays and mutant phenotypes were traced until M4 generation. In M5 generation, the following traits were studied: dwarfing, branching, leaf shape, albinism, rosette, lack of apex and alternative leaves. In most cases, the mutated characters were controlled by a single recessive gene, while in two cases they were controlled by two recessive genes. In M5 progenies, segregation for two albino, one alternative leaves, one dwarfism, 5 branching, one rosette, 2 lacks of apex and 5 leaf shape mutants was recorded. Amongst five cases of branching, one was controlled by two recessive genes, where at least one homozygote recessive locus was necessary for branching. In one case, the lack of apex was controlled by two recessive genes and even only one dominant allele could provoke the normal plant [it

  16. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis.

    Science.gov (United States)

    Falbel, T G; Meehl, J B; Staehelin, L A

    1996-10-01

    Analyses of a series of allelic chlorina mutants of wheat (Triticum aestivum L.), which have partial blocks in chlorophyll (Chl) synthesis and, therefore, a limited Chl supply, reinforce the principle that Chl is required for the stable accumulation of Chl-binding proteins and that only reaction centers accumulate when the supply of Chl is severely limited. Depending on the rate of Chl accumulation (determined by the severity of the mutation) and on the rate of turnover of Chl and its precursors (determined by the environment in which the plant is grown), the mutants each reach an equilibrium of Chl synthesis and degradation. Together these mutants generate a spectrum of phenotypes. Under the harshest conditions (high illumination), plants with moderate blocks in Chl synthesis have membranes with very little Chl and Chl-proteins and membrane stacks resembling the thylakoids of the lethal xantha mutants of barely grown at low to medium light intensities (which have more severe blocks). In contrast, when grown under low-light conditions the same plants with moderate blocks have thylakoids resembling those of the wild type. The wide range of phenotypes of Chl b-deficient mutants has historically produced more confusion than enlightenment, but incomparable growth conditions can now explain the discrepancies reported in the literature.

  17. Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization.

    Science.gov (United States)

    Gonzalez, Kim L; Fleming, Wendell A; Kao, Yun-Ting; Wright, Zachary J; Venkova, Savina V; Ventura, Meredith J; Bartel, Bonnie

    2017-10-01

    Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease patients

    International Nuclear Information System (INIS)

    Takahashi-Niki, Kazuko; Niki, Takeshi; Taira, Takahiro; Iguchi-Ariga, Sanae M.M.; Ariga, Hiroyoshi

    2004-01-01

    DJ-1 is a multi-functional protein that plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in onset of Parkinson's disease. We have previously reported that L166P, a mutant DJ-1 found in Parkinson's disease patients, had no activity to prevent hydrogen peroxide (H 2 O 2 )-induced cell death. In this study, we analyzed other mutants of DJ-1 found in Parkinson's disease patients, including M26I, R98Q, and D149A, as well as L166P. We first found that all of the mutants made heterodimers with wild-type DJ-1, while all of the mutants except for L166P made homodimers. We then found that M26I and L166P, both of which are derived from homozygous mutations of the DJ-1 gene, were unstable and that their stabilities were recovered, in part, in the presence of proteasome inhibitor, MG132. NIH3T3 cell lines stably expressing these mutants of DJ-1 showed that cell lines of L166P and C106S, a mutant for protease activity (-) of DJ-1, had no activity to scavenge even endogenously producing reactive oxygen species. These cell lines also showed that all of the mutants had reduced activities to eliminate exogenously added H 2 O 2 and that these activities, except for that of D149A, were parallel to those preventing H 2 O 2 -induced cell death

  19. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The levels of mutant K-RAS and mutant N-RAS are rapidly reduced in a Beclin1 / ATG5 -dependent fashion by the irreversible ERBB1/2/4 inhibitor neratinib

    OpenAIRE

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Kirkwood, John; Sander, Cindy; Avogadri-Connors, Francesca; Cutler Jr, Richard E.; Lalani, Alshad S.; Dent, Paul

    2017-01-01

    ABSTRACT The FDA approved irreversible inhibitor of ERBB1/2/4, neratinib, was recently shown to rapidly down-regulate the expression of ERBB1/2/4 as well as the levels of c-MET and mutant K-RAS via autophagic degradation. In the present studies, in a dose-dependent fashion, neratinib reduced the expression levels of mutant K-RAS or of mutant N-RAS, which was augmented in an additive to greater than additive fashion by the HDAC inhibitors sodium valproate and AR42. Neratinib could reduce PDGFR...

  1. PKD1 Mono-Allelic Knockout Is Sufficient to Trigger Renal Cystogenesis in a Mini-Pig Model

    OpenAIRE

    He, Jin; Li, Qiuyan; Fang, Suyun; Guo, Ying; Liu, Tongxin; Ye, Jianhua; Yu, Zhengquan; Zhang, Ran; Zhao, Yaofeng; Hu, Xiaoxiang; Bai, Xueyuan; Chen, Xiangmei; Li, Ning

    2015-01-01

    PKD1 and PKD2 mutations could lead to autosomal dominant polycystic kidney disease (ADPKD), which afflicts millions of people worldwide. Due to the marked differences in the lifespan, size, anatomy, and physiology from humans, rodent ADPKD models cannot fully mimic the disease. To obtain a large animal model that recapitulates the disease, we constructed a mini-pig model by mono-allelic knockout (KO) of PKD1 using zinc finger nuclease. The mono-allelic KO pigs had lower PKD1 expression than t...

  2. Association of HLA-DRB1 alleles with susceptibility to mixed connective tissue disease in Polish patients.

    Science.gov (United States)

    Paradowska-Gorycka, A; Stypińska, B; Olesińska, M; Felis-Giemza, A; Mańczak, M; Czuszynska, Z; Zdrojewski, Z; Wojciechowicz, J; Jurkowska, M

    2016-01-01

    Mixed connective tissue disease (MCTD) is a systemic autoimmune disease, originally defined as a connective tissue inflammatory syndrome with overlapping features of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), polymyositis/dermatomyositis (PM/DM) and systemic sclerosis (SSc), characterized by the presence of antibodies against components of the U1 small nuclear ribonucleoprotein (U1snRNP). The aim of the study was to assess the frequency of (high-resolution-typed) DRB1 alleles in a cohort of Polish patients with MCTD (n = 103). Identification of the variants potentially associated with risk and protection was carried out by comparison with the DKMS Polish Bone Marrow Donor Registry (41306 alleles). DRB1*15:01 (odds ratio (OR): 6.06; 95% confidence interval (CI) 4.55-8.06), DRB1*04 (OR: 3.69; 95% CI 2.69-5.01) and *09:01 (OR: 8.12; 95% CI 2.15-21.75) were identified as risk alleles for MCTD, while HLA-DRB1*07:01 allele was found to be protective (OR: 0.50; 95% CI 0.28-0.83). The carrier frequency of the DRB1*01 was higher in MCTD patients compared with controls, although the differences were not statistically significant. Our results confirm the modulating influence of HLA-DRB1 genotypes on development of connective tissue diseases such as MCTD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Frequency of CCR5Δ32 allele in healthy Bosniak population.

    Directory of Open Access Journals (Sweden)

    Grażyna Adler

    2014-08-01

    Full Text Available Recent evidence has demonstrated the role of CCR5Δ32 in a variety of human diseases: from infectious and inflammatory diseases to cancer. Several studies have confirmed that genetic variants in chemokine receptor CCR5 gene are correlated with susceptibility and resistance to HIV infection. A 32-nucleotide deletion within the CCR5 reading frame is associated with decreased susceptibility to HIV acquisition and a slower progression to AIDS. Mean frequency of CCR5Δ32 allele in Europe is approximately 10%. The highest allele frequency is observed among Nordic populations (about 12% and lower in the regions of Southeast Mediterranean (about 5%. Although the frequency of CCR5Δ32 was determined in numerous European populations, there is a lack of studies on this variant in the Bosnia and Hercegovina population. Therefore, the aim of our study was to assess the frequency of CCR5Δ32 allele in the cohort of Bosniaks and compare the results with European reports. CCR5Δ32 was detected by sequence-specific PCR in a sample of 100 healthy subjects from Bosnia and Herzegovina (DNA collected 2011-2013.  Mean age of the cohort being 58.8 (±10.7 years, with 82% of women. We identified 17 heterozygotes and one mutant homozygote in study group, with mean ∆32 allele frequency of 9.5%. CCR5∆32 allele frequency among Bosniaks is comparable to that found in Caucasian populations and follows the pattern of the north-southern gradient observed for Europe. Further studies on larger cohorts with adequate female-to-male ratio are necessary. 

  4. Using high-resolution human leukocyte antigen typing of 11,423 randomized unrelated individuals to determine allelic varieties, deduce probable human leukocyte antigen haplotypes, and observe linkage disequilibria between human leukocyte antigen-B and-C and human leukocyte antigen-DRB1 and-DQB1 alleles in the Taiwanese Chinese population

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Yang

    2017-01-01

    Full Text Available Objective: We report here the human leukocyte antigen (HLA allelic variety and haplotype composition in a cohort of the Taiwanese Chinese population and their patterns of linkage disequilibria on HLA-B: HLA-C alleles and HLA-DRB1: HLA-DQB1 alleles at a high-resolution level. Materials and Methods: Peripheral whole blood from 11,423 Taiwanese Chinese unrelated individuals was collected in acid citrate dextrose. Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit. The DNA material was subjected to HLA genotyping for HLA-A,-B,-C,-DRB1, and-DQB1 loci using a commercial polymerase chain reaction-sequence-based typing (PCR-SBT kit, the SeCore® A/B/C/DRB1/DQB1 Locus Sequencing kit. High-resolution allelic sequencing was performed as previously described. Results: The number of individual HLA-B alleles detected was greater than the number of alleles recognized in the both the HLA-A and-DRB1 loci. Several novel alleles were discovered as a result of employing the SBT method and the high number of donors tested. In addition, we observed a genetic polymorphic feature of association between HLA-A and-B, HLA-B and-C, and HLA-DRB1 and-DQB1 alleles. Further, the homozygous haplotype frequencies of HLA-A and-B; HLA-A,-C, and-B; HLA-A,-C,-B, and-DRB1; and HLA-A,-C,-B,-DRB1, and-DQB1 in Taiwanese Chinese population are presented. Conclusion: As increasing number of HLA alleles are being discovered, periodic HLA profile investigation in a given population is essential to recognize the HLA complexity in that population. Population study can also provide an up-to-date strategic plan for future needs in terms of compatibility measurement for HLA matching between transplant donors and patients.

  5. pfmdr1 Amplification and Fixation of pfcrt Chloroquine Resistance Alleles in Plasmodium falciparum in Venezuela ▿ †

    Science.gov (United States)

    Griffing, Sean; Syphard, Luke; Sridaran, Sankar; McCollum, Andrea M.; Mixson-Hayden, Tonya; Vinayak, Sumiti; Villegas, Leopoldo; Barnwell, John W.; Escalante, Ananias A.; Udhayakumar, Venkatachalam

    2010-01-01

    Molecular tools are valuable for determining evolutionary history and the prevalence of drug-resistant malaria parasites. These tools have helped to predict decreased sensitivity to antimalarials and fixation of multidrug resistance genotypes in some regions. In order to assess how historical drug policies impacted Plasmodium falciparum in Venezuela, we examined molecular changes in genes associated with drug resistance. We examined pfmdr1 and pfcrt in samples from Sifontes, Venezuela, and integrated our findings with earlier work describing dhfr and dhps in these samples. We characterized pfmdr1 genotypes and copy number variation, pfcrt genotypes, and proximal microsatellites in 93 samples originating from surveillance from 2003 to 2004. Multicopy pfmdr1 was found in 12% of the samples. Two pfmdr1 alleles, Y184F/N1042D/D1246Y (37%) and Y184F/S1034C/N1042D/D1246Y (63%), were found. These alleles share ancestry, and no evidence of strong selective pressure on mutations was found. pfcrt chloroquine resistance alleles are fixed with two alleles: StctVMNT (91%) and SagtVMNT (9%). These alleles are associated with strong selection. There was also an association between pfcrt, pfmdr1, dhfr, and dhps genotypes/haplotypes. Duplication of pfmdr1 suggests a potential shift in mefloquine sensitivity in this region, which warrants further study. A bottleneck occurred in P. falciparum in Sifontes, Venezuela, and multidrug resistance genotypes are present. This population could be targeted for malaria elimination programs to prevent the possible spread of multidrug-resistant parasites. PMID:20145087

  6. Length of FMR1 repeat alleles within the normal range does not substantially affect the risk of early menopause

    Science.gov (United States)

    Ruth, Katherine S.; Bennett, Claire E.; Schoemaker, Minouk J.; Weedon, Michael N.; Swerdlow, Anthony J.; Murray, Anna

    2016-01-01

    STUDY QUESTION Is the length of FMR1 repeat alleles within the normal range associated with the risk of early menopause? SUMMARY ANSWER The length of repeat alleles within the normal range does not substantially affect risk of early menopause. WHAT IS KNOWN ALREADY There is a strong, well-established relationship between length of premutation FMR1 alleles and age at menopause, suggesting that this relationship could continue into the normal range. Within the normal range, there is conflicting evidence; differences in ovarian reserve have been identified with FMR1 repeat allele length, but a recent population-based study did not find any association with age at menopause as a quantitative trait. STUDY DESIGN, SIZE, DURATION We analysed cross-sectional baseline survey data collected at recruitment from 2004 to 2010 from a population-based, prospective epidemiological cohort study of >110 000 women to investigate whether repeat allele length was associated with early menopause. PARTICIPANTS/MATERIALS, SETTING, METHOD We included 4333 women from the Breakthrough Generations Study (BGS), of whom 2118 were early menopause cases (menopause under 46 years) and 2215 were controls. We analysed the relationship between length of FMR1 alleles and early menopause using logistic regression with allele length as continuous and categorical variables. We also conducted analyses with the outcome age at menopause as a quantitative trait as well as appropriate sensitivity and exploratory analyses. MAIN RESULTS AND THE ROLE OF CHANCE There was no association of the shorter or longer FMR1 allele or their combined genotype with the clinically relevant end point of early menopause in our main analysis. Likewise, there were no associations with age at menopause as a quantitative trait in our secondary analysis. LIMITATIONS, REASONS FOR CAUTION Women with homozygous alleles in the normal range may have undetected FMR1 premutation alleles, although there was no evidence to suggest this. We

  7. [Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].

    Science.gov (United States)

    Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian

    2014-03-01

    In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.

  8. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation.

    Science.gov (United States)

    Toyama, H; Anthony, C; Lidstrom, M E

    1998-09-01

    Methylobacterium extorquens AM1 is a pink-pigmented facultative methylotroph which is widely used for analyzing pathways of C1 metabolism with biochemical and molecular biological techniques. To facilitate this approach, we have applied a new method to construct insertion or disruption mutants with drug resistance genes by electroporation. By using this method, mutants were obtained in four genes present in the mxa methylotrophy gene cluster for which the functions were unknown, mxaR, mxaS, mxaC and mxaD. These mutants were unable to grow on methanol except the mutant of mxaD, which showed reduced growth on methanol.

  9. Procedures for identifying S-allele genotypes of Brassica.

    Science.gov (United States)

    Wallace, D H

    1979-11-01

    Procedures are described for efficient selection of: (1) homozygous and heterozygous S-allele genotypes; (2) homozygous inbreds with the strong self- and sib-incompatibility required for effective seed production of single-cross F1 hybrids; (3) heterozygous genotypes with the high self- and sib-incompatibility required for effective seed production of 3- and 4-way hybrids.From reciprocal crosses between two first generation inbred (I1) plants there are three potential results: both crosses are incompatible; one is incompatible and the other compatible; and both are compatible. Incompatibility of both crosses is useful information only when combined with data from other reciprocal crosses. Each compatible cross, depending on whether its reciprocal is incompatible or compatible, dictates alternative reasoning and additional reciprocal crosses for efficiently and simultaneously identifying: (A) the S-allele genotype of all individual I1 plants, and (B) the expressions of dominance or codominance in pollen and stigma (sexual organs) of an S-allele heterozygous genotype. Reciprocal crosses provide the only efficient means of identifying S-allele genotypes and also the sexual-organ x S-allele-interaction types.Fluorescent microscope assay of pollen tube penetration into the style facilitates quantitation within 24-48 hours of incompatibility and compatibility of the reciprocal crosses. A procedure for quantitating the reciprocal difference is described that maximizes informational content of the data about interactions between S alleles in pollen and stigma of the S-allele-heterozygous genotype.Use of the non-inbred Io generation parent as a 'known' heterozygous S-allele genotype in crosses with its first generation selfed (I1) progeny usually reduces at least 7 fold the effort required for achieving objectives 1, 2, and 3, compared to the method of making reciprocal crosses only among I1 plants.Identifying the heterozygous and both homozygous S-allele genotypes during

  10. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions.

    Science.gov (United States)

    Ochagavía, Helga; Prieto, Paula; Savin, Roxana; Griffiths, Simon; Slafer, GustavoA

    2018-04-27

    Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.

  11. Defects of mutant DNMT1 are linked to a spectrum of neurological disorders

    Science.gov (United States)

    Baets, Jonathan; Duan, Xiaohui; Wu, Yanhong; Smith, Gordon; Seeley, William W.; Mademan, Inès; McGrath, Nicole M.; Beadell, Noah C.; Khoury, Julie; Botuyan, Maria-Victoria; Mer, Georges; Worrell, Gregory A.; Hojo, Kaori; DeLeon, Jessica; Laura, Matilde; Liu, Yo-Tsen; Senderek, Jan; Weis, Joachim; Van den Bergh, Peter; Merrill, Shana L.; Reilly, Mary M.; Houlden, Henry; Grossman, Murray; Scherer, Steven S.; De Jonghe, Peter; Dyck, Peter J.

    2015-01-01

    We report a broader than previously appreciated clinical spectrum for hereditary sensory and autonomic neuropathy type 1E (HSAN1E) and a potential pathogenic mechanism for DNA methyltransferase (DNMT1) mutations. The clinical presentations and genetic characteristics of nine newly identified HSAN1E kinships (45 affected subjects) were investigated. Five novel mutations of DNMT1 were discovered; p.C353F, p.T481P, p.P491L, p.Y524D and p.I531N, all within the target-sequence domain, and two mutations (p.T481P, p.P491L) arising de novo. Recently, HSAN1E has been suggested as an allelic disorder of autosomal dominant cerebellar ataxia, deafness and narcolepsy. Our results indicate that all the mutations causal for HSAN1E are located in the middle part or N-terminus end of the TS domain, whereas all the mutations causal for autosomal dominant cerebellar ataxia, deafness and narcolepsy are located in the C-terminus end of the TS domain. The impact of the seven causal mutations in this cohort was studied by cellular localization experiments. The binding efficiency of the mutant DNMT proteins at the replication foci and heterochromatin were evaluated. Phenotypic characterizations included electromyography, brain magnetic resonance and nuclear imaging, electroencephalography, sural nerve biopsies, sleep evaluation and neuropsychometric testing. The average survival of HSAN1E was 53.6 years. [standard deviation = 7.7, range 43–75 years], and mean onset age was 37.7 years. (standard deviation = 8.6, range 18–51 years). Expanded phenotypes include myoclonic seizures, auditory or visual hallucinations, and renal failure. Hypersomnia, rapid eye movement sleep disorder and/or narcolepsy were identified in 11 subjects. Global brain atrophy was found in 12 of 14 who had brain MRI. EEGs showed low frequency (delta waves) frontal-predominant abnormality in five of six patients. Marked variability in cognitive deficits was observed, but the majority of patients (89%) developed

  12. Identification of fibrillin 1 gene mutations in patients with bicuspid aortic valve (BAV) without Marfan syndrome

    Science.gov (United States)

    2014-01-01

    Background Bicuspid aortic valve (BAV) is the most frequent congenital heart disease with frequent involvement in thoracic aortic dilatation, aneurysm and dissection. Although BAV and Marfan syndrome (MFS) share some clinical features, and some MFS patients with BAV display mutations in FBN1, the gene encoding fibrillin-1, the genetic background of isolated BAV is poorly defined. Methods Ten consecutive BAV patients [8 men, age range 24–42 years] without MFS were clinically characterized. BAV phenotype and function, together with evaluation of aortic morphology, were comprehensively assessed by Doppler echocardiography. Direct sequencing of each FBN1 exon with flanking intron sequences was performed on eight patients. Results We detected three FBN1 mutations in two patients (aged 24 and 25 years) displaying aortic root aneurysm ≥50 mm and moderate aortic regurgitation. In particular, one patient had two mutations (p.Arg2726Trp and p.Arg636Gly) one of which has been previously associated with variable Marfanoid phenotypes. The other patient showed a pArg529Gln substitution reported to be associated with an incomplete MFS phenotype. Conclusions The present findings enlarge the clinical spectrum of isolated BAV to include patients with BAV without MFS who have involvement of FBN1 gene. These results underscore the importance of accurate phenotyping of BAV aortopathy and of clinical characterization of BAV patients, including investigation of systemic connective tissue manifestations and genetic testing. PMID:24564502

  13. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

    Science.gov (United States)

    Kim, Eun-Ha; Lee, Yongjik

    2015-01-01

    Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861

  14. Isolation and characteristics of minute plaque forming mutant of cyanophage AS-1

    International Nuclear Information System (INIS)

    Amla, D.V.

