WorldWideScience

Sample records for mutant expressing thermostable

  1. Characterization of mutants expressing thermostable D1 and D2 polypeptides of photosystem II in the cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Haraguchi, Norihisa; Kaseda, Jun; Nakayama, Yasumune; Nagahama, Kazuhiro; Ogawa, Takahira; Matsuoka, Masayoshi

    2018-06-08

    Photosystem II complex embedded in thylakoid membrane performs oxygenic photosynthesis where the reaction center D1/D2 heterodimer accommodates all components of the electron transport chain. To express thermostable D1/D2 heterodimer in a cyanobacterium Synechococcus elongatus PCC 7942, we constructed a series of mutant strains whose psbA1 and psbD1 genes encoding, respectively, the most highly expressed D1 and D2 polypeptides were replaced with those of a thermophilic strain, Thermosynechococcus vulcanus. Because the C-terminal 16 amino acid sequences of D1 polypeptides should be processed prior to maturation but diverge from each other, we also constructed the psbA1ΔC-replaced strain expressing a thermostable D1 polypeptide devoid of the C-terminal extension. The psbA1/psbD1-replaced strain showed decreased growth rate and oxygen evolution rate, suggesting inefficient photosystem II. Immunoblot analyses for thermostable D1, D2 polypeptides revealed that the heterologous D1 protein was absent in thylakoid membrane from any mutant strains with psbA1, psbA1ΔC, and psbA1/psbD1-replacements, whereas the heterologous D2 protein was present in thylakoid membrane as well as purified photosystem II complex from the psbA1/psbD1-replaced strain. In the latter strain, the compensatory expression of psbA3 and psbD2 genes was elevated. These data suggest that heterologous D2 polypeptide could be combined with the host D1 polypeptide to form chimeric D1/D2 heterodimer, whereas heterologous D1 polypeptide even without the C-terminal extension was unable to make complex with the host D2 polypeptide. Since the heterologous D1 could not be detected even in the whole cells of psbA1/psbD1-replaced strain, the rapid degradation of unprocessed or unassembled heterologous D1 was implicated. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    Science.gov (United States)

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  3. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Science.gov (United States)

    Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri

    2015-11-01

    There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  4. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.

    Directory of Open Access Journals (Sweden)

    David Bednar

    2015-11-01

    Full Text Available There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

  5. Expression of Acidothermus cellulolyticus thermostable cellulases in tobacco and rice plants

    Directory of Open Access Journals (Sweden)

    Xiran Jiang

    2017-01-01

    Full Text Available The production of cellulases in plants is an economical method for the conversion of lignocellulosic biomass into fuels. Herein we report the expressions of two thermostable Acidothermus cellulolyticus cellulases, endo-1,4-β-D-glucanase (E1 and exoglucanase (Gux1, in tobacco and rice. To evaluate the expression of these recombinant cellulases, we expressed the full-length E1, the catalytic domains of E1 (E1cd and Gux1 (Gux1cd, as well as an E1–Gux1cd fusion enzyme in various subcellular compartments. In the case of tobacco, transgenic plants that expressed apoplast-localized E1 showed the highest level of activity, about three times higher than those that expressed the cytosolic E1. In the case of rice, the level of cellulase-specific activity in the transgenic plants ranged from 11 to 20 nmol 4-methylumbelliferone min−1 mg−1 total soluble protein. The recombinant cellulases exhibited good thermostability below 70 °C. Furthermore, transgenic rice leaves that were stored at room temperature for a month lost about 20% of the initial cellulase activity. Taken together, the results suggested that heterologous expression of thermostable cellulases in plants may be a viable option for biomass conversion.

  6. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis.

    Science.gov (United States)

    Tang, Zizhong; Jin, Weiqiong; Sun, Rong; Liao, Yan; Zhen, Tianrun; Chen, Hui; Wu, Qi; Gou, Lin; Li, Chenlei

    2018-01-01

    We previously constructed three recombinant phyA mutant strains (PP-NP m -8, PP-NP ep -6A and I44E/T252R-PhyA), showing improved catalytic efficiency or thermostability of Aspergillus niger N25 phytase, by error-prone PCR or site-directed mutagenesis. In this study, directed evolution and site-directed mutagenesis were further applied to improve the modified phytase properties. After one-round error-prone PCR for phytase gene of PP-NP ep -6A, a single transformant, T195L/Q368E/F376Y, was obtained with the significant improvements in catalytic efficiency and thermostability. The phytase gene of T195L/Q368E/F376Y, combined with the previous mutant phytase genes of PP-NP ep -6A, PP-NP m -8 and I44E/T252R-PhyA, was then sequentially modified by DNA shuffling. Three genetically engineered strains with desirable properties were then obtained, namedQ172R, Q172R/K432R andQ368E/K432R. Among them, Q172R/K432R showed the highest thermostability with the longest half-life and the greatest remaining phytase activity after heat treatment, while Q368E/K432R showed the highest catalytic activity. Five substitutions (Q172R, T195L, Q368E, F376Y, K432R) identified from random mutagenesis were added sequentially to the phytase gene of PP-NP ep -6A to investigate how the mutant sites influence the properties of phytase. Characterization and structural analysis demonstrated that these mutations could produce cumulative or synergistic improvements in thermostability or catalytic efficiency of phytase. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    Science.gov (United States)

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  8. Heterologous Expression and Characterization of a Thermostable Exo-β-D-Glucosaminidase from Aspergillus oryzae.

    Science.gov (United States)

    Wu, Dingxin; Wang, Linchun; Li, Yuwei; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-02-01

    An exo-β-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-β-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50°C; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50°C than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.

  9. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations

    DEFF Research Database (Denmark)

    da Silva, Ines Isabel Cardoso Rodrigues; Jers, Carsten; Otten, Harm

    2014-01-01

    Rhamnogalacturonan I lyases (RGI lyases) (EC 4.2.2.-) catalyze cleavage of α-1,4 bonds between rhamnose and galacturonic acid in the backbone of pectins by β-elimination. In the present study, targeted improvement of the thermostability of a PL family 11 RGI lyase from Bacillus licheniformis (DSM......, were obtained due to additive stabilizing effects of single amino acid mutations (E434L, G55V, and G326E) compared to the wild type. The crystal structure of the B. licheniformis wild-type RGI lyase was also determined; the structural analysis corroborated that especially mutation of charged amino...

  10. Kinetics, improved activity and thermostability of endoglucanase and beta glucosidase from a mutant-derivative of aspergillus niger ms82

    International Nuclear Information System (INIS)

    Sohail, M.; Ahmad, A.; Khan, S.A.; Uddin, F.

    2013-01-01

    A mutant MS301 of Aspergillus niger MS82 showed 1.5 to 2.5-fold improved endoglucanase and beta-glucosidase activity when grown on crude lignocellulosic substrates under solid-state and submerged conditions. Indicators of thermal stability of enzymes (Tm and T1/2) showed that the wild type and mutant endoglucanase was more heat-resistant compared to beta-glucosidase. However, mutant and parent enzymes shared almost the same values for melting temperatures and half-lives. Endoglucanase and beta-glucosidase from both the strains showed optimum activity under acidic pH. Energy of activation (Ea) of mutant beta-glucosidase was substantially lower than the parent enzyme while Ea of mutant endoglucanase was slightly less than the parent. The lowered Ea values can be attributed to the improved beta-glucosidase activity of the mutant strain. Moreover, the MS301 enzymes were better in hydrolyzing purified and crude cellulosic materials than the parent MS82. (author)

  11. Dynamic fluorescence studies of beta-glycosidase mutants from Sulfolobus solfataricus: effects of single mutations on protein thermostability.

    Science.gov (United States)

    Bismuto, Ettore; Febbraio, Ferdinando; Limongelli, Simona; Briante, Raffaella; Nucci, Roberto

    2003-04-01

    Multiple sequence alignment on 73 proteins belonging to glycosyl hydrolase family 1 reveals the occurrence of a segment (83-124) in the enzyme sequences from hyperthermophilic archaea bacteria, which is absent in all the mesophilic members of the family. The alignment of the known three-dimensional structures of hyperthermophilic glycosidases with the known ones from mesophilic organisms shows a similar spatial organizations of beta-glycosidases except for this sequence segment whose structure is located on the external surface of each of four identical subunits, where it overlaps two alpha-helices. Site-directed mutagenesis substituting N97 or S101 with a cysteine residue in the sequence of beta-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus caused some changes in the structural and dynamic properties as observed by circular dichroism in far- and near-UV light, as well as by frequency domain fluorometry, with a simultaneous loss of thermostability. The results led us to hypothesize an important role of the sequence segment present only in hyperthermophilic beta-glycosidases, in the thermal adaptation of archaea beta-glycosidases. The thermostabilization mechanism could occur as a consequence of numerous favorable ionic interactions of the 83-124 sequence with the other part of protein matrix that becomes more rigid and less accessible to the insult of thermal-activated solvent molecules. Copyright 2003 Wiley-Liss, Inc.

  12. Expression and characterization of thermostable glycogen branching enzyme from Geobacillus mahadia Geo-05

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Mohtar

    2016-12-01

    Full Text Available The glycogen branching enzyme (EC 2.4.1.18, which catalyses the formation of α-1,6-glycosidic branch points in glycogen structure, is often used to enhance the nutritional value and quality of food and beverages. In order to be applicable in industries, enzymes that are stable and active at high temperature are much desired. Using genome mining, the nucleotide sequence of the branching enzyme gene (glgB was extracted from the Geobacillus mahadia Geo-05 genome sequence provided by the Malaysia Genome Institute. The size of the gene is 2013 bp, and the theoretical molecular weight of the protein is 78.43 kDa. The gene sequence was then used to predict the thermostability, function and the three dimensional structure of the enzyme. The gene was cloned and overexpressed in E. coli to verify the predicted result experimentally. The purified enzyme was used to study the effect of temperature and pH on enzyme activity and stability, and the inhibitory effect by metal ion on enzyme activity. This thermostable glycogen branching enzyme was found to be most active at 55 °C, and the half-life at 60 °C and 70 °C was 24 h and 5 h, respectively. From this research, a thermostable glycogen branching enzyme was successfully isolated from Geobacillus mahadia Geo-05 by genome mining together with molecular biology technique.

  13. Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system.

    Science.gov (United States)

    Katano, Yuta; Li, Tongyang; Baba, Misato; Nakamura, Miyo; Ito, Masaaki; Kojima, Kenji; Takita, Teisuke; Yasukawa, Kiyoshi

    2017-12-01

    We attempted to increase the thermostability of Moloney murine leukemia virus (MMLV) reverse transcriptase (RT). The eight-site saturation mutagenesis libraries corresponding to Ala70-Arg469 in the whole MMLV RT (Thr24-Leu671), in each of which 1 out of 50 amino acid residues was replaced with other amino acid residue, were constructed. Seven-hundred and sixty eight MMLV RT clones were expressed using a cell-free protein expression system, and their thermostabilities were assessed by the temperature of thermal treatment at which they retained cDNA synthesis activity. One clone D200C was selected as the most thermostable variant. The highest temperature of thermal treatment at which D200C exhibited cDNA synthesis activity was 57ºC, which was higher than for WT (53ºC). Our results suggest that a combination of site saturation mutagenesis library and cell-free protein expression system might be useful for generation of thermostable MMLV RT in a short period of time for expression and selection.

  14. Thermostable, salt tolerant, wide pH range novel chitobiase from Vibrio parahemolyticus: isolation, characterization, molecular cloning, and expression.

    Science.gov (United States)

    Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y

    1992-07-01

    A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.

  15. Prion propagation in cells expressing PrP glycosylation mutants.

    Science.gov (United States)

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  16. VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.

    Science.gov (United States)

    Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G

    1993-04-01

    Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.

  17. FireProt: web server for automated design of thermostable proteins

    Science.gov (United States)

    Musil, Milos; Stourac, Jan; Brezovsky, Jan; Prokop, Zbynek; Zendulka, Jaroslav; Martinek, Tomas

    2017-01-01

    Abstract There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. Here, we present FireProt, a web server for the automated design of multiple-point thermostable mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen tools and three protein engineering strategies for making reliable protein designs. The server is complemented with interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable mutants. FireProt is freely available at http://loschmidt.chemi.muni.cz/fireprot. PMID:28449074

  18. Mutants of Agrobacterium tumefaciens with elevated vir gene expression

    International Nuclear Information System (INIS)

    Pazour, G.J.; Ta, C.N.; Das, A.

    1991-01-01

    Expression of Agrobacterium tumefaciens virulence (vir) genes requires virA, virG, and a plant-derived inducing compound such as acetosyringone. To identify the critical functional domains of virA and virG, a mutational approach was used. Agrobacterium A136 harboring plasmid pGP159, which contains virA, virG, and a reporter virB:lacZ gene fusion, was mutagenized with UV light or nitrosoguanidine. Survivors that formed blue colonies on a plate containing 5-bromo-4-chloro-3-indolyl beta-D-galactoside were isolated and analyzed. Quantification of beta-galactosidase activity in liquid assays identified nine mutant strains. By plasmid reconstruction and other procedures, all mutations mapped to the virA locus. These mutations caused an 11- to 560-fold increase in the vegetative level of virB:lacZ reporter gene expression. DNA sequence analysis showed that the mutations are located in four regions of VirA: transmembrane domain one, the active site, a glycine-rich region with homology to ATP-binding sites, and a region at the C terminus that has homology to the N terminus of VirG

  19. Thermostable Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [Royal DSM, San Francisco, CA (United States)

    2010-03-24

    These are a set of slides from the conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  20. Thermostable Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Incorporated, San Francisco, CA (United States)

    2010-04-19

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  1. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01

    Directory of Open Access Journals (Sweden)

    Sigoillot Jean-Claude

    2009-11-01

    Full Text Available Abstract Background Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-D-mannanases catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS. Results A gene encoding mannan endo-1,4-β-mannosidase or 1,4-β-D-mannan mannanohydrolase (E.C. 3.2.1.78, commonly termed β-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5, was cloned and successfully expressed heterologously (up to 243 μg of active recombinant protein per mL in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant β-mannanase is highly thermostable with a half-life time of approximately 56 h at 70°C and pH 4.0. The optimal temperature (10-min assay and pH value for activity are 80°C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity, locust bean gum galactomannan, carob galactomannan (low viscosity, and 1,4-β-D-mannan (from carob are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the kcat values for these

  2. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01.

    Science.gov (United States)

    Do, Bien-Cuong; Dang, Thi-Thu; Berrin, Jean-Guy; Haltrich, Dietmar; To, Kim-Anh; Sigoillot, Jean-Claude; Yamabhai, Montarop

    2009-11-13

    Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-beta-mannosidases (1,4-beta-D-mannanases) catalyze the random hydrolysis of beta-1,4-mannosidic linkages in the main chain of beta-mannans. Biodegradation of beta-mannans by the action of thermostable mannan endo-1,4-beta-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS). A gene encoding mannan endo-1,4-beta-mannosidase or 1,4-beta-D-mannan mannanohydrolase (E.C. 3.2.1.78), commonly termed beta-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5), was cloned and successfully expressed heterologously (up to 243 microg of active recombinant protein per mL) in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant beta-mannanase is highly thermostable with a half-life time of approximately 56 h at 70 degrees C and pH 4.0. The optimal temperature (10-min assay) and pH value for activity are 80 degrees C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity), locust bean gum galactomannan, carob galactomannan (low viscosity), and 1,4-beta-D-mannan (from carob) are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the kcat values for these

  3. Recovery of avirulent, thermostable Newcastle disease virus strain NDV4-C from cloned cDNA and stable expression of an inserted foreign gene

    NARCIS (Netherlands)

    Zhang, X.; Liu, H.; Liu, P.; Peeters, B.P.H.; Zhao, C.; Kong, X.

    2013-01-01

    A reverse genetics system for thermostable Newcastle disease virus (NDV) is not currently available. In this study, we developed a reverse genetics system for the avirulent and thermostable NDV4-C strain. Successful recovery of NDV4-C was achieved by using either T7 RNA polymerase or cellular RNA

  4. Enhancement of thermostability and kinetic efficiency of Aspergillus niger PhyA phytase by site-directed mutagenesis.

    Science.gov (United States)

    Hesampour, Ardeshir; Siadat, Seyed Ehsan Ranaei; Malboobi, Mohammad Ali; Mohandesi, Nooshin; Arab, Seyed Shahriar; Ghahremanpour, Mohammad Mehdi

    2015-03-01

    Phytase efficiently catalyzes the hydrolysis of phytate to phosphate; it can be utilized as an animal supplement to provide animals their nutrient requirements for phosphate and to mitigate environmental pollution caused by unutilized feed phosphate. Owing to animal feed being commonly pelleted at 70 to 90 °C, phytase with a sufficiently high thermal stability is desirable. Based on the crystal structure of PhyA and bioinformatics analysis at variant heat treatments, 12 single and multiple mutants were introduced by site-directed mutagenesis in order to improve phytase thermostability. Mutated constructs were expressed in Pichia pastoris. The manipulated phytases were purified; their biochemical and kinetic investigation revealed that while the thermostability of six mutants was improved, P9 (T314S Q315R V62N) and P12 (S205N S206A T151A T314S Q315R) showed the highest heat stability (P phytase to be used as an animal feed supplement.

  5. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.

    Science.gov (United States)

    Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y

    2016-10-07

    CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.

  6. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  7. Cloning, Expression and Characterization of a Thermostable Esterase HydS14 from Actinomadura sp. Strain S14 in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Pichapak Sriyapai

    2015-06-01

    Full Text Available A thermostable esterase gene (hydS14 was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG and catalytic triad (Ser88-Asp208-His235 of the esterase/lipase superfamily. The HydS14 sequence shows 46%–64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases, has three conserved regions, and contains the novel motif (GY(FSLG, which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14 was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0–8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2–C6, displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM−1·S−1. In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris.

  8. Differentially expressed genes in white egg 2 mutant of silkworm ...

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... In order to obtain an overall view on gene expression profiles at early embryo ... existed multi-allelic mutations. As of other insects, the color of the eggs of silkworm ..... Acid-sensitive two pore domain K+ channel dTASK-6.

  9. Engineering thermostable xylanase enzyme mutant from Bacillus ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... waste treatment, fuel and chemical production, paper and pulp industries; but these applications ... approaches have been taken: screening organisms from various ... and site-directed mutagenesis was applied on this.

  10. Analysis on expression of gene for flower shape in Dendrobium sonia mutants using differential display technique

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Ahmad Syazni Kamarudin; Nurul Nadia Aminuddin; Mohd Nazir Basiran

    2004-01-01

    In vitro mutagenesis on Dendrobium Sonia in MINT has produced mutants with wide range of flower form and colour variations. Among the mutants are plants with different flower size and shape. These changes could be caused by alterations to the expression level of the genes responsible for the characteristics. In this studies, Differential Display technique was used to identify and analyse altered gene expression at the mRNA level. Total RNA of the control and mutants were reversed transcribed using three anchored oligo-d T primers. Subsequently, these cDNAs were Pcr amplified in combination with 16 arbitrary primers. The amplified products were electrophoresed side by side on agarose gel. Differentially expressed bands are isolated for further analysis. (Author)

  11. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    International Nuclear Information System (INIS)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-01-01

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  12. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  13. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  14. P22 Arc repressor: enhanced expression of unstable mutants by addition of polar C-terminal sequences.

    OpenAIRE

    Milla, M. E.; Brown, B. M.; Sauer, R. T.

    1993-01-01

    Many mutant variants of the P22 Arc repressor are subject to intracellular proteolysis in Escherichia coli, which precludes their expression at levels sufficient for purification and subsequent biochemical characterization. Here we examine the effects of several different C-terminal extension sequences on the expression and activity of a set of Arc mutants. We show that two tail sequences, KNQHE (st5) and H6KNQHE (st11), increase the expression levels of most mutants from 10- to 20-fold and, ...

  15. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  16. Production of a thermostable 1,3-1,4-β-glucanase mutant in Bacillus subtilis WB600 at a high fermentation capacity and its potential application in the brewing industry.

    Science.gov (United States)

    Niu, Chengtuo; Liu, Chunfeng; Li, Yongxian; Zheng, Feiyun; Wang, Jinjing; Li, Qi

    2018-02-01

    1,3-1,4-β-glucanase was an important biotechnological aid in the brewing industry. In a previous research, a Bacillus BglTO mutant (BglTO) with high tolerance towards high temperature and low-pH conditions was constructed and expressed in Escherichia coli. However, E. coli was not a suitable host for enzyme production in food industry. Therefore, the present work aimed to achieve the high-level expression of BglTO in Bacillus subtilis WB600 and to test its effect in Congress mashing. The β-glucanase mutant was successfully expressed in B. subtilis WB600 and favorable plasmid segregation and structural stability were observed. The maximal extracellular activity of β-glucanase in recombinant B. subtilis WB600 reached 4840.4UmL -1 after cultivation condition optimization, which was 1.94-fold higher than that before optimization. The fermentation capacity of recombinant B. subtilis reached 242.02UmL -1 h -1 , which was the highest among all reported β-glucanases. The addition of BglTO in Congress mashing significantly reduced the filtration time and viscosity of mash by 29.7% and 12.3%, respectively, which was superior to two commercial enzymes. These favorable properties indicated that B. subtilis WB600 was a suitable host for production of BglTO, which was promising for application in the brewing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gene expression profiling of brakeless mutant Drosophila embryos.

    Science.gov (United States)

    Crona, Filip; Singla, Bhumica; Mannervik, Mattias

    2015-12-01

    The transcriptional co-regulator Brakeless performs many important functions during Drosophila development, but few target genes have been identified. Here we use Affymetrix microarrays to identify Brakeless-regulated genes in 2-4 h old Drosophila embryos. Robust multi-array analysis (RMA) and statistical tests revealed 240 genes that changed their expression more than 1.5 fold. We find that up- and down-regulated genes fall into distinct gene ontology categories. In our associated study [2] we demonstrate that both up- and down-regulated genes can be direct Brakeless targets. Our results indicate that the co-repressor and co-activator activities of Brakeless may result in distinct biological responses. The microarray data complies with MIAME guidelines and is deposited in GEO under accession number GSE60048.

  18. Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation

    Directory of Open Access Journals (Sweden)

    Wright Anthony PH

    2010-01-01

    Full Text Available Abstract Background Histone acetyltransferase enzymes (HATs are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity. Results We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Δelp3 mutant. We examined genetic interactions between Δelp3 and two other HAT mutants, Δmst2 and Δgcn5 and used whole genome microarray analysis to analyze their effects on gene expression. Conclusions Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene.

  19. High-level expression, secretion, and purification of the thermostable aqualysin I from Thermus aquaticus YT-1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Oledzka, G.; Dabrowski, Slawomir; Kur, J.

    2003-01-01

    Aqualysin I is a heat-stable subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile. We report the high-level expression of an aqualysin I protein using its native signal sequence for secretion in the methylotrophic yeast, Pichia...... to that of the native enzyme. We also explored the possibility of secreting the GAP expressed aqualysin I in P. pastoris by in-frame fusion of the Saccharomyces cerevisiae alpha-factor secretion signal. However, the levels of secreted pro-aqualysin I particles were approximately 10 times lower, possibly...

  20. Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain

    International Nuclear Information System (INIS)

    Roy, Sumana; Choudhury, Debi; Chakrabarti, Chandana; Biswas, Sampa; Dattagupta, J. K.

    2011-01-01

    The crystallization of the precursor of a thermostable variant of papain and the collection of diffraction data to 2.6 Å resolution are reported. The crystallization of a recombinant thermostable variant of pro-papain has been carried out. The mutant pro-enzyme was expressed in Escherichia coli as inclusion bodies, refolded, purified and crystallized. The crystals belonged to space group P2 1 , with unit-cell parameters a = 42.9, b = 74.8, c = 116.5 Å, β = 93.0°, and diffracted to 2.6 Å resolution using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, the calculated Matthews coefficient is 2.28 Å 3 Da −1 , corresponding to a solvent content of 46%. Initial attempts to solve the structure using molecular-replacement techniques were successful

  1. Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis.

    Science.gov (United States)

    Ueshima, Junichi; Shoji, Mikio; Ratnayake, Dinath B; Abe, Kihachiro; Yoshida, Shinichi; Yamamoto, Kenji; Nakayama, Koji

    2003-03-01

    The periodontopathogen Porphyromonas gingivalis is an obligate anaerobe that is devoid of catalase but exhibits a relatively high degree of resistance to peroxide stress. In the present study, we demonstrate that P. gingivalis contains a Dps homologue that plays an important role in the protection of cells from peroxide stress. The Dps protein isolated from P. gingivalis displayed a ferritin-like spherical polymer consisting of 19-kDa subunits. Molecular cloning and sequencing of the gene encoding this protein revealed that it had a high similarity in nucleotide and amino acid sequences to Dps proteins from other species. The expression of Dps was significantly increased by exposure of P. gingivalis to atmospheric oxygen in an OxyR-dependent manner, indicating that it is regulated by the reactive oxygen species-regulating gene oxyR. The Dps-deficient mutants, including the dps single mutant and the ftn dps double mutant, showed no viability loss upon exposure to atmospheric oxygen for 6 h. In contrast to the wild type, however, these mutants exhibited the high susceptibility to hydrogen peroxide, thereby disrupting the viability. On the other hand, no significant difference in sensitivity to mitomycin C and metronidazole was observed between the wild type and the mutants. Furthermore, the dps single mutant, compared with the wild type, showed a lower viability in infected human umbilical vein endothelial cells.

  2. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    Science.gov (United States)

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  3. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  4. Engineering increased thermostability in the GH-10 endo-1,4-ß-xylanase from Thermoascus aurantiacus CBMAI 756

    Science.gov (United States)

    The GH10 endo-xylanase from Thermoascus aurantiacus CBMAI 756 (XynA) is industrially attractive due to its considerable thermostability and high specific activity. Considering the possibility of a further improvement in thermostability, eleven mutants were created in the present study via site-direc...

  5. Nimotuzumab enhances temozolomide?induced growth suppression of glioma cells expressing mutant EGFR in vivo

    OpenAIRE

    Nitta, Yusuke; Shimizu, Saki; Shishido?Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    Abstract A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti?EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild?type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and pho...

  6. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.

    Science.gov (United States)

    Mohammadi, Mohsen; Sepehrizadeh, Zargham; Ebrahim-Habibi, Azadeh; Shahverdi, Ahmad Reza; Faramarzi, Mohammad Ali; Setayesh, Neda

    2016-11-01

    Lipases as significant biocatalysts had been widely employed to catalyze various chemical reactions such as ester hydrolysis, ester synthesis, and transesterification. Improving the activity and thermostability of enzymes is desirable for industrial applications. The lipase of Serratia marcescens belonging to family I.3 lipase has a very important pharmaceutical application in production of chiral precursors. In the present study, to achieve improved lipase activity and thermostability, using computational predictions of protein, four mutant lipases of SML (MutG2P, MutG59P, Mut H279K and MutL613WA614P) were constructed by site-directed mutagenesis. The recombinant mutant proteins were over-expressed in E. coli and purified by affinity chromatography on the Ni-NTA system. Circular dichroism spectroscopy, differential scanning calorimetry and kinetic parameters (Km and kcat) were determined. Our results have shown that the secondary structure of all lipases was approximately similar to one another. The MutG2P and MutG59P were more stable than wild type by approximately 2.3 and 2.9 in T 1/2 , respectively. The catalytic efficiency (kcat/Km) of MutH279K was enhanced by 2-fold as compared with the wild type (p<0.05). These results indicate that using protein modeling program and creating mutation, can enhance lipase activity and/or thermostability of SML and it also could be used for improving other properties of enzyme to the desired requirements as well as further mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum.

    Science.gov (United States)

    Verheijen, Bert M; Gentier, Romina J G; Hermes, Denise J H P; van Leeuwen, Fred W; Hopkins, David A

    2017-06-01

    The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B +1 (UBB +1 ), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB +1 -expressing transgenic mice display widespread labeling for UBB +1 in brain and exhibit behavioral deficits. Here, we show that UBB +1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB +1 -expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.

  8. Characterization of D-myo-inositol 3-phosphate synthase gene expression in two soybean low phytate mutants

    International Nuclear Information System (INIS)

    Yuan Fengjie; Dong Dekun; Li Baiquan; Yu Xiaomin; Fu Xujun; Zhu Danhua; Zhu Shenlong; Yang Qinghua

    2013-01-01

    1D-myo-inositol 3-phosphate synthase (MIPS) gene plays a significant role in phytic acid biosynthesis. In this study, we used two low phytic acid mutants Gm-lpa-TW-1, Gm-lpa-ZC-2 and their respective wild type parents Taiwan75 and Zhechun No.3 to analyze the expression pattern and characterization of MIPS1 gene. The results showed that there was a common expression pattern of MIPS1 in soybean developing seeds. Expression was weak as detected by RT-PCR in initial stage, increased in the following stages, and the peak expression was appeared in 22 day after flowering (DAF). The expression of MIPS1 gene of non-seed tissues in mutant Gm-lpa-TW-1 and its wildtype Taiwan75 was very weak. In the developing seeds, the MIPS1 expression by qRT-PCR revealed a significant reduction in 22 DAF in mutant Gm-lpa-TW-1 as compared with the wildtype. Similarly, the expression of MIPS1 gene in non-seed tissue of Zhenchun No.3 and Gm-lpa-ZC-2 was very weak. However, stronger expression in developing seeds of the mutant Gm-lpa-ZC-2 than Zhechun No.3 was found. We concluded that the MIPS1 gene expression in the developing seed exhibited an up-regulation pattern in mutant Gm-lpa-ZC-2, but a down-regulation pattern in the mutant Gm-lpa-TW-1. (authors)

  9. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi Balaei

    2016-01-01

    Full Text Available Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2 mouse (nax—naked-ataxia mutant mouse correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5. In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  10. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants

    Science.gov (United States)

    Mustapha, Mirna; Fang, Qing; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Camper, Sally A.; Duncan, R. Keith

    2012-01-01

    The absence of thyroid hormone (TH) during late gestation and early infancy can cause irreparable deafness in both humans and rodents. A variety of rodent models have been utilized in an effort to identify the underlying molecular mechanism. Here, we characterize a mouse model of secondary hypothyroidism, pituitary transcription factor 1 (Pit1dw), which has profound, congenital deafness that is rescued by oral TH replacement. These mutants have tectorial membrane abnormalities, including a prominent Hensen's stripe, elevated β-tectorin composition, and disrupted striated-sheet matrix. They lack distortion product otoacoustic emissions and cochlear microphonic responses, and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell function and potassium recycling. Auditory system and hair cell physiology, histology and anatomy studies reveal novel defects of hormone deficiency related to deafness: (1) permanently impaired expression of KCNJ10 in the stria vascularis of Pit1dw mice, which likely contributes to the reduced endocochlear potential, (2) significant outer hair cell loss in the mutants, which may result from cellular stress induced by the lower KCNQ4 expression and current levels in Pit1dw mutant outer hair cells and (3) sensory and strial cell deterioration, which may have implications for thyroid hormone dysregulation in age related hearing impairment. In summary, we suggest that these defects in outer hair cell and strial cell function are important contributors to the hearing impairment in Pit1dw mice. PMID:19176829

  11. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  12. Prion Propagation in Cells Expressing PrP Glycosylation Mutants

    Science.gov (United States)

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  13. Co-expression and characterization of enterocin CRL35 and its mutant in Escherichia coli Rosetta

    Directory of Open Access Journals (Sweden)

    Masías Emilse

    2014-01-01

    Full Text Available Even though many sequences and structures of bacteriocins from lactic acid bacteria have been fully characterized so far, little information is currently available about bacteriocins heterologously produced by Escherichia coli. For this purpose, the structural gene of enterocin CRL35, munA, was PCR-amplified using specific primers and cloned downstream of PelB sequence in the pET22b (+ expression vector. E. coli Rosetta (DE3 pLysS was chosen as the host for production and enterocin was purified by an easy two-step protocol. The bacteriocin was correctly expressed with the expected intramolecular disulfide bond. Nevertheless, it was found that a variant of the enterocin, differing by 12 Da from the native polypeptide, was co-expressed by E. coli Rosetta in comparable amount. Indeed, the mutant bacteriocin contained two amino acid substitutions that were characterized by matrix assisted laser desorption ionization-time of flight (MALDI-TOF and HPLCelectrospray (ESI-Q-TOF tandem mass spectrometry (MS/ MS sequencing. This is the first report regarding the production of mutants of pediocin-like bacteriocins in the E. coli expression system.

  14. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  15. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    Science.gov (United States)

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  16. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  17. [hHO-1 structure prediction and its mutant construct, expression, purification and activity analysis].

    Science.gov (United States)

    Xia, Zhen Wei; Cui, Wen Jun; Zhou, Wen Pu; Zhang, Xue Hong; Shen, Qing Xiang; Li, Yun Zhu; Yu, Shan Chang

    2004-10-01

    Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.

  18. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

    Science.gov (United States)

    Jørgensen, F; Hansen, O C; Stougaard, P

    2004-06-01

    The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases ( araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.

  19. [The Expression of Pokemon in Endometrial Carcinoma Tissue and the Correlation with Mutant p53].

    Science.gov (United States)

    Yi, Tian-jin; Wang, Ping

    2016-05-01

    To detect the expression of Pokemon in endometrial carcinoma (EC), to provide preliminary theoretical basis for clarifying pathogenesis and searching for effective targets. Ninety-eight cases of endometrial tissue paraffin specimens form July 2012 to July 2014 in West China Second University Hospital, Sichuan University, were collected, including: EC group, consisting of adenocarcinoma 23 cases, adenosquamous 12 cases, serous 3 cases, mucinous 11 cases and clear cell 9 cases, and control group, consisting of atypical hyperplasia endometrium 20 cases and normal endometrium 20 cases (secretory 10 cases, hyperplasia 10 cases). Immunohistochemistry was used to detect the expression of Pokemonin each section, analyzing the correlation of Pokemon expression with clinicopathologic characteristics and p53 expression. The positive rate of Pokemon in normal endometrium was 25% (5/20), significantly lower than that in atypical hyperplasia endometrium (60.0%, 12/20) and EC (93.1%, 54/58) (P Pokemon in III-IV stage, type II and Ki-67 ≥ 50 EC tissue was much higher (P = 0.012, 0.023, 0.029). In type II EC tissue, the correlation index between Pokemon and p53 is 0.669 (P = 0.000). The over expression of Pokemon upregulates the expression of mutant p53, which may be one of the carcinogenesis modes in type II EC.

  20. Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant

    Energy Technology Data Exchange (ETDEWEB)

    Shinkyo, Raku; Inouye, Kuniyo [Kyoto Univ. (Japan). Div. of Food Science and Biotechnology; Kamakura, Masaki; Ikushiro, Shin-ichi; Sakaki, Toshiyuki [Toyama Prefectural Univ. (Japan). Biotechnology Research Center

    2006-09-15

    Among polychlorinated dibenzo-p-dioxins (PCDDs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is the most toxic one. Recently, we reported that rat CYP1A1 mutant, F240A, expressed in yeast showed metabolic activity toward 2,3,7,8-TetraCDD. In this study, we successfully expressed N-terminal truncated P450s ({delta}1A1 and {delta}F240A) in Escherichia coli cells. Kinetic analysis using membrane fractions prepared from the recombinant E. coli cells revealed that {delta}F240A has enzymatic properties similar to F240A expressed in yeast. The metabolism of PCDDs by recombinant E. coli cells expressing both {delta}F240A and human NADPH-P450 reductase was also examined. When 2,3,7-TriCDD was added to the E. coli cell culture at a final concentration of 10 {mu}M, approximately 90% of the 2,3,7-TriCDD was converted into multiple metabolites within 8 h. These results indicate the possible application of prokaryotic cells expressing {delta}F240A to the bioremediation of PCDD-contaminated soil. (orig.)

  1. Molecular characterization and expression study of a histidine auxotrophic mutant (his1-) of Nicotiana plumbaginifolia.

    Science.gov (United States)

    El Malki, F; Jacobs, M

    2001-01-01

    The histidine auxotroph mutant his 1(-) isolated from Nicotiana plumbaginifolia haploid protoplasts was first characterized to be deficient for the enzyme histidinol phosphate aminotransferase that is responsible for one of the last steps of histidine biosynthesis. Expression of the mutated gene at the RNA level was assessed by northern analysis of various tissues. Transcriptional activity was unimpaired by the mutation and, in contrast, a higher level of expression was obtained when compared to the wild-type. The cDNA sequence encoding the mutated gene was isolated by RT-PCR and compared to the wild-type gene. A single point mutation corresponding to the substitution of a G nucleotide by A was identified at position 1212 starting from the translation site. The alignment of the deduced amino acid sequences from the mutated and wild-type gene showed that this mutation resulted in the substitution of an Arg by a His residue at position 381. This Arg residue is a conserved amino acid for histidinol phosphate aminotransferase of many species. These results indicate that the identified mutation results in an altered histidinol phosphate aminotransferase enzyme that is unable to convert the substrate imidazole acetol phosphate to histidinol phosphate and thereby leads to the blockage of histidine biosynthesis. Possible consequences of this blockage on the expression of other amino acid biosynthesis genes were evaluated by analysing the expression of the dhdps gene encoding dihydrodipicolinate synthase, the first key enzyme of the lysine pathway.

  2. RNAi reduces expression and intracellular retention of mutant cartilage oligomeric matrix protein.

    Directory of Open Access Journals (Sweden)

    Karen L Posey

    2010-04-01

    Full Text Available Mutations in cartilage oligomeric matrix protein (COMP, a large extracellular glycoprotein expressed in musculoskeletal tissues, cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia. These mutations lead to massive intracellular retention of COMP, chondrocyte death and loss of growth plate chondrocytes that are necessary for linear growth. In contrast, COMP null mice have only minor growth plate abnormalities, normal growth and longevity. This suggests that reducing mutant and wild-type COMP expression in chondrocytes may prevent the toxic cellular phenotype causing the skeletal dysplasias. We tested this hypothesis using RNA interference to reduce steady state levels of COMP mRNA. A panel of shRNAs directed against COMP was tested. One shRNA (3B reduced endogenous and recombinant COMP mRNA dramatically, regardless of expression levels. The activity of the shRNA against COMP mRNA was maintained for up to 10 weeks. We also demonstrate that this treatment reduced ER stress. Moreover, we show that reducing steady state levels of COMP mRNA alleviates intracellular retention of other extracellular matrix proteins associated with the pseudoachondroplasia cellular pathology. These findings are a proof of principle and the foundation for the development of a therapeutic intervention based on reduction of COMP expression.

  3. Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Daniele Vergara

    2017-01-01

    Full Text Available In this study, we investigated by two-dimensional gel electrophoresis (2-DE and mass spectrometry (MS analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson’s disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson’s disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts.

  4. Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach

    Science.gov (United States)

    Gaballo, Antonio; Signorile, Anna; Tanzarella, Paola; Pacelli, Consiglia; Di Paola, Marco

    2017-01-01

    In this study, we investigated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson's disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson's disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts. PMID:29138676

  5. Thermostable cellulase from a thermomonospora gene

    Science.gov (United States)

    Wilson, D.B.; Walker, L.P.; Zhang, S.

    1997-10-14

    The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity. 3 figs.

  6. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  7. Mutant uromodulin expression leads to altered homeostasis of the endoplasmic reticulum and activates the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Céline Schaeffer

    Full Text Available Uromodulin is the most abundant urinary protein in physiological conditions. It is exclusively produced by renal epithelial cells lining the thick ascending limb of Henle's loop (TAL and it plays key roles in kidney function and disease. Mutations in UMOD, the gene encoding uromodulin, cause autosomal dominant tubulointerstitial kidney disease uromodulin-related (ADTKD-UMOD, characterised by hyperuricemia, gout and progressive loss of renal function. While the primary effect of UMOD mutations, retention in the endoplasmic reticulum (ER, is well established, its downstream effects are still largely unknown. To gain insight into ADTKD-UMOD pathogenesis, we performed transcriptional profiling and biochemical characterisation of cellular models (immortalised mouse TAL cells of robust expression of wild type or mutant GFP-tagged uromodulin. In this model mutant uromodulin accumulation in the ER does not impact on cell viability and proliferation. Transcriptional profiling identified 109 genes that are differentially expressed in mutant cells relative to wild type ones. Up-regulated genes include several ER resident chaperones and protein disulphide isomerases. Consistently, pathway enrichment analysis indicates that mutant uromodulin expression affects ER function and protein homeostasis. Interestingly, mutant uromodulin expression induces the Unfolded Protein Response (UPR, and specifically the IRE1 branch, as shown by an increased splicing of XBP1. Consistent with UPR induction, we show increased interaction of mutant uromodulin with ER chaperones Bip, calnexin and PDI. Using metabolic labelling, we also demonstrate that while autophagy plays no role, mutant protein is partially degraded by the proteasome through ER-associated degradation. Our work demonstrates that ER stress could play a central role in ADTKD-UMOD pathogenesis. This sets the bases for future work to develop novel therapeutic strategies through modulation of ER homeostasis and

  8. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo

    International Nuclear Information System (INIS)

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O 6 -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy

  9. [Expression in E.coli and bioactivity assay of Micrococcus luteus resuscitation promoting factor domain and its mutants].

    Science.gov (United States)

    Yue, Chen-Li; Shi, Jie-Ran; Shi, Chang-Hong; Zhang, Hai; Zhao, Lei; Zhang, Ting-Fen; Zhao, Yong; Xi, Li

    2008-10-01

    To express Micrococcus luteus resuscitation promoting factor (Rpf) domain and its mutants in prokaryotic cells, and to investigate their bioactivity. The gene of Rpf domain and its mutants (E54K, E54A) were amplified by polymerase chain reaction (PCR) from the genome of Micrococcus luteus and cloned into pMD18-T vector. After sequenced, the Rpf domain and its mutant gene were subcloned into expression vector PGEX-4T-1, and transfected into E. coli DH5alpha. The expressed product was purified by affinity chromatography using GST Fusion Protein Purification bead. The aim proteins were identified by SDS-PAGE analysis and by Western blot with monoclonal antibodies against Rpf domain (mAb). The bioactivity of the proteins was analyzed by stimulating the resuscitation of Mycobacterium smegmatis. The sequences of the PCR products were identical to those of the Rpf domain and its mutant gene in GenBank. The relative molecular mass identified by SDS-PAGE analysis was consistent with that had been reported, which was also confirmed by Western blot analysis that there were specific bindings at 32 000 with Rpf domain mAb. The purified GST-Rpf domain could stimulate resuscitation of Mycobacterium smegmatis. Replacements E54A and especially E54K resulted in inhibition of Rpf resuscitation activity. Rpf domain and two kinds of its mutant protein were obtained, and its effects on the resuscitation of dormant Mycobacterium smegmatis were clarified.