    1981-01-01

    Minute plaque forming mutant (m) of cyanophage AS-1 infecting unicellular blue-green algae was isolated spontaneously and after mutagenic treatment. Compared to wild type m mutant formed small plaques, adsorption rate was slow and the burst-size was significantly decreased with prolonged eclipse and latent period. The plaque forming ability of mutant phage was sensitive to pH, heat, EDTA shock, distilled water and photosensitisation with acriflavine whereas ultraviolet sensitivity of free and intracellular phage was identical to the parent. The spontaneous reversion frequencies of mutant phage to wild type were between 10 -5 to 10 -3 and appeared to be clonal property. Reversion studies suggested possibilities of frame-shift or base-pair substitution for m mutation. (author)

  15. A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

    Science.gov (United States)

    Lloyd, Johnny; Meinke, David

    2012-03-01

    Despite the widespread use of Arabidopsis (Arabidopsis thaliana) as a model plant, a curated dataset of Arabidopsis genes with mutant phenotypes remains to be established. A preliminary list published nine years ago in Plant Physiology is outdated, and genome-wide phenotype information remains difficult to obtain. We describe here a comprehensive dataset of 2,400 genes with a loss-of-function mutant phenotype in Arabidopsis. Phenotype descriptions were gathered primarily from manual curation of the scientific literature. Genes were placed into prioritized groups (essential, morphological, cellular-biochemical, and conditional) based on the documented phenotypes of putative knockout alleles. Phenotype classes (e.g. vegetative, reproductive, and timing, for the morphological group) and subsets (e.g. flowering time, senescence, circadian rhythms, and miscellaneous, for the timing class) were also established. Gene identities were classified as confirmed (through molecular complementation or multiple alleles) or not confirmed. Relationships between mutant phenotype and protein function, genetic redundancy, protein connectivity, and subcellular protein localization were explored. A complementary dataset of 401 genes that exhibit a mutant phenotype only when disrupted in combination with a putative paralog was also compiled. The importance of these genes in confirming functional redundancy and enhancing the value of single gene datasets is discussed. With further input and curation from the Arabidopsis community, these datasets should help to address a variety of important biological questions, provide a foundation for exploring the relationship between genotype and phenotype in angiosperms, enhance the utility of Arabidopsis as a reference plant, and facilitate comparative studies with model genetic organisms.

  16. Neurobehavioral performances and brain regional metabolism in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Lalonde, R; Jantzen-Ossola, C; Strazielle, C

    2013-09-01

    As disabled-1 (DAB1) protein acts downstream in the reelin signaling pathway modulating neuronal migration, glutamate neurotransmission, and cytoskeletal function, the disabled-1 gene mutation (scrambler or Dab1(scm) mutation) results in ataxic mice displaying dramatic neuroanatomical defects similar to those observed in the reeler gene (Reln) mutation. By comparison to non-ataxic controls, Dab1(scm) mutants showed severe motor coordination impairments on stationary beam, coat-hanger, and rotorod tests but were more active in the open-field. Dab1(scm) mutants were also less anxious in the elevated plus-maze but with higher latencies in the emergence test. In mutants versus controls, changes in regional brain metabolism as measured by cytochrome oxidase (COX) activity occurred mainly in structures intimately connected with the cerebellum, in basal ganglia, in limbic regions, particularly hippocampus, as well as in visual and parietal sensory cortices. Although behavioral results characterized a major cerebellar disorder in the Dab1(scm) mutants, motor activity impairments in the open-field were associated with COX activity changes in efferent basal ganglia structures such as the substantia nigra, pars reticulata. Metabolic changes in this structure were also associated with the anxiety changes observed in the elevated plus-maze and emergence test. These results indicate a crucial participation of the basal ganglia in the functional phenotype of ataxic Dab1(scm) mutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Nitric oxide synthase gene G298 allele

    International Nuclear Information System (INIS)

    Nagib El-Kilany, Galal E.; Nayel, Ehab; Hazzaa, Sahar

    2004-01-01

    Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G 298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant

  18. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  19. Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast

    Directory of Open Access Journals (Sweden)

    Bruna Trindade de Carvalho

    2017-11-01

    Full Text Available Flavor compound metabolism is one of the last areas in metabolism where multiple genes encoding biosynthetic enzymes are still unknown. A major challenge is the involvement of side activities of enzymes having their main function in other areas of metabolism. We have applied pooled-segregant whole-genome sequence analysis to identify novel Saccharomyces cerevisiae genes affecting production of phenylethyl acetate (2-PEAc. This is a desirable flavor compound of major importance in alcoholic beverages imparting rose- and honey-like aromas, with production of high 2-PEAc levels considered a superior trait. Four quantitative trait loci (QTLs responsible for high 2-PEAc production were identified, with two loci each showing linkage to the genomes of the BTC.1D and ER18 parents. The first two loci were investigated further. The causative genes were identified by reciprocal allele swapping into both parents using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. The superior allele of the first major causative gene, FAS2, was dominant and contained two unique single nucleotide polymorphisms (SNPs responsible for high 2-PEAc production that were not present in other sequenced yeast strains. FAS2 encodes the alpha subunit of the fatty acid synthetase complex. Surprisingly, the second causative gene was a mutant allele of TOR1, a gene involved in nitrogen regulation. Exchange of both superior alleles in the ER18 parent strain increased 2-PEAc production 70%, nearly to the same level as in the best superior segregant. Our results show that polygenic analysis combined with CRISPR/Cas9-mediated allele exchange is a powerful tool for identification of genes encoding missing metabolic enzymes and for development of industrial yeast strains generating novel flavor profiles in alcoholic beverages.

  20. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    Science.gov (United States)

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  1. Infrequent detection of germline allele-specific expression of TGFBR1 in lymphoblasts and tissues of colon cancer patients.

    LENUS (Irish Health Repository)

    Guda, Kishore

    2009-06-15

    Recently, germline allele-specific expression (ASE) of the gene encoding for transforming growth factor-beta type I receptor (TGFBR1) has been proposed to be a major risk factor for cancer predisposition in the colon. Germline ASE results in a lowered expression of one of the TGFBR1 alleles (>1.5-fold), and was shown to occur in approximately 20% of informative familial and sporadic colorectal cancer (CRC) cases. In the present study, using the highly quantitative pyrosequencing technique, we estimated the frequency of ASE in TGFBR1 in a cohort of affected individuals from familial clusters of advanced colon neoplasias (cancers and adenomas with high-grade dysplasia), and also from a cohort of individuals with sporadic CRCs. Cases were considered positive for the presence of ASE if demonstrating an allelic expression ratio <0.67 or >1.5. Using RNA derived from lymphoblastoid cell lines, we find that of 46 informative Caucasian advanced colon neoplasia cases with a family history, only 2 individuals display a modest ASE, with allelic ratios of 1.65 and 1.73, respectively. Given that ASE of TGFBR1, if present, would likely be more pronounced in the colon compared with other tissues, we additionally determined the allele ratios of TGFBR1 in the RNA derived from normal-appearing colonic mucosa of sporadic CRC cases. We, however, found no evidence of ASE in any of 44 informative sporadic cases analyzed. Taken together, we find that germline ASE of TGFBR1, as assayed in lymphoblastoid and colon epithelial cells of colon cancer patients, is a relatively rare event.

  2. Differential disease resistance response in the barley necrotic mutant nec1

    Directory of Open Access Journals (Sweden)

    Kunga Laura

    2011-04-01

    Full Text Available Abstract Background Although ion fluxes are considered to be an integral part of signal transduction during responses to pathogens, only a few ion channels are known to participate in the plant response to infection. CNGC4 is a disease resistance-related cyclic nucleotide-gated ion channel. Arabidopsis thaliana CNGC4 mutants hlm1 and dnd2 display an impaired hypersensitive response (HR, retarded growth, a constitutively active salicylic acid (SA-mediated pathogenesis-related response and elevated resistance against bacterial pathogens. Barley CNGC4 shares 67% aa identity with AtCNGC4. The barley mutant nec1 comprising of a frame-shift mutation of CNGC4 displays a necrotic phenotype and constitutively over-expresses PR-1, yet it is not known what effect the nec1 mutation has on barley resistance against different types of pathogens. Results nec1 mutant accumulated high amount of SA and hydrogen peroxide compared to parental cv. Parkland. Experiments investigating nec1 disease resistance demonstrated positive effect of nec1 mutation on non-host resistance against Pseudomonas syringae pv. tomato (Pst at high inoculum density, whereas at normal Pst inoculum concentration nec1 resistance did not differ from wt. In contrast to augmented P. syringae resistance, penetration resistance against biotrophic fungus Blumeria graminis f. sp. hordei (Bgh, the causal agent of powdery mildew, was not altered in nec1. The nec1 mutant significantly over-expressed race non-specific Bgh resistance-related genes BI-1 and MLO. Induction of BI-1 and MLO suggested putative involvement of nec1 in race non-specific Bgh resistance, therefore the effect of nec1on mlo-5-mediated Bgh resistance was assessed. The nec1/mlo-5 double mutant was as resistant to Bgh as Nec1/mlo-5 plants, suggesting that nec1 did not impair mlo-5 race non-specific Bgh resistance. Conclusions Together, the results suggest that nec1 mutation alters activation of systemic acquired resistance

  3. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael Watson

    Full Text Available DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T. Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2, and maintenance DNA METHYLTRANSFERASE1 (MET1 being responsible for faithful propagation of CG methylation. Here we report an unusual 'dense methylation' pattern under the control of MET1, with methylation in all three sequence contexts. We identified epi-alleles of dense methylation at a non coding RNA locus (At4g15242 in Arabidopsis ecotypes, with distinct dense methylation and expression characteristics, which are stably maintained and transmitted in genetic crosses and which can be heritably altered by depletion of MET1. This suggests that, in addition to its classical CG maintenance function, at certain loci MET1 plays a role in creating transcriptional diversity based on the generation of independent epi-alleles. Database inspection identified several other loci with MET1-dependent dense methylation patterns. Arabidopsis ecotypes contain distinct epi-alleles of these loci with expression patterns that inversely correlate with methylation density, predominantly within the transcribed region. In Arabidopsis, dense methylation appears to be an exception as it is only found at a small number of loci. Its presence does, however, highlight the potential for MET1 as a contributor to epigenetic diversity, and it will be interesting to investigate the representation of dense methylation in other plant species.

  4. Attenuated Expression of DFFB is a Hallmark of Oligodendrogliomas with 1p-Allelic Loss

    Directory of Open Access Journals (Sweden)

    Fuller Gregory N

    2005-09-01

    Full Text Available Abstract Allelic loss of chromosome 1p is frequently observed in oligodendroglioma. We screened 177 oligodendroglial tumors for 1p deletions and found 6 tumors with localized 1p36 deletions. Several apoptosis regulation genes have been mapped to this region, including Tumor Protein 73 (p73, DNA Fragmentation Factor subunits alpha (DFFA and beta (DFFB, and Tumor Necrosis Factor Receptor Superfamily Members 9 and 25 (TNFRSF9, TNFRSF25. We compared expression levels of these 5 genes in pairs of 1p-loss and 1p-intact tumors using quantitative reverse-transcriptase PCR (QRTPCR to test if 1p deletions had an effect on expression. Only the DFFB gene demonstrated decreased expression in all tumor pairs tested. Mutational analysis did not reveal DFFB mutations in 12 tested samples. However, it is possible that DFFB haploinsufficiency from 1p allelic loss is a contributing factor in oligodendroglioma development.

  5. Studies on induced partially resistant mutants of barley against powdery mildew

    International Nuclear Information System (INIS)

    Roebbelen, G.; Abdel-Hafez, A.G.; Reinhold, M.; Kwon, H.J.; Neuhaus-Steinmetz, J.P.; Heun, M.

    1983-01-01

    After mutagenic seed treatment of three partially resistant cultivars of spring barley with EMS and NaN 3 , 45 mutants in a first and 16 in a second experiment were selected in the M 2 -M 4 generations. The screening was done alternatively under natural infection in the field or controlled infection with a single pathotype in the greenhouse. These mutants exhibited a higher resistance and a higher susceptibility, respectively, than the initial cultivars Asse, Bomi and Vada. Some mutants expressed their altered resistance behaviour particularly during certain stages of development. High-level resistance was conditioned by mutation in the ml-o locus in three cases. For several Bomi mutants pathotype specificity with and without reversed ranking was proven as well as pathotype non-specificity in comparison with the reaction of the original cultivar. In 14 cases studied the inheritance of the involved mutants was monogenic recessive. The laevigatum locus responsible for the intermediate mildew resistance of Bomi was not affected by the mutations. Detection of groups of allelic mutants showed that there are at least two regions in the barley genome in which mutations for mildew resistance can occur rather frequently. In total, the past ten years of this mutation research have given convincing evidence that the strategies of mutant screening applied have yielded promising new material both for breeding and for progress in basic understanding of host-pathogen interactions. (author)

  6. Association between the DRD2 A1 allele and response to methadone and buprenorphine maintenance treatments.

    Science.gov (United States)

    Barratt, Daniel T; Coller, Janet K; Somogyi, Andrew A

    2006-06-05

    The TaqI A polymorphism (A(1)) of the dopamine D(2) receptor gene (DRD2), although not a specific predictor of opioid dependence, has been strongly associated with high levels of prior heroin use and poor treatment outcomes among methadone maintenance patients. The aims of this study were to confirm these findings via a retrospective analysis of A(1) allele frequency in methadone (n = 46) and buprenorphine (n = 25) patients, and non-opioid-dependent controls (n = 95). Subjects were genotyped at the DRD2 TaqI A locus using PCR amplification followed by TaqI restriction enzyme digestion and gel electrophoresis. For methadone and buprenorphine subjects, heroin use (prior to treatment), treatment outcomes, and withdrawal occurrence were determined from comprehensive case notes. No significant differences in A(1) allele frequency (%) were observed between: methadone (19.6%), buprenorphine (18.0%), and control (17.9%) groups (P > 0.7); successful and poor treatment outcome groups, methadone: 20.0% and 19.2%, respectively (P = 1.0); buprenorphine: 18.4% and 20.0%, respectively (P = 1.0). Also, there were no significant relationships between TaqI A genotype and prior heroin use (P = 0.47). However, among the successful methadone subjects, significantly fewer A(1) allele carriers experienced withdrawal than non-A(1) carriers (P = 0.04). In conclusion, the DRD2 genotype effects did not affect opioid maintenance treatment outcomes. This suggests the need for a further prospective investigation into the role of the DRD2 A(1) allele in heroin use and response to maintenance pharmacotherapies for opioid dependence.

  7. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    Science.gov (United States)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  8. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    International Nuclear Information System (INIS)

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UVTolerantRice319), was isolated from a mutagenized population derived from 2500 M 1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined

  9. Database for the ampC alleles in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Nabil Karah

    Full Text Available Acinetobacter baumannii is a troublesome opportunistic pathogen with a high capacity for clonal dissemination. We announce the establishment of a database for the ampC locus in A. baumannii, in which novel ampC alleles are differentiated based on the occurrence of ≥ 1 nucleotide change, regardless of whether it is silent or missense. The database is openly accessible at the pubmlst platform for A. baumannii (http://pubmlst.org/abaumannii/. Forty-eight distinctive alleles of the ampC locus have so far been identified and deposited in the database. Isolates from clonal complex 1 (CC1, according to the Pasteur multilocus sequence typing scheme, had a variety of the ampC locus alleles, including alleles 1, 3, 4, 5, 6, 7, 8, 13, 14, 17, and 18. On the other hand, isolates from CC2 had the ampC alleles 2, 3, 19, 20, 21, 22, 23, 24, 26, 27, 28, and 46. Allele 3 was characteristic for sequence types ST3 or ST32. The ampC alleles 10, 16, and 25 were characteristic for CC10, ST16, and CC25, respectively. Our study points out that novel gene databases, in which alleles are numbered based on differences in their nucleotide identities, should replace traditional records that use amino acid substitutions to define new alleles.

  10. Human Leukocyte Antigen-A, B, C, DRB1, and DQB1 Allele and Haplotype Frequencies in a Subset of 237 Donors in the South African Bone Marrow Registry

    Directory of Open Access Journals (Sweden)

    Mqondisi Tshabalala

    2018-01-01

    Full Text Available Human leukocyte antigen- (HLA- A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 allele and haplotype frequencies were studied in a subset of 237 volunteer bone marrow donors registered at the South African Bone Marrow Registry (SABMR. Hapl-o-Mat software was used to compute allele and haplotype frequencies from individuals typed at various resolutions, with some alleles in multiple allele code (MAC format. Four hundred and thirty-eight HLA-A, 235 HLA-B, 234 HLA-DRB1, 41 HLA-DQB1, and 29 HLA-C alleles are reported. The most frequent alleles were A∗02:02g (0.096, B∗07:02g (0.082, C∗07:02g (0.180, DQB1∗06:02 (0.157, and DRB1∗15:01 (0.072. The most common haplotype was A∗03:01g~B∗07:02g~C∗07:02g~DQB1∗06:02~DRB1∗15:01 (0.067, which has also been reported in other populations. Deviations from Hardy-Weinberg equilibrium were observed in A, B, and DRB1 loci, with C~DQB1 being the only locus pair in linkage disequilibrium. This study describes allele and haplotype frequencies from a subset of donors registered at SABMR, the only active bone marrow donor registry in Africa. Although the sample size was small, our results form a key resource for future population studies, disease association studies, and donor recruitment strategies.

  11. Association of selected human leukocyte antigen alleles (HLA-DQA1*0102, HLA-DQA1*0103 and HLA–DQB1*0301 with Helicobacter pylori infection among dyspeptic patients

    Directory of Open Access Journals (Sweden)

    Piyumali Sandareka Arachchi

    2016-11-01

    Full Text Available Background: Helicobacter pylori has been identified as a group I carcinogenic bacteria that infect the gastric mucosa leading to gastritis, peptic ulcer disease, lymphoma and gastric cancer. Pathogenesis of H. pylori depends on the virulence of the strain, host immune response and modulating factors like smoking and diet. Objective: This study aimed to assess the association of selected HLA (Human Leukocyte Antigen alleles; HLA-DQA1*0102, HLA-DQA1*0103 and HLA-DQB1*0301, with the presence of H. pylori infection and disease severity among dyspeptic patients. Methods: Gastric tissue samples from 100 dyspeptic patients, who underwent upper gastrointestinal endoscopy at a tertiary care hospital, were collected. Presence of HLA alleles was confirmed using Polymerase Chain Reaction (PCR. H. pylori infection was determined using PCR and Histology. The histological interpretation was done according to the ‘Sydney classification’. Statistical analysis was done with the Statistical Package of Social Sciences (SPSS (version 22; SPSS, Inc., Chicago, Illinois, USA. Results: Respective percentages of HLA-DQA1*0102, HLA-DQA1*0103 and HLA-DQB1*0301 were 39%, 31% and 20%. Of the 25 samples positive for H. pylori infection respectively 56% (14/25, 36% (9/25 and 12% (3/25 were positive for HLA-DQA1*0102, HLA-DQA1*0103 and HLA-DQB1*0301 alleles. Considering the association with H. pylori infection, only HLA-DQA1*0102 showed significant association (p=0.044. No significant association was found between the HLA alleles and the histological severity among the H. pylori infected patients. Conclusion: In conclusion, HLA-DQA1*0102 allele has a significant association with H. pylori infection while HLA-DQA1*0103 and HLA-DQB1*0301 shows no significant association in a Sri Lankan dyspeptic patient population.

  12. TAF-4 is required for the life extension of isp-1, clk-1 and tpk-1 Mit mutants.

    Science.gov (United States)

    Khan, Maruf H; Ligon, Melissa; Hussey, Lauren R; Hufnal, Bryce; Farber, Robert; Munkácsy, Erin; Rodriguez, Amanda; Dillow, Andy; Kahlig, Erynn; Rea, Shane L

    2013-10-01

    While numerous life-extending manipulations have been discovered in the nematode Caenorhabditis elegans, one that remains most enigmatic is disruption of oxidative phosphorylation. In order to unravel how such an ostensibly deleterious manipulation can extend lifespan, we sought to identify the ensemble of nuclear transcription factors that are activated in response to defective mitochondrial electron transport chain (ETC) function. Using a feeding RNAi approach, we targeted over 400 transcription factors and identified 15 that, when reduced in function, reproducibly and differentially altered the development, stress response, and/or fecundity of isp-1(qm150) Mit mutants relative to wild-type animals. Seven of these transcription factors--AHA-1, CEH-18, HIF-1, JUN-1, NHR-27, NHR-49 and the CREB homolog-1 (CRH-1)-interacting protein TAF-4--were also essential for isp-1 life extension. When we tested the involvement of these seven transcription factors in the life extension of two other Mit mutants, namely clk-1(qm30) and tpk-1(qm162), TAF-4 and HIF-1 were consistently required. Our findings suggest that the Mit phenotype is under the control of multiple transcriptional responses, and that TAF-4 and HIF-1 may be part of a general signaling axis that specifies Mit mutant life extension.