  10. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.

  11. Abnormal trafficking of endogenously expressed BMPR2 mutant allelic products in patients with heritable pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Andrea L Frump

    Full Text Available More than 200 heterozygous mutations in the type 2 BMP receptor gene, BMPR2, have been identified in patients with Heritable Pulmonary Arterial Hypertension (HPAH. More severe clinical outcomes occur in patients with BMPR2 mutations by-passing nonsense-mediated mRNA decay (NMD negative mutations. These comprise 40% of HPAH mutations and are predicted to express BMPR2 mutant products. However expression of endogenous NMD negative BMPR2 mutant products and their effect on protein trafficking and signaling function have never been described. Here, we characterize the expression and trafficking of an HPAH-associated NMD negative BMPR2 mutation that results in an in-frame deletion of BMPR2 EXON2 (BMPR2ΔEx2 in HPAH patient-derived lymphocytes and in pulmonary endothelial cells (PECs from mice carrying the same in-frame deletion of Exon 2 (Bmpr2 (ΔEx2/+ mice. The endogenous BMPR2ΔEx2 mutant product does not reach the cell surface and is retained in the endoplasmic reticulum. Moreover, chemical chaperones 4-PBA and TUDCA partially restore cell surface expression of Bmpr2ΔEx2 in PECs, suggesting that the mutant product is mis-folded. We also show that PECs from Bmpr2 (ΔEx2/+ mice have defects in the BMP-induced Smad1/5/8 and Id1 signaling axis, and that addition of chemical chaperones restores expression of the Smad1/5/8 target Id1. These data indicate that the endogenous NMD negative BMPRΔEx2 mutant product is expressed but has a folding defect resulting in ER retention. Partial correction of this folding defect and restoration of defective BMP signaling using chemical chaperones suggests that protein-folding agents could be used therapeutically in patients with these NMD negative BMPR2 mutations.

  12. Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis

    NARCIS (Netherlands)

    Bokma, Evert; Rozeboom, Henriëtte J.; Sibbald, Mark; Dijkstra, Bauke W.; Beintema, Jaap J.

    Hevamine is a chitinase from the rubber tree Hevea brasiliensis. Its active site contains Asp125, Glu127, and Tyr183, which interact with the -1 sugar residue of the substrate. To investigate their role in catalysis, we have successfully expressed wild-type enzyme and mutants of these residues as

  13. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice.

    Science.gov (United States)

    Lo, Shuen-Fang; Ho, Tuan-Hua David; Liu, Yi-Lun; Jiang, Mirng-Jier; Hsieh, Kun-Ting; Chen, Ku-Ting; Yu, Lin-Chih; Lee, Miin-Huey; Chen, Chi-Yu; Huang, Tzu-Pi; Kojima, Mikiko; Sakakibara, Hitoshi; Chen, Liang-Jwu; Yu, Su-May

    2017-07-01

    A major challenge of modern agricultural biotechnology is the optimization of plant architecture for enhanced productivity, stress tolerance and water use efficiency (WUE). To optimize plant height and tillering that directly link to grain yield in cereals and are known to be tightly regulated by gibberellins (GAs), we attenuated the endogenous levels of GAs in rice via its degradation. GA 2-oxidase (GA2ox) is a key enzyme that inactivates endogenous GAs and their precursors. We identified three conserved domains in a unique class of C 20 GA2ox, GA2ox6, which is known to regulate the architecture and function of rice plants. We mutated nine specific amino acids in these conserved domains and observed a gradient of effects on plant height. Ectopic expression of some of these GA2ox6 mutants moderately lowered GA levels and reprogrammed transcriptional networks, leading to reduced plant height, more productive tillers, expanded root system, higher WUE and photosynthesis rate, and elevated abiotic and biotic stress tolerance in transgenic rice. Combinations of these beneficial traits conferred not only drought and disease tolerance but also increased grain yield by 10-30% in field trials. Our studies hold the promise of manipulating GA levels to substantially improve plant architecture, stress tolerance and grain yield in rice and possibly in other major crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Distinct Fiber Type Signature in Mouse Muscles Expressing a Mutant Lamin A Responsible for Congenital Muscular Dystrophy in a Patient

    Directory of Open Access Journals (Sweden)

    Alice Barateau

    2017-04-01

    Full Text Available Specific mutations in LMNA, which encodes nuclear intermediate filament proteins lamins A/C, affect skeletal muscle tissues. Early-onset LMNA myopathies reveal different alterations of muscle fibers, including fiber type disproportion or prominent dystrophic and/or inflammatory changes. Recently, we identified the p.R388P LMNA mutation as responsible for congenital muscular dystrophy (L-CMD and lipodystrophy. Here, we asked whether viral-mediated expression of mutant lamin A in murine skeletal muscles would be a pertinent model to reveal specific muscle alterations. We found that the total amount and size of muscle fibers as well as the extent of either inflammation or muscle regeneration were similar to wildtype or mutant lamin A. In contrast, the amount of fast oxidative muscle fibers containing myosin heavy chain IIA was lower upon expression of mutant lamin A, in correlation with lower expression of genes encoding transcription factors MEF2C and MyoD. These data validate this in vivo model for highlighting distinct muscle phenotypes associated with different lamin contexts. Additionally, the data suggest that alteration of muscle fiber type identity may contribute to the mechanisms underlying physiopathology of L-CMD related to R388P mutant lamin A.

  15. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  16. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Perryman, L.A.; Blair, J.M.; Kingsley, E.A.; Szymanska, B.; Ow, K.T.; Wen, V.W.; MacKenzie, K.L.; Vermeulen, P.B.; Jackson, P.; Russell, P.J.

    2006-01-01

    This study has investigated the impact of three specific dominant-negative p53 mutants (F134L, M237L, and R273H) on tumorigenesis by LNCaP prostate cancer cells. Mutant p53 proteins were associated with an increased subcutaneous 'take rate' in NOD-SCID mice, and increased production of PSA. Tumors expressing F134L and R273H grew slower than controls, and were associated with decreased necrosis and apoptosis, but not hypoxia. Interestingly, hypoxia levels were increased in tumors expressing M237L. There was less proliferation in F134L-bearing tumors compared to control, but this was not statistically significant. Angiogenesis was decreased in tumors expressing F134L and R273H compared with M237L, or controls. Conditioned medium from F134L tumors inhibited growth of normal human umbilical-vein endothelial cells but not telomerase-immortalized bone marrow endothelial cells. F134L tumor supernatants showed lower levels of VEGF and endostatin compared with supernatants from tumors expressing other mutants. Our results support the possibility that decreased angiogenesis might account for reduced growth rate of tumor cells expressing the F134L p53 mutation

  17. Differential requirements of two recA mutants for constitutive SOS expression in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Jarukit Edward Long

    Full Text Available Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recA(C in the absence of external DNA damage in log phase cells.Genetic analysis of two recA(C mutants was used to determine the mechanism of constitutive SOS (SOS(C expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp. SOS(C expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOS(C expression in recA730 mutants was affected by none of the mutations or conditions tested above.It is concluded that not all recA(C alleles cause SOS(C expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOS(C expression by binding to ssDNA in a mechanism yet to be determined.

  18. Structure and expression of cytochrome f in an Oenothera plastome mutant.

    Science.gov (United States)

    Johnson, E M; Sears, B B

    1990-06-01

    The chloroplast mutant pm7 is one of a number of mutants derived from the plastome mutator (pm) line of Oenothera hookeri, strain Johansen. Immunoblotting showed that this mutant accumulates a protein that is cross-antigenic with cytochrome f, but five kilodaltons larger than the mature wild-type protein. Since cytochrome f is known to be translated on plastid ribosomes as a precursor with an amino-terminal extension, it is proposed that the unprocessed cytochrome f precursor accumulates in pm7. In addition to this precursor-sized cytochrome f protein, some mature-sized cytochrome f was also found in the mutant plastids. The pm7 mutation is inherited in a non-Mendelian fashion; but no alterations in chloroplast DNA restriction patterns, or differences in DNA sequence in the region encoding cytochrome f, were found in a comparison of the wild-type and pm7 chloroplast DNAs. Although the mutant was capable of synthesizing heme, no covalently-bound heme, normally found associated with mature, functional, cytochrome f was detected in the mutant at sizes expected for the presumed precursor, or for mature cytochrome f. These results indicate that the aberrant accumulation of a precursor-sized cytochrome f in pm7 is not due to a lesion directly in the plastid gene encoding cytochrome f, petA, or to a deficiency in the ability of the mutant plastids to synthesize or accumulate heme.

  19. Inheritance and gene expression of a root-growth inhibiting mutant in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Kitano, H.; Futsuhara, Y.

    1990-01-01

    Full text: A root-growth inhibiting mutant was induced in the dwarf mutant line, 'Fukei 71', through ethylene-imine. The mutant is characterised by the excessive inhibition of both seminal and crown roots elongation just after germination, although its shoots grow nearly normal. To study the genetics, the mutant was crossed with its original line 'Fukei 71' and some other normal cultivars. Results show that the root-growth inhibition is controlled by a recessive gene (rt), independent of the dwarf gene, d-50(t) locus in Fukei 71. For elucidating the gene action on root morphogenesis, histological and cytological experiments were carried out using a longitudinal and transverse thin section of seminal and/or crown root tips. Observations suggest that the rt gene affects the normal formation of the epidermal system which is differentiated from the protoderm of the root apical meristem. (author)

  20. Understanding thermostability and pH dependent properties of proteins

    DEFF Research Database (Denmark)

    Galberg, Pernille

    The work performed in this thesis is part of a larger project (“Computational design of stable enzymes”) involving several research teams, which aimed to improve PROPKA (http://propka.ki.ku.dk) and to provide the scientific community with a computational protocol and associated PROPKA program......, which could be used for predicting mutations with expectation of increased thermostability at a certain pH value or a shifted pH activity optimum. The ability of a Bacillus circulans xylanase (BCX) mutant (N35D/A115E) to induce a decrease in pH activity optimum was evaluated by a pH dependent xylanase...

  1. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  2. Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

    Science.gov (United States)

    Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack

    1998-01-01

    To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103

  3. Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw

    Directory of Open Access Journals (Sweden)

    Siika-aho Matti

    2011-01-01

    Full Text Available Abstract Background Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases, resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties connected with high initial solid loadings in the lignocellulose to ethanol process. Results The capability of novel thermostable enzymes to reduce the viscosity of high-solid biomass suspensions using a real-time viscometric measurement method was investigated. Heterologously expressed enzymes from various thermophilic organisms were compared for their ability to liquefy the lignocellulosic substrate, hydrothermally pretreated wheat straw. Once the best enzymes were identified, the optimal temperatures for these enzymes to decrease substrate viscosity were compared. The combined hydrolytic properties of the thermostable preparations were tested in hydrolysis experiments. The studied mixtures were primarily designed to have good liquefaction potential, and therefore contained an enhanced proportion of the key liquefying enzyme, EGII/Cel5A. Conclusions Endoglucanases were shown to have a superior ability to rapidly reduce the viscosity of the 15% (w/w; dry matter hydrothermally pretreated wheat straw. Based on temperature profiling studies, Thermoascus aurantiacus EGII/Cel5A was the most promising enzyme for biomass liquefaction. Even though they were not optimized for saccharification, many of the thermostable enzyme mixtures had superior hydrolytic properties compared with the commercial reference enzymes at 55°C.

  4. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  5. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma.

    Science.gov (United States)

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B; Wu, Chia-Chin; Akdemir, Kadir C; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T; Welch, Heidi C E; Garraway, Levi A; Chin, Lynda

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  6. Astrocytes expressing ALS‐linked mutant FUS induce motor neuron death through release of tumor necrosis factor‐alpha

    Science.gov (United States)

    Kia, Azadeh; McAvoy, Kevin; Krishnamurthy, Karthik; Trotti, Davide

    2018-01-01

    Mutations in fused in sarcoma (FUS) are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting both upper and lower motor neurons. While it is established that astrocytes contribute to the death of motor neurons in ALS, the specific contribution of mutant FUS (mutFUS) through astrocytes has not yet been studied. Here, we used primary astrocytes expressing a N‐terminally GFP tagged R521G mutant or wild‐type FUS (WTFUS) and show that mutFUS‐expressing astrocytes undergo astrogliosis, damage co‐cultured motor neurons via activation of an inflammatory response and produce conditioned medium (ACM) that is toxic to motor neurons in isolation. Time lapse imaging shows that motor neuron cultures exposed to mutFUS ACM, but not WTFUS ACM, undergo significant cell loss, which is preceded by progressive degeneration of neurites. We found that Tumor Necrosis Factor‐Alpha (TNFα) is secreted into ACM of mutFUS‐expressing astrocytes. Accordingly, mutFUS astrocyte‐mediated motor neuron toxicity is blocked by targeting soluble TNFα with neutralizing antibodies. We also found that mutant astrocytes trigger changes to motor neuron AMPA receptors (AMPAR) that render them susceptible to excitotoxicity and AMPAR‐mediated cell death. Our data provide the first evidence of astrocytic involvement in FUS‐ALS, identify TNFα as a mediator of this toxicity, and provide several potential therapeutic targets to protect motor neurons in FUS‐linked ALS. PMID:29380416

  7. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal; Nezi, Luigi; Amin, Samir B.; Wu, Chia-Chin; Akdemir, Kadir C.; Mahdavi, Mozhdeh; Peng, Qian; Chang, Qing Edward; Hornigold, Kirsti; Arold, Stefan T.; Welch, Heidi C. E.; Garraway, Levi A.; Chin, Lynda

    2016-01-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  8. The differential gene expression of key enzyme in the gibberellin pathway in the potato (solanum tuberosum) mutant

    International Nuclear Information System (INIS)

    Shi, J.B.; Ye, G.J.; Yang, Y.Z.; Wang, F.; Zhou, Y; Wang, J.

    2016-01-01

    In the present study, the expression patterns of the key genes in the gibberellin synthesis pathway in the potato dwarf mutant M4P-9 were detected using quantitative real-time PCR. Using Actin as an internal control, CPS1, KS, KO, GA20ox1, and GA2ox1, genes for key gibberellin synthesis enzymes, were evaluated, along with a gibberellin receptor gene. The standard curves were obtained from dilutions of PCR product; the correlation coefficient for Actin was 0.995, and those for the target genes varied from 0.994 to 1.000. The expression patterns of gibberellin pathway genes in different growth stages and tissues were calculated according to the method of Pfaffl. These genes showed expression patterns that varied based on growth stage and tissue type. The higher expression levels of CPS1 and GA2ox1 in roots, the lower expression levels of GA20ox1 in roots during tuber formation stage; as well as the increased expression of GA20ox1 and GA2ox1 genes in stems during the tuber formation stage, likely play key roles in the plant height phenotype in M4P-9 mutant materials. This article provides a basis for researching the mechanism of gibberellin synthesis in potato. (author)

  9. Construction and engineering of a thermostable self-sufficient cytochrome P450

    Energy Technology Data Exchange (ETDEWEB)

    Mandai, Takao; Fujiwara, Shinsuke [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  10. Construction and engineering of a thermostable self-sufficient cytochrome P450

    International Nuclear Information System (INIS)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu

    2009-01-01

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP + reductase (FNR): H 2 N-CYP175A1-Fdx-FNR-COOH (175FR) and H 2 N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V max value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k m values of these enzymes were similar. 175RF retained 50% residual activity even at 80 o C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  11. Characterization of a cold-active esterase from Serratia sp. and improvement of thermostability by directed evolution.

    Science.gov (United States)

    Jiang, Huang; Zhang, Shaowei; Gao, Haofeng; Hu, Nan

    2016-01-22

    In recent years, cold-active esterases have received increased attention due to their attractive properties for some industrial applications such as high catalytic activity at low temperatures. An esterase-encoding gene (estS, 909 bp) from Serratia sp. was identified, cloned and expressed in Escherichia coli DE3 (BL21). The estS encoded a protein (EstS) of 302 amino acids with a predicted molecular weight of 32.5 kDa. It showed the highest activity at 10 °C and pH 8.5. EstS was cold active and retained ~92 % of its original activity at 0 °C. Thermal inactivation analysis showed that the T1/2 value of EstS was 50 min at 50 °C (residual activity 41.23 %) after 1 h incubation. EstS is also quite stable in high salt conditions and displayed better catalytic activity in the presence of 4 M NaCl. To improve the thermo-stability of EstS, variants of estS gene were created by error-prone PCR. A mutant 1-D5 (A43V, R116W, D147N) that showed higher thermo-stability than its wild type predecessor was selected. 1-D5 showed enhanced T1/2 of 70 min at 50 °C and retained 63.29 % of activity after incubation at 50 °C for 60 min, which were about 22 % higher than the wild type (WT). CD spectrum showed that the secondary structure of WT and 1-D5 are more or less similar, but an increase in β-sheets was recorded, which enhanced the thermostability of mutant protein. EstS was a novel cold-active and salt-tolerant esterase and half-life of mutant 1-D5 was enhanced by 1.4 times compared with WT. The features of EstS are interesting and can be exploited for commercial applications. The results have also provided useful information about the structure and function of Est protein.

  12. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang, E-mail: wolfgang.marwan@ovgu.de

    2013-05-24

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  13. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    International Nuclear Information System (INIS)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang

    2013-01-01

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level

  14. Highly Efficient Thermostable DSM Cellulases: Why & How?

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj [DSM Innovation, Inc., San Francisco, CA (United States)

    2011-04-26

    These are the slides from this presentation. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  15. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Science.gov (United States)

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  16. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Lucia Regales

    2007-08-01

    Full Text Available The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer.To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M-expressing animals develop tumors with longer latency than EGFR(L858R+T790M-bearing mice and in the absence of additional kinase domain mutations.These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  17. Global Expression in Sorghum Brown Midrib Mutants to Improve Biomass for Biofuels

    Science.gov (United States)

    Brown midrib (bmr) mutants are being investigated for their ability to increase the conversion efficiency of sorghum biomass for lignocellulosic bioenergy. Brown midrib 6 and 12 (bmr6 and 12) are impaired the last two steps of monolignol biosynthesis resulting in reduced lignin content and altered ...

  18. Identification of differentially expressed genes in sorghum (Sorghum bicolor) brown midrib mutants

    Science.gov (United States)

    Sorghum (Sorghum bicolor L.), with a high biomass yield and excellent tolerance to drought and low nutrition, has been recommended as one of the most competitive bioenergy crops. Brown midrib (bmr) mutant sorghum with reduced lignin content showed a high potential for the improvement of bioethanol ...

  19. Protein expression profiling of the drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis.

    Science.gov (United States)

    Zhang, Yong Q; Friedman, David B; Wang, Zhe; Woodruff, Elvin; Pan, Luyuan; O'donnell, Janis; Broadie, Kendal

    2005-03-01

    Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.

  20. Thylakoid redox signals are integrated into organellar-gene-expression-dependent retrograde signalling in the prors1-1 mutant

    Directory of Open Access Journals (Sweden)

    Luca eTadini

    2012-12-01

    Full Text Available Perturbations in organellar gene expression (OGE and the thylakoid redox state (TRS activate retrograde signalling pathways that adaptively modify nuclear gene expression (NGE, according to developmental and metabolic needs. The prors1-1 mutation in Arabidopsis down-regulates the expression of the nuclear gene Prolyl-tRNA Synthetase1 (PRORS1 which acts in both plastids and mitochondria, thereby impairing protein synthesis in both organelles and triggering OGE-dependent retrograde signalling. Because the mutation also affects thylakoid electron transport, TRS-dependent signals may likewise have an impact on the changes in NGE observed in this genotype. In this study, we have investigated whether signals related to TRS are actually integrated into the OGE-dependent retrograde signalling pathway. To this end, the chaos mutation (for chlorophyll a/b binding protein harvesting-organelle specific, which shows a partial loss of PSII antennae proteins and thus a reduction in PSII light absorption capability, was introduced into the prors1-1 mutant background. The resulting double mutant displayed a prors1-1-like reduction in plastid translation rate and a chaos-like decrease in PSII antenna size, whereas the hyper-reduction of the thylakoid electron transport chain, caused by the prors1-1 mutation, was alleviated, as determined by monitoring chlorophyll (Chl fluorescence and thylakoid phosphorylation. Interestingly, a substantial fraction of the nucleus-encoded photosynthesis genes down-regulated in the prors1-1 mutant are expressed at nearly wild-type rates in prors1-1 chaos leaves, and this recovery is reflected in the steady-state levels of their protein products in the chloroplast. We therefore conclude that signals related to photosynthetic electron transport and TRS, and indirectly to carbohydrate metabolism and energy balance, are indeed fed into the OGE-dependent retrograde pathway to modulate NGE and adjust the abundance of chloroplast proteins.

  1. Induction of expression and co-localization of heat shock polypeptides with the polyalanine expansion mutant of poly(A)-binding protein N1 after chemical stress

    International Nuclear Information System (INIS)

    Wang Qishan; Bag, Jnanankur

    2008-01-01

    Formation of nuclear inclusions consisting of aggregates of a polyalanine expansion mutant of nuclear poly(A)-binding protein (PABPN1) is the hallmark of oculopharyngeal muscular dystrophy (OPMD). OPMD is a late onset autosomal dominant disease. Patients with this disorder exhibit progressive swallowing difficulty and drooping of their eye lids, which starts around the age of 50. Previously we have shown that treatment of cells expressing the mutant PABPN1 with a number of chemicals such as ibuprofen, indomethacin, ZnSO 4 , and 8-hydroxy-quinoline induces HSP70 expression and reduces PABPN1 aggregation. In these studies we have shown that expression of additional HSPs including HSP27, HSP40, and HSP105 were induced in mutant PABPN1 expressing cells following exposure to the chemicals mentioned above. Furthermore, all three additional HSPs were translocated to the nucleus and probably helped to properly fold the mutant PABPN1 by co-localizing with this protein

  2. Enhanced expression of membrane proteins in E. coli with a PBAD promoter mutant: synergies with chaperone pathway engineering strategies

    Directory of Open Access Journals (Sweden)

    Nannenga Brent L

    2011-12-01

    Full Text Available Abstract Background Membrane proteins (MPs populate 20-30% of genomes sequenced to date and hold potential as therapeutic targets as well as for practical applications in bionanotechnology. However, MP toxicity and low yields in normally robust expression hosts such as E. coli has curtailed progress in our understanding of their structure and function. Results Using the seven transmembrane segments H. turkmenica deltarhodopsin (HtdR as a reporter, we isolated a spontaneous mutant in the arabinose-inducible PBAD promoter leading to improved cell growth and a twofold increase in the recovery of active HtdR at 37°C. A single transversion in a conserved region of the cyclic AMP receptor protein binding site caused the phenotype by reducing htdR transcript levels by 65%. When the mutant promoter was used in conjunction with a host lacking the molecular chaperone Trigger Factor (Δtig cells, toxicity was further suppressed and the amount of correctly folded HtdR was 4-fold that present in the membranes of control cells. More importantly, while improved growth barely compensated for the reduction in transcription rates when another polytopic membrane protein (N. pharonis sensory rhodopsin II was expressed under control of the mutant promoter in wild type cells, a 4-fold increase in productivity could be achieved in a Δtig host. Conclusions Our system, which combines a downregulated version of the tightly repressed PBAD promoter with a TF-deficient host may prove a valuable alternative to T7-based expression for the production of membrane proteins that have so far remained elusive targets.

  3. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  4. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    2011-04-01

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  5. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.

    Science.gov (United States)

    Xie, Ning; Ruprich-Robert, Gwenaël; Silar, Philippe; Chapeland-Leclerc, Florence

    2015-03-01

    Plant biomass degradation by fungi is a critical step for production of biofuels, and laccases are common ligninolytic enzymes envisioned for ligninolysis. Bilirubin oxidases (BODs)-like are related to laccases, but their roles during lignocellulose degradation have not yet been fully investigated. The two BODs of the ascomycete fungus Podospora anserina were characterized by targeted gene deletions. Enzymatic assay revealed that the bod1(Δ) and bod2(Δ) mutants lost partly a thermostable laccase activity. A triple mutant inactivated for bod1, bod2 and mco, a previously investigated multicopper oxidase gene distantly related to laccases, had no thermostable laccase activity. The pattern of fruiting body production in the bod1(Δ) bod2(Δ) double mutant was changed. The bod1(Δ) and bod2(Δ) mutants were reduced in their ability to grow on ligneous and cellulosic materials. Furthermore, bod1(Δ) and bod2(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and triple mutants were more affected than single mutants, evidencing redundancy of function among BODs and mco. Overall, the data show that bod1, bod2 and mco code for non-canonical thermostable laccases that participate in the degradation of lignocellulose. Thanks to their thermal stability, these enzymes may be more promising candidate for biotechnological application than canonical laccases. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    Science.gov (United States)

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  7. Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow

    Directory of Open Access Journals (Sweden)

    Su Chen

    2014-09-01

    Full Text Available In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481 was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.

  8. Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger.

    Science.gov (United States)

    Li, Lijun; Liao, Hui; Yang, Yan; Gong, Jianye; Liu, Jianan; Jiang, Zedong; Zhu, Yanbing; Xiao, Anfeng; Ni, Hui

    2018-06-01

    To improve the thermostability of α-L-rhamnosidase (r-Rha1), an enzyme previously identified from Aspergillus niger JMU-TS528, multiple arginine (Arg) residues were introduced into the r-Rha1 sequence to replace several lysine (Lys) residues that located on the surface of the folded r-Rha1. Hinted by in silico analysis, five surface Lys residues (K134, K228, K406, K440, K573) were targeted to produce a list of 5 single-residue mutants and 4 multiple-residue mutants using site-directed mutagenesis. Among these mutants, a double Lys to Arg mutant, i.e. K406R/K573R, showed the best thermostability improvement. The half-life of this mutant's enzyme activity increased 3 h at 60 °C, 23 min at 65 °C, and 3.5 min at 70 °C, when compared with the wild type. The simulated protein structure based interaction analysis and molecular dynamics calculation indicate that the thermostability improvement of the mutant K406R-K573R was possibly due to the extra hydrogen bonds, the additional cation-π interactions, and the relatively compact conformation. With the enhanced thermostability, the α-L-rhamnosidase mutant, K406R-K573R, has potentially broadened the r-Rha1 applications in food processing industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ..... Each contour curve represented an infinite number of combinations of two ..... Production in sea-water of.

  10. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    Available online at http://www.tjpr.org ... Methods: Molecular community structure of the newly selected thermophilic bacterial ... Keywords: Thermostable cellulase, Sugarcane bagasse, Purification, Characterization, Hot spring ... Currently, one.

  11. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.

    Science.gov (United States)

    Wu, Tzu-Hui; Chen, Chun-Chi; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Lai, Hui-Lin; Huang, Ting-Yung; Liu, Je-Ruei; Guo, Rey-Ting

    2014-04-10

    Escherichia coli phytase (EcAppA) which hydrolyzes phytate has been widely applied in the feed industry, but the need to improve the enzyme activity and thermostability remains. Here, we conduct rational design with two strategies to enhance the EcAppA performance. First, residues near the substrate binding pocket of EcAppA were modified according to the consensus sequence of two highly active Citrobacter phytases. One out of the eleven mutants, V89T, exhibited 17.5% increase in catalytic activity, which might be a result of stabilized protein folding. Second, the EcAppA glycosylation pattern was modified in accordance with the Citrobacter phytases. An N-glycosylation motif near the substrate binding site was disrupted to remove spatial hindrance for phytate entry and product departure. The de-glycosylated mutants showed 9.6% increase in specific activity. On the other hand, the EcAppA mutants that adopt N-glycosylation motifs from CbAppA showed improved thermostability that three mutants carrying single N-glycosylation motif exhibited 5.6-9.5% residual activity after treatment at 80°C (1.8% for wild type). Furthermore, the mutant carrying all three glycosylation motifs exhibited 27% residual activity. In conclusion, a successful rational design was performed to obtain several useful EcAppA mutants with better properties for further applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Expression and characterization of recombinant human factor V and a mutant lacking a major portion of the connecting region

    International Nuclear Information System (INIS)

    Kane, W.H.; Devore-Carter, D.; Ortel, T.L.

    1990-01-01

    Human coagulation factor V is a protein cofactor that is an essential component of the prothrombinase complex. A full-length factor V cDNA has been subcloned into the mammalian expression vector pDX and used to transfect COS cells. Approximately 95 ± 4% of the recombinant human factor V (rHFV) synthesized in COS cells is secreted into the culture medium. Factor V activity determined by fibrometer assay increased approximately 5-fold from 0.027 ± 0.012 to 0.124 ± 0.044 unit/mL following activation by the factor V activating enzyme from Russell's viper venom (RVV-V). A chromogenic assay specific for factor Va indicated that recombinant factor V had 3.8 ± 1.3% of the activity of the activated protein. The estimated specific activity of the recombinant factor Va was approximately 1,800 ± 500 units/mg, which is similar to the specific activity of purified plasma factor Va of 1,700-2,000 units/mg. Immunoprecipitation of [ 35 S]methionine-labeled rHFV revealed a single high molecular mass component. Treatment of rHFV with thrombin or RVV-V resulted in the formation of proteolytic products that were similar to those seen with plasma factor V. The authors have also expressed a mutant, rHFV-des-B 811-1441 , that lacks a large portion of the highly glycosylated connecting region that is present in factor V. This mutant constitutively expressed 38 ± 7% of the activity of the RVV-V-activated protein. These results suggest that one of the functions of the large connecting region in factor V is to inhibit constitutive procoagulant activity

  13. Expression Pattern of Two Paralogs Encoding Cinnamyl Alcohol Dehydrogenases in Arabidopsis. Isolation and Characterization of the Corresponding Mutants1

    Science.gov (United States)

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-01-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cβ. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units. PMID:12805615

  14. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants.

    Science.gov (United States)

    Sibout, Richard; Eudes, Aymerick; Pollet, Brigitte; Goujon, Thomas; Mila, Isabelle; Granier, Fabienne; Séguin, Armand; Lapierre, Catherine; Jouanin, Lise

    2003-06-01

    Studying Arabidopsis mutants of the phenylpropanoid pathway has unraveled several biosynthetic steps of monolignol synthesis. Most of the genes leading to monolignol synthesis have been characterized recently in this herbaceous plant, except those encoding cinnamyl alcohol dehydrogenase (CAD). We have used the complete sequencing of the Arabidopsis genome to highlight a new view of the complete CAD gene family. Among nine AtCAD genes, we have identified the two distinct paralogs AtCAD-C and AtCAD-D, which share 75% identity and are likely to be involved in lignin biosynthesis in other plants. Northern, semiquantitative restriction fragment-length polymorphism-reverse transcriptase-polymerase chain reaction and western analysis revealed that AtCAD-C and AtCAD-D mRNA and protein ratios were organ dependent. Promoter activities of both genes are high in fibers and in xylem bundles. However, AtCAD-C displayed a larger range of sites of expression than AtCAD-D. Arabidopsis null mutants (Atcad-D and Atcad-C) corresponding to both genes were isolated. CAD activities were drastically reduced in both mutants, with a higher impact on sinapyl alcohol dehydrogenase activity (6% and 38% of residual sinapyl alcohol dehydrogenase activities for Atcad-D and Atcad-C, respectively). Only Atcad-D showed a slight reduction in Klason lignin content and displayed modifications of lignin structure with a significant reduced proportion of conventional S lignin units in both stems and roots, together with the incorporation of sinapaldehyde structures ether linked at Cbeta. These results argue for a substantial role of AtCAD-D in lignification, and more specifically in the biosynthesis of sinapyl alcohol, the precursor of S lignin units.

  15. Constitutive non-inducible expression of the Arabidopsis thaliana Nia 2 gene in two nitrate reductase mutants of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Kaye, C; Crawford, N M; Malmberg, R L

    1997-04-01

    We have isolated a haploid cell line of N. plumbaginifolia, hNP 588, that is constitutive and not inducible for nitrate reductase. Nitrate reductase mutants were isolated from hNP 588 protoplasts upon UV irradiation. Two of these nitrate reductase-deficient cell lines, nia 3 and nia 25, neither of which contained any detectable nitrate reductase activity, were selected for complementation studies. A cloned Arabidopsis thaliana nitrate reductase gene Nia 2 was introduced into each of the two mutants resulting in 56 independent kanamycin-resistant cell lines. Thirty of the 56 kanamycin-resistant cell lines were able to grow on nitrate as the sole nitrogen source. Eight of these were further analyzed for nitrate reductase enzyme activity and nitrate reductase mRNA production. All eight lines had detectable nitrate reductase activity ranging from 7% to 150% of wild-type hNP 588 callus. The enzyme activity levels were not influenced by the nitrogen source in the medium. The eight lines examined expressed a constitutive, non-inducible 3.2 kb mRNA species that was not present in untransformed controls.

  16. Limited number of immunoglobulin VH regions expressed in the mutant rabbit "Alicia".

    Science.gov (United States)

    DiPietro, L A; Short, J A; Zhai, S K; Kelus, A S; Meier, D; Knight, K L

    1990-06-01

    A unique feature of rabbit Ig is the presence of VH region allotypic specificities. In normal rabbits, more than 80% of circulating immunoglobulin molecules bear the VHa allotypic specificities, al, a2 or a3; the remaining 10% to 20% of immunoglobulin molecules lack VHa allotypic specificities and are designated VHa-. A mutant rabbit designated Alicia, in contrast, has predominantly serum immunoglobulin molecules that lack the VHa allotypic specificities (Kelus and Weiss, Proc. Natl. Acad. Sci. USA 1986. 83: 4883). To study the nature and molecular complexity of VHa- molecules, we cloned and determined the nucleotide sequence of seven cDNA prepared from splenic RNA of an Alicia rabbit. Six of the clones appeared to encode VHa- molecules; the framework regions encoded by these clones were remarkably similar to each other, each having an unusual insertion of four amino acids at position 10. This insertion of four amino acids has been seen in only 2 of 54 sequenced rabbit VH genes. The similarity of the sequences of the six VHa- clones to each other and their dissimilarity to most other VH genes leads us to suggest that the VHa- molecules in Alicia rabbits are derived predominantly from one or a small number of very similar VH genes. Such preferential utilization of a small number of VH genes may explain the allelic inheritance of VH allotypes.

  17. Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement.

    Science.gov (United States)

    Farnoosh, Gholamreza; Khajeh, Khosro; Latifi, Ali Mohammad; Aghamollaei, Hossein

    2016-12-01

    The organophosphorus hydrolase (OPH) has been used to degrade organophosphorus chemicals, as one of the most frequently used decontamination methods. Under chemical and thermal denaturing conditions, the enzyme has been shown to unfold. To utilize this enzyme in various applications, the thermal stability is of importance. The engineering of de novo disulphide bridges has been explored as a means to increase the thermal stability of enzymes in the rational method of protein engineering. In this study, Disulphide by Design software, homology modelling and molecular dynamics simulations were used to select appropriate amino acid pairs for the introduction of disulphide bridge to improve protein thermostability. The thermostability of the wild-type and three selected mutant enzymes were evaluated by half-life, delta G inactivation (ΔGi) and structural studies (fluorescence and far-UV CD analysis). Data analysis showed that half-life of A204C/T234C and T128C/E153C mutants were increased up to 4 and 24 min, respectively; however, for the G74C/A78C mutant, the half-life was decreased up to 9 min. For the T128C/E124C mutant, both thermal stability and Catalytic efficiency (kcat) were also increased. The half-life and ΔGi results were correlated to the obtained information from structural studies by circular dichroism (CD) spectrometry and extrinsic fluorescence experiments; as rigidity increased in A204C/T2234C and T128C/E153C mutants, half-life and ΔGi also increased. For G74C/A78C mutant, these parameters decreased due to its higher flexibility. The results were submitted a strong evidence for the possibility to improve the thermostability of OPH enzyme by introducing a disulphide bridge after bioinformatics design, even though this design would not be always successful.

  18. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.

    Science.gov (United States)

    Chen, Ana; Li, Yamei; Nie, Jianqi; McNeil, Brian; Jeffrey, Laura; Yang, Yankun; Bai, Zhonghu

    2015-10-01

    Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons.

    Science.gov (United States)

    Miranda-Vizuete, Antonio; Fierro González, Juan Carlos; Gahmon, Gabriele; Burghoorn, Jan; Navas, Plácido; Swoboda, Peter

    2006-01-23

    Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX-1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior-most intestinal cells. TRX-1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx-1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild-type. The identification and characterization of TRX-1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.

  20. Effects of mycoplasma contamination on phenotypic expression of mitochondrial mutants in human cells.

    Science.gov (United States)

    Doersen, C J; Stanbridge, E J

    1981-04-01

    HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis.

  1. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jiou Wang

    2009-01-01

    Full Text Available The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking.

  2. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01

    OpenAIRE

    Sigoillot Jean-Claude; Kim-Anh To; Haltrich Dietmar; Berrin Jean-Guy; Thi-Thu Dang; Bien-Cuong Do; Yamabhai Montarop

    2009-01-01

    Abstract Background Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-D-mannanases) catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pret...

  3. Functional analysis of thermostable proteins involved in carbohydrate metabolism

    NARCIS (Netherlands)

    Akerboom, A.P.

    2007-01-01

    Thermostable proteins can resist temperature stress whilst keeping their integrity and functionality. In many cases, thermostable proteins originate from hyperthermophilic microorganisms that thrive in extreme environments. These systems are generally located close to geothermal (volcanic) activity,

  4. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    Science.gov (United States)

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  5. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    Science.gov (United States)

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.

    Directory of Open Access Journals (Sweden)

    Chengtuo Niu

    Full Text Available 1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.

  7. Abnormal iron metabolism and oxidative stress in mice expressing a mutant form of the ferritin light polypeptide gene

    Science.gov (United States)

    Barbeito, Ana G.; Garringer, Holly J.; Baraibar, Martin A.; Gao, Xiaoying; Arredondo, Miguel; Núñez, Marco T.; Smith, Mark A.; Ghetti, Bernardino; Vidal, Ruben

    2009-01-01

    Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone–protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL-Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates in the brain. PMID:19519778

  8. Dysregulation of gene expression in the striatum of BACHD rats expressing full-length mutant huntingtin and associated abnormalities on molecular and protein levels.

    Science.gov (United States)

    Yu-Taeger, Libo; Bonin, Michael; Stricker-Shaver, Janice; Riess, Olaf; Nguyen, Hoa Huu Phuc

    2017-05-01

    Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the huntingtin protein (HTT). Mutant HTT (mHTT) has been proposed to cause neuronal dysfunction and neuronal loss through multiple mechanisms. Transcriptional changes may be a core pathogenic feature of HD. Utilizing the Affymetrix platform we performed a genome-wide RNA expression analysis in two BACHD transgenic rat lines (TG5 and TG9) at 12 months of age, both of which carry full-length human mHTT but with different expression levels. By defining the threshold of significance at p < 0.01, we found 1608 genes and 871 genes differentially expressed in both TG5 and TG9 rats when compared to the wild type littermates, respectively. We only chose the highly up-/down-regulated genes for further analysis by setting an additional threshold of 1.5 fold change. Comparing gene expression profiles of human HD brains and BACHD rats revealed a high concordance in both functional and IPA (Ingenuity Pathway Analysis) canonical pathways relevant to HD. In addition, we investigated the causes leading to gene expression changes at molecular and protein levels in BACHD rats including the involvement of polyQ-containing transcription factors TATA box-binding protein (TBP), Sp1 and CBP as well as the chromatin structure. We demonstrate that the BACHD rat model recapitulates the gene expression changes of the human disease supporting its role as a preclinical research animal model. We also show for the first time that TFIID complex formation is reduced, while soluble TBP is increased in an HD model. This finding suggests that mHTT is a competitor instead of a recruiter of polyQ-containing transcription factors in the transcription process in HD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improvement in the thermostability of chitosanase from Bacillus ehimensis by introducing artificial disulfide bonds.

    Science.gov (United States)

    Sheng, Jun; Ji, Xiaofeng; Zheng, Yuan; Wang, Zhipeng; Sun, Mi

    2016-10-01

    To determine the effects of artificial disulfide bridges on the thermostability and catalytic efficiency of chitosanase EAG1. Five artificial disulfide bridges were designed based on the structural information derived from the three-dimensional (3-D) model of chitosanase EAG1. Two beneficial mutants (G113C/D116C, A207C-L286C) were located in the flexible surface loop region, whereas the similar substitutions introduced in α-helices regions had a negligible effect. Mut5, the most active mutant, had a longer half-life at 50 °C (from 10.5 to 69.3 min) and a 200 % higher catalytic efficiency (K cat/K m) than that of the original EAG1. The contribution of disulfide bridges to enzyme thermostability is mainly dependent on its location within the polypeptide chain. Strategical placement of a disulfide bridge in flexible regions provides a rigid support and creation of a protected microenvironment, which is effective in improving enzyme's thermostability and catalytic efficiency.

  10. Analysis of Chemokines and Receptors Expression Profile in the Myelin Mutant Taiep Rat

    Directory of Open Access Journals (Sweden)

    Guadalupe Soto-Rodriguez

    2015-01-01

    Full Text Available Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4, which might account for the demyelination in the taiep rat.