  13. Recombination-deficient mutants of Bacillus subtilis

    International Nuclear Information System (INIS)

    Sadaie, Y.; Kada, T.

    1976-01-01

    Two mutant strains of Bacillus subtilis Marburg, NIG43 and NIG45, were isolated. They showed high sensitivities to gamma rays, ultraviolet light (uv), and chemicals. Deficiencies in genetic recombination of these two mutants were shown by the experiments on their capacity in transformation, SPO2 transfection, and PBS1 phage transduction, as well as on their radiation and drug sensitivities and their Hcr + capacity for uv-exposed phage M2. Some of these characteristics were compared with those of the known strains possessing the recA1 or recB2 alleles. Mapping studies revealed that the mutation rec-43 of strain NIG43 lies in the region of chromosome replication origin. The order was purA dna-8132 rec-43. Another mutation, rec-45, of strain NIG45 was found to be tightly linked to recA1. The mutation rec-43 reduced mainly the frequency of PBS1 transduction. On the other hand, the mutation rec-45 reduced the frequency of recombination involved both in transformation and PBS1 tranduction. The mutation rec-43 of strain NIG43 is conditional, but rec-45 of strain NIG45 is not. The uv impairment in cellular survival of strain NIG43 was gradually reverted at higher salt or sucrose concentrations, suggesting cellular possession of a mutated gene product whose function is conditional. In contrast to several other recombination-deficient strains, SPO2 lysogens of strains NIG43 and NIG45 were not inducible, indicating involvement of rec-43 + or rec-45 + gene product in the development of SPO2 prophage to a vegetative form. The uv-induced deoxyribonucleic acid degradation in vegetative cells was higher in rec-43 and rec-45 strains

  14. Transporter TAP1-637G and Immunoproteasome PSMB9-60H Variants Influence the Risk of Developing Vitiligo in the Saudi Population

    Science.gov (United States)

    Elhawary, Nasser Attia; Bogari, Neda; Jiffri, Essam Hussien; Rashad, Mona; Fatani, Abdulhamid; Tayeb, Mohammed

    2014-01-01

    We evaluated whether TAP1-rs1135216 (p.637D>G) and PSMB9-rs17587 (p.60R>H) were significantly associated with the risk and severity of vitiligo among Saudi patients. One hundred seventy-two subjects were genotyped for the TAP1-rs1135216 and PSMB9-rs17587 variants using endonuclease digestions of amplified genomic DNA. The TAP1-rs1135216 and PSMB9-rs17587 mutant alleles were strongly associated with vitiligo, with odds ratios showing five fold and two fold risks (P Vitiligo vulgaris was the most common type of disease, associated with the DG (55%) and GG (46%) genotypes for rs1135216 and with the RH genotype (59%) for rs17587. The heterozygous 637DG and 60RH genotypes were each linked with active phenotypes in 64% of cases. In conclusion, the TAP1-rs1135216 and PSMB9-rs17587 variants are significantly associated with vitiligo, and even one copy of these mutant alleles can influence the risk among Saudis. Vitiligo vulgaris is associated with genotypes containing the mutant G and H alleles. PMID:25548428

  15. Inheritance and performance of the stiff-strawed mutant in Vicia faba L

    International Nuclear Information System (INIS)

    Frauen, M.; Sass, O.

    1990-01-01

    Full text: The tall and leafy types are considered to produce more vegetative mass than is necessary for high grain yield. A mutant with stunted growth, smaller leaves with dark green colour, and a stiff stem showing excellent lodging resistance, found special interest among breeders. This stiff-stem growth-type was selected as a spontaneous mutation in a breeding population. A stiff-stem line was crossed with the varieties 'Alfred' and 'Minica'. The stiff-stem recombinants showed a 20% shorter plant height, excellent lodging resistance, higher harvest index and a promise of 30% yield increase. The monogenic inheritance of the mutant trait is an advantage for further breeding work. We propose the symbol st for the new allele. (author)

  16. Mutants of GABA transaminase (POP2 suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh mutants in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Frank Ludewig

    Full Text Available BACKGROUND: The gamma-aminubutyrate (GABA shunt bypasses two steps of the tricarboxylic acid cycle, and is present in both prokaryotes and eukaryotes. In plants, the pathway is composed of the calcium/calmodulin-regulated cytosolic enzyme glutamate decarboxylase (GAD, the mitochondrial enzymes GABA transaminase (GABA-T; POP2 and succinic semialdehyde dehydrogenase (SSADH. We have previously shown that compromising the function of the GABA-shunt, by disrupting the SSADH gene of Arabidopsis, causes enhanced accumulation of reactive oxygen intermediates (ROIs and cell death in response to light and heat stress. However, to date, genetic investigations of the relationships between enzymes of the GABA shunt have not been reported. PRINCIPAL FINDINGS: To elucidate the role of succinic semialdehyde (SSA, gamma-hydroxybutyrate (GHB and GABA in the accumulation of ROIs, we combined two genetic approaches to suppress the severe phenotype of ssadh mutants. Analysis of double pop2 ssadh mutants revealed that pop2 is epistatic to ssadh. Moreover, we isolated EMS-generated mutants suppressing the phenotype of ssadh revealing two new pop2 alleles. By measuring thermoluminescence at high temperature, the peroxide contents of ssadh and pop2 mutants were evaluated, showing that only ssadh plants accumulate peroxides. In addition, pop2 ssadh seedlings are more sensitive to exogenous SSA or GHB relative to wild type, because GHB and/or SSA accumulate in these plants. SIGNIFICANCE: We conclude that the lack of supply of succinate and NADH to the TCA cycle is not responsible for the oxidative stress and growth retardations of ssadh mutants. Rather, we suggest that the accumulation of SSA, GHB, or both, produced downstream of the GABA-T transamination step, is toxic to the plants, resulting in high ROI levels and impaired development.

  17. Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil.

    Science.gov (United States)

    Farias, Juliano R; Andow, David A; Horikoshi, Renato J; Bernardi, Daniel; Ribeiro, Rebeca da S; Nascimento, Antonio Rb do; Santos, Antonio C Dos; Omoto, Celso

    2016-12-01

    The frequency of resistance alleles is a major factor influencing the rate of resistance evolution. Here, we adapted the F 2 screen procedure for Spodoptera frugiperda (J. E. Smith) with a discriminating concentration assay, and extended associated statistical methods to estimate the frequency of resistance to Cry1F protein in S. frugiperda in Brazil when resistance was not rare. We show that F 2 screen is efficient even when the resistance frequency is 0.250. It was possible to screen 517 isoparental lines from 12 populations sampled in five states of Brazil during the first half of 2012. Western Bahia had the highest allele frequency of Cry1F resistance, 0.192, with a 95% confidence interval (CI) between 0.163 and 0.220. All other states had a similar and lower frequency varying from 0.042 in Paraná to 0.080 in Mato Grosso do Sul. The high frequency in western Bahia may be related to year-round availability of maize, the high population density of S. frugiperda, the lack of refuges and the high adoption rate of Cry1F maize. Cry1F resistance alleles were not rare and occurred at frequencies that have already compromised the useful life of TC1507 maize in western Bahia. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Two-step method for curing Escherichia coli of ColE1-derived plasmids

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2008-01-01

    To cure Escherichia coli for plasmids derived from the ColE1 replicon advantage is taken of the fact that maintenance of this replicon requires a wild-type allele of polA, encoding DNA polymerase I. Curing is achieved by cotransduction of a mutant polA allele with metE::Tn10, fadAB::Tn10 or other...

  19. PET imaging of HSV1-tk mutants with acquired specificity toward pyrimidine- and acycloguanosine-based radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Likar, Yury; Dobrenkov, Konstantin; Olszewska, Malgorzata; Shenker, Larissa; Hricak, Hedvig; Ponomarev, Vladimir [Memorial Sloan-Kettering Cancer Center, Molecular Imaging Laboratory, Department of Radiology, New York, NY (United States); Cai, Shangde [Memorial Sloan-Kettering Cancer Center, Radiochemistry/Cyclotron Core Facility, New York, NY (United States)

    2009-08-15

    The aim of this study was to create an alternative mutant of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene with reduced phosphorylation capacity for acycloguanosine derivatives, but not pyrimidine-based compounds that will allow for successful PET imaging. A new mutant of HSV1-tk reporter gene, suitable for PET imaging using pyrimidine-based radiotracers, was developed. The HSV1-tk mutant contains an arginine-to-glutamine substitution at position 176 (HSV1-R176Qtk) of the nucleoside binding region of the enzyme. The mutant-gene product showed favorable enzymatic characteristics toward pyrimidine-based nucleosides, while exhibiting reduced activity with acycloguanosine derivatives. In order to enhance HSV1-R176Qtk reporter activity with pyrimidine-based radiotracers, we introduced the R176Q substitution into the more active HSV1-sr39tk mutant. U87 human glioma cells transduced with the HSV1-R176Qsr39tk double mutant reporter gene showed high {sup 3}H-FEAU pyrimidine nucleoside and low {sup 3}H-penciclovir acycloguanosine analog uptake in vitro. PET imaging also demonstrated high {sup 18}F-FEAU and low {sup 18}F-FHBG accumulation in HSV1-R176Qsr39tk+ xenografts. The feasibility of imaging two independent nucleoside-specific HSV1-tk mutants in the same animal with PET was demonstrated. Two opposite xenografts expressing the HSV1-R176Qsr39tk reporter gene and the previously described acycloguanosine-specific mutant of HSV1-tk, HSV1-A167Ysr39tk reporter gene, were imaged using a short-lived pyrimidine-based {sup 18}F-FEAU and an acycloguanosine-based {sup 18}F-FHBG radiotracer, respectively, administered on 2 consecutive days. We conclude that in combination with acycloguanosine-specific HSV1-A167Ysr39tk reporter gene, a HSV1-tk mutant containing the R176Q substitution could be used for PET imaging of two different cell populations or concurrent molecular biological processes in the same living subject. (orig.)

  20. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1

    Science.gov (United States)

    Ma, Pengtao; Xu, Hongxng; Li, Lihui; Zhang, Hongxia; Han, Guohao; Xu, Yunfeng; Fu, Xiaoyi; Zhang, Xiaotian; An, Diaoguo

    2016-01-01

    Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits. PMID:27200022

  1. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. An ABCA1 truncation shows no dominant negative effect in a familial hypoalphalipoproteinemia pedigree with three ABCA1 mutations

    Energy Technology Data Exchange (ETDEWEB)

    Sorrenson, Brie; Suetani, Rachel J. [Department of Biochemistry, University of Otago, Dunedin (New Zealand); Bickley, Vivienne M.; George, Peter M. [Clinical Biochemistry, Canterbury Health Laboratories, Christchurch (New Zealand); Williams, Michael J.A. [Department of Medicine, University of Otago, Dunedin (New Zealand); Scott, Russell S. [Lipid and Diabetes Research Group, Christchurch Hospital (New Zealand); McCormick, Sally P.A., E-mail: sally.mccormick@otago.ac.nz [Department of Biochemistry, University of Otago, Dunedin (New Zealand)

    2011-06-10

    Highlights: {yields} Characterisation of an ABCA1 truncation mutant, C978fsX988, in a pedigree with three ABCA1 mutations. {yields} Functional analysis of C978fsX988 in patient fibroblasts and HEK 293 cells shows no cholesterol efflux function. {yields} Allele-specific quantification shows C978fsX988 not expressed at mRNA level in fibroblasts. {yields} Unlike other ABCA1 truncations, C978fsX988 mutant shows no dominant negative effect at mRNA or protein level. -- Abstract: The ATP binding cassette transporter (ABCA1) A1 is a key determinant of circulating high density lipoprotein cholesterol (HDL-C) levels. Mutations in ABCA1 are a major genetic contributor to low HDL-C levels within the general population. Following the finding of three different ABCA1 mutations, p.C978fsX988, p.T1512M and p.N1800H in a subject with hypoalphalipoproteinemia, we aimed to establish whether the p.C978fsX988 truncation exerted a dominant negative effect on the full-length ABCA1 alleles within family members as has been reported for other ABCA1 truncations. Characterisation of the p.C978fsX988 mutant in transfected HEK 293 cells showed it to be expressed as a GFP fusion protein but lacking in cholesterol efflux function. This was in keeping with results from cholesterol efflux assays in the fibroblasts of p.C978fsX988 carriers which also showed impaired efflux. Allele- specific quantification of p.C978fsX988 mRNA and analysis of ABCA1 protein levels in the fibroblasts of p.C978fsX988 heterozygotes showed negligible levels of mRNA and protein expression. There was no evidence of a dominant negative effect on wildtype or p.N1800H protein levels. We conclude that in the case of the p.C978fsX988 truncated mutant a lack of expression precludes it from having a dominant negative effect.

  3. Characterization and fine mapping of a light-dependent leaf lesion mimic mutant 1 in rice.

    Science.gov (United States)

    Wang, Jing; Ye, Bangquan; Yin, Junjie; Yuan, Can; Zhou, Xiaogang; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Qin, Peng; Ma, Bintian; Wang, Yuping; Li, Shigui; Chen, Xuewei

    2015-12-01

    Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. SUMO-2 and PIAS1 Modulate Insoluble Mutant Huntingtin Protein Accumulation

    Directory of Open Access Journals (Sweden)

    Jacqueline Gire O’Rourke

    2013-07-01

    Full Text Available A key feature in Huntington disease (HD is the accumulation of mutant Huntingtin (HTT protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.

  5. Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0600 TITLE: Dissecting the Mechanisms of Drug Resistance in BRCA1/2-Mutant Breast Cancers PRINCIPAL INVESTIGATOR: Dr...2017 4. TITLE AND SUBTITLE Dissecting the Mechanisms of Drug Resistance in BRCA1/2- Mutant Breast Cancers 5a. CONTRACT NUMBER W81XWH-16-1-0600 5b...therapeutic modality for targeting homologous recombination (HR) deficient tumors such as BRCA1 and BRCA2-mutated triple negative breast cancers

  6. Diminished self-chaperoning activity of the DeltaF508 mutant of CFTR results in protein misfolding.

    Directory of Open Access Journals (Sweden)

    Adrian W R Serohijos

    2008-02-01

    Full Text Available The absence of a functional ATP Binding Cassette (ABC protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR from apical membranes of epithelial cells is responsible for cystic fibrosis (CF. Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1. Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of

  7. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-06-01

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43 Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43 Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  8. Assessment of TS-1, a thick cane mutant

    International Nuclear Information System (INIS)

    Shama Rao, H.K.

    1979-01-01

    A true breeding thick cane mutant TS-1, induced by radiations, was obtained in variety Co-419. TS-1 was found to be superior to Co-419 with respect to cane size, weight, yield and juice quality. The thick canes of TS-1 were found to be solid even at 14 months age and so also their ratoons. The tillering habit of TS-1 has a definite advantage over other varieties with respect to easy intercultural field operations. TS-1 is now being tested under various agroclimatic zones in Karnataka, Maharashtra and U.P. (auth.)

  9. Ehlers-Danlos Syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen

    International Nuclear Information System (INIS)

    Superti-Furga, A.; Gugler, E.; Gitzelmann, R.; Steinmann, B.

    1988-01-01

    The authors have studied a patient with severe, dominantly inherited Ehlers-Danlos syndrome type IV. The results indicate that this patient carries a deletion of 3.3 kilobase pairs in the triple helical coding domain of one of the two alleles for the pro-α-chains of type III collagen (COL3A1). His cultured skin fibroblasts contain equal amounts of normal length mRNA and of mRNA shortened by approximately 600 bases, and synthesize both normal and shortened pro-α1(III)-chains. In procollagen molecules containing one or more shortened chains, a triple helix is formed with a length of only about 780 amino acids. The mutant procollagen molecules have decreased thermal stability, are less efficiently secreted, and are not processed as their normal counterpart. The deletion in this family is the first mutation to be described in COL3A1

  10. Forward and reverse genetics: The LORE1 retrotransposon insertion mutants

    DEFF Research Database (Denmark)

    Fukai, Eigo; Malolepszy, Anna; Sandal, Niels Nørgaard

    2014-01-01

    The endogenous Lotus retrotransposon 1 (LORE1) transposes in the germ line of Lotus japonicus plants that carry an active element. This feature of LORE1 has been exploited for generation of a large non-transgenic insertion mutant population, where insertions have been annotated using next-generat...

  11. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    Science.gov (United States)

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  12. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Sarah C Goetz

    Full Text Available The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  13. Assessment of the myostatin Q204X allele using an allelic discrimination assay

    OpenAIRE

    Sifuentes-Rincón,Ana M.; Puentes-Montiel,Herlinda E.; Moreno-Medina,Víctor R.; Rosa-Reyna,Xóchitl F. de la

    2006-01-01

    An allelic discrimination assay was designed and used to determine the genotypic and allelic frequencies of the myostatin (MSTN) gene Q204X allele from two Mexican Full-French herds. The assay is a simple high throughput genotyping method that could be applied to investigate the effect of the Q204X allele on the Charolais breed.

  14. Genetic interaction between the ero1-1 and leu2 mutations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R; Kielland-Brandt, Morten C

    2007-01-01

    of the ero1-1 mutation were carried out in a leu2 mutant. The ero1-1 leu2 strain does not grow in standard synthetic complete medium at 30 degrees C, a defect that can be remedied by increasing the L-leucine concentration in the medium or by transforming the ero1-1 leu2 strain with the LEU2 wild-type allele...

  15. [Starch synthesis in the maize endosperm as affected by starch-synthesizing mutants]. [Annual report, March 1994--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, O.

    1995-07-01

    Progress is reported in several areas relevant to maize endosperm development. These areas are (1) The tentative identification of the enzymatic deficiency in a previously unknown endosperm mutant, sugary3-1 (su3-1). The evidence leading to this conclusion will be presented below. (2) The recognition that the endosperm mutant that produces an interesting starch resembling some starches that have been chemically modified is actually an unusual, hypomorphic allele (8132) at the brittle2 (bt2) locus; (3) The orange endosperm color present in some progenies derived from a cross between the original bt2-8132 and W22N apparently results from an interaction between two genes, one of which behaves as though linked to the bt2 locus. In the orange endosperm derivative, our limited evidence suggests that the quantity of all the carotinoids present in the yellow endosperm stocks appear to be increased proportionally.

  16. HLA –DRB1*, DQB1* Alleles In Hydatid Patients By Molecular Typing

    Directory of Open Access Journals (Sweden)

    mehdi Mosayebi

    2007-10-01

    Full Text Available Mosayebi M1, Dalimi Asl A2, Moazeni M3, Mosayebi Gh4 1. Ph.D Student, Department of Parasitology, Faculty of medicine, Tarbiat Modarres University 2. Professor, Department of Parasitology, Faculty of medicine, Tarbiat Modarres University 3. Professor, Department of Immunology, Faculty of medicine, Tarbiat Modarres University 4. Assistant professor, Department of Immunology, Faculty of medicine, Arak Medical Sciences University Abstract Background: Hydatidosis is a important disease that results from infection with larvae of the dog tape worm , Echinococcus granulosus in human and farm animals .Resistance or susceptibility to infectious diseases , for example , cystic and alveolar echinococcosis is restricted by individual host factors and immunologic responses,in many surveys has been shown.The target of this study that is the first survey dealing with the correlation between HLA-DRB1*& DQB1* alleles and cystic echinococcosis in Iranian patient,is investigation HLA-DRB1*and DQB1* allelic polymorphism in Iranian patient with hydatidosis . Materials and methods: The study was carried out on 56 patients with confirmed cystic echinococcosis and 30 apparently healthy individuals living on Arak area by HLA-DRB1*& DQB1* typing with PCR-SSP method.The first step was founding patients and blood sampling .DNA was prepared from whole blood and we used PCR-SSP with 31 primer mixes for per sample . PCR reaction mixtures were loaded in agarose gels and after electrophoresis , geles were examine under UV illumination and gel document . Analyse of results carried out with specific software and frequency& interpretation tables and homogeneity test for calculation of P-value in χ2 test with fisher΄s exact test . significant samples with logistic regression analysed and Odds-ratio calculate . Results: A statistically significant positive association was found between HLA-DQB1*02 and the occurrence of cystic echinococcosis(P<0.05,(Odds-ratio=2.87 Conclusion: The

  17. The TGFBR1*6A allele is not associated with susceptibility to colorectal cancer in a Spanish population: a case-control study

    International Nuclear Information System (INIS)

    Castillejo, Adela; Guillén-Ponce, Carmen; Carrato, Alfredo; Soto, José-Luís; Mata-Balaguer, Trinidad; Montenegro, Paola; Ochoa, Enrique; Lázaro, Rafael; Martínez-Cantó, Ana; Castillejo, María-Isabel; Guarinos, Carla; Barberá, Víctor-Manuel

    2009-01-01

    TGF-β receptor type I is a mediator of growth inhibitory signals. TGFBR1*6A (rs11466445) is a common polymorphic variant of the TGF-β receptor I gene and has been associated with tumour susceptibility. Nevertheless, the role of this polymorphism as a risk factor for colorectal cancer is controversial. The aim of this study was to assess the association between TGFBR1*6A and colorectal cancer, age, sex, tumour location and tumour stage in a Spanish population. The case-control study involved 800 Spanish subjects: 400 sporadic colorectal cancer patients and 400 age-, sex-, and ethnic-matched controls. The odds ratio (OR) and 95% confidence interval (95% CI) for the TGFBR1*6A polymorphism were calculated using unconditional logistic regression adjusted for age and sex. Analysis of somatic mutations at the GCG repeat of TGFBR1 exon 1 and germline allele-specific expression were also conducted to obtain further information on the contribution of the TGFBR1*6A allele to CRC susceptibility. There was no statistically significant association between the TGFBR1*6A allele and CRC (p > 0.05). The OR was 1.147 (95% CI: 0.799–1.647) for carriers of the TGFBR1*6A allele and 0.878 (95% CI: 0.306–2.520) for homozygous TGFBR1*6A individuals compared with the reference. The frequency of the polymorphism was not affected by age, sex or tumour stage. The TGFBR1*6A allele was more prevalent among colon tumour patients than among rectal tumour patients. Tumour somatic mutations were found in only two of 69 cases (2.9%). Both cases involved a GCG deletion that changed genotype 9A/9A in normal DNA to genotype 9A/8A. Interestingly, these two tumours were positive for microsatellite instability, suggesting that these mutations originated because of a deficient DNA mismatch repair system. Allele-specific expression of the 9A allele was detected in seven of the 14 heterozygous 9A/6A tumour cases. This could have been caused by linkage disequilibrium of the TGFBR1*6A allele with

  18. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    Science.gov (United States)

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (Pgrain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the strongest evidence for

  19. Swedish Spring Wheat Varieties with the Rare High Grain Protein Allele of NAM-B1 Differ in Leaf Senescence and Grain Mineral Content

    Science.gov (United States)

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754

  20. HLA-DRB1 alleles associated with polymyalgia rheumatica in northern Italy: correlation with disease severity

    Science.gov (United States)

    Salvarani, C.; Boiardi, L.; Mantovani, V.; Ranzi, A.; Cantini, F.; Olivieri, I.; Bragliani, M.; Collina, E.; Macchioni, P.