  11. Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Pingyang Wang

    Full Text Available Molting is an important physiological process in the larval stage of Bombyx mori and is controlled by various hormones and peptides. The silkworm mutant that exhibits the phenotype of non-molting in the 2nd instar (nm2 is incapable of molting in the 2nd instar and dies after seven or more days. The ecdysone titer in the nm2 mutant is lower than that in the wildtype, and the mutant can be rescued by feeding with 20E and cholesterol. The results of positional cloning indicated that structural alteration of BmCPG10 is responsible for the phenotype of the nm2 mutant. To explore the possible relationship between BmCPG10 and the ecdysone titer as well as the genes affected by BmCPG10, digital gene expression (DGE profile analysis was conducted in the nm2 mutant, with the wildtype strain C603 serving as the control. The results revealed 1727 differentially expressed genes, among which 651 genes were upregulated and 1076 were downregulated in nm2. BLASTGO analysis showed that these differentially expressed genes were involved in various biological processes, cellular components and molecular functions. KEGG analysis indicated an enrichment of these differentially expressed genes in 240 pathways, including metabolic pathways, pancreatic secretion, protein digestion and absorption, fat digestion and absorption and glycerolipid metabolism. To verify the accuracy of the DGE results, quantitative reverse transcription PCR (qRT-PCR was performed, focusing on key genes in several related pathways, and the results were highly consistent with the DGE results. Our findings indicated significant differences in cuticular protein genes, ecdysone biosynthesis genes and ecdysone-related nuclear receptors genes, but no significant difference in juvenile hormone and chitin biosynthesis genes was detected. Our research findings lay the foundation for further research on the formation mechanism of the nm2 mutant.

  12. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase

    International Nuclear Information System (INIS)

    Wang Yuxia; Ticu Boeck, Andreea; Duysen, Ellen G.; Van Keuren, Margaret; Saunders, Thomas L.; Lockridge, Oksana

    2004-01-01

    Organophosphorus toxicants (OP) include chemical nerve agents and pesticides. The goal of this work was to find out whether an animal could be made resistant to OP toxicity by genetic engineering. The human butyrylcholinesterase (BChE) mutant G117H was chosen for study because it has the unusual ability to hydrolyze OP as well as acetylcholine, and it is resistant to inhibition by OP. Human G117H BChE, under the control of the ROSA26 promoter, was expressed in all tissues of transgenic mice. A stable transgenic mouse line expressed 0.5 μg/ml of human G117H BChE in plasma as well as 2 μg/ml of wild-type mouse BChE. Intestine, kidneys, stomach, lungs, heart, spleen, liver, brain, and muscle expressed 0.6-0.15 μg/g of G117H BChE. Transgenic mice were normal in behavior and fertility. The LD50 dose of echothiophate for wild-type mice was 0.1 mg/kg sc. This dose caused severe cholinergic signs of toxicity and lethality in wild-type mice, but caused no deaths and only mild toxicity in transgenic animals. The mechanism of protection was investigated by measuring acetylcholinesterase (AChE) and BChE activity. It was found that AChE and endogenous BChE were inhibited to the same extent in echothiophate-treated wild type and transgenic mice. This led to the hypothesis that protection against echothiophate toxicity was not explained by hydrolysis of echothiophate. In conclusion, the transgenic G117H BChE mouse demonstrates the factors required to achieve protection from OP toxicity in a vertebrate animal

  13. Automated N-glycan profiling of a mutant Trypanosoma rangeli sialidase expressed in Pichia pastoris, using tandem mass spectrometry and bioinformatics

    DEFF Research Database (Denmark)

    Li, Haiying; Rasmussen, Morten I; Larsen, Martin R

    2015-01-01

    A mutant Trypanosoma rangeli sialidase, Tr7, expressed in Pichia pastoris, exhibits significant trans-sialidase activity, and has been used for analytical-scale production of sialylated human milk oligosaccharides. Mass spectrometry-based site-specific N-glycoprofiling of Tr7 showed that heteroge...

  14. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics

    DEFF Research Database (Denmark)

    Gravesen, Anne; Sorensen, K.; Aarestrup, Frank Møller

    2001-01-01

    -molecular-weight penicillin-binding proteins (PBPs), a histidine protein kinase, a protein of unknown function, and ClpB (putative functions from homology), The three former proteins had increased expression in a total of six out of 10 independent mutants originating from five different wildtype strains, indicating...

  15. The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance

    NARCIS (Netherlands)

    Penninckx, I.A.M.A.; Eggermont, K.; Schenk, P.M.; Ackerveken, van den G.; Cammue, B.P.A.; Thomma, B.P.H.J.

    2003-01-01

    Jasmonate and ethylene are concomitantly involved in the induction of the Arabidopsis plant defensin gene PDF1.2. To define genes in the signal transduction pathway leading to the induction of PDF1.2, we screened for mutants with induced over-expression of a β-glucuronidase reporter, under the

  16. Transcriptome changes associated wtih delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor

    Science.gov (United States)

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr 1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr 1-1 gene was over-expressed under the control of a c...

  17. Thermostable Carbonic Anhydrases in Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Anna Di Fiore

    2015-07-01

    Full Text Available Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.

  18. The Arabidopsis ppi1 Mutant Is Specifically Defective in the Expression, Chloroplast Import, and Accumulation of Photosynthetic ProteinsW⃞

    Science.gov (United States)

    Kubis, Sybille; Baldwin, Amy; Patel, Ramesh; Razzaq, Azam; Dupree, Paul; Lilley, Kathryn; Kurth, Joachim; Leister, Dario; Jarvis, Paul

    2003-01-01

    The import of nucleus-encoded proteins into chloroplasts is mediated by translocon complexes in the envelope membranes. A component of the translocon in the outer envelope membrane, Toc34, is encoded in Arabidopsis by two homologous genes, atTOC33 and atTOC34. Whereas atTOC34 displays relatively uniform expression throughout development, atTOC33 is strongly upregulated in rapidly growing, photosynthetic tissues. To understand the reason for the existence of these two related genes, we characterized the atTOC33 knockout mutant ppi1. Immunoblotting and proteomics revealed that components of the photosynthetic apparatus are deficient in ppi1 chloroplasts and that nonphotosynthetic chloroplast proteins are unchanged or enriched slightly. Furthermore, DNA array analysis of 3292 transcripts revealed that photosynthetic genes are moderately, but specifically, downregulated in ppi1. Proteome differences in ppi1 could be correlated with protein import rates: ppi1 chloroplasts imported the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit and 33-kD oxygen-evolving complex precursors at significantly reduced rates, but the import of a 50S ribosomal subunit precursor was largely unaffected. The ppi1 import defect occurred at the level of preprotein binding, which is consistent with a role for atToc33 during preprotein recognition. The data suggest that atToc33 is involved preferentially in the import of photosynthetic proteins and, by extension, that atToc34 is involved in the import of nonphotosynthetic chloroplast proteins. PMID:12897258

  19. Using mass spectrometry for identification of ABC transporters from Xanthomonas citri and mutants expressed in different growth conditions

    International Nuclear Information System (INIS)

    Faria, J.N.; Balan, A.; Paes Leme, A.F.

    2012-01-01

    Full text: Xanthomonas citri is a phytopathogenic bacterium that infects citrus plants causing significant losses for the economy. In our group, we have focused on the identification and characterization of ABC transport proteins of this bacterium, in order to determinate their function for growth in vitro and in vivo, during infection. ABC transporters represent one of the largest families of proteins, which transport since small molecules as ions up to oligopeptides and sugars. In prokaryotic cells many works have reported the ABC transport function in pathogenesis, resistance, biofilm formation, infectivity and DNA repair, but until our knowledge, there is no data related to these transporters and X. citri. So, In order to determinate which transporters are expressed in X. citri, we started a proteomic analysis based on mono and bi-dimensional gels associated to mass spectrometry analyses. After growing X. citri and two different mutants deleted for ssuA and nitA genes in LB and minimum media, cellular extracts were obtained and used for preparation of mono and bi-dimensional gels. Seven bands covering the expected mass of ABC transporter components (20 kDa to 50 kDa) in SDS-PAGE were cut off the gel, treated with trypsin and submitted to the MS for protein identification. The results of 2D gels were good enough and will serve as a standard for development of similar experiments in large scale. (author)

  20. Thermostable crude endoglucanase produced by Aspergillus ...

    African Journals Online (AJOL)

    Cellulases are used in many industries worldwide and there is an ever increasing need to isolate, produce or develop thermostable cellulases. Manipulation of fermentation techniques in order to obtain desirable product(s) can be one line of action. In this study Aspergillus fumigatus was grown on chopped wheat straw in a ...

  1. Purification and Characterization of Thermostable Cellulase from ...

    African Journals Online (AJOL)

    The thermostable CMCase was purified with ion-exchange and gel filtration chromatography. Results: ... Conclusion: Due to its high temperature stability, the purified XM70-CMCase may be useful for industrial application such as biofuel, animal feed industry, paper industry and clarification of fruit juices. Keywords: ...

  2. Production of a Marfan cellular phenotype by expressing a mutant human fibrillin allele on a normal human or murine genetic background

    Energy Technology Data Exchange (ETDEWEB)

    Eldadah, Z.A.; Dietz, H.C. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Brenn, T. [Stanford Univ. Medical Center, CA (United States)] [and others

    1994-09-01

    The Marfan Syndrome (MFS) is a heritable disorder of connective tissue caused by defects in fibrillin (FBN1), a 350 kD glycoprotein and principal component of the extracellular microfibril. Previous correlations of mutant transcript level and disease severity suggested a dominant negative model of MFS pathogenesis. To address this hypothesis we assembled an expression construct containing the mutant allele from a patient with severe MFS. This mutation causes skipping of FBN1 exon 2 and a frame shift, leading to a premature termination codon in exon 4. The predicted peptide would thus consist of 55 wild type and 45 missense amino acids. The construct was stably transfected into cultured human and mouse fibroblasts, and several clonal cell populations were established. Human and mouse cells expressing the truncated peptide exhibited markedly diminished fibrillin deposition and disorganized microfibrillar architecture by immunofluorescence. Pulse-chase analysis of these cells demonstrated normal levels of fibrillin synthesis but substantially decreased fibrillin deposition into the extracellular matrix. These data illustrate that expression of a mutant FBN1 allele, on a background of two normal alleles, is sufficient to disrupt normal fibrillin aggregation and reproduce the MFS cellular phenotype. This provides confirmation of a dominant negative model of MFS pathogenesis and may offer mutant allele knockout as a strategy for gene therapy. In addition, these data underscore the importance of the FBN1 amino-terminus in normal multimer formation and suggest that expression of the human extreme 5{prime} FBN1 coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Indeed, transgenic mice harboring this mutant allele have been produced, and phenotype analysis is currently in progress.

  3. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.

    Science.gov (United States)

    Yuan, Fengjie; Yu, Xiaomin; Dong, Dekun; Yang, Qinghua; Fu, Xujun; Zhu, Shenlong; Zhu, Danhua

    2017-01-18

    Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. Seed germination in the soybean low phytate mutants is a very complex process

  4. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    Science.gov (United States)

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  5. Potential and utilization of thermophiles and thermostable enzymes in biorefining

    Directory of Open Access Journals (Sweden)

    Karlsson Eva

    2007-03-01

    Full Text Available Abstract In today's world, there is an increasing trend towards the use of renewable, cheap and readily available biomass in the production of a wide variety of fine and bulk chemicals in different biorefineries. Biorefineries utilize the activities of microbial cells and their enzymes to convert biomass into target products. Many of these processes require enzymes which are operationally stable at high temperature thus allowing e.g. easy mixing, better substrate solubility, high mass transfer rate, and lowered risk of contamination. Thermophiles have often been proposed as sources of industrially relevant thermostable enzymes. Here we discuss existing and potential applications of thermophiles and thermostable enzymes with focus on conversion of carbohydrate containing raw materials. Their importance in biorefineries is explained using examples of lignocellulose and starch conversions to desired products. Strategies that enhance thermostablity of enzymes both in vivo and in vitro are also assessed. Moreover, this review deals with efforts made on developing vectors for expressing recombinant enzymes in thermophilic hosts.

  6. A novel non-thermostable deuterolysin from Aspergillus oryzae.

    Science.gov (United States)

    Maeda, Hiroshi; Katase, Toru; Sakai, Daisuke; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Abe, Keietsu; Yamagata, Youhei

    2016-09-01

    Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB.

  7. BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates.

    Science.gov (United States)

    Manfré, Giuseppe; Novati, Arianna; Faccini, Ilaria; Rossetti, Andrea C; Bosch, Kari; Molteni, Raffaella; Riva, Marco A; Van der Harst, Johanneke E; Nguyen, Huu Phuc; Homberg, Judith R

    2018-01-01

    Huntington disease (HD) is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT) with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype. This study focuses especially on social behavior since evidence for social disturbances exists in human patients. Our objective was to compare social behavior in BACHD and wild-type (WT) rats at different ages, using two different measures of sociability. Animals were tested longitudinally at the age of 2, 4 and 8 months in the social interaction test to examine different parameters of sociability. A separate cohort of 7 month old rats was tested in the three chamber social test to measure both sociability and social novelty. Gene expression analyses in 8 months old animals were performed by real time qRT-PCR to evaluate a potential involvement of D1 and D2 dopaminergic receptors and the contribution of Brain-derived neurotrophic factor (BDNF) to the observed behavioral alterations. In the social interaction test, BACHD rats showed age-dependent changes in behaviour when they were-re introduced to their cagemate after a 24 hours-period of individual housing. The time spent on nape attacks increased with aging. Furthermore, a significant higher level of pinning at 2 months of age was shown in the BACHD rats compared to wild-types, followed by a reduction at 4 and 8 months. On the other hand, BACHD rats exhibited a decreased active social behaviour compared to wild-types, reflected by genotype-effects on approaching, following and social nose contact. In the three chamber social test, BACHD rats seemed to show a mild deficit in

  8. BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates.

    Directory of Open Access Journals (Sweden)

    Giuseppe Manfré

    Full Text Available Huntington disease (HD is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype.This study focuses especially on social behavior since evidence for social disturbances exists in human patients. Our objective was to compare social behavior in BACHD and wild-type (WT rats at different ages, using two different measures of sociability.Animals were tested longitudinally at the age of 2, 4 and 8 months in the social interaction test to examine different parameters of sociability. A separate cohort of 7 month old rats was tested in the three chamber social test to measure both sociability and social novelty. Gene expression analyses in 8 months old animals were performed by real time qRT-PCR to evaluate a potential involvement of D1 and D2 dopaminergic receptors and the contribution of Brain-derived neurotrophic factor (BDNF to the observed behavioral alterations.In the social interaction test, BACHD rats showed age-dependent changes in behaviour when they were-re introduced to their cagemate after a 24 hours-period of individual housing. The time spent on nape attacks increased with aging. Furthermore, a significant higher level of pinning at 2 months of age was shown in the BACHD rats compared to wild-types, followed by a reduction at 4 and 8 months. On the other hand, BACHD rats exhibited a decreased active social behaviour compared to wild-types, reflected by genotype-effects on approaching, following and social nose contact. In the three chamber social test, BACHD rats seemed to show a mild

  9. BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates

    Science.gov (United States)

    Manfré, Giuseppe; Novati, Arianna; Faccini, Ilaria; Rossetti, Andrea C.; Bosch, Kari; Molteni, Raffaella; Riva, Marco A.; Van der Harst, Johanneke E.; Homberg, Judith R.

    2018-01-01

    Background Huntington disease (HD) is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT) with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype. Objective This study focuses especially on social behavior since evidence for social disturbances exists in human patients. Our objective was to compare social behavior in BACHD and wild-type (WT) rats at different ages, using two different measures of sociability. Methods Animals were tested longitudinally at the age of 2, 4 and 8 months in the social interaction test to examine different parameters of sociability. A separate cohort of 7 month old rats was tested in the three chamber social test to measure both sociability and social novelty. Gene expression analyses in 8 months old animals were performed by real time qRT-PCR to evaluate a potential involvement of D1 and D2 dopaminergic receptors and the contribution of Brain-derived neurotrophic factor (BDNF) to the observed behavioral alterations. Results In the social interaction test, BACHD rats showed age-dependent changes in behaviour when they were-re introduced to their cagemate after a 24 hours-period of individual housing. The time spent on nape attacks increased with aging. Furthermore, a significant higher level of pinning at 2 months of age was shown in the BACHD rats compared to wild-types, followed by a reduction at 4 and 8 months. On the other hand, BACHD rats exhibited a decreased active social behaviour compared to wild-types, reflected by genotype-effects on approaching, following and social nose contact. In the three chamber social test, BACHD rats

  10. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    Energy Technology Data Exchange (ETDEWEB)

    Phanchaisri, Boonrak [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Samsang, Nuananong [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, Liang Deng; Singkarat, Somsorn [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, Somboon, E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2012-06-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50-60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  11. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    International Nuclear Information System (INIS)

    Phanchaisri, Boonrak; Samsang, Nuananong; Yu, Liang Deng; Singkarat, Somsorn; Anuntalabhochai, Somboon

    2012-01-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50–60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  12. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation.

    Science.gov (United States)

    Soto-Suárez, Mauricio; Serrato, Antonio J; Rojas-González, José A; Bautista, Rocío; Sahrawy, Mariam

    2016-12-01

    During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.

  13. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Van Rossom, Sofie; Op de Beeck, Ken; Franssens, Vanessa; Swinnen, Erwin; Schepers, Anne; Ghillebert, Ruben; Caldara, Marina; Van Camp, Guy; Winderickx, Joris

    2012-01-01

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  14. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Van Rossom, Sofie [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Op de Beeck, Ken [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Franssens, Vanessa; Swinnen, Erwin [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Schepers, Anne [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Ghillebert, Ruben; Caldara, Marina [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Van Camp, Guy [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Winderickx, Joris, E-mail: guy.vancamp@ua.ac.be, E-mail: joris.winderickx@bio.kuleuven.be [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium)

    2012-07-25

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  15. Ectopic expression of a polyalanine expansion mutant of poly(A)-binding protein N1 in muscle cells in culture inhibits myogenesis

    International Nuclear Information System (INIS)

    Wang Qishan; Bag, Jnanankur

    2006-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset dominant genetic disease caused by the expansion of a GCG trinucleotide repeat that encodes the polyalanine tract at the N-terminus of the nuclear poly(A)-binding protein (PABPN1). Presence of intranuclear inclusions (INIs) containing PABPN1 aggregates in the skeletal muscles is the hallmark of OPMD. Here, we show that ectopic expression of the mutant PABPN1 produced INIs in a muscle cell culture model and reduced expression of several muscle-specific proteins including α-actin, slow troponin C, muscle creatine kinase, and two myogenic transcription factors, myogenin and MyoD. However, the levels of two upstream regulators of the MyoD gene, the Myf-5 and Pax3/7, were not affected, but both proteins co-localized with the PABPN1 aggregates in the mutant PABPN1 overexpressing cells. In these cells, although myogenin and MyoD levels were reduced, these two transcription factors did not co-localize with the mutant PABPN1 aggregates. Therefore, sequestration of Myf5 and Pax3/7 by the mutant PABPN1 aggregates was a specific effect on these factors. Our results suggest that trapping of these two important myogenic determinants may interfere with an early step in myogenesis

  16. Keratitis-Ichthyosis-Deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43

    Science.gov (United States)

    García, Isaac E.; Maripillán, Jaime; Jara, Oscar; Ceriani, Ricardo; Palacios-Muñoz, Angelina; Ramachandran, Jayalakshimi; Olivero, Pablo; Pérez-Acle, Tomás; González, Carlos; Sáez, Juan C.; Contreras, Jorge E.; Martínez, Agustín D.

    2015-01-01

    Mutations in Cx26 gene are found in most cases of human genetic deafness. Some mutations produce syndromic deafness associated with skin disorders, like Keratitis Ichthyosis Deafness syndrome (KID). Because in the human skin Cx26 is co-expressed with other connexins, like Cx43 and Cx30, and since KID syndrome is inherited as autosomal dominant condition, it is possible that KID mutations change the way Cx26 interacts with other co-expressed connexins. Indeed, some Cx26 syndromic mutations showed gap junction dominant negative effect when co-expressed with wild type connexins, including Cx26 and Cx43. The nature of these interactions and the consequences on hemichannels and gap junction channels functions remain unknown. In this study we demonstrate that syndromic mutations at the N-terminus segment of Cx26, change connexin oligomerization compatibility, allowing aberrant interactions with Cx43. Strikingly, heteromeric oligomer formed by Cx43/Cx26 (syndromic mutants) show exacerbated hemichannel activity, but nonfunctional gap junction channels; this also occurs for those Cx26 KID mutants that do not show functional homomeric hemichannels. Heterologous expression of these hyperactive heteromeric hemichannels increases cell membrane permeability, favoring ATP release and Ca2+ overload. The functional paradox produced by oligomerization of Cx43 and Cx26 KID mutants could underlie the severe syndromic phenotype in human skin. PMID:25625422

  17. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  18. Enhanced Thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress.

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W; Zhu, Genhai

    2007-10-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Deltarca) line. In a long-term growth test at either constant 26 degrees C or daily 4-h 30 degrees C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions.

  19. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  20. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain.

    Directory of Open Access Journals (Sweden)

    Reza Saberianfar

    Full Text Available In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD. Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants--just like lsk1Δ and lsc1Δ strains--are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis--including the actin interacting protein gene, aip1--as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.

  1. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mutant Huntingtin Gene-Dose Impacts on Aggregate Deposition, DARPP32 Expression and Neuroinflammation in HdhQ150 Mice

    Science.gov (United States)

    Young, Douglas; Mayer, Franziska; Vidotto, Nella; Schweizer, Tatjana; Berth, Ramon; Abramowski, Dorothee; Shimshek, Derya R.; van der Putten, P. Herman; Schmid, Peter

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant, progressive and fatal neurological disorder caused by an expansion of CAG repeats in exon-1 of the huntingtin gene. The encoded poly-glutamine stretch renders mutant huntingtin prone to aggregation. HdhQ150 mice genocopy a pathogenic repeat (∼150 CAGs) in the endogenous mouse huntingtin gene and model predominantly pre-manifest HD. Treating early is likely important to prevent or delay HD, and HdhQ150 mice may be useful to assess therapeutic strategies targeting pre-manifest HD. This requires appropriate markers and here we demonstrate, that pre-symptomatic HdhQ150 mice show several dramatic mutant huntingtin gene-dose dependent pathological changes including: (i) an increase of neuronal intra-nuclear inclusions (NIIs) in brain, (ii) an increase of extra-nuclear aggregates in dentate gyrus, (iii) a decrease of DARPP32 protein and (iv) an increase in glial markers of neuroinflammation, which curiously did not correlate with local neuronal mutant huntingtin inclusion-burden. HdhQ150 mice developed NIIs also in all retinal neuron cell-types, demonstrating that retinal NIIs are not specific to human exon-1 R6 HD mouse models. Taken together, the striking and robust mutant huntingtin gene-dose related changes in aggregate-load, DARPP32 levels and glial activation markers should greatly facilitate future testing of therapeutic strategies in the HdhQ150 HD mouse model. PMID:24086450

  3. Global Expression in Sorghum Brown Midrib (bmr) 6 and 12 Mutants; a Tool to Improve Biomass for Biofuels

    Science.gov (United States)

    Brown midrib (bmr) mutants are being investigated for their ability to increase the conversion efficiency of sorghum biomass for lignocellulosic bioenergy. Brown midrib 6 and 12 (bmr6 and 12) are impaired in the last two steps of monolignol biosynthesis resulting in reduced lignin content and alter...

  4. Frequency of mutant T lymphocytes defective in the expression of the T-cell antigen receptor gene among radiation-exposed people

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Umeki, Shigeko; Akiyama, Mitoshi

    1991-06-01

    The frequency of mutant T lymphocytes defective in T-cell receptor gene (α or β) expression was measured using the two-color flow cytometric technique. Results for a total of 203 atomic bomb survivors, 78 of whom were proximally exposed (DS86 doses of ≥ 1.5 Gy) and 125 of whom were distally exposed (DS86 doses of 228 Th formerly used for radiodiagnosis. In addition, thyroid disease patients treated with 131 I showed a dose-related increase of mutant frequency. It was suggested that the present T-cell receptor mutation assay has a unique characteristic as a biological dosimeter for the measurement of recent exposures to genotoxic agents. (author)

  5. Comparison of expression of key sporulation, solventogenic and acetogenic genes in C. beijerinckii NRRL B-598 and its mutant strain overexpressing spo0A.

    Science.gov (United States)

    Kolek, J; Diallo, M; Vasylkivska, M; Branska, B; Sedlar, K; López-Contreras, A M; Patakova, P

    2017-11-01

    The production of acetone, butanol and ethanol by fermentation of renewable biomass has potential to become a valuable industrial process. Mechanisms of solvent production and sporulation involve some common regulators in some ABE-producing clostridia, although details of the links between the pathways are not clear. In this study, we compare a wild-type (WT) Clostridium beijerinckii NRRL B-598 with its mutant strain OESpo0A, in which the gene encoding Spo0A, an important regulator of both sporulation and solventogenesis, is overexpressed in terms of solvent and acid production. We also compare morphologies during growth on two different media: TYA broth, where the WT culture sporulates, and RCM, where the WT culture does not. In addition, RT-qPCR-based analysis of expression profiles of spo0A, spoIIE, sigG, spoVD, ald and buk1 genes involved in sporulation or solvent production in these strains, were compared. The OESpo0A mutant did not produce spores and butanol titre was lower compared to the WT, but increased amounts of butyric acid and ethanol were produced. The gene spo0A had high levels of expression in the WT under non-sporulating culture conditions while other selected genes for sporulation factors were downregulated significantly. Similar observations were obtained for OESpo0A where spo0A overexpression and downregulation of other sporulation genes were demonstrated. Higher expression of spo0A led to higher expression of buk1 and ald, which could confirm the role of spo0A in activation of the solventogenic pathway, although solvent production was not affected significantly in the WT and was weakened in the OESpo0A mutant.

  6. Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Lai, Qiheng; Xing, Xin-Hui [Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-06-15

    To examine perturbation effects of formate pathway on hydrogen productivity in Enterobacter aerogenes (Ea), formate dehydrogenase FDH-H gene (fdhF) and formate hydrogen lyase activator protein FHLA gene (fhlA) originated from Escherichia coli, were overexpressed in the wild strain Ea, its hycA-deleted mutant (A) by knockout the formate hydrogen lyase repressor and hybO-deleted mutant (O) by knockout of the uptake hydrogenase, respectively. Overexpression of fdhF and fhlA promoted cell growth and volumetric hydrogen production rates of all the strains, and the hydrogen production per gram cell dry weight (CDW) for Ea, A and O was increased by 38.5%, 21.8% and 5.25%, respectively. The fdhF and fhlA overexpression improved the hydrogen yield per mol glucose of strains Ea and A, but declined that of strain O. The increase of hydrogen yield of the strain Ea with fdhF and fhlA expression was mainly attributed to the increase of formate pathway, while for the mutant A, the improved hydrogen yield with fdhF and fhlA expression was mainly due to the increase of NADH pathway. Analysis of the metabolites and ratio of ethanol-to-acetate showed that the cellular redox state balance and energy level were also changed for these strains by fdhF and fhlA expression. These findings demonstrated that the hydrogen production was not only dependent on the hydrogenase genes, but was also affected by the regulation of the whole metabolism. Therefore, fdhF and fhlA expression in different strains of E. aerogenes could exhibit different perturbation effects on the metabolism and the hydrogen productivity. (author)

  7. Retrospective Molecular Epidemiology Study of PD-L1 Expression in Patients with EGFR-Mutant Non-small Cell Lung Cancer.

    Science.gov (United States)

    Cho, Jong Ho; Zhou, Wei; Choi, Yoon-La; Sun, Jong-Mu; Choi, Hyejoo; Kim, Tae-Eun; Dolled-Filhart, Marisa; Emancipator, Kenneth; Rutkowski, Mary Anne; Kim, Jhingook

    2018-01-01

    Data are limited on programmed death ligand 1 (PD-L1) expression in epidermal growth factor receptor ( EGFR )-mutant non-small cell lung cancer (NSCLC). We retrospectively evaluated the relationship between PD-L1 expression and recurrence-free survival (RFS) and overall survival in 319 patients with EGFR -mutant NSCLC who were treated at Samsung Medical Center from 2006 to 2014. Membranous PD-L1 expression on tumor cells was measured using the PD-L1 IHC 22C3 pharmDx antibody and reported as tumor proportion score (TPS). Kaplan-Meier methods, log-rank test, and Cox proportional hazards models were used for survival analysis. All patients had ≥1 EGFR mutation-54% in exon 19 and 39% in exon 21. Overall, 51% of patients had PD-L1-positive tumors. The prevalence of PD-L1 positivity was higher among patients with stages II-IV versus stage I disease (64% vs. 44%) and among patients with other EGFR mutations (75%) than with L858R mutation (39%) or exon 19 deletion (52%). PD-L1 positivity was associated with shorter RFS, with an adjusted hazard ratio of 1.52 (95% confidence interval [CI], 0.81 to 2.84; median, 18 months) for the PD-L1 TPS ≥ 50% group, 1.51 (95% CI, 1.02 to 2.21; median, 31 months) for the PD-L1 TPS 1%-49% group, and 1.51 (95% CI, 1.05 to 2.18) for the combined PD-L1-positive groups (TPS ≥ 1%) compared with the PD-L1-negative group (median, 35 months). PD-L1 expression is associated with disease stage and type of EGFR mutation. PD-L1 positivity might be associated with worse RFS among patients with surgically treated EGFR -mutant NSCLC.

  8. Protein thermostability prediction within homologous families using temperature-dependent statistical potentials.

    Directory of Open Access Journals (Sweden)

    Fabrizio Pucci

    Full Text Available The ability to rationally modify targeted physical and biological features of a protein of interest holds promise in numerous academic and industrial applications and paves the way towards de novo protein design. In particular, bioprocesses that utilize the remarkable properties of enzymes would often benefit from mutants that remain active at temperatures that are either higher or lower than the physiological temperature, while maintaining the biological activity. Many in silico methods have been developed in recent years for predicting the thermodynamic stability of mutant proteins, but very few have focused on thermostability. To bridge this gap, we developed an algorithm for predicting the best descriptor of thermostability, namely the melting temperature Tm, from the protein's sequence and structure. Our method is applicable when the Tm of proteins homologous to the target protein are known. It is based on the design of several temperature-dependent statistical potentials, derived from datasets consisting of either mesostable or thermostable proteins. Linear combinations of these potentials have been shown to yield an estimation of the protein folding free energies at low and high temperatures, and the difference of these energies, a prediction of the melting temperature. This particular construction, that distinguishes between the interactions that contribute more than others to the stability at high temperatures and those that are more stabilizing at low T, gives better performances compared to the standard approach based on T-independent potentials which predict the thermal resistance from the thermodynamic stability. Our method has been tested on 45 proteins of known Tm that belong to 11 homologous families. The standard deviation between experimental and predicted Tm's is equal to 13.6°C in cross validation, and decreases to 8.3°C if the 6 worst predicted proteins are excluded. Possible extensions of our approach are discussed.

  9. Mutant human torsinA, responsible for early-onset dystonia, dominantly suppresses GTPCH expression, dopamine levels and locomotion in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Noriko Wakabayashi-Ito

    2015-07-01

    Full Text Available Dystonia represents the third most common movement disorder in humans with over 20 genetic loci identified. TOR1A (DYT1, the gene responsible for the most common primary hereditary dystonia, encodes torsinA, an AAA ATPase family protein. Most cases of DYT1 dystonia are caused by a 3 bp (ΔGAG deletion that results in the loss of a glutamic acid residue (ΔE302/303 in the carboxyl terminal region of torsinA. This torsinAΔE mutant protein has been speculated to act in a dominant-negative manner to decrease activity of wild type torsinA. Drosophila melanogaster has a single torsin-related gene, dtorsin. Null mutants of dtorsin exhibited locomotion defects in third instar larvae. Levels of dopamine and GTP cyclohydrolase (GTPCH proteins were severely reduced in dtorsin-null brains. Further, the locomotion defect was rescued by the expression of human torsinA or feeding with dopamine. Here, we demonstrate that human torsinAΔE dominantly inhibited locomotion in larvae and adults when expressed in neurons using a pan-neuronal promoter Elav. Dopamine and tetrahydrobiopterin (BH4 levels were significantly reduced in larval brains and the expression level of GTPCH protein was severely impaired in adult and larval brains. When human torsinA and torsinAΔE were co-expressed in neurons in dtorsin-null larvae and adults, the locomotion rates and the expression levels of GTPCH protein were severely reduced. These results support the hypothesis that torsinAΔE inhibits wild type torsinA activity. Similarly, neuronal expression of a Drosophila DtorsinΔE equivalent mutation dominantly inhibited larval locomotion and GTPCH protein expression. These results indicate that both torsinAΔE and DtorsinΔE act in a dominant-negative manner. We also demonstrate that Dtorsin regulates GTPCH expression at the post-transcriptional level. This Drosophila model of DYT1 dystonia provides an important tool for studying the differences in the molecular function between the

  10. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding.

    Directory of Open Access Journals (Sweden)

    Chi-Ho Chan

    Full Text Available Most thermophilic proteins tend to have more salt bridges, and achieve higher thermostability by up-shifting and broadening their protein stability curves. While the stabilizing effect of salt-bridge has been extensively studied, experimental data on how salt-bridge influences protein stability curves are scarce. Here, we used double mutant cycles to determine the temperature-dependency of the pair-wise interaction energy and the contribution of salt-bridges to ΔC(p in a thermophilic ribosomal protein L30e. Our results showed that the pair-wise interaction energies for the salt-bridges E6/R92 and E62/K46 were stabilizing and insensitive to temperature changes from 298 to 348 K. On the other hand, the pair-wise interaction energies between the control long-range ion-pair of E90/R92 were negligible. The ΔC(p of all single and double mutants were determined by Gibbs-Helmholtz and Kirchhoff analyses. We showed that the two stabilizing salt-bridges contributed to a reduction of ΔC(p by 0.8-1.0 kJ mol⁻¹ K⁻¹. Taken together, our results suggest that the extra salt-bridges found in thermophilic proteins enhance the thermostability of proteins by reducing ΔC(p, leading to the up-shifting and broadening of the protein stability curves.

  11. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Bross, P

    1992-01-01

    An effective EBV-based expression system for eucaryotic cells has been developed and used for the study of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). 1325 bp of PCR-generated MCAD cDNA, containing the entire coding region, was placed between the SV40 early promoter...... and polyadenylation signals in the EBV-based vector. Both wild-type MCAD cDNA and cDNA containing the prevalent disease-causing mutation A to G at position 985 of the MCAD cDNA were tested. In transfected COS-7 cells, the steady state amount of mutant MCAD protein was consistently lower than the amount of wild......-type human enzyme. The enzyme activity in extracts from cells harbouring the wild-type MCAD cDNA was dramatically higher than in the controls (harbouring the vector without the MCAD gene) while only a slightly higher activity was measured with the mutant MCAD. The mutant MCAD present behaves like wild...

  12. MOLECULAR CLONING AND CHARACTERIZATION OF NOVEL THERMOSTABLE LIPASE FROM SHEWANELLA PUTREFACIENS AND USING ENZYMATIC BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Fahri Akbas

    2015-02-01

    Full Text Available A novel thermostable lipase from Shewanella putrefaciens was identified, expressed in Escherichia coli, characterized and used in biodiesel production. Enzyme characterization was carried out by enzyme assay, SDS-PAGE and other biochemical reactions. The recombinant lipase was found to have a molecular mass of 29 kDa and exhibited lipase activity when Tween 80 was used as the substrate. The purified enzyme showed maximum activity at pH 5.0 and at 80°C. The recombinant lipase was used for the transesterification of canola oil and waste oil. The enzyme retains 50% of its activity at 90°C for 30 minutes. It is also able to retain 20% of its activity even at 100 °C for 20 minutes. These properties of the obtained new recombinant thermostable lipase make it promising as a biocatalyst for industrial processes.

  13. Geometric Simulation Approach for Grading and Assessing the Thermostability of CALBs

    Directory of Open Access Journals (Sweden)

    B. Senthilkumar

    2016-01-01

    Full Text Available Candida antarctica lipase B (CALB is a known stable and highly active enzyme used widely in biodiesel synthesis. In this work, the stability of native (4K6G and mutant (4K5Q CALB was studied through various structural parameters using conformational sampling approach. The contours of polar surface area and surface area of mutant CALB were 11357.67 Å2 and 30007.4 Å2, respectively, showing an enhanced stability compared to native CALB with a statistically significant P value of < 0.0001. Moreover, simulated thermal denaturation of CALB, a process involving dilution of hydrogen bond, significantly shielded against different intervals of energy application in mutant CALB revealing its augmentation of structural rigidity against native CALB. Finally, computational docking analysis showed an increase in the binding affinity of CALB and its substrate (triglyceride in mutant CALB with Atomic Contact Energy (ACE of −91.23 kcal/mol compared to native CALB (ACE of −70.3 kcal/mol. The computational observations proposed that the use of mutant CALB (4K5Q could serve as a best template for production of biodiesel in the future. Additionally, it can also be used as a template to identify efficient thermostable lipases through further mutations.

  14. Thermostability in endoglucanases is fold-specific

    Science.gov (United States)

    2011-01-01

    Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient. PMID:21291533

  15. Thermostability in endoglucanases is fold-specific

    Directory of Open Access Journals (Sweden)

    Wolt Jeffrey D

    2011-02-01

    Full Text Available Abstract Background Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy database. Results Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion. Conclusions Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.

  16. Approaches for improving thermostability characteristics in cellulases.

    Science.gov (United States)

    Anbar, Michael; Bayer, Edward A

    2012-01-01

    Many efforts have been invested to reduce the cost of biofuel production to substitute renewable sources of energy for fossil-based fuels. At the forefront of these efforts are the initiatives to convert plant-derived cellulosic material to biofuels. Although significant improvements have been achieved recently in cellulase engineering in both efficiency and cost reduction, complete degradation of lignocellulosic material still requires very long periods of time and high enzyme loads. Thermostable cellulases offer many advantages in the bioconversion process, which include increase in specific activity, higher levels of stability, inhibition of microbial growth, increase in mass transfer rate due to lower fluid viscosity, and greater flexibility in the bioprocess. Besides rational design methods, which require deep understanding of protein structure-function relationship, two of the major methods for improvement in specific cellulase properties are directed evolution and knowledge-based library design based on multiple sequence alignments. In this chapter, we provide protocols for constructing and screening of improved thermostable cellulases. Modifications of these protocols may also be used for screening for other improved properties of cellulases such as pH tolerance, high salt, and more. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    Directory of Open Access Journals (Sweden)

    Baiqu Huang

    2013-04-01

    Full Text Available The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR analyses. Its full length cDNA (666 bp was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE. The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%. Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa, whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1 showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  18. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  19. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    Science.gov (United States)

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Expression, purification, crystallization and preliminary X-ray analysis of wild-type and of an active-site mutant of glyceraldehyde-3-phosphate dehydrogenase from Campylobacter jejuni

    International Nuclear Information System (INIS)

    Tourigny, David S.; Elliott, Paul R.; Edgell, Louise J.; Hudson, Gregg M.; Moody, Peter C. E.

    2010-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray analysis of wild-type and of an active-site mutant of C. jejuni glyceraldehyde-3-phosphate dehydrogenase is reported. The genome of the enteric pathogen Campylobacter jejuni encodes a single glyceraldehyde-3-phosphate dehydrogenase that can utilize either NADP + or NAD + as coenzymes for the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of both the wild type and an active-site mutant of the enzyme are presented. Preliminary X-ray analysis revealed that in both cases the crystals diffracted to beyond 1.9 Å resolution. The space group is shown to be I4 1 22, with unit-cell parameters a = 90.75, b = 90.75, c = 225.48 Å, α = 90.46, β = 90.46, γ = 222.79°; each asymmetric unit contains only one subunit of the tetrameric enzyme

  1. Expression Profiling of Non-Aflatoxigenic Aspergillus parasiticus Mutants Obtained by 5-Azacytosine Treatment or Serial Mycelial Transfer

    Directory of Open Access Journals (Sweden)

    Jiujiang Yu

    2011-08-01

    Full Text Available Aflatoxins are carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Previous studies found that repeated serial mycelial transfer or treatment of A. parasiticus with 5-azacytidine produced colonies with a fluffy phenotype and inability to produce aflatoxins. To understand how these treatments affect expression of genes involved in aflatoxin production and development, we carried out expressed sequence tag (EST-based microarray assays to identify genes in treated clones that are differentially expressed compared to the wild-type. Expression of 183 genes was significantly dysregulated. Of these, 38 had at least two-fold or lower expression compared to the untreated control and only two had two-fold or higher expression. The most frequent change was downregulation of genes predicted to encode membrane-bound proteins. Based on this result we hypothesize that the treatments cause changes in the structure of cellular and organelle membranes that prevent normal development and aflatoxin biosynthesis.

  2. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  3. Thermostable enzymes as biocatalysts in the biofuel industry.

    Science.gov (United States)

    Yeoman, Carl J; Han, Yejun; Dodd, Dylan; Schroeder, Charles M; Mackie, Roderick I; Cann, Isaac K O

    2010-01-01

    Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Isolation and molecular characterization of thermostable phytase from Bacillus subtilis (BSPhyARRMK33).

    Science.gov (United States)

    Reddy, Chinreddy Subramanyam; Achary, V Mohan Murali; Manna, Mrinalini; Singh, Jitender; Kaul, Tanushri; Reddy, Malireddy K

    2015-03-01

    The thermostable phytase gene was isolated from Bacillus subtilis ARRMK33 (BsPhyARRMK33). The gene has an ORF of 1152 bp and that encodes a protein of 383 amino acids. Sequence analysis showed high homology with Bacillus sp. phytase proteins, but no similarity was found with other phytases. SDS-PAGE analysis exhibited a predicted molecular mass of 42 kDa. Homology modeling of BsPhyARRMK33 protein based on Bacillus amyloliquefaciens crystal structure disclosed its β-propeller structure. BsPhyARRMK33 recombinant plasmid in pET-28a(+) was expressed in Rosetta gami B DE3 cells and the maximum phytase activity 15.3 U mg(-1) obtained. The enzyme exhibits high thermostability at various temperatures and broad pH ranges. The recombinant protein retained 74% of its original activity after incubation at 95 °C for 10 min. In the presence of Ca(2+), the recombinant phytase activity was maximal where as it was inhibited by EDTA. The optimal pH and temperature for the recombinant phytase activity is achieved at 7.0 and 55 °C, respectively. Thermostable nature and wide range of pH are promising features of recombinant BsPhyARRMK33 protein that may be employed as an efficient alternative to commercially known phytases and thereby alleviate environmental eutrophication.

  5. Enhanced resistance to fluoroquinolones in laboratory-grown mutants & clinical isolates of Shigella due to synergism between efflux pump expression & mutations in quinolone resistance determining region

    Directory of Open Access Journals (Sweden)

    Neelam Taneja

    2015-01-01

    Full Text Available Background & objectives: There is a worldwide emergence of fluoroquinolone resistance in Shigella species. To understand the molecular mechanisms associated with fluoroquinolone resistance, naturally occurring fluoroquinolone-resistant strains and laboratory-induced spontaneous mutants of Shigella spp. were used and the relative contributions of acrAB-tolC efflux pumps, gyrase and topoisomerase target gene mutations towards fluoroquinolone resistance were determined. Methods: Eight Shigella flexneri and six S. dysenteriae clinical isolates were studied. Three consecutive mutants resistant to ciprofloxacin for S. flexneri SFM1 (≥0.25 µg/ml, SFM2 (≥4 µg/ml and SFM3 (≥32 µg/ml were selected in 15 steps from susceptible isolates by serial exposure to increasing concentrations of nalidixic acid and ciprofloxacin. Similarly, two mutants for S. dysenteriae SDM1 (≥0.25 µg/ml and SDM2 (≥4 µg/ml were selected in eight steps. After PCR amplification sequence analyses of gyrase and topoisomerase target genes were performed. Expression of efflux genes acrA, acrB, acrR and tolC was measured using real-time PCR. Results: Mutations were observed in gyrA Ser [83]→Leu, Asp [87]→Asn/Gly, Val [196]→Ala and in parC Phe [93]→Val, Ser [80]→Ile, Asp [101]→Glu and Asp [110]→Glu. Overall, acrA and acrB overexpression was associated with fluoroquinolone resistance ( p0 <0.05; while tolC and acrR expression levels did not. Interpretation & conclusions: Fluoroquinolone resistance in Shigella spp. is the end product of either a single or a combination of mutations in QRDRs and/ or efflux activity. Novel polymorphisms were observed at Val [196]→Ala in gyrA in clinical isolates and Phe [93]→Val, Asp [101]→Glu, Asp [110]→Glu and in parC in majority of laboratory-grown mutants.

  6. Tyr51: Key Determinant of the Low Thermostability of the Colwellia psychrerythraea Cold-Shock Protein.

    Science.gov (United States)

    Lee, Yeongjoon; Kwak, Chulhee; Jeong, Ki-Woong; Durai, Prasannavenkatesh; Ryu, Kyoung-Seok; Kim, Eun-Hee; Cheong, Chaejoon; Ahn, Hee-Chul; Kim, Hak Jun; Kim, Yangmee

    2018-05-18

    Cold-shock proteins (Csps) are expressed at lower-than-optimum temperatures, and they function as RNA chaperones; however, no structural studies on psychrophilic Csps have been reported. Here, we aimed to investigate the structure and dynamics of the Csp of psychrophile Colwellia psychrerythraea 34H, ( Cp-Csp). Although Cp-Csp shares sequence homology, common folding patterns, and motifs, including a five β-stranded barrel, with its thermophilic counterparts, its thermostability (37 °C) was markedly lower than those of other Csps. Cp-Csp binds heptathymidine with an affinity of 10 -7 M, thereby increasing its thermostability to 50 °C. Nuclear magnetic resonance spectroscopic analysis of the Cp-Csp structure and backbone dynamics revealed a flexible structure with only one salt bridge and 10 residues in the hydrophobic cavity. Notably, Cp-Csp contains Tyr51 instead of the conserved Phe in the hydrophobic core, and its phenolic hydroxyl group projects toward the surface. The Y51F mutation increased the stability of hydrophobic packing and may have allowed for the formation of a K3-E21 salt bridge, thereby increasing its thermostability to 43 °C. Cp-Csp exhibited conformational exchanges in its ribonucleoprotein motifs 1 and 2 (754 and 642 s -1 ), and heptathymidine binding markedly decreased these motions. Cp-Csp lacks salt bridges and has longer flexible loops and a less compact hydrophobic cavity resulting from Tyr51 compared to mesophilic and thermophilic Csps. These might explain the low thermostability of Cp-Csp. The conformational flexibility of Cp-Csp facilitates its accommodation of nucleic acids at low temperatures in polar oceans and its function as an RNA chaperone for cold adaptation.

  7. Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Takuro Kameda

    2015-06-01

    Full Text Available Myeloproliferative neoplasms (MPNs are clinically characterized by the chronic overproduction of differentiated peripheral blood cells and the gradual expansion of malignant intramedullary/extramedullary hematopoiesis. In MPNs mutations in JAK2 MPL or CALR are detected mutually exclusive in more than 90% of cases [1,2]. Mutations in them lead to the abnormal activation of JAK/STAT signaling and the autonomous growth of differentiated cells therefore they are considered as “driver” gene mutations. In addition to the above driver gene mutations mutations in epigenetic regulators such as TET2 DNMT3A ASXL1 EZH2 or IDH1/2 are detected in about 5%–30% of cases respectively [3]. Mutations in TET2 DNMT3A EZH2 or IDH1/2 commonly confer the increased self-renewal capacity on normal hematopoietic stem cells (HSCs but they do not lead to the autonomous growth of differentiated cells and only exhibit subtle clinical phenotypes [4,6–8,5]. It was unclear how mutations in such epigenetic regulators influenced abnormal HSCs with driver gene mutations how they influenced the disease phenotype or whether a single driver gene mutation was sufficient for the initiation of human MPNs. Therefore we focused on JAK2V617F and loss of TET2—the former as a representative of driver gene mutations and the latter as a representative of mutations in epigenetic regulators—and examined the influence of single or double mutations on HSCs (Lineage−Sca-1+c-Kit+ cells (LSKs by functional analyses and microarray whole-genome expression analyses [9]. Gene expression profiling showed that the HSC fingerprint genes [10] was statistically equally enriched in TET2-knockdown-LSKs but negatively enriched in JAK2V617F–LSKs compared to that in wild-type-LSKs. Double-mutant-LSKs showed the same tendency as JAK2V617F–LSKs in terms of their HSC fingerprint genes but the expression of individual genes differed between the two groups. Among 245 HSC fingerprint genes 100 were more

  8. Expression of ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an aberrant motor phenotype.

    Science.gov (United States)

    Hogan, Alison L; Don, Emily K; Rayner, Stephanie L; Lee, Albert; Laird, Angela S; Watchon, Maxinne; Winnick, Claire; Tarr, Ingrid S; Morsch, Marco; Fifita, Jennifer A; Gwee, Serene S L; Formella, Isabel; Hortle, Elinor; Yuan, Kristy C; Molloy, Mark P; Williams, Kelly L; Nicholson, Garth A; Chung, Roger S; Blair, Ian P; Cole, Nicholas J

    2017-07-15

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Expression of a transgene encoding mutant p193/CUL7 preserves cardiac function and limits infarct expansion after myocardial infarction

    NARCIS (Netherlands)

    Hassink, R. J.; Nakajima, H.; Nakajima, H. O.; Doevendans, P. A.; Field, L. J.

    2009-01-01

    Background: Transgenic mice expressing the dominant interfering p193 protein in cardiomyocytes (MHC-1152stop mice) exhibit an induction of cell cycle activity and altered remodelling after experimental myocardial infarction (MI). Objective: To determine whether the altered remodelling results in

  10. Engineering of pectinolytic enzymes for enhanced thermostability

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller

    Conversion of waste materials into valuable compounds is promising concerning transformation of byproduct streams such as sugar beet and potato pulp. In order to obtain those compounds with reduced energy consumption, carbohydrate active enzymes can be used as catalysts. Sugar beet and potato pulp...... consist of pectin that can be converted into beneficial polymeric and oligomeric carbohydrates requiring enzymes such as pectin lyases, rhamnogalacturonan I (RGI) lyases, polygalacturonases and galactanases. Enzymatic conversion of such pectinaceous biomasses at high temperatures is advantageous...... as it gives rise to lower substrate viscosity, easier mixing, higher substrate solubility and lowers the risk of contamination. The overall objective of this thesis was to discover enzymes for degradation of RGI structures in pectin and further engineer for enhanced thermostability. The hypotheses were...

  11. Transcriptome Changes Associated with Delayed Flower Senescence on Transgenic Petunia by Inducing Expression of etr1-1, a Mutant Ethylene Receptor

    Science.gov (United States)

    Lin, Jing; Liu, Gang; Zhang, Zhen; Chang, Youhong; Reid, Michael S.; Jiang, Cai-Zhong

    2013-01-01

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX). Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, ‘the regulation of transcription’ was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death. PMID:23874385

  12. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1, a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX. Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, 'the regulation of transcription' was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death.

  13. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Directory of Open Access Journals (Sweden)

    Amsterdam Adam

    2006-06-01

    Full Text Available Abstract Background Craniofacial birth defects result from defects in cranial neural crest (NC patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1 signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. Results Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. Conclusion This work represents a systematic

  14. Thermostable Alginate degrading enzymes and their methods of use

    NARCIS (Netherlands)

    Hreggvidsson, Gudmundur Oli; Jonsson, Oskar W.J.; Bjornsdottir, Bryndis; Fridjonsson, Hedinn O; Altenbuchner, Josef; Watzlawick, Hildegard; Dobruchowska, Justyna; Kamerling, Johannis

    2015-01-01

    The present invention relates to the identification, production and use of thermostable alginate lyase enzymes that can be used to partially degrade alginate to yield oligosaccharides or to give complete degradation of alginate to yield (unsaturated) mono-uronates.

  15. Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress[OA

    Science.gov (United States)

    Kurek, Itzhak; Chang, Thom Kai; Bertain, Sean M.; Madrigal, Alfredo; Liu, Lu; Lassner, Michael W.; Zhu, Genhai

    2007-01-01

    Plant photosynthesis declines when the temperature exceeds its optimum range. Recent evidence indicates that the reduction in photosynthesis is linked to ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) deactivation due to the inhibition of Rubisco activase (RCA) under moderately elevated temperatures. To test the hypothesis that thermostable RCA can improve photosynthesis under elevated temperatures, we used gene shuffling technology to generate several Arabidopsis thaliana RCA1 (short isoform) variants exhibiting improved thermostability. Wild-type RCA1 and selected thermostable RCA1 variants were introduced into an Arabidopsis RCA deletion (Δrca) line. In a long-term growth test at either constant 26°C or daily 4-h 30°C exposure, the transgenic lines with the thermostable RCA1 variants exhibited higher photosynthetic rates, improved development patterns, higher biomass, and increased seed yields compared with the lines expressing wild-type RCA1 and a slight improvement compared with untransformed Arabidopsis plants. These results provide clear evidence that RCA is a major limiting factor in plant photosynthesis under moderately elevated temperatures and a potential target for genetic manipulation to improve crop plants productivity under heat stress conditions. PMID:17933901

  16. Evidence for a Ustilago maydis Steroid 5α-Reductase by Functional Expression in Arabidopsis det2-1 Mutants1

    Science.gov (United States)

    Basse, Christoph W.; Kerschbamer, Christine; Brustmann, Markus; Altmann, Thomas; Kahmann, Regine

    2002-01-01

    We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5α-steroid reductases. Udh1 differs from those of known 5α-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5α-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5α-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins. PMID:12068114

  17. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    Science.gov (United States)

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  18. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  19. Characterization of conditionally expressed mutants affecting age-specific Drosophila melanogaster : Lethal conditions and temperature-sensitive periods

    NARCIS (Netherlands)

    Vermeulen, CJ; Bijlsma, R

    The specific genetic basis of inbreeding depression is poorly understood. To address this question, two conditionally expressed lethal effects that were found to cause line-specific life span reductions in two separate inbred lines of Drosophila melanogaster. were characterized phenotypically and

  20. Ectopic Expression of CsCTR1, a Cucumber CTR-Like Gene, Attenuates Constitutive Ethylene Signaling in an Arabidopsis ctr1-1 Mutant and Expression Pattern Analysis of CsCTR1 in Cucumber (Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Beibei Bie

    2014-09-01

    Full Text Available The gaseous plant hormone ethylene regulates many aspects of plant growth, development and responses to the environment. Constitutive triple response 1 (CTR1 is a central regulator involved in the ethylene signal transduction pathway. To obtain a better understanding of this particular pathway in cucumber, the cDNA-encoding CTR1 (designated CsCTR1 was isolated from cucumber. A sequence alignment and phylogenetic analyses revealed that CsCTR1 has a high degree of homology with other plant CTR1 proteins. The ectopic expression of CsCTR1 in the Arabidopsis ctr1-1 mutant attenuates constitutive ethylene signaling of this mutant, suggesting that CsCTR1 indeed performs its function as negative regulator of the ethylene signaling pathway. CsCTR1 is constitutively expressed in all of the examined cucumber organs, including roots, stems, leaves, shoot apices, mature male and female flowers, as well as young fruits. CsCTR1 expression gradually declined during male flower development and increased during female flower development. Additionally, our results indicate that CsCTR1 can be induced in the roots, leaves and shoot apices by external ethylene. In conclusion, this study provides a basis for further studies on the role of CTR1 in the biological processes of cucumber and on the molecular mechanism of the cucumber ethylene signaling pathway.

  1. KRAS Mutant Status, p16 and β-catenin Expression May Predict Local Recurrence in Patients Who Underwent Transanal Endoscopic Microsurgery (TEMS) for Stage I Rectal Cancer.

    Science.gov (United States)

    Sideris, Michail; Moorhead, Jane; Diaz-Cano, Salvador; Bjarnason, Ingvar; Haji, Amyn; Papagrigoriadis, Savvas

    2016-10-01

    Transanal endoscopic microsurgery (TEMS) is emerging as an alternative treatment for rectal cancer Stage I. There remains a risk of local recurrence. The Aim of the study was to study the effect of biomarkers in local recurrence for Stage I rectal cancer following TEMS plus or minus radiotherapy. This is a case control study where we compared 10 early rectal cancers that had recurred, against 19 cases with no recurrence, total 29 patients (age=28.25-86.87, mean age=67.92 years, SD=14.91, Male, N=18, Female, N=11). All patients underwent TEMS for radiological Stage I rectal cancer (yT1N0M0 or yT2N0M0) established with combination of magnetic resonance imaging (MRI) and endorectal ultrasound. We prospectively collected all data on tumour histology, morphological features, as well as follow-up parameters. Molecular analysis was performed to identify their status on BRAF, KRAS, p16 O 6 -methylguanine-DNA methyltransferase (MGMT) and β-catenin. Out of 29 specimens analyzed, 19 were KRAS wild type (65.9%) and 10 mutant (34.5%). Recurrence of the tumour was noted in 10 cases (34.5%) from which 60% were pT1 (N=6) and 40% pT2 (N=4). There was a statistically significant association between KRAS mutant status and local recurrence (N=6, p=0.037). P16 expression greater than 5% (mean=10.8%, min=0, max=95) is linked with earlier recurrence within 11.70 months (N=7, p=0.004). Membranous β-catenin expression (N=12, 48%) was also related with KRAS mutant status (p=0.006) but not with survival (p>0.05). BRAF gene was found to be wild type in all cases tested (N=23). KRAS/p16/β-catenin could be used as a combined biomarker for prediction of local recurrence and stratification of the risk for further surgery. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Effect of hypergravity on lignin formation and expression of lignin-related genes in inflorescence stems of an ethylene-insensitive Arabidopsis mutant ein3-1

    Science.gov (United States)

    Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro

    Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.

  3. The tropical cedar tree (Cedrela fissilis Vell., Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants.

    Science.gov (United States)

    Dornelas, Marcelo Carnier; Rodriguez, Adriana Pinheiro Martinelli

    2006-01-01

    A homolog of FLORICAULA/LEAFY, CfLFY (for Cedrela fissilis LFY), was isolated from tropical cedar. The main stages of the reproductive development in C. fissilis were documented by scanning electron microscopy and the expression patterns of CfLFY were studied during the differentiation of the floral meristems. Furthermore, the biological role of the CfLFY gene was assessed using transgenic Arabidopsis plants. CfLFY showed a high degree of similarity to other plant homologs of FLO/LFY. Southern analysis showed that CfLFY is a single-copy gene in the tropical cedar genome. Northern blot analysis and in situ hybridization results showed that CfLFY was expressed in the reproductive buds during the transition from vegetative to reproductive growth, as well as in floral meristems and floral organs but was excluded from the vegetative apex and leaves. Transgenic Arabidopsis lfy26 mutant lines expressing the CfLFY coding region, under the control of the LFY promoter, showed restored wild-type phenotype. Taken together, our results suggest that CfLFY is a FLO/LFY homolog probably involved in the control of tropical cedar reproductive development.

  4. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties

    Directory of Open Access Journals (Sweden)

    Koh Eunhee

    2007-07-01

    Full Text Available Abstract Background EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information. Results Here we report for the first time the 2.1-Å resolution crystal structure of EstE1. The three-dimensional structure of EstE1 exhibits a classic α/β hydrolase fold with a central parallel-stranded beta sheet surrounded by alpha helices on both sides. The residues Ser154, Asp251, and His281 form the catalytic triad motif commonly found in other α/β hydrolases. EstE1 exists as a dimer that is formed by hydrophobic interactions and salt bridges. Circular dichroism spectroscopy and heat inactivation kinetic analysis of EstE1 mutants, which were generated by structure-based site-directed mutagenesis of amino acid residues participating in EstE1 dimerization, revealed that hydrophobic interactions through Val274 and Phe276 on the β8 strand of each monomer play a major role in the dimerization of EstE1. In contrast, the intermolecular salt bridges contribute less significantly to the dimerization and thermostability of EstE1. Conclusion Our results suggest that intermolecular hydrophobic interactions are essential for the hyperthermostability of EstE1. The molecular mechanism that allows EstE1 to endure high temperature will provide guideline for rational design of a thermostable esterase/lipase using the lipolytic enzymes showing structural similarity to EstE1.

  6. Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice.

    Science.gov (United States)

    Mitchell, Nathan C; Gould, Georgianna G; Koek, Wouter; Daws, Lynette C

    2016-08-01

    Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [(3)H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/- mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/- mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT-/- mice escitalopram produced no behavioral effects, and there was no specific [(3)H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Mutant, wild type, or overall p53 expression: freedom from clinical progression in tumours of astrocytic lineage.

    Science.gov (United States)

    Pardo, F S; Hsu, D W; Zeheb, R; Efird, J T; Okunieff, P G; Malkin, D M

    2004-11-01

    Abnormalities of the p53 tumor-suppressor gene are found in a significant proportion of astrocytic brain tumours. We studied tumour specimens from 74 patients evaluated over 20 years at the Massachusetts General Hospital, where clinical outcome could be determined and sufficient pathologic material was available for immunostaining. p53 expression studies employed an affinity-purified p53 monoclonal antibody, whose specificity was verified in absorption studies and, in a minority of cases, a second antibody recognising a different epitope of p53. Significant overexpression of p53 protein was found in 48% of the 74 tumours included in this series and high levels of expression were associated with higher mortality from astrocytic tumours (Pexpression of p53 plays an important role in the pathobiology of these tumours. In a subset of 36 cases, coding regions of the p53 gene were completely sequenced via SSCP and direct DNA sequencing, revealing that overexpression of p53 protein is not always associated with point mutations in conserved exons of the p53 gene. Finally, we confirmed p53 protein expression in early-passage human glioma cell lines of known p53 mutational status and immunostaining scores. Although grade continues to be the strongest prognostic variable, the use of p53 staining as a prognostic indicator, in contrast to mutational DNA analyses, may be a useful adjunct in identifying patients at higher risk of treatment failure.

  8. Characterization of cellular protective effects of ATP13A2/PARK9 expression and alterations resulting from pathogenic mutants.

    Science.gov (United States)

    Covy, Jason P; Waxman, Elisa A; Giasson, Benoit I

    2012-12-01

    Mutations in ATP13A2, which encodes a lysosomal P-type ATPase of unknown function, cause an autosomal recessive parkinsonian syndrome. With mammalian cells, we show that ATP13A2 expression protects against manganese and nickel toxicity, in addition to proteasomal, mitochondrial, and oxidative stress. Consistent with a recessive mode of inheritance of gene defects, disease-causing mutations F182L and G504R are prone to misfolding and do not protect against manganese and nickel toxicity because they are unstable as a result of degradation via the endoplasmic reticulum-associated degradation (ERAD)-proteasome system. The protective effects of ATP13A2 expression are not due to inhibition of apoptotic pathways or a reduction in typical stress pathways, insofar as these pathways are still activated in challenged ATP13A2-expressing cells; however, these cells display a dramatic reduction in the accumulation of oxidized and damaged proteins. These data indicate that, contrary to a previous suggestion, ATP13A2 is unlikely to convey cellular resilience simply by acting as a lysosomal manganese transporter. Consistent with the recent identification of an ATP13A2 recessive mutation in Tibetan terriers that develop neurodegeneration with neuronal ceroid lipofucinoses, our data suggest that ATP13A2 may function to import a cofactor required for the function of a lysosome enzyme(s). Copyright © 2012 Wiley Periodicals, Inc.

  9. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  10. P01.29 Mutant (R132H) IDH1-driven cellular transformation makes cells dependent on continued wild type IDH1 expression in a model of in vitro gliomagenesis

    Science.gov (United States)

    Johannessen, T.; Mukherjee, J.; Wood, M.; Viswanath, P.; Ohba, S.; Ronen, S.; Berkvig, R.; Pieper, R.

    2017-01-01

    Abstract Introduction: Missense R132H mutations in the active site of isocitrate dehydrogenase 1 (IDH1) biologically and diagnostically distinguish low-grade gliomas and secondary glioblastomas from primary glioblastomas. IDH1 mutations lead to the formation of the oncometabolite 2-hydroxyglutarate (2-HG) from the reduction of α-ketoglutarate (α-KG), which in turn facilitates tumorigenesis by modifying DNA and histone methylation as well blocking differentiation processes. We recently showed (Mol Cancer Res 14: 976–983, 2016) that although mutant IDH1 expression in hTERT-immortalized, p53/pRb-deficient astrocytes can drive cellular transformation and gliomagenesis, selective pharmacologic inhibition and elimination of 2-HG by the mutant IDH1 inhibitor AGI-5198 has little effect on the growth or clonagenicity of these transformed cells. To address the possible role of WT IDH1 in the growth of mutant IDH-driven tumor cells, we used a slightly different gliomagenesis model in which the transformation of TERT-deficient, p53/pRb-deficient astrocytes (pre-crisis cells) occurs only after prolonged expression of mutant IDH and passage through cellular crisis (post-crisis cells, Cancer Res 76:6680–6689, 2016). METHODS AND MATERIALS: Using this system we introduced AGI-5198, or siRNA targeting both WT and mutant forms of IDH1 into p53/pRb-deficient, mutant IDH1-expressing human astrocytes prior to or following their transformation, and compared the effects on cell growth and clonagenicity. Results: AGI-5198 exposure decreased levels of 2HG by greater than 90%, and as previously reported had no effect on the growth of either the pre-or post-crisis cell populations. A one-day exposure to a pan IDH1 siRNA resulted in a similar, prolonged (greater than 6 day), 80% inhibition of both WT and mutant IDH1 protein levels and 2HG in both cell groups. While the growth of the mutant IDH-expressing, non-transformed cells was similar to that of scramble siRNA controls, the growth

  11. Differential Expression of Claudin Family Proteins in Mouse Ovarian Serous Papillary Epithelial Adenoma in Aging FSH Receptor-Deficient Mutants

    Directory of Open Access Journals (Sweden)

    Jayaprakash Aravindakshan

    2006-12-01

    Full Text Available Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of folliclestimulating hormone receptor (FSH-R signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma.

  12. Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment

    Directory of Open Access Journals (Sweden)

    Catarina Moreirinha

    2018-03-01

    Full Text Available The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells.

  13. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    Energy Technology Data Exchange (ETDEWEB)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng [National Yang Ming Univ., Taipei, Taiwan (China). Inst. of Radiological Sciences] (and others)

    2001-12-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  14. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80. Analysis by cDNA microarray

    International Nuclear Information System (INIS)

    Chan, John Y.H.; Chen, Lung-Kun; Chang, Jui-Feng

    2001-01-01

    The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes. (author)

  15. Purification, characterisation and expression in Saccharomyces cerevisiae of LipG7 an enantioselective, cold-adapted lipase from the Antarctic filamentous fungus Geomyces sp. P7 with unusual thermostability characteristics.

    Science.gov (United States)

    Florczak, Tomasz; Daroch, Maurycy; Wilkinson, Mark Charles; Białkowska, Aneta; Bates, Andrew Derek; Turkiewicz, Marianna; Iwanejko, Lesley Ann

    2013-06-10

    A lipase, LipG7, has been purified from the Antarctic filamentous fungus Geomyces sp. P7 which was found to be cold-adapted and able to retain/regain its activity after heat denaturation. The LipG7 exhibits 100% residual activity following 1h incubation at 100°C whilst simultaneously showing kinetic adaptations to cold temperatures. LipG7 was also found to have industrial potential as an enantioselective biocatalyst as it is able to effectively catalyse the enantioselective transesterification of a secondary alcohol. The LipG7 coding sequence has been identified and cloned using 454 pyrosequencing of the transcriptome and inverse PCR. The LipG7 protein has been heterologously expressed in Saccharomyces cerevisiae BJ5465 and shown to exhibit the same characteristics as the native protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of l-lactate dehydrogenase and its H171C mutant from Bacillus subtilis

    International Nuclear Information System (INIS)

    Zhang, Yanfeng; Gao, Xiaoli

    2011-01-01

    Recombinant wild-type l-lactate dehydrogenase from B. subtilis (BsLDH) was cocrystallized with fructose 1,6-bisphosphate and NAD + and the crystal diffracted to 2.38 Å resolution. The H171C mutant of BsLDH was also crystallized as the apoenzyme and in complex with NAD + and the crystals diffracted to 2.20 and 2.49 Å, respectively. All crystals belonged to space group P3. l-Lactate dehydrogenase (LDH) is an important enzyme involved in the last step of glycolysis that catalyzes the reversible conversion of pyruvate to l-lactate with the simultaneous oxidation of NADH to NAD + . In this study, wild-type LDH from Bacillus subtilis (BsLDH-WT) and the H171C mutant (BsLDH-H171C) were expressed in Escherichia coli and purified to near-homogeneity. BsLDH-WT was crystallized in the presence of fructose 1,6-bisphosphate (FBP) and NAD + and the crystal diffracted to 2.38 Å resolution. The crystal belonged to space group P3, with unit-cell parameters a = b = 171.04, c = 96.27 Å. BsLDH-H171C was also crystallized as the apoenzyme and in complex with NAD + , and data sets were collected to 2.20 and 2.49 Å resolution, respectively. Both BsLDH-H171C crystals belonged to space group P3, with unit-cell parameters a = b = 133.41, c = 99.34 Å and a = b = 133.43, c = 99.09 Å, respectively. Tetramers were observed in the asymmetric units of all three crystals

  17. Gene Expressing and sRNA Sequencing Show That Gene Differentiation Associates with a Yellow Acer palmatum Mutant Leaf in Different Light Conditions.

    Science.gov (United States)

    Li, Shu-Shun; Li, Qian-Zhong; Rong, Li-Ping; Tang, Ling; Zhang, Bo

    2015-01-01

    Acer palmatum Thunb., like other maples, is a widely ornamental-use small woody tree for leaf shapes and colors. Interestingly, we found a yellow-leaves mutant "Jingling Huangfeng" turned to green when grown in shade or low-density light condition. In order to study the potential mechanism, we performed high-throughput sequencing and obtained 1,082 DEGs in leaves grown in different light conditions that result in A. palmatum significant morphological and physiological changes. A total of 989 DEGs were annotated and clustered, of which many DEGs were found associating with the photosynthesis activity and pigment synthesis. The expression of CHS and FDR gene was higher while the expression of FLS gene was lower in full-sunlight condition; this may cause more colorful substance like chalcone and anthocyanin that were produced in full-light condition, thus turning the foliage to yellow. Moreover, this is the first available miRNA collection which contains 67 miRNAs of A. palmatum, including 46 conserved miRNAs and 21 novel miRNAs. To get better understanding of which pathways these miRNAs involved, 102 Unigenes were found to be potential targets of them. These results will provide valuable genetic resources for further study on the molecular mechanisms of Acer palmatum leaf coloration.

  18. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  19. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    International Nuclear Information System (INIS)

    Miller, Lutfiya; Wells, Peter G.

    2011-01-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.

  20. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  1. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  2. Inhibition of MEK5 by BIX02188 induces apoptosis in cells expressing the oncogenic mutant FLT3-ITD

    International Nuclear Information System (INIS)

    Razumovskaya, Elena; Sun, Jianmin; Roennstrand, Lars

    2011-01-01

    Highlights: → In this study we have demonstrated that FLT3 activation leads to activation of ERK5. → We have demonstrated that ERK5 is involved in activation of AKT downstream of FLT3. → (BIX02188) blocks activation of ERK5 and induces apoptosis in FLT3 Ba/F3 cells. → (BIX02188) induce apoptosis in the two leukemic cell lines MV4-11 and MOLM-13. -- Abstract: Fms-like tyrosine kinase-3 (FLT3) is a growth factor receptor normally expressed on hematopoietic progenitor cells. Approximately one third of all patients with AML carry an activating mutation in FLT3 that drives proliferation and survival of the leukemic cells. The most common activating mutation is the so-called internal tandem duplication (ITD), which involves an in-frame duplication of a segment of varying length in the region of the FLT3 gene that encodes the juxtamembrane domain. The pathways downstream of FLT3-ITD are partially known but further knowledge regarding the downstream signal transduction molecules is important in order to develop alternative strategies for pharmacological intervention. In this paper we have studied the role of MEK/ERK5 in FLT3-ITD mediated transformation. We have found that both wild-type FLT3 and FLT3-ITD activate MEK5 leading to the activation of ERK5. By use of the selective inhibitor of MEK5, (BIX02188), we have shown that activation of AKT downstream of FLT3 is partially dependent on ERK5. Furthermore, inhibition of MEK5/ERK5 induces apoptosis of both FLT3-ITD transfected Ba/F3 cells as well as the FLT3-ITD carrying leukemic cell lines MV4-11 and MOLM-13. These results suggest that MEK5/ERK5 is important for FLT3-ITD induced hematopoietic transformation and may thus represent an alternative therapeutic target in the treatment of FLT3-ITD positive leukemia.

  3. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6 causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    Directory of Open Access Journals (Sweden)

    Takao Sasado

    Full Text Available Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68. CPSF6 is a component of the Cleavage Factor Im complex (CFIm which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  4. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    Science.gov (United States)

    Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  5. Programmed cell death in the leaves of the Arabidopsis spontaneous necrotic spots (sns-D mutant correlates with increased expression of the eukaryotic translation initiation factor eIF4B2

    Directory of Open Access Journals (Sweden)

    Gwenael M.D.J.-M. Gaussand

    2011-04-01

    Full Text Available From a pool of transgenic Arabidopsis (Arabidopsis thaliana plants harboring an activator T-DNA construct, one mutant was identified that developed spontaneous necrotic spots (sns-D on the rosette leaves under aseptic conditions. The sns-D mutation is dominant and homozygous plants are embryo lethal. The mutant produced smaller rosettes with a different number of stomata than the wild-type. DNA fragmentation in the nuclei of cells in the necrotic spots and a significant increase of caspase-3 and caspase-6 like activities in sns-D leaf extracts indicated that the sns-D mutation caused programmed cell death (PCD. The integration of the activator T-DNA caused an increase of the expression level of At1g13020, which encodes the eukaryotic translation initiation factor eIF4B2. The expression level of eIF4B2 was positively correlated with the severity of sns-D mutant phenotype. Overexpression of the eIF4B2 cDNA mimicked phenotypic traits of the sns-D mutant indicating that the sns-D mutant phenotype is indeed caused by activation tagging of eIF4B2. Thus, incorrect regulation of translation initiation may result in PCD.

  6. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation....

  7. Thermostability of biological systems: fundamentals, challenges, and quantification.

    Science.gov (United States)

    He, Xiaoming

    2011-01-01

    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.

  8. Thermostability in rubredoxin and its relationship to mechanical rigidity

    Science.gov (United States)

    Rader, A. J.

    2010-03-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.

  9. Thermostability in rubredoxin and its relationship to mechanical rigidity

    International Nuclear Information System (INIS)

    Rader, A J

    2010-01-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors

  10. Partial rescue of postnatal growth plate abnormalities in Ihh mutants by expression of a constitutively active PTH/PTHrP receptor.

    Science.gov (United States)

    Maeda, Yukiko; Schipani, Ernestina; Densmore, Michael J; Lanske, Beate

    2010-02-01

    Indian hedgehog (Ihh) is essential for chondrocyte proliferation/differentiation and osteoblast differentiation during prenatal endochondral bone formation. Ihh expression in postnatal chondrocytes has a non-redundant role in maintaining a growth plate and sustaining trabecular bone after birth. Loss of Ihh in postnatal chondrocytes results in fusion of the growth plate and a decrease in trabecular bone. In order to normalize this abnormal chondrocyte phenotype and to investigate whether a putative rescue of the growth plate anomalies is sufficient to correct the severe alterations in the bone, we expressed a constitutively active PTH/PTHrP receptor (an Ihh downstream target) in the chondrocytes of Col2 alpha 1-Cre ER; Ihh(dld) mice by mating Col2 alpha 1-Cre ER; Ihh(fl/fl) mice with Col2 alpha 1-constitutively active PTH/PTHrP receptor transgenic mice (Jansen, J). Col2 alpha 1-Cre ER; Ihh(f/f); J mice were then injected with tamoxifen at P0 to generate Col2 alpha 1-Cre ER; Ihh(d/d); J mice. In contrast with the previously reported growth plate phenotype of Col2 alpha 1-Cre ER; Ihh(d/d) mice that displayed ectopic chondrocyte hypertrophy at P7, growth plates of Col2 alpha 1-Cre ER; Ihh(d/d); J double mutants were well organized, and exhibited a gene expression pattern similar to the one of control mice. However, expression of osteoblast markers and Dkk1, a Wnt signaling target, remains decreased in the bone collar of Col2 alpha 1-Cre ER; Ihh(d/d); J mice when compared to control mice despite the rescue of abnormal chondrocyte differentiation. Moreover, proliferation of chondrocytes was still significantly impaired in Col2 alpha 1-Cre ER; Ihh(d/d); J mice, and this eventually led to the fusion of the growth plate at P14. In summary, we have demonstrated that expression of a Jansen receptor in chondrocytes was able to rescue abnormal chondrocyte differentiation but not impaired chondrocyte proliferation and the bone anomalies in mice lacking the Ihh gene in

  11. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    Directory of Open Access Journals (Sweden)

    Liang Y

    2018-03-01

    Full Text Available Yayun Liang,1 Benford Mafuvadze,1 Cynthia Besch-Williford,2 Salman M Hyder1 1Deparment of Biomedical Sciences and Dalton Cardiovascular Research Center, Columbia, MO, USA; 2IDEXX BioResearch, Columbia, MO, USA Background: Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53 lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods: In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results: APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood

  12. Comparison of the thermostability of cellulases from various thermophilic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczak, G; Breuil, C; Yamada, J; Saddler, J N

    1987-10-01

    The cellulase activities of six thermophilic fungi were compared. Although the thermophilic fungi grew at relatively high temperatures (> 45/sup 0/C) the optimum temperatures for assaying the various cellulase activities were only slightly higher than the optimum temperatures for the mesophilic fungi, Trichoderma harzianum. Over prolonged incubation (> 24 h) the thermophilic strains demonstrated a higher hydrolytic potential as a result of the greater thermostability of the cellulase components. Although the extracellular cellulase activities had similar pH and temperature optima, in some cases the thermostability of the extracellular components were considerably lower.

  13. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  14. Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.

    Science.gov (United States)

    Diallo, Amadou Oury; Agharbaoui, Zahra; Badawi, Mohamed A; Ali-Benali, Mohamed Ali; Moheb, Amira; Houde, Mario; Sarhan, Fathey

    2014-06-01

    The einkorn wheat mutant mvp-1 (maintained vegetative phase 1) has a non-flowering phenotype caused by deletions including, but not limited to, the genes CYS, PHYC, and VRN1. However, the impact of these deletions on global gene expression is still unknown. Transcriptome analysis showed that these deletions caused the upregulation of several pathogenesis-related (PR) and jasmonate-responsive genes. These results suggest that jasmonates may be involved in flowering and vernalization in wheat. To test this hypothesis, jasmonic acid (JA) and methyl jasmonate (MeJA) content in mvp and wild-type plants was measured. The content of JA was comparable in all plants, whereas the content of MeJA was higher by more than 6-fold in mvp plants. The accumulation of MeJA was also observed in vernalization-sensitive hexaploid winter wheat during cold exposure. This accumulation declined rapidly once plants were deacclimated under floral-inductive growth conditions. This suggests that MeJA may have a role in floral transition. To confirm this result, we treated vernalization-insensitive spring wheat with MeJA. The treatment delayed flowering with significant downregulation of both TaVRN1 and TaFT1 genes. These data suggest a role for MeJA in modulating vernalization and flowering time in wheat. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context.

    Science.gov (United States)

    Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N

    2016-10-01

    The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.

  16. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates.

    Science.gov (United States)

    Zhu, Hong; Reynolds, L Bruce; Menassa, Rima

    2017-06-19

    Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.

  17. A novel engineered interchain disulfide bond in the constant region enhances the thermostability of adalimumab Fab.

    Science.gov (United States)

    Nakamura, Hitomi; Oda-Ueda, Naoko; Ueda, Tadashi; Ohkuri, Takatoshi

    2018-01-01

    We constructed a system for expressing the Fab of the therapeutic human monoclonal antibody adalimumab at a yield of 20 mg/L in the methylotrophic yeast Pichia pastoris. To examine the contribution of interchain disulfide bonds to conformational stability, we prepared adalimumab Fab from which the interchain disulfide bond at the C-terminal region at both the CH 1 and CL domains was deleted by substitution of Cys with Ala (Fab ΔSS ). DSC measurements showed that the Tm values of Fab ΔSS were approximately 5 °C lower than those of wild-type Fab, suggesting that the interchain disulfide bond contributes to conformational thermostability. Using computer simulations, we designed a novel interchain disulfide bond outside the C-terminal region to increase the stability of Fab ΔSS . The resulting Fab (mutSS Fab ΔSS ) had the mutations H:V177C and L:Q160C in Fab ΔSS , confirming the formation of the disulfide bond between CH 1 and CL. The thermostability of mutSS Fab ΔSS was approximately 5 °C higher than that of Fab ΔSS . Therefore, the introduction of the designed interchain disulfide bond enhanced the thermostability of Fab ΔSS and mitigated the destabilization caused by partial reduction of the interchain disulfide bond at the C-terminal region, which occurs in site-specific modification such as PEGylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Comparative transcriptome analyses of a late-maturing mandarin mutant and its original cultivar reveals gene expression profiling associated with citrus fruit maturation

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2017-05-01

    Full Text Available Characteristics of late maturity in fruit are good agronomic traits for extending the harvest period and marketing time. However, underlying molecular basis of the late-maturing mechanism in fruit is largely unknown. In this study, RNA sequencing (RNA-Seq technology was used to identify differentially expressed genes (DEGs related to late-maturing characteristics from a late-maturing mutant ‘Huawan Wuzishatangju’ (HWWZSTJ (Citrus reticulata Blanco and its original line ‘Wuzishatangju’ (WZSTJ. A total of approximately 17.0 Gb and 84.2 M paried-end reads were obtained. DEGs were significantly enriched in the pathway of photosynthesis, phenylpropanoid biosynthesis, carotenoid biosynthesis, chlorophyll and abscisic acid (ABA metabolism. Thirteen candidate transcripts related to chlorophyll metabolism, carotenoid biosynthesis and ABA metabolism were analyzed using real-time quantitative PCR (qPCR at all fruit maturing stages of HWWZSTJ and WZSTJ. Chlorophyllase (CLH and divinyl reductase (DVR from chlorophyll metabolism, phytoene synthase (PSY and capsanthin/capsorubin synthase (CCS from carotenoid biosynthesis, and abscisic acid 8′-hydroxylase (AB1 and 9-cis-epoxycarotenoid dioxygenase (NCED1 from ABA metabolism were cloned and analyzed. The expression pattern of NCED1 indicated its role in the late-maturing characteristics of HWWZSTJ. There were 270 consecutive bases missing in HWWZSTJ in comparison with full-length sequences of NCED1 cDNA from WZSTJ. Those results suggested that NCED1 might play an important role in the late maturity of HWWZSTJ. This study provides new information on complex process that results in the late maturity of Citrus fruit at the transcriptional level.

  19. Altered IFN-γ-mediated immunity and transcriptional expression patterns in N-Ethyl-N-nitrosourea-induced STAT4 mutants confer susceptibility to acute typhoid-like disease.

    Science.gov (United States)

    Eva, Megan M; Yuki, Kyoko E; Dauphinee, Shauna M; Schwartzentruber, Jeremy A; Pyzik, Michal; Paquet, Marilène; Lathrop, Mark; Majewski, Jacek; Vidal, Silvia M; Malo, Danielle

    2014-01-01

    Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-γ pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-γ-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.