    1999-01-01

    OBJECTIVE—To examine the association of HLA-DRB1 alleles with polymyalgia rheumatica (PMR) in a Mediterranean country and to explore the role of HLA-DRB1 genes in determining disease severity.
METHODS—A five year prospective follow up study of 92 consecutive PMR patients diagnosed by the secondary referral centre of rheumatology of Reggio Emilia, Italy was conducted. HLA-DRB1 alleles were determined in the 92 patients, in 29 DR4 positive rheumatoid arthritis (RA) patients, and in 148 controls from the same geographical area by polymerase chain reaction amplification and oligonucleotide hybridisation.
RESULTS—No significant differences were observed in the frequencies of HLA-DRB1 types and in the expression of HLA-DRB 70-74 shared motif between PMR and controls. The frequency of the patients with double dose of epitope was low and not significantly different in PMR and in controls. No significant differences in the distribution of HLA-DR4 subtypes were observed between DR4+ PMR, DR+ RA, and DR4+ controls. Results of the univariate analysis indicated that an erythrocyte sedimentation rate (ESR) at diagnosis > 72 mm 1st h, the presence of HLA-DR1, DR10, rheumatoid epitope, and the type of rheumatoid epitope were significant risk factors associated with relapse/recurrence. Cox proportional hazards modelling identified two variables that independently increased the risk of relapse/recurrence: ESR at diagnosis > 72 mm 1st h (RR=1.5) and type 2 (encoded by a non-DR4 allele) rheumatoid epitope (RR=2.7).
CONCLUSION—These data from a Mediterranean country showed no association of rheumatoid epitope with PMR in northern Italian patients. A high ESR at diagnosis and the presence of rheumatoid epitope encoded by a non-DR4 allele are independent valuable markers of disease severity.

 PMID:10225816

  1. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2010-10-01

    Full Text Available Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.

  2. ENU mutagenesis reveals that Notchless homolog 1 (Drosophila affects Cdkn1a and several members of the Wnt pathway during murine pre-implantation development

    Directory of Open Access Journals (Sweden)

    Lossie Amy C

    2012-12-01

    Full Text Available Abstract Background Our interests lie in determining the genes and genetic pathways that are important for establishing and maintaining maternal-fetal interactions during pregnancy. Mutation analysis targeted to a 34 Mb domain flanked by Trp53 and Wnt3 demonstrates that this region of mouse chromosome 11 contains a large number of essential genes. Two mutant alleles (l11Jus1 and l11Jus4, which fall into the same complementation group, survive through implantation but fail prior to gastrulation. Results Through a positional cloning strategy, we discovered that these homozygous mutant alleles contain non-conservative missense mutations in the Notchless homolog 1 (Drosophila (Nle1 gene. NLE1 is a member of the large WD40-repeat protein family, and is thought to signal via the canonical NOTCH pathway in vertebrates. However, the phenotype of the Nle1 mutant mice is much more severe than single Notch receptor mutations or even in animals in which NOTCH signaling is blocked. To test the hypothesis that NLE1 functions in multiple signaling pathways during pre-implantation development, we examined expression of multiple Notch downstream target genes, as well as select members of the Wnt pathway in wild-type and mutant embryos. We did not detect altered expression of any primary members of the Notch pathway or in Notch downstream target genes. However, our data reveal that Cdkn1a, a NOTCH target, was upregulated in Nle1 mutants, while several members of the Wnt pathway are downregulated. In addition, we found that Nle1 mutant embryos undergo caspase-mediated apoptosis as hatched blastocysts, but not as morulae or blastocysts. Conclusions Taken together, these results uncover potential novel functions for NLE1 in the WNT and CDKN1A pathways during embryonic development in mammals.

  3. Interaction of a non-peptide agonist with angiotensin II AT1 receptor mutants

    DEFF Research Database (Denmark)

    Costa-Neto, Claudio M; Miyakawa, Ayumi A; Pesquero, João B

    2002-01-01

    and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I...... and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared...... with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain...

  4. Respiration responses of a polA1 and a tif-1 mutant of Escherichia coli to far-ultraviolet irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.

    1981-01-01

    Cessation of respiration in Escherichia coli 60 min after far - ultra-violet (254 nm) irradiation is dependent upon the recA and lexA gene products and is regulated by cyclic 3', 5'-adenosine monophosphate (cAMP) and its receptor protein. Two E. coli B/r mutants were studied, polA1 and tif-1, both of which express other rec/lex functions after UV irradiation. After receiving a relatively high UV fluence, the polA1 mutant, deficient in DNA polymerase 1, showed a respiration shutoff response like the wild type cells. 5-Fluorouracil and rifampin, an RNA synthesis inhibitor, did not prevent respiration shutoff in the mutant cells as they did in the wild type cells. At lower fluences which did not shut off respiration of polA1 cells, cAMP did not cause a more complete shutoff as it did for the wild type cells. The tif-1 mutant has a modified recA protein, and when unirradiated cells are incubated at 42 0 C they form filaments, mutate, and show other rec/lex responses. This mutant did not shut off its respiration at either 30 or 42 0 C, and the response was not modified by cAMP. In an E. coli K12 strain, W3110, 52 J/m 2 UV did not shut off respiration and cAMP had no effect. (author)

  5. Dwarf Rice Mutant Derived from 0.2 kGy Gamma Rays Irradiated Seeds of Atomita 4 Variety

    International Nuclear Information System (INIS)

    Sobrizal; Sutisna Sanjaya; Carkum; Mohamad Ismachin

    2004-01-01

    Dwarf rice mutant was obtained when Atomita 4 seeds were irradiated by 0.2 kGy gamma rays. The results of segregation analyses in F2 populations and F3 lines derived from reciprocal crosses of mutant and Atomita 4 suggested that the dwarf was controlled by a single recessive gene. This gene was not located on rice cytoplasmic genome but on nuclear genome. The gene for dwarf obtained in this study tentatively could be assumed as a new finding until the allelic relationships with other dwarf genes are verified. (author)

  6. Defects of mutant DNMT1 are linked to a spectrum of neurological disorders.

    Science.gov (United States)

    Baets, Jonathan; Duan, Xiaohui; Wu, Yanhong; Smith, Gordon; Seeley, William W; Mademan, Inès; McGrath, Nicole M; Beadell, Noah C; Khoury, Julie; Botuyan, Maria-Victoria; Mer, Georges; Worrell, Gregory A; Hojo, Kaori; DeLeon, Jessica; Laura, Matilde; Liu, Yo-Tsen; Senderek, Jan; Weis, Joachim; Van den Bergh, Peter; Merrill, Shana L; Reilly, Mary M; Houlden, Henry; Grossman, Murray; Scherer, Steven S; De Jonghe, Peter; Dyck, Peter J; Klein, Christopher J

    2015-04-01

    We report a broader than previously appreciated clinical spectrum for hereditary sensory and autonomic neuropathy type 1E (HSAN1E) and a potential pathogenic mechanism for DNA methyltransferase (DNMT1) mutations. The clinical presentations and genetic characteristics of nine newly identified HSAN1E kinships (45 affected subjects) were investigated. Five novel mutations of DNMT1 were discovered; p.C353F, p.T481P, p.P491L, p.Y524D and p.I531N, all within the target-sequence domain, and two mutations (p.T481P, p.P491L) arising de novo. Recently, HSAN1E has been suggested as an allelic disorder of autosomal dominant cerebellar ataxia, deafness and narcolepsy. Our results indicate that all the mutations causal for HSAN1E are located in the middle part or N-terminus end of the TS domain, whereas all the mutations causal for autosomal dominant cerebellar ataxia, deafness and narcolepsy are located in the C-terminus end of the TS domain. The impact of the seven causal mutations in this cohort was studied by cellular localization experiments. The binding efficiency of the mutant DNMT proteins at the replication foci and heterochromatin were evaluated. Phenotypic characterizations included electromyography, brain magnetic resonance and nuclear imaging, electroencephalography, sural nerve biopsies, sleep evaluation and neuropsychometric testing. The average survival of HSAN1E was 53.6 years. [standard deviation = 7.7, range 43-75 years], and mean onset age was 37.7 years. (standard deviation = 8.6, range 18-51 years). Expanded phenotypes include myoclonic seizures, auditory or visual hallucinations, and renal failure. Hypersomnia, rapid eye movement sleep disorder and/or narcolepsy were identified in 11 subjects. Global brain atrophy was found in 12 of 14 who had brain MRI. EEGs showed low frequency (delta waves) frontal-predominant abnormality in five of six patients. Marked variability in cognitive deficits was observed, but the majority of patients (89%) developed

  7. Natural host genetic resistance to lentiviral CNS disease: a neuroprotective MHC class I allele in SIV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Joseph L Mankowski

    Full Text Available Human immunodeficiency virus (HIV infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS disease using a well-characterized simian immunodeficiency (SIV/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5. Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001. Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease.

  8. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  9. Effect of the double mutant e//e w//w and the culture medium on the productivity of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2000-01-01

    Full Text Available We investigated the effect of two culture media on the productivity of the double mutant ebony-white (e//e w//w of Drosophila melanogaster, aimed at improving the conditions for maintenance of Drosophila’s collection, Departamento de Biología, Universidad Nacional de Colombia. The results indicate that the productivity is affected by the culture medium, being the maize culture medium more productive than the wheat one; it was also shown that the productivity depends both, on the crosses type that is realize and on the mutant. The “+//+ +//+ x e//e w/ cross is more productive than its reciprocal cross, where the position of the ebony allele is the most important factor. With respect to the white allele, when carried by males it does not have effect on the productivity. In addition, we detected a negative effect of wheat culture medium on females +//e +//w.

  10. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato.

    Science.gov (United States)

    Pulungan, Sri Imriani; Yano, Ryoichi; Okabe, Yoshihiro; Ichino, Takuji; Kojima, Mikiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Ariizumi, Tohru; Ezura, Hiroshi

    2018-06-01

    Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.

  11. Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression

    DEFF Research Database (Denmark)

    Ioannidis, J P; Rosenberg, P S; Goedert, J J

    2001-01-01

    BACKGROUND: Studies relating certain chemokine and chemokine receptor gene alleles with the outcome of HIV-1 infection have yielded inconsistent results. OBJECTIVE: To examine postulated associations of genetic alleles with HIV-1 disease progression. DESIGN: Meta-analysis of individual-patient data....... SETTING: 19 prospective cohort studies and case-control studies from the United States, Europe, and Australia. PATIENTS: Patients with HIV-1 infection who were of European or African descent. MEASUREMENTS: Time to AIDS, death, and death after AIDS and HIV-1 RNA level at study entry or soon after...... (relative hazard among seroconverters, 0.64 and 0.74; P HIV-1 RNA levels after seroconversion (difference, -0.18 log(10) copies/mL and -0.14 log(10) copies/mL; P

  12. HLA Class II Allele, Haplotype, and Genotype Associations with Type 1 Diabetes in Benin: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kaossarath A. Fagbemi

    2017-01-01

    Full Text Available Background. Several studies have reported the implication of HLA-DR/DQ loci in the susceptibility to type 1 diabetes (T1D. Since no such study has yet been performed in Benin, this pilot one aimed at assessing HLA class II allele, haplotype, and genotype associations with T1D. Material and Methods. Class II HLA genotyping was performed in 51 patients with T1D and 51 healthy unrelated controls by means of the PCR-SSP method. The diagnosis of T1D was set up according to American Diabetes Association criteria. Odds ratio (OR and its 95% confidence interval (95% CI were calculated to assess the associations between T1D and HLA alleles, haplotypes, and genotypes. Results. Participants were aged 1–24 years. T1D was significantly associated with DR3, DQA1∗05:01, DQB1∗02:01, and DR3-DR4. No significant associations were observed with DR4, DQB1∗03:02, and DQB1∗06:02. Conclusion. Certain HLA class II alleles, haplotypes, and genotypes were related to T1D and may be used as genetic susceptibility markers to T1D in Benin.

  13. Synthetic alleles at position 121 define a functional domain of human interleukin-1 beta.

    Science.gov (United States)

    Ambrosetti, D C; Palla, E; Mirtella, A; Galeotti, C; Solito, E; Navarra, P; Parente, L; Melli, M

    1996-06-01

    The non-conservative substitution of the tyrosine residue at position 121 of human interleukin-1 beta (IL-1 beta) generates protein mutants showing strong reduction of the capacity to induce (a) prostaglandin E2 (PGE2) release from fibroblasts and smooth muscle cells, (b) murine T-cells proliferation and (c) activation of interleukin-6 (IL-6) gene expression. It is generally accepted that these functions are mediated by the type-I interleukin-1 receptor (IL-1RI). However, the mutant proteins maintain the binding affinity to the types-I and II IL-1 receptors, which is the same as the control IL-1 beta, suggesting that this amino acid substitution does not alter the structure of the molecule, except locally. Thus we have identified a new functional site of IL-1 beta different from the known receptor binding region, responsible for fundamental IL-1 beta functions. Moreover, we show that the same mutants maintain at least two hypothalamic functions, that is, the in vitro short-term PGE2 release from rat hypothalamus and the induction of fever in rabbits. This result suggests that there is yet another site of the molecule responsible for the hypothalamic functions, implying that multiple active sites on the IL-1 beta molecule, possibly binding to more than one receptor chain, trigger different signals.

  14. Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATalpha allele enhances filamentation.

    Directory of Open Access Journals (Sweden)

    Xiaorong Lin

    2006-11-01

    Full Text Available Cryptococcus neoformans is a fungal human pathogen with a bipolar mating system. It undergoes a dimorphic transition from a unicellular yeast to hyphal filamentous growth during mating and monokaryotic fruiting. The traditional sexual cycle that leads to the production of infectious basidiospores involves cells of both alpha and a mating type. Monokaryotic fruiting is a modified form of sexual reproduction that involves cells of the same mating type, most commonly alpha, which is the predominant mating type in both the environment and clinical isolates. However, some a isolates can also undergo monokaryotic fruiting. To determine whether mating type and other genetic loci contribute to the differences in fruiting observed between alpha and a cells, we applied quantitative trait loci (QTL mapping to an inbred population of F2 progeny. We discovered that variation in hyphal length produced during fruiting is a quantitative trait resulting from the combined effects of multiple genetic loci, including the mating type (MAT locus. Importantly, the alpha allele of the MAT locus enhanced hyphal growth compared with the a allele. Other virulence traits, including melanization and growth at 39 degrees C, also are quantitative traits that share a common QTL with hyphal growth. The Mac1 transcription factor, encoded in this common QTL, regulates copper homeostasis. MAC1 allelic differences contribute to phenotypic variation, and mac1Delta mutants exhibit defects in filamentation, melanin production, and high temperature growth. Further characterization of these QTL regions will reveal additional quantitative trait genes controlling biological processes central to fungal development and pathogenicity.

  15. Allele-specific MMP-3 transcription under in vivo conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaoyong, Zhu [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Odeberg, Jacob [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm (Sweden); Hamsten, Anders [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden); Eriksson, Per [Atherosclerosis Research Unit, King Gustav V Research Institute, Department of Medicine, Karolinska Institute, Stockholm (Sweden)

    2006-09-29

    A common matrix metalloproteinases-3 (MMP-3) -1612 5A/6A promoter polymorphism is associated with risk for cardiovascular disease, rheumatoid arthritis, and other diseases. Here we used the haplotype chromatin immunoprecipitation method to study allele-specific MMP-3 expression under in vivo conditions in heterozygous THP-1 cells. Pyrosequencing was used to analyse the ratio of 5A-allele to 6A-allele after chromatin immunoprecipitation using an antibody against phosphorylated active RNA polymerase II. There was no allele-specific difference in transcriptional activity during basal conditions, i.e., in unstimulated monocytic THP-1 cells. However, after stimulation of MMP-3 expression by monocyte differentiation or incubation with IL-1{beta}, the haplotype containing the 5A-allele was associated with higher transcriptional activity compared with the 6A-containing haplotype. Electromobility shift assay demonstrated increased binding of nuclear proteins to the 5A-allele after monocyte differentiation. In conclusion, the common MMP-3 5A/6A promoter polymorphism appears to be functional only during specific environmental conditions involving inflammation.

  16. The immunogenetics of multiple sclerosis. The frequency of HLA-alleles class 1 and 2 is lower in Southern Brazil than in the European population.

    Science.gov (United States)

    Werneck, Lineu Cesar; Lorenzoni, Paulo José; Arndt, Raquel Cristina; Kay, Cláudia Suemi Kamoi; Scola, Rosana Herminia

    2016-08-01

    To study the HLA of class 1and 2 in a multiple sclerosis (MS) population to verify the susceptibility for the disease in the Southern Brazil. We analyzed patients with MS and controls, by direct sequencing of the genes related to HLA DRB1, DQB1, DPB1, A, B and C alleles with high resolution techniques. We found a lower frequency of all HLA alleles class 1 and 2 in MS and controls comparing to the European population. Several alleles had statistical correlation, but after Bonferroni correction, the only allele with significance was the HLA-DQB1*02:03, which has a positive association with MS. Our data have different frequency of HLA-alleles than the previous published papers in the Southeast Brazil and European population, possible due to several ethnic backgrounds.

  17. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    Science.gov (United States)

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (Pmyositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.

  18. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants.

    Science.gov (United States)

    Chen, Longzheng; Li, Wei; Katin-Grazzini, Lorenzo; Ding, Jing; Gu, Xianbin; Li, Yanjun; Gu, Tingting; Wang, Ren; Lin, Xinchun; Deng, Ziniu; McAvoy, Richard J; Gmitter, Frederick G; Deng, Zhanao; Zhao, Yunde; Li, Yi

    2018-01-01

    Developing CRISPR/Cas9-mediated non-transgenic mutants in asexually propagated perennial crop plants is challenging but highly desirable. Here, we report a highly useful method using an Agrobacterium -mediated transient CRISPR/Cas9 gene expression system to create non-transgenic mutant plants without the need for sexual segregation. We have also developed a rapid, cost-effective, and high-throughput mutant screening protocol based on Illumina sequencing followed by high-resolution melting (HRM) analysis. Using tetraploid tobacco as a model species and the phytoene desaturase ( PDS ) gene as a target, we successfully created and expediently identified mutant plants, which were verified as tetra-allelic mutants. We produced pds mutant shoots at a rate of 47.5% from tobacco leaf explants, without the use of antibiotic selection. Among these pds plants, 17.2% were confirmed to be non-transgenic, for an overall non-transgenic mutation rate of 8.2%. Our method is reliable and effective in creating non-transgenic mutant plants without the need to segregate out transgenes through sexual reproduction. This method should be applicable to many economically important, heterozygous, perennial crop species that are more difficult to regenerate.

  19. Reduced Height (Rht Alleles Affect Wheat Grain Quality.

    Directory of Open Access Journals (Sweden)

    Richard Casebow

    Full Text Available The effects of dwarfing alleles (reduced height, Rht in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c as well as those that retained GA-sensitivity (rht(tall, Rht8, Rht8 + Ppd-D1a, Rht12. Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05 reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there

  20. Human leucocyte antigens class II allele and haplotype association with Type 1 Diabetes in Madeira Island (Portugal).

    Science.gov (United States)

    Spínola, H; Lemos, A; Couto, A R; Parreira, B; Soares, M; Dutra, I; Bruges-Armas, J; Brehm, A; Abreu, S

    2017-12-01

    This study confirms for Madeira Island (Portugal) population the Type 1 Diabetes (T1D) susceptible and protective Human leucocyte antigens (HLA) markers previously reported in other populations and adds some local specificities. Among the strongest T1D HLA associations, stands out, as susceptible, the alleles DRB1*04:05 (OR = 7.3), DQB1*03:02 (OR = 6.1) and DQA1*03:03 (OR = 4.5), as well as the haplotypes DRB1*04:05-DQA1*03:03-DQB1*03:02 (OR = 100.9) and DRB1*04:04-DQA1*03:01-DQB1*03:02 (OR = 22.1), and DQB1*06:02 (OR = 0.07) and DRB1*15:01-DQA1*01:02-DQB1*06:02 (OR = 0.04) as protective. HLA-DQA1 positive for Arginine at position 52 (Arg52) (OR = 15.2) and HLA-DQB1 negative for Aspartic acid at the position 57 (Asp57) (OR = 9.0) alleles appear to be important genetic markers for T1D susceptibility, with higher odds ratio values than any single allele and than most of the haplotypes. Genotypes generated by the association of markers Arg52 DQA1 positive and Asp57 DQB1 negative increase T1D susceptibility much more than one would expected by a simple additive effect of those markers separately (OR = 26.9). This study also confirms an increased risk for DRB1*04/DRB1*03 heterozygote genotypes (OR = 16.8) and also a DRB1*04-DQA1*03:01-DQB1*03:02 haplotype susceptibility dependent on the DRB1*04 allele (DRB1*04:01, OR = 7.9; DRB1*04:02, OR = 3.2; DRB1*04:04, OR = 22.1). © 2017 John Wiley & Sons Ltd.

  1. A γA-Crystallin Mouse Mutant Secc with Small Eye, Cataract and Closed Eyelid.

    Directory of Open Access Journals (Sweden)

    Man Hei Cheng

    Full Text Available Cataract is the most common cause of visual loss in humans. A spontaneously occurred, autosomal dominant mouse mutant Secc, which displayed combined features of small eye, cataract and closed eyelid was discovered in our laboratory. In this study, we identified the mutation and characterized the cataract phenotype of this novel Secc mutant. The Secc mutant mice have eyelids that remain half-closed throughout their life. The mutant lens has a significant reduction in size and with opaque spots clustered in the centre. Histological analysis showed that in the core region of the mutant lens, the fiber cells were disorganized and clefts and vacuoles were observed. The cataract phenotype was evident from new born stage. We identified the Secc mutation by linkage analysis using whole genome microsatellite markers and SNP markers. The Secc locus was mapped at chromosome 1 flanked by SNPs rs3158129 and rs13475900. Based on the chromosomal position, the candidate cataract locus γ-crystallin gene cluster (Cryg was investigated by sequencing. A single base deletion (299delG in exon 3 of Cryga which led to a frame-shift of amino acid sequence from position 91 was identified. As a result of this mutation, the sequences of the 3rd and 4th Greek-key motifs of the γA-crystallin are replaced with an unrelated C-terminal peptide of 75 residues long. Coincidentally, the point mutation generated a HindIII restriction site, allowing the identification of the CrygaSecc mutant allele by RFLP. Western blot analysis of 3-week old lenses showed that the expression of γ-crystallins was reduced in the CrygaSecc mutant. Furthermore, in cell transfection assays using CrygaSecc mutant cDNA expression constructs in 293T, COS-7 and human lens epithelial B3 cell lines, the mutant γA-crystallins were enriched in the insoluble fractions and appeared as insoluble aggregates in the transfected cells. In conclusion, we have demonstrated that the Secc mutation leads to the

  2. Characterization of new mutants in the early part of the yeast secretory pathway isolated by a [3H]mannose suicide selection

    International Nuclear Information System (INIS)

    Newman, A.P.; Ferro-Novick, S.

    1987-01-01

    We have adapted a [ 3 H]mannose suicide selection to identify mutations in additional genes which function in the early part of the yeast secretory pathway. Thus far this protocol has led to the identification of two new genes which are implicated in this process, as well as additional alleles of previously identified genes. The new mutants, bet1 and bet2, are temperature sensitive for growth and protein transport. Thin section analysis has revealed the accumulation of a network of endoplasmic reticulum (ER) at the restrictive temperature (37 0 C). Precursors of exported proteins that accumulate in the cell at 37 0 C are terminally core glycosylated. These observations suggest that the transport of precursors is blocked subsequent to translocation into the ER but before entry into the Golgi apparatus. The bet1 and bet2 mutants define two new complementation groups which have the same properties as previously identified ER-accumulating mutants. This and previous findings suggest that protein exit from the ER and entry into the Golgi apparatus is a complex process requiring at least 11 genes

  3. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis.

    Science.gov (United States)

    Fukudome, Mitsutaka; Calvo-Begueria, Laura; Kado, Tomohiro; Osuki, Ken-Ichi; Rubio, Maria Carmen; Murakami, Ei-Ichi; Nagata, Maki; Kucho, Ken-Ichi; Sandal, Niels; Stougaard, Jens; Becana, Manuel; Uchiumi, Toshiki

    2016-09-01

    Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia-legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5'-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Lack of association between TaqI A1 Allele of dopamine D2 receptor gene and alcohol-use disorders in Atayal natives of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chia-Hsiang Chen [Cheng Hsin Rehabilitation and Medical Center, Taipei (Taiwan, Province of China); Shih-Hsiang Chien; Hai-Gwo Hwu [National Taiwan Univ., Taipei (Taiwan, Province of China)

    1996-09-20

    Association studies between the A1 allele of the dopamine D2 receptor (DRD2) gene TaqI A polymorphism and alcoholism remain controversial. A recent study from Japan demonstrated that the A1 allele is associated with severe alcoholism in the Japanese population. We were interested in knowing if this association also exists in the Atayals of Taiwan, who were found to have a higher prevalence of alcohol-use disorders than the Han Chinese in Taiwan. Genotype and allele frequencies were determined in alcohol-abusing, alcohol-dependent, and nonalcoholic control Atayal natives in Taiwan. A1 allele frequencies in alcohol-dependent, alcohol-abusing, and normal control Atayals were 0.39, 0.42, and 0.39, respectively. No difference in A1 allele frequency was found among these three groups. Our data do not support the hypothesis that the A1 allele of the TaqI A polymorphism of the DRD2 gene increases susceptibility to alcohol-use disorders in the Atayals of Taiwan. 18 refs., 1 tab.

  5. Genotype and allelic frequencies of CYP2E1*5B polymorphism in the southwest population of Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Zanganeh

    2014-10-01

    Full Text Available Background: Cytochrome P450 2E1 (CYP2E1 is a main enzyme which plays a major role in activating and detoxifying many xenobiotics, carcinogens and drugs. Available studies suggest that CYP2E1 single nucleotide polymorphisms (SNPs are involved in the risk of developing certain cancers after exposure to carcinogens. The purpose of the present study was to assess genotype and allele frequencies of polymorphic CYP2E1*5B in the Iranian population. Material and Methods: This study was performed on 200 healthy individuals (female: 100, male: 100 in medical laboratories of Ahvaz during 2011. The CYP2E1 *5B (rs3813867 G-1293C assessment was carried out using PCR-RFLP method. The data were analyzed with ĸ2 and hardy-Weinberg Equation statistically methods. Results: The frequency of *1A/*1A (c1/c1, *1A/*5B (c1/c2 and *5B/*5B (c2/c2 genotypes was computed 97, 3 and 0 percent, respectively. The frequency of *1A (c1 and *5B (c2 alleles was computed 98.5 and 1.5 percent, respectively. No statistically significant difference was between two genders (p>0.05. Conclusion: The genotype distribution and allele frequencies of CYP2E1*5B polymorphism were similar to Turkish and some of the European populations. However, there are significant interethnic differences when the Iranian population is compared with the Eastern Asian, American and some of the European populations. The allelic distribution of this polymorphism did not vary with gender.

  6. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  7. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum.) by the gene encoding granule-bound starch synthase

    NARCIS (Netherlands)

    van der Leij, E.R.; Visser, R.G.E.; OOSTERHAVEN, K; VANDERKOP, DAM; Jacobsen, E.; Feenstra, W.

    1991-01-01

    Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granule-bound starch synthase (GBSS) into the amylose-free starch mutant amf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates that Amf is the structural gene for GBSS.

  8. DNA Methylation Analysis of BRD1 Promoter Regions and the Schizophrenia rs138880 Risk Allele.

    Directory of Open Access Journals (Sweden)

    Mads Dyrvig

    Full Text Available The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS development. It encodes a protein that participates in histone modifying complexes and thereby regulates the expression of a large number of genes. Genetic variants in the BRD1 locus show association with schizophrenia and bipolar disorder and risk alleles in the promoter region correlate with reduced BRD1 expression. Insights into the transcriptional regulation of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however, remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evidence for differences in relative expression of BRD1 transcripts with three alternative 5' UTRs (exon 1C, 1B, and 1A. We further show that expression of these transcript variants covaries negatively with DNA methylation proportions in their upstream promoter regions suggesting that promoter usage might be regulated by DNA methylation. In line with findings that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspecting available DNA methylation and expression data that these regions undergo changes in methylation during fetal brain development and that differences in their methylation proportions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expression. These findings suggest that BRD1 may be dysregulated in both the developing and mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabilizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation of BRD1 which raises interesting perspectives for targeting the mechanisms pharmacologically.

  9. Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression.

    Science.gov (United States)

    Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason W H; Sloane, Mathew A; Ward, Robyn L

    2015-06-01

    Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5'untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5'UTR in the pathogenesis of Lynch syndrome. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  10. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    Science.gov (United States)

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  11. First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement.

    Science.gov (United States)

    Vicente-Dólera, Nelly; Troadec, Christelle; Moya, Manuel; del Río-Celestino, Mercedes; Pomares-Viciana, Teresa; Bendahmane, Abdelhafid; Picó, Belén; Román, Belén; Gómez, Pedro

    2014-01-01

    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding.

  12. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.

    Science.gov (United States)

    Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G

    2002-07-01

    Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.

  13. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Michael E. Østergaard

    2017-06-01

    Full Text Available Antisense oligonucleotides (ASOs have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically substitute every position in the gap region of an ASO targeting huntingtin gene (HTT with fluorinated nucleotides. Potency is determined in cell culture against mutant HTT (mtHTT and wild-type HTT (wtHTT mRNA and RNase H cleavage intensities, and patterns are investigated. This study profiled five different fluorinated nucleotides and showed them to have predictable, site-specific effects on RNase H cleavage, and the cleavage patterns were rationalized from a published X-ray structure of human RNase H1. The results herein can be used as a guide for future projects where ASO discrimination of SNPs is important.

  14. Population genetics inference for longitudinally-sampled mutants under strong selection.

    Science.gov (United States)

    Lacerda, Miguel; Seoighe, Cathal

    2014-11-01

    Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model. Copyright © 2014 by the Genetics Society of America.

  15. Gamma ray induced mutants in Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, K; Jos, J S [Central Tuber Crops Research Institute, Trivandrum, Kerala (India)

    1988-07-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M{sub 1}V{sub 1} generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m{sup 2} area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing.

  16. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  17. Mutation avoidance and DNA repair proficiency in Ustilago maydis are differentially lost with progressive truncation of the REC1 gene product

    Energy Technology Data Exchange (ETDEWEB)

    Onel, K.; Thelen, M.P.; Ferguson, D.O.; Bennett, R.L.; Holloman, W.K. [Cornell Univ. Medical College, NY, NY (United States)

    1995-10-01

    The REC1 gene of Ustilago maydis has an uninterrupted open reading frame, predicted from the genomic sequence to encode a protein of 522 amino acid residues. Nevertheless, an intron is present, and functional activity of the gene in mitotic cells requires an RNA processing event to remove the intron. This results in a change in reading frame and production of a protein of 463 amino acid residues. The 3{prime}{r_arrow}5{prime} exonuclease activity of proteins derived form the REC1 genomic open reading frame, the intronless open reading frame, and several mutants was investigated. The mutants included a series of deletions constructed by removing restriction fragments at the 3{prime} end of the cloned REC1 gene and a set of mutant alleles previously isolated in screens for radiation sensitivity. The results indicated that elimination of the C-terminal third of the protein did not result in a serious reduction in 3{prime}{r_arrow}5{prime} exonuclease activity, but deletion into the midsection caused a severe loss of activity. The biological activity of the rec1-1 allele, which encodes a truncated polypeptide with full 3{prime}{r_arrow}5{prime} exonuclease activity, and the rec1-5 allele, which encodes a more severely truncated polypeptide with no exonuclease activity, was investigated. The two mutants were equally sensitive to the lethal effect of UV light, but the spontaneous mutation rate was elevated 10-fold over the wild-type rate in the rec1-1 mutant and 100-fold in the rec1-5 mutant. The elevated spontaneous mutation rate correlated with the ablation of exonuclease activity, but the radiation sensitivity did not. These results indicate that the C-terminal portion of the Rec1 protein is not essential for exonuclease activity but is crucial in the role of REC1 in DNA damage repair. 49 refs., 3 figs., 1 tab.

  18. MicroRNAs differentially regulate carbonyl reductase 1 (CBR1 gene expression dependent on the allele status of the common polymorphic variant rs9024.

    Directory of Open Access Journals (Sweden)

    James L Kalabus

    Full Text Available MicroRNAs (miRNAs are small RNAs responsible for the post-transcriptional regulation of a variety of human genes. To date, their involvement in the regulation of CBR1 is unknown. This study reports for the first time the identification of microRNA-574-5p (hsa-miR-574-5p and microRNA-921 (hsa-miR-921 as two miRNAs capable of interacting with the 3'-untranslated region (3'-UTR of the CBR1 gene and downregulating CBR1 expression. Furthermore, we demonstrate that a common single-nucleotide polymorphism (SNP in the CBR1 3'-UTR (rs9024, CBR1 1096G>A differentially impacts the regulation of CBR1 by hsa-miR-574-5p and hsa-miR-921 dependent on genotype. First, four candidate miRNAs were selected based on bioinformatic analyses, and were tested in Chinese hamster ovary (CHO cells transfected with CBR1 3'-UTR constructs harboring either the G or A allele for rs9024. We found that hsa-miR-574-5p and hsa-miR-921 significantly decreased luciferase activity in CHO cells transfected with the CBR1 3'-UTR construct carrying the major rs9024 G allele by 35% and 46%, respectively. The influence of these miRNAs was different in cells transfected with a CBR1 3'-UTR construct containing the minor rs9024 A allele in that only hsa-miR-574-5p had a demonstrable effect (i.e., 52% decrease in lucifersase activity. To further determine the functional effects of miRNA-mediated regulation of polymorphic CBR1, we assessed CBR1 protein expression and CBR1 enzymatic activity for the prototypical substrate menadione in human lymphoblastoid cell lines with distinct rs9024 genotypes. We found that hsa-miR-574-5p and hsa-miR-921 significantly decreased CBR1 protein (48% and 40%, respectively and CBR1 menadione activity (54% and 18%, respectively in lymphoblastoid cells homozygous for the major rs9024 G allele. In contrast, only hsa-miR-574-5p decreased CBR1 protein and CBR1 activity in cells homozygous for the minor rs9024 A allele, and did so by 49% and 56%, respectively. These

  19. Fission yeast APC/C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis.

    Science.gov (United States)

    Chikashige, Yuji; Yamane, Miho; Okamasa, Kasumi; Osakada, Hiroko; Tsutsumi, Chihiro; Nagahama, Yuki; Fukuta, Noriko; Haraguchi, Tokuko; Hiraoka, Yasushi

    2017-04-01

    In meiosis, two rounds of nuclear division occur consecutively without DNA replication between the divisions. We isolated a fission yeast mutant in which the nucleus divides only once to generate two spores, as opposed to four, in meiosis. In this mutant, we found that the initiation codon of the slp1 + gene is converted to ATA, producing a reduced amount of Slp1. As a member of the Fizzy family of anaphase-promoting complex/cyclosome (APC/C) activators, Slp1 is essential for vegetative growth; however, the mutant allele shows a phenotype only in meiosis. Slp1 insufficiency delays degradation of maturation-promoting factor at the first meiotic division, and another APC/C activator, Fzr1, which acts late in meiosis, terminates meiosis immediately after the delayed first division to produce two viable spores. © 2017 Federation of European Biochemical Societies.

  20. Flightless mutants in the melon fly and oriental fruit fly (Diptera: Tephritidae) and their possible role in the sterile insect release method

    International Nuclear Information System (INIS)

    McCombs, S.D.; Saul, S.H.

    1992-01-01

    Two new mutants that affect adult wing morphology and render the flies incapable of flight.sbd.bubble wing (bw) in the melon fly, Bactrocera cucurbitae (Coquillett), and small wing (sw) in the oriental fruit fly, Bactrocera dorsalis (Hendel).sbd.are described. Both mutants have variable expression and are caused by autosomal, recessive genes. We discuss the possible role of these alleles in constructing genetic sex sorting systems to improve the effectiveness and efficiency of the sterile insect release method

  1. Genetics of leaf rust-resistant mutant WH 147-LM-1 in hexaploid wheat variety WH 147

    International Nuclear Information System (INIS)

    Reddy, V.R.K.; Viswanathan, P.

    1999-01-01

    By applying gamma rays, EMS and their combination in hexaploid wheat variety WH 147, a total of 20 mutants (0.0226%) exhibiting complete leaf rust resistance were isolated from segregating M2 rows.When one of the rust-resistant mutants, WH 147-LM-1 was crossed with the universally susceptible, suggesting that the mutant character is controlled by one dominant gene and one recessive gene.The F2 plants derived by crossing the mutant WH 147-LM with seven near-isogenic wheat lines showed segregation for susceptibility, indicating that the mutant character was indeed generated through induced mutations

  2. Assigning breed origin to alleles in crossbred animals.

    Science.gov (United States)

    Vandenplas, Jérémie; Calus, Mario P L; Sevillano, Claudia A; Windig, Jack J; Bastiaansen, John W M

    2016-08-22

    For some species, animal production systems are based on the use of crossbreeding to take advantage of the increased performance of crossbred compared to purebred animals. Effects of single nucleotide polymorphisms (SNPs) may differ between purebred and crossbred animals for several reasons: (1) differences in linkage disequilibrium between SNP alleles and a quantitative trait locus; (2) differences in genetic backgrounds (e.g., dominance and epistatic interactions); and (3) differences in environmental conditions, which result in genotype-by-environment interactions. Thus, SNP effects may be breed-specific, which has led to the development of genomic evaluations for crossbred performance that take such effects into account. However, to estimate breed-specific effects, it is necessary to know breed origin of alleles in crossbred animals. Therefore, our aim was to develop an approach for assigning breed origin to alleles of crossbred animals (termed BOA) without information on pedigree and to study its accuracy by considering various factors, including distance between breeds. The BOA approach consists of: (1) phasing genotypes of purebred and crossbred animals; (2) assigning breed origin to phased haplotypes; and (3) assigning breed origin to alleles of crossbred animals based on a library of assigned haplotypes, the breed composition of crossbred animals, and their SNP genotypes. The accuracy of allele assignments was determined for simulated datasets that include crosses between closely-related, distantly-related and unrelated breeds. Across these scenarios, the percentage of alleles of a crossbred animal that were correctly assigned to their breed origin was greater than 90 %, and increased with increasing distance between breeds, while the percentage of incorrectly assigned alleles was always less than 2 %. For the remaining alleles, i.e. 0 to 10 % of all alleles of a crossbred animal, breed origin could not be assigned. The BOA approach accurately assigns

  3. Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila.

    Science.gov (United States)

    White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M

    1996-11-01

    We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.