  20. Pharmacokinetic properties of 2nd-generation fibroblast growth factor-1 mutants for therapeutic application.

    Directory of Open Access Journals (Sweden)

    Xue Xia

    Full Text Available Fibroblast growth factor-1 (FGF-1 is an angiogenic factor with therapeutic potential for the treatment of ischemic disease. FGF-1 has low intrinsic thermostability and is characteristically formulated with heparin as a stabilizing agent. Heparin, however, adds a number of undesirable properties that negatively impact safety and cost. Mutations that increase the thermostability of FGF-1 may obviate the need for heparin in formulation and may prove to be useful "2nd-generation" forms for therapeutic use. We report a pharmacokinetic (PK study in rabbits of human FGF-1 in the presence and absence of heparin, as well as three mutant forms having differential effects upon thermostability, buried reactive thiols, and heparin affinity. The results support the hypothesis that heparan sulfate proteoglycan (HSPG in the vasculature of liver, kidney and spleen serves as the principle peripheral compartment in the distribution kinetics. The addition of heparin to FGF-1 is shown to increase endocrine-like properties of distribution. Mutant forms of FGF-1 that enhance thermostability or eliminate buried reactive thiols demonstrate a shorter distribution half-life, a longer elimination half-life, and a longer mean residence time (MRT in comparison to wild-type FGF-1. The results show how such mutations can produce useful 2nd-generation forms with tailored PK profiles for specific therapeutic application.

  1. Comparative Study on Different Expression Hosts for Alkaline Phytase Engineered in Escherichia coli.

    Science.gov (United States)

    Chen, Weiwei; Yu, Hongwei; Ye, Lidan

    2016-07-01

    The application of alkaline phytase as a feed additive is restricted by the poor specific activity. Escherichia coli is a frequently used host for directed evolution of proteins including alkaline phytase towards improved activity. However, it is not suitable for production of food-grade products due to potential pathogenicity. To combine the advantages of different expression systems, mutants of the alkaline phytase originated from Bacillus subtilis 168 (phy168) were first generated via directed evolution in E. coli and then transformed to food-grade hosts B. subtilis and Pichia pastoris for secretory expression. In order to investigate the suitability of different expression systems, the phy168 mutants expressed in different hosts were characterized and compared in terms of specific activity, pH profile, pH stability, temperature profile, and thermostability. The specific activity of B. subtilis-expressed D24G/K70R/K111E/N121S mutant at pH 7.0 and 60 °C was 30.4 U/mg, obviously higher than those in P. pastoris (22.7 U/mg) and E. coli (19.7 U/mg). Moreover, after 10 min incubation at 80 °C, the B. subtilis-expressed D24G/K70R/K111E/N121S retained about 70 % of the activity at pH 7.0 and 37 °C, whereas the values were only about 25 and 50 % when expressed in P. pastoris and E. coli, respectively. These results suggested B. subtilis as an appropriate host for expression of phy168 mutants and that the strategy of creating mutants in one host and expressing them in another might be a new solution to industrial production of proteins with desired properties.

  2. Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures

    Directory of Open Access Journals (Sweden)

    Cristi L. Galindo

    2010-01-01

    Full Text Available Braun/murein lipoprotein (Lpp is involved in inflammatory responses and septic shock. We previously characterized a Δlpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT bacterium. We performed global transcriptional profiling of WT Y. pestis and its Δlpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26C, the Y. pestis Δlpp mutant cultured at 37C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA downregulated in the Δlpp mutant relative to WT Y. pestis. Indeed, complementation of the Δlpp mutant with the htrA gene restored intracellular survival of the Y. pestis Δlpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA.

  3. Production of thermostable and organic solvent-tolerant alkaline ...

    African Journals Online (AJOL)

    An alkaliphilic bacterium producing organic solvent-tolerant and thermostable alkaline protease was isolated from poultry litter site and identified as Bacillus coagulans PSB-07. Protease production under different submerged fermentation conditions were investigated with the aim of optimizing yield of enzyme. B. coagulans ...

  4. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.

    Science.gov (United States)

    Kumar, Vishal; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-01

    Xylanases are one of the important hydrolytic enzymes which hydrolyze the β-1, 4 xylosidic linkage of the backbone of the xylan polymeric chain which consists of xylose subunits. Xylanases are mainly found in plant cell walls and are produced by several kinds of microorganisms such as fungi, bacteria, yeast, and some protozoans. The fungi are considered as most potent xylanase producers than that of yeast and bacteria. There is a broad series of industrial applications for the thermostable xylanase as an industrial enzyme. Thermostable xylanases have been used in a number of industries such as paper and pulp industry, biofuel industry, food and feed industry, textile industry, etc. The present review explores xylanase-substrate interactions using gene-editing tools toward the comprehension in improvement in industrial stability of xylanases. The various protein-engineering and metabolic-engineering methods have also been explored to improve operational stability of xylanase. Thermostable xylanases have also been used for improvement in animal feed nutritional value. Furthermore, they have been used directly in bakery and breweries, including a major use in paper and pulp industry as a biobleaching agent. This present review envisages some of such applications of thermostable xylanases for their bioengineering.

  5. Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae.

    Science.gov (United States)

    van den Brink, Joost; Facun, Kryss; de Vries, Michel; Stielow, J Benjamin

    2015-12-01

    Thermophilic fungi have the potential to produce industrial-relevant thermostable enzymes, in particular for the degradation of plant biomass. Sordariales is one of the few fungal orders containing several thermophilic taxa, of which many have been associated with the production of thermostable enzymes. The evolutionary affiliation of Sordariales fungi, especially between thermophiles and non-thermophilic relatives, is however poorly understood. Phylogenetic analysis within the current study was based on sequence data, derived from a traditional Sanger and highly multiplexed targeted next generation sequencing approach of 45 isolates. The inferred phylogeny and detailed growth analysis rendered the trait 'thermophily' as polyphyletic within Chaetomiaceae (Sordariales, Sordariomycetes), and characteristic to: Myceliophthora spp., Thielavia terrestris, Chaetomium thermophilum, and Mycothermus thermophilus. Compared to mesophiles, the isolates within thermophilic taxa produced enzyme mixtures with the highest thermostability of known cellulase activities. Temperature profiles of the enzyme activities correlated strongly with the optimal growth temperatures of the isolates but not with their phylogenetic relationships. This strong correlation between growth and enzyme characteristics indicated that detailed analysis of growth does give predictive information on enzyme physiology. The variation in growth and enzyme characteristics reveals these fungi as an excellent platform to better understand fungal thermophily and enzyme thermostability. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Exogenous Expressions of FTO Wild-Type and R316Q Mutant Proteins Caused an Increase in HNRPK Levels in 3T3-L1 Cells as Demonstrated by DIGE Analysis

    Directory of Open Access Journals (Sweden)

    Nil Guzel

    2017-01-01

    Full Text Available Fat mass and obesity-associated protein is an enzyme that oxidatively demethylates DNA. Although there are numerous studies regarding the catalytic function of FTO, the overall existence or absence of FTO on cellular proteome has not been investigated. This study investigated the changes in the soluble proteome of 3T3-L1 cells upon expression of the WT and the mutant (R316Q FTO proteins. Protein extracts prepared from 3T3-L1 cells expressing either the WT or the mutant FTO proteins were used in DIGE experiments. Analysis of the data revealed the number of spots matched to every member and there were 350 ± 20 spots with 30.5% overall mean coefficient of variation. Eleven regulated protein spots were excised from the gels and identified by MALDI-TOF/TOF. One of the identified proteins was heterogeneous nuclear ribonucleoprotein K, which displayed more than 2.6- and 3.7-fold increases in its abundance in the WT and the mutant FTO expressing cells, respectively. Western blot analysis validated these observations. This is the first study revealing the presence of a parallel increase in expressions of FTO and HNRNPK proteins. This increase may codictate the metabolic changes occurring in the cell and may attribute a significance to HNRNPK in FTO-associated transformations.

  7. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases

    Science.gov (United States)

    Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.

    2016-01-01

    Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from RNA in RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030

  8. Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

    Science.gov (United States)

    Wu, Xi; Zhang, Chong; Orita, Izumi; Imanaka, Tadayuki

    2013-01-01

    A novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkADH). The gene, tk0845, which encodes an aldo-keto reductase, was heterologously expressed in Escherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparent Km values for the cofactors NAD(P)+ and NADPH were similar within a range of 66 to 127 μM. TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at the meta and para positions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee). TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50% n-hexane or n-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols. PMID:23354700

  9. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  10. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants

    International Nuclear Information System (INIS)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.; Shilov, Aleksandr A.; Krylov, Petr S.; Ilyushina, Natalia A.; Kaverin, Nikolai V.

    2013-01-01

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects

  11. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants

    Energy Technology Data Exchange (ETDEWEB)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.; Shilov, Aleksandr A.; Krylov, Petr S. [D.I. Ivanovsky Institute of Virology, 123098 Moscow (Russian Federation); Ilyushina, Natalia A., E-mail: Natalia.Ilyushina@fda.hhs.gov [FDA CDER, 29 Lincoln Drive, Bethesda, MD 20892 (United States); Kaverin, Nikolai V., E-mail: nik.kaverin@gmail.com [D.I. Ivanovsky Institute of Virology, 123098 Moscow (Russian Federation)

    2013-12-15

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.

  12. Thermo-stable carbon nanotube-TiO_2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    International Nuclear Information System (INIS)

    Inoue, Ippei; Yasueda, Hisashi; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-01-01

    We produced a thermostable TiO_2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor–liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO_2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO_2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO_2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO_2 photoelectrodes. (paper)

  13. Directed Evolution of Recombinant C-Terminal Truncated Staphylococcus epidermidis Lipase AT2 for the Enhancement of Thermostability

    Directory of Open Access Journals (Sweden)

    Jiivittha Veno

    2017-11-01

    Full Text Available In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from Staphylococcus epidermis AT2 (rT-M386 was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases were purified concurrently using GST-affinity chromatography. The biochemical and biophysical properties of both enzymes were investigated. The G210C lipase showed a higher optimum temperature (45 °C and displayed a more prolonged half-life in the range of 40–60 °C as compared to rT-M386. Both lipases exhibited optimal activity and stability at pH 8. The G210C showed the highest stability in the presence of polar organic solvents at 50 °C compared to the rT-M386. Denatured protein analysis presented a significant change in the molecular ellipticity value above 60 °C, which verified the experimental result on the temperature and thermostability profile of G210C.

  14. Glycine in the conserved motif III modulates the thermostability and oxidative stress resistance of peptide deformylase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Narayanan, Sai Shyam; Sokkar, Pandian; Ramachandran, Murugesan; Nampoothiri, Kesavan Madhavan

    2011-07-01

    Peptide deformylase (PDF) catalyses the removal of the N-formyl group from the nascent polypeptide during protein maturation. The PDF of Mycobacterium tuberculosis H37Rv (MtbPDF), overexpressed and purified from Escherichia coli, was characterized as an iron-containing enzyme with stability towards H(2) O(2) and moderate thermostability. Substitution of two conserved residues (G49 and L107) from MtbPDF with the corresponding residues found in human PDF affected its deformylase activity. Among characterized PDFs, glycine (G151) in motif III instead of conserved aspartate is characteristic of M. tuberculosis. Although the G151D mutation in MtbPDF increased its deformylase activity and thermostability, it also affected enzyme stability towards H(2) O(2) . Molecular dynamics and docking results confirmed improved substrate binding and catalysis for the G151D mutant and the study provides another possible molecular basis for the stability of MtbPDF against oxidizing agents. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Homozygous Expression of Mutant ELOVL4 Leads to Seizures and Death in a Novel Animal Model of Very Long-Chain Fatty Acid Deficiency.

    Science.gov (United States)

    Hopiavuori, Blake R; Deák, Ferenc; Wilkerson, Joseph L; Brush, Richard S; Rocha-Hopiavuori, Nicole A; Hopiavuori, Austin R; Ozan, Kathryn G; Sullivan, Michael T; Wren, Jonathan D; Georgescu, Constantin; Szweda, Luke; Awasthi, Vibhudutta; Towner, Rheal; Sherry, David M; Anderson, Robert E; Agbaga, Martin-Paul

    2018-02-01

    Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular

  16. Development of a thermostable microneedle patch for influenza vaccination

    Science.gov (United States)

    Mistilis, Matthew; Bommarius, Andreas S; Prausnitz, Mark R.

    2017-01-01

    The goal of this study is to develop thermostable microneedle patch formulations for influenza vaccine that can be partially or completely removed from the cold chain. During vaccine drying associated with microneedle patch manufacturing, ammonium acetate and HEPES buffer salts stabilized influenza vaccine, surfactants had little effect during drying, drying temperature had weak effects on vaccine stability, and drying on polydimethylsiloxane led to increased stability compared to drying on stainless steel. A number of excipients, mostly polysaccharides and some amino acids, further stabilized the influenza vaccine during drying. Over longer time scales of storage, combinations of stabilizers preserved the most vaccine activity. Finally, dissolving microneedle patches formulated with arginine and calcium heptagluconate had no significant activity loss for all three strains of seasonal influenza vaccine during storage at room temperature for six months. We conclude that appropriately formulated microneedle patches can exhibit remarkable thermostability that could enable storage and distribution of influenza vaccine outside the cold chain. PMID:25448542

  17. Thermostable Subunit Vaccines for Pulmonary Delivery: How Close Are We?

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    , such as influenza, tuberculosis, and Ebola, for which no good universal vaccines exist. At least two pharmaceutical improvements are expected to help filling this gap: i) The development of thermostable vaccine dosage forms, and ii) the full exploitation of the adjuvant technology for subunit vaccines to potentiate...... strong immune responses. This review highlights the status and recent advances in formulation and pulmonary delivery of thermostable human subunit vaccines. Such vaccines are very appealing from compliance, distribution and immunological point of view: Being non-invasive, inhalable vaccines are self...... immunity. Here, I review state of the art and perspectives in formulation design and processing methods for powder-based subunit vaccines intended for pulmonary administration, and present dry powder inhaler technologies suitable for translating these vaccines into clinical trials....

  18. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  19. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    Science.gov (United States)

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  20. Expression of brown-midrib in a spontaneous sorghum mutant is linked to a 5'-UTR deletion in lignin biosynthesis gene SbCAD2

    Science.gov (United States)

    Brown midrib (bmr) mutants in sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses are associated with reduced lignin concentration, altered lignin composition and improved cell wall digestibility, which are desirable properties in biomass development for the emerging lignocellulosic b...

  1. Differential expression of SOS genes in an E. coli mutant producing unstable lexA protein enhances excision repair but inhibits mutagenesis

    International Nuclear Information System (INIS)

    Peterson, K.R.; Ganesan, A.K.; Mount, D.W.; Stanford Univ., CA)

    1986-01-01

    The SOS response is displayed following treatments which damage DNA or inhibit DNA replication. Two associated activities include enhanced capacity for DNA repair resulting from derepression of the recA, uvrA, uvrB and uvrD genes and increased mutagenesis due to derepression of recA, umuC and umuD. These changes are the consequence of the derepression of at least seventeen unlinked operons negatively regulated by LexA repressor. Following treatments that induce the SOS response, a signal molecule interacts with RecA protein, converting it to an activated form. Activated RecA protein facilitates the proteolytic cleavage of LexA repressor, which results in derepression of the regulon. The cell then enters a new physiological state during which time DNA repair processes are augmented. The lexA41 mutant of E. coli is a uv-resistant derivative of another mutant, lexA3, which produces a repressor that is not cleaved following inducing treatments. The resultant protein is unstable. Lac operon fusions to most of the genes in the SOS regulon were used to show that the various damage-inducible genes were derepressed to different extents. uvrA, B, and D were almost fully derepressed. Consistent with this finding, the rate of removal of T4 endonuclease V-sensitive sites was more rapid in the uv-irradiated lexA41 mutant than in normal cells, suggesting a more active excision repair system. We propose that the instability of the LexA41 protein reduces the intracellular concentration of repressor to a level that allows a high level of excision repair. The additional observation that SOS mutagenesis was only weakly induced in a lexA41 uvrA - mutant implies that the mutant protein partially represses one or more genes whose products promote SOS mutagenesis. 17 refs., 4 figs., 1 tab

  2. Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli.

    Science.gov (United States)

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-08-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the beta clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25 degrees C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25 degrees C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42 degrees C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25 degrees C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25 degrees C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway.

  3. Modes of Overinitiation, dnaA Gene Expression, and Inhibition of Cell Division in a Novel Cold-Sensitive hda Mutant of Escherichia coli▿

    Science.gov (United States)

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-01-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the β clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25°C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25°C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42°C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25°C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25°C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway. PMID:18502852

  4. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    Science.gov (United States)

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  5. The Impact of Making Vaccines Thermostable in Niger’s Vaccine Supply Chain

    Science.gov (United States)

    Lee, Bruce Y.; Cakouros, Brigid E.; Assi, Tina-Marie; Connor, Diana L.; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R.; Pierre, Lionel; Brown, Shawn T.

    2012-01-01

    Objective Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Methods Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Findings Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1–2%. Conclusion Our study shows the potential benefits of making any of Niger’s EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. PMID:22789507

  6. The impact of making vaccines thermostable in Niger's vaccine supply chain.

    Science.gov (United States)

    Lee, Bruce Y; Cakouros, Brigid E; Assi, Tina-Marie; Connor, Diana L; Welling, Joel; Kone, Souleymane; Djibo, Ali; Wateska, Angela R; Pierre, Lionel; Brown, Shawn T

    2012-08-17

    Determine the effects on the vaccine cold chain of making different types of World Health Organization (WHO) Expanded Program on Immunizations (EPI) vaccines thermostable. Utilizing a detailed computational, discrete-event simulation model of the Niger vaccine supply chain, we simulated the impact of making different combinations of the six current EPI vaccines thermostable. Making any EPI vaccine thermostable relieved existing supply chain bottlenecks (especially at the lowest levels), increased vaccine availability of all EPI vaccines, and decreased cold storage and transport capacity utilization. By far, the most substantial impact came from making the pentavalent vaccine thermostable, increasing its own vaccine availability from 87% to 97% and the vaccine availabilities of all other remaining non-thermostable EPI vaccines to over 93%. By contrast, making each of the other vaccines thermostable had considerably less effect on the remaining vaccines, failing to increase the vaccine availabilities of other vaccines to more than 89%. Making tetanus toxoid vaccine along with the pentavalent thermostable further increased the vaccine availability of all EPI vaccines by at least 1-2%. Our study shows the potential benefits of making any of Niger's EPI vaccines thermostable and therefore supports further development of thermostable vaccines. Eliminating the need for refrigerators and freezers should not necessarily be the only benefit and goal of vaccine thermostability. Rather, making even a single vaccine (or some subset of the vaccines) thermostable could free up significant cold storage space for other vaccines, and thereby help alleviate supply chain bottlenecks that occur throughout the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  8. BAG3-dependent expression of Mcl-1 confers resistance of mutant KRAS colon cancer cells to the HSP90 inhibitor AUY922.

    Science.gov (United States)

    Wang, Chun Yan; Guo, Su Tang; Croft, Amanda; Yan, Xu Guang; Jin, Lei; Zhang, Xu Dong; Jiang, Chen Chen

    2018-02-01

    Past studies have shown that mutant KRAS colon cancer cells are susceptible to apoptosis induced by the HSP90 inhibitor AUY922. Nevertheless, intrinsic and acquired resistance remains an obstacle for the potential application of the inhibitor in the treatment of the disease. Here we report that Mcl-1 is important for survival of colon cancer cells in the presence of AUY922. Mcl-1 was upregulated in mutant KRAS colon cancer cells selected for resistance to AUY922-induced apoptosis. This was due to its increased stability mediated by Bcl-2-associated athanogene domain 3 (BAG3), which was also increased in resistant colon cancer cells by heat shock factor 1 (HSF1) as a result of chronic endoplasmic reticulum (ER) stress. Functional investigations demonstrated that inhibition of Mcl-1, BAG3, or HSF1 triggered apoptosis in resistant colon cancer cells, and rendered AUY922-naïve colon cancer cells more sensitive to the inhibitor. Together, these results identify that the HSF1-BAG3-Mcl-1 signal axis is critical for protection of mutant KRAS colon cancer cells from AUY922-induced apoptosis, with potential implications for targeting HSF1/BAG3/Mcl-1 to improve the efficacy of AUY922 in the treatment of colon cancer. © 2017 Wiley Periodicals, Inc.

  9. EFFECTS OF CHANGING THE INTERACTION BETWEEN SUBDOMAINS ON THE THERMOSTABILITY OF BACILLUS NEUTRAL PROTEASES

    NARCIS (Netherlands)

    EIJSINK, VGH; VRIEND, G; VANDERVINNE, B; HAZES, B; VANDENBURG, B; VENEMA, G

    1992-01-01

    Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to

  10. Construction of a highly thermostable 1,3-1,4-β-glucanase by combinational mutagenesis and its potential application in the brewing industry.

    Science.gov (United States)

    Niu, Chengtuo; Zhu, Linjiang; Hill, Annie; Alex Speers, R; Li, Qi

    2017-01-01

    To improve the thermostability and catalytic property of a mesophilic 1,3-1,4-β-glucanase by combinational mutagenesis and to test its effect in congress mashing. A mutant β-glucanase (rE-BglTO) constructed by combinational mutagenesis showed a 25 °C increase in optimal temperature (to 70 °C) a 19.5 °C rise in T 50 value and a 15.6 °C increase in melting temperature compared to wild-type enzyme. Its half-life values at 60 and 70 °C were 152 and 99 min, which were 370 and 800 % higher than those of wild-type enzyme. Besides, its specific activity and k cat value were 42,734 U mg -1 and 189 s -1 while its stability under acidic conditions was also improved. In flask fermentation, the catalytic activity of rE-BglTO reached 2381 U ml -1 , which was 63 % higher than that of wild-type enzyme. The addition of rE-BglTO in congress mashing decreased the filtration time and viscosity by 21.3 and 9.6 %, respectively. The mutant β-glucanase showed high catalytic activity and thermostability which indicated that rE-BglTO is a good candidate for application in the brewing industry.

  11. Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Yokota, Jun-Ichi; Shiro, Daisuke; Tanaka, Mizuki; Onozaki, Yasumichi; Mizutani, Osamu; Kakizono, Dararat; Ichinose, Sakurako; Shintani, Tomoko; Gomi, Katsuya; Shintani, Takahiro

    2017-03-01

    Filamentous fungi are often used as cell factories for recombinant protein production because of their ability to secrete large quantities of hydrolytic enzymes. However, even using strong transcriptional promoters, yields of nonfungal proteins are generally much lower than those of fungal proteins. Recent analyses revealed that expression of certain nonfungal secretory proteins induced the unfolded protein response (UPR), suggesting that they are recognized as proteins with folding defects in filamentous fungi. More recently, however, even highly expressed endogenous secretory proteins were found to evoke the UPR. These findings raise the question of whether the unfolded or misfolded state of proteins is selectively recognized by quality control mechanisms in filamentous fungi. In this study, a fungal secretory protein (1,2-α-D-mannosidase; MsdS) with a mutation that decreases its thermostability was expressed at different levels in Aspergillus oryzae. We found that, at moderate expression levels, wild-type MsdS was secreted to the medium, while the mutant was not. In the strain with a deletion for the hrdA gene, which is involved in the endoplasmic reticulum-associated degradation pathway, mutant MsdS had specifically increased levels in the intracellular fraction but was not secreted. When overexpressed, the mutant protein was secreted to the medium to a similar extent as the wild-type protein; however, the mutant underwent hyperglycosylation and induced the UPR. Deletion of α-amylase (the most abundant secretory protein in A. oryzae) alleviated the UPR induction by mutant MsdS overexpression. These findings suggest that misfolded MsdS and unfolded species of α-amylase might act synergistically for UPR induction.

  12. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53

    DEFF Research Database (Denmark)

    Zandi, Roza; Selivanova, Galina; Christensen, Camilla Laulund

    2011-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1(Met) (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor...... function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1(Met) to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations....

  13. Useful halophilic, thermostable and ionic liquids tolerant cellulases

    Science.gov (United States)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2016-06-28

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  14. Molecular Dynamics Approach in Designing Thermostable Aspergillus niger Xylanase

    Science.gov (United States)

    Malau, N. D.; Sianturi, M.

    2017-03-01

    Molecular dynamics methods we have applied as a tool in designing thermostable Aspergillus niger Xylanase, by examining Root Mean Square Deviation (RMSD) and The Stability of the Secondary Structure of enzymes structure at its optimum temperature and compare with its high temperature behavior. As RMSD represents structural fluctuation at a particular temperature, a better understanding of this factor will suggest approaches to bioengineer these enzymes to enhance their thermostability. In this work molecular dynamic simulations of Aspergillus niger xylanase (ANX) have been carried at 400K (optimum catalytic temperature) for 2.5 ns and 500K (ANX reported inactive temperature) for 2.5 ns. Analysis have shown that the Root Mean Square Deviation (RMSD) significant increase at higher temperatures compared at optimum temperature and some of the secondary structures of ANX that have been damaged at high temperature. Structural analysis revealed that the fluctuations of the α-helix and β-sheet regions are larger at higher temperatures compared to the fluctuations at optimum temperature.

  15. Thermostability promotes the cooperative function of split adenylate kinases.

    Science.gov (United States)

    Nguyen, Peter Q; Liu, Shirley; Thompson, Jeremy C; Silberg, Jonathan J

    2008-05-01

    Proteins can often be cleaved to create inactive polypeptides that associate into functional complexes through non-covalent interactions, but little is known about what influences the cooperative function of the ensuing protein fragments. Here, we examine whether protein thermostability affects protein fragment complementation by characterizing the function of split adenylate kinases from the mesophile Bacillus subtilis (AKBs) and the hyperthermophile Thermotoga neapolitana (AKTn). Complementation studies revealed that the split AKTn supported the growth of Escherichia coli with a temperature-sensitive AK, but not the fragmented AKBs. However, weak complementation occurred when the AKBs fragments were fused to polypeptides that strongly associate, and this was enhanced by a Q16L mutation that thermostabilizes the full-length protein. To examine how the split AK homologs differ in structure and function, their catalytic activity, zinc content, and circular dichroism spectra were characterized. The reconstituted AKTn had higher levels of zinc, greater secondary structure, and >10(3)-fold more activity than the AKBs pair, albeit 17-fold less active than full-length AKTn. These findings provide evidence that the design of protein fragments that cooperatively function can be improved by choosing proteins with the greatest thermostability for bisection, and they suggest that this arises because hyperthermophilic protein fragments exhibit greater residual structure compared to their mesophilic counterparts.

  16. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity.

    Science.gov (United States)

    Mendes, Juliano S; Santiago, André da S; Toledo, Marcelo A S; Rosselli-Murai, Luciana K; Favaro, Marianna T P; Santos, Clelton A; Horta, Maria Augusta C; Crucello, Aline; Beloti, Lilian L; Romero, Fabian; Tasic, Ljubica; de Souza, Alessandra A; de Souza, Anete P

    2015-01-01

    Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.

  17. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Juliano S Mendes

    Full Text Available Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC, a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c and nonpathogenic (XfJ1a12 strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.

  18. Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability.

    Science.gov (United States)

    Thomaeus, Ann; Naworyta, Agata; Mowbray, Sherry L; Widersten, Mikael

    2008-07-01

    A putative proton wire in potato soluble epoxide hydrolase 1, StEH1, was identified and investigated by means of site-directed mutagenesis, steady-state kinetic measurements, temperature inactivation studies, and X-ray crystallography. The chain of hydrogen bonds includes five water molecules coordinated through backbone carbonyl oxygens of Pro(186), Leu(266), His(269), and the His(153) imidazole. The hydroxyl of Tyr(149) is also an integrated component of the chain, which leads to the hydroxyl of Tyr(154). Available data suggest that Tyr(154) functions as a final proton donor to the anionic alkylenzyme intermediate formed during catalysis. To investigate the role of the putative proton wire, mutants Y149F, H153F, and Y149F/H153F were constructed and purified. The structure of the Y149F mutant was solved by molecular replacement and refined to 2.0 A resolution. Comparison with the structure of wild-type StEH1 revealed only subtle structural differences. The hydroxyl group lost as a result of the mutation was replaced by a water molecule, thus maintaining a functioning hydrogen bond network in the proton wire. All mutants showed decreased catalytic efficiencies with the R,R-enantiomer of trans-stilbene oxide, whereas with the S,S-enantiomer, k (cat)/K (M) was similar or slightly increased compared with the wild-type reactions. k (cat) for the Y149F mutant with either TSO enantiomer was increased; thus the lowered enzyme efficiencies were due to increases in K (M). Thermal inactivation studies revealed that the mutated enzymes were more sensitive to elevated temperatures than the wild-type enzyme. Hence, structural alterations affecting the hydrogen bond chain caused increases in k (cat) but lowered thermostability.

  19. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.

    Science.gov (United States)

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra; Miceli, Cristina

    2017-07-01

    The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii ( Ef Amy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, Ef Amy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active Ef Amy with improved thermostability and catalytic efficiency at low temperatures. We engineered two Ef Amy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of Ef Amy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the

  20. Directed divergent evolution of a thermostable D-tagatose epimerase towards improved activity for two hexose substrates.

    Science.gov (United States)

    Bosshart, Andreas; Hee, Chee Seng; Bechtold, Matthias; Schirmer, Tilman; Panke, Sven

    2015-03-02

    Functional promiscuity of enzymes can often be harnessed as the starting point for the directed evolution of novel biocatalysts. Here we describe the divergent morphing of an engineered thermostable variant (Var8) of a promiscuous D-tagatose epimerase (DTE) into two efficient catalysts for the C3 epimerization of D-fructose to D-psicose and of L-sorbose to L-tagatose. Iterative single-site randomization and screening of 48 residues in the first and second shells around the substrate-binding site of Var8 yielded the eight-site mutant IDF8 (ninefold improved kcat for the epimerization of D-fructose) and the six-site mutant ILS6 (14-fold improved epimerization of L-sorbose), compared to Var8. Structure analysis of IDF8 revealed a charged patch at the entrance of its active site; this presumably facilitates entry of the polar substrate. The improvement in catalytic activity of variant ILS6 is thought to relate to subtle changes in the hydration of the bound substrate. The structures can now be used to select additional sites for further directed evolution of the ketohexose epimerase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  2. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes

    KAUST Repository

    Sevcenco, Ana-Maria

    2015-03-13

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes 32P and 76As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water.

  3. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii.

    Science.gov (United States)

    Cheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Percival Zhang, Y-H

    2015-08-20

    Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin - the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 (o)C for 30 min. This enzyme was characterized and required Mg(2+) as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 (o)C in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.

  4. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus.

    Science.gov (United States)

    Ni, Zixin; Yang, Fan; Cao, Weijun; Zhang, Xiangle; Jin, Ye; Mao, Ruoqing; Du, Xiaoli; Li, Weiwei; Guo, Jianhong; Liu, Xiangtao; Zhu, Zixiang; Zheng, Haixue

    2016-06-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).

  5. Spectrum of induced floral mutants in Petunia

    International Nuclear Information System (INIS)

    Padmaja, V.; Sudhakar, P.

    1987-01-01

    A total of six floral mutants of garden Petunia isolated from the populations raised from the seed treatment with γ-rays, 2, 4-D and sodium azide are described. Five of the mutants viz. stellata, Campyloflora, Rubriflora mixed, Grandiflora and Albiflora mixed originated as segregants in M 2 generation while the chimeral floral phenotype was expressed in M 1 generation itself. Breeding behaviour of these horticulturally interesting altered floral phenotypes were studied in subsequent generations and appropriate conclusions were drawn regarding mode of inheritance of the mutant traits. 15 refs., 4 figures, 1 table. (author)

  6. Construction and immunogenicity of replication-competent adenovirus 5 host range mutant recombinants expressing HIV-1 gp160 of SF162 and TV1 strains.

    Science.gov (United States)

    Hidajat, Rachmat; Kuate, Seraphin; Venzon, David; Kalyanaraman, Vaniambadi; Kalisz, Irene; Treece, James; Lian, Ying; Barnett, Susan W; Robert-Guroff, Marjorie

    2010-05-21

    An HIV Env immunogen capable of eliciting broad immunity is critical for a successful vaccine. We constructed and characterized adenovirus 5 host range mutant (Ad5hr) recombinants encoding HIV(SF162) gp160 (subtype B) and HIV(TV1) gp160 (subtype C). Immunization of mice with one or both induced cellular immunity to subtype B and C peptides by ELISpot, and antibody responses with high binding titers to HIV Env of subtypes A, B, C, and E. Notably, Ad5hr-HIV(TV1) gp160 induced better cellular immunity than Ad5hr-HIV(SF162) gp160, either alone or following co-administration. Thus, the TV1 Env recombinant alone may be sufficient for eliciting immune responses against both subtype B and C envelopes. Further studies of Ad5hr-HIV(TV1) gp160 in rhesus macaques will evaluate the suitability of this insert for a future phase I clinical trial using a replication-competent Ad4 vector. Published by Elsevier Ltd.

  7. Microarray Expression Analyses of Arabidopsis Guard Cells and Isolation of a Recessive Abscisic Acid Hypersensitive Protein Phosphatase 2C MutantW⃞

    Science.gov (United States)

    Leonhardt, Nathalie; Kwak, June M.; Robert, Nadia; Waner, David; Leonhardt, Guillaume; Schroeder, Julian I.

    2004-01-01

    Oligomer-based DNA Affymetrix GeneChips representing about one-third of Arabidopsis (Arabidopsis thaliana) genes were used to profile global gene expression in a single cell type, guard cells, identifying 1309 guard cell–expressed genes. Highly pure preparations of guard cells and mesophyll cells were isolated in the presence of transcription inhibitors that prevented induction of stress-inducible genes during cell isolation procedures. Guard cell expression profiles were compared with those of mesophyll cells, resulting in identification of 64 transcripts expressed preferentially in guard cells. Many large gene families and gene duplications are known to exist in the Arabidopsis genome, giving rise to redundancies that greatly hamper conventional genetic and functional genomic analyses. The presented genomic scale analysis identifies redundant expression of specific isoforms belonging to large gene families at the single cell level, which provides a powerful tool for functional genomic characterization of the many signaling pathways that function in guard cells. Reverse transcription–PCR of 29 genes confirmed the reliability of GeneChip results. Statistical analyses of promoter regions of abscisic acid (ABA)–regulated genes reveal an overrepresented ABA responsive motif, which is the known ABA response element. Interestingly, expression profiling reveals ABA modulation of many known guard cell ABA signaling components at the transcript level. We further identified a highly ABA-induced protein phosphatase 2C transcript, AtP2C-HA, in guard cells. A T-DNA disruption mutation in AtP2C-HA confers ABA-hypersensitive regulation of stomatal closing and seed germination. The presented data provide a basis for cell type–specific genomic scale analyses of gene function. PMID:14973164

  8. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N

    2015-04-21

    Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

  9. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes

    KAUST Repository

    Sevcenco, Ana-Maria; Paravidino, Monica; Vrouwenvelder, Johannes S.; Wolterbeek, Hubert Th.; van Loosdrecht, Mark C.M.; Hagen, Wilfred R.

    2015-01-01

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes 32P and 76As present as oxoanions were used to measure the extent and the rate of their absorption

  10. Promising rice mutants

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1988-01-01

    Two induced mutants namely, Mut NS 1 (tall) and Mut NS 5 (semi-dwarf) derived from rice variety Nizersail were evaluated for various agronomic characters at four locations in Bangladesh. Both the mutants matured about three weeks earlier and yielded significantly higher than the parent variety Nizersail. (author). 3 tabs., 9 refs

  11. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    Science.gov (United States)

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular

  12. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)*

    Science.gov (United States)

    Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  13. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  14. Exogenous cellulases of thermophilic micromycetes. Pt. 2. Thermostability of enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kvesitadze, G; Gogilashvili, L; Svanidze, R; Buachidze, T; Chirgadze, L; Nizharadze, D

    1986-01-01

    The ability of a large number of higher fungi to form extracellular cellulases is investigated. Some representatives of these fungi grow at 40-50/sup 0/C, and form extracellular cellulases exceeding cellulases of mesophilic fungi in thermostability. It is shown that cellulases of higher thermophilic fungi differ by their thermostability. The temperature optimum of cellulase action of higher fungi occurs within 60-62/sup 0/C.

  15. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    Directory of Open Access Journals (Sweden)

    Anuradha Balan

    2012-01-01

    Full Text Available Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v; yeast extract 1.25% (w/v; NaCl 0.45% (w/v olive oil 0.1% (v/v with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16 and olive oil with optimal activity (100% compared to other substrates.

  16. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Schuster, Mikkel B; Bereshchenko, Oksana

    2008-01-01

    Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p...... penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML.......42) while retaining the 30kDa isoform (p30)-we modified the mouse Cebpa locus to express only p30. p30 supported the formation of granulocyte-macrophage progenitors. However, p42 was required for control of myeloid progenitor proliferation, and p42-deficient mice developed AML with complete...

  17. Complementation Studies of Bacteriophage λ O Amber Mutants by Allelic Forms of O Expressed from Plasmid, and O-P Interaction Phenotypes.

    Science.gov (United States)

    Hayes, Sidney; Rajamanickam, Karthic; Hayes, Connie

    2018-04-05

    λ genes O and P are required for replication initiation from the bacteriophage λ origin site, ori λ, located within gene O . Questions have persisted for years about whether O-defects can indeed be complemented in trans . We show the effect of original null mutations in O and the influence of four origin mutations (three are in-frame deletions and one is a point mutation) on complementation. This is the first demonstration that O proteins with internal deletions can complement for O activity, and that expression of the N-terminal portion of gene P can completely prevent O complementation. We show that O-P co-expression can limit the lethal effect of P on cell growth. We explore the influence of the contiguous small RNA OOP on O complementation and P-lethality.

  18. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

    Science.gov (United States)

    Liang, Pengjuan; Li, Shangyong; Wang, Kun; Wang, Fang; Xing, Mengxin; Hao, Jianhua; Sun, Mi

    2018-03-01

    Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100°C for 1-60 min followed by incubation at 0°C. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.

  19. A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers.

    Science.gov (United States)

    Radaelli, Antonia; De Giuli Morghen, Carlo; Zanotto, Carlo; Pacchioni, Sole; Bissa, Massimiliano; Franconi, Rosella; Massa, Silvia; Paolini, Francesca; Muller, Antonio; Venuti, Aldo

    2012-12-01

    Development of effective therapeutic vaccines against human papilloma virus (HPV) infections remains a priority, considering the high number of new cases of cervical cancer each year by high-risk HPVs, in particular by HPV-16. Vaccines expressing the E7 oncoprotein, which is detectable in all HPV-positive pre-cancerous and cancer cells, might clear already established tumors and support the treatment of HPV-related lesions. In this study, DNA or fowlpox virus recombinants expressing the harmless variant E7GGG of the HPV-16 E7 oncoprotein (DNA(E7GGG) and FP(E7GGG)) were generated. Two immunization regimens were tested in a pre-clinical mouse model by homologous (FP/FP) or heterologous (DNA/FP) prime-boost protocols to evaluate the immune response and therapeutic efficacy of the proposed HPV-16 vaccine. Low levels of anti-E7-specific antibodies were elicited after immunization, and in vivo experiments resulted in a higher number of tumor-free mice after the heterologous immunization. These results establish a preliminary indication for therapy of HPV-related tumors by the combined use of DNA and avipox recombinants, which might represent safer immunogens than vaccinia-based vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    Directory of Open Access Journals (Sweden)

    Katherine Maringer

    2014-08-01

    Full Text Available Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA, and dominant negative (DN forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  1. Widely Used Herpes Simplex Virus 1 ICP0 Deletion Mutant Strain dl1403 and Its Derivative Viruses Do Not Express Glycoprotein C Due to a Secondary Mutation in the gC Gene.

    Directory of Open Access Journals (Sweden)

    Cristina W Cunha

    Full Text Available Herpes simplex virus 1 (HSV-1 ICP0 is a multi-functional phosphoprotein expressed with immediate early kinetics. An ICP0 deletion mutant, HSV-1 dl1403, has been widely used to study the roles of ICP0 in the HSV-1 replication cycle including gene expression, latency, entry and assembly. We show that HSV-1 dl1403 virions lack detectable levels of envelope protein gC, and that gC is not synthesized in infected cells. Sequencing of the gC gene from HSV-1 dl1403 revealed a single amino acid deletion that results in a frameshift mutation. The HSV-1 dl1403 gC gene is predicted to encode a polypeptide consisting of the original 62 N-terminal amino acids of the gC protein followed by 112 irrelevant, non-gC residues. The mutation was also present in a rescuant virus and in two dl1403-derived viruses, D8 and FXE, but absent from the parental 17+, suggesting that the mutation was introduced during the construction of the dl1403 virus, and not as a result of passage in culture.

  2. Pharmacological and functional characterisation of the wild-type and site-directed mutants of the human H1 histamine receptor stably expressed in CHO cells.

    Science.gov (United States)

    Moguilevsky, N; Varsalona, F; Guillaume, J P; Noyer, M; Gillard, M; Daliers, J; Henichart, J P; Bollen, A

    1995-01-01

    A cDNA clone for the human histamine H1 receptor was isolated from a lung cDNA library and stably expressed in CHO cells. The recombinant receptor protein present in the cell membranes, displayed the functional and binding characteristics of histamine H1 receptors. Mutation of Ser155 to Ala in the fourth transmembrane domain did not significantly change the affinity of the receptor for histamine and H1 antagonists. However, mutation of the fifth transmembrane Asn198 to Ala resulted in a dramatic decrease of the affinity for histamine binding, and for the histamine-induced polyphosphoinositides breakdown, whereas the affinity towards antagonists was not significantly modified. In addition, mutation of another fifth transmembrane amino acid, Thr194 to Ala also diminished, but to a lesser extent, the affinity for histamine. These data led us to propose a molecular model for histamine interaction with the human H1 receptor. In this model, the amide moiety of Asn198 and the hydroxyl group of Thr194 are involved in hydrogen bonding with the nitrogen atoms of the imidazole ring of histamine. Moreover, mutation of Thr194 to Ala demonstrated that this residue is responsible for the discrimination between enantiomers of cetirizine.

  3. Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition.