  4. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    Science.gov (United States)

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  5. Altered Regulation of Escherichia coli Biotin Biosynthesis in BirA Superrepressor Mutant Strains

    Science.gov (United States)

    Chakravartty, Vandana

    2012-01-01

    Transcription of the Escherichia coli biotin (bio) operon is directly regulated by the biotin protein ligase BirA, the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein, which is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (biotinoyl-5′-AMP), the obligatory intermediate of the ligation reaction. Although several aspects of this regulatory system are well understood, no BirA superrepressor mutant strains had been isolated. Such superrepressor BirA proteins would repress the biotin operon transcription in vivo at biotin concentrations well below those needed for repression by wild-type BirA. We isolated mutant strains having this phenotype by a combined selection-screening approach and resolved multiple mutations to give several birA superrepressor alleles, each having a single mutation, all of which showed repression dominant over that of the wild-type allele. All of these mutant strains repressed bio operon transcription in vivo at biotin concentrations that gave derepression of the wild-type strain and retained sufficient ligation activity for growth when overexpressed. All of the strains except that encoding G154D BirA showed derepression of bio operon transcription upon overproduction of a biotin-accepting protein. In BirA, G154D was a lethal mutation in single copy, and the purified protein was unable to transfer biotin from enzyme-bound biotinoyl-adenylate either to the natural acceptor protein or to a biotin-accepting peptide sequence. Consistent with the transcriptional repression data, each of the purified mutant proteins showed increased affinity for the biotin operator DNA in electrophoretic mobility shift assays. Surprisingly, although most of the mutations were located in the catalytic domain, all of those tested, except G154D BirA, had normal ligase activity. Most of the mutations that gave superrepressor phenotypes altered residues

  6. ALS-causing profilin-1-mutant forms a non-native helical structure in membrane environments.

    Science.gov (United States)

    Lim, Liangzhong; Kang, Jian; Song, Jianxing

    2017-11-01

    Despite having physiological functions completely different from superoxide dismutase 1 (SOD1), profilin 1 (PFN1) also carries mutations causing amyotrophic lateral sclerosis (ALS) with a striking similarity to that triggered by SOD1 mutants. Very recently, the C71G-PFN1 has been demonstrated to cause ALS by a gain of toxicity and the acceleration of motor neuron degeneration preceded the accumulation of its aggregates. Here by atomic-resolution NMR determination of conformations and dynamics of WT-PFN1 and C71G-PFN1 in aqueous buffers and in membrane mimetics DMPC/DHPC bicelle and DPC micelle, we deciphered that: 1) the thermodynamic destabilization by C71G transforms PFN1 into coexistence with the unfolded state, which is lacking of any stable tertiary/secondary structures as well as restricted ps-ns backbone motions, thus fundamentally indistinguishable from ALS-causing SOD1 mutants. 2) Most strikingly, while WT-PFN1 only weakly interacts with DMPC/DHPC bicelle without altering the native structure, C71G-PFN1 acquires abnormal capacity in strongly interacting with DMPC/DHPC bicelle and DPC micelle, energetically driven by transforming the highly disordered unfolded state into a non-native helical structure, similar to what has been previously observed on ALS-causing SOD1 mutants. Our results imply that one potential mechanism for C71G-PFN1 to initiate ALS might be the abnormal interaction with membranes as recently established for SOD1 mutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    Science.gov (United States)

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  8. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice

    Directory of Open Access Journals (Sweden)

    Shoji Hirotaka

    2012-02-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 is considered to be a candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder, and major depression. A recent study reported that N-ethyl-N-nitrosourea (ENU-induced mutations in exon 2 of the mouse Disc1 gene, which resulted in the amino acid exchange of Q31L and L100P, caused an increase in depression-like behavior in 31 L mutant mice and schizophrenia-like behavior in 100P mutant mice; thus, these are potential animal models of psychiatric disorders. However, remaining heterozygous mutations that possibly occur in flanking genes other than Disc1 itself might induce behavioral abnormalities in the mutant mice. Here, to confirm the effects of Disc1-Q31L and Disc1-L100P mutations on behavioral phenotypes and to investigate the behaviors of the mutant mice in more detail, the mutant lines were backcrossed to C57BL/6JJcl through an additional two generations and the behaviors were analyzed using a comprehensive behavioral test battery. Results Contrary to expectations, 31 L mutant mice showed no significant behavioral differences when compared with wild-type control mice in any of the behavioral tests, including the Porsolt forced swim and tail suspension tests, commonly used tests for depression-like behavior. Also, 100P mutant mice exhibited no differences in almost all of the behavioral tests, including the prepulse inhibition test for measuring sensorimotor gating, which is known to be impaired in schizophrenia patients; however, 100P mutant mice showed higher locomotor activity compared with wild-type control mice in the light/dark transition test. Conclusions Although these results are partially consistent with the previous study in that there was hyperactivity in 100P mutant mice, the vast majority of the results are inconsistent with those of the previous study; this discrepancy may be explained by differences in the genetic background of the

  9. Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components.

    Science.gov (United States)

    Sato, Kanna; Suzuki, Ryu; Nishikubo, Nobuyuki; Takenouchi, Sachi; Ito, Sachiko; Nakano, Yoshimi; Nakaba, Satoshi; Sano, Yuzou; Funada, Ryo; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro

    2010-06-01

    The plant secondary cell wall is a highly ordered structure composed of various polysaccharides, phenolic components and proteins. Its coordinated regulation of a number of complex metabolic pathways and assembly has not been resolved. To understand the molecular mechanisms that regulate secondary cell wall synthesis, we isolated a novel rice mutant, cell wall architecture1 (cwa1), that exhibits an irregular thickening pattern in the secondary cell wall of sclerenchyma, as well as culm brittleness and reduced cellulose content in mature internodes. Light and transmission electron microscopy revealed that the cwa1 mutant plant has regions of local aggregation in the secondary cell walls of the cortical fibers in its internodes, showing uneven thickness. Ultraviolet microscopic observation indicated that localization of cell wall phenolic components was perturbed and that these components abundantly deposited at the aggregated cell wall regions in sclerenchyma. Therefore, regulation of deposition and assembly of secondary cell wall materials, i.e. phenolic components, appear to be disturbed by mutation of the cwa1 gene. Genetic analysis showed that cwa1 is allelic to brittle culm1 (bc1), which encodes the glycosylphosphatidylinositol-anchored COBRA-like protein specifically in plants. BC1 is known as a regulator that controls the culm mechanical strength and cellulose content in the secondary cell walls of sclerenchyma, but the precise function of BC1 has not been resolved. Our results suggest that CWA1/BC1 has an essential role in assembling cell wall constituents at their appropriate sites, thereby enabling synthesis of solid and flexible internodes in rice.

  10. Multiple antibiotic susceptibility of polyphosphate kinase mutants (ppk1 and ppk2 from Pseudomonas aeruginosa PAO1 as revealed by global phenotypic analysis

    Directory of Open Access Journals (Sweden)

    Javiera Ortiz-Severín

    2015-01-01

    Full Text Available BACKGROUND: Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1 is deficient in motility, quorum sensing, biofilm formation and virulence FINDINGS: By using Phenotypic Microarrays (PM we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2. We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin CONCLUSIONS: Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

  11. Mutation rate heterogeneity and the generation of allele diversity at the human minisatellite MS205 (D16S309).

    Science.gov (United States)

    May, C A; Jeffreys, A J; Armour, J A

    1996-11-01

    Many tandemly repeated minisatellite loci display extreme levels of length variation as a consequence of high rates of spontaneous germline mutation altering repeat copy number. Direct screening for new allele lengths by small-pool PCR has shown that instability at the human minisatellite locus MS205 (D16S309) is largely germline specific and usually results in the gain or loss of just a few repeat units. Structural analysis of the order of variant repeats has shown that these events occur preferentially at one end of the tandem array and can result in complex rearrangements including the inter-allelic transfer of repeat units. In contrast, putative mutants recovered from somatic DNA occur at a substantially lower rate and are simple and non-polar in nature. Germline mutation rates vary considerably between alleles, consistent with regulation occurring in cis. Although examination of DNA sequence polymorphisms immediately flanking the minisatellite reveals no definitive associations with germline mutation rate variation, differences in rate may be paralleled by changes in mutation spectrum. These findings help to explain the diversity of MS205 allele structures in modern humans and suggest a common mutation pathway with some other minisatellites.

  12. Myotonic dystrophy type 1: role of CCG, CTC and CGG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis.

    Science.gov (United States)

    Santoro, M; Masciullo, M; Silvestri, G; Novelli, G; Botta, A

    2017-10-01

    Myotonic dystrophy type 1 (DM1) is a multisystem neuromuscular disease caused by a CTG triplet expansion in the 3'-untranslated region (3'-UTR) of DMPK gene. This CTG array is usually uninterrupted in both healthy and DM1 patients, but recent studies identified pathological variant expansions containing unstable CCG, CTC and CGG interruptions with a prevalence of 3-5% of cases. In this review, we will describe the clinical, molecular and genetic issues related to the occurrence of variant expansions associated with DM1. Indeed, the identification of these complex DMPK alleles leads to practical consequences in DM1 genetic counseling and testing, because these exams can give false negative results. Moreover, DM1 patients carrying interrupted alleles can manifest either additional atypical neurological symptoms or, conversely, mild, late-onset forms. Therefore, the prognosis of the disease in these patients is difficult to determine because of the great uncertainty about the genotype-phenotype correlations. We will discuss the putative effects of the variant DM1 alleles on the pathogenic disease mechanisms, including mitotic and meiotic repeats instability and splicing alteration typical of DM1 tissues. Interruptions within the DMPK expanded alleles could also interfere with the chromatin structure, the transcriptional activity of the DM1 locus and the interaction with RNA CUG-binding proteins. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. DRD4 dopamine receptor allelic diversity in various primate species

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.; Higley, D. [NIAAA, Rockville, MD (United States); O`Brien, S. [NCI, Frederick, MD (United States)] [and others

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  14. Correlation Between HLA-A, B and DRB1 Alleles and Severe Fever with Thrombocytopenia Syndrome.

    Directory of Open Access Journals (Sweden)

    Shu-Jun Ding

    2016-10-01

    Full Text Available Severe fever with thrombocytopenia syndrome (SFTS is an emerging hemorrhagic fever caused by a tick-borne bunyavirus (SFTSV in East Asian countries. The role of human leukocyte antigen (HLA in resistance and susceptibility to SFTSV is not known. We investigated the correlation of HLA locus A, B and DRB1 alleles with the occurrence of SFTS.A total of 84 confirmed SFTS patients (patient group and 501 unrelated non-SFTS patients (healthy individuals as control group from Shandong Province were genotyped by PCR-sequence specific oligonucleotide probe (PCR-SSOP for HLA-A, B and DRB1 loci.Allele frequency was calculated and compared using χ2 test or the Fisher's exact test. A corrected P value was calculated with a bonferronis correction. Odds Ratio (OR and 95% confidence intervals (CI were calculated by Woolf's method.A total of 11 HLA-A, 23 HLA-B and 12 HLA-DRB1 alleles were identified in the patient group, whereas 15 HLA-A, 30 HLA-B and 13 HLA-DRB1 alleles were detected in the control group. The frequencies of A*30 and B*13 in the SFTS patient group were lower than that in the control group (P = 0.0341 and 0.0085, Pc = 0.5115 and 0.252. The ORs of A*30 and B*13 in the SFTS patient group were 0.54 and 0.49, respectively. The frequency of two-locus haplotype A*30-B*13 was lower in the patient group than in the control group(5.59% versus 12.27%, P = 0.037,OR = 0.41, 95%CI = 0.18-0.96 without significance(Pc>0.05. A*30-B*13-DRB1*07 and A*02-B*15-DRB1*04 had strong associations with SFTS resistance and susceptibility respectively (Pc = 0.0412 and 0.0001,OR = 0.43 and 5.07.The host HLA class I polymorphism might play an important role with the occurrence of SFTS. Negative associations were observed with HLA-A*30, HLA-B*13 and Haplotype A*30-B*13, although the associations were not statistically significant. A*30-B*13-DRB1*07 had negative correlation with the occurrence of SFTS; in contrast, haplotype A*02-B*15-DRB1*04 was positively correlated with SFTS.

  15. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during MicroRNA biogenesis

    KAUST Repository

    Liu, Chenggang

    2012-04-03

    Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher Kcat and lower Km values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates. © 2012 American Society of Plant Biologists.

  16. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development.

    Science.gov (United States)

    Bustos-Sanmamed, Pilar; Hudik, Elodie; Laffont, Carole; Reynes, Christelle; Sallet, Erika; Wen, Jiangqi; Mysore, Kirankumar S; Camproux, Anne-Claude; Hartmann, Caroline; Gouzy, Jérome; Frugier, Florian; Crespi, Martin; Lelandais-Brière, Christine

    2014-12-01

    RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type.

    Science.gov (United States)

    Wang, T; Picard, J C; Tian, X; Darmency, H

    2010-10-01

    It is often alleged that mutations conferring herbicide resistance have a negative impact on plant fitness. A mutant ACCase1781 allele endowing resistance to the sethoxydim herbicide was introgressed from a resistant green foxtail (Setaria viridis (L.) Beauv) population into foxtail millet (S. italica (L.) Beauv.). (1) Better and earlier growth of resistant plants was observed in a greenhouse cabinet. (2) Resistant plants of the advanced BC7 backcross generation showed more vigorous juvenile growth in the field, earlier flowering, more tillers and higher numbers of grains than susceptible plants did, especially when both genotypes were grown in mixture, but their seeds were lighter than susceptible seeds. (3) Field populations originating from segregating hybrids had the expected allele frequencies under normal growth conditions, but showed a genotype shift toward an excess of homozygous resistant plants within 3 years in stressful conditions. Lower seed size, lower germination rate and perhaps unexplored differences in seed longevity and predation could explain how the resistant plants have the same field fitness over the whole life cycle as the susceptible ones although they produce more seeds. More rapid growth kinetics probably accounted for higher fitness of the resistant plants in adverse conditions. The likelihood of a linkage with a beneficial gene is discussed versus the hypothesis of a pleiotropic effect of the ACCase resistance allele. It is suggested that autogamous species like Setaria could not develop a resistant population without the help of a linkage with a gene producing a higher fitness.

  18. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko; Yamato, Osamu

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  19. ALEA: a toolbox for allele-specific epigenomics analysis.

    Science.gov (United States)

    Younesy, Hamid; Möller, Torsten; Heravi-Moussavi, Alireza; Cheng, Jeffrey B; Costello, Joseph F; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M

    2014-04-15

    The assessment of expression and epigenomic status using sequencing based methods provides an unprecedented opportunity to identify and correlate allelic differences with epigenomic status. We present ALEA, a computational toolbox for allele-specific epigenomics analysis, which incorporates allelic variation data within existing resources, allowing for the identification of significant associations between epigenetic modifications and specific allelic variants in human and mouse cells. ALEA provides a customizable pipeline of command line tools for allele-specific analysis of next-generation sequencing data (ChIP-seq, RNA-seq, etc.) that takes the raw sequencing data and produces separate allelic tracks ready to be viewed on genome browsers. The pipeline has been validated using human and hybrid mouse ChIP-seq and RNA-seq data. The package, test data and usage instructions are available online at http://www.bcgsc.ca/platform/bioinfo/software/alea CONTACT: : mkarimi1@interchange.ubc.ca or sjones@bcgsc.ca Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota

    2017-04-06

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.Our results show that, in the era of genomic sequencing and

  1. Molecular analysis of human argininosuccinate lyase: Mutant characterization and alternative splicing of the coding region

    International Nuclear Information System (INIS)

    Walker, D.C.; McCloskey, D.A.; Simard, L.R.; McInnes, R.R.

    1990-01-01

    Argininosuccinic acid lyase (ASAL) deficiency is a clinically heterogeneous autosomal recessive urea cycle disorder. The authors previously established by complementation analysis that 29 ASAL-deficient patients have heterogeneous mutations in a single gene. To prove that the ASAL structural gene is the affected locus, they sequenced polymerase chain reaction-amplified ASAL cDNA of a representative mutant from the single complementation group. Fibroblast strain 944 from a late-onset patient who was the product of a consanguineous mating, had only a single base-pair change in the coding region, a C-283→ T transition at a CpG dinucleotide in exon 3. This substitution converts Arg-95 to Cys (R95C), occurs in a stretch of 13 residues that is identical in yeast and human ASAL, and was present in both of the patient's alleles but not in 14 other mutant or 10 normal alleles. They observed that amplified cDNA from mutant 944 and normal cells (liver, keratinocytes, lymphoblasts, and fibroblasts) contained, in addition to the expected 5' 513-base-pair band, a prominent 318-base-pair ASAL band formed by the splicing of exon 2 from the transcript. The short transcript maintains the ASAL reading frame but removes Lys-51, a residue that may be essential for catalysis, since it binds the argininosuccinate substrate. They conclude (i) that the identification of the R95C mutation in strain 944 demonstrates that virtually all ASAL deficiency results from defects in the ASAL structural gene and (ii) that minor alternative splicing of the coding region occurs at the ASAL locus

  2. HLA-A, HLA-B, and HLA-DRB1 Allele and Haplotype Frequencies in Renal Transplant Candidates in a Population in Southern Brazil.

    Science.gov (United States)

    Saito, Patrícia Keiko; Yamakawa, Roger Haruki; Noguti, Erika Noda; Bedendo, Gustavo Borelli; Júnior, Waldir Veríssimo da Silva; Yamada, Sérgio Seiji; Borelli, Sueli Donizete

    2016-05-01

    Very few studies have examined the diversity of human leukocyte antigens (HLA) in the Brazilian renal transplant candidates. The frequencies of the HLA-A, HLA-B, and HLA-DRB1 alleles, haplotypes and phenotypes were studied in 522 patients with chronic renal failure, renal transplant candidates, registered at the Transplant Centers in north/northwestern Paraná State, southern Brazil. Patients were classified according to the ethnic group (319 whites [Caucasians], 134 mestizos [mixed race descendants of Europeans, Africans, and Amerindians; browns or "pardos"] and 69 blacks). The HLA typing was performed by the polymerase chain reaction sequence-specific oligonucleotide method (PCR-SSO), combined with Luminex technology. In the analysis of the total samples, 20 HLA-A, 32 HLA-B, and 13 HLA-DRB1 allele groups were identified. The most frequent allele groups for each HLA locus were HLA-A*02 (25.4%), HLA-B*44 (10.9%), and HLA-DRB1*13 (13.9%). The most frequent haplotypes were HLA-A*01-B*08-DRB1*03 (2.3%), A*02-B*44-DRB1*07 (1.2%), and A*03-B*07-DRB1*11 (1.0%). Significant differences (P < 0.05) were observed in the HLA-A*68, B*08, and B*58 allele frequencies among ethnic groups. This study provides the first data on the HLA-A, HLA-B, and HLA-DRB1 allele, phenotype and haplotype frequencies of renal transplant candidates in a population in southern Brazil. © 2015 Wiley Periodicals, Inc.

  3. Study of exon 12 polymorphism of the human thromboxane synthase (CYP5A1) gene in Egyptian stroke patients

    International Nuclear Information System (INIS)

    Soliman, S.E.T.; Zaater, M.K.

    2010-01-01

    Thromboxane synthase (CYP5A1) catalyzes the conversion of prostaglandin H2 to thromboxane A2, a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. It has been implicated in the patho-physiological process of a variety of diseases, such as atherosclerosis, myocardial infarction, stroke and asthma. On the basis of the hypothesis that variations of the CYP5A1 gene may play an important role in human diseases, we performed screening for the prevalence of exon12 polymorphism of the human Thromboxane synthase (CYP5A1) gene among Egyptian normal and stroke patients. Using sequence-specific PCR, we examined the allelic prevalence in 70 Egyptian patients with ischemic strokes and in 70 controls. In addition, we compared the CYP5A1 allelic prevalence in 30 patients with stroke recurrence despite Aspirin use, in comparison with patients who have not experienced recurrent stroke while taking Aspirin. The frequencies of the CYP5A1*9 mutant (substitution of guanine by adenine near the heme-binding catalytic domain) and of the wild-type allele were 0.197(19.7%) and 0.803 (80.3%) respectively; they did not differ significantly between stroke patients and controls. The CYP5A1*9 mutant was significantly more prevalent among stroke patients with history of previous cerebrovascular attacks; even after adjusting for the common risk factors for cardiovascular disease (odds ratio (OR)1.73, 95%, confidence interval ( CI) 1.10-2.73; p=0.017). Among stroke patients, the presence of the CYP5A1 wild type allele was more frequent among the hypertensives (OR 1.68, 95% CI, 1.01-2.79; p=0.045), and less frequent among the diabetics (OR 0.55, 95%, CI 0.36-0.84; p=0.006). Also among stroke patients, the CYP5A1*9 mutant was significantly more prevalent among those, who failed secondary Aspirin prophylaxis compared to those with successful secondary Aspirin prophylaxis (OR 1.49, 95%, CI 1.06-2.11). This study provides evidence for high prevalence of the CYP5A1*9 mutant

  4. Humoral immune responses to a single allele PfAMA1 vaccine in healthy malaria-naïve adults.

    Directory of Open Access Journals (Sweden)

    Edmond J Remarque

    Full Text Available Plasmodium falciparum: apical membrane antigen 1 (AMA1 is a candidate malaria vaccine antigen expressed on merozoites and sporozoites. The polymorphic nature of AMA1 may compromise vaccine induced protection. The humoral response induced by two dosages (10 and 50 µg of a single allele AMA1 antigen (FVO formulated with Alhydrogel, Montanide ISA 720 or AS02 was investigated in 47 malaria-naïve adult volunteers. Volunteers were vaccinated 3 times at 4 weekly intervals and serum samples obtained four weeks after the third immunization were analysed for (i Antibody responses to various allelic variants, (ii Domain specificity, (iii Avidity, (iv IgG subclass levels, by ELISA and (v functionality of antibody responses by Growth Inhibition Assay (GIA. About half of the antibodies induced by vaccination cross reacted with heterologous AMA1 alleles. The choice of adjuvant determined the magnitude of the antibody response, but had only a marginal influence on specificity, avidity, domain recognition or subclass responses. The highest antibody responses were observed for AMA1 formulated with AS02. The Growth Inhibition Assay activity of the antibodies was proportional to the amount of antigen specific IgG and the functional capacity of the antibodies was similar for heterologous AMA1-expressing laboratory strains.ClinicalTrials.gov NCT00730782.

  5. Identification of a mutant α1 Na/K-ATPase that pumps but is defective in signal transduction.

    Science.gov (United States)

    Lai, Fangfang; Madan, Namrata; Ye, Qiqi; Duan, Qiming; Li, Zhichuan; Wang, Shaomeng; Si, Shuyi; Xie, Zijian

    2013-05-10

    It has not been possible to study the pumping and signaling functions of Na/K-ATPase independently in live cells. Both cell-free and cell-based assays indicate that the A420P mutation abolishes the Src regulatory function of Na/K-ATPase. A420P mutant has normal pumping but not signaling function. Identification of Src regulation-null mutants is crucial for addressing physiological role of Na/K-ATPase. The α1 Na/K-ATPase possesses both pumping and signaling functions. However, it has not been possible to study these functions independently in live cells. We have identified a 20-amino acid peptide (Ser-415 to Gln-434) (NaKtide) from the nucleotide binding domain of α1 Na/K-ATPase that binds and inhibits Src in vitro. The N terminus of NaKtide adapts a helical structure. In vitro kinase assays showed that replacement of residues that contain a bulky side chain in the helical structure of NaKtide by alanine abolished the inhibitory effect of the peptide on Src. Similarly, disruption of helical structure by proline replacement, either single or in combination, reduced the inhibitory potency of NaKtide on Src. To identify mutant α1 that retains normal pumping function but is defective in Src regulation, we transfected Na/K-ATPase α1 knockdown PY-17 cells with expression vectors of wild type or mutant α1 carrying Ala to Pro mutations in the region of NaKtide helical structure and generated several stable cell lines. We found that expression of either A416P or A420P or A425P mutant fully restored the α1 content and consequently the pumping capacity of cells. However, in contrast to A416P, either A420P or A425P mutant was incapable of interacting and regulating cellular Src. Consequently, expression of these two mutants caused significant inhibition of ouabain-activated signal transduction and cell growth. Thus we have identified α1 mutant that has normal pumping function but is defective in signal transduction.

  6. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    Science.gov (United States)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  7. Dynamic ligand modulation of EPO receptor pools, and dysregulation by polycythemia-associated EPOR alleles.

    Directory of Open Access Journals (Sweden)

    Seema Singh

    Full Text Available Erythropoietin (EPO and its cell surface receptor (EPOR are essential for erythropoiesis; can modulate non-erythroid target tissues; and have been reported to affect the progression of certain cancers. Basic studies of EPOR expression and trafficking, however, have been hindered by low-level EPOR occurrence, and the limited specificity of anti-EPOR antibodies. Consequently, these aspects of EPOR biology are not well defined, nor are actions of polycythemia- associated mutated EPOR alleles. Using novel rabbit monoclonal antibodies to intracellular, PY- activated and extracellular EPOR domains, the following properties of the endogenous hEPOR in erythroid progenitors first are unambiguously defined. 1 High- Mr EPOR forms become obviously expressed only when EPO is limited. 2 EPOR-68K plus -70K species sequentially accumulate, and EPOR-70K comprises an apparent cell surface EPOR population. 3 Brefeldin A, N-glycanase and associated analyses point to EPOR-68K as a core-glycosylated intracellular EPOR pool (of modest size. 4 In contrast to recent reports, EPOR inward trafficking is shown (in UT7epo cells, and primary proerythroblasts to be sharply ligand-dependent. Beyond this, when C-terminal truncated hEPOR-T mutant alleles as harbored by polycythemia patients are co-expressed with the wild-type EPOR in EPO-dependent erythroid progenitors, several specific events become altered. First, EPOR-T alleles are persistently activated upon EPO- challenge, yet are also subject to apparent turn-over (to low-Mr EPOR products. Furthermore, during exponential cell growth EPOR-T species become both over-represented, and hyper-activated. Interestingly, EPOR-T expression also results in an EPO dose-dependent loss of endogenous wild-type EPOR's (and, therefore, a squelching of EPOR C-terminal- mediated negative feedback effects. New knowledge concerning regulated EPOR expression and trafficking therefore is provided, together with new insight into mechanisms via

  8. Dynamic Ligand Modulation of EPO Receptor Pools, and Dysregulation by Polycythemia-Associated EPOR Alleles

    Science.gov (United States)

    Singh, Seema; Verma, Rakesh; Pradeep, Anamika; Leu, Karen; Mortensen, R. Bruce; Young, Peter R.; Oyasu, Miho; Schatz, Peter J.; Green, Jennifer M.; Wojchowski, Don M.

    2012-01-01

    Erythropoietin (EPO) and its cell surface receptor (EPOR) are essential for erythropoiesis; can modulate non-erythroid target tissues; and have been reported to affect the progression of certain cancers. Basic studies of EPOR expression and trafficking, however, have been hindered by low-level EPOR occurrence, and the limited specificity of anti-EPOR antibodies. Consequently, these aspects of EPOR biology are not well defined, nor are actions of polycythemia- associated mutated EPOR alleles. Using novel rabbit monoclonal antibodies to intracellular, PY- activated and extracellular EPOR domains, the following properties of the endogenous hEPOR in erythroid progenitors first are unambiguously defined. 1) High- Mr EPOR forms become obviously expressed only when EPO is limited. 2) EPOR-68K plus -70K species sequentially accumulate, and EPOR-70K comprises an apparent cell surface EPOR population. 3) Brefeldin A, N-glycanase and associated analyses point to EPOR-68K as a core-glycosylated intracellular EPOR pool (of modest size). 4) In contrast to recent reports, EPOR inward trafficking is shown (in UT7epo cells, and primary proerythroblasts) to be sharply ligand-dependent. Beyond this, when C-terminal truncated hEPOR-T mutant alleles as harbored by polycythemia patients are co-expressed with the wild-type EPOR in EPO-dependent erythroid progenitors, several specific events become altered. First, EPOR-T alleles are persistently activated upon EPO- challenge, yet are also subject to apparent turn-over (to low-Mr EPOR products). Furthermore, during exponential cell growth EPOR-T species become both over-represented, and hyper-activated. Interestingly, EPOR-T expression also results in an EPO dose-dependent loss of endogenous wild-type EPOR's (and, therefore, a squelching of EPOR C-terminal- mediated negative feedback effects). New knowledge concerning regulated EPOR expression and trafficking therefore is provided, together with new insight into mechanisms via which

  9. Spontaneous and radiation-induced leukemogenesis of the mouse small eye mutant, Pax6Sey3H

    International Nuclear Information System (INIS)

    Nitta, Yumiko; Satoh, Kenichi; Yoshida, Kazuko; Senba, Kei; Nakagata, Naomi; Peters, J.; Cattanach, B.M.

    2004-01-01

    Allelic loss on the chromosome 2 is associated with radiation-induced murine acute myeloid leukemia. However, the gene, which contributes mainly to the leukemogenesis has not yet been identified. Expecting any predisposition to acute myeloid leukemia, we performed a radiation leukemogenesis experiment with Pax6 SeY3H , one of the small eye mutants carrying a congenital hemizygosity of the chromosome 2 middle region. A deletion mapping of Pax6 SeY3H with 50 sequence-tagged site (STS) markers indicated that the deleted segment extended between the 106.00 and 111.47 Mb site from the centromere with a length of 5.47 Mb. In the deleted segment, 6 known and 17 novel genes were located. Pax6 SeY3H mutants that crossed back into C3H/He did not develop myeloid leukemia spontaneously, but they did when exposed to gamma-rays. The final incidence of myeloid leukemia in mutants (25.8%) was as high as that in normal sibs (21.4%). Survival curves of leukemia-bearing mutants shifted toward the left (p=0.043 by the Log rank test). F1 hybrids of Pax6 SeY3H with JF1 were less susceptible to radiation than Pax6 SeY3H onto C3H/He in regard to survival (p=0.003 and p<0.00001 for mutants and normal sibs, respectively, by a test of the difference between two proportions). Congenital deletion of the 5.47 Mb segment at the middle region on chromosome 2 alone did not trigger myeloid stem cells to expand clonally in vivo; however, the deletion shortcut the latency of radiation-induced myeloid leukemia. (author)

  10. ADHD and DAT1: Further evidence of paternal over-transmission of risk alleles and haplotype

    NARCIS (Netherlands)

    Hawi, Z.; Kent, L.; Hill, M.; Anney, R.J.; Brookes, K. J.; Barry, E.; Franke, B.; Banaschewski, T.; Buitelaar, J.; Ebstein, R.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Sonuga-Barke, E.; Steinhausen, H.C.; Faraone, S.V.; Asherson, P.; Gill, M.

    2009-01-01

    We [Hawi et al. (2005); Am J Hum Genet 77:958-965] reported paternal over-transmission of risk alleles in some ADHD-associated genes. This was particularly clear in the case of the DAT1 30-UTR VNTR. In the current investigation, we analyzed three new sample comprising of 1,248 ADHD nuclear families

  11. ADHD and DAT1: further evidence of paternal over-transmission of risk alleles and haplotype.

    NARCIS (Netherlands)

    Hawi, Z.; Kent, L.; Hill, M.; Anney, R.J.; Brookes, K.J.; Barry, E.; Franke, B.; Banaschewski, T.; Buitelaar, J.K.; Ebstein, R.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Sonuga-Barke, E.J.S.; Steinhausen, H.C.; Faraone, S.V.; Asherson, P.; Gill, M.

    2010-01-01

    We [Hawi et al. (2005); Am J Hum Genet 77:958-965] reported paternal over-transmission of risk alleles in some ADHD-associated genes. This was particularly clear in the case of the DAT1 3'-UTR VNTR. In the current investigation, we analyzed three new sample comprising of 1,248 ADHD nuclear families

  12. Analysis of Polymorphism of Angiotensin System Genes (ACE, AGTR1, and AGT) and Gene ITGB3 in Patients with Arterial Hypertension in Combination with Metabolic Syndrome.

    Science.gov (United States)

    Zotova, T Yu; Kubanova, A P; Azova, M M; Aissa, A Ait; Gigani, O O; Frolov, V A

    2016-07-01

    Changes in the frequencies of genotypes and mutant alleles of ACE, AGTR1, AGT, and ITGB3 genes were analyzed in patients with arterial hypertension coupled with metabolic syndrome (N=15) and compared with population data and corresponding parameters in patients with isolated hypertension (N=15). Increased frequency of genotype ID of ACE gene (hypertension predictor) was confirmed for both groups. In case of isolated hypertension, M235M genotype (gene AGT) was more frequent, in case of hypertension combined with metabolic syndrome, the frequency of genotypes A1166C and C1166C of the gene AGTR1 was higher in comparison with population data. Comparison of mutant allele frequencies in the two groups showed that at the 90% significance level allele T of the AGT gene was more frequent in hypertension coupled with metabolic syndrome (OR=1.26) and genotype A1166A of the AGTR1 gene was more frequent in the group with isolated hypertension.

  13. A modified screening system for loss-of-function and dominant negative alleles of essential MCMV genes.

    Directory of Open Access Journals (Sweden)

    Madlen Pogoda

    Full Text Available Inactivation of gene products by dominant negative mutants is a valuable tool to assign functions to yet uncharacterized proteins, to map protein-protein interactions or to dissect physiological pathways. Detailed functional and structural knowledge about the target protein would allow the construction of inhibitory mutants by targeted mutagenesis. Yet, such data are limited for the majority of viral proteins, so that the target gene needs to be subjected to random mutagenesis to identify suitable mutants. However, for cytomegaloviruses this requires a two-step screening approach, which is time-consuming and labor-intensive. Here, we report the establishment of a high-throughput suitable screening system for the identification of inhibitory alleles of essential genes of the murine cytomegalovirus (MCMV. In this screen, the site-specific recombination of a specifically modified MCMV genome was transferred from the bacterial background to permissive host cells, thereby combining the genetic engineering and the rescue test in one step. Using a reference set of characterized pM53 mutants it was shown that the novel system is applicable to identify non-complementing as well as inhibitory mutants in a high-throughput suitable setup. The new cis-complementation assay was also applied to a basic genetic characterization of pM99, which was identified as essential for MCMV growth. We believe that the here described novel genetic screening approach can be adapted for the genetic characterization of essential genes of any large DNA viruses.

  14. Lost P1 allele in sh2 sweet corn: quantitative effects of p1 and a1 genes on concentrations of maysin, apimaysin, methoxymaysin, and chlorogenic acid in maize silk.

    Science.gov (United States)

    Guo, B Z; Zhang, Z J; Butrón, A; Widstrom, N W; Snook, M E; Lynch, R E; Plaisted, D

    2004-12-01

    In the United States, insecticide is used extensively in the production of sweet corn due to consumer demand for zero damage to ears and to a sweet corn genetic base with little or no resistance to ear-feeding insects. Growers in the southern United States depend on scheduled pesticide applications to control ear-feeding insects. In a study of quantitative genetic control over silk maysin, AM-maysin (apimaysin and methoxymaysin), and chlorogenic acid contents in an F2 population derived from GE37 (dent corn, P1A1) and 565 (sh2 sweet corn, p1a1), we demonstrate that the P1 allele from field corn, which was selected against in the development of sweet corn, has a strong epistatic interaction with the a1 allele in sh2 sweet corn. We detected that the p1 gene has significant effects (P silk maysin concentrations but also on AM-maysin, and chlorogenic acid concentrations. The a1 gene also has significant (P silk antibiotic chemicals. Successful selection from the fourth and fifth selfed backcrosses for high-maysin individuals of sweet corn homozygous for the recessive a1 allele (tightly linked to sh2) and the dominant P1 allele has been demonstrated. These selected lines have much higher (2 to 3 times) concentrations of silk maysin and other chemicals (AM-maysin and chlorogenic acid) than the donor parent GE37 and could enhance sweet corn resistance to corn earworm and reduce the number of applications of insecticide required to produce sweet corn.

  15. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew.

    Science.gov (United States)

    Sun, Suli; Deng, Dong; Wang, Zhongyi; Duan, Canxing; Wu, Xiaofei; Wang, Xiaoming; Zong, Xuxiao; Zhu, Zhendong

    2016-05-01

    A novel er1 allele, er1 -7, conferring pea powdery mildew resistance was characterized by a 10-bp deletion in PsMLO1 cDNA, and its functional marker was developed and validated in pea germplasms. Pea powdery mildew caused by Erysiphe pisi DC is a major disease worldwide. Pea cultivar 'DDR-11' is an elite germplasm resistant to E. pisi. To identify the gene conferring resistance in DDR-11, the susceptible Bawan 6 and resistant DDR-11 cultivars were crossed to produce F1, F2, and F(2:3) populations. The phenotypic segregation patterns in the F2 and F(2:3) populations fit the 3:1 (susceptible:resistant) and 1:2:1 (susceptible homozygotes:heterozygotes:resistant homozygotes) ratios, respectively, indicating that resistance was controlled by a single recessive gene. Analysis of er1-linked markers in the F2 population suggested that the recessive resistance gene in DDR-11 was an er1 allele, which was mapped between markers ScOPE16-1600 and c5DNAmet. To further characterize er1 allele, the cDNA sequences of PsMLO1 from the parents were obtained and a novel er1 allele in DDR-11 was identified and designated as er1-7, which has a 10-bp deletion in position 111-120. The er1-7 allele caused a frame-shift mutation, resulting in a premature termination of translation of PsMLO1 protein. A co-dominant functional marker specific for er1-7 was developed, InDel111-120, which co-segregated with E. pisi resistance in the mapping population. The marker was able to distinguish between pea germplasms with and without the er1-7. Of 161 pea germplasms tested by InDel111-120, seven were detected containing resistance allele er1-7, which was verified by sequencing their PsMLO1 cDNA. Here, a novel er1 allele was characterized and its an ideal functional marker was validated, providing valuable genetic information and a powerful tool for breeding pea resistance to powdery mildew.

  16. mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.

    Science.gov (United States)

    Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin

    2017-11-14

    Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.

  17. Fitness ranking of individual mutants drives patterns of epistatic interactions in HIV-1.

    Directory of Open Access Journals (Sweden)

    Javier P Martínez

    Full Text Available Fitness interactions between mutations, referred to as epistasis, can strongly impact evolution. For RNA viruses and retroviruses with their high mutation rates, epistasis may be particularly important to overcome fitness losses due to the accumulation of deleterious mutations and thus could influence the frequency of mutants in a viral population. As human immunodeficiency virus type 1 (HIV-1 resistance to azidothymidine (AZT requires selection of sequential mutations, it is a good system to study the impact of epistasis. Here we present a thorough analysis of a classical AZT-resistance pathway (the 41-215 cluster of HIV-1 variants by fitness measurements in single round infection assays covering physiological drug concentrations ex vivo. The sign and value of epistasis varied and did not predict the epistatic effect on the mutant frequency. This complex behavior is explained by the fitness ranking of the variants that strongly depends on environmental factors, i.e., the presence and absence of drugs and the host cells used. Although some interactions compensate fitness losses, the observed small effect on the relative mutant frequencies suggests that epistasis might be inefficient as a buffering mechanism for fitness losses in vivo. While the use of epistasis-based hypotheses to make general assumptions on the evolutionary dynamics of viral populations is appealing, our data caution their interpretation without further knowledge on the characteristics of the viral mutant spectrum under different environmental conditions.

  18. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.

    Science.gov (United States)

    Reith, A D; Ellis, C; Lyman, S D; Anderson, D M; Williams, D E; Bernstein, A; Pawson, T

    1991-09-01

    Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an in-frame insertion, Gly-Asn-Asn-Lys, within the extracellular domain, was detected in murine mast cell cultures and mid-gestation placenta. Both Kit+ and KitA+ isoforms showed increased autophosphorylation and enhanced association with phosphatidylinositol (PI) 3' kinase and PLC gamma 1, when stimulated with recombinant soluble Steel factor. No association or increase in phosphorylation of GAP and two GAP-associated proteins, p62 and p190, was observed. The two isoforms had distinct activities in the absence of exogenous soluble Steel factor; Kit+, but not KitA+, showed constitutive tyrosine phosphorylation that was accompanied by a low constitutive level of association with PI-3' kinase and PLC gamma 1. Introduction of the point substitutions associated with W37 (Glu582----Lys) or W41 (Val831----Met) mutant alleles into c-kit expression constructs abolished (W37) or reduced (W41) the Steel factor-induced association of the Kit receptor with signalling proteins in a manner proportional to the overall severity of the corresponding W mutant phenotype. These data suggest a diversity of normal Kit signalling pathways and indicate that W mutant phenotypes result from primary defects in the Kit receptor that affect its interaction with cytoplasmic signalling proteins.

  19. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division.

    Science.gov (United States)

    Riley, Bruce B; Sweet, Elly M; Heck, Rebecca; Evans, Adrienne; McFarland, Karen N; Warga, Rachel M; Kane, Donald A

    2010-03-01

    We have characterized mutations in the early arrest gene, harpy (hrp), and show that they introduce premature stops in the coding region of early mitotic inhibitor1 (Rca1/emi1). In harpy mutants, cells stop dividing during early gastrulation. Lineage analysis confirms that there is little change in cell number after approximately cycle-14. Gross patterning occurs relatively normally, and many organ primordia are produced on time but with smaller numbers of cells. Despite the lack of cell division, some organ systems continue to increase in cell number, suggesting recruitment from surrounding areas. Analysis of bromodeoxyuridine incorporation shows that endoreduplication continues in many cells well past the first day of development, but cells cease endoreduplication once they begin to differentiate and express cell-type markers. Despite relatively normal gross patterning, harpy mutants show several defects in morphogenesis, cell migration and differentiation resulting directly or indirectly from the arrest of cell division. Copyright (c) 2010 Wiley-Liss, Inc.