    Science.gov (United States)

    Uchida, Hiroaki; Shah, Waris A; Ozuer, Ali; Frampton, Arthur R; Goins, William F; Grandi, Paola; Cohen, Justus B; Glorioso, Joseph C

    2009-04-01

    Both initial infection and cell-to-cell spread by herpes simplex virus type 1 (HSV-1) require the interaction of the viral glycoprotein D (gD) with an entry receptor on the cell surface. The two major HSV entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, mediate infection independently but are coexpressed on a variety of cells. To determine if both receptors are active in these instances, we have established mutant viruses that are selectively impaired for recognition of one or the other receptor. In plaque assays, these viruses showed approximately 1,000-fold selectivity for the matched receptor over the mismatched receptor. Separate assays showed that each virus is impaired for both infection and spread through the mismatched receptor. We tested several human tumor cell lines for susceptibility to these viruses and observed that HT29 colon carcinoma cells are susceptible to infection by nectin-1-restricted virus but are highly resistant to HVEM-restricted virus infection, despite readily detectable HVEM expression on the cell surface. HVEM cDNA isolated from HT29 cells rendered HSV-resistant cells permissive for infection by the HVEM-restricted virus, suggesting that HT29 cells lack a cofactor for HVEM-mediated infection or express an HVEM-specific inhibitory factor. Passaging of HVEM-restricted virus on nectin-1-expressing cells yielded a set of gD missense mutations that each restored functional recognition of nectin-1. These mutations identify residues that likely play a role in shaping the nectin-1 binding site of gD. Our findings illustrate the utility of these receptor-restricted viruses in studying the early events in HSV infection.

  4. Function, expression and localization of annexin A7 in platelets and red blood cells: Insights derived from an annexin A7 mutant mouse

    Directory of Open Access Journals (Sweden)

    Zamparelli Carlotta

    2003-08-01

    Full Text Available Abstract Background Annexin A7 is a Ca2+- and phospholipid-binding protein expressed as a 47 and 51 kDa isoform, which is thought to be involved in membrane fusion processes. Recently the 47 kDa isoform has been identified in erythrocytes where it was proposed to be a key component in the process of the Ca2+-dependent vesicle release, a process with which red blood cells might protect themselves against an attack by for example complement components. Results The role of annexin A7 in red blood cells was addressed in erythrocytes from anxA7-/- mice. Interestingly, the Ca2+-mediated vesiculation process was not impaired. Also, the membrane organization appeared not to be disturbed as assessed using gradient fractionation studies. Instead, lack of annexin A7 led to an altered cell shape and increased osmotic resistance of red blood cells. Annexin A7 was also identified in platelets. In these cells its loss led to a slightly slower aggregation velocity which seems to be compensated by an increased number of platelets. The results appear to rule out an important role of annexin A7 in membrane fusion processes occurring in red blood cells. Instead the protein might be involved in the organization of the membrane cytoskeleton. Red blood cells may represent an appropriate model to study the role of annexin A7 in cellular processes. Conclusion We have demonstrated the presence of both annexin A7 isoforms in red blood cells and the presence of the small isoform in platelets. In both cell types the loss of annexin A7 impairs cellular functions. The defects observed are however not compatible with a crucial role for annexin A7 in membrane fusion processes in these cell types.

  5. [Architecture of the X chromosome, expression of LIM kinase 1, and recombination in the agnostic mutants of Drosophila: a model of human Williams syndrome].

    Science.gov (United States)

    Savvateeva-Popova, E V; Peresleni, A I; Sharagina, L M; Medvedeva, A V; Korochkina, S E; Grigor'eva, I V; Diuzhikova, N A; Popov, A V; Baricheva, E M; Karagodin, D; Heisenberg, M

    2004-06-01

    As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.

  6. Cloning, purification and characterization of a thermostable β-galactosidase from Bacillus licheniformis strain KG9.

    Science.gov (United States)

    Matpan Bekler, F; Stougaard, P; Güven, K; Gül Güven, R; Acer, Ö

    2015-06-28

    A thermo— and alkalitolerant Bacillus licheniformis KG9 isolated from Taşlıdere hot water spring in Batman/Turkey was found to produce a thermostable β—galactosidase. Phylogenetic analysis showed that the 16S rRNA gene from B. licheniformis strain KG9 was 99.9% identical to that of the genome sequenced B. licheniformis strain DSM 13. Analysis of the B. licheniformis DSM 13 genomic sequence revealed four putative β—galactosidase genes. PCR primers based on the genome sequence of strain DSM 13 were used to isolate the corresponding β—galactosidase genes from B. licheniformis strain KG9. The calculated molecular weights of the β—galactosidases I, II, III, and IV using sequencing data were 30, 79, 74, and 79 kDa, respectively. The genes were inserted into an expression vector and recombinant β—galactosidase was produced in Escherichia coli. Of the four β—galactosidase genes identified in strain KG9, three of them were expressed as active, intracellular enzymes in E. coli. One of the recombinant enzymes, β—galactosidase III, was purified and characterized. Optimal temperature and pH was determined to be at 60 ºC and pH 6.0, respectively. Km was determined to be 1.3 mM and 13.3 mM with oNPG (ortho—nitrophenyl—β—D—galactopyranoside) and lactose as substrates, respectively, and Vmax was measured to 1.96 μmol/min and 1.55 μmol/min with oNPG and lactose, respectively.

  7. Predictive value of mutant p53 expression index obtained from nonenhanced computed tomography measurements for assessing invasiveness of ground-glass opacity nodules

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-03-01

    Full Text Available Wei Wang,1 Jian Li,2 Ransheng Liu,1 Aixu Zhang,1 Zhiyong Yuan1 1Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China; 2Department of Radiology, Tianjin Hospital, Tianjin, People’s Republic of China Purpose: To predict p53 expression index (p53-EI based on measurements from computed tomography (CT for preoperatively assessing pathologies of nodular ground-glass opacities (nGGOs. Methods: Information of 176 cases with nGGOs on high-resolution CT that were pathologically confirmed adenocarcinoma was collected. Diameters, total volumes (TVs, maximum (MAX, average (AVG, and standard deviation (STD of CT attenuations within nGGOs were measured. p53-EI was evaluated through immunohistochemistry with Image-Pro Plus 6.0. A multiple linear stepwise regression model was established to calculate p53-EI prediction from CT measurements. Receiver-operating characteristic curve analysis was performed to compare the diagnostic performance of variables in differentiating preinvasive adenocarcinoma (PIA, minimally invasive adenocarcinoma (MIA, and invasive adenocarcinoma (IAC. Results: Diameters, TVs, MAX, AVG, and STD showed significant differences among PIAs, MIAs, and IACs (all P-values <0.001, with only MAX being incapable to differentiate MIAs from IACs (P=0.106. The mean p53-EIs of PIAs, MIAs, and IACs were 3.4±2.0, 7.2±1.9, and 9.8±2.7, with significant intergroup differences (all P-values <0.001. An equation was established by multiple linear regression as: p53-EI prediction =0.001* TVs +0.012* AVG +0.022* STD +9.345, through which p53-EI predictions were calculated to be 4.4%±1.0%, 6.8%±1.3%, and 8.5%±1.4% for PIAs, MIAs, and IACs (Kruskal–Wallis test P<0.001; Tamhane’s T2 test: PIA vs MIA P<0.001, MIA vs IAC P<0.001, respectively. Although not significant, p53-EI prediction

  8. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  9. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus

    Science.gov (United States)

    2013-01-01

    Background Lactose intolerance is a common health concern causing gastrointestinal symptoms and avoidance of dairy products by afflicted individuals. Since milk is a primary source of calcium and vitamin D, lactose intolerant individuals often obtain insufficient amounts of these nutrients which may lead to adverse health outcomes. Production of lactose-free milk can provide a solution to this problem, although it requires use of lactase from microbial sources and increases potential for contamination. Use of thermostable lactase enzymes can overcome this issue by functioning under pasteurization conditions. Results A thermostable β-glucosidase gene from Pyrococcus furiosus was cloned in frame with the Saccharomyces cerecisiae a-factor secretory signal and expressed in Pichia pastoris strain X-33. The recombinant enzyme was purified by a one-step method of weak anion exchange chromatography. The optimum temperature and pH for this β-glucosidase activity was 100°C and pH 6.0, respectively. The enzyme activity was not significantly inhibited by Ca2+. We tested the additive amount, hydrolysis time, and the influence of glucose on the enzyme during pasteurization and found that the enzyme possessed a high level of lactose hydrolysis in milk that was not obviously influenced by glucose. Conclusions The thermostablity of this recombinant β-glucosidase, combined with its neutral pH activity and favorable temperature activity optima, suggest that this enzyme is an ideal candidate for the hydrolysis of lactose in milk, and it would be suitable for application in low-lactose milk production during pasteurization. PMID:24053641

  10. Structurally stabilized organosilane-templated thermostable mesoporous titania.

    Science.gov (United States)

    Amoli, Vipin; Tiwari, Rashmi; Dutta, Arghya; Bhaumik, Asim; Sinha, Anil Kumar

    2014-01-13

    Structurally thermostable mesoporous anatase TiO2 (m-TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores-directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X-ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high-temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye-sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m-TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25-m-TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56%) in the P25-m-TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60%) of the device, compared to DSSCs with a monolayer of P25 as the electrode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A comparative molecular dynamics study on thermostability of human and chicken prion proteins

    International Nuclear Information System (INIS)

    Ji, Hong-Fang; Zhang, Hong-Yu

    2007-01-01

    To compare the thermostabilities of human and chicken normal cellular prion proteins (HuPrP C and CkPrP C ), molecular dynamics (MD) simulations were performed for both proteins at an ensemble level (10 parallel simulations at 400 K and 5 parallel simulations at 300 K as a control). It is found that the thermostability of HuPrP C is comparable with that of CkPrP C , which implicates that the non-occurrence of prion diseases in non-mammals cannot be completely attributed to the thermodynamic properties of non-mammalian PrP C

  12. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop1[OPEN

    Science.gov (United States)

    Shivhare, Devendra

    2017-01-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca. Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. PMID:28546437

  13. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  14. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis

    Science.gov (United States)

    Cellobiose 2-epimerase from the thermophile Caldicellulosiruptor saccharolyticus (CsCE) catalyzes the isomerization of lactose into lactulose, a non-digestible disaccharide widely used in food and pharmaceutical industries. Semi-rational approaches were applied to enhance the thermostability of CsCE...

  15. CHARACTERIZATION OF A NEW BACILLUS-STEAROTHERMOPHILUS ISOLATE - A HIGHLY THERMOSTABLE ALPHA-AMYLASE-PRODUCING STRAIN

    NARCIS (Netherlands)

    WIND, RD; BUITELAAR, RM; EGGINK, G; HUIZING, HJ; DIJKHUIZEN, L

    A novel strain of Bacillus stearothermophilus was isolated from samples of a potato-processing industry. Compared to known alpha-amylases from other B. stearothermophilus strains, the isolate was found to produce a highly thermostable alpha-amylase. The half-time of inactivation of this

  16. Not so monofunctional-a case of thermostable Thermobifida fusca catalase with peroxidase activity

    NARCIS (Netherlands)

    Lončar, Nikola; Fraaije, Marco W

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and

  17. Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B

    NARCIS (Netherlands)

    Winter, Remko T.; Heuts, Dominic P. H. M.; Rijpkema, Egon M. A.; van Bloois, Edwin; Wijma, Hein J.; Fraaije, Marco W.

    We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene

  18. Evaluating the value proposition for improving vaccine thermostability to increase vaccine impact in low and middle-income countries.

    Science.gov (United States)

    Karp, Christopher L; Lans, Deborah; Esparza, José; Edson, Eleanore B; Owen, Katey E; Wilson, Christopher B; Heaton, Penny M; Levine, Orin S; Rao, Raja

    2015-07-09

    The need to keep vaccines cold in the face of high ambient temperatures and unreliable access to electricity is a challenge that limits vaccine coverage in low and middle-income countries (LMICs). Greater vaccine thermostability is generally touted as the obvious solution. Despite conventional wisdom, comprehensive analysis of the value proposition for increasing vaccine thermostability has been lacking. Further, while significant investments have been made in increasing vaccine thermostability in recent years, no vaccine products have been commercialized as a result. We analyzed the value proposition for increasing vaccine thermostability, grounding the analysis in specific vaccine use cases (e.g., use in routine immunization [RI] programs, or in campaigns) and in the broader context of cold chain technology and country level supply chain system design. The results were often surprising. For example, cold chain costs actually represent a relatively small fraction of total vaccine delivery system costs. Further, there are critical, vaccine use case-specific temporal thresholds that need to be overcome for significant benefits to be reaped from increasing vaccine thermostability. We present a number of recommendations deriving from this analysis that suggest a rational path toward unlocking the value (maximizing coverage, minimizing total system costs) of increased vaccine thermostability, including: (1) the full range of thermostability of existing vaccines should be defined and included in their labels; (2) for new vaccines, thermostability goals should be addressed up-front at the level of the target product profile; (3) improving cold chain infrastructure and supply chain system design is likely to have the largest impact on total system costs and coverage in the short term-and will influence the degree of thermostability required in the future; (4) in the long term, there remains value in monitoring the emergence of disruptive technologies that could remove the

  19. Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Aditya eBhalla

    2015-06-01

    Full Text Available AbstractEfficient enzymatic hydrolysis of lignocellulose to fermentable sugars requires a complete repertoire of biomass deconstruction enzymes. Hemicellulases play an important role in hydrolyzing hemicellulose component of lignocellulose to xylo-oligosaccharides and xylose. Thermostable xylanases have been a focus of attention as industrially important enzymes due to their long shelf life at high temperatures. Geobacillus sp. strain WSUCF1 produced thermostable xylanase activity (crude xylanase cocktail when grown on xylan or various inexpensive untreated and pretreated lignocellulosic biomasses such as prairie cord grass and corn stover. The optimum pH and temperature for the crude xylanase cocktail were 6.5 and 70ºC, respectively. The WSUCF1 crude xylanase was found to be highly thermostable with half-lives of 18 and 12 days at 60 and 70ºC, respectively. At 70ºC, rates of xylan hydrolysis were also found to be better with the WSUCF1 secretome than those with commercial enzymes, i.e., for WSUCF1 crude xylanase, CellicHTec2, and AccelleraseXY, the percent xylan conversions were 68.9, 49.4, and 28.92, respectively. To the best of our knowledge, WSUCF1 crude xylanase cocktail is among the most thermostable xylanases produced by thermophilic Geobacillus spp. and other thermophilic microbes (optimum growth temperature ≤70ºC. High thermostability, activity over wide range of temperatures, and better xylan hydrolysis than commercial enzymes make WSUCF1 crude xylanase suitable for thermophilic lignocellulose bioconversion processes.

  20. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  1. Bacterio-opsin mutants of Halobacterium halobium

    Science.gov (United States)

    Betlach, Mary; Pfeifer, Felicitas; Friedman, James; Boyer, Herbert W.

    1983-01-01

    The bacterio-opsin (bop) gene of Halobacterium halobium R1 has been cloned with about 40 kilobases of flanking genomic sequence. The 40-kilobase segment is derived from the (G+C)-rich fraction of the chromosome and is not homologous to the major (pHH1) or minor endogenous covalently closed circular DNA species of H. halobium. A 5.1-kilobase Pst I fragment containing the bop gene was subcloned in pBR322 and a partial restriction map was determined. Defined restriction fragments of this clone were used as probes to analyze the defects associated with the bop gene in 12 bacterio-opsin mutants. Eleven out of 12 of the mutants examined had inserts ranging from 350 to 3,000 base pairs either in the bop gene or up to 1,400 base pairs upstream. The positions of the inserts were localized to four regions in the 5.1-kilobase genomic fragment: within the gene (one mutant), in a region that overlaps the 5′ end of the gene (seven mutants), and in two different upstream regions (three mutants). Two revertants of the mutant with the most distal insert had an additional insert in the same region. The polar effects of these inserts are discussed in terms of inactivation of a regulatory gene or disruption of part of a coordinately expressed operon. Given the defined nature of the bop mRNA—i.e., it has a 5′ leader sequence of three ribonucleotides—these observations indicate that the bop mRNA might be processed from a large mRNA transcript. Images PMID:16593291

  2. Production and Characterization of α-Galactosidase by a Multiple Mutant of Aspergillus niger in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Muhammad Siddique Awan

    2009-01-01

    Full Text Available α-Galactosidase is applied in the sugar industry to enhance sugar recovery from sugar beet syrup and to improve nutritional value of the soymilk. In the present investigation, the influence of process variables on the production of this important enzyme has been explored in a newly isolated multiple mutant strain of Aspergillus niger in solid-state fermentation (SSF. Defined fermentation parameters include substrate type (pure lactose and by-products of rice and flour mills as prime substrates, nitrogen source, incubation time, initial pH of the medium and incubation temperature. Extracellular α-galactosidase reached the value of 135.4 IU/g of dry substrate (IU/g after 96 h of fermentation. Supplementation with 2 g of glucose and 3 g of corn steep liquor significantly increased the enzyme production, and maximum value of product yield (318 IU/g by the mutant strain was significantly higher than that reported by the wild type (this work, or other A. niger mutants, recombinants and yeasts reported in literature as producers of elevated levels of α-galactosidase. Among three α-galactosidases, one possessing high subunit molecular mass proteins (99 and 100 kDa has been characterized in both wild and mutant organisms. Thermal properties of the purified enzymes indicate that the mutation decreased the values of activation energy for the formation of enzyme-substrate (ES complex, enthalpy, Gibbs free energy demand for substrate binding, and transition state stabilization. A thermodynamic study of irreversible inactivation of enzymes suggests that the mutant–derived enzyme is more thermostable than the native enzyme, which is attributable to amino acids involved in active catalysis. Because of these properties, the mutant organism is a novel organism and may be exploited for bulk production of thermostable α-galactosidase for the above industrial and nutritional applications.

  3. Identification of a novel ga-related bush mutant in pumpkin (cucurbita moschata duchesne)

    International Nuclear Information System (INIS)

    Wu, T.; Cao, J.

    2015-01-01

    Pumpkin (Cucurbita moschata Duchesne) bush mutant plants were characterized by short stems. The sensitivity of pumpkin bush mutant plants to exogenous hormones was identified in this study. Results revealed that internode elongation of bush mutant plants could respond to gibberellins (GA4+7 and GA3), but not to indole acetic acid (IAA) and brassinosteroids (BR); by contrast, the mutant phenotype of bush mutant plants could not be fully rescued by GA4+7 and GA3. The internode of bush mutant plants yielded a lower KS expression level than that of vine plants. Therefore, pumpkin bush mutant plants were designated as GA-related mutant plants eliciting a partial response to GAs; the action of IAA and BR might not be involved in the internode growth of pumpkin bush mutant plants, specifically Cucurbita moschata Duch. (author)

  4. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  5. Construindo Marcas Mutantes

    Directory of Open Access Journals (Sweden)

    Elizete De Azevedo Kreutz

    2012-09-01

    Full Text Available O presente artigo é o resultado de estudos realizados desde 2000 e busca instrumentalizar os proñssionals para a construção de Marcas Mutantes, que é   uma tendência contemporânea nas estratégias comunicacionais e de branding. Embora esta estratégia ainda não esteja consolidada, observamos que a mesma tem obtido um crescimento constante e tem sido adotadas pelas mais diferentes categorias de marcas e não apenas por aquelas direcionadas aos jovens, ao esporte, ao entretenimento, como era no principia. Com base na Hermenêutica de Profundidade de Thompson (1995, alicerçada nas pesquisas bibliográficas, de intemet, entrevistas e análise semiótica, desenhamos um método de construção de Marcas Mutantes dividido em sete fases. Como resultado, esperamos que este estudo possa auxiliar na compreensão dos processos envolvidos, ao mesmo tempo que provoque a discussão sobreo mesmo e, por consequência, o seu aprimoramento.

  6. Molecular characterization of a novel thermostable laccase PPLCC2 from the brown rot fungus Postia placenta MAD-698-R

    Directory of Open Access Journals (Sweden)

    Hongde An

    2015-11-01

    Conclusions: This is the first identified thermo activated and thermostable laccase in brown rot fungi. This investigation will contribute to understanding the roles played by laccases in brown rot fungi.

  7. Enhancement of the thermostability of Hydrogenobacter thermophilus cytochrome c(552) through introduction of an extra methylene group into its hydrophobic protein interior.

    Science.gov (United States)

    Tai, Hulin; Irie, Kiyofumi; Mikami, Shin-ichi; Yamamoto, Yasuhiko

    2011-04-19

    Careful scrutiny of the protein interior of Hydrogenobacter thermophilus cytochrome c(552) (HT) on the basis of its X-ray structure [Travaglini-Allocatelli, C., Gianni, S., Dubey, V. K., Borgia, A., Di Matteo, A., Bonivento, D., Cutruzzola, F., Bren, K. L., and Brunori, M. (2005) J. Biol. Chem. 280, 25729-25734] indicated that a void space, which is large enough to accommodate a methyl group, exists in the hydrophobic protein interior near the heme. We tried to reduce the void space through the replacement of a Val by Ile or Leu (Val/Ile or Val/Leu mutation), and then the structural and functional consequences of these two mutations were characterized in order to elucidate the relationship between the nature of the packing of hydrophobic residues and the functional properties of the protein. The study demonstrated striking differences in the structural and functional consequences between the two mutations. The Val/Ile mutation was found to cause further enhancement of the thermostability of the oxidized HT, as reflected in the increase of the denaturation temperature (T(m)) value by ∼ 3 deg, whereas the thermostability of the reduced form was essentially unaffected. As a result, the redox potential (E(m)) of the Val/Ile mutant exhibited a negative shift of ∼ 50 mV relative to that of the wild-type protein in an enthalpic manner, this being consistent with our previous finding that a protein with higher stability in its oxidized form exhibits a lower E(m) value [Terui, N., Tachiiri, N., Matsuo, H., Hasegawa, J., Uchiyama, S., Kobayashi, Y., Igarashi, Y., Sambongi, Y., and Yamamoto, Y. (2003) J. Am. Chem. Soc. 125, 13650-13651]. In contrast, the Val/Leu mutation led to a decrease in thermostability of both the redox forms of the protein, as reflected in the decreases of the T(m) values of the oxidized and reduced proteins by ∼ 3 and ∼ 5 deg, respectively, and the E(m) value of the Val/Leu mutant happened to be similar to that of the Val/Ile one. The E

  8. Screening of strains with the high activity and thermostability nattokinase by {sup 60}Co γ-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shuying, Li; Ying, Nie; Huan, Du; Xuanming, Tang [Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing (China); Zhonglin, Zhao [College of Sciences, Henan Agricultural University, Zhengzhou (China); Xin, Ma [Agricultural Information Institute, Chinese Academic of Agricultural Sciences, Beijing (China); Yan, Li [School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou (China)

    2013-06-15

    In this study, Bacillus natto was irradiated by {sup 60}Co γ-ray, and activity was determined by Casein plate method in order to get high activity and thermostability strains. 60 strains with high activity were obtained through irradiation by 800 Gy {sup 60}Co γ-ray. In this dose, the positive mutation rate was 45%. Then 60 strains was treated by different tempreture and 11 strains showed thermostability at 65℃. (authors)

  9. Screening of strains with the high activity and thermostability nattokinase by "6"0Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Li Shuying; Nie Ying; Du Huan; Tang Xuanming; Zhao Zhonglin; Ma Xin; Li Yan

    2013-01-01

    In this study, Bacillus natto was irradiated by "6"0Co γ-ray, and activity was determined by Casein plate method in order to get high activity and thermostability strains. 60 strains with high activity were obtained through irradiation by 800 Gy "6"0Co γ-ray. In this dose, the positive mutation rate was 45%. Then 60 strains was treated by different tempreture and 11 strains showed thermostability at 65℃. (authors)

  10. Directed evolution of a thermostable l-aminoacylase biocatalyst

    DEFF Research Database (Denmark)

    Parker, Brenda M.; Taylor, Ian N.; Woodley, John

    2011-01-01

    Enzymes from extreme environments possess highly desirable traits of activity and stability for application under process conditions. One such example is l-aminoacylase (E.C. 3.5.1.14) from Thermococcus litoralis (TliACY), which catalyzes the enantioselective amide hydrolysis of N-protected l......-amino acids, useful for resolving racemic mixtures in the preparation of chiral intermediates. Variants of this enzyme with improved activity and altered substrate preference are highly desirable. We have created a structural homology model of the enzyme and applied various two different directed evolution....... The substrate preference of wild type decreases with increasingly branched and sterically hindered substrates. However, the mutant S100T/M106K disrupted this simple trend by selectively improving the substrate preference for N-benzoyl valine, with a >30-fold shift in the ratio of kcat values for N...

  11. Isozyme differences in barley mutants

    Energy Technology Data Exchange (ETDEWEB)

    AI-Jibouri, A A.M.; Dham, K M [Department of Botany, Nuclear Research Centre, Baghdad (Iraq)

    1990-01-01

    Full text: Thirty mutants (M{sub 11}) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  12. Isozyme differences in barley mutants

    International Nuclear Information System (INIS)

    AI-Jibouri, A.A.M.; Dham, K.M.

    1990-01-01

    Full text: Thirty mutants (M 11 ) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  13. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  14. Methods of producing protoporphyrin IX and bacterial mutants therefor

    Science.gov (United States)

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  15. Thermostability of bovine submaxillary mucin (BSM) in bulk solution and at a sliding interface

    DEFF Research Database (Denmark)

    Madsen, Jan Busk; Pakkanen, Kirsi I.; Lee, Seunghwan

    2014-01-01

    Thermostability of bovine submaxillary mucin (BSM) was studied in terms of its structure, hydrodynamic size, surface adsorption, and lubricating properties in the temperature range of 5-85°C. The overall random coil structure of BSM showed a gradual loosening with increasing temperature as charac......Thermostability of bovine submaxillary mucin (BSM) was studied in terms of its structure, hydrodynamic size, surface adsorption, and lubricating properties in the temperature range of 5-85°C. The overall random coil structure of BSM showed a gradual loosening with increasing temperature...... as characterized by circular dichroism (CD) spectroscopy, but this change was fully reversible upon lowering temperature. Extended heating up to 120min at 80°C did not make any appreciable changes in the structure of BSM when it was cooled to room temperature. The hydrodynamic size of BSM, as studied by dynamic...

  16. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus.

    Science.gov (United States)

    Skouri-Gargouri, Houda; Gargouri, Ali

    2008-11-01

    A novel antifungal peptide produced by an indigenous fungal strain (VR) of Aspergillus clavatus was purified. The antifungal peptide was enriched in the supernatant after heat treatment at 70 degrees C. The thermostable character was exploited in the first purification step, as purified peptide was obtained after ultrafiltration and reverse phase-HPLC on C18 column application. The purified peptide named "AcAFP" for A. clavatus antifungal peptide, has molecular mass of 5773Da determined by MALDI-ToF spectrometry. The N-terminal sequence showed a notable identity to the limited family of antifungal peptides produced by ascomycetes fungi. The AcAFP activity remains intact even after heat treatment at 100 degrees C for 1h confirming its thermostability. It exhibits a strong inhibitory activity against mycelial growth of several serious human and plant pathogenic fungi: Fusariuym oxysporum, Fusarium solani, Aspergillus niger, Botrytis cinerea, Alternaria solani, whereas AcAFP did not affect yeast and bacterial growth.

  17. An optimized formulation of a thermostable spray dried virus-like particles vaccine against human papillomavirus

    Science.gov (United States)

    Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan

    2016-01-01

    Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231

  18. Studies of Genetic Differences between KDML 105 and its Photo period-insensitive Mutants using DNA techniques

    International Nuclear Information System (INIS)

    Boonsirichai, Kanokporn; Klakhaeng, Kanchana; Phadvibulya, Valailak

    2007-08-01

    Full text: Photo period-insensitive mutants of KDML 105 could be planted for grains during and outside the regular cropping season. From genetic studies, the mutant characteristics appeared recessive. A DNA-fingerprinting technique was used to compare gene expression profiles in the leaves of mutants and KDML 105. Differences in the level of expression were found for several loci. Examination of the essential part of the gene for fragrance showed no differences between the mutants and the parental KDML 105

  19. Thermostable hemicellulases of a bacterium, Geobacillus sp. DC3, isolated from the former Homestake gold mine in Lead, South Dakota.

    Science.gov (United States)

    Bergdale, Terran E; Hughes, Stephen R; Bang, Sookie S

    2014-04-01

    A thermophilic strain, Geobacillus sp. DC3, capable of producing hemicellulolytic enzymes was isolated from the 1.5-km depth of the former Homestake gold mine in Lead, South Dakota. The DC3 strain expressed a high level of extracellular endoxylanase at 39.5 U/mg protein with additional hemicellulases including β-xylosidase (0.209 U/mg) and arabinofuranosidase (0.230 U/mg), after the bacterium was grown in xylan for 24 h. Partially purified DC3 endoxylanase exhibited a molecular mass of approximately 43 kDa according to zymography with an optimal pH of 7 and optimal temperature of 70 °C. The kinetic constants, K m and V max, were 13.8 mg/mL and 77.5 μmol xylose/min·mg xylan, respectively. The endoxylanase was highly stable and maintained 70 % of its original activity after 16 h incubation at 70 °C. The thermostable properties and presence of three different hemicellulases of Geobacillus sp. DC3 strain support its potential application for industrial hydrolysis of renewable biomass such as lignocelluloses.

  20. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming β-cyano-L-alanine

    International Nuclear Information System (INIS)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru; Kobayashi, Michihiko; Shimizu, Sakayu

    2003-01-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable β-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of β-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various β-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the β-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the β-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed β-cyano-L-alanine synthase. Heat stable β-cyano-L-alanine synthase can be applied to the synthesis of [4- 11 C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  1. A Phytase Characterized by Relatively High pH Tolerance and Thermostability from the Shiitake Mushroom Lentinus edodes

    Directory of Open Access Journals (Sweden)

    Guo-Qing Zhang

    2013-01-01

    Full Text Available A monomeric phytase with a molecular mass of 14 kDa was acquired from fresh fruiting bodies of the shiitake mushroom Lentinus edodes. The isolation procedure involved chromatography on DEAE-cellulose, CM-cellulose, Q-Sepharose, Affi-gel blue gel, and a final fast protein liquid chromatography-gel filtration on Superdex 75. The purified phytase demonstrated the unique N-terminal amino acid sequence DPKRTDQVN, which exhibited no sequence similarity with those of other phytases previously reported. It expressed its maximal activity at pH 5.0 and 37°C. Phytase activity manifested less than 20% change in activity over the pH range of 3.0–9.0, considerable thermostability with more than 60% residual activity at 70°C, and about 40% residual activity at 95°C. It displayed a wide substrate specificity on a variety of phosphorylated compounds with the following ranking: ATP > fructose-6-phosphate > AMP > glucose-6-phosphate > ADP > sodium phytate > β-glycerophosphate. The phytase activity was moderately stimulated by Ca2+, but inhibited by Al3+, Mn2+, Zn2+, and Cu2+ at a tested concentration of 5 mM.

  2. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming {beta}-cyano-L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Hironori; Yoshida, Toyokazu; Nagasawa, Toru [Gifu Univ. (Japan). Dept. of Biomolecular Science; Kuroda, Masako [Ikeda Food Research Co., Ltd., Fukuyama, Hiroshima (Japan); Kobayashi, Michihiko; Shimizu, Sakayu [Kyoto Univ. (Japan). Agricultural Sciences

    2003-10-01

    A thermophilic and cyanide ion-tolerant bacterium, Bacillus stearothermophilus CN3 isolated from a hot spring in Japan, was found to produce thermostable {beta}-cyano-L-alanine synthase. The enzyme catalyzes the synthesis of {beta}-cyano-L-alanine from O-acetyl-L-serine and cyanide ions. The purified enzyme has a molecular mass of approximately 70 kDa and consists of two identical sub-units. It was stable in the pH range of 6.0 to 10.0 and up to 70degC. The enzyme also catalyzes the synthesis of various {beta}-substituted-L-alanine derivatives from O-acetyl-L-serine and nucleophilic reagents. The gene encoding the {beta}-cyano-L-alanine synthase was isolated from B. stearothermophilus CN3. Sequence homology analysis revealed that the {beta}-cyano-L-alanine synthase of the bacterium is O-acetyl-L-serine sulfhydrylase. A recombinant plasmid, constructed by ligation of the cloned gene and an expression vector, pKK223-3, was introduced into E. coli JM109. The transformed E. coli cells overexpressed {beta}-cyano-L-alanine synthase. Heat stable {beta}-cyano-L-alanine synthase can be applied to the synthesis of [4-{sup 11}C]L-2,4-diaminobutyric acid as a tracer for positron emission tomography. (author)

  3. A Phytase Characterized by Relatively High pH Tolerance and Thermostability from the Shiitake Mushroom Lentinus edodes

    Science.gov (United States)

    Zhang, Guo-Qing; Wu, Ying-Ying; Ng, Tzi-Bun; Chen, Qing-Jun; Wang, He-Xiang

    2013-01-01

    A monomeric phytase with a molecular mass of 14 kDa was acquired from fresh fruiting bodies of the shiitake mushroom Lentinus edodes. The isolation procedure involved chromatography on DEAE-cellulose, CM-cellulose, Q-Sepharose, Affi-gel blue gel, and a final fast protein liquid chromatography-gel filtration on Superdex 75. The purified phytase demonstrated the unique N-terminal amino acid sequence DPKRTDQVN, which exhibited no sequence similarity with those of other phytases previously reported. It expressed its maximal activity at pH 5.0 and 37°C. Phytase activity manifested less than 20% change in activity over the pH range of 3.0–9.0, considerable thermostability with more than 60% residual activity at 70°C, and about 40% residual activity at 95°C. It displayed a wide substrate specificity on a variety of phosphorylated compounds with the following ranking: ATP > fructose-6-phosphate > AMP > glucose-6-phosphate > ADP > sodium phytate > β-glycerophosphate. The phytase activity was moderately stimulated by Ca2+, but inhibited by Al3+, Mn2+, Zn2+, and Cu2+ at a tested concentration of 5 mM. PMID:23586045

  4. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop.

    Science.gov (United States)

    Shivhare, Devendra; Mueller-Cajar, Oliver

    2017-07-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice ( Oryza sativa ) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Design and Testing of a Thermostable Platform for Multimerization of Single Domain Antibodies

    Science.gov (United States)

    2012-08-01

    H.J. Properties , production, and applications of camelid single domain antibody fragments. Appl. Microbiol. Biot. 2007, 77, 13‒22. 2. Goldman...Conway, J.; Sherwood, L.J.; Fech, M.; Vo, B.; Liu, J.L.; Hayhurst, A. Thermostable llama single domain antibodies for detection of Botulinum A...antiparallel coiled-coil inserted. J. Mol. Bio. 2001, 306, 25‒35. 9. Liu, J.L.; Anderson, G.P.; Goldman, E.R. Isolation of anti- toxin single domain

  6. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal huntingtin’s polyglutamine stretch on CAG140 mouse model pathogenesis

    Directory of Open Access Journals (Sweden)

    Zheng Shuqiu

    2012-08-01

    Full Text Available Abstract Background Huntington’s disease (HD is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ stretch within Huntingtin (htt, the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR in modulating HD mouse model pathogenesis is currently unknown. Results We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh encoding N-terminal hemaglutinin (HA or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt. Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt’s polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis. Conclusion In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.

  7. Expression of T4 Lysozyme Gene (gene e) in Streptococcus ...

    African Journals Online (AJOL)

    pL2 plasmid isolated from E. coli was introduced into S. salivarius subsp. thermophilus and Lactococcus lactis cells by electro-transformation. The lysozyme enzymes expressing by these bacteria were found to be active on Micrococcus luteus cells and thereby preventing their growth on assay plates. Thermostability of ...

  8. Increasing the Thermostable Sugar-1-Phosphate Nucleotidylyltransferase Activities of the Archaeal ST0452 Protein through Site Saturation Mutagenesis of the 97th Amino Acid Position.

    Science.gov (United States)

    Honda, Yuki; Zang, Qian; Shimizu, Yasuhiro; Dadashipour, Mohammad; Zhang, Zilian; Kawarabayasi, Yutaka

    2017-02-01

    , a thermostable enzyme from the thermophilic archaeon Sulfolobus tokodaii, exhibited increased activity following single amino acid substitutions of Ala. In this study, ST0452 proteins exhibiting a further increase in activity were created using a site saturation mutagenesis strategy at the 97th position. Kinetic analyses showed that the increased activities of the mutant proteins were principally due to increased apparent k cat values. These mutant proteins might suggest clues regarding the mechanism underlying the reaction process and provide very important information for the design of synthetic improved enzymes, and they can be used as powerful biocatalysts for the production of sugar nucleotide molecules. Moreover, this work generated useful proteins for three-dimensional structural analysis clarifying the processes underlying the regulation and mechanism of enzymatic activity. Copyright © 2017 American Society for Microbiology.

  9. Site-saturation mutagenesis of Glomerella cingulata cutinase gene for enhanced enzyme thermostability

    Science.gov (United States)

    Hanapi, Wan Nurhidayah Wan; Iuan-Sheau, Chin; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul; Bakar, Farah Diba Abu

    2015-09-01

    Cutinase is an important biocatalyst for various industrial applications. This enzyme which has dual functionality comparable to esterases and lipases, is efficient in the hydrolysis of soluble esters and emulsified triacylglycerols. Naturally-occurring enzymes usually have disadvantages when applied in non-natural catalysis due to Glomerella cingulata cutinase enzyme thermostability. It is postulated that by increasing the rigidity at certain amino acid positions showing high mobility based on the three-dimensional structure of G. cingulata cutinase, the improvement in thermostability will be achieved. The amino acid N82 of G. cingulata cutinase was selected based on its high B-factor value determined via the B-FITTER program. Megaprimer PCR was employed to introduce mutations at the chosen site by randomization using NNK degenerate primers. About 300 transformants were selected for screening of positive cutinase variants. The N82_V14 cutinase variant was observed to be more thermostable at an almost 2-fold increase when exposed at 50°C for 1 hr as compared to the wild-type enzyme. This study may provide valuable information regarding thermal stability of cutinases denaturation at high temperatures.

  10. 'THERMOST' for analysing thermo-structural behaviour of LWR fuel rods under PCI conditions

    International Nuclear Information System (INIS)

    Nuno, H.; Ogawa, S.; Kobayashi, H.

    1983-01-01

    As a method for evaluating fuel rod performance under power ramping or load following operations, the combined FROST/ THERMOST system has been developed and brought into practical use. FROST was presented at the IAEA Blackpool Meeting in 1978, and THERMOST is the subject of this paper. The major purpose of THERMOST is to analyse very detailed thermal and structural fuel behaviour in a rather localised part of the fuel rod whereas FROST deals with whole rod general performance. The code handles two-dimensional thermal and structural analyses simultaneously by using a finite element method, in axial section or in lateral section. It consists of a fundamental FEM system of generalised constitution, and a surrounding subroutine system which characterises fuel behaviour, such as temperature distribution, thermal expansion, elastoplasticity, creep, cracking, swelling, growth, etc. Thermal analysis is handled by heat conduction and heat transfer element (six kinds), and structural analysis by axisymmetric ring and lateral plane element (six kinds). Boundary problems such as contact, friction and cracking are treated by gap and crack elements. A sample calculation of PCI performance on a PWR fuel rod under ramping conditions is presented with some in-pile test data. (author)

  11. Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.

    Science.gov (United States)

    Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila

    2016-11-01

    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.

  12. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  13. Intact interval timing in circadian CLOCK mutants.

    Science.gov (United States)

    Cordes, Sara; Gallistel, C R

    2008-08-28

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.

  14. Evaluation of tall rice mutant

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1989-01-01

    One tall mutant (Mut NS1) of rice variety Nizersail was put to multilocation on-farm trial. It showed improvement over the parent in respect of by earlier maturity and higher grain yield at all locations and thus it appears as an improved mutant of Nizersail. (author). 6 refs

  15. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Science.gov (United States)

    Keim, Verónica; Manzano, David; Fernández, Francisco J; Closa, Marta; Andrade, Paola; Caudepón, Daniel; Bortolotti, Cristina; Vega, M Cristina; Arró, Montserrat; Ferrer, Albert

    2012-01-01

    Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  16. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds.

    Directory of Open Access Journals (Sweden)

    Verónica Keim

    Full Text Available Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP synthase (FPS, the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.

  17. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  18. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    Full Text Available The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  19. X-ray-induced mutants resistant to 8-azaguanine

    International Nuclear Information System (INIS)

    Carver, J.H.; Dewey, W.C.; Hopwood, L.E.

    1976-01-01

    Asynchronous Chinese hamster ovary cells were irradiated and colony survival in Alpha MEM medium with dialyzed serum was determined with or without 15 μg/ml 8-Azaguanine (AG). Data indicated that a reproducible assay for the system was dependent upon controlling cell density at least two days prior to induction as well as throughout the expression period. Generally, spontaneous and radiation-induced mutant frequencies decreased when cell densities exceeded a critical density of 3-6 x 10 4 cells/cm 2 . Infrequently, the critical density was exceeded by a factor of two with no observed decrease, possibly correlated with a longer cell doubling time. Drug depletion artifacts can occur because of drug degradation, or because wild-type cells utilize the drug or produce conditions which reduce uptake of the drug. Thus, as the effective drug concentration is lowered, the observed mutant frequency increases because a spectrum of mutants resistant to only low concentrations can now survive. In fact, refeeding with AG at intervals during the incubation period lowered spontaneous and radiation-induced frequencies approx. 5-fold. Therefore, to standardize conditions, cells were trypsinized at the end of the expression time and replated at a constant cell number for mutant selection by AG. Over two generations of growth during the expression period were required for optimal manifestation of induced mutants, and when densities were kept below 4 x 10 4 cells/cm 2 at all times, observed mutant frequencies did not change significantly over a period between 80 and 140 h post-induction (over 4 generations for irradiated cells and over 6 generations for controls). Previous reports of observed mutant frequencies decreasing beyond three generations may be due to cell interaction prior to mutant selection

  20. The effect of carbon sources on the expression level of thermostable ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... 1 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia. ... production of detergents, animal skin-based industry and food processing ... and minimal microbial contamination are achievable.

  1. Recombinant thermostable AP exonuclease from Thermoanaerobacter tengcongensis: cloning, expression, purification, properties and PCR application

    DEFF Research Database (Denmark)

    Dabrowski, Slawomir; Brillowska-Dabrowska, Anna; Ahring, Birgitte Kiær

    2013-01-01

    Apurinic/apyrimidinic (AP) sites in DNA are considered to be highly mutagenic and must be corrected to preserve genetic integrity, especially at high temperatures. The gene encoding a homologue of AP exonuclease was cloned from the thermophilic anaerobic bacterium Thermoanaerobacter tengcongensis......) of fully active and soluble His6-tagged Tte AP enzyme with His6-tag on C-terminal end was obtained in Escherichia coli Rosetta (DE3) pLysS. The active enzyme was purified up to 98% homogeneity in one chromatographic step using metal-affinity chromatography on Ni(2+)-IDA-Sepharose resin. The yield was 90 mg......, pH 8.0 and at low Mg2+ concentration (0.5 mM). Higher Mg2+ concentration (> 1 mM) enhanced 3'-5' exonuclease activity and at Mg2+ concentration > 2.0 mM 3' nuclease activity was observed. Because of the endonuclease activity of Tte AP exonuclease, the enzyme was applied in PCR amplification of long...

  2. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  3. The Swedish mutant barley collection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  4. Indy mutants: live long and prosper

    Directory of Open Access Journals (Sweden)

    Stewart eFrankel

    2012-02-01

    Full Text Available Indy encodes the fly homologue of a mammalian transporter of di and tricarboxylatecomponents of the Krebs cycle. Reduced expression of fly Indy or two of the C. elegansIndy homologs leads to an increase in life span. Fly and worm tissues that play key roles inintermediary metabolism are also the places where Indy genes are expressed. One of themouse homologs of Indy (mIndy is mainly expressed in the liver. It has been hypothesizedthat decreased INDY activity creates a state similar to caloric restriction (CR. Thishypothesis is supported by the physiological similarities between Indy mutant flies on highcalorie food and control flies on CR, such as increased physical activity and decreases inweight, egg production, triglyceride levels, starvation resistance, and insulin signaling. Inaddition, Indy mutant flies undergo changes in mitochondrial biogenesis also observed inCR animals. Recent findings with mIndy knockout mice support and extend the findingsfrom flies. mIndy-/- mice display an increase in hepatic mitochondrial biogenesis, lipidoxidation and decreased hepatic lipogenesis. When mIndy-/- mice are fed high calorie foodthey are protected from adiposity and insulin resistance. These findings point to INDY as apotential drug target for the treatment of metabolic syndrome, type 2 diabetes and obesity.

  5. Is auxin involved in the induction of genetic instability in barley homeotic double mutants?

    Science.gov (United States)

    Šiukšta, Raimondas; Vaitkūnienė, Virginija; Rančelis, Vytautas

    2018-02-01

    The triggers of genetic instability in barley homeotic double mutants are tweaky spike -type mutations associated with an auxin imbalance in separate spike phytomeres. Barley homeotic tweaky spike;Hooded (tw;Hd) double mutants are characterized by an inherited instability of spike and flower development, which is absent in the single parental constituents. The aim of the present study was to show that the trigger of genetic instability in the double mutants is the tw mutations, which are associated with an auxin imbalance in the developing spikes. Their pleiotropic effects on genes related to spike/flower development may cause the genetic instability of double mutants. The study of four double-mutant groups composed of different mutant alleles showed that the instability arose only if the mutant allele tw was a constituent of the double mutants. Application of auxin inhibitors and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated the relationship of the instability of the double mutants and the phenotype of the tw mutants to auxin imbalance. 2,4-D induced phenocopies of the tw mutation in wild-type plants and rescued the phenotypes of three allelic tw mutants. The differential display (dd-PCR) method allowed the identification of several putative candidate genes in tw that may be responsible for the initiation of instability in the double mutants by pleiotropic variations of their expression in the tw mutant associated with auxin imbalance in the developing spikes. The results of the present study linked the genetic instability of homeotic double mutants with an auxin imbalance caused by one of the constituents (tw). The genetic instability of the double mutants in relation to auxin imbalance was studied for the first time. A matrocliny on instability expression was also observed.

  6. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  7. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  8. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae

    Science.gov (United States)

    Han, Yanming; Wilson, David B.; Lei, Xin gen

    1999-01-01

    Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60°C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation. PMID:10223979

  9. Identification of thermostable β-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Mads; Lauritzen, Henrik Klitgaard; Frisvad, Jens Christian

    2007-01-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta......-xylosidases. The beta-xylosidase activities of the A. brasiliensis and A. niger strains had similar temperature and pH optima at 75 degrees C and pH 5 and retained 62% and 99%, respectively, of these activities over 1 h at 60 degrees C. At 75 degrees C, these values were 38 and 44%, respectively. Whereas A. niger...

  10. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Bautista

    2017-12-01

    Full Text Available A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR analysis of the volatiles.

  11. Methods of hydrolyzing a cellulose using halophilic, thermostable and ionic liquids tolerant cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Datta, Supratim; Simmons, Blake A.; Rubin, Edward M.

    2018-01-09

    The present invention provides for an isolated or recombinant polypeptide comprising an amino acid sequence having at least 70% identity with the amino acid sequence of a Halorhabdus utahensis cellulase, such as Hu-CBH1, wherein said amino acid sequence has a halophilic thermostable and/or thermophilic cellobiohydrolase (CBH) activity. In some embodiments, the polypeptide has a CBH activity that is resistant to up to about 20% of ionic liquids. The present invention also provides for compositions comprising and methods using the isolated or recombinant polypeptide.

  12. Evaluations on power ramp data of PWR fuels by FROST and THERMOST codes

    International Nuclear Information System (INIS)

    Murai, K.; Ogawa, S.; Nuno, H.; Kondo, Y.

    1987-01-01

    An evaluation is presented of power ramp data of Mitsubishi's PWR fuel rods tested in R-2, Studsvik, which was analysed by FROST and THERMOST codes. The analyses give good predictions for measured diameter changes and on-power rod elongations. The work indicates that FROST is capable of analysing both radial and axial pellet-cladding mechanism interaction (PCMI) appropriately, and that predicted states of PCMI (i.e. stress and strain which cannot be measured directly) are considered to be reliable. The ramp data used in the present analyses were obtained in two joint programmes with five Japanese PWR utilities (KEPCO, KYEPCO, SEPCO, HEPCO, and JAPCO). (UK)

  13. Protein features as determinants of wild-type glycoside hydrolase thermostability

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus; Kiemer, Lars; Nielsen, Morten

    2017-01-01

    -silico methods guiding the discovery process would be of high value. To develop such an in-silico method and provide the data foundation of it, we determined the melting temperatures of 602 fungal glycoside hydrolases from the families GH5, 6, 7, 10, 11, 43 and AA9 (formerly GH61). We, then used sequence...... and homology modeled structure information of these enzymes to develop the ThermoP melting temperature prediction method. Futhermore, in the context of thermostability, we determined the relative importance of 160 molecular features, such as amino acid frequencies and spatial interactions, and exemplified...

  14. Problems of increasing of thermostability of highly permeable Ni-Zn ferrites and relative materials for telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, A. E-mail: letyuk@mail.ru; Andreev, V.; Letyuk, L.; Shishkanov, A.; Maiorov, V

    2003-01-01

    The work considers ways of increasing of thermostability of ferrites of the basic systems NiO-ZnO-Fe{sub 2}O{sub 3} and MgO-ZnO-Fe{sub 2}O{sub 3} and relative materials for telecommunication. Sufficient results in increasing of the thermostability were achieved by doping Cu ions and controlling rejection of Fe{sub 2}O{sub 3} content from equimolar composition. These results allow to increase the Curie temperature to 130-140 deg. C for Ni-Zn ferrites with initial permeability 2000.

  15. Mutants induced in winter rye (Secale cereale L.): Short straw-mutant No. 2714 and late-senescence mutant

    Energy Technology Data Exchange (ETDEWEB)

    Muszynski, S; Darlewska, M [Department of Plant Breeding and Seed Science, Warsaw Agricultural University, Warsaw (Poland)

    1990-01-01

    Full text: Mutants were induced by treating dormant seeds with ionizing radiation (fast neutrons) or chemicals (N-nitroso-N-ethyl urea or sodium azide). Among several mutants obtained, of special value is the short-straw mutant No. 2714 and a late senescent mutant. (author)

  16. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2012-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  17. A wheat cold resistance mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Li Peng; Sun Mingzhu; Zhang Fengyun; Gao Guoqiang; Qiu Denglin; Li Xinhua

    2011-01-01

    A cold resistance mutant, obtained by spaceflight mutagenesis on the seeds of wheat variety Han6172, and the DNA of cold resistance mutant and contrast Han6172 were compared by SRAP technique. 380 pairs of primers were screened, 6 pairs of them had polymorphisms between mutant and contrast, the rate was 1.58%, and this data indicated that there are no obvious DNA differences between mutant and contrast. Six specific fragments were obtained, 3 fragments of them were amplified in mutant. Homology analysis in GenBank showed that Me3-Em7-Mt, Me4-Em11-CK, Me7-Em19-CK and Me6-Em9-Mt all had homologous sequences with wheat chromosome 3B-specific BAC library, and this result indicated that the gene and regulator sequences associated with mutant cold resistance might locate on 3B chromosome. It was speculated that space mutation induced the mutation of 3B chromosome primary structure, and influenced the expressions of cold resistance genes, which resulted in the mutation of cold resistance ability. (authors)

  18. The ''THERMOST'' for analysing thermo-structural behaviour of LWR fuel rod under PCI conditions

    International Nuclear Information System (INIS)

    Nuno, H.; Ogawa, S.; Kobayashi, H.

    1983-01-01

    As one of the methods for evaluating the fuel rod performances under power ramping or load following operations, the combined ''FROST'' and ''THERMOST'' system has been developed and being brought into practical use. The former had already been presented at Blackpool Meeting in 1978, and the latter is going to be presented in this paper. The major purpose of the THERMOST is to analyse very detailed thermal and structural fuel behaviours in a rather localized part of fuel rod whereas the FROST deals with whole-rod-wide general performances. The code handles 2-dimensional thermal and structural analyses simultaneously by using finite element method, in axial section wide or in lateral section wide. It consists of a fundamental FEM system of generalized constitution and its surrounding subroutine system which characterizes fuel behaviours such as temperature distribution, thermal expansion, elastoplasticity, creep, cracking, swelling, growth, etc. Thermal analysis is handled by heat conduction and heat transfer elements (6 kinds) and structural analysis by axisymmetric ring and lateral plane elements (6 kinds). Boundary problems such as contact, friction and cracking are treated by gap and crack elements. A sample calculation of PCI performance on a PWR fuel rod under ramping condition is presented with some inpile test data. (author)

  19. Molecular Dynamics Simulation of Barnase: Contribution of Noncovalent Intramolecular Interaction to Thermostability

    Directory of Open Access Journals (Sweden)

    Zhiguo Chen

    2013-01-01

    Full Text Available Bacillus amyloliquefaciens ribonuclease Barnase (RNase Ba is a 12 kD (kilodalton small extracellular ribonuclease. It has broad application prospects in agriculture, clinical medicine, pharmaceutical, and so forth. In this work, the thermal stability of Barnase has been studied using molecular dynamics simulation at different temperatures. The present study focuses on the contribution of noncovalent intramolecular interaction to protein stability and how they affect the thermal stability of the enzyme. Profiles of root mean square deviation and root mean square fluctuation identify thermostable and thermosensitive regions of Barnase. Analyses of trajectories in terms of secondary structure content, intramolecular hydrogen bonds and salt bridge interactions indicate distinct differences in different temperature simulations. In the simulations, Four three-member salt bridge networks (Asp8-Arg110-Asp12, Arg83-Asp75-Arg87, Lys66-Asp93-Arg69, and Asp54-Lys27-Glu73 have been identified as critical salt bridges for thermostability which are maintained stably at higher temperature enhancing stability of three hydrophobic cores. The study may help enlighten our knowledge of protein structural properties, noncovalent interactions which can stabilize secondary peptide structures or promote folding, and also help understand their actions better. Such an understanding is required for designing efficient enzymes with characteristics for particular applications at desired working temperatures.

  20. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    International Nuclear Information System (INIS)

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-01-01

    Two thermostable DNA nucleases from archaea were crystallized in different space groups; the crystals were suitable for X-ray analysis. Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes

  1. Crystallization and X-ray structure analysis of a thermostable penicillin G acylase from Alcaligenes faecalis

    International Nuclear Information System (INIS)

    Varshney, Nishant Kumar; Suresh Kumar, R.; Ignatova, Zoya; Prabhune, Asmita; Pundle, Archana; Dodson, Eleanor; Suresh, C. G.

    2012-01-01

    A thermostable penicillin G acylase from A. faecalis has been crystallized in two space groups: C222 1 and P4 1 2 1 2. X-ray diffraction data were collected to 3.3 and 3.5 Å resolution, respectively. The enzyme penicillin G acylase (EC 3.5.1.11) catalyzes amide-bond cleavage in benzylpenicillin (penicillin G) to yield 6-aminopenicillanic acid, an intermediate chemical used in the production of semisynthetic penicillins. A thermostable penicillin G acylase from Alcaligenes faecalis (AfPGA) has been crystallized using the hanging-drop vapour-diffusion method in two different space groups: C222 1 , with unit-cell parameters a = 72.9, b = 86.0, c = 260.2 Å, and P4 1 2 1 2, with unit-cell parameters a = b = 85.6, c = 298.8 Å. Data were collected at 293 K and the structure was determined using the molecular-replacement method. Like other penicillin acylases, AfPGA belongs to the N-terminal nucleophilic hydrolase superfamily, has undergone post-translational processing and has a serine as the N-terminal residue of the β-chain. A disulfide bridge has been identified in the structure that was not found in the other two known penicillin G acylase structures. The presence of the disulfide bridge is perceived to be one factor that confers higher stability to this enzyme

  2. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    Science.gov (United States)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  3. Structure of the Aeropyrum pernix L7Ae multifunctional protein and insight into its extreme thermostability

    International Nuclear Information System (INIS)

    Bhuiya, Mohammad Wadud; Suryadi, Jimmy; Zhou, Zholi; Brown, Bernard Andrew II

    2013-01-01

    The crystal structure of A. pernix L7Ae is reported, providing insight into the extreme thermostability of this protein. Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed

  4. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573.

    Science.gov (United States)

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem

    2015-09-01

    The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mutant number distribution in an exponentially growing population

    Science.gov (United States)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  6. Mutant number distribution in an exponentially growing population

    International Nuclear Information System (INIS)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491–511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process. (paper)

  7. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11...

  8. Alterations in biochemical and physiological characters in radiation-induced mutants of grain legumes

    International Nuclear Information System (INIS)

    Mueller, H.P.

    1984-01-01

    Selected examples from different grain legumes are studied. The biochemically and physiologically detectable alterations in distintc characters as caused by the action of mutant genes are presented comparatively. The interactions between different mutant genes in order to evaluated the influence of the genotypic constitution on the expression of mutated genes are emphasized. (M.A.C.) [pt

  9. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    Science.gov (United States)

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  10. INCREASING THE THERMOSTABILITY OF THE NEUTRAL PROTEINASE OF BACILLUS-STEAROTHERMOPHILUS BY IMPROVEMENT OF INTERNAL HYDROGEN-BONDING

    NARCIS (Netherlands)

    EIJSINK, VGH; VRIEND, G; VANDERZEE, [No Value; VANDENBURG, B; VENEMA, G

    1992-01-01

    In an attempt to increase the thermostability of the neutral proteinase of Bacillus stearothermophilus the buried Ala-170 was replaced by serine. Molecular-dynamics simulations showed that Ser-170 stabilizes the enzyme by formation of an internal hydrogen bond. In addition, the hydroxy group of

  11. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2015-05-01

    Full Text Available In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme cocktail, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60°C to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy.

  12. Structure of a thermostable serralysin from Serratia sp. FS14 at 1.1 Å resolution.

    Science.gov (United States)

    Wu, Dongxia; Ran, Tinting; Wang, Weiwu; Xu, Dongqing

    2016-01-01

    Serralysin is a well studied metalloprotease, and typical serralysins are not thermostable. The serralysin isolated from Serratia sp. FS14 was found to be thermostable, and in order to reveal the mechanism responsible for its thermostability, the crystal structure of serralysin from Serratia sp. FS14 was solved to a crystallographic R factor of 0.1619 at 1.10 Å resolution. Similar to its homologues, it mainly consists of two domains: an N-terminal catalytic domain and a `parallel β-roll' C-terminal domain. Comparative studies show that the shape of the catalytic active-site cavity is more open owing to the 189-198 loop, with a short 310-helix protruding further from the molecular surface, and that the β-sheets comprising the `parallel β-roll' are longer than those in its homologues. The formation of hydrogen bonds from one of the nonconserved residues (Asn200) to Lys27 may contribute to the thermostability.

  13. Virus-like particle nanoreactors: programmed en capsulation of the thermostable CelB glycosidase inside the P22 capsid

    NARCIS (Netherlands)

    Patterson, D.P.; Schwarz, B.; El-Boubbou, K.; Oost, van der J.; Prevelige, P.E.; Douglas, T.

    2012-01-01

    Self-assembling biological systems hold great potential for the synthetic construction of new active soft nanomaterials. Here we demonstrate the hierarchical bottom-up assembly of bacteriophage P22 virus-like particles (VLPs) that encapsulate the thermostable CelB glycosidase creating catalytically

  14. Acidophilus Milk Shelf-life Prolongation by the Use of Cold Sensitive Mutants of Lactobacillus acidophilus MDC 9626

    Directory of Open Access Journals (Sweden)

    Alireza Goodarzi

    2017-09-01

    Full Text Available  Background and Objective: The shelf-life of Acidophilus milk fermented by probiotic culture Lactobacillus acidophilus is limited due to acidification caused by continued organic acid formation at low temperatures. Increasing of titrable acidity in turn causes reducing of the total viable count of probiotic bacteria. To overcome acidification we suggested to use coldsensitive mutants of Lactobacillus acidophilus, with limited metabolism at low temperatures. In order to facilitate the selection of cold sensitive mutants, it was decided to use Rifampicin and Streotomycin mutations affecting thermostability of the key molecules of cell metabolism the RNA polymerase and ribosome, respectively.Material and Methods: Ultra violet mutagenesis was used to enhance the yield and diversity of rifampicin and streptomycin resistant mutants of Lactobacillus acidophilus. To perform negative selection of cold sensitive mutants, antibiotic resistant colonies replica plated and incubated at 23ºC. The growth rate, milk fermenting rate, titratable acidity were measured.Results and Conclusion: Among tested resistant to either rifampicin or streptomycin clones with frequency mean of 1.0 %, ten mutants were isolated which have lost the ability to grow at minimal temperature. Fermented with cold-sensitive mutants of Lactobacillus acidophilus milks, during storage in the refrigerator, almost twice as long retained high amount of probiotic bacteria and low titratable acidity as compared to the parent strain. Thus, direct relationship between temperature sensitivity of the starter and shelf life of acidophilic milk was confirmed. Rifampicin and Streptomycin resistant mutations are powerful tools for selection of cold-sensitive dairy starters for preparing dairy fermented products with long shelf-life.Conflict of interest: The authors declare no conflict of interest.

  15. Flower morphology of Dendrobium Sonia mutants

    International Nuclear Information System (INIS)

    Sakinah Ariffin; Azhar Mohamad; Affrida Abu Hassan; Zaiton Ahmad; Mohd Nazir Basiran

    2010-01-01

    Dendrobium Sonia is a commercial hybrid which is popular as cut flower and potted plant in Malaysia. Variability in flower is important for new variety to generate more demands and choices in selection. Mutation induction is a tool in creating variability for new flower color and shape. In vitro cultures of protocorm-like bodies (PLBs) were exposed to gamma ray at dose 35 Gy. Phenotypic characteristics of the flower were observed at fully bloomed flower with emphasis on shape and color. Approximately 2000 regenerated irradiated plants were observed and after subsequent flowering, 100 plants were finally selected for further evaluation. Most of the color and shape changes are expressed in different combinations of petal, sepal and lip of the flower. In this work, 11 stable mutants were found different at flower phenotype as compared to control. Amongst these, four mutant varieties with commercial potential has been named as Dendrobium 'SoniaKeenaOval', Dendrobium 'SoniaKeenaRadiant', Dendrobium 'SoniaKeenaHiengDing' and Dendrobium 'Sonia KeenaAhmadSobri'. In this paper, variations in flower morphology and flower color were discussed, giving emphasis on variations in flower petal shape. (author)

  16. Ethanol production kinetics by a thermo-tolerant mutant of saccharomyces cerevisiae from starch industry waste (hydrol)

    International Nuclear Information System (INIS)

    Shah, F.A.; Aziz, S.

    2010-01-01

    A thermo-tolerant and deoxyglucose-resistant mutant of Saccharomyces cerevisiae was developed and employed to convert them to fuel ethanol in a 150 litre fermenter. Maximum ethanol production was achieved when fermentation of dextrozyme- treated hydrol was carried out for about 36 hours under optimized fermenting conditions. The maximum specific ethanol production rate (qP), and overall ethanol yield (YP/S) were found to be 2.82 g L/sup -1/ h/sup -1/ and 0.49 g/g respectively. Determination of activation energy for cell growth (Ea= 20.8 kJ/mol) and death (Ed = 19.1 kJ/mol) and product formation and inactivation (EP=35.8 kJ/mol and Edp = 33.5 kJ/mol) revealed the thermo-stability of the organism for up to 47 deg. C. (author)

  17. Ethanol Production Kinetics by a Thermo-Tolerant Mutant of Saccharomyces Cerevisiae from Starch Industry Waste (Hydrol

    Directory of Open Access Journals (Sweden)

    Farman Ali Shah

    2010-06-01

    Full Text Available A thermo-tolerant and deoxyglucose-resistant mutant of Saccharomyces cerevisiae was developed and employed to convert them to fuel ethanol in a 150 litre fermenter. Maximum ethanol production was achieved when fermentation of dextrozyme- treated hydrol was carried out for about 36 hours under optimized fermenting conditions. The maximum specific ethanol production rate (qP, and overall ethanol yield (YP/S were found to be 2.82 g L-1 h-1 and 0.49 g/g respectively. Determination of activation energy for cell growth (Ea= 20.8 kJ/mol and death (Ed = 19.1 kJ/mol and product formation and inactivation (EP=35.8 kJ/mol and Edp = 33.5 kJ/mol revealed the thermo-stability of the organism for up to 47°C.

  18. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach

    Directory of Open Access Journals (Sweden)

    Fan Xinjiong

    2012-03-01

    Full Text Available Abstract Background Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. Results In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3 in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg. The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. Conclusion This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most

  19. Detection of DNA polymorphisms in Dendrobium Sonia White mutant lines

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Putri Noor Faizah Megat Mohd Tahir; Zaiton Ahmad; Mohd Nazir Basiran

    2006-01-01

    Dendrobium Sonia white mutant lines were obtained through gamma ray induced mutation of purple flower Dendrobium Sonia at dosage 35 Gy. Amplified Fragment Length Polymorphism (AFLP) technique was used to compare genomic variations in these mutant lines with the control. Our objectives were to detect polymorphic fragments from these mutants to provide useful information on genes involving in flower colour expression. AFLP is a PCR based DNA fingerprinting technique. It involves digestion of DNA with restriction enzymes, ligation of adapter and selective amplification using primer with one (pre-amplification) and three (selective amplification) arbitrary nucleotides. A total number of 20 primer combinations have been tested and 7 produced clear fingerprint patterns. Of these, 13 polymorphic bands have been successfully isolate and cloned. (Author)

  20. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    Science.gov (United States)

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  2. Mutation induction and evaluation of high yield rice mutants

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Sobri Husein; Rusli Ibrahim

    2006-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation has been used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. Rice is security food crop in Malaysia. Efforts were undertaken to enhance rice yield from 4.0 tones per hectare in 1995 to 5.5 tones per hectare in 2010. Proper management and good varieties are two factors that require for enhancing yield of rice. In this research, purified seeds of MR211 and MR219 were gamma irradiated at 100 to 400 Gray and sown for planting as M1 generation at MARDI experimental plot. The M2 population was sown in bulk with population size around 15,000 to 20,000 plants. Individual plant selection was carried out at maturity and each selected plant became a mutant line of M3 generation. Agronomic trial of M3 mutants lines were conducted in Mardi, Tanjung Karang, Selangor. About 115 of selected mutant lines were evaluated. Each row of those mutant lines were planted in two rows at planting distance of 25cm within and between rows. These mutant lines were visually observed and data were recorded in each of every mutant line. (Author)

  3. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  4. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  5. Establishment and application of a modified membrane-blot assay for Rhizomucor miehei lipases aimed at improving their methanol tolerance and thermostability.

    Science.gov (United States)

    He, Dong; Luo, Wen; Wang, Zhiyuan; Lv, Pengmei; Yuan, Zhenhong; Huang, Shaowei; Xv, Jingliang

    2017-07-01

    Directed evolution has been proved an effective way to improve the stability of proteins, but high throughput screening assays for directed evolution with simultaneous improvement of two or more properties are still rare. In this study, we aimed to establish a membrane-blot assay for use in the high-throughput screening of Rhizomucor miehei lipases (RMLs). With the assistance of the membrane-blot screening assay, a mutant E47K named G10 that showed improved thermal stability was detected in the first round of error-prone PCR. Using G10 as the parent, two variants G10-11 and G10-20 that showed improved thermal stability and methanol tolerance without loss of activity compared to the wild type RML were obtained. The T 50 60 -value of G10-11 and G10-20 increased by 12°C and 6.5°C, respectively. After incubation for 1h, the remaining residual activity of G10-11 and G10-20 was 63.45% and 74.33%, respectively, in 50% methanol, and 15.98% and 30.22%, respectively, in 80% methanol. Thus, we successfully developed a membrane-blot assay that could be used for the high-throughput screening of RMLs with improved thermostability and methanol tolerance. Based on our findings, we believe that our newly developed membrane-blot assay will have potential applications in directed evolution in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  7. Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design.

    Science.gov (United States)

    Bu, Yifan; Cui, Yinglu; Peng, Ying; Hu, Meirong; Tian, Yu'e; Tao, Yong; Wu, Bian

    2018-04-01

    Xylanases, which cleave the β-1,4-glycosidic bond between xylose residues to release xylooligosaccharides (XOS), are widely used as food additives, animal feeds, and pulp bleaching agents. However, the thermally unstable nature of xylanases would hamper their industrial application. In this study, we used in silico design in a glycoside hydrolase family (GH) 11 xylanase to stabilize the enzyme. A combination of the best mutations increased the apparent melting temperature by 14 °C and significantly enhanced thermostability and thermoactivation. The variant also showed an upward-shifted optimal temperature for catalysis without compromising its activity at low temperatures. Moreover, a 10-fold higher XOS production yield was obtained at 70 °C, which compensated the low yield obtained with the wild-type enzyme. Collectively, the variant constructed by the computational strategy can be used as an efficient biocatalyst for XOS production at industrially viable conditions.

  8. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus.

    Science.gov (United States)

    Raghunath, Pendru

    2014-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus.

  9. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    Science.gov (United States)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  10. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    Science.gov (United States)

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes.

    Science.gov (United States)

    Bhalla, Aditya; Bansal, Namita; Kumar, Sudhir; Bischoff, Kenneth M; Sani, Rajesh K

    2013-01-01

    Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Normal aging modulates the neurotoxicity of mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Elsa Diguet

    Full Text Available Aging likely plays a role in neurodegenerative disorders. In Huntington's disease (HD, a disorder caused by an abnormal expansion of a polyglutamine tract in the protein huntingtin (Htt, the role of aging is unclear. For a given tract length, the probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD: Either mutant Htt progressively produces cumulative defects over time or "normal" aging renders neurons more vulnerable to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo. We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of wild-type Htt or of a beta-Galactosidase (beta-Gal reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were performed simultaneously in young (3 week and old (15 month rats. Histological evaluation at different time points after infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats, including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32 immunoreactivity and striatal neurons as assessed by unbiased stereological counts.The present results support the hypothesis that "normal" aging is involved in HD pathogenesis, and suggest that age-related cellular defects might constitute potential therapeutic targets for HD.

  13. Thermostability and photophysical properties of mixed-ligand carboxylate/benzimidazole Zn(II)-coordination polymers

    International Nuclear Information System (INIS)

    Barros, Bráulio Silva; Chojnacki, Jaroslaw; Macêdo Soares, Antonia Alice; Kulesza, Joanna; Lourenço da Luz, Leonis; Júnior, Severino Alves

    2015-01-01

    The reaction between Zn(NO 3 ) 2 ·6H 2 O or Zn(CH 3 COO) 2 ·2H 2 O and isophthalic acid (1,3-H 2 bdc) in the presence of benzimidazole (Hbzim) in dimethylformamide (DMF)/ethanol (EtOH)/H 2 O solvent mixture at room temperature yielded two structurally different coordination polymers: [Zn 2 (1,3-bdc) 2 (Hbzim) 2 ] (1) and [Zn 2 (1,3-bdc)(bzim) 2 ] (2). (1) is a 2D-layered framework with a molecule of benzimidazole coordinated to the Zn center, whereas (2) is a 3D framework with benzimidazolate species acting as a co-ligand and bridging two Zn(II) ions. Reactions performed at 90 °C led to the formation of coordination polymers structurally similar to (2), independently of the Zn(II) source used. In the absence of benzimidazole, the reaction between ZnAc 2 .2H 2 O and 1,3-H 2 bdc at 90 °C resulted in the formation of (3), a 3D coordination polymer Zn(HCOO) 3 (Me 2 NH 2 + ). It was observed that the thermostability and the photophysical properties of (1) and (2) are strongly dependent on the coordination modes and packing of benzimidazole in the solid state. These materials present photoluminescence in the wide range of the spectrum, from UV to IR. A full understanding of a physical process occurring in these intriguing systems, including complete energy level diagrams with possible transitions were provided. - Graphical abstract: Display Omitted - Highlights: • Structurally different Zn(II)-coordination polymers were prepared. • The formation of frameworks was counter anion and temperature dependent. • Photoluminescence in the wide range of the spectrum, from UV to IR was observed. • Thermostability and luminescence depended on bzim packing in the structure

  14. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.

    Science.gov (United States)

    Shivange, Amol V; Roccatano, Danilo; Schwaneberg, Ulrich

    2016-01-01

    Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.

  15. Enzimas termoestáveis: fontes, produção e aplicação industrial Thermostable enzymes: sources, production and industrial applications

    Directory of Open Access Journals (Sweden)

    Eleni Gomes

    2007-02-01

    Full Text Available REVIEW: Living organisms encountered in hostile environments that are characterized by extreme temperatures rely on novel molecular mechanisms to enhance the thermal stability of their proteins, nucleic acids, lipids and cell membranes. Proteins isolated from thermophilic organisms usually exhibit higher intrinsic thermal stabilities than their counterparts isolated from mesophilic organisms. Although the molecular basis of protein thermostability is only partially understood, structural studies have suggested that the factors that may contribute to enhance protein thermostability mainly include hydrophobic packing, enhanced secondary structure propensity, helix dipole stabilization, absence of residues sensitive to oxidation or deamination, and increased electrostatic interactions. Thermostable enzymes such as amylases, xylanases and pectinases isolated from thermophilic organisms are potentially of interest in the optimization of industrial processes due to their enhanced stability. In the present review, an attempt is made to delineate the structural factors that increase enzyme thermostability and to document the research results in the production of these enzymes.

  16. Mutant genes in pea breeding

    International Nuclear Information System (INIS)

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  17. Engineering of an Extremely Thermostable Alpha/Beta Barrel Scaffold to Serve as a High Affinity Molecular Recognition Element for Use in Sensor Applications

    Science.gov (United States)

    2015-12-23

    Molecular Recognition Element For Use in Sensor Applications Report Title The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol ...SECURITY CLASSIFICATION OF: The overall goal of the project was to evolve a highly thermostable enzyme ( alcohol dehydrogenase D (AdhD) from Pyrococcus...furiosus) to bind an explosive molecule, RDX. The enzyme naturally catalyzes the nicotinamide cofactor-dependent oxidation or reduction of alcohols

  18. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    Ravikesavan, R.; Kalaimagal, T.; Rathnaswamy, R.

    2001-01-01

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M 2 to M 4 generation. In the M 4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  19. Identification of a Gravitropism-Deficient Mutant in Rice

    Directory of Open Access Journals (Sweden)

    He Yan

    2017-03-01

    Full Text Available A gravitropism-deficient mutant M96 was isolated from a mutant bank, generated by ethyl methane sulfonate (EMS mutagenesis of indica rice accession ZJ100. The mutant was characterized as prostrate growth at the beginning of germination, and the prostrate growth phenotype ran through the whole life duration. Tiller angle and tiller number of M96 increased significantly in comparison with the wild type. Tissue section observation analysis indicated that asymmetric stem growth around the second node occurred in M96. Genetic analysis and gene mapping showed that M96 was controlled by a single recessive nuclear gene, tentatively termed as gravitropism-deficient M96 (gdM96, which was mapped to a region of 506 kb flanked by markers RM5960 and InDel8 on the long arm of chromosome 11. Sequencing analysis of the open reading frames in this region revealed a nucleotide substitution from G to T in the third exon of LOC_Os11g29840. Additionally, real-time fluorescence quantitative PCR analysis showed that the expression level of LOC_Os11g29840 in the stems was much higher than in the roots and leaves in M96. Furthermore, the expression level was more than four times in M96 stem than in the wild type stem. Our results suggested that the mutant gene was likely a new allele to the reported gene LAZY1. Isolation of this new allele would facilitate the further characterization of LAZY1.

  20. Hyperproduction and Thermal Characterization of a Novel Invertase from a Double Mutant Derivative of Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim Rajoka

    2011-01-01

    Full Text Available Kinetics of intracellular invertase production employing a double mutant derivative of Kluyveromyces marxianus was optimized by varying different process variables in a 23-litre fermentor. The maximum volumetric rate (QP and invertase yield (YP/S by M15 mutant were 1222 U/(L·h and 160 U/g of substrate utilized, respectively (2-fold more than those of parental strain at 50 °C on the molasses (150 g/L of total fermentable sugars at pH=5.5. Glucose or sucrose (100, 150 or 170 g/L did not repress invertase catabolically under the optimized fermentation conditions, contrary to the previous reports on other yeasts and filamentous fungi, where catabolite repression of sugars was predominant. Invertases derived by the wild (IW and mutant (IM strains were purified employing ammonium sulphate precipitation, and then characterized by column chromatographic techniques both kinetically and thermodynamically. The acidic limb of invertases was missing and collation of pKa and the heat of ionization values indicated that carboxyl groups were involved in proton transfer during active catalysis. Ratios of Kcat/Km and vmax/Km indicated that IM was significantly more specific for sucrose hydrolysis. The IM exhibited stability in different buffers at pH=3.0–10.0 and temperature of 50–70 °C, as reflected by long half-lives. IM showed significantly lower values of enthalpy of activation (ΔH* and entropy of activation (ΔS*, while Gibbs free energy (ΔG* was significantly increased at higher temperatures, making the IM thermodynamically more thermostable. Thus IM could be used as a catabolite-resistant invertase for the production of fructose syrup or high gravity ethanol.

  1. Dwarf mutant of rice variety Seratus Malam

    International Nuclear Information System (INIS)

    Mugiono, P. S.; Soemanggono, A.M.R.

    1989-01-01

    Full text: Seeds of 'Seratus Malam', a local tall upland variety with long panicles and high yield potential were irradiated with 10-50 krad gamma rays in 1983. From 50,000 M 2 plants, 130 semidwarf mutants and 1 dwarf mutant were selected. The dwarf mutant M-362 was obtained from the 10 krad treatment. The mutant shows about 50% reduction in plant height, but also in number of productive tillers. Thus the yield per plant is also significantly less. However, the mutant gene is not allelic to DGWG and therefore may be useful in cross breeding. (author)

  2. Polo-like kinase 3 (PLK3) mediates the clearance of the accumulated PrP mutants transiently expressed in cultured cells and pathogenic PrP(Sc) in prion infected cell line via protein interaction.

    Science.gov (United States)

    Wang, Hui; Tian, Chan; Fan, Xue-Yu; Chen, Li-Na; Lv, Yan; Sun, Jing; Zhao, Yang-Jing; Zhang, Lu-bin; Wang, Jing; Shi, Qi; Gao, Chen; Chen, Cao; Shao, Qi-Xiang; Dong, Xiao-Ping

    2015-05-01

    Polo-like kinases (PLKs) family has long been known to be critical for cell cycle and recent studies have pointed to new dimensions of PLKs function in the nervous system. Our previous study has verified that the levels of PLK3 in the brain are severely downregulated in prion-related diseases. However, the associations of PLKs with prion protein remain unclear. In the present study, we confirmed that PrP protein constitutively interacts with PLK3 as determined by both in vitro and in vivo assays. Both the kinase domain and polo-box domain of PLK3 were proved to bind PrP proteins expressed in mammalian cell lines. Overexpression of PLK3 did not affect the level of wild-type PrP, but significantly decreased the levels of the mutated PrPs in cultured cells. The kinase domain appeared to be responsible for the clearance of abnormally aggregated PrPs, but this function seemed to be independent of its kinase activity. RNA-mediated knockdown of PLK3 obviously aggravated the accumulation of cytosolic PrPs. Moreover, PLK3 overexpression in a scrapie infected cell line caused notable reduce of PrP(Sc) level in a dose-dependent manner, but had minimal effect on the expression of PrP(C) in its normal partner cell line. Our findings here confirmed the molecular interaction between PLK3 and PrP and outlined the regulatory activity of PLK3 on the degradation of abnormal PrPs, even its pathogenic isoform PrP(Sc). We, therefore, assume that the recovery of PLK3 in the early stage of prion infection may be helpful to prevent the toxic accumulation of PrP(Sc) in the brain tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Genetic background of Prop1(df) mutants provides remarkable protection against hypothyroidism-induced hearing impairment.

    Science.gov (United States)

    Fang, Qing; Giordimaina, Alicia M; Dolan, David F; Camper, Sally A; Mustapha, Mirna

    2012-04-01

    Hypothyroidism is a cause of genetic and environmentally induced deafness. The sensitivity of cochlear development and function to thyroid hormone (TH) mandates understanding TH action in this sensory organ. Prop1(df) and Pou1f1(dw) mutant mice carry mutations in different pituitary transcription factors, each resulting in pituitary thyrotropin deficiency. Despite the same lack of detectable serum TH, these mutants have very different hearing abilities: Prop1(df) mutants are mildly affected, while Pou1f1(dw) mutants are completely deaf. Genetic studies show that this difference is attributable to the genetic backgrounds. Using embryo transfer, we discovered that factors intrinsic to the fetus are the major contributor to this difference, not maternal effects. We analyzed Prop1(df) mutants to identify processes in cochlear development that are disrupted in other hypothyroid animal models but protected in Prop1(df) mutants by the genetic background. The development of outer hair cell (OHC) function is delayed, but Prestin and KCNQ4 immunostaining appear normal in mature Prop1(df) mutants. The endocochlear potential and KCNJ10 immunostaining in the stria vascularis are indistinguishable from wild type, and no differences in neurofilament or synaptophysin staining are evident in Prop1(df) mutants. The synaptic vesicle protein otoferlin normally shifts expression from OHC to IHC as temporary afferent fibers beneath the OHC regress postnatally. Prop1(df) mutants exhibit persistent, abnormal expression of otoferlin in apical OHC, suggesting delayed maturation of synaptic function. Thus, the genetic background of Prop1(df) mutants is remarkably protective for most functions affected in other hypothyroid mice. The Prop1(df) mutant is an attractive model for identifying the genes that protect against deafness.

  4. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...... of the fusion protein and/or suppression of the aggregate formation in both cell types. In the NT2 cells the antisense effect was dependent on the way of administration of the oligo. Conclusions The PS-antisense oligo is effective in downregulation of mutant huntingtin, and the reduction of aggregate formation...... is a sensitive biological marker. The findings suggest that antisense knockdown of huntingtin could be a useful strategy for treatment of HD, and could also be suitable for studies of the normal and pathological function of huntingtin in different cellular model systems....

  5. Identification of a recombinant inulin fructotransferase (difructose dianhydride III forming) from Arthrobacter sp. 161MFSha2.1 with high specific activity and remarkable thermostability.

    Science.gov (United States)

    Wang, Xiao; Yu, Shuhuai; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2015-04-08

    Difructose dianhydride III (DFA III) is a functional carbohydrate produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). In this work, an IFTase gene from Arthrobacter sp. 161MFSha2.1 was cloned and expressed in Escherachia coli. The recombinant enzyme was purified by metal affinity chromatography. It showed significant inulin hydrolysis activity, and the produced main product from inulin was determined as DFA III by nuclear magnetic resonance analysis. The molecular mass of the purified protein was calculated to be 43 and 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively, suggesting the native enzyme might be a homotrimer. The recombinant enzyme showed maximal activity as 2391 units/mg at pH 6.5 and 55 °C. It displayed the highest thermostability among previously reported IFTases (DFA III forming) and was stable up to 80 °C for 4 h of incubation. The smallest substrate was determined as nystose. The conversion ratio of inulin to DFA III reached 81% when 100 g/L inulin was catalyzed by 80 nM recombinant enzyme for 20 min at pH 6.5 and 55 °C. All of these data indicated that the IFTase (DFA III forming) from Arthrobacter sp. 161MFSha2.1 had great potential for industrial DFA III production.