  20. Discovery of a Novel er1 Allele Conferring Powdery Mildew Resistance in Chinese Pea (Pisum sativum L.) Landraces

    Science.gov (United States)

    Sun, Suli; Fu, Haining; Wang, Zhongyi; Duan, Canxing; Zong, Xuxiao; Zhu, Zhendong

    2016-01-01

    Pea powdery mildew, caused by Erysiphe pisi D.C., is an important disease worldwide. Deployment of resistant varieties is the main way to control this disease. This study aimed to screen Chinese pea (Pisum sativum L.) landraces resistant to E. pisi, and to characterize the resistance gene(s) at the er1 locus in the resistant landraces, and to develop functional marker(s) specific to the novel er1 allele. The 322 landraces showed different resistance levels. Among them, 12 (3.73%), 4 (1.24%) and 17 (5.28%) landraces showed immunity, high resistance and resistance to E. pisi, respectively. The other landraces appeared susceptible or highly susceptible to E. pisi. Most of the immune and highly resistant landraces were collected from Yunnan province. To characterize the resistance gene at the er1 locus, cDNA sequences of PsMLO1 gene were determined in 12 immune and four highly resistant accessions. The cDNAs of PsMLO1 from the immune landrace G0005576 produced three distinct transcripts, characterized by a 129-bp deletion, and 155-bp and 220-bp insertions, which were consistent with those of er1-2 allele. The PsMLO1 cDNAs in the other 15 resistant landraces produced identical transcripts, which had a new point mutation (T→C) at position 1121 of PsMLO1, indicating a novel er1 allele, designated as er1-6. This mutation caused a leucine to proline change in the amino acid sequence. Subsequently, the resistance allele er1-6 in landrace G0001778 was confirmed by resistance inheritance analysis and genetic mapping on the region of the er1 locus using populations derived from G0001778 × Bawan 6. Finally, a functional marker specific to er1-6, SNP1121, was developed using the high-resolution melting technique, which could be used in pea breeding via marker-assisted selection. The results described here provide valuable genetic information for Chinese pea landraces and a powerful tool for pea breeders. PMID:26809053

  1. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway.

    Science.gov (United States)

    Margis-Pinheiro, Marcia; Zhou, Xue-Rong; Zhu, Qian-Hao; Dennis, Elizabeth S; Upadhyaya, Narayana M

    2005-03-01

    We have isolated a severe dwarf transposon (Ds) insertion mutant in rice (Oryza sativa L.), which could be differentiated early in the seedling stage by reduced shoot growth and dark green leaves, and later by severe dwarfism and failure to initiate flowering. These mutants, however, showed normal seed germination and root growth. One of the sequences flanking Ds, rescued from the mutant, was of a chromosome 4-located putative ent-kaurene synthase (KS) gene, encoding the enzyme catalyzing the second step of the gibberellin (GA) biosynthesis pathway. Dwarf mutants were always homozygous for this Ds insertion and no normal plants homozygous for this mutation were recovered in the segregating progeny, indicating that the Ds insertion mutation is recessive. As mutations in three recently reported rice GA-responsive dwarf mutant alleles and the dwarf mutation identified in this study mapped to the same locus, we designate the corresponding gene OsKS1. The osks1 mutant seedlings were responsive to exogenous gibberellin (GA3). OsKS1 transcripts of about 2.3 kb were detected in leaves and stem of wild-type plants, but not in germinating seeds or roots, suggesting that OsKS1 is not involved in germination or root growth. There are at least five OsKS1-like genes in the rice genome, four of which are also represented in rice expressed sequence tag (EST) databases. All OsKS1-like genes are transcribed with different expression patterns. ESTs corresponding to all six OsKS genes are represented in other cereal databases including barley, wheat and maize, suggesting that they are biologically active.

  2. Waiting times for the appearance of cytotoxic T-lymphocyte escape mutants in chronic HIV-1 infection

    International Nuclear Information System (INIS)

    Liu Yi; Mullins, James I.; Mittler, John E.

    2006-01-01

    The failure of HIV-1 to escape at some cytotoxic T-lymphocyte (CTL) epitopes has generally been explained in terms of viral fitness costs or ineffective or attenuated CTL responses. Relatively little attention has been paid to the evolutionary time required for escape mutants to be detected. This time is significantly affected by selection, mutation rates, the presence of other advantageous mutations, and the effective population size of HIV-1 in vivo (typically estimated to be ∼10 3 in chronically infected patients, though one study has estimated it to be ∼10 5 ). Here, we use a forward simulator with experimentally estimated HIV-1 parameters to show that these delays can be substantial. For an effective population size of 10 3 , even highly advantageous mutants (s = 0.5) may not be detected for a couple of years in chronically infected patients, while moderately advantageous escape mutants (s = 0.1) may not be detected for up to 10 years. Even with an effective population size of 10 5 , a moderately advantageous escape mutant (s = 0.1) may not be detected in the population within 2 years if it has to compete with other selectively advantageous mutants. Stochastic evolutionary forces, therefore, in addition to viral fitness costs and ineffective or attenuated CTL responses, must be taken into account when assessing the selection of CTL escape mutations

  3. An efficient system for the generation of marked genetic mutants in members of the genus Burkholderia.

    Science.gov (United States)

    Shastri, Sravanthi; Spiewak, Helena L; Sofoluwe, Aderonke; Eidsvaag, Vigdis A; Asghar, Atif H; Pereira, Tyrone; Bull, Edward H; Butt, Aaron T; Thomas, Mark S

    2017-01-01

    To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Promising rice mutants

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1988-01-01

    Two induced mutants namely, Mut NS 1 (tall) and Mut NS 5 (semi-dwarf) derived from rice variety Nizersail were evaluated for various agronomic characters at four locations in Bangladesh. Both the mutants matured about three weeks earlier and yielded significantly higher than the parent variety Nizersail. (author). 3 tabs., 9 refs

  5. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/Wv mutant mouse colon.

    Science.gov (United States)

    Tamada, Hiromi; Kiyama, Hiroshi

    2015-01-01

    Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon.The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers,but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice.

  6. Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2018-03-01

    Full Text Available Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS, is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides accession D97 into the common wheat (Triticum aestivum cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.

  7. Heterozygosity for an in-frame deletion causes glutaryl-CoA dehydrogenase deficiency in a patient detected by newborn screening: investigation of the effect of the mutant allele

    DEFF Research Database (Denmark)

    Bross, Peter; Frederiksen, Jane B; Bie, Anne S

    2012-01-01

    the proband were consistent with a mild biochemical GA-1 phenotype. Recombinant expression of the mutant variant in E. coli showed that the GCDH-(p.Gly185_Ser190del) protein displayed severely decreased assembly into tetramers and enzyme activity. To discover a potential dominant negative effect of the mutant...... with the hypothesis that heterozygosity for this mutation confers a dominant negative effect resulting in a GCDH enzyme activity that is significantly lower than the expected 50%....

  8. The protease inhibitor PI*S allele and COPD

    DEFF Research Database (Denmark)

    Hersh, C P; Ly, N P; Berkey, C S

    2005-01-01

    In many countries, the protease inhibitor (SERPINA1) PI*S allele is more common than PI*Z, the allele responsible for most cases of chronic obstructive pulmonary disease (COPD) due to severe alpha 1-antitrypsin deficiency. However, the risk of COPD due to the PI*S allele is not clear. The current...... authors located studies that addressed the risk of COPD or measured lung function in individuals with the PI SZ, PI MS and PI SS genotypes. A separate meta-analysis for each genotype was performed. Aggregating data from six studies, the odds ratio (OR) for COPD in PI SZ compound heterozygotes compared...... with PI MM (normal) individuals was significantly increased at 3.26 (95% confidence intervals (CI): 1.24-8.57). In 17 cross-sectional and case-control studies, the OR for COPD in PI MS heterozygotes was 1.19 (95%CI: 1.02-1.38). However, PI MS genotype was not associated with COPD risk after correcting...

  9. Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants.

    Science.gov (United States)

    Abdelsayed, Mena; Baruteau, Alban-Elouen; Gibbs, Karen; Sanatani, Shubhayan; Krahn, Andrew D; Probst, Vincent; Ruben, Peter C

    2017-09-15

    SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na V 1.5. Mutants in Na V 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na V 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na V 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na V 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500

  10. NaV1.6a is required for normal activation of motor circuits normally excited by tactile stimulation

    Science.gov (United States)

    Low, Sean E.; Zhou, Weibin; Choong, Xinling; Saint-Amant, Louis; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Hume, Richard I.; Kuwada, John Y.

    2010-01-01

    A screen for zebrafish motor mutants identified two non-complementing alleles of a recessive mutation that were named non-active (navmi89 and navmi130). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first three days of development. Genetic mapping identified the gene encoding NaV1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in NaV1.6a that eliminated channel activity when assayed heterologously. Furthermore the injection of RNA encoding wild type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that NaV1.6a was required for touch-induced activation of the swim locomotor network. PMID:20225246

  11. Genetic Recombination at the Buff Spore Color Locus in SORDARIA BREVICOLLIS. II. Analysis of Flanking Marker Behavior in Crosses between Buff Mutants.

    Science.gov (United States)

    Sang, H; Whitehouse, H L

    1983-02-01

    Aberrant asci containing one or more wild-type spores were selected from crosses between pairs of alleles of the buff locus in the presence of closely linked flanking markers. Data were obtained relating to the site of aberrant segregation and the position of any associated crossover giving recombination of flanking markers. Aberrant segregation at a proximal site within the buff gene may be associated with a crossover proximal to the site of aberrant segregation or, with equal frequency, with a crossover distal to the site of the second mutant present in the cross. Similarly, segregation at a distal site may be associated with a crossover distal to the site or, with lower frequency, with a crossover proximal to the site of the proximal mutant present in the cross. Crossovers between the alleles were rare. This evidence for the relationship between hybrid DNA and crossing over is discussed in terms of current models for the mechanism of recombination.

  12. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    Science.gov (United States)

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  13. Isolation of two independent allyl alcohol resistant Adh-1 null mutants following selection of pollen and seeds.

    NARCIS (Netherlands)

    Wisman, E.; Ramanna, M.S.; Zabel, P.

    1993-01-01

    The Adh-1 null mutant (B15-1-8) isolated previously was used to establish conditions that allow the selection of ADH-deficient pollen grains and seeds of tomato. New Adh-1 null mutants were then selected among the progenies derived from crosses between the genetically unstable tomato lines Yvms,

  14. Assessment of allelic diversity in intron-containing Mal d 1 genes and their association to apple allergenicity

    Directory of Open Access Journals (Sweden)

    Bolhaar Suzanne THP

    2008-11-01

    Full Text Available Abstract Background Mal d 1 is a major apple allergen causing food allergic symptoms of the oral allergy syndrome (OAS in birch-pollen sensitised patients. The Mal d 1 gene family is known to have at least 7 intron-containing and 11 intronless members that have been mapped in clusters on three linkage groups. In this study, the allelic diversity of the seven intron-containing Mal d 1 genes was assessed among a set of apple cultivars by sequencing or indirectly through pedigree genotyping. Protein variant constitutions were subsequently compared with Skin Prick Test (SPT responses to study the association of deduced protein variants with allergenicity in a set of 14 cultivars. Results From the seven intron-containing Mal d 1 genes investigated, Mal d 1.01 and Mal d 1.02 were highly conserved, as nine out of ten cultivars coded for the same protein variant, while only one cultivar coded for a second variant. Mal d 1.04, Mal d 1.05 and Mal d 1.06 A, B and C were more variable, coding for three to six different protein variants. Comparison of Mal d 1 allelic composition between the high-allergenic cultivar Golden Delicious and the low-allergenic cultivars Santana and Priscilla, which are linked in pedigree, showed an association between the protein variants coded by the Mal d 1.04 and -1.06A genes (both located on linkage group 16 with allergenicity. This association was confirmed in 10 other cultivars. In addition, Mal d 1.06A allele dosage effects associated with the degree of allergenicity based on prick to prick testing. Conversely, no associations were observed for the protein variants coded by the Mal d 1.01 (on linkage group 13, -1.02, -1.06B, -1.06C genes (all on linkage group 16, nor by the Mal d 1.05 gene (on linkage group 6. Conclusion Protein variant compositions of Mal d 1.04 and -1.06A and, in case of Mal d 1.06A, allele doses are associated with the differences in allergenicity among fourteen apple cultivars. This information

  15. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars.

    Science.gov (United States)

    Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2011-12-01

    The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from 'Shiroboro 21' by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.

  16. Isolation of transformation-defective, replication-nondefective early region 1B mutants of adenovirus 12

    International Nuclear Information System (INIS)

    Fukui, Y.; Saito, I.; Shiroki, K.; Shimojo, H.

    1984-01-01

    The authors isolated three adenovirus 12 early region 1B mutants (in205B, in205C, and dl205) by ligation of the cleaved DNA-protein complex and transfection of human embryo kidney cells with the ligation products. These mutants could replicate efficiently in human embryo kidney or KB cells but showed markedly reduced transforming capacities both in vitro and in vivo. In cells infected with the mutants, the early region 1B gene was transcribed efficiently. In cells infected with in205B, the products corresponding to the early region 1B-coded 19,000-molecular-weight polypeptide was detected by in vitro translation but not immunoprecipitated extract of labeled cells. In cells infected with in205C or dl205, the products corresponding to the same polypeptide were not detected by either in vitro translation or immunoprecipitation of labeled cell extracts. The results suggest that the 19,000-molecular-weight polypeptide encoded by early region 1B is required for cell transformation but not for viral propagation

  17. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    Science.gov (United States)

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT-20 cells.

    OpenAIRE

    Gross, D J; Halban, P A; Kahn, C R; Weir, G C; Villa-Komaroff, L

    1989-01-01

    A patient with type II diabetes associated with hyperproinsulinemia has been shown to have a point mutation in one insulin gene allele, resulting in replacement of histidine with aspartic acid at position 10 of the B-chain. To investigate the basis of the proinsulin processing defect, we introduced an identical mutation in the rat insulin II gene and expressed both the normal and the mutant genes in the AtT-20 pituitary corticotroph cell line. Cells expressing the mutant gene showed increased...

  19. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2

    NARCIS (Netherlands)

    Mulligan, Anna Marie; Couch, Fergus J.; Barrowdale, Daniel; Domchek, Susan M.; Eccles, Diana; Nevanlinna, Heli; Ramus, Susan J.; Robson, Mark; Sherman, Mark; Spurdle, Amanda B.; Wappenschmidt, Barbara; Lee, Andrew; McGuffog, Lesley; Healey, Sue; Sinilnikova, Olga M.; Janavicius, Ramunas; Hansen, Thomas vO; Nielsen, Finn C.; Ejlertsen, Bent; Osorio, Ana; Muñoz-Repeto, Iván; Durán, Mercedes; Godino, Javier; Pertesi, Maroulio; Benítez, Javier; Peterlongo, Paolo; Manoukian, Siranoush; Peissel, Bernard; Zaffaroni, Daniela; Cattaneo, Elisa; Bonanni, Bernardo; Viel, Alessandra; Pasini, Barbara; Papi, Laura; Ottini, Laura; Savarese, Antonella; Bernard, Loris; Radice, Paolo; Hamann, Ute; Verheus, Martijn; Meijers-Heijboer, Hanne E. J.; Wijnen, Juul; Gómez García, Encarna B.; Nelen, Marcel R.; Kets, C. Marleen; Seynaeve, Caroline; Tilanus-Linthorst, Madeleine M. A.; van der Luijt, Rob B.; van Os, Theo; Rookus, Matti; Frost, Debra; Jones, J. Louise; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Adlard, Julian; Davidson, Rosemarie; Cook, Jackie; Donaldson, Alan; Dorkins, Huw; Gregory, Helen; Eason, Jacqueline; Houghton, Catherine; Barwell, Julian; Side, Lucy E.; McCann, Emma; Murray, Alex; Peock, Susan; Godwin, Andrew K.; Schmutzler, Rita K.; Rhiem, Kerstin; Engel, Christoph; Meindl, Alfons; Ruehl, Ina; Arnold, Norbert; Niederacher, Dieter; Sutter, Christian; Deissler, Helmut; Gadzicki, Dorothea; Kast, Karin; Preisler-Adams, Sabine; Varon-Mateeva, Raymonda; Schoenbuchner, Ines; Fiebig, Britta; Heinritz, Wolfram; Schäfer, Dieter; Gevensleben, Heidrun; Caux-Moncoutier, Virginie; Fassy-Colcombet, Marion; Cornelis, François; Mazoyer, Sylvie; Léoné, Mélanie; Boutry-Kryza, Nadia; Hardouin, Agnès; Berthet, Pascaline; Muller, Danièle; Fricker, Jean-Pierre; Mortemousque, Isabelle; Pujol, Pascal; Coupier, Isabelle; Lebrun, Marine; Kientz, Caroline; Longy, Michel; Sevenet, Nicolas; Stoppa-Lyonnet, Dominique; Isaacs, Claudine; Caldes, Trinidad; de la Hoya, Miguel; Heikkinen, Tuomas; Aittomäki, Kristiina; Blanco, Ignacio; Lazaro, Conxi; Barkardottir, Rosa B.; Soucy, Penny; Dumont, Martine; Simard, Jacques; Montagna, Marco; Tognazzo, Silvia; D'Andrea, Emma; Fox, Stephen; Yan, Max; Rebbeck, Tim; Olopade, Olufunmilayo; Weitzel, Jeffrey N.; Lynch, Henry T.; Ganz, Patricia A.; Tomlinson, Gail E.; Wang, Xianshu; Fredericksen, Zachary; Pankratz, Vernon S.; Lindor, Noralane M.; Szabo, Csilla; Offit, Kenneth; Sakr, Rita; Gaudet, Mia; Bhatia, Jasmine; Kauff, Noah; Singer, Christian F.; tea, Muy-Kheng; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Mai, Phuong L.; Greene, Mark H.; Imyanitov, Evgeny; O'Malley, Frances P.; Ozcelik, Hilmi; Glendon, Gordon; Toland, Amanda E.; Gerdes, Anne-Marie; Thomassen, Mads; Kruse, Torben A.; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Soller, Maria; Henriksson, Karin; Wachenfeldt, von Anna; Arver, Brita; Stenmark-Askmalm, Marie; Karlsson, Per; Ding, Yuan Chun; Neuhausen, Susan L.; Beattie, Mary; Pharoah, Paul D. P.; Moysich, Kirsten B.; Nathanson, Katherine L.; Karlan, Beth Y.; Gross, Jenny; John, Esther M.; Daly, Mary B.; Buys, Saundra M.; Southey, Melissa C.; Hopper, John L.; Terry, Mary Beth; Chung, Wendy; Miron, Alexander F.; Goldgar, David; Chenevix-Trench, Georgia; Easton, Douglas F.; Andrulis, Irene L.; Antoniou, Antonis C.; Ellis, Steve; Fineberg, Elena; Platte, Radka; Miedzybrodzka, Zosia; Morrison, Patrick; Jeffers, Lisa; Cole, Trevor; Ong, Kai-Ren; Hoffman, Jonathan; James, Margaret; Paterson, Joan; Downing, Sarah; Taylor, Amy; Rogers, T.; Kennedy, John M.; Barton, David; Porteous, Mary; Drummond, Sarah; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Haque, Eshika; Tobias, Ed; Duncan, Alexis; Jacobs, Chris; Langman, Caroline; Whaite, Anna; Chu, Carol; Miller, Julie; Ellis, Ian; Taylor, Jane; Male, Alison; Berlin, Cheryl; Collier, Rebecca; Douglas, Fiona; Claber, Oonagh; Jobson, Irene; Walker, Lisa; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anita; Robertson, Lisa; Quarrell, Oliver; Bardsley, Cathryn; Hodgson, Shirley; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah; Barjhoux, Laure; Verny-Pierre, Carole; Giraud, Sophie; Gauthier-Villars, Marion; Buecher, Bruno; Houdayer, Claude; Belotti, Muriel; Tirapo, Carole; de Pauw, Antoine; Roussy, Gustave; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrde, Véronique; Caron, Olivier; Lenoir, Gilbert; Bignon, Yves-Jean; Uhrhammer, Nancy; Bérard, Léon; Lasset, Christine; Bonadona, Valérie; Baclesse, François; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Barouk-Simonet, Emmanuelle; Bonnet, Françoise; Bubien, Virginie; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Peysselon, Magalie; Coron, Fanny; Faivre, Laurence; Prieur, Fabienne; Ferrer, Sandra Fert; Lacassagne, Antoine; Frénay, Marc; Vénat-Bouvet, Laurence; Delnatte, Capucine; Snyder, Carrie L.; Hogervorst, F. B. L.; Verhoef, S.; Verheus, M.; van 't Veer, L. J.; van Leeuwen, F. E.; Collée, M.; van den Ouweland, A. M. W.; Jager, A.; Hooning, M. J.; van Asperen, C. J.; Wijnen, J. T.; Vreeswijk, M. P.; Tollenaar, R. A.; Devilee, P.; Ligtenberg, M. J.; Hoogerbrugge, N.; Ausems, M. G.; Aalfs, C. M.; Gille, J. J. P.; Waisfisz, Q.; Gomez-Garcia, E. B.; van Roozendaal, C. E.; Blok, Marinus J.; Caanen, B.; Oosterwijk, J. C.; van der Hout, A. H.; Mourits, M. J.; Vasen, H. F.; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Liedgren, Sigrun; Borg, Åke; Loman, Niklas; Olsson, Håkan; Kristoffersson, Ulf; Jernström, Helena; Harbst, Katja; Lindblom, Annika; Liljegren, Annelie; Barbany-Bustinza, Gisela; Rantala, Johanna; Melin, Beatrice; Grönberg, Henrik; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Rosenquist, Richard; Dahl, Niklas

    2011-01-01

    Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2

  20. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/W(v) mutant mouse colon.

    Science.gov (United States)

    Tamada, Hiromi; Kiyama, Hiroshi

    2015-01-01

    Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.