  6. Characterisation of the thermostable protease AprX in strains of Pseudomonas fluorescens and impact on the shelf-life of dairy products: preliminary results

    Directory of Open Access Journals (Sweden)

    Nadia Andrea Andreani

    2016-12-01

    Full Text Available Bacterial proteases are involved in food spoilage and shelf-life reduction. Among the bacterial proteases, a predominant role in spoilage of dairy products seems to be played by the thermostable metallo-protease AprX, which is produced by various strains of Pseudomonas fluorescens. Differences in AprX enzyme activity among different strains were highlighted, but the most proteolytic strains were not identified. In this study, the presence of the aprX gene was evaluated in 69 strains isolated from food matrices and 18 reference strains belonging to the P. fluorescens group, which had been previously typed by the multi locus sequence typing method. Subsequently, a subset of reference strains was inoculated in ultra-high temperature milk, and the expression of the aprX gene was evaluated at 22 and 6°C. On the same milk samples, the proteolytic activity was then evaluated through Azocasein and trinitrobenzenesulfonic acid solution assays. Finally, to assess the applicability of the former assay directly on dairy products the proteolityc activity was tested on industrial ricotta samples using the Azocasein assay. These results demonstrate the spread of aprX gene in most strains tested and the applicability of Azocasein assay to monitor the proteolytic activity in dairy products.

  7. EMS mutant spectra generated by multi-parameter flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Keysar, Stephen B. [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Fox, Michael H., E-mail: michael.fox@colostate.edu [Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO (United States); Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO (United States)

    2009-12-01

    The CHO A{sub L} cell line contains a single copy of human chromosome 11 that encodes several cell surface proteins including glycosyl phosphatidylinositol (GPI) linked CD59 and CD90, as well as CD98, CD44 and CD151 which are not GPI-linked. The flow cytometry mutation assay (FCMA) measures mutations of the CD59 gene by the absence of fluorescence when stained with antibodies against the CD59 cell surface protein. We have measured simultaneous mutations in CD59, CD44, CD90, CD98 and CD151 to generate a mutant spectrum for ionizing radiation. After treatment with ethyl methanesulfonate (EMS) many cells have an intermediate level of CD59 staining. Single cells were sorted from CD59{sup -} regions with varying levels of fluorescence and the resulting clonal populations had a stable phenotype for CD59 expression. Mutant spectra were generated by flow cytometry using the isolated clones and nearly all clones were mutated in CD59 only. Interestingly, about 60% of the CD59 negative clones were actually GPI mutants determined by staining with the GPI specific fluorescently labeled bacterial toxin aerolysin (FLAER). The GPI negative cells are most likely caused by mutations in the X-linked pigA gene important in GPI biosynthesis. Small mutations of pigA and CD59 were expected for the alkylating agent EMS and the resulting spectra are significantly different than the large deletions found when analyzing radiation mutants. After analyzing the CD59{sup -} clonal populations we have adjusted the FCMA mutant regions from 1% to 10% of the mean of the CD59 positive peak to include the majority of CD59 mutants.

  8. Thermostability of Multidomain Proteins: Elongation Factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and Their Chimeric Forms

    Czech Academy of Sciences Publication Activity Database

    Šanderová, Hana; Hůlková, Marta; Maloň, Petr; Kepková, M.; Jonák, Jiří

    2004-01-01

    Roč. 13, č. 1 (2004), s. 89-99 ISSN 0961-8368 R&D Projects: GA AV ČR IPP1050128; GA ČR GA204/98/0863; GA ČR GA303/02/0689 Institutional research plan: CEZ:AV0Z4055905; CEZ:AV0Z5052915 Keywords : elongation factor EF-Tu, thermostability, chimeric protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.116, year: 2004

  9. Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide.

    Science.gov (United States)

    Liu, Yi; Cui, Wenjing; Liu, Zhongmei; Cui, Youtian; Xia, Yuanyuan; Kobayashi, Michihiko; Zhou, Zhemin

    2014-09-01

    Self-assembling amphipathic peptides (SAPs) are the peptides that can spontaneously assemble into ordered nanostructures. It has been reported that the attachment of SAPs to the N- or C-terminus of an enzyme can benefit the thermo-stability of the enzyme. Here, we discovered that the thermo-stability and product tolerance of nitrile hydratase (NHase) were enhanced by fusing with two of the SAPs (EAK16 and ELK16). When the ELK16 was fused to the N-terminus of β-subunit, the resultant NHase (SAP-NHase-2) became an active inclusion body; EAK16 fused NHase in the N-terminus of β-subunit (SAP-NHase-1) and ELK16 fused NHase in the C-terminus of β-subunit (SAP-NHase-10) did not affect NHase solubility. Compared with the deactivation of the wild-type NHase after 30 min incubation at 50°C, SAP-NHase-1, SAP-NHase-2 and SAP-NHase-10 retained 45%, 30% and 50% activity; after treatment in the buffer containing 10% acrylamide, the wild-type retained 30% activity, while SAP-NHase-1, SAP-NHase-2 and SAP-NHase-10 retained 52%, 42% and 55% activity. These SAP-NHases with enhanced thermo-stability and product tolerance would be helpful for further industrial applications of the NHase. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Development of thermostable Peste des Petits Ruminants (PPR) virus vaccine and assessment of molecular changes in the F gene

    International Nuclear Information System (INIS)

    Palaniswami, K.S.; Thangavelu, A.; Velmurugan, R.

    2005-01-01

    Two Indian PPRV isolates were subjected to thermal hardening procedures to increase the proportion of temperature-resistant virions. Initial infectivity loss was compensated by titre increases on subsequent cell passages at 37 deg C. The immunogenicity of 'thermostable' viruses was assessed by virulent PPRV challenge and for safety by host animal inoculation and antibodies assessment. Vaccine viruses were not found using PCR on ocular and nasal swabs, although virus nucleic acid and antigens were demonstrated in spleen and lymph nodes by FAT and PCR. One vaccine strain (MIB187(T)) giving 100% protection (tested on only a few animals) was freeze dried and the minimum protective dose calculated. Changes in the virus genome after thermo-adaptation were examined using RT-PCR to amplify portions of the F gene, and three base changes were observed in the thermostable PPR strain (compared with the F gene sequence of the Nigerian PPRV strain). At room temperature, the titre and potency of the thermo-adapted vaccine remained constant up to one month at the10 5.5 TCID 50 level, and was 10 4.5 TCID 50 /100 μl after two months. Field trials with over 40 000 doses of the thermostable vaccine under various environmental conditions have given serum neutralization titres exceeding 2 3 and are assumed protective. (author)

  11. Transgenic mice display hair loss and regrowth overexpressing mutant Hr gene.

    Science.gov (United States)

    Zhu, Kuicheng; Xu, Cunshuan; Zhang, Jintao; Chen, Yingying; Liu, Mengduan

    2017-10-30

    Mutations in the hairless (Hr) gene in both mice and humans have been implicated in the development of congenital atrichia, but the role of Hr in skin and hair follicle (HF) biology remains unknown. Here, we established transgenic mice (TG) overexpressing mutant Hr to investigate its specific role in the development of HF. Three transgenic lines were successfully constructed, and two of them (TG3 and TG8) displayed a pattern of hair loss and regrowth with alternation in the expression of HR protein. The mutant Hr gene inhibited the expression of the endogenous gene in transgenic individuals, which led to the development of alopecia. Interestingly, the hair regrew with the increase in the endogenous expression levels resulting from decreased mutant Hr expression. The findings of our study indicate that the changes in the expression of Hr result in hair loss or regrowth.

  12. Potent inhibition of HIV-1 replication by a Tat mutant.

    Directory of Open Access Journals (Sweden)

    Luke W Meredith

    Full Text Available Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.

  13. PNRI mutant variety: Cordyline 'Afable'

    International Nuclear Information System (INIS)

    Aurigue, Fernando B.

    2012-01-01

    Cordyline 'Afable', registered by the Philippine Nuclear Research Institute as NSIC 2009 Or-83, is an induced mutant developed from Cordyline 'Kiwi' by treating stem cuttings with acute gamma radiation from a Cobalt-60 source. The new mutant is identical to Cordyline 'Kiwi' in growth habit but differs in foliage color, and exhibits field resistance to Phytophthora sp., a fungus that causes leaf blight and rot in Ti plants. Results of this mutation breeding experiment showed that leaf color was altered by gamma irradiation and resistance to fungal diseases was improved. It also demonstrated how mutations that occur in nature may be generated artificially. Propagation of cordyline 'Afable' is true-to-type by vegetative propagation methods, such as separation of suckers and offshoots, shoot tip cutting, and top cutting. Aside from landscaping material, terrarium or dish-garden plant, it is ideal as containerized plant for indoor and outdoor use. The leaves or shoots may be harvested as cut foliage for flower arrangements. (author)

  14. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  15. Gamma ray induced mutants in Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, K; Jos, J S [Central Tuber Crops Research Institute, Trivandrum, Kerala (India)

    1988-07-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M{sub 1}V{sub 1} generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m{sup 2} area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing.

  16. Field-acclimated Gossypium hirsutum cultivars exhibit genotypic and seasonal differences in photosystem II thermostability.

    Science.gov (United States)

    Snider, John L; Oosterhuis, Derrick M; Collins, Guy D; Pilon, Cristiane; Fitzsimons, Toby R

    2013-03-15

    Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between

  17. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  18. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.

    Science.gov (United States)

    Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J; Aghera, Nilesh; Varadarajan, Raghavan

    2016-11-01

    Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95 pdz3 ) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    Science.gov (United States)

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Carbohydrate-Based Ice Recrystallization Inhibitors Increase Infectivity and Thermostability of Viral Vectors

    Science.gov (United States)

    Ghobadloo, Shahrokh M.; Balcerzak, Anna K.; Gargaun, Ana; Muharemagic, Darija; Mironov, Gleb G.; Capicciotti, Chantelle J.; Briard, Jennie G.; Ben, Robert N.; Berezovski, Maxim V.

    2014-07-01

    The inability of vaccines to retain sufficient thermostability has been an obstacle to global vaccination programs. To address this major limitation, we utilized carbohydrate-based ice recrystallization inhibitors (IRIs) to eliminate the cold chain and stabilize the potency of Vaccinia virus (VV), Vesicular Stomatitis virus (VSV) and Herpes virus-1 (HSV-1). The impact of these IRIs was tested on the potency of the viral vectors using a plaque forming unit assay following room temperature storage, cryopreservation with successive freeze-thaw cycles and lyophilization. Viral potency after storage with all three conditions demonstrated that N-octyl-gluconamide (NOGlc) recovered the infectivity of shelf stored VV, 5.6 Log10 PFU mL-1 during 40 days, and HSV-1, 2.7 Log10 PFU mL-1 during 9 days. Carbon-linked antifreeze glycoprotein analogue ornithine-glycine-glycine-galactose (OGG-Gal) increases the recovery of VV and VSV more than 1 Log10 PFU mL-1 after 10 freeze-thaw cycles. In VSV, cryostorage with OGG-Gal maintains high infectivity and reduces temperature-induced aggregation of viral particles by 2 times that of the control. In total, OGG-Gal and NOGlc preserve virus potency during cryostorage. Remarkably, NOGlc has potential to eliminate the cold chain and permit room temperature storage of viral vectors.

  1. On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes.

    Science.gov (United States)

    Maier, Manfred; Radtke, Carsten P; Hubbuch, Jürgen; Niemeyer, Christof M; Rabe, Kersten S

    2018-05-04

    The compartmentalization of chemical reactions is an essential principle of life that provides a major source of innovation for the development of novel approaches in biocatalysis. To implement spatially controlled biotransformations, rapid manufacturing methods are needed for the production of biocatalysts that can be applied in flow systems. Whereas three-dimensional (3D) printing techniques offer high-throughput manufacturing capability, they are usually not compatible with the delicate nature of enzymes, which call for physiological processing parameters. We herein demonstrate the utility of thermostable enzymes in the generation of biocatalytic agarose-based inks for a simple temperature-controlled 3D printing process. As examples we utilized an esterase and an alcohol dehydrogenase from thermophilic organisms as well as a decarboxylase that was thermostabilized by directed protein evolution. We used the resulting 3D-printed parts for a continuous, two-step sequential biotransformation in a fluidic setup. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermostable Bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment.

    Science.gov (United States)

    Smitha, S; Bhat, S G

    2013-03-01

    To isolate and characterize bacteriocin, BL8, from the bacteria identified as Bacillus licheniformis from marine environment. One-hundred and twelve bacterial isolates from sediment and water samples collected off the coast of Cochin, India, were screened for antibacterial activity. Strain BTHT8, identified as Bacillus licheniformis, inhibited the growth of Gram-positive test organisms. The active component labelled as bacteriocin BL8 was partially purified by ammonium sulphate fractionation and was subjected to glycine SDS-PAGE. The band exhibiting antimicrobial activity was electroeluted and analysed using MALDI-TOF mass spectrometry, and the molecular mass was determined as 1.4 kDa. N-terminal amino acid sequencing of BL8 gave a 13 amino acid sequence stretch. Bacteriocin BL8 was stable even after boiling at 100 °C for 30 min and over a wide pH range of 1-12. A novel, pH-tolerant and thermostable bacteriocin BL8, active against the tested Gram-positive bacteria, was isolated from Bacillus licheniformis. This study reports a stable, low molecular weight bacteriocin from Bacillus licheniformis. This bacteriocin can be used to address two important applications: as a therapeutic agent and as a biopreservative in food processing industry. © 2012 The Society for Applied Microbiology.

  3. High yield recombinant thermostable α-amylase production using an improved Bacillus licheniformis system

    Directory of Open Access Journals (Sweden)

    Shi Gui-Yang

    2009-10-01

    Full Text Available Abstract Background Some strains of Bacillus licheniformis have been improved by target-directed screening as well as by classical genetic manipulation and used in commercial thermostable α-amylase and alkaline protease production for over 40 years. Further improvements in production of these enzymes are desirable. Results A new strain of B. licheniformis CBBD302 carrying a recombinant plasmid pHY-amyL for Bacillus licheniformis α-amylase (BLA production was constructed. The combination of target-directed screening and genetic recombination led to an approximately 26-fold improvement of BLA production and export in B. licheniformis. Furthermore, a low-cost fermentation medium containing soybean meal and cottonseed meal for BLA production in shake-flasks and in a 15 liter bioreactor was developed and a BLA concentration of up to 17.6 mg per ml growth medium was attained. Conclusion This production level of BLA by B. licheniformis CBBD302(pHY-amyL is amongst the highest levels in Gram-positive bacteria reported so far.

  4. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes.

    Science.gov (United States)

    Annamalai, Neelamegam; Rajeswari, Mayavan Veeramuthu; Elayaraja, Sivaramasamy; Balasubramanian, Thangavel

    2013-04-15

    An extracellular thermostable, haloalkaline cellulase by bioconversion of lignocellulosic wastes from Bacillus halodurans CAS 1 was purified to homogeneity with recovery of 12.54% and purity fold 7.96 with the molecular weight of 44 kDa. The optimum temperature, pH and NaCl for enzyme activity was determined as 60°C, 9.0 and 30% and it retained 80% of activity even at 80°C, 12 and 35% respectively. The activity was greatly inhibited by EDTA, indicating that it was a metalloenzyme and significant inhibition by PMSF revealed that serine residue was essential for catalytic activity. The purified cellulase hydrolyzed CMC, cellobiose and xylan, but not avicel, cellulose and PNPG. Furthermore, the cellulase was highly stable in the presence of detergents and organic solvents such as acetone, n-hexane and acetonitrile. Thus, the purified cellulase from B. halodurans utilizing lignocellulosic biomass could be greatly useful to develop industrial processes. Published by Elsevier Ltd.

  5. Thermostable phycocyanin from the red microalga Cyanidioschyzon merolae, a new natural blue food colorant.

    Science.gov (United States)

    Rahman, D Y; Sarian, F D; van Wijk, A; Martinez-Garcia, M; van der Maarel, M J E C

    2017-01-01

    The demand for natural food colorants is growing as consumers question the use of artificial colorants more and more. The phycobiliprotein C-phycocyanin of Arthospira platensis is used as a natural blue colorant in certain food products. The thermoacidophilic red microalga Cyanidioschyzon merolae might provide an alternative source of phycocyanin. Cyanidioschyzon merolae belongs to the order Cyanidiophyceae of the phylum Rhodophyta. Its natural habitat are sulfuric hot springs and geysers found near volcanic areas in, e.g., Yellowstone National Park in the USA and in Java, Indonesia. It grows optimally at a pH between 0.5 and 3.0 and at temperatures up to 56 °C. The low pH at which C . merolae grows minimizes the risk of microbial contamination and could limit production loss. As C . merolae lacks a cell wall, phycocyanin with a high purity number of 9.9 could be extracted by an osmotic shock using a simple ultrapure water extraction followed by centrifugation. The denaturation midpoint at pH 5 was 83 °C, being considerably higher than the A . platensis phycocyanin (65 °C). The C . merolae phycocyanin was relatively stable at pH 4 and 5 up to 80 °C. The high thermostability at slightly acidic pH makes the C . merolae phycocyanin an interesting alternative to A . platensis phycocyanin as a natural blue food colorant.

  6. Reconstitution of β-carotene hydroxylase activity of thermostable CYP175A1 monooxygenase

    International Nuclear Information System (INIS)

    Momoi, Kyoko; Hofmann, Ute; Schmid, Rolf D.; Urlacher, Vlada B.

    2006-01-01

    CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards β-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 o C. In this system, β-carotene was hydroxylated to β-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low β-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated β-carotene at 3- and also 3'-positions, resulting in β-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol β-cryptoxanthin produced per nmol P450 per min

  7. Not so monofunctional--a case of thermostable Thermobifida fusca catalase with peroxidase activity.

    Science.gov (United States)

    Lončar, Nikola; Fraaije, Marco W

    2015-03-01

    Thermobifida fusca is a mesothermophilic organism known for its ability to degrade plant biomass and other organics, and it was demonstrated that it represents a rich resource of genes encoding for potent enzymes for biocatalysis. The thermostable catalase from T. fusca has been cloned and overexpressed in Escherichia coli with a yield of 400 mg/L. Heat treatment of disrupted cells at 60 °C for 1 h resulted in enzyme preparation of high purity; hence, no chromatography steps are needed for large-scale production. Except for catalyzing the dismutation of hydrogen peroxide, TfuCat was also found to catalyze oxidations of phenolic compounds. The catalase activity was comparable to other described catalases while peroxidase activity was quite remarkable with a k obs of nearly 1000 s(-1) for catechol. Site directed mutagenesis was used to alter the ratio of peroxidase/catalase activity. Resistance to inhibition by classic catalase inhibitors and an apparent melting temperature of 74 °C classifies this enzyme as a robust biocatalyst. As such, it could compete with other commercially available catalases while the relatively high peroxidase activity also offers new biocatalytic possibilities.

  8. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable.

    Science.gov (United States)

    Poirier, Danielle; Renaud, Frédéric; Dewar, Vincent; Strodiot, Laurent; Wauters, Florence; Janimak, Jim; Shimada, Toshio; Nomura, Tatsuya; Kabata, Koki; Kuruma, Koji; Kusano, Takayuki; Sakai, Masaki; Nagasaki, Hideo; Oyamada, Takayoshi

    2017-11-01

    Alternatives to syringe-based administration are considered for vaccines. Intradermal vaccination with dissolvable microneedle arrays (MNA) appears promising in this respect, as an easy-to-use and painless method. In this work, we have developed an MNA patch (MNAP) made of hydroxyethyl starch (HES) and chondroitin sulphate (CS). In swines, hepatitis B surface antigen (HBsAg) formulated with the saponin QS-21 as adjuvant, both incorporated in HES-based MNAP, demonstrated the same level of immunogenicity as a commercially available aluminum-adjuvanted HBsAg vaccine, after two immunizations 28 days apart. MNAP application was associated with transient skin reactions (erythema, lump, scab), particularly evident when the antigen was delivered with the adjuvant. The thermostability of the adjuvanted antigen when incorporated in the HES-based matrix was also assessed by storing MNAP at 37, 45 or 50 °C for up to 6 months. We could demonstrate that antigenicity was retained at 37 and 45 °C and only a 10% loss was observed after 6 months at 50 °C. Our results are supportive of MNAP as an attractive alternative to classical syringe-based vaccination. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The effect of different stabilizers on the thermostability of electron beam crosslinked polyethylene in hot water

    International Nuclear Information System (INIS)

    Hassanpour, S.; Khoylou, F.

    2003-01-01

    Plastic pipes owing to their flexibility, great lengths, easier handling and absence of corrosion have been used for hot-water installations. Crosslinked high-density polyethylene is one of the best materials, being used for this purpose. The useful lifetime of unstabilized polyethylene is predicted to vary from a few months in hot water (30-40 deg. C) to almost two years in cool water (0-10 deg. C). Polyethylene was mixed with different types of stabilizers, in order to increase its durability. The samples were irradiated at 100-150 kGy. The amount of gel fraction and the changes in mechanical properties were measured. Irradiated samples were immersed in hot water for 1000 h. The thermostability of the specimens and the existence of antioxidants were measured by the induction time technique using differential scanning calorimetry at different time intervals. Furthermore, the changes in chemical structure and mechanical properties of the samples during their immersion in hot water were determined

  10. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability.

    Science.gov (United States)

    Scott, Katherine A; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E; Stuart, David I; Charleston, Bryan; Maree, Francois F

    2017-05-15

    Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for

  11. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Studies on reduced height mutants in rice

    International Nuclear Information System (INIS)

    Narahari, P.; Bhagwat, S.G.

    1984-01-01

    Two cross-bred derivatives of the mutant TR5xTR17 and TR21 continued to show promise and were advanced to wider scale testing. TR5 was found to carry a semi-dwarfing gene different from that in IR8. New semi-dwarf mutants were screened from M 2 through M 4 from two separate radiation experiments. The gibberellin response of seedlings of mutant and tester strains was evaluated and crosses of tester stocks and mutant semi-dwarfs were made for genetic analyses. (author)

  13. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters

    Directory of Open Access Journals (Sweden)

    Hüseyin Ilgü

    2018-03-01

    Full Text Available The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures (Tms of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg, agmatine, l-arginine methyl ester, and l-arginine amide. The resulting Tms indicated stabilization of AdiC variants upon ligand binding, in which Tms and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5, an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  14. Effects of Mutations and Ligands on the Thermostability of the l-Arginine/Agmatine Antiporter AdiC and Deduced Insights into Ligand-Binding of Human l-Type Amino Acid Transporters.

    Science.gov (United States)

    Ilgü, Hüseyin; Jeckelmann, Jean-Marc; Colas, Claire; Ucurum, Zöhre; Schlessinger, Avner; Fotiadis, Dimitrios

    2018-03-20

    The l-arginine/agmatine transporter AdiC is a prokaryotic member of the SLC7 family, which enables pathogenic enterobacteria to survive the extremely acidic gastric environment. Wild-type AdiC from Escherichia coli, as well as its previously reported point mutants N22A and S26A, were overexpressed homologously and purified to homogeneity. A size-exclusion chromatography-based thermostability assay was used to determine the melting temperatures ( T m s) of the purified AdiC variants in the absence and presence of the selected ligands l-arginine (Arg), agmatine, l-arginine methyl ester, and l-arginine amide. The resulting T m s indicated stabilization of AdiC variants upon ligand binding, in which T m s and ligand binding affinities correlated positively. Considering results from this and previous studies, we revisited the role of AdiC residue S26 in Arg binding and proposed interactions of the α-carboxylate group of Arg exclusively with amide groups of the AdiC backbone. In the context of substrate binding in the human SLC7 family member l-type amino acid transporter-1 (LAT1; SLC7A5), an analogous role of S66 in LAT1 to S26 in AdiC is discussed based on homology modeling and amino acid sequence analysis. Finally, we propose a binding mechanism for l-amino acid substrates to LATs from the SLC7 family.

  15. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    Science.gov (United States)

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  16. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    ." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  17. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.

    Science.gov (United States)

    Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G

    2002-07-01

    Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.

  18. Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light

    International Nuclear Information System (INIS)

    Rocchi, P.; Ferreri, A.M.; Capucci, A.; Prodi, G.

    1981-01-01

    Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency (less than 8 x 10(-6)). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTr) mutants up to 1000-fold. The maximum recovery of DTr mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages

  19. Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light

    International Nuclear Information System (INIS)

    Rocchi, P.; Ferreri, A.M.; Capucci, A.; Prodi, G.

    1981-01-01

    Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency ( -6 ). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTsup(r)) mutants up to 1000-fold. The maximum recovery of DTsup(r) mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages. (author)

  20. Expression of Recombinant Human Butyrylcholinesterase

    National Research Council Canada - National Science Library

    Lockridge, Oksana

    1997-01-01

    .... The G117H enzyme has the potential to be useful for decontamination of skin and eye. To determine how many amino acids could be deleted from butyrylcholinesterase without loss of activity, deletion mutants were expressed...

  1. Histological Characterization of the Dicer1 Mutant Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Saeed Akhtar

    2015-01-01

    Full Text Available DICER1, a multidomain RNase III endoribonuclease, plays a critical role in microRNA (miRNA and RNA-interference (RNAi functional pathways. Loss of Dicer1 affects different developmental processes. Dicer1 is essential for retinal development and maintenance. DICER1 was recently shown to have another function of silencing the toxicity of Alu RNAs in retinal pigment epithelium (RPE cells, which are involved in the pathogenesis of age related macular degeneration. In this study, we characterized a Dicer1 mutant fish line, which carries a nonsense mutation (W1457Ter induced by N-ethyl-N-nitrosourea mutagenesis. Zebrafish DICER1 protein is highly conserved in the evolution. Zebrafish Dicer1 is expressed at the earliest stages of zebrafish development and persists into late developmental stages; it is widely expressed in adult tissues. Homozygous Dicer1 mutant fish (DICER1W1457Ter/W1457Ter have an arrest in early growth with significantly smaller eyes and are dead at 14–18 dpf. Heterozygous Dicer1 mutant fish have similar retinal structure to that of control fish; the retinal pigment epithelium (RPE cells are normal with no sign of degeneration at the age of 20 months.

  2. Genetic fingerprinting of mutant rose cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, K V; Singh, K P; Singh, A.P. [Division of Floriculture and Landscaping, Indian Agricultural Research Institute, Pusa, New Delhi (India)], E-mail: kvprasad66@gmail.com

    2008-07-01

    Six rose mutants evolved at the Indian Agricultural Research Institute, New Delhi from four parent cultivars were characterized based on RAPD markers. Contrary to the earlier findings our effort has conclusively proven that the RAPD markers are indeed robust tools to discern the mutants from their parents. Among 40 primers screened, 7 primers produced inconsistent banding pattern. The number of polymorphic bands varied between 4 (OPA 14) and 10 (OPA1) with an average of 6.5 bands per primer. The percentage polymorphism ranged from 62.5 (OPM 9) to 100 percent (OPA 1). Most of the primers produced monomorphic bands between parent and mutant rose cultivars. When primer OPA 2 was used a specific band of 2.5 kb was noticed in mutant cv. Pusa Urmil and cv. Pusa Abhishek but was absent in parent cv. Jantar Mantar. A polymorphic band of 750 bp was noticed in the parent Kiss of Fire and helped in differentiating the parent from its mutant when amplified with OPK 3. Primer OPS 16 produced discriminatory band of 800 bp in mutant cv. Pink Sport of Montezuma while it was absent in its parent cv. Montezuma. Another specific band of 650 bp was present in parent cv. Montezuma and absent in its mutant cv. Pink Sport of Montezuma signifying the uniqueness of the mutant. Primer OPM 5 brought out distinct polymorphism among the parent Jantar Mantar and its three mutants with absence of a specific band of 1.5 kb in the parent. The four parents and 6 mutants were divided into four distinct groups in the Dendogram constructed by UPGMA method. The most genetically similar cultivar among the 10 cultivars analyzed are Montezuma and its pink sport of Montezuma whereas Abhisarika a mutant of cv. Kiss of Fire was distinctly different and formed a separate cluster. (author)

  3. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    Science.gov (United States)

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  4. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-06-01

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43 Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43 Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  5. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    Compared to the wild CC-124, these mutants are characterized by a decrease in chlorophyll a & b content and an increase in carotenoids. The lowest decrease in chlorophyll a was 3 to 4 folds, while the highest increase in carotenoids was 2 to 4 folds. The result of bio-test, using the resulting pigment mutant of C. reinhardtii ...

  7. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization.

    Directory of Open Access Journals (Sweden)

    Huiping Liu

    Full Text Available Laccases have been used for the decolorization and detoxification of synthetic dyes due to their ability to oxidize a wide variety of dyes with water as the sole byproduct. A putative laccase gene (LacTT from Thermus thermophilus SG0.5JP17-16 was screened using the genome mining approach, and it was highly expressed in Pichia pastoris, yielding a high laccase activity of 6130 U/L in a 10-L fermentor. The LacTT open reading frame encoded a protein of 466 amino acid residues with four putative Cu-binding regions. The optimal pH of the recombinant LacTT was 4.5, 6.0, 7.5 and 8.0 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonic acid (ABTS, syringaldazine (SGZ, guaiacol, and 2,6-dimethoxyphenol (2,6-DMP as the substrate, respectively. The optimal temperature of LacTT was 90°C with guaiacol as the substrate. LacTT was highly stable at pH 4.0-11.0 and thermostable at 40°C-90°C, confirming that it is a pH-stable and thermostable laccase. Furthermore, LacTT also exhibited high tolerance to halides such as NaCl, NaBr and NaF, and decolorized 100%, 94%, 94% and 73% of Congo Red, Reactive Black B and Reactive Black WNN, and Remazol Brilliant Blue R, respectively. Interestingly, addition of high concentration of NaCl increased the RBBR decolorization efficiency of LacTT. These results suggest that LacTT is a good candidate for industrial applications such as dyestuff processing and degradation of dyes in textile wastewaters.

  8. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  9. A mutant of a mutant of a mutant of a ...: Irradiation of progressive radiation-induced mutants in a mutation-breeding programme with Chrysanthenum morifolium RAM

    International Nuclear Information System (INIS)

    Broertjes, C.; Koene, P.; Veen, J.W.H. van.

    1980-01-01

    Radiation-induced sports in Chrysanthemum morifolium RAM. have been reported for several years. It has become an everyday practice to produce flower-colour mutants from outstanding cross-breeding products, even before they are distributed for the commercial production of cut flowers. One of the most successful and recent examples is that of cv. Horim, of which hundreds of mutants were produced by successive use of radiation-induced mutants in the mutation-breeding programme. Over about 4 years a variety of flower-colour mutants was obtained, not only largely including the outstanding characteristics of the original cultivar but sometimes even with an appreciable improvement in quality and yield. It is expected that the latter types, the Miros group, will soon completely supersede the spontaneous or raditation-induced Horim sports and mutants and take over the leading position of the Horim group in the production of all-year-round (AYR) cut-flowers. (orig.)

  10. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    Science.gov (United States)

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  11. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis.

    Science.gov (United States)

    Marty, Caroline; Pecquet, Christian; Nivarthi, Harini; El-Khoury, Mira; Chachoua, Ilyas; Tulliez, Micheline; Villeval, Jean-Luc; Raslova, Hana; Kralovics, Robert; Constantinescu, Stefan N; Plo, Isabelle; Vainchenker, William

    2016-03-10

    Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation. © 2016 by The American Society of Hematology.

  12. Los mutantes de la escuela

    Directory of Open Access Journals (Sweden)

    Diego Armando Jaramillo-Ocampo

    2013-01-01

    Full Text Available El presente artículo muestra los resultados parciales del estudio “Juegos en el recreo escolar: un escenario para la formación ciudadana”, cuya pretensión fue comprender los imaginarios sociales de juego en el recreo escolar y su relación con la convivencia social desde la proximidad del enfoque de complementariedad y el diseño de investigación emergente, planteado por Murcia y Jaramillo (2008. Se presentan los desarrollos logrados en dos categorías centrales del estudio: el patio y el cuerpo; dos categorías que mutan constantemente como entidades vivas en la escuela, hacia la configuración de sujetos que reconocen en el otro y lo otro su posibilidad. La escuela viva, donde es posible “ser en relación con”… se reduce a un espacio temporal y físico, limitado por la campana, “el recreo”. El texto muestra, desde la voz de los actores, esa vida que se da y se quita en la escuela y que se posiciona como una más de las imposiciones normalizadas para controlar. Reconoce, finalmente, una propuesta desde la posibilidad que estos dos mutantes propician para una escuela libre y dinámica.

  13. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Optimization of Thermostable Alpha-Amylase Production Via Mix Agricultural-Residues and Bacillus amyloliquefaciens

    Directory of Open Access Journals (Sweden)

    Shalini RAI

    2014-03-01

    Full Text Available This study reports utilization of mixture of wheat and barley bran (1:1 for the production of thermostable alpha-amylase enzyme through a spore former, heat tolerant strain of Bacillus amyloliquefaciens in solid state fermentation. Maximum yield of alpha-amylase (252.77 U mL-1 was obtained in following optimized conditions, inoculums size 2 mL (2 × 106 CFU/mL, moisture 80%, pH 7±0.02, NaCl (3%, temperature 38±1°C, incubation for 72 h, maltose (1% and tryptone (1%. After SSF crude enzyme was purified via ammonium sulfate precipitation, ion exchange and column chromatography by DEAE Cellulose. Purified protein showed a molecular weight of 42 kDa by SDS-PAGE electrophoresis. After purification, purified enzyme was characterized against several enzymes inhibitors such as temperature, NaCl, pH, metal and surfactants. Pure enzyme was highly active over broad temperature (50-70°C, NaCl concentration (0.5-4 M, and pH (6-10 ranges, indicating it’s a thermoactive and alkali-stable nature. Moreover, CaCl2, MnCl2, =-mercaptoethanol were found to stimulate the amylase activity, whereas FeCl3, sodium dodecyl sulfate (SDS, CuCl3 and ethylenediaminetetraacetic acid (EDTA strongly inhibited the enzyme. Moreover, enzyme specificity and thermal stability conformed by degradation of different soluble starch up to 55°C. Therefore, the present study proved that the extracellular alpha-amylase extracted through wheat flour residues by organism B. amyloliquefaciens MCCB0075, both have considerable potential for industrial application owing to its properties.

  15. Evaluation of enhanced thermostability and operational stability of carbonic anhydrase from Micrococcus species.

    Science.gov (United States)

    Bhattacharya, Abhishek; Shrivastava, Ankita; Sharma, Anjana

    2013-06-01

    Carbonic anhydrase (CA) was purified from Micrococcus lylae and Micrococcus luteus with 49.90 and 53.8 % yield, respectively, isolated from calcium carbonate kilns. CA from M. lylae retained 80 % stability in the pH and temperature range of 6.0-8.0 and 35-45 °C, respectively. However, CA from M. luteus was stable in the pH and temperature range of 7.5-10.0 and 35-55 °C, respectively. Cross-linked enzyme aggregates (CLEAs) raised the transition temperature of M. lylae and M. luteus CA up to 67.5 and 74.0 °C, while the operational stability (T(1/20) of CA at 55 °C was calculated to be 7.7 and 12.0 h, respectively. CA from both the strains was found to be monomeric in nature with subunit molecular weight and molecular mass of 29 kDa. Ethoxozolamide was identified as the most potent inhibitor based on both IC(50) values and inhibitory constant measurement (K(i)). The K(m) and V(max) for M. lylae CA (2.31 mM; 769.23 μmol/mg/min) and M. luteus CA (2.0 mM; 1,000 μmol/mg/min) were calculated from Lineweaver-Burk plots in terms of esterase activity. Enhanced thermostability of CLEAs alleviates its role in operational stability for application at an on-site scrubber. The characteristic profile of purified CA from Micrococcus spp. advocates its effective application in biomimetic CO(2) sequestration.

  16. Production, Purification, and Characterization of Thermostable α-Amylase Produced by Bacillus licheniformis Isolate AI20

    Directory of Open Access Journals (Sweden)

    Yasser R. Abdel-Fattah

    2013-01-01

    Full Text Available An optimization strategy, based on statistical experimental design, is employed to enhance the production of thermostable α-amylase by a thermotolerant B. licheniformis AI20 isolate. Using one variant at time (OVAT method, starch, yeast extract, and CaCl2 were observed to influence the enzyme production significantly. Thereafter, the response surface methodology (RSM was adopted to acquire the best process conditions among the selected variables, where a three-level Box-Behnken design was employed to create a polynomial quadratic model correlating the relationship between the three variables and α-amylase activity. The optimal combination of the major constituents of media for α-amylase production was 1.0% starch, 0.75% yeast extract, and 0.02% CaCl2. The predicted optimum α-amylase activity was 384 U/mL/min, which is two folds more than the basal medium conditions. The produced α-amylase was purified through various chromatographic techniques. The estimated enzyme molecular mass was 55 kDa and the α-amylase had an optimal temperature and pH of 60–80°C and 6–7.5, respectively. Values of Vmax and Km for the purified enzyme were 454 mU/mg and 0.709 mg/mL. The α-amylase enzyme showed great stability against different solvents. Additionally, the enzyme activity was slightly inhibited by detergents, sodium dodecyl sulphate (SDS, or chelating agents such as EDTA and EGTA. On the other hand, great enzyme stability against different divalent metal ions was observed at 0.1 mM concentration, but 10 mM of Cu2+ or Zn2+ reduced the enzyme activity by 25 and 55%, respectively.

  17. Studies for methods to improve thermostability of the functionalized butadiene styrene rubbers

    Directory of Open Access Journals (Sweden)

    A. L. Rumyantseva

    2018-01-01

    Full Text Available It is well known that the tire performance properties can deteriorate in the processes of production, processing, storage and operation. One of the reasons for that is a series of processes occurring in the polymer under the influence of different factors: thermal, mechanical or chemical. This problem is particularly relevant for functionalized polymers, as functional groups can interact with each other, causing side cross linking reactions that lead to a deterioration of consumer properties of the products. The main purpose of this work was to study influence of several key factors on the thermostability of functionalized rubbers in order to find a solution: different types of antioxidants, rubber polymerizate stripping conditions and rubber processing. In accordance with the problem, solutions were found and work was carried out in several directions: changing the pH of the medium in the rubber stripping and using antioxidants containing carbonyl groups located in ?-positions to methylene groups, namely Irganox 1520 and Irganox 1076. As an evaluation factor, thermal treatment was selected in two modes: at 100 °C for 48 hours and after extruder at 130 °C for 5 minutes + 100 °C for 48 hours. At the same time, the following parameters were determined: molecular weight characteristics and Mooney viscosity of the starting polymers and after thermal aging. During the experiments, it was found that the acidity of the medium in the water degasser does not affect the crosslinking of the functionalized rubber during storage. In addition, a study was made of the effect of the type of antioxidant and its quantity on the thermal stability of functionalized styrene butadiene rubbers, as well as the study of the effect of the content of the modifying agent on the thermal stability of the product. It has been found that the use, as antioxidants, of carbonyl compounds containing a methylene group at the ?-position, leads to inhibition of the cross

  18. Characterization of thermostable alkaline proteases from Bacillus infantis SKS1 isolated from garden soil.

    Directory of Open Access Journals (Sweden)

    Sandeep Kaur Saggu

    Full Text Available Proteases are one of the largest groups of hydrolytic enzymes constituting about 60% of total worldwide sales of industrial enzymes due to their wide applications in detergent, leather, textile, food and pharmaceutical industry. Microbial proteases have been preferred over animal and plant proteases because of their fundamental features and ease in production. Bacillus infantis SKS1, an alkaline protease producing bacteria has been isolated from garden soil of north India and identified using morphological, biochemical and molecular methods. 16S rDNA sequence amplified using universal primers has 99% sequence identity with corresponding gene sequence of Bacillus infantis strain FM 34 and Bacillus sp. Beige. The bacterial culture and its 16S rDNA gene sequence have been deposited to Microbial Culture Collection (Pune, India with accession number MCC 3035 and GenBank with accession number KR092197 respectively. The partially purified extract of Bacillus infantis SKS1 was thermostable and active in presence of Mg2+, acetyl acetone and laundry detergents implicating its application in industry. Production of these enzymes using this strain was maximized by optimization of various parameters including temperature, pH, media components and other growth conditions. Our results show that fructose and dextrose serve as the best carbon sources for production of these enzymes, highlighting the use of this strain for enzyme production utilizing relatively inexpensive substrates like beet molasses and corn steep liquor. Additionally, this strain showed maximum production of enzymes at 40°C similar to bacterial species used for commercial production of alkaline proteases. Characterization of alkaline proteases from this strain of Bacillus infantis and optimization of parameters for its production would help in understanding its industrial application and large-scale production.

  19. Crystal structure of a thermostable Old Yellow Enzyme from Thermus scotoductus SA-01

    International Nuclear Information System (INIS)

    Opperman, Diederik J.; Sewell, Bryan T.; Litthauer, Derek; Isupov, Mikhail N.; Littlechild, Jennifer A.; Heerden, Esta van

    2010-01-01

    Recent characterization of the chromate reductase (CrS) from the thermophile Thermus scotoductus SA-01 revealed this enzyme to be related to the Old Yellow Enzyme (OYE) family. Here, we report the structure of a thermostable OYE homolog in its holoform at 2.2 A as well as its complex with p-hydroxybenzaldehyde (pHBA). The enzyme crystallized as octamers with the monomers showing a classical TIM barrel fold which upon dimerization yields the biologically active form of the protein. A sulfate ion is bound above the si-side of the non-covalently bound FMN cofactor in the oxidized solved structure but is displaced upon pHBA binding. The active-site architecture is highly conserved as with other members of this enzyme family. The pHBA in the CrS complex is positioned by hydrogen bonding to the two conserved catalytic-site histidines. The most prominent structural difference between CrS and other OYE homologs is the size of the 'capping domain'. Thermostabilization of the enzyme is achieved in part through increased proline content within loops and turns as well as increased intersubunit interactions through hydrogen bonding and complex salt bridge networks. CrS is able to reduce the C=C bonds of α,β-unsaturated carbonyl compounds with a preference towards cyclic substrates however no activity was observed towards β-substituted substrates. Mutational studies have confirmed the role of Tyr177 as the proposed proton donor although reduction could still occur at a reduced rate when this residue was mutated to phenylalanine.

  20. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance