WorldWideScience

Sample records for mutant cell lines

  1. X-ray-sensitive mutants of Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Kemp, L.M.

    1983-01-01

    A standard technique of microbial genetics, which involves the transfer of cells from single colonies by means of sterile toothpicks, has been adapted to somatic cell genetics. Its use has been demonstrated in the isolation of X-ray-sensitive mutants of CHO cells. 9000 colonies have been tested and 6 appreciably X-ray-sensitive mutants were isolated. (D 10 values 5-10-fold of wild-type D 10 value.) A further 6 mutants were obtained which showed a slight level of sensitivity (D 10 values less than 2-fold of wild-type D 10 value). The 6 more sensitive mutants were also sensitive to bleomycin, a chemotherapeutic agent inducing X-ray-like damage. Cross-sensitivity to UV-irradiation and treatment with the alkylating agents, MMS, EMS and MNNG, was investigated for these mutants. Some sensitivity to these other agents was observed, but in all cases it was less severe than the level of sensitivity to X-irradiation. Each mutant showed a different overall response to the spectrum of agents examined and these appear to represent new mutant phenotypes derived from cultured mammalian cell lines. One mutant strain, xrs-7, was cross-sensitive to all the DNA-damaging agents, but was proficient in the repair of single-strand breaks. (Auth.)

  2. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  3. Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair

    OpenAIRE

    Miyaji, E.N.; Johnson, R.T.; Downes, C.S.; Eveno, E.; Mezzina, M.; Sarasin, A.; Menck, C.F.M.

    2000-01-01

    Using a positive selection system for isolating DNA replication and repair related mutants, we isolated a clone from a rat kangaroo cell line (PtK2) that has increased sensitivity to UV light. Characterization of this clone indicated normal post-replication repair after UV irradiation, and normal removal rates of cyclobutane pyrimidine dimers and pyrimidine(6-4)pyrimidone photoproducts by excision repair. However, this cell line has decreased ability to make early incisions on damaged DNA, po...

  4. Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

    Directory of Open Access Journals (Sweden)

    Nicolas Lecland

    2013-01-01

    In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs “inside-out” from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

  5. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J.; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  6. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.

  7. Characterization of a mutant rat kangaroo cell line with alterations in the cell cycle and DNA repair

    Directory of Open Access Journals (Sweden)

    Miyaji E.N.

    2000-01-01

    Full Text Available Using a positive selection system for isolating DNA replication and repair related mutants, we isolated a clone from a rat kangaroo cell line (PtK2 that has increased sensitivity to UV light. Characterization of this clone indicated normal post-replication repair after UV irradiation, and normal removal rates of cyclobutane pyrimidine dimers and pyrimidine(6-4pyrimidone photoproducts by excision repair. However, this cell line has decreased ability to make early incisions on damaged DNA, possibly indicating a defect in preferential repair of actively transcribed genes, and a slower cell proliferation rate, including a longer S-phase. This phenotype reinforces the present notion that control of key mechanisms in cell metabolism, such as cell cycle control, repair, transcription and cell death, can be linked.

  8. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines.

    Science.gov (United States)

    Suijker, Johnny; Oosting, Jan; Koornneef, Annemarie; Struys, Eduard A; Salomons, Gajja S; Schaap, Frank G; Waaijer, Cathelijn J F; Wijers-Koster, Pauline M; Briaire-de Bruijn, Inge H; Haazen, Lizette; Riester, Scott M; Dudakovic, Amel; Danen, Erik; Cleton-Jansen, Anne-Marie; van Wijnen, Andre J; Bovée, Judith V M G

    2015-05-20

    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.

  9. Cell lines derived from a Medaka radiation-sensitive mutant have defects in DNA double-strand break responses

    International Nuclear Information System (INIS)

    Hidaka, Masayuki; Oda, Shoji; Mitani, Hiroshi; Kuwahara, Yoshikazu; Fukumoto, Manabu

    2010-01-01

    It was reported that the radiation-sensitive Medaka mutant 'ric1' has a defect in the repair of DNA double-strand breaks (DSBs) induced by γ-rays during early embryogenesis. To study the cellular response of a ric1 mutant to ionizing radiation (IR), we established the mutant embryonic cell lines RIC1-e9, RIC1-e42, RIC1-e43. Following exposure to γ-irradiation, the DSBs in wild-type cells were repaired within 1 h, while those in RIC1 cells were not rejoined even after 2 h. Cell death was induced in the wild-type cells with cell fragmentation, but only a small proportion of the RIC1 cells underwent cell death, and without cell fragmentation. Although both wild-type and RIC1 cells showed mitotic inhibition immediately after γ-irradiation, cell division was much slower to resume in the wild-type cells (20 h versus 12 h). In both wild-type and RIC1 cells, Ser139 phosphorylated H2AX (γH2AX) foci were formed after γ-irradiation, however, the γH2AX foci disappeared more quickly in the RIC1 cell lines. These results suggest that the instability of γH2AX foci in RIC1 cells cause an aberration of the DNA damage response. As RIC1 cultured cells showed similar defective DNA repair as ric1 embryos and RIC1 cells revealed defective cell death and cell cycle checkpoint, they are useful for investigating DNA damage responses in vitro. (author)

  10. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin.

    Directory of Open Access Journals (Sweden)

    Yun Xia

    Full Text Available α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR. MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent.

  11. Nuclear scaffold organization in the X-ray sensitive Chinese hamster mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.; Fink, T.J.; Enrique, A.M.

    1994-01-01

    Nuclear organization was probed in the radiation-sensitive Chinese hamster ovary (CHO) cell line, xrs-5, and compared with parental CHO K1 cells using the resinless section technique and DNase I digestions. The resinless section data showed no gross morphological differences in core filaments from the nuclear scaffolds of unirradiated CHO K1 and xrs-5 cells. However, the nuclear scaffolds of irradiated xrs-5 cells (1 Gy) had significantly increased ground substance. Irradiated and unirradiated CHO K1 cell nuclear scaffolds were morphologically identical. These data suggest that both CHO K1 and xrs-5 cell nuclear scaffolds had internal nuclear scaffolding networks that could provide DNA attachment sites. (author)

  12. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Feuerborn, Alexander; Moritz, Constanze; von Bonin, Frederike

    2006-01-01

    Classical Hodgkin's lymphoma (cHL) is a distinct malignancy of the immune system. Despite the progress made in the understanding of the pathology of cHL, the transforming events remain to be elucidated. It has been proposed that mutations in the TP53 gene in biopsy material as well as cell lines ...

  13. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    Science.gov (United States)

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Jha, B.; Johnson, R.T.

    1990-01-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate

  15. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line.

    Science.gov (United States)

    Carpenter, Adam J; Porter, Andrew C G

    2004-12-01

    DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.

  16. Cell suspension method to improve green spot in in-vitro culture of jarak pagar (Jatropha curcas L ) mutant lines

    International Nuclear Information System (INIS)

    Ita Dwimahyani

    2007-01-01

    Jatropha curcas has a high potential as an alternative energy source, since it can produce natural oil which could be processed into fuel replacing fossil energy. Increasing demand of biodiesel has resulted in increasing demand for high quality of Jatropha germplasm. Cell suspension method is expected to assure the production of a homogeneous germplasm of Jatropha. A laboratory experiment was conducted to evaluate the effectiveness cell suspension method in of Jatropha curcas cotyledon. The explant used in this experiment was Jatropha curcas seed mutant line (JH-38) which has superiority in plant height, early maturity and unseasonable fruiting. Two kinds of in-vitro medium were used for callus induction, i.e. medium A (MS + 2,4-D 2.0 mg/l + BAP 0.5 mg/l + malt extract 0.1 g + agar 8.0 g/l) and medium B (MS + 2,4-D 3.0 mg/l + BAP 0,5 mg/l + malt extract 0,1 g + agar 8.0 g/l). The same medium composition without agar was used for cell generating, and medium ECS (MS + glutamine 0.5 g + casein hydrolysate 0.5 g + IAA 0.5 mg/l + BAP 3.0 mg/l + agar 8.0 g/l for cell growth. Results of the experiment showed that the optimum growth of calli was obtained by explant JH-38/3 in medium A. The growth level of embryonic cell ranged from 0 to 130 %. The optimum percentage green spot is shown by JH-38/1 explant in medium A. (author)

  17. Cytotoxicity of 125I decay in the DNA double strand break repair deficient mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.

    1992-01-01

    Survival of parental Chinese hamster ovary (CHO) K1 cells and the DNA double strand break (DSB) repair deficient mutant, xrs-5 was determined after accumulation of 125 I decays. Both CHO and xrs-5 cells were extremely sensitive to accumulated 125 I decays. D o values for CHO and xrs-5 cells were 40 and approximately 7 decays per cell, respectively. Difference in cell survival between CHO and xrs-5 cells was not due to differences in overall 125 IUdR incorporation, differences in labelling index (LI) or differences in plating efficiency (PE). Relative biological effectiveness (RBE) values calculated relative to 137 Cs gamma radiation survival values (D o and D 10 ) were higher in xrs-5 cells compared with CHO cells, although both CHO and xrs-5 cells have high RBE values that correspond to a high sensitivity of CHO and xrs-5 cells to 125 I decay. (Author)

  18. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    International Nuclear Information System (INIS)

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira

    2007-01-01

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53ΔC) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53ΔC was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain

  19. Grain product of 34 soya mutant lines

    International Nuclear Information System (INIS)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E.; Cervantes S, T.; De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A.

    2009-01-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R 4 M 18 ) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co 60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L 25 and L 32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  20. A UV-resistant mutant without an increased repair synthesis activity, established from a UV-sensitive human clonal cell line

    International Nuclear Information System (INIS)

    Suzuki, N.

    1984-01-01

    When cells of a human clonal cell line, RSa, with high sensitivity to UV lethality, were treated with the mutagen, ethyl methanesulfonate, a variant cell strain, UVr-1, was established as a mutant resistant to 254-nm far-ultraviolet radiation (UV). Cell proliferation studies showed that UVr-1 cells survived and actively proliferated at doses of UV-irradiation that greatly suppressed the proliferation of RSa cells. Colony-formation assays also confirmed the increased resistance of UVr-1 cells to UV. The recovery from a UV-induced inhibition in DNA synthesis, as [methyl- 3 H]thymidine uptake into cellular DNA, was more pronounced in UVr-1 cells than in RSa cells. Nevertheless, there was no significant difference in the activity of UV-induced DNA repair synthesis in either cell line, as estimated by the extent of unscheduled DNA synthesis and DNA repair replication. These characteristics of UVr-1 cells are discussed in the light of a previously reported UV-resistant variant, UVr-10, which had an increased DNA repair synthesis activity. (Auth.)

  1. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    International Nuclear Information System (INIS)

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1β. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.

  2. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  3. Characteristics of mutant lines of sweet potato flour

    International Nuclear Information System (INIS)

    Aryanti

    2012-01-01

    Research on mutation induction of sweet potato Sari variety has been conducted. Flour mutant lines were obtained from selection of M1V5 tubers irradiated by gamma rays at the dose of 10 Gy. Flour was made by peeling of tubers, then dried, blended and sieved. The quality test of flour have been done by measuring degree of whiteness, proximate, amylose contents, water content, soluble water, swelling power, and flour characteristics. The result of this work showed that flour of C6.26.13 mutant line had higher protein content than the parent plant with concentration of 3.62 % and its amylose content was also higher than the other mutant lines. The soluble water value of mutant lines were significant different compared to the parent plant from 1.82 to 2.25 % and swelling power from 4.28 to 5.55 %. The flour granule of the mutant line was different compared to the parent plant. (author)

  4. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  5. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40 0 C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G 1 -phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35 0 C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs

  6. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yezzi, M.J.

    1985-04-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, has been compared to the wild-type cell, CHO-sC1, in single- and split-radiation-dose schemes. When the exponentially growing TS mutant and the wild-type cells were treated at 40/sub 0/C for up to 2 hrs prior to graded doses of x rays, the survival curves were identical and were the same as those obtained without heat treatment. If the cultures were incubated at 40/sup 0/C for 2 hrs before a first dose and maintained at 40/sup 0/C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal x-ray damage. However, if repair was measured by the alkaline-unwinding technique under the same time and temperature schemes, no difference in the kientics of DNA strand rejoining was observed. Misrepair processes may permit restoration of DNA strand integrity but not allow functional repair. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Treatment of cell populations in the middle of G/sub 1/-phase yielded repair inhibition comparable to that observed with the asynchronous cells. Splitdose experiments were done using pre-incubation with cycloheximide to chemically inhibit protein synthesis. WT cells and TS cells were treated with cycloheximide at 35/sup 0/C for 2 hrs before a first dose and during a 2 hr dose fractionation interval. 23 figs., 7 tabs.

  7. Role of protein synthesis in the repair of sublethal x-ray damage in a mutant Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Yezzi, M.J.

    1985-01-01

    A temperature-sensitive mutant for protein synthesis, CHO-TSH1, was compared to the wild-type cell, CHO-SC1, in single- and split-radiation-dose schemes. When the cultures were incubated at 40 0 C for 2 hrs before a first dose and maintained at 40 0 C during a 2 hr dose fractionation interval, repair of radiation damage was reduced in the mutant compared to the wild type. These observations implied that a pool of proteins was involved in the repair of sublethal X-ray damage. The effect of diminished repair under conditions of inhibition of protein synthesis was found to be cell-cycle dependent in survival studies with synchronized mutant cell populations. Repair was found to be almost completely eliminated if the temperature sequence described above was applied in the middle of the DNA synthetic phase. Distinct perturbations in the cell-cycle progression were noted following heat alone or heat with radiation. A delay in the progression of synchronized G 1 -phase and S-phase cells was demonstrated autoradiographically after inhibition of protein synthesis. In addition, treated S-phase cells showed a transient increase in the percent labelled cells after the cells were returned to their normal growth temperature of 35 0 C. This observation was suggestive of an unusual pattern of DNA synthesis during the recovery period. Split-dose experiments were done using incubation with cycloheximide to chemically inhibit protein synthesis. Both the chemical and thermal inhibition of protein synthesis substantiate its necessity for the repair of sublethal damage

  8. A preliminary yield trial of some soybean mutant lines

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1985-01-01

    A preliminary yield trial of some soybean mutant lines, derived from irradiated Orba variety with dose of 0.40 kGy, were carried out during the wet and dry season in 1979-1982 in Muara and Citayam, Bogor. The result obtained showed that yield potential of mutant lines no. M6/40/10 was higher than that of the control in dry season in 1979 as well as in the wet season of 1979/80 in Muara. Whereas, the yield potential of the mutant lines no. M6/40/8 and no. M6/40/14 were higher than that of the control only in the wet season. The yield potential of semi dwarf mutant lines no. M6/40/68 was highly significant compared to that of the control in dry season in Muara and the wet season in 1981/82 in Citayam. Whereas, the yield potential of the mutant lines no. M6/40/69 was higher yield compared to that of the control in dry season in 1981 in Muara. (author). 10 refs

  9. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  10. Detection of DNA polymorphisms in Dendrobium Sonia White mutant lines

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Putri Noor Faizah Megat Mohd Tahir; Zaiton Ahmad; Mohd Nazir Basiran

    2006-01-01

    Dendrobium Sonia white mutant lines were obtained through gamma ray induced mutation of purple flower Dendrobium Sonia at dosage 35 Gy. Amplified Fragment Length Polymorphism (AFLP) technique was used to compare genomic variations in these mutant lines with the control. Our objectives were to detect polymorphic fragments from these mutants to provide useful information on genes involving in flower colour expression. AFLP is a PCR based DNA fingerprinting technique. It involves digestion of DNA with restriction enzymes, ligation of adapter and selective amplification using primer with one (pre-amplification) and three (selective amplification) arbitrary nucleotides. A total number of 20 primer combinations have been tested and 7 produced clear fingerprint patterns. Of these, 13 polymorphic bands have been successfully isolate and cloned. (Author)

  11. X-rays sensitive mammalian cell mutant

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1982-01-01

    A phenomenon that in x-ray-sensitive mammalian-cell mutants, cellular death due to x-ray radiation was not increased by caffeine, but on the contrary, the dead cells were resuscitated by it was discussed. The survival rate of mutant cells increased by caffein in a low concentration. This suggested that caffeine may have induced some mechanism to produce x-ray resistant mutant cells. Postirradiation treatment with caffeine increased considerably the survival rate of the mutant cells, and this suggested the existence of latent caffeine-sensitive potentially lethal damage repair system. This system, after a few hours, is thought to be substituted by caffeine-resistant repair system which is induced by caffeine, and this may be further substituted by x-ray-resistant repair system. The repair system was also induced by adenine. (Ueda, J.)

  12. Plants Regeneration Derived From Various on Peanut on Mutant Lines

    International Nuclear Information System (INIS)

    Dewi, Kumala; Masrizal; Mugiono

    1998-01-01

    The study of calli, greenspot formation and shoot regeneration on peanut mutant lines has ben conducted by MS media. Three explants derived from shoot tips, embryo and seeding root of two mutant lines a/20/3 and D/25/3/2 were used in this experiment. the explants were cultured on modified MS media enriched by vitamins, growth regulation, amino acids for fourth teen calli were transferred on regeneration media. The ability of calli formation and plant regeneration of each explant and genotypes of plants was varied. Greenspot and shoot formation were observed seventh days after the calli transferred on regeneration media. It is shown that the ability of calli, greenspot and shoot formation of each explants and genotypes was varied. the high ability of calli, greenspot and shoot formation were found in explant derived from shoot tip and embryo. Seedling root explant has lower ability in calli formation, while greenspot and shoot was formatted. The ability of calli, greenspot and shoot formation on A/20/3 mutant line was better than D/25/3/2 mutant line. (author)

  13. Semi-dwarf mutant lines of hexaploid triticale

    International Nuclear Information System (INIS)

    Pidra, M.

    1989-01-01

    A spring form of hexaploid secondary triticale ADD 143/71, bred by MOGILEVA at the Plant Breeding Station at Uhretice was used for the mutagen treatment. The mutation experiment started in 1979. Seeds were treated with a 0.8 mM water solution of N-methyl-N-nitrosourea (MNH) (CETL and RELICHOVA, unpublished). From 180 M 1 plants, one spike was harvested per plant. A random sample of these seeds was sown as M 2 in 1980 and several plants with shorter main culm were selected. Selfed progenies of eight mutant plants designated ADD 143-m1, ADD 143-m2, ADD 143-m3 etc. were further tested in M 3 and M 4 . There were significant differences in culm length and in some other characters between the original line and the mutant lines. Especially the line m8 looks like a promising source of semi-dwarfness for breeding programmes of hexaploid triticale. During 1985-1987 genetic analysis was performed on the ADD 143/71 and the mutant lines m2, m6, m7 and m8, which suggest that their mutant genes are allelic and recessive

  14. Biochemical characteristics of mutant lines of currant tomato

    International Nuclear Information System (INIS)

    Gorbatenko, I.Yu.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1988-01-01

    The currant tomato is used in breeding for fruit quality. It contains up to 50 mg% ascorbic acid, a large quantity of sugar and 8-10% of dry matter. The weight of the fruit, however, does not exceed 1.2-1.5 g. The plants have long, spreading and very branchy stems. Gamma ray induced mutants of currant tomato were used, as initial material in breeding for fruit quality in varieties suitable for mechanized harvesting. The research was carried out mainly at the Department of Vegetable Growing Ukrainian Scientific Research Institute of Irrigation Farming. The regional variety Lebyazhinskij (suitable for mechanized harvesting) was adopted as the standard. Its fruits contain: 5.6% dry matter, 2.7% sugars, 0.543% titrated acidity, 26.6 mg/100 g ascorbic acid, 0.425 mg% carotene and 0.35% cellulose. The biochemical characteristics of the tomato mutants are shown. In terms of fruit dry matter, all mutants surpassed the standard. The acidity and the ascorbic acid content varied considerably. Most noteworthy in terms of carotene were the lines GP-5, GP-9 and GP-12. An important factor in the production of tomato paste is the fruit cellulose content. The lowest cellulose content is found in mutant GP-3. As shown, all of the mutants were early ripening. The mutants surpassed the standard in simultaneous fruit ripening. Mutant lines GP-3, GP-6, GP-9 and GP-12 will be used in the breeding programme for improving fruit quality of varieties suitable for mechanized harvesting

  15. Baseline and Trend of Lymphocyte-to-Monocyte Ratio as Prognostic Factors in Epidermal Growth Factor Receptor Mutant Non-Small Cell Lung Cancer Patients Treated with First-Line Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Yu-Mu Chen

    Full Text Available Patients with early-stage lung cancer who have a high baseline lymphocyte-to-monocyte ratio (LMR have a favorable prognosis. However, the prognostic significance of LMR in patients with advanced-stage EGFR-mutant non-small cell lung cancer (NSCLC receiving first-line epidermal growth factor receptor (EGFR-tyrosine kinase inhibitors (TKIs has not been established. We conducted a retrospective analysis to investigate the influence of LMR on clinical outcomes including progression-free survival (PFS and overall survival (OS in EGFR-mutant patients with NSCLC.Of 1310 lung cancer patients diagnosed between January 2011 and October 2013, 253 patients receiving first-line EGFR-TKIs for EGFR-mutant NSCLC were included. The cut-off values for baseline and the 1-month-to-baseline ratio of LMR (MBR, determined by using receiver operating characteristic curves, were 3.29 and 0.63, respectively. Patients were divided into 3 prognostic groups: high LMR and MBR, high LMR or MBR, and low LMR and MBR.The mean patient age was 65.2 years, and 41% were men. The median PFS and OS were 10.3 and 22.0 months, respectively. The PFS in patients with high LMR and MBR, high LMR or MBR, and low LMR and MBR were 15.4, 7.1, and 2.0 months, respectively (p < 0.001, whereas the OS were 32.6, 13.7, and 5.1 months, respectively (p < 0.001.A combination of baseline and trend of LMR can be used to identify patients with a high mortality risk in EGFR-mutant NSCLC patients receiving first-line EGFR-TKIs.

  16. Differences in heavy-ion-induced DNA double-strand breaks in a mouse DNA repair-deficient mutant cell line (SL3-147) before and after chromatin proteolysis

    International Nuclear Information System (INIS)

    Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Sato, Koki; Minohara, Shinichi; Kanai, Tatsuaki; Yatagai, Fumio.

    1995-01-01

    DNA double-strand breaks induced by X- or neon beam-irradiation in a DNA double-strand break-repair-deficient mutant cell line (SL3-147) were examined. The increase in the number of DNA double-strand breaks was dose-depend after irradiation with X-rays and neon beams and was enhanced by chromatin-proteolysis treatment before irradiation. These results suggest that the induction of DNA double-strand breaks by ionizing radiation, including heavy-ions, is influenced by the chromatin structure. (author)

  17. Creating Sunflower Mutant Lines (Helianthus Annuus L.) Using Induced Mutagenesis

    International Nuclear Information System (INIS)

    Encheva, J.

    2009-01-01

    Immature sunflower zygotic embryos of sunflower fertility restorer line 374 R were treated with ultrasound and gamma radiation before plating embryos to culture medium. All plants were isolated and self-pollinated for several generations. New sunflower forms with inherited morphological and biochemical changes were obtained. The genetic changes occurring during the mutation procedure included fourteen morphological and biochemical characters. In comparison to the check line 374 R, decreasing of the mean value of the indexes was registered for 33 % of the total number of characters and vise verse, significant increasing was observed for 60 %. Mutation for resistance to the local population of Orobanche cumana race A-E was obtained from the susceptible Bulgarian control line 374 R. Two investigated mutant lines possessed 100 % resistance to Orobanche and stable inheritance in the next generations. Our results showed that induced mutagenesis in sunflower can be successfully used to develop new lines useful for heterosis breeding

  18. Yield of two mutant lines of soybean for human consumption

    International Nuclear Information System (INIS)

    Salmeron E, J.; Mastache L, A. A.; Diaz V, G. E.; Valencia E, F.; Ranfla C, R.; Melendez P, M.; Cervantes S, T.; De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.

    2009-01-01

    The present work has the objective of to evaluate the yield and the agronomic behavior of 2 mutant lines of soybean for human consumption, obtained by means of a process of recurrent irradiation of soybean seed ISAAEG-BM 2 with gammas of Co 60 and selection in the generation R 4 M 18 . For the variable yield significant statistical differences were not observed, but considering the rest of the evaluated agronomic characteristics the mutant lines L 6 and Bombona they were excellent with values of 3,934.6 and 3,806.8 Kg ha- 1 to 15% of grain humidity, they also possess excellent genetic characteristics result of the irradiations and selections of these new genetic materials. (Author)

  19. Vesicular Trafficking Defects, Developmental Abnormalities, and Alterations in the Cellular Death Process Occur in Cell Lines that Over-Express Dictyostelium GTPase, Rab2, and Rab2 Mutants

    Directory of Open Access Journals (Sweden)

    Katherine Maringer

    2014-08-01

    Full Text Available Small molecular weight GTPase Rab2 has been shown to be a resident of pre-Golgi intermediates and required for protein transport from the ER to the Golgi complex, however, the function of Rab2 in Dictyostelium has yet to be fully characterized. Using cell lines that over-express DdRab2, as well as cell lines over-expressing constitutively active (CA, and dominant negative (DN forms of the GTPase, we report a functional role in vesicular transport specifically phagocytosis, and endocytosis. Furthermore, Rab2 like other GTPases cycles between an active GTP-bound and an inactive GDP-bound state. We found that this GTP/GDP cycle for DdRab2 is crucial for normal Dictyostelium development and cell–cell adhesion. Similar to Rab5 and Rab7 in C. elegans, we found that DdRab2 plays a role in programmed cell death, possibly in the phagocytic removal of apoptotic corpses.

  20. Evaluation of artemisia mutant lines conducted from gamma irradiation treatment

    International Nuclear Information System (INIS)

    Ragapadmi Purnamaningsih; EG Lestari; M Syukur

    2010-01-01

    Cases of Malaria diseases attack in Indonesia has been increasing. Plasmodium falciparum the cause of malaria disease is now resistant to the usual medicine. One of malaria medicine which recommended by WHO is artemisinine compound extracted from Artemisia annua L plant. Low artemisinine content is one problem of Artemisia development in Indonesia. Increasing genetic variation using gamma irradiation is one alternative method to improve artemisinin content. In 2007, induce mutation had been done to artemisia seeds using gamma irradiation at dosage of 10-100 Gy. The good rooting planlet was regenerated and acclimatized in the green house, and then the seedling (M0 generation) was planted in the field at 1545 m asl. Plants derived from seeds without gamma irradiation treatment and cultured in vitro (in vitro control) were used as control. The result showed there were some morphological variations between the mutant lines (plant height, shape of the leaves and time of flowering). Ten mutant lines were selected based on biomass yield and analyzed for the artemisinine content.The result showed that artemisinine content of the mutant lines ranged from 0.44 - 1.41%, and it was significantly higher than that of in vitro control (0.43%). (author)

  1. The In Vivo DNA Binding Properties of Wild-Type and Mutant p53 Proteins in Mammary Cell Lines During the Course of Cell Cycle.

    Science.gov (United States)

    1996-08-01

    that my statement of work (SOW) for the current project omitted many of the tasks that had to be carried out in order to get the lab up and running...that we knew that we could stabilize wild-type p53 in ML-1 cells along with the possibility of being able to get an excellent elutriation profile with...nuclear protein extract was immunoprecipitated with PAb421 cross-linked to ProteinA -Sepharose beads and analysed by SDS-PAGE Western blot analysis with

  2. Creation and evaluation of best cotton mutant lines

    International Nuclear Information System (INIS)

    Rastegari, S. J.; Hosseini, Z.

    2001-01-01

    During (1997-1999) a study was carried out to recognize the best mutant lines, which were already obtained from a mutation breeding project. A Triple Rectangular Latis Design (8 7) in form of randomized complete blocks (RCB) with fifty- six treatments and three replications, were used in Estahban, Kordkouy and Varamin, under different ecological conditions, rainfall (Kordkouy) desert (Varamin) hot and dry (Estahban). During growing season some important morphological characteristics were recorded. Some lines had specific characters, for example: line 3191 (Chirpan 150 gray) had a low leaf number per plant, line 3169 (Bakhtegan 200 gray) plants were clustered. The results of the data in Varamin station showed that Bakhtegan irradiated with 150 gray line 3485 and Tashkand with 300 gray line 3451 compared to check (Varamin with 4373 kg/ha) had highest yield with 4942 kg/ha, and 4871 kg/ha respectively. In view of boll weight line 3405 of Sahel irradiated with 200 gray had highest boll weight (6.5 g/boll). In Kordkouy station the best mutant line was Chirpan irradiated with 250 gray, line 3208, with 20% yield increase compared to Sahel and 30% yield increase compared to original Chirpan. In respect to irradiation effect on lint percentage and fiber quality, the results showed; there was a positive effect on lint percentage of all varieties, especially in Tashkant, Bakhtegan and Chirpan which are inherently weak in lint percentage. As a whole gamma radiation did not have any negative effect on fiber quality. Even in Estahban 1.6 to 2.4 mm fiber increase were observed in some Chirpan irradiated material (C150-3516) and (C200-3523)

  3. Selection and agronomic evaluation of induced mutant lines of sesame

    International Nuclear Information System (INIS)

    Hoballah, A.A.

    2001-01-01

    Station yield trial: Three high yielding mutants (8, 48, and EFM92) with better and stable performance were developed in our breeding programme and submitted for registration to the Agricultural Research Center (ARC), Egyptian Ministry of Agriculture and Land Reclamation. Multi-location yield trials indicated that mutant line EFM92 ranked first in all locations; significant yield increases recorded for it ranged from 14.7 to 74.0% over the check variety. Moreover, it was 15-20 days earlier than the check and/or other mutants. Mutant lines 8 and 48 produced higher seed yields than the check at two different locations. These mutants can probably be grown and produce more yield than the check variety at the low yielding environments. Seed quality assay: During 1996 and 1997, 15 promising lines of sesame including mutants and hybrid populations as well as the local variety were evaluated for seed protein, oil content and fatty acid composition. The protein content varied from 20.6 to 26.7%; hybrid population EXM90 gave the highest value. About 85% of the total fatty acids in the oil are unsaturated (oleic and linoleic) and 15% saturated, mainly palmitic and stearic. Linoleic acid ranged from 41.8 to 47.9%. Mutant lines 6, 9, and EFM92, which gave high oil content (54-55.5%) together with high linoleic acid values (45.2-47.8%), are recommended for breeding for seed oil quality. Heterosis, combining ability and type of gene action in sesame: A half diallel set of crosses involving seven parents was used to study heterosis and combining ability in the F 1 generation as well as the nature of gene action controlling seed yield and its contributing traits in both F 1 and F 2 in order to identify the most efficient breeding methods leading to rapid genetic improvement. The expressions of heterosis varied with the crosses and characters investigated. The maximal significant positive useful heterosis was observed for branches/plant (52.9%) followed by seed yield/plant (38

  4. Evaluation of the combining ability of mutant maize lines

    Directory of Open Access Journals (Sweden)

    V. Valkova

    2016-09-01

    Full Text Available Abstract. The study shows the results of a preliminary evaluation of the combining ability for grain yield of 17 mutant maize lines. For the purpose the top cross method for early testing and the mathematical model of Savchenko for analysis of the general and the specific combining ability were used. The lines were tested on three testers with high general combining ability that belong to two genetic groups: K 46 52 and XM 552 from SSS and N 192 – Lancaster. For the purposes of evaluation of the productive abilities of the received top cross two preliminary varietal experiments were carried out at the experimental field of Maize Research Institute, Knezha As a result of the conducted experimental work and the analysis it was found that the highest general combining ability have lines XM 11 6 and XM 12 1. These lines can be included as components of high-yielding synthetics or as testers in analyzing crosses to determine general combining ability in early stages of the selection process. The above lines with high specific combining ability – XM 11 13 and XM 11 46 are suitable for inclusion in combinations to develop high-yielding hybrids. Three of the tested lines XM 11 7 11 XM 10 and XM 11 11 have both high GCA and SCA. These lines can be used in corresponding breeding in the selection programs.

  5. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  6. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  7. Intra lines uniformity and inter lines variation of rice mutants resulting from irradiation of South Kalimantan local varieties

    International Nuclear Information System (INIS)

    Raihani Wahdah; Gusti Rumayadi; Rahmi Zulhidiani

    2016-01-01

    The preference of farmer in tidal swamp on local rice varieties are quite high, but local varieties have a long life and low yield characters, so it needs to be improved for the trait. This study is part of activities of the local rice varieties improvement to generate promising lines were short-moderate aged, but the slimming and pera (high amylose content) grains maintained. The aims of this study were to determine the intra lines uniformity and the inter lines variation of M5 generation of rice mutant lines. The experiment was carried out in the Experimental Station of Agriculture Faculty, Lambung Mangkurat University from March to September 2014. The experiment used 150 earliest flowering lines of 300 M5 mutant lines that were planted. Intra lines uniformity were analysed by comparing the variance of each mutant lines with variance of its parent, while the variation among lines were analyzed by comparing the variance of all lines with variance of its parent. More than 85 % M5 mutant lines from Siam Harli as parent and > 79 % of Siam Kuatek as parent are uniform. The uniform character at all M5 mutant lines, both of Siam Harli or Siam Kuatek parent are the harvest age, the filled grains number, and the empty grains number. There is no variability between M5 mutant lines, but some of M5 mutant lines from Siam Harli and Siam Kuatek have some better characters than their parents, so there is an opportunity for selection. (author)

  8. Application Of Database Program in selecting Sorghum (Sorghum bicolor L) Mutant Lines

    International Nuclear Information System (INIS)

    H, Soeranto

    2000-01-01

    Computer database software namely MSTAT and paradox have been exercised in the field of mutation breeding especially in the process of selecting plant mutant lines of sorghum. In MSTAT, selecting mutant lines can be done by activating the SELECTION function and then followed by entering mathematical formulas for the selection criterion. Another alternative is by defining the desired selection intensity to the analysis results of subprogram SORT. Including the selected plant mutant lines in BRSERIES program, it will make their progenies be easier to be traced in subsequent generations. In paradox, an application program for selecting mutant lines can be made by combining facilities of Table, form and report. Selecting mutant lines with defined selection criterion can easily be done through filtering data. As a relation database, paradox ensures that the application program for selecting mutant lines and progeny trachings, can be made easier, efficient and interactive

  9. Isolation of UV-sensitive mutants of mouse L5178Y cells by a cell suspension spotting method

    International Nuclear Information System (INIS)

    Shiomi, T.; Hieda-Shiomi, N.; Sato, K.

    1982-01-01

    We have isolated 56 UV-sensitive mutant clones from a mouse L51 T/t line of L5178Y cells by a cell suspension spotting method. Five mutants have also been isolated from L51 T/t and L5178Y cells by the method reported by Thompson and coworkers. We divided the mutants into two groups, highly sensitive and moderately sensitive mutants, according to their sensitivity to UV irradiation. Fifty-eight mutants were highly sensitive and three were moderately sensitive to UV. The reconstruction experiments indicate that more than 90% of highly sensitive mutants were recovered by the cell suspension spotting method. Frequencies of recovered mutants highly sensitive to UV increased with increasing dose of mutagens. Recovered mutant frequency reached 10(-2) after treatment with 1.5 micrograms/ml of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (survival 0.2%). Eight UV-sensitive mutants were divided into four complementation groups. These mutants were 2-6 times more sensitive to UV than parental L51 T/t cells in terms of D37 (dose required to reduce survival to 37%). Four representative UV-sensitive mutants which are classified into different complementation groups were examined for their sensitivity to killing by UV, 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), X-rays, and MNNG. All four classes of mutants were found to be cross-sensitive to UV, 4NQO, and MMC, but not sensitive to X-rays and MNNG

  10. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Science.gov (United States)

    Epsztejn-Litman, Silvina; Cohen-Hadad, Yaara; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Levy-Lahad, Ephrat; Schonberger, Oshrat; Eldar-Geva, Talia; Zeligson, Sharon; Eiges, Rachel

    2015-01-01

    We report on the derivation of a diploid 46(XX) human embryonic stem cell (HESC) line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA) from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19), monitoring the expression of two parentally imprinted genes (SNRPN and H19) and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC) line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD) cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  11. Establishment of Homozygote Mutant Human Embryonic Stem Cells by Parthenogenesis.

    Directory of Open Access Journals (Sweden)

    Silvina Epsztejn-Litman

    Full Text Available We report on the derivation of a diploid 46(XX human embryonic stem cell (HESC line that is homozygous for the common deletion associated with Spinal muscular atrophy type 1 (SMA from a pathenogenetic embryo. By characterizing the methylation status of three different imprinted loci (MEST, SNRPN and H19, monitoring the expression of two parentally imprinted genes (SNRPN and H19 and carrying out genome-wide SNP analysis, we provide evidence that this cell line was established from the activation of a mutant oocyte by diploidization of the entire genome. Therefore, our SMA parthenogenetic HESC (pHESC line provides a proof-of-principle for the establishment of diseased HESC lines without the need for gene manipulation. As mutant oocytes are easily obtained and readily available during preimplantation genetic diagnosis (PGD cycles, this approach should provide a powerful tool for disease modelling and is especially advantageous since it can be used to induce large or complex mutations in HESCs, including gross DNA alterations and chromosomal rearrangements, which are otherwise hard to achieve.

  12. Reaction of some soybean mutant lines to natural rust fungus caused by (phakopsora pachyrhizi syd)

    International Nuclear Information System (INIS)

    Ratma, R.

    1988-01-01

    Reaction of some soybean mutant lines to natural rust fungus caused by (phakopsora pachyhizi syd). Eleven soybean mutant lines of orba variety derived from gamma fungus disease in the wet season 1985/86 at the experimental station of Citayam, Bogor. Based on IWGSR rating system, soybean mutant lines No 18/PsJ was moderately resistant to rust fungus disease. The other mutant lines, 14/PsJ, 15/PsJ, 20/PsJ, 102/PsJ, 106/PsJ, 111/PsJ, 118/PsJ, 119/PsJ and 220/PsJ were susceptible. (author). 4 figs.; 8 refs

  13. Development of technique on the induction and selection of in vitro mutant lines(Potato, Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Hong, Joo Bong; Lee, Young Il; Song, Hee Sup; Kim, Jae Sung; Byun, Myung Woo; Lee, Young Keun; Shin, In Chul; Lee, Sang Jae; Lee, Ki Woon; Lim, Yong Taek

    1992-08-01

    The radiosensitivity and salt resistance on the single cell and callus of potato, mass production method of plantlet and microtuber of potato by in vitro culture and microtuber formation from the stem irradiated with radiation were investigated to obtain a optimum condition for selection of mutant cell line. (Author)

  14. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells

    DEFF Research Database (Denmark)

    Jensen, Helle Lone; Norrild, Bodil

    2003-01-01

    Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus...

  15. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics.

    Directory of Open Access Journals (Sweden)

    Mark S Cragg

    2007-10-01

    Full Text Available The epidermal growth factor receptor (EGFR plays a critical role in the control of cellular proliferation, differentiation, and survival. Abnormalities in EGF-EGFR signaling, such as mutations that render the EGFR hyperactive or cause overexpression of the wild-type receptor, have been found in a broad range of cancers, including carcinomas of the lung, breast, and colon. EGFR inhibitors such as gefitinib have proven successful in the treatment of certain cancers, particularly non-small cell lung cancers (NSCLCs harboring activating mutations within the EGFR gene, but the molecular mechanisms leading to tumor regression remain unknown. Therefore, we wished to delineate these mechanisms.We performed biochemical and genetic studies to investigate the mechanisms by which inhibitors of EGFR tyrosine kinase activity, such as gefitinib, inhibit the growth of human NSCLCs. We found that gefitinib triggered intrinsic (also called "mitochondrial" apoptosis signaling, involving the activation of BAX and mitochondrial release of cytochrome c, ultimately unleashing the caspase cascade. Gefitinib caused a rapid increase in the level of the proapoptotic BH3-only protein BIM (also called BCL2-like 11 through both transcriptional and post-translational mechanisms. Experiments with pharmacological inhibitors indicated that blockade of MEK-ERK1/2 (mitogen-activated protein kinase kinase-extracellular signal-regulated protein kinase 1/2 signaling, but not blockade of PI3K (phosphatidylinositol 3-kinase, JNK (c-Jun N-terminal kinase or mitogen-activated protein kinase 8, or AKT (protein kinase B, was critical for BIM activation. Using RNA interference, we demonstrated that BIM is essential for gefitinib-induced killing of NSCLC cells. Moreover, we found that gefitinib-induced apoptosis is enhanced by addition of the BH3 mimetic ABT-737.Inhibitors of the EGFR tyrosine kinase have proven useful in the therapy of certain cancers, in particular NSCLCs possessing

  16. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    Energy Technology Data Exchange (ETDEWEB)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy [Argicultural Genetics Institute, Hanoi (Viet Nam); Nguyen, Henry T. [Texas Tech Univ., Department of Plant and Soil Science, Lubbock TX (United States)

    2001-03-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F{sub 2} mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  17. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    International Nuclear Information System (INIS)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy; Nguyen, Henry T.

    2001-01-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F 2 mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  18. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Helmut Fuchs

    2016-12-01

    Full Text Available The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K, which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC. Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB, associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.

  19. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    Science.gov (United States)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3 N294K/N294K ), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3 N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3 N294K/N294K mice. The Scube3 N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  20. Evaluation of Promising Mutant Lines of Canola Grown under New Reclamation Lands (Harsh Lands)

    International Nuclear Information System (INIS)

    Amer, I.M.; Farrag, M.E.; Soliman, S.S.; Hassan, A.A.

    2017-01-01

    Canola seed lots of four varieties (Serow4, Serow6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). The present study aims to evaluate useful mutations in canola which possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sinai (saline) and Inshas (harsh and poor fertility) in M 4 and M 5 generations. The results at M 4 and M 5 generations showed that the 13-selected mutant lines on the bases of number of pods and seed yield/plant differed in their yield response according to environmental conditions. Over the two locations, the highest number of pods plant and seed yield was found at line 75 (M4) and line 11 for seed yield and line 78 for number of pods in M5 compared to other genotypes. More over, all the mutant lines compared to their parents showed significant or insignificant increases for all studies traits during the two successive generations. Over the two generations, the highest mean value compared to all genotypes was found in line 22 for plant height at Sudr and line 11 at Inshas, for fruiting zone length, the highest value was noticed in line 18 at Sudr and line 75 at Inshas, for the highest number of pods, (125/plant) it was found in line 63 at Sudr and (193/plant) in line 75 at Inshas which reflected the highest seed yield ( 8 g/plant).The highest mean value compared to all genotypes was found for 100 seed-weight in line 8 at Sudr and line 11 at Inshas which appeared the highest seed yield at Suder. Over all studied conditions, the mutant line 75 derived from Evita variety was characterized by the highest mean values for fruiting zone length of plant and number of pods/plant, reflecting a high seed yield (6.47 g/plant ) or about 83.87% over its parent. The increase of seed yield/plant for mutant line 11 over its parent was about 68.8% followed by line 8 surpassed its parent for seed yield by about 60.2 %. The oil content of canola seeds in

  1. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  2. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links

  3. Soybean promising mutant lines super early maturity Q-298 and 4-Psj

    International Nuclear Information System (INIS)

    Arwin; Mulyana, H.I.; Tarmizi; Masrizal; Faozi, K.; Adie, M.

    2012-01-01

    One of the efforts to increase the national soybean (Glycine max L. Merr.) production is by growing super early maturity with high yielding varieties, so that the planting time can be shortened to fill out the cropping pattern of ''rice-rice-soybean''. Such varieties can be developed through mutation breeding method using γ ray irradiation. In this research the seeds of Tidar variety were irradiated by 200 Gy γ ray from 60 Co. Irradiated seeds were planted in the field and selections with emphasis on early maturing character were conducted in M 2 generation. Selected plants were purified to M 7 generation and selected pure mutant lines were subjected to preliminary and advanced yield trials. Based on these results 5 promising mutant lines were selected to continue in multi location yield trials. A set of lines for multi location yield trials consist of 14 lines included 5 mutant lines from this experiment, 5 lines from UNSUD, 3 national leading varieties, Argomulyo, Gorobogan, Burangrang, as national control varieties and Tidar as an original of mutant lines. Based on the result of multi location yield trials, 2 mutant lines, Q-298 dan 4-Psj, have significant high productivities compared to productivities of other lines and varieties. The growth duration of these lines were only 66 days and 68 days, respectively with average productivities were 2.41 tons / ha and 2.42 tons / ha, respectively. Index stability of Q-298 and 4-Psj mutant lines were 0.84 and 0.79, respectively, it means that the productivities of these two lines were stable in all tested locations. Based on the results, the Q-298 and 4-Psj mutant lines were proposed to be released as new varieties with the names of Gamasugen 1 and Gamasugen 2, respectively. (author)

  4. Agronomic performance of rape seed (brassica napus L.) mutant lines under drought conditions

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Shah, S.J.A.; Rehman, K.; Rashid, A.

    1995-01-01

    Oil seed forms of Brassica napus are not well adapted to drought and the warner environments of Pakistan. Induced mutations were, therefore, utilized for improving drought tolerance efficiency of two napus cultivars. Induction of genetic variability, selection of desirable mutants and stabilization of mutants in acceptable agronomic background were carried out during 1988-1991. Fourteen promising mutants each of cv. Pak-cheen and Tower were evaluated for different agronomic characters in separate yield trials, under extremely drought conditions. The results demonstrated that yield potential of some mutants was very high and 9 mutants of cv. Pak-cheen and 8 mutants of cv. Tower significantly (P<0.05) out yield the local commercial cultivar. Eleven mutants in both the trials matured significantly earlier than the check. Nevertheless, more extensive testing of the drought tolerant lines under diversified environs of the country will help confirm these findings. (author)

  5. Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light

    International Nuclear Information System (INIS)

    Rocchi, P.; Ferreri, A.M.; Capucci, A.; Prodi, G.

    1981-01-01

    Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency (less than 8 x 10(-6)). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTr) mutants up to 1000-fold. The maximum recovery of DTr mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages

  6. Induction of diphtheria toxin-resistant mutants in human cells by ultraviolet light

    International Nuclear Information System (INIS)

    Rocchi, P.; Ferreri, A.M.; Capucci, A.; Prodi, G.

    1981-01-01

    Stable spontaneous mutants resistant to the protein synthesis inhibitor diphtheria toxin (DT) have been selected in human cell line EUE at a very low frequency ( -6 ). U.v.-induced mutation has been quantitatively measured: treatment of cells with u.v. light increased the frequencies of diphtheria toxin resistant (DTsup(r)) mutants up to 1000-fold. The maximum recovery of DTsup(r) mutants was observed after a short expression period, for all u.v. doses tested, and was followed by a decrease in mutation frequency on subsequent passages. (author)

  7. Polo-like kinase 3 (PLK3) mediates the clearance of the accumulated PrP mutants transiently expressed in cultured cells and pathogenic PrP(Sc) in prion infected cell line via protein interaction.

    Science.gov (United States)

    Wang, Hui; Tian, Chan; Fan, Xue-Yu; Chen, Li-Na; Lv, Yan; Sun, Jing; Zhao, Yang-Jing; Zhang, Lu-bin; Wang, Jing; Shi, Qi; Gao, Chen; Chen, Cao; Shao, Qi-Xiang; Dong, Xiao-Ping

    2015-05-01

    Polo-like kinases (PLKs) family has long been known to be critical for cell cycle and recent studies have pointed to new dimensions of PLKs function in the nervous system. Our previous study has verified that the levels of PLK3 in the brain are severely downregulated in prion-related diseases. However, the associations of PLKs with prion protein remain unclear. In the present study, we confirmed that PrP protein constitutively interacts with PLK3 as determined by both in vitro and in vivo assays. Both the kinase domain and polo-box domain of PLK3 were proved to bind PrP proteins expressed in mammalian cell lines. Overexpression of PLK3 did not affect the level of wild-type PrP, but significantly decreased the levels of the mutated PrPs in cultured cells. The kinase domain appeared to be responsible for the clearance of abnormally aggregated PrPs, but this function seemed to be independent of its kinase activity. RNA-mediated knockdown of PLK3 obviously aggravated the accumulation of cytosolic PrPs. Moreover, PLK3 overexpression in a scrapie infected cell line caused notable reduce of PrP(Sc) level in a dose-dependent manner, but had minimal effect on the expression of PrP(C) in its normal partner cell line. Our findings here confirmed the molecular interaction between PLK3 and PrP and outlined the regulatory activity of PLK3 on the degradation of abnormal PrPs, even its pathogenic isoform PrP(Sc). We, therefore, assume that the recovery of PLK3 in the early stage of prion infection may be helpful to prevent the toxic accumulation of PrP(Sc) in the brain tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genetic characterization of glossy-leafed mutant broccoli lines

    Science.gov (United States)

    Glossy mutants of Brassica oleracea L. have reduced or altered epicuticular wax on the surface of their leaves as compared to wild-type plants, conveying a shiny green appearance. Mutations conferring glossiness are common and have been found in most B. oleracea crop varieties, including cauliflower...

  9. Poliovirus Mutants Resistant to Neutralization with Soluble Cell Receptors

    Science.gov (United States)

    Kaplan, Gerardo; Peters, David; Racaniello, Vincent R.

    1990-12-01

    Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.

  10. Grain product of 34 soya mutant lines;Rendimiento de grano de 34 lineas mutantes de soya

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Posgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A. [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R{sub 4}M{sub 18}) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co{sup 60} gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L{sub 25} and L{sub 32} produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  11. Assessment of Genetic diversity in mutant cowpea lines using ...

    African Journals Online (AJOL)

    FKOLADE

    2016-11-09

    Nov 9, 2016 ... DNA extraction. The seeds of the mutants and their parents were planted out in pots in the screen house, and young leaves were harvested from them ... The PCR was done using a modified touch down progam as follows: 94°C for 2 min, 12 cycles of 2 min at 94°C, one min at 65°C. (-0.7°C per cycle) and 1 ...

  12. Induction of mutations in Thai rice varieties and subsequent selection and testing of beneficial mutant lines

    Energy Technology Data Exchange (ETDEWEB)

    Dasananda, S; Khambanonda, P [Ministry of Agriculture, Bangkok (Thailand)

    1970-03-01

    Ionizing radiations were first used in the Thailand Rice Breeding Program in 1955 when seeds of two recommended varieties were sent to the United States of America for treatment. As a result, five promising mutant lines are at present in regional yield tests where they are being considered for recommendation to rice growers. During the period 1960-1961 an unsuccessful attempt was made to induce resistance to blast in three susceptible varieties by exposing seeds to a local source of ionizing radiation In 1964, after an elapse of about 4 years, another attempt was made to utilize ionizing radiations in the breeding program by treating seeds of two recommended varieties. In 1965, a co-ordinated rice mutation breeding program was initiated under the auspices of the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture which resulted in treating seeds of twelve different rice varieties with both ethyl methane sulphonate and gamma rays from a {sup 60}Co gamma cell. The results so far indicate that mutagenic agents have been successful in producing genetic variability. Differences in heading date, mature plant height and plant type are frequently observed in the M{sub 2} and M{sub 3} generations. Several lines obtained from two of the irradiated varieties have exhibited a higher degree of resistance to blast than the parental material. From 15-kR treatments of non-glutinous varieties, mutants with glutinous endosperm have been obtained. Not all varieties gave the same response to treatment. (author)

  13. Modified Starch of Sorghum Mutant Line Zh-30 For High Fiber Muffin Products

    International Nuclear Information System (INIS)

    Santosa, D. D. S; Human, S

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30) has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour (author)

  14. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  15. Evaluation of Mungbean Mutant Lines to Drought Stress and Their Genetic Relationships Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Yuliasti

    2015-12-01

    Full Text Available Development of mungbean cultivarstolerant to drought stress through mutation breeding approach would enable us to anticipate the crop yield-reducing effects of climate changes. The objective of this research was to evaluate the yield performance of mungbean mutant lines that showed tolerance to drought stress, and to analyze their genetic diversity and relationship among mutant lines using SSR markers. The study was conducted during the dry season of 2012 in the Muneng experimental farm, Probolinggo, East Java. The experiment was laid out in a randomized block design with four replications. Five mutant lines and two parental lines as control were tested for evaluation of yield and drought tolerance under twoenvironments of two irrigation systems as treatment. The two environmental conditions consisted of optimal irrigation (at least three times: at planting, flowering and during pod filling and suboptimal irrigation (two times at planting and flowering. To evaluate genetic variation among selected mutant lines and their discrimination from parental lines in molecular level, a cluster analysis was performed using Unweighted Pair Group Method with Arithmetic Mean (UPGMA in the NTSYS software. The results showed that three mutant lines, including PsJ30, PsJ31, PsJ32 produced the highest grain yields of 1.17, 1.01, and 1.04 ton/ha, respectively, compared to the other mutant lines and the parents Gelatik (0.85 ton/ha and Perkutut (0.87 ton/ha as control check. Of those mutant lines, PSJ31 was the most tolerant to drought with sensitivity index value of 0.47. The PSJ31 has now been officially released as a new variety ( 2013, named as Muri which was identified to have high yield and tolerant to drought. Based on 23 SSR markers used for clustering analysis of those 3 selected mutant lines,9SSR markers (MBSS R033; satt137; MBSSR008; MBSSR203; MBSSR013; MBSSR021; MBSSR016; MBSSR136; and DMBSSR013 were successfully identified the three mungbean mutant

  16. Resistance of some early mutant lines of soybean to rust fungus (Phakospora pachyrhizi Syd)

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1984-01-01

    A trial for resistance to rust fungus (Phakospora pachyrhizi Syd.) was conducted on 11 early mutant lines of soybean M6 (derived from Orba variety with a dose of 0.4 kGy of Co-60) at Citayam Experimental Station, Bogor, in the wet season of 80/81. Based on IWGSR rating system, soybean mutant lines number M6/40/6 was moderately susceptible to rust fungus (Phakospora pachyrhizi Syd). While 10 other soybean mutant lines M6/40/1, M6/40/2, M6/40/3, M6/40/4, M6/40/5, M6/40/7, M6/40/8, M6/40/9, M6/40/10 and M6/40/11 were susceptible to rust fungus. Significant differences in yield were observed between the early mutant lines M6/40/6 (moderate susceptible), 10 other mutant lines (susceptible) and ringgit variety (susceptible). However, a significant lower yield was produced by those mutant lines compared with the yield of orba variety. (author)

  17. Mutant lines of currant tomato, valuable germplasm with multiple disease resistance

    International Nuclear Information System (INIS)

    Govorova, G.F.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Studies were carried out for two years on eight mutant lines of currant tomato at the Krymsk Experimental Breeding Station of the N.I. Vavilov All-Union Scientific Research Institute of Plant-Growing (VIR). The station is situated in an area of commercial field tomato growing (Krasnodar region). The mutant lines of currant tomato (VIR specimen No. k-4053) were obtained through chronic gamma-irradiation. A disease resistance evaluation of the mutants was carried out for Verticillium wilt (Verticillium albo-atrum Rein. and Berth.), for black bacterial spotting (Xanthomonas vesicatoria Dows.), for tobacco mosaic virus Nicotiana 1 Smith), for streak virus (Nicotiana 1), for the combination TMV with X and Y potato viruses, for cucumber virus (Cucumis 1), and also for top rot. Fifty plants of each mutant line were evaluated and checks were made three times in each season. A comparison of the currant tomato mutants with the standard tomato varieties demonstrates the better resistance shown by the mutant germplasm to the main pathogens. The degree to which some currant tomato mutants were affected by Verticillium was lower than that of the most VerticiIlium-resistant samples of tomato evaluated between 1975 and 1981. The mutants of currant tomato should therefore be of interest as germplasm in breeding tomatoes for improved multiple disease resistance

  18. Isolation of parafluorophenylalanine-resistant mutants from HeLa cell cultures

    International Nuclear Information System (INIS)

    Yim, L.K.; Stuart, W.D.

    1983-01-01

    This report describes a method to isolate temperature-conditional phenylalanine transport mutants from the transformed human cell line HeLa. Using ultraviolet light as a mutagenic agent and DL-parafluorophenylalanine (PFPA), a poisonous analogue of L-phenylalanine, as a selective agent, mutagenized cells were selected for survival in the presence of PFPA at a temperature of 39 degrees C. Survivors of the mutagenesis and selection procedures were removed from the culture dishes by trypsin and cloned at a temperature of 35 degrees C. Seven of these lines isolated demonstrated continued resistance to PFPA at 39 degrees C. These lines were tested for uptake of L-phenylalanine at an external concentration of 100 microM and for continued resistance to PFPA at two concentrations. Cells were tested at 35 and at 39 degrees C. The data were compared to those obtained for the parental HeLa cell line under identical conditions. The seven mutant cell lines demonstrated varying resistances to PFPA and varying levels of accumulation of L-phenylalanine when tested at 35 and 39 degrees C. Three mutant lines were additionally tested for L-phenylalanine tRNA charging levels and for transport of L-arginine. The lines had parental cell levels of tRNA charging and L-arginine transport which suggest that the induced genetic defect affects a specific L-phenylalanine transport system

  19. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  20. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  1. Evaluation of rice mutant lines for resistance to brown planthopper, nilaparvata lugens stall

    International Nuclear Information System (INIS)

    Mugiono

    1985-01-01

    The most important and common insect in rice cultivation in South East Asia is brown planthopper, nilaparvata lugens stall. Seven rice mutant lines produced by the National Atomic Energy Agency, Indonesia, were tested at IRRI, the Philippines for resistance to brown planthopper. Those mutant lines were Atomita 1, 627/10-3/PsJ, Atomita 2 and 627/4-E/PsJ originated from Pelita 1/1 which was irradiated with 0.2 kGy of gamma rays and A227/2/PsJ, A227/3/PsJ and A227/5/PsJ, originated from early maturing mutant A23/PsJ/72K from irradiated Pelita 1/1 which was irradiated with 0.1 kGy of gamma rays. Evaluation of resistance was carried out by seedling bulk screening, honeydew excretion, survival and population build up tests by using brown planthopper biotype 1, 2 and 3. Results of these tests showed that the seven tested mutant lines were resistant to biotype 1 but susceptible to biotype 2. Reaction to biotype 3 showed that six mutant lines tested were moderately resistant and only one mutant of 627/4-E/PsJ was susceptible. Reactions of the mutant lines to biotype 1, 2 and 3 were different from the resistant varieties, Mudgo or ASD-7. This indicated that mutant lines might have gene(s) for resistance which differed from those of resistant varieties. The results showed that resistance to brown planthopper is possible to be introduced in Indonesian rice varieties by means of mutations. (author)

  2. Human liver cell trafficking mutants: characterization and whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    Full Text Available The HuH7 liver cell mutant Trf1 is defective in membrane trafficking and is complemented by the casein kinase 2α subunit CK2α''. Here we identify characteristic morphologies, trafficking and mutational changes in six additional HuH7 mutants Trf2-Trf7. Trf1 cells were previously shown to be severely defective in gap junction functions. Using a Lucifer yellow transfer assay, remarkable attenuation of gap junction communication was revealed in each of the mutants Trf2-Trf7. Electron microscopy and light microscopy of thiamine pyrophosphatase showed that several mutants exhibited fragmented Golgi apparatus cisternae compared to parental HuH7 cells. Intracellular trafficking was investigated using assays of transferrin endocytosis and recycling and VSV G secretion. Surface binding of transferrin was reduced in all six Trf2-Trf7 mutants, which generally correlated with the degree of reduced expression of the transferrin receptor at the cell surface. The mutants displayed the same transferrin influx rates as HuH7, and for efflux rate, only Trf6 differed, having a slower transferrin efflux rate than HuH7. The kinetics of VSV G transport along the exocytic pathway were altered in Trf2 and Trf5 mutants. Genetic changes unique to particular Trf mutants were identified by exome sequencing, and one was investigated in depth. The novel mutation Ile34Phe in the GTPase RAB22A was identified in Trf4. RNA interference knockdown of RAB22A or overexpression of RAB22AI34F in HuH7 cells caused phenotypic changes characteristic of the Trf4 mutant. In addition, the Ile34Phe mutation reduced both guanine nucleotide binding and hydrolysis activities of RAB22A. Thus, the RAB22A Ile34Phe mutation appears to contribute to the Trf4 mutant phenotype.

  3. Nutrient Changes and in Vitro Digestibility in Generative Stage of M10-BMR Sorghum Mutant Lines

    Directory of Open Access Journals (Sweden)

    R. Sriagtula

    2017-08-01

    Full Text Available The objective of this research was to investigate the influences of generative stage on crude protein, crude fiber, ash, and crude fat contents as well as in-vitro dry matter and organic matter digestibilities of M-10 BMR sorghum mutant lines. This research was arranged into a randomized block design with 2 factors. The first factor was M-10 BMR sorghum mutant lines (Patir 3.1, Patir 3.2 and Patir 3.7 and the second factor was generative stages (flowering, soft dough and hard dough phase. The observed variables were proximate contents of stem, leaves and panicle of sorghum plant and in-vitro digestibility of whole plant. The results showed that leaves crude protein (CP was more influenced by M-10 BMR sorghum mutant lines. Stems and panicles CP were influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages. Further generative stage reduced stems CP but increased panicles CP. Crude fiber (CF, ash, and ether extract (EE in leaves were not influenced by generative stages. Stems CF was influenced by M-10 BMR sorghum mutant lines and generative stages, while stems EE was more influenced by generative stages. Stems ash content was influenced by the interaction between M-10 BMR sorghum mutant lines and generative stages while panicles ash content was more influenced by generative stages. M-10 BMR sorghum mutant lines and hard dough phase increased in-vitro dry matter and organic matter digestibilities. Based on those findings, it can be concluded that the increased maturity reduces CP and CF contents so it increases in-vitro digestibilities.

  4. Meiosis in gamma-ray induced tomato mutants of line XXIV-a

    International Nuclear Information System (INIS)

    Zagorcheva, L.; Jordanov, M.

    1976-01-01

    Results are reported of investigations on meiosis in tomato mutants obtained by gamma-irradiation ( 60 Co) of seeds from line XXIV-a with doses of 20 and 30 krad. Two genome mutants (one a triploid and the other a tetraploid form) as well as a chromosome aberration of the translocation type, were selected in the course of the investigations and their meiosis is described. Meiosis in the initial form (line XXIV-a) was also studied. About 16% of the initial line XXIV-a plants proved to be trisomic forms. (author)

  5. SRAP analysis for space induced mutant line of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Du Wenping; Yu Guirong; Song Jun; Xu Liyuan

    2011-01-01

    In order to detect the effects of space mutation on maize, 16 SRAP primers were applied for the discrimination of the maize inbred line '968' and its 93 mutant materials, 154 polymorphic fragments were amplified. The average of polymorphic bands detected by per SRAP primer combination was 9.6 with a range from 5 to 18. Genetic similarities among the 94 materials ranged from 0.481 to 1.000 with an average of 0.903, and the largest genetic distance was found between mutant line 37 and control. The 94 materials were divided into six groups with the similarity coefficient of 0.732. The phylogenetic analysis showed distinct variation among the mutants. The results indicated that SRAP markers could be used for analyzing genetic variation of mutants. (authors)

  6. Evaluation of yield and N2 fixation of mutant lines of groundnut in Malaysia

    International Nuclear Information System (INIS)

    Rusli, I.; Harun, A.R.; Rahman, K.A.; Shamsuddin, S.; Rahim, K.A.; Danso, S.K.A.

    1998-01-01

    The 15 N-dilution technique was used to evaluate N 2 fixation in groundnut (Arachis hypogaea L.) in three field trials of cultivars Matjan and V-13 (parents), their selected mutant lines, and a other local and foreign genotypes. Matjan mutant MJ/40/42 consistently produced the highest pod yields, at above 4 t ha -1 , 14-22% higher yields than the parent. In contrast, none of the V-13 mutants had consistently better yields than the parent. The mutant lines did not show consistent agronomic performance from year to year. Total dry matter yield did not correlate with pod yield, and pod yield did not correlate with amount of N fixed

  7. Development of One mutant line with Improved Quantitative and Qualitative Traits through Induced Mutation

    International Nuclear Information System (INIS)

    Saif, A. A.; Al-kibssi, M; Al-Shamiri, A; Kassem, R

    2008-01-01

    A field experiment was conducted in three consecutive seasons 2005, 2006 and 2007 for evaluating five mutant lines derived from Gemiza-9 variety. Gemiza-9 and Shibam-8 were used as a checks for yellow rust resistance and some agronomic characters. The mutant lines were planted in Al-erra research farm and farmer's field under rainfed condition, in particularly at Shibam and Bani-Mater regions. Results showed that the MS-5 and MS-9 mutant lines were earlier than the others and the checks. They matured on 102 - 105 days compared with 111 - 118 days for the other lines including the original variety and the Shibam-8 variety. These two mutant lines showed not only early maturing but also resistance to yellow rust disease, they scored R20% -R30%, while the all material were medium resistance including the checks. With respect to yield, the MS -5 mutant had a significant high yield (3963 kg/ha) compared with the others including the Gemiza-9 and Shibam-8 variety amounting to 35.5 % and 32.2 % for the two checks respectively. (author)

  8. THERMAL RADIOSENSITIZATION IN HEAT-SENSITIVE AND RADIATION-SENSITIVE MUTANTS OF CHO CELLS

    NARCIS (Netherlands)

    KAMPINGA, HH; KANON, B; KONINGS, AWT; STACKHOUSE, MA; BEDFORD, JS

    Recently, it has been hypothesized (Iliakis and Seaner 1990) that DNA double-strand break (dsb) repair proficiency is a prerequisite for heat radiosensitization on the basis of the finding that the radiosensitive and dsb-repair-deficient mutant xrs-5 cell line shows no significant heat-induced

  9. Characterization of Boerhavia diffusa L. mutant lines by RAPD and isozyme, selected for agronomically valuable traits

    International Nuclear Information System (INIS)

    Shukla, N.; Sangwan, N.S.; Misra, H.O.; Sangwan, R.S.

    2004-01-01

    Boerhavia diffusa is a medicinally important plant and finds extensive uses in traditional herbal drug preparations. For the development of improved varieties in terms of superior yield and quality of herb/root of B. diffusa, mutation breeding was attempted. Mutants generated by physical and chemical mutagenic treatments were screened for yield and quality parameters of the root/herb up to three consecutive generations. The selected-screened lines generated by physical and chemical mutagenic treatments on two selected genotypes I and II were molecularly analyzed using eight isozymes and eleven RAPD primers producing good amplification. Mutants from BD10 (selected genotype I) were distinct, while, in case of BD22 (selected genotype II), only one mutant BDMu7 was recorded distinct by isozyme analysis. The wild mutant (BDMu16, with maximum height and mouve coloured flower) was distinct in RAPD banding pattern. Isozymes differentiated the mutants from their respective controls, whereas RAPD differentiated the mutants and controls and also distinguished the mutants. The RAPD analysis was found to be better suited than isozymes for detecting genetic differences among controls and their mutants. However, both RAPD and isozyme analyses gave similar patterns of genetic relationships [it

  10. Transcriptional dysregulation in NIPBL and cohesin mutant human cells.

    Directory of Open Access Journals (Sweden)

    Jinglan Liu

    2009-05-01

    Full Text Available Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS. Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.

  11. Thermal radiosensitization in heat- and radiation-sensitive mutants of CHO cells

    International Nuclear Information System (INIS)

    Kampinga, H.H.; Kanon, B.; Konings, A.W.T.; Stackhouse, M.A.; Bedford, J.S.

    1993-01-01

    In the current study, the extent of hyperthermic radiosensitization in a new γ-radiation-sensitive cell line, irs-20, recently isolated by Stackhouse and Bedford (1991) and a heat-sensitive mutant hs-36 (Harvey and Bedford 1988) was compared with the radiosensitization of their mutual parent CHO 10B12 cell line. The irs-20 and CHO 10B12 cells have comparable heat (43.5 o C) sensitivities, whereas hs-36 and CHO 10B12 show a similar sensitivity to γ- and X-rays. Radiosensitization due to pre-exposure to 43.5 o C heating of plateau phase cultures was found for all three cell lines, even after relatively mild heat treatment killing <20% of cells. Experiments using CHEF electrophoresis confirmed the dsb repair deficiency of the irs-20 cells (Stackhouse and Bedford 1992) and showed that heat inhibited dsb repair in all three cell lines. (Author)

  12. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2011-12-01

    Full Text Available Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30 and 3 control varieties (Durra, UPCA-S1 and Mandau were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30 exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture

  13. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    International Nuclear Information System (INIS)

    Yuliasti; Sudarsono

    2011-01-01

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl 3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl 3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl 3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl 3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al +3 . (author)

  14. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  15. Induction and selection of mutants from in vitro cultured plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Il; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    Mutant cell lines are useful for biochemical, physiological and genetical material for marker in various genetic manipulation experiments and for the direct use in crop plant improvement. Mutant selection may lead to the production of plants showing resistance or tolerance to specific environmental stress, such as solinity, drought, toxed metals, herbicides, pathogens and low temperature. In this review, these included the production of the somatic variation, the selection process itself and stability of the selected characters in cell culture and regenerated plant. Which would seem to be useful for improving plants and securring genetic resources. 45 refs. (Author).

  16. Induction and selection of mutants from in vitro cultured plant cells

    International Nuclear Information System (INIS)

    Lee, Yung Il; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae

    1994-07-01

    Mutant cell lines are useful for biochemical, physiological and genetical material for marker in various genetic manipulation experiments and for the direct use in crop plant improvement. Mutant selection may lead to the production of plants showing resistance or tolerance to specific environmental stress, such as solinity, drought, toxed metals, herbicides, pathogens and low temperature. In this review, these included the production of the somatic variation, the selection process itself and stability of the selected characters in cell culture and regenerated plant. Which would seem to be useful for improving plants and securring genetic resources. 45 refs. (Author)

  17. Cell lines that support replication of a novel herpes simplex virus 1 UL31 deletion mutant can properly target UL34 protein to the nuclear rim in the absence of UL31

    International Nuclear Information System (INIS)

    Liang Li; Tanaka, Michiko; Kawaguchi, Yasushi; Baines, Joel D.

    2004-01-01

    Previous results indicated that the herpes simplex virus 1 (HSV-1) U L 31 gene is necessary and sufficient for localization of the U L 34 protein exclusively to the nuclear membrane of infected Hep2 cells. In the current studies, a bacterial artificial chromosome containing the entire HSV-1 strain F genome was used to construct a recombinant viral genome in which a gene encoding kanamycin resistance was inserted in place of 262 codons of the 306 codon U L 31 open reading frame. The deletion virus produced virus titers approximately 10- to 50-fold lower in rabbit skin cells, more than 2000-fold lower in Vero cells, and more than 1500-fold lower in CV1 cells, compared to a virus bearing a restored U L 31 gene. The replication of the U L 31 deletion virus was restored on U L 31-complementing cell lines derived either from rabbit skin cells or CV1 cells. Confocal microscopy indicated that the majority of U L 34 protein localized aberrantly in the cytoplasm and nucleoplasm of Vero cells and CV1 cells, whereas U L 34 protein localized at the nuclear membrane in rabbit skin cells, and U L 31 complementing CV1 cells infected with the U L 31 deletion virus. We conclude that rabbit skin cells encode a function that allows proper localization of U L 34 protein to the nuclear membrane. We speculate that this function partially complements that of U L 31 and may explain why U L 31 is less critical for replication in rabbit skin cells as opposed to Vero and CV1 cells

  18. Aspirin exerts high anti-cancer activity in PIK3CA-mutant colon cancer cells.

    Science.gov (United States)

    Gu, Mancang; Nishihara, Reiko; Chen, Yang; Li, Wanwan; Shi, Yan; Masugi, Yohei; Hamada, Tsuyoshi; Kosumi, Keisuke; Liu, Li; da Silva, Annacarolina; Nowak, Jonathan A; Twombly, Tyler; Du, Chunxia; Koh, Hideo; Li, Wenbin; Meyerhardt, Jeffrey A; Wolpin, Brian M; Giannakis, Marios; Aguirre, Andrew J; Bass, Adam J; Drew, David A; Chan, Andrew T; Fuchs, Charles S; Qian, Zhi Rong; Ogino, Shuji

    2017-10-20

    Evidence suggests that nonsteroidal anti-inflammatory drug aspirin (acetylsalicylic acid) may improve patient survival in PIK3CA -mutant colorectal carcinoma, but not in PIK3CA -wild-type carcinoma. However, whether aspirin directly influences the viability of PIK3CA -mutant colon cancer cells is poorly understood. We conducted in vitro experiments to test our hypothesis that the anti-proliferative activity of aspirin might be stronger for PIK3CA -mutant colon cancer cells than for PIK3CA -wild-type colon cancer cells. We measured the anti-proliferative effect of aspirin at physiologic concentrations in seven PIK3CA -mutant and six PIK3CA -wild-type human colon cancer cell lines. After exposure to aspirin, the apoptotic index and cell cycle phase of colon cancer cells were assessed. In addition, the effect of aspirin was examined in parental SW48 cells and SW48 cell clones with individual knock-in PIK3CA mutations of either c.3140A>G (p.H1047R) or c.1633G>A (p.E545K). Aspirin induced greater dose-dependent loss of cell viability in PIK3CA -mutant cells than in PIK3CA -wild-type cells after treatment for 48 and 72 hours. Aspirin treatment also led to higher proportions of apoptotic cells and G0/G1 phase arrest in PIK3CA -mutant cells than in PIK3CA -wild-type cells. Aspirin treatment of isogenic SW48 cells carrying a PIK3CA mutation, either c.3140A>G (p.H1047R) or c.1633G>A (p. E545K), resulted in a more significant loss of cell viability compared to wild-type controls. Our findings indicate that aspirin causes cell cycle arrest, induces apoptosis, and leads to loss of cell viability more profoundly in PIK3CA -mutated colon cancer cells than in PIK3CA -wild-type colon cancer cells. These findings support the use of aspirin to treat patients with PIK3CA -mutant colon cancer.

  19. Quality characteristics of soybean pasted (Doenjang) manufactured with 2 soybean mutant lines derived from cv. baekwon

    International Nuclear Information System (INIS)

    Lee, Kyung Jun; Kang, Si Yong; Choi, Hong Il; Kim, Jin Baek

    2016-01-01

    In order to identification of the possibility of manufacturing soybean paste (doenjang) with soybean mutant lines induced from gamma-ray mutagenesis, this study was performed to investigate the quality characteristics of doenjang using two soybean mutant lines, Baekwon-1 (BW-1) and Baekwon-2 (BW-2) and their original cultivar (cv. Baekwon, BW) for 8 weeks. The BW and two mutant lines (BW-1 and BW-2) were showed higher content of amino type nitrogen than control (cv. Taegwang). The pH decreased and the titratable acidity increased all the samples during aging period. The lightness, redness and yellowness of doenjang were the lowest in BW. Total free sugar content of doenjang was the highest in control (10.43%) after 4 weeks and composed mainly fructose and glucose. The order of the free amino acid content was Glutamic acid>Leucine>Lysine>Phenylalanine>Aspartic acid in control, Glutamic acid>Leucine >Arginine>Lysine>Phenylalanine in BW, Glutamic acid>Lysine>Phenylalanine>Aspartic acid>Valine in BW-1 and Glutamic acid>Arginine>Lysine>Phenylalanine>Aspartic acid in BW-2, respectively. Our results showed that it is possible to increase the quality of doenjang using soybean mutant lines in manufacturing soybean paste

  20. Nitrogen Dynamic Study on Rice Mutant Lines Using 15N Isotope Techniques

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Malaysian Nuclear Agency in collaboration with UPM and MARDI has produced two types of rice mutant lines of MR219, viz. MR219-4 and MR219-9 developed under rice radiation mutagenenesis programme for adaptability to aerobic conditions. Aerobic cultivating is rice cultivation system on well drained soil and using minimal water input. At Malaysian Nuclear Agency, a nitrogen fertilization study in aerobic condition for the rice mutant lines was carried out in the shade house and field. The study is intended to examine and assess the dynamics of nitrogen by rice mutant lines through the different soil water management and nitrogen levels. Direct 15 N isotopic tracer method was used in this study, whereby the 15 N labeled urea fertilizer was utilized as a tracer for nitrogen nutrient uptake by the test crops. This paper is intended to highlight the progress that has been made in the study of the nitrogen dynamics on MR219-4 and MR219-9 rice mutant lines. (author)

  1. Genotypic variability in sesame mutant lines in Kenya | Ong'injo ...

    African Journals Online (AJOL)

    Sesame (Sesamum indicum L) is one of the major oil crops with potential for production by small- scale holders in the marginal agro-ecological zones of Kenya. Variability studies on yield and yield components of sesame mutant lines now in M7generation was carried out in two locations for two seasons in Kenya.

  2. Quality characteristics of soybean pasted (Doenjang) manufactured with 2 soybean mutant lines derived from cv. baekwon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Jun; Kang, Si Yong; Choi, Hong Il; Kim, Jin Baek [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    In order to identification of the possibility of manufacturing soybean paste (doenjang) with soybean mutant lines induced from gamma-ray mutagenesis, this study was performed to investigate the quality characteristics of doenjang using two soybean mutant lines, Baekwon-1 (BW-1) and Baekwon-2 (BW-2) and their original cultivar (cv. Baekwon, BW) for 8 weeks. The BW and two mutant lines (BW-1 and BW-2) were showed higher content of amino type nitrogen than control (cv. Taegwang). The pH decreased and the titratable acidity increased all the samples during aging period. The lightness, redness and yellowness of doenjang were the lowest in BW. Total free sugar content of doenjang was the highest in control (10.43%) after 4 weeks and composed mainly fructose and glucose. The order of the free amino acid content was Glutamic acid>Leucine>Lysine>Phenylalanine>Aspartic acid in control, Glutamic acid>Leucine >Arginine>Lysine>Phenylalanine in BW, Glutamic acid>Lysine>Phenylalanine>Aspartic acid>Valine in BW-1 and Glutamic acid>Arginine>Lysine>Phenylalanine>Aspartic acid in BW-2, respectively. Our results showed that it is possible to increase the quality of doenjang using soybean mutant lines in manufacturing soybean paste.

  3. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  4. New early-ripening wheat mutant lines from the varieties Norman and Avalon

    International Nuclear Information System (INIS)

    Djelepov, K.

    1988-01-01

    The English wheat varieties Norman and Avalon are high-productive, resistant to lodging and to diseases but late-ripening in Bulgaria. They are 10-15 days later than the variety Sadovo 1 and therefore suffer often from dry and hot weather, causing premature ripening and shrivelled seed. Dry seeds from the two varieties were irradiated with 10 and 15 kR 60 Co gamma rays. In M 2 , several earlier ripening forms were selected and they were studied also in M 3 in 1987. In the Table, four early ripening mutant lines and the respective initial varieties are compared. They vary significantly in plant height and grain size. The mutant lines of Norman produce smaller grain but all mutants show a higher hectoliter weight. The mutant lines head and mature 4 to 10 days earlier than the respective initial varieties. Some of them are as productive as the standard and other cultivated varieties. We shall continue testing their productivity and possibilities for their use in the breeding

  5. Water-deficit tolerant classification in mutant lines of indica rice

    Directory of Open Access Journals (Sweden)

    Suriyan Cha-um

    2012-04-01

    Full Text Available Water shortage is a major abiotic stress for crop production worldwide, limiting the productivity of crop species, especially in dry-land agricultural areas. This investigation aimed to classify the water-deficit tolerance in mutant rice (Oryza sativa L. spp. indica genotypes during the reproductive stage. Proline content in the flag leaf of mutant lines increased when plants were subjected to water deficit. Relative water content (RWC in the flag leaf of different mutant lines dropped in relation to water deficit stress. A decrease RWC was positively related to chlorophyll a degradation. Chlorophyll a , chlorophyll b , total chlorophyll , total carotenoids , maximum quantum yield of PSII , stomatal conductance , transpiration rate and water use efficiency in mutant lines grown under water deficit conditions declined in comparison to the well-watered, leading to a reduction in net-photosynthetic rate. In addition, when exposed to water deficit, panicle traits, including panicle length and fertile grains were dropped. The biochemical and physiological data were subjected to classify the water deficit tolerance. NSG19 (positive control and DD14 were identified as water deficit tolerant, and AA11, AA12, AA16, BB13, BB16, CC12, CC15, EE12, FF15, FF17, G11 and IR20 (negative control as water deficit sensitive, using Ward's method.

  6. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    Science.gov (United States)

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. Evaluation of some mutant lines of rice induced by gamma radiation treatment 1. mean performance of rice mutants in M4 generation

    International Nuclear Information System (INIS)

    El-Banna, M.N.; El-Wakil, H.M.F.; Ebaid, R.A.; Sallam, R.A.

    2009-01-01

    Grains of eight rice mutants; SC 1, SC 6, RTY 1, RTY 3, HY 14, HYI 17, EH 4 and HYPI 22 were secured from Botany Department Faculty of Agriculture Cairo university. The procedures and the methodology for induction these mutants as well as the original mean performance of such mutants are presented else where; Sabbour, (1989) and Sabbour etal. (2002). Grains were sown (M4 generation) at the experimental farm in Itai EI-Baroud Agricultural Research Station Behaira Governorate Agricultural Research Center (ARC) in the summer season (2007). The mean performance of such mutants was studied during M4 generation. The most exciting results were as follows: the selected line SC 1 showed in M4 generation superior agronomic and yield traits. Sc 1 mutant line is not bred truly and it need more generations to reach stability. SC 6 in M4 generation showed considerable number of individuals scored low mean values toward the negative direction and lowering the overall trait mean performance. The rice lines RTY 1 and RTY 3 proved that, the average number of fertile tillers per plant of the selected lines maintained previously recorded mean values of M3 generation in M4. The traits showed significant differences among their progeny that recorded high CV% values as compared with those showed no significant differences. The rice lines HY 14 and HYI 17 showed a true breeding signs and no more breeding generations are required. Rice lines EH 4, showed a considerable reduction in number of days elapsed from date of cultivation till harvest. As, this mutant maintained 86.58 days till heading. Rice mutant line HYPI 22 did not bred truly for the original selected traits (high yield and high protein content) and it still need more generations of selection to reach considerable stability

  8. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower.

    Science.gov (United States)

    Kolbas, A; Mench, M; Herzig, R; Nehnevajova, E; Bes, C M

    2011-01-01

    Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.

  9. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner.

    Directory of Open Access Journals (Sweden)

    Divya Bhagirath

    Full Text Available Breast cancer is characterized into different molecular subtypes, and each subtype is characterized by differential gene expression that are associated with distinct survival outcomes in patients. PIK3CA mutations are commonly associated with most breast cancer subtypes. More recently PIK3CA mutations have been shown to induce tumor heterogeneity and are associated with activation of EGFR-signaling and reduced relapse free survival in basal subtype of breast cancer. Thus, understanding what determines PIK3CA induced heterogeneity and oncogenesis, is an important area of investigation. In this study, we assessed the effect of mutant PIK3CA together with mutant Ras plus mutant p53 on oncogenic behavior of two distinct stem/progenitor breast cell lines, designated as K5+/K19- and K5+/K19+. Constructs were ectopically overexpressed in K5+/K19- and K5+/K19+ stem/progenitor cells, followed by various in-vitro and in-vivo analyses. Oncogene combination m-Ras/m-p53/m-PIK3CA efficiently transformed both K5+/K19- and K5+/K19+ cell lines in-vitro, as assessed by anchorage-independent soft agar colony formation assay. Significantly, while this oncogene combination induced a complete epithelial-to-mesenchymal transition (EMT in K5+/K19- cell line, mostly epithelial phenotype with minor EMT component was seen in K5+/K19+ cell line. However, both K5+/K19- and K5+/K19+ transformed cells exhibited increased invasion and migration abilities. Analyses of CD44 and CD24 expression showed both cell lines had tumor-initiating CD44+/CD24low cell population, however transformed K5+/K19- cells had more proportion of these cells. Significantly, both cell types exhibited in-vivo tumorigenesis, and maintained their EMT and epithelial nature in-vivo in mice tumors. Notably, while both cell types exhibited increase in tumor-initiating cell population, differential EMT phenotype was observed in these cell lines. These results suggest that EMT is a cell type dependent

  10. Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities.

    Science.gov (United States)

    Garrett, Matthew; Sperry, Jantzen; Braas, Daniel; Yan, Weihong; Le, Thuc M; Mottahedeh, Jack; Ludwig, Kirsten; Eskin, Ascia; Qin, Yue; Levy, Rachelle; Breunig, Joshua J; Pajonk, Frank; Graeber, Thomas G; Radu, Caius G; Christofk, Heather; Prins, Robert M; Lai, Albert; Liau, Linda M; Coppola, Giovanni; Kornblum, Harley I

    2018-01-01

    There is considerable interest in defining the metabolic abnormalities of IDH mutant tumors to exploit for therapy. While most studies have attempted to discern function by using cell lines transduced with exogenous IDH mutant enzyme, in this study, we perform unbiased metabolomics to discover metabolic differences between a cohort of patient-derived IDH1 mutant and IDH wildtype gliomaspheres. Using both our own microarray and the TCGA datasets, we performed KEGG analysis to define pathways differentially enriched in IDH1 mutant and IDH wildtype cells and tumors. Liquid chromatography coupled to mass spectrometry analysis with labeled glucose and deoxycytidine tracers was used to determine differences in overall cellular metabolism and nucleotide synthesis. Radiation-induced DNA damage and repair capacity was assessed using a comet assay. Differences between endogenous IDH1 mutant metabolism and that of IDH wildtype cells transduced with the IDH1 (R132H) mutation were also investigated. Our KEGG analysis revealed that IDH wildtype cells were enriched for pathways involved in de novo nucleotide synthesis, while IDH1 mutant cells were enriched for pathways involved in DNA repair. LC-MS analysis with fully labeled 13 C-glucose revealed distinct labeling patterns between IDH1 mutant and wildtype cells. Additional LC-MS tracing experiments confirmed increased de novo nucleotide synthesis in IDH wildtype cells relative to IDH1 mutant cells. Endogenous IDH1 mutant cultures incurred less DNA damage than IDH wildtype cultures and sustained better overall growth following X-ray radiation. Overexpression of mutant IDH1 in a wildtype line did not reproduce the range of metabolic differences observed in lines expressing endogenous mutations, but resulted in depletion of glutamine and TCA cycle intermediates, an increase in DNA damage following radiation, and a rise in intracellular ROS. These results demonstrate that IDH1 mutant and IDH wildtype cells are easily distinguishable

  11. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...... of the fusion protein and/or suppression of the aggregate formation in both cell types. In the NT2 cells the antisense effect was dependent on the way of administration of the oligo. Conclusions The PS-antisense oligo is effective in downregulation of mutant huntingtin, and the reduction of aggregate formation...... is a sensitive biological marker. The findings suggest that antisense knockdown of huntingtin could be a useful strategy for treatment of HD, and could also be suitable for studies of the normal and pathological function of huntingtin in different cellular model systems....

  12. Characterizing visible and invisible cell wall mutant phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carpita, Nicholas C.; McCann, Maureen C.

    2015-04-06

    About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with ‘invisible’ phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.

  13. Assesment of spineless safflower (Carthamus tinctorius, L.) mutant lines for seed oil content and fatty acid profiles

    International Nuclear Information System (INIS)

    Ragab, A.I.; Kassem, M.; Moustafa, H.A.M.

    2008-01-01

    This study was conducted to assess the new spineless mutants that previously induced through gamma radiation and hybridization techniques in the advanced generation for seed oil content and fatty acid profiles The obtained results cleared that oil percentages of all seven safflower mutants were increased than local variety Giza (1) and the new mutant hybrid 2 line (white petals) had the highest increase value of oil percentage (10%) but the mutant line M14 (dark red petals) had the lowest increase value of oil percentage (3.1 %) The mutant line M7 (yellow petals) had the highest value of total saturated fatty acid (40.38%), because it had the highest value of palmitic fatty acid (25.16%), comparing to 10.01% value for local variety Giza (1), followed by mutant line hybrid 2 (white petals) which had (39.88%) because it had the highest value of caprylic, capric, lauric, myristic and stearic fatty acids. All safflower mutant lines had higher value of oleic fatty acid than that of the local variety Giza (1) the two new safflower mutant lines M7 (yellow petals) and hybrid 2 (white petal) had the highest value of oleic fatty acid 41.22% and 39.88% respectively in comparison with 13.5% for local variety Giza (1), the obtained results are indicating to seed oil content negative correlation between oleic and linoleic acids

  14. Effect of sowing dates on yield and yield components on mutant-cum-hybrid lines of bread wheat

    International Nuclear Information System (INIS)

    Sial, M.A.; Arain, M.A.; Dahot, M.U.; Laghari, K.A.; Naqvi, M.H.; Markhand, G.S.; Mangrio, S.M.; Mirbahar, A.A.

    2010-01-01

    Twenty-one stable wheat mutant lines along with four check varieties viz., Sarsabz, Kiran-95, T.J.83 and Khirman were evaluated under normal and late sowing dates. The observations were recorded on phenological, morphological and meteorological parameters. Higher yield and improvement in various yield components were recorded at normal sowing as compared to late sowing. Six mutant lines showed superiority in yield than check varieties at normal sowings while three mutants produced more yield than check varieties except Sarsabz at late sowings. At normal sowing eleven mutant lines matured earlier than all check varieties including short duration variety T.J-83 whereas two mutant lines were earlier than Sarsabz and Kiran-95 and thirteen than T.J-83 and Khirman. (author)

  15. Prion propagation in cells expressing PrP glycosylation mutants.

    Science.gov (United States)

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  16. Resistance to Phytophthora in mutant lines of currant tomato and in their original forms

    International Nuclear Information System (INIS)

    Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Information on the production of currant tomato mutants is contained in a previous report. Evaluation of fruit resistance against Phytophthora infestans (Mont.) de Bary was carried out with pathotypes T 0 and T 1 . For artificial infection we used mainly a culture of T 1 (isolate 275), supplied by the Byelorussian Scientific Research Institute of Potato, Fruit and Vegetable Growing at Samokhvalovich. As inoculum for T 0 , a local population of the potato pathotype from the village of Shebantsevo, Moscow province was used. The standard variety 'Gruntovyj gribovskij 1180' was used as the control. Green fruits were taken from the first or second raceme of 20 plants. They were inoculated by spraying in plastic cuvettes with moist filter paper. The cuvettes were covered with glass and maintained at temperature of 18-20 deg. C. The results were checked 5, 9 and 12 days after inoculation. Under natural conditions, each of the 20 plants was also evaluated. As result, three lines with increased resistance to Phytophthora were selected from the original wild-type of currant tomato. Induced mutant forms were tested in the same way for resistance to Phytophthora. Data is presented from 4 years study. Of 26 mutant lines studied, we identified seven whose fruit displayed a stable and enhanced resistance to Phytophthora under both laboratory and field conditions. With regard to leaf infection of these lines, positive results were not obtained. There appears to be no direct relationship between resistance to Phytophthora of the fruit and the leaves. The mutant lines are of determinate type with early and medium ripening time. The average fruit weight is 5-33 g; in the case of the original specimen, it is only 0.9-1.7 g. The fruits have a pleasant sour-sweet taste and a thick skin. It is noteworthy that the mutant lines selected on the basis of their suitability for cultivation not only showed the resistance selected from the wild-type, but in a number of cases even turned out to

  17. Recombinant lines for less-spininess in steroid-bearing Solanum viarum using induced mutants as parents

    International Nuclear Information System (INIS)

    Krishnan, R.; Nanda Kumar, D.; Subhas Chander, M.

    1988-01-01

    In the domestication of the wild, spinous and steroid-bearing Solanum viarum (syn. S. khasianum var. chatterjeeanum) induced mutations play a major role. The development of Glaxo and BARC mutants catalysed commercial cultivation of this species for its berries containing solasodine, used in steroid industries. The commercially more popular Glaxo mutant population consists predominantly of plants that are totally free of spines in aerial parts except lamina where few straight spines develop. The BARC mutant still possesses spines on aerial parts including the persistent calyx. However, the laminary spines of the BARC mutant are curved and vestigial. Comparative studies on morphology, growth behaviour and agronomic characters of the two mutants, their wild progenitor and their hybrid progenies showed that the three types differ only for spine character. In F 2 generation of a cross involving the Glaxo and BARC mutants, a double mutant recombinant was recovered. The recombinant is devoid of spines in aerial parts like its Glaxo mutant parent, but possesses laminary curved vestigial spines like the BARC parent. The spine characters of the recombinant are inherited double recessive. Three advanced lines of this recombinant type (IIHR 2n - 1,2 and 3) were tested in replicated trials 1985 and 1986. They showed parity in berry yield and solasodine content with the Glaxo mutant and three promising lines evolved elsewhere viz. 'RRL (Bhuhaneswar) Y-14', 'RRL (Jorhat)' and 'Pusa'. The results indicate gainful use of induced mutants in hybridization leading to development of superior less-spiny lines of steroid bearing Solanum viarum

  18. Mutant spectra of irradiated CHO AL cells determined with multiple markers analyzed by flow cytometry

    International Nuclear Information System (INIS)

    Ross, Carley D.; French, C. Tenley; Keysar, Stephen B.; Fox, Michael H.

    2007-01-01

    We have previously developed a sensitive and rapid mammalian cell mutation assay which is based on a Chinese hamster ovary cell line that stably incorporates human chromosome 11 (CHO A L ) and uses flow cytometry to measure mutations in CD59. We now show that multiparameter flow cytometry may be used to simultaneously analyze irradiated CHO A L cells for mutations in five CD genes along chromosome 11 (CD59, CD44, CD90, CD98, CD151) and also a GPI-anchor gene. Using this approach, 19 different mutant clones derived from individual sorted mutant cells were analyzed to determine the mutant spectrum induced by ionizing radiation. All clones analyzed were negative for CD59 expression and PCR confirmed that at least CD59 exon 4 was also absent. As expected, ionizing radiation frequently caused large deletions along chromosome 11. This technology can readily be used to rapidly analyze the mutant yield as well as the spectrum of mutations caused by a variety of genotoxic agents and provide greater insight into the mechanisms of mutagenesis

  19. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  20. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    Science.gov (United States)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  1. Ascertainment of the effect of differential growth rates of mutants on observed mutant frequencies in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Knaap, A.G.A.C.; Simons, J.W.I.M.

    1983-01-01

    As it is not known to what extent differential growth rates of induced mutants lead to over- and under-representation of mutants in treated populations and thereby affect the determination of mutant frequencies, the mutation induction in X-irradiated L5178Y mouse lymphoma cells was determined via two methods. The first method involves the standard protocol which may suffer from the effect of differential growth rates, while the second method is based upon the fluctuation test in which the differential growth rates can be actually measured. It appeared that the standard protocol led to a mutant frequency that was similar to the mutant frequency determined in the fluctuation test. Therefore, the standard protocol appears to lead to only a minor under-estimation if any. Substantial heterogeneity in growth rates of induced mutants was observed, but the mutants with a selective advantage appear largely to compensate for the mutants that are lost because of selective disadvantage. It was calculated that the chance for isolating the same mutant twice from a treated population had been increased 2.2-fold because of the observed differential growth rates. (orig./AJ)

  2. Human T-Cell Leukemia Virus I Tax Protein Sensitizes p53-Mutant Cells to DNA Damage

    Science.gov (United States)

    Mihaylova, Valia T.; Green, Allison M.; Khurgel, Moshe; Semmes, Oliver J.; Kupfer, Gary M.

    2018-01-01

    Mutations in p53 are a common cause of resistance of cancers to standard chemotherapy and, thus, treatment failure. Reports have shown that Tax, a human T-cell leukemia virus type I encoded protein that has been associated with genomic instability and perturbation of transcription and cell cycle, sensitizes HeLa cells to UV treatment. The extent to which Tax can sensitize cells and the mechanism by which it exerts its effect are unknown. In this study, we show that Tax sensitizes p53-mutant cells to a broad range of DNA-damaging agents, including mitomycin C, a bifunctional alkylator, etoposide, a topoisomerase II drug, and UV light, but not ionizing radiation, a double-strand break agent, or vinblastine, a tubulin poison. Tax caused hypersensitivity in all p53-deleted cell lines and several, but not all, mutant-expressed p53–containing cell lines, while unexpectedly being protective in p53 wild-type (wt) cells. The effect observed in p53-deleted lines could be reversed for this by transfection of wt p53. We also show that Tax activates a p53-independent proapoptotic program through decreased expression of the retinoblastoma protein and subsequent increased E2F1 expression. The expression of several proapoptotic proteins was also induced by Tax, including Puma and Noxa, culminating in a substantial increase in Bax dimerization. Our results show that Tax can sensitize p53-mutant cells to DNA damage while protecting p53 wt cells, a side benefit that might result in reduced toxicity in normal cells. Such studies hold the promise of a novel adjunctive therapy that could make cancer chemotherapy more effective. PMID:18559532

  3. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    Science.gov (United States)

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  5. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  6. Double-strand break repair and G2 block in Chinese hamster ovary cells and their radiosensitive mutants

    International Nuclear Information System (INIS)

    Weibezahn, K.F.; Lohrer, H.; Herrlich, P.

    1985-01-01

    Two X-ray-sensitive mutants of the CHO K1 cell line were examined for their cell-cycle progression after irradiation with γ-rays, and for their ability to rejoin double-strand breaks (DSBs) as detected by neutral filter elution. Both mutants were impaired in DSB rejoining and both were irreversibly blocked in the G 2 phase of the cell cycle as determined by cytofluorometry. From one mutant the authors have isolated several revertants. The revertants stem from genomic DNA transfection experiments and may have been caused by gene uptake. All revertants survived γ-irradiation as did the wild-type CHO line. One of them has been examined for its ability to rejoin DSBs and was found to be similar to the wild type. (Auth.)

  7. Double-strand break repair and G/sub 2/ block in Chinese hamster ovary cells and their radiosensitive mutants

    Energy Technology Data Exchange (ETDEWEB)

    Weibezahn, K F; Lohrer, H; Herrlich, P [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und Toxikologie

    1985-05-01

    Two X-ray-sensitive mutants of the CHO K1 cell line were examined for their cell-cycle progression after irradiation with ..gamma..-rays, and for their ability to rejoin double-strand breaks (DSBs) as detected by neutral filter elution. Both mutants were impaired in DSB rejoining and both were irreversibly blocked in the G/sub 2/ phase of the cell cycle as determined by cytofluorometry. From one mutant the authors have isolated several revertants. The revertants stem from genomic DNA transfection experiments and may have been caused by gene uptake. All revertants survived ..gamma..-irradiation as did the wild-type CHO line. One of them has been examined for its ability to rejoin DSBs and was found to be similar to the wild type.

  8. Increased somatic cell mutant frequency in atomic bomb survivors

    International Nuclear Information System (INIS)

    Hakoda, Masayuki; Akiyama, Mitoshi; Kyoizumi, Seishi; Awa, A.A.; Yamakido, Michio; Otake, Masanori.

    1988-05-01

    Frequencies of mutant T-cells in peripheral blood, which are deficient in the activity of hypoxanthine guanine phosphoribosyltransferase (HPRT) were determined for atomic bomb survivors by direct clonal assay using a previously reported method. Results from 30 exposed survivors (exposed to more than 1 rad) and 17 age- and sex-matched controls (exposed to less than 1 rad) were analyzed. The mean mutant frequency (Mf) in the exposed (5.2 x 10 -6 ; range 0.8 - 14.4 x 10 -6 ) was significantly higher than in controls (3.4 x 10 -6 ; range 1.3 - 9.3 x 10 -6 ), a fact not attributable to lower nonmutant cell cloning efficiencies in the exposed group since cell cloning efficiencies were virtually identical in both groups. An initial analysis of the data did not reveal a significant correlation between individual Mfs and individual radiation dose estimates when the latter were defined by the original, tentative estimates (T65D), even though there was a significant positive correlation of Mfs with individual frequency of lymphocytes bearing chromosome aberration. However, reanalysis using the newer revised individual dose estimates (DS86) for 27 exposed survivors and 17 controls did reveal a significant but shallow positive correlation between T-cell Mf values and individual exposure doses. These results indicate that HPRT mutation in vivo in human T-cells could be detected in these survivors 40 years after the presumed mutational event. (author)

  9. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  10. Agronomic and molecular evaluation of induced mutant rice (oryza sativa l.) lines in Egypt

    International Nuclear Information System (INIS)

    Sshehzad, T.; Allah, A.; Aallah, E.A.; Ammar, M.H.; Abdelkhalik, A.H.

    2011-01-01

    The present study was conducted at the farm of the Rice Research and Training Center, Sakha, Kafr El-Sheikh, Egypt, during 2000-2007 rice sowing seasons. Five rice varieties viz., Giza 171, Giza 175, Giza 176, Giza 181 and GZ 1368 were the most widely grown Japonica and Indica types in Egypt during the last period, possesses at that time many positive agronomic characteristics including wide adaptability, high yield potential, tolerance to stresses and good eating quality. But with the passage of time it has lost its vigor. In Rice Research Program, Egypt, dry seeds of the above mentioned varieties were treated with different doses of gamma rays (100, 200, 300, 400, and 500 Gy) for raising M1 generation. M1 plants were established by transplanting in the year 2000 season. One hundred independent lines have been advanced to M5 generation enabling evaluation of quantitative traits by replicated trials and promising lines were selected and tested in multi-location trials as M6, M7 and M8 generations. Morphological variations at vegetative and reproductive stages including plant type and various physiological characters were observed in the five populations. The mutant lines characteristics consisted of better resistance to lodging, blast disease, high yield potential, as well as early maturity. Results from yield trials and molecular assessments indicated that the mutants differed genetically from their parents. So, these mutants could be used as a donor parents in rice breeding program and some of them can be recommended as new rice varieties suitable for rice belt in Egypt. (author)

  11. Productivity and Nutrient Quality of Some Sorghum Mutant Lines at Different Cutting Ages

    Directory of Open Access Journals (Sweden)

    R. E. Puteri

    2015-08-01

    Full Text Available The objective of the study was to explore the appropriate cutting age to produce optimal biomass and good nutrient quality from sorghum mutant lines BMR i.e., PATIR 3.5 M7, PATIR 3.6 M7, and PATIR 3.7 M7, also SAMURAI I (M17. A completely randomized in Split Plot design with 2 factors and 3 replicates was used. The first factor was the type of sorghum (SAMURAI I M17, PATIR 3.5, PATIR 3.6, PATIR 3.7 as the main plot and the second factor was the cutting age (85, 95, 105 as a subplot. Parameters observed were the production of stems, leaves, grains, total biomass production, ash, crude fat, crude fiber, crude protein, NFE, TDN, percentage of DMD, OMD and N-NH3. Data were analyzed by using ANOVA followed by DMRT (Duncan Multiple Range Test. The results showed that there were highly significant interactions (P<0.01 between cutting age and type of sorghum in production of stems, leaves, grains, total biomass production, value of TDN, DMD, OMD, and N-NH3. Increasing cutting age significantly increased the percentage of ash content, crude protein and crude fat. The sorghum type significantly affected crude fat content nonBMR sorghum variety of SAMURAI I (M17 and achieved optimal biomass production and nutrient content at cutting age of 85 d similar to BMR sorghum mutant lines PATIR 3.6 and PATIR 3.5, whereas BMR sorghum mutant lines of PATIR 3.7 achieved optimum production at the age of 95 d of cutting. All types of sorghum varieties was not recommended to be harvested at 105 d. Biomass production increased with the increasing of cutting age, but the nutrient content decreased.

  12. Evaluating Genetic Variability of Sorghum Mutant Lines Tolerant to Acid Soil

    International Nuclear Information System (INIS)

    Puspitasari, W.; Human, S.; Wirnas, D.; Trikoesoemaningtyas

    2012-01-01

    High rainfall in some parts in Indonesia causes soil become acidic. The main constraint of acid soil is phosphor (P) deficiency and aluminum (Al) toxicity which decrease plant productivity. To overcome this problem, it is important to develop a crop variety tolerant to such conditions. Sorghum is probably one of the potential crops to meet that objective. Sorghum has been reported to have wide adaptability to various agro-ecology and can be used as food and animal feed. Unfortunately, sorghum is not Indonesian origin so its genetic variability is still low. From previous breeding works with induced mutation, some promising mutant lines have been developed. These mutant lines were included in the experiment carried out in Tenjo with soil condition was classified as acid soil with pH 4.8 and exchangeable-Al content 2.43 me/100 g. The objectives of this experiment were to study the magnitude of genetic variability of agronomy and grain quality characters in sorghum in order to facilitate the breeding improvement of the species. Plant materials used in this study were ten genotypes, including 6 mutant lines and 4 control varieties. The randomized block design with three replications was used in the experiment. The genetic variabilities of agronomic and grain quality characters existed among genotypes, such as plant height, number of leaves, stalk diameter, biomass weight, panicle length, grain yield per plant, 100 seed weight and tannin content in the grain. The broad sense heritabilities of agronomic characters were estimated ranging from medium to high. Grain yield showed significantly positive correlation with agronomic characters observed, but it was negatively correlated with protein content (author)

  13. RAF Suppression Synergizes with MEK Inhibition in KRAS Mutant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Simona Lamba

    2014-09-01

    Full Text Available KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.

  14. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice.

    Directory of Open Access Journals (Sweden)

    Chun Fu

    Full Text Available After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance protein. Fanconi anemia (FA proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2-3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line.

  15. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  16. Establishment of HeLa cell mutants deficient in sphingolipid-related genes using TALENs.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yamaji

    Full Text Available Sphingolipids are essential components in eukaryotes and have various cellular functions. Recent developments in genome-editing technologies have facilitated gene disruption in various organisms and cell lines. We here show the disruption of various sphingolipid metabolic genes in human cervical carcinoma HeLa cells by using transcription activator-like effector nucleases (TALENs. A TALEN pair targeting the human CERT gene (alternative name COL4A3BP encoding a ceramide transport protein induced a loss-of-function phenotype in more than 60% of HeLa cells even though the cell line has a pseudo-triploid karyotype. We have isolated several loss-of-function mutant clones for CERT, UGCG (encoding glucosylceramide synthase, and B4GalT5 (encoding the major lactosylceramide synthase, and also a CERT/UGCG double-deficient clone. Characterization of these clones supported previous proposals that CERT primarily contributes to the synthesis of SM but not GlcCer, and that B4GalT5 is the major LacCer synthase. These newly established sphingolipid-deficient HeLa cell mutants together with our previously established stable transfectants provide a 'sphingolipid-modified HeLa cell panel,' which will be useful to elucidate the functions of various sphingolipid species against essentially the same genomic background.

  17. Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A.

    Directory of Open Access Journals (Sweden)

    Diana J M van den Wollenberg

    Full Text Available Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.

  18. From one body mutant to one cell mutant. A progress of radiation breeding in crops

    International Nuclear Information System (INIS)

    Nagatomi, Shigeki

    1996-01-01

    An effective method was established to obtain non-chimeral mutants with wide spectrum of flower colors, regenerated from floral organs on which mutated sectors were come out on chronic irradiated plants. By this way, six mutant varieties of flower colors have been selected from one pink flower of chrysanthemum, and cultivated for cut-flower production. By the same method, 3 mutant varieties with small and spray type flowers were selected in Eustoma. Mutant varieties such as a rust disease resistant in sugarcane, 6 dwarfs in Cytisus and pure-white mushroom in velvet shank have been selected successively for short period. (J.P.N.)

  19. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    International Nuclear Information System (INIS)

    Wang Tiegu; Huang Qunce; Feng Weisen

    2007-01-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning

  20. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Science.gov (United States)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  1. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tiegu, Wang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Qunce, Huang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Weisen, Feng [Luoyang Institute of Agricultural Science, Luoyang 471022 (China)

    2007-10-15

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  2. The characteristics of high-yield genotype of early-mature mutant lines in barley

    International Nuclear Information System (INIS)

    Chen Xiulan; Han Yuepeng; He Zhentian; Yang Hefeng

    2000-01-01

    The correlation and genetic parameters of eight agronomic traits of 36 early mature mutant lines induced from barley Sunong 9052 were studied by stepwise regression and path analysis. The results showed that: (1) the growing period of early mutants was shortened 2-13 days from that of their parent and the trait of yield had a great mutation range; (2) the number of grain per panicle significantly correlated with the days from sowing to heading; (3) according to direct path coefficients, the main characters related with individual plant-yield were in order of productive panicle per plant > 1000-grain-weight > number of grain per panicle > fertility, the high-yield genotype had more productive panicle and higher 10000-grain-weight, and to increase the yield in the breeding of early mature mutation was to select the lines with more tillers and productive panicles, higher 1000-grain-weight and lower number of grain per panicle; (4) the higher broad-sense heritability and genetic variation coefficient were found in 1000-grain-weight and the days from sowing to heading

  3. Variations in seed protein content of cotton (Gossypium hirsutum L.) mutant lines by in vivo and in vitro mutagenesis.

    Science.gov (United States)

    Muthusamy, Annamalai; Jayabalan, Narayanasamy

    2013-01-01

    The present work describes the influence of gamma irradiation (GR), ethyl methane sulphonate (EMS) and sodium azide (SA) treatment on yield and protein content of selected mutant lines of cotton. Seeds of MCU 5 and MCU 11 were exposed to gamma rays (GR), ethyl methane sulphonate (EMS) and sodium azide (SA). Lower dose of gamma irradiation (100-500 Gy), 10-50 mM EMS and SA at lower concentration effectively influences in improving the yield and protein content. Significant increase in yield (258.9 g plant(-1)) and protein content (18.63 mg g(-1) d. wt.) as compared to parental lines was noted in M2 generations. During the subsequent field trials, number of mutant lines varied morphologically in terms of yield as well as biochemical characters such as protein. The selected mutant lines were bred true to their characters in M3 and M4 generations. The significant increase in protein content and profiles of the mutant lines with range of 10.21-18.63 mg g(-1). The SDS-PAGE analysis of mutant lines revealed 9 distinct bands of different intensities with range of 26-81 kDa. The difference in intensity of bands was more (41, 50 and 58 kDa) in the mutant lines obtained from in vitro mutation than in vivo mutation. Significance of such stimulation in protein content correlated with yielding ability of the mutant lines of cotton in terms of seed weight per plant. The results confirm that in cotton it is possible to enhance the both yield and biochemical characters by in vivo and in vitro mutagenic treatments.

  4. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  5. Analysis of Distinct Roles of CaMKK Isoforms Using STO-609-Resistant Mutants in Living Cells.

    Science.gov (United States)

    Fujiwara, Yuya; Hiraoka, Yuri; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2015-06-30

    To assess the isoform specificity of the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)-mediated signaling pathway using a CaMKK inhibitor (STO-609) in living cells, we have established A549 cell lines expressing STO-609-resistant mutants of CaMKK isoforms. Following serial mutagenesis studies, we have succeeded in obtaining an STO-609-resistant CaMKKα mutant (Ala292Thr/Leu233Phe) and a CaMKKβ mutant (Ala328Thr/Val269Phe), which showed sensitivity to STO-609 that was 2-3 orders of magnitude lower without an appreciable effect on kinase activity or CaM requirement. These results are consistent with the results obtained for CaMKK activities in the extracts of A549 cells stably expressing the mutants of CaMKK isoforms. Ionomycin-induced 5'-AMP-activated protein kinase (AMPK) phosphorylation at Thr172 in A549 cells expressing either the wild-type or the STO-609-resistant mutant of CaMKKα was completely suppressed by STO-609 treatment but resistant to the inhibitor in the presence of the CaMKKβ mutant (Ala328Thr/Val269Phe). This result strongly suggested that CaMKKβ is responsible for ionomycin-induced AMPK activation, which supported previous reports. In contrast, ionomycin-induced CaMKIV phosphorylation at Thr196 was resistant to STO-609 treatment in A549 cells expressing STO-609-resistant mutants of both CaMKK isoforms, indicating that both CaMKK isoforms are capable of phosphorylating and activating CaMKIV in living cells. Considering these results together, STO-609-resistant CaMKK mutants developed in this study may be useful for distinguishing CaMKK isoform-mediated signaling pathways in combination with the use of an inhibitor compound.

  6. Evaluate The Fluctuation Of Phytic Acid Content In Seed From Mutant Lines By Gamma Ray

    International Nuclear Information System (INIS)

    Nguyen Thi Lang; Pham Van Ut

    2011-01-01

    Phytic acid is a molecule composed of myo-inositol 1,2,3,4,5,6 hexakis dihydrogen phosphate (Ins P6), a major component in the source of phosphorus (P) reserves of about 50 plants - 80% of total seed phosphorus (Lott, 1984). At physiological pH in the form of phytic acid have negatively charged ions hold together the complex mineral nutrition creates indigestion. Moreover, phosphorus in the form of phytate or phytic humans and monogastric animals can not absorb, are all discharged polluted environment transitions. In rice OM819, OM4900, OM3536, D4 and D8 are irradiated with gamma rays at 5 doses: 100, 200, 300, 400 and 500 Gy to create mutant strains with low levels of phytic acid. Results in radiation levels may appear 100 Gy line grain phytic acid expression is low. At the level 200 Gy of radiation is three populations OM819, OM4900 and OM3536 with 8 lines for grain phytic acid expression is low. At 300 Gy extent, appeared seven lines with low nuclear expression of phytic acid 4 populations OM819, OM4900, OM3536 and D4. At the level 400 Gy of radiation there are 4 populations appear only 5 lines expressed low phytic acid, with 3-line expression levels 3 and 2 lines with level 4 expression. At the level of radiation 500 Gy only one line appears at level 3 of phytic acid this is OM819 populations. For genotype analysis using marker RM 261 with 66.67% of the rice low phytic acid content of the expression analysis of biochemical polymorphisms. (author)

  7. Loss of inducible photorepair in a frog cell line hypersensitive to solar UV light

    International Nuclear Information System (INIS)

    Chao, C.C.-K.

    1987-01-01

    The induction of enzymatic photorepair (EPR) in ICR 2A frog cells and a derived mutant cell line DRP36 hypersensitive to solar UV was studied. Using clonogenic assays, when induced wild-type cells demonstrated an 8-fold increase of EPR the mutant cells displayed a near-background level of inducible EPR. The constitutive EPR in mutant cells, however, was the same as in wild-type cells. A mixed culture of ICR 2A and DRP36 cells showed an intermediate inducible EPR depending upon the cell ratio. Inducible EPR was also detected at the DNA level in wild-type cells, but not in mutant cells. 29 refs.; 2 figs.; 2 tabs

  8. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    Science.gov (United States)

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  9. Identification of the second mutation of BADH2 gene derived from rice mutant lines induced by gamma rays

    International Nuclear Information System (INIS)

    I Ishak

    2016-01-01

    The BADH2 gene acts as suppressor of 2-acetyl-1-pyrolline (2AP) biosynthesis in plants. 2AP is the volatile compound which provides fragrance in rice. Biosynthesis of 2AP occurs when BADH2 loses its function as suppressor gene. Aromatic rice cultivars naturally incur mutation of BADH2 gene at 8 bp. In this experiment, aromatic mutant rice lines derived from irradiation of Sintanur cultivar by gamma rays with dose of 100 Gy were studied in molecular level. These mutant lines were characterized at the M10 plantgeneration under the assumption that genetically these aromatic mutant rice lines were homozygotic. Several primers related to aroma in rice have been used for polymerase chain reaction (PCR) in a thermal cycler instrument. Gel electrophoreses were carried out using 1.5% agarose in TAE buffer. DNA fragments at 254 bp and 355 bp (base pair) were taken and amplified by primer for nucleotide sequencing of these fragments. Molecular identification and characterization after electrophoresis showed that the mutant line from AR1020 can be differentiated from AR.1080 at 254 bp. Nucleotide sequence data from of these DNA fragments showed that point mutations (deletions and substitutions) occurred at the BADH2 gene in exon 7; those are called second mutation and were caused by gamma rays effects. The Sintanur variety was used as check cultivar and its DNA sequence was compared to that of the AR.1020 mutant line. The results from both DNA sequences (from cv. Sintanur and AR.1020) derived from fragments at 254 bp show that point mutations occurred within exon 7 and earlier stop codon occurred in the AR.1020 mutant rice line. Further, the use of EA primer in PCR resulted in detection of deletion and substitution of nucleotides in the AR.1020 mutant line. (author)

  10. Main agronomic traits and resistance to rice blast of space-induced mutant lines of Zhong-er-ruan-zhan

    International Nuclear Information System (INIS)

    Xiao Wuming; Wang Hui; Liu Yongzhu; Guo Tao; Chen Zhiqiang; Yang Qiyun; Zhu Xiaoyuan

    2012-01-01

    The main agronomic traits and resistance to rice blast of 34 space-induced lines from an elite rice cultivar, Zhong-er-ruan-zhan were evaluated at their SP 4 . The resistance to blast of the mutant lines had been tested by two blast isolates previously. It was found that the mutant lines showed significant difference in plant height, effective panicles, panicle length and grains per panicle etc. from their parent. The range of variation in 1000-grain weight the largest, followed by the seed-setting rate, and that of effective panicles was the least among all the traits. Except for the line Z34, 33 mutant lines had broader resistance spectra than the wild-type based on the test with 38 different blast isolates, and all the 33 lines were also resistant to the panicle blast in the field. The result confirmed that selection for resistant to blast in lower generations was reliable. Taking account of agronomic traits and blast resistance, promising lines with resistance to blast and good agronomic characters could be selected from those mutant lines. Therefore, the elite rice germplasm with enhanced disease resistance can be produced. (authors)

  11. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  12. Yield of two mutant lines of soybean for human consumption;Rendimiento de dos lineas mutantes de soya para consumo humano

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Diaz V, G. E.; Valencia E, F.; Ranfla C, R.; Melendez P, M. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Postgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T., E-mail: csaegro@prodigy.net.m [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2009-07-01

    The present work has the objective of to evaluate the yield and the agronomic behavior of 2 mutant lines of soybean for human consumption, obtained by means of a process of recurrent irradiation of soybean seed ISAAEG-BM{sub 2} with gammas of Co{sup 60} and selection in the generation R{sub 4}M{sub 18}. For the variable yield significant statistical differences were not observed, but considering the rest of the evaluated agronomic characteristics the mutant lines L{sub 6} and Bombona they were excellent with values of 3,934.6 and 3,806.8 Kg ha-{sup 1} to 15% of grain humidity, they also possess excellent genetic characteristics result of the irradiations and selections of these new genetic materials. (Author)

  13. Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line.

    Science.gov (United States)

    Kalajdzic, Predrag; Markaki, Maria; Oehler, Stefan; Savakis, Charalambos

    2013-10-01

    Certain xenobiotics have the capacity to induce the expression of genes involved in various biological phenomena, including insecticide resistance. The induction potential of different chemicals, among them different insecticides, has been documented for a number of insect species. In this study, we have analyzed the induction potential of Imidacloprid, a widely used member of the neonicotinoid insecticide family. Genes Cyp6g1 and Cyp6a2, known to be involved in the resistance of mutant Drosophila melanogaster line MiT[W⁻]3R2 to Imidacloprid and DDT were included in the analyzed sample. We find that Imidacloprid does not induce expression of the analyzed genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Multilocation trial of potential selected mutant lines of groundnut (arachis hypogaea) at 3 location in Peninsular Malaysia

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Rusli Ibrahim; Khairuddin Abdul Rahim; Shuhaimi Shamsuddin

    2002-01-01

    Two fixed mutant lines of groundnut derived from cultivar Matjan were selected for their yield potential at M 1 0 generation. Multilocation trial of these mutants (MJ40/42 and MJ20/165-5) was carried out to evaluate genotype stability at different climate and soil types in Peninsular Malaysia. The mutant lines were planted and compared with their parent (Matjan) and control variety (MKT1). The identified locations were in Taiping (Perak), Machang (Kelantan), and Air Hitam (Johor). The soils at the locations were of the Serdang, Bungor and Rengam series, respectively. The trial was carried out simultaneously in the same year at each location. Mutant MJ20/165-5 showed stable performance at all location compared to other genotypes tested. Its yield was higher than the parent in Kelantan and Johor trial and showed similar performance in Perak. This mutant also showed better yield performance than the control varieties in the Kelantan trial. Meanwhile, mutant line MJ40/42 gave better yield in Kelantan and Johor but did not perform well in Perak as compared to its parent and control varieties. (Author)

  15. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; McKinney, Lea V; Pike, Helen

    2008-01-01

    The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11...

  16. Evaluation of Drought response in Some Rice Mutant Lines Using Stress Tolerance Indices

    Directory of Open Access Journals (Sweden)

    H Aminpanah

    2018-05-01

    Full Text Available Introduction Drought is a major problem that limits the adoption of high-yielding rice varieties in drought-prone rainfed rice environments. To improve crop productivity, it is necessary to understand the mechanism of plant responses to drought conditions with the ultimate goal of improving crop performance in the vast areas of the world where rainfall is limiting or unreliable. Safaei Chaeikar et al. (2008 reported that MP, GMP, HM and STI indices, which showed the highest correlation with grain yield under both optimal and stress conditions, can be used as the best indices to introduce drought-tolerant genotypes in rice breeding programs. They also were introduced Nemat, Sepidrood, IR64, IR50 and Bejar genotypes as tolerant varieties. The present study was conducted to determine how drought affects grain yield in rice mutant lines and also to test this hypothesis in order to identify the most suitable indices/genotypes. Materials and Methods A field trial was conducted at Iranian Rice Research Centers in North of Iran, Rasht (latitude 37◦28', longitude 49◦28'E and altitude 7m below the sea level, during the 2014-2015 growing season. The seeds were sown in a nursery on the 10 May and 25 day old seedlings were transplanted to the field. Two separately experiment was carried out under reproductive stage drought stress and controlled conditions based on randomized complete block design with three replications, in four-row plots of three m length. Transplanting was done using 1 seedling per hill; at hill spacing of 25 cm × 25 cm. 18 rice genotypes were consisted 14 M5 mutant lines and their four parental cultivars. Results and Discussion Analysis of variance indicated significant effects of drought stress, genotype and interaction effects of two factors on grain yield, plant height, flag leaf area, tiller number and grain fertility percentage. Drought stress at reproductive stage caused reduction in grain yield (59.47%, grain fertility

  17. Cell suspension culture and mutants selection for resistance to PEG induced water stress in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Lin Tingan

    1994-01-01

    Elements affecting suspension cell culture in alfalfa (Medicago sativa L.) were studied and a method of rapid establishment of embryogenic suspension cell lines was introduced. Effects of γ ray irradiation on the growth of suspension cells were studied, and the optimum dose of irradiation for inducing mutants from suspension cells was about 20 ∼ 60 Gy. Effects of PEG and NaCl induced water stress on the growth of suspension cells were also investigated, and the results showed that the congregants of preliminary suspension culture were more susceptible than the established suspension cell lines. With 20 Gy of γ ray irradiation on suspension cell line (JL416), six clones were obtained with 70 days of selection on medium of 15% PEG (about-11 bar). A number of regenerated plants were obtained from these clones. One clone was also gained from medium containing 20% PEG (about-15 bar). The selected mutant cell lines (JP15 and JP20) has strong resistances to high concentration of PEG and NaCl induced water stress

  18. Generation of gamma irradiation and EMS-induced mutant lines of the H7996 tomato (Solanum lycopersicum L.)

    International Nuclear Information System (INIS)

    Canama, Alma O.; Galvez, Hayde F.; Tongson, Eden Jane U.; Quilloy, Reynaldo B.; Hautea, Desiree M.

    2010-01-01

    Tomato (L.) is one of the most important vegetable crops grown worldwide for the fresh vegetable market and food processing industry. With the completion of the genome-sequencing projects in various crops, the major challenge will be determine the gene function. One approach is to generate and to analyze mutant phenotypes. The paper reports the generation of gamma-irradiated and ethy methane sulfonate (EMS)-treated mutant populations, identification and phenotypic characterization of dominant and visible mutations in tomato mutant lines. Mutant populations of tomato H7996 were created using physical (cobalt 60 gamma ray) and chemical EMS mutagens. Generally, based on high-throughput phenotypic characterization, mutations were observed on the plant habit, size, morphology, leaf and flower color and morphology and fruit characteristics. Specifically, the most common dominant and visible mutations noted in the M 1 generation were monopodial, compact, short internodes, multi-branch plant type, light yellow and ghost leaf coloration, tiny and long pedicel leaf morphology and small or short plant size. In the M2 generation, homogeneous and segregating M 2 families were selected to constitute the core set of visible tomato mutants. Initial bacterial wilt resistance (BWR) gene knockouts were also identified. The mutant lines will be used as a rich source of genetic materials for breeding and functional genomics of tomato. (author)

  19. Characterization of mitomycin-C-sensitive mouse lymphoma L5178Y cell mutants

    International Nuclear Information System (INIS)

    Inaba, Hiroko; Shiomi, Naoko; Shiomi, Tadahiro; Sato, Koki; Yoshida, Michihiro.

    1985-01-01

    Twenty-six mutants showing high sensitivity to mytomicin-C (MMC) were isolated from mouse lymphoma L5178Y cells by a replica-plating technique. Twenty-five of the mutants were 5 - 10 times more sensitive to MMC than were parental cells, and showed normal sensitivity to U.V. light and x-rays. From a complementation analysis, 5 mutants (MC s ) isolated from independently mutagenized cell populations were classified into two groups. These mutants possessed recessive character for MMC-sensitivity and there were at least two genes involved in the MMC-sensitivity. As for DNA-damaging factors, such as photoadducts of 8-methoxypsoralen (8-MOP) and 3-carbethoxysoralen (3-CPs), MC s mutants showed higher sensitivity to photoadducts of 8-MOP than to (3-CPs). MC s mutants were also highly sensitive to a DNA cross-linking agent, cisplatin. Characterization of the sensitivity of mouse MC s mutants was analogous to that of Fanconi's anemia (FA)-derived cells. Low concentrations (10 ng/ml) of MMC induced chromosome aberration in a high incidence in mouse MC s cells, as well as in FA cells. The frequency of MMC-induced chromosome aberrations was normal in hybrid cells between normal human diploid somatic cells and mouse mutants and between FA cells and mouse wild cells, and hereditary deficiency became normal by hybrization. (Namekawa, K.)

  20. Cell size and cell number in dwarf mutants of barley (Hordeum vulgare)

    International Nuclear Information System (INIS)

    Blonstein, A.D.; Gale, M.D.

    1984-01-01

    Sixteen height mutants, induced by sodium azide treatment of the two-rowed barley variety Proctor, have been used to investigate the relationship between the extent and nature of stem shortening with alterations in cell size and cell number, and the pleiotropic effects of dwarfing genes on vegetative development and agronomic performance. The studies on epidermal cell number and cell length in the developmentally earliest and latest elongated vegetative tissues - the coleoptile and peduncle resprectively - suggest that cell number may be the primary determinant of plant height. One semi-prostrate and one erectoides mutant are used to illustrate different cell number/cell size strategies and their relationships with gibberellin sensitivity, growth rate and lodging resistance are discussed. (author)

  1. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  2. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  3. Field performance of thirty mutant lines of the rice (Oryza sativa L.) varieties ICTA-Virginia and Precoz-ICTA

    International Nuclear Information System (INIS)

    Montepeque, R.; Molina, L. G.; Lopez, J. J.; Pazos, W.; Ramirez, J.

    1993-01-01

    Fifteen mutant lines from the variety ICTA-Virginia and fifteen from the variety Precozicta were evaluated according to their agronomic characteristics under conditions of the Motagua river valley during 1992. The objective was to select genotypes showing resistance to disease caused by Pyricularia grisea. The analysis of variance did not show significative differences among ICTA-Virginia mutants. The highest yield was form MV-860, 8.17 TM/ha and the lowest 5.31 TM/ha for MV-411. Significant differences were found among mutant lines from Precozicta. The highest yields were 6.06, 5.80 and 5.52 TM/ha for MPI-1189, MPI-1664 and MPI-1346 respectively. Inoculation with Pyricularia was made spraying it over the crop. However, it was not possible the evaluation of the disease in the neck (neck blast) due to absence of the pathogen. 5 tabs.(Author)

  4. Site-directed mutagenesis of HIV-1 vpu gene demonstrates two clusters of replication-defective mutants with distinct ability to down-modulate cell surface CD4 and tetherin

    Directory of Open Access Journals (Sweden)

    Masako Nomaguchi

    2010-11-01

    Full Text Available HIV-1 Vpu acts positively on viral infectivity by mediating CD4 degradation in endoplasmic reticulum and enhances virion release by counteracting a virion release restriction factor, tetherin. In order to define the impact of Vpu activity on HIV-1 replication, we have generated a series of site-specific proviral vpu mutants. Of fifteen mutants examined, seven exhibited a replication-defect similar to that of a vpu-deletion mutant in a lymphocyte cell line H9. These mutations clustered in narrow regions within transmembrane domain (TMD and cytoplasmic domain (CTD. Replication-defective mutants displayed the reduced ability to enhance virion release from a monolayer cell line HEp2 without exception. Upon transfection with Vpu expression vectors, neither TMD mutants nor CTD mutants blocked CD4 expression at the cell surface in another monolayer cell line MAGI. While TMD mutants were unable to down-modulate cell surface tetherin in HEp2 cells, CTD mutants did quite efficiently. Confocal microscopy analysis revealed the difference of intracellular localization between TMD and CTD mutants. In total, replication capability of HIV-1 carrying vpu mutations correlates well with the ability of Vpu to enhance virion release and to impede the cell surface expression of CD4 but not with the ability to down-modulate cell surface tetherin. Our results here suggest that efficient viral replication requires not only down-regulation of cell surface tetherin but also its degradation.

  5. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  6. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion

    Directory of Open Access Journals (Sweden)

    Lijuan Han

    2016-05-01

    Full Text Available Abstract Background Somatic calreticulin (CALR, Janus kinase 2 (JAK2, and thrombopoietin receptor (MPL mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN, suggesting that they activate common oncogenic pathways. Recent data have shown that MPL function is essential for CALR mutant-driven MPN. However, the exact role and the mechanisms of action of CALR mutants have not been fully elucidated. Methods The murine myeloid cell line 32D and human HL60 cells overexpressing the most frequent CALR type 1 and type 2 frameshift mutants were generated to analyze the first steps of cellular transformation, in the presence and absence of MPL expression. Furthermore, mutant CALR protein stability and secretion were examined using brefeldin A, MG132, spautin-1, and tunicamycin treatment. Results The present study demonstrates that the expression of endogenous Mpl, CD41, and the key megakaryocytic transcription factor NF-E2 is stimulated by type 1 and type 2 CALR mutants, even in the absence of exogenous MPL. Mutant CALR expressing 32D cells spontaneously acquired cytokine independence, and this was associated with increased Mpl mRNA expression, CD41, and NF-E2 protein as well as constitutive activation of downstream signaling and response to JAK inhibitor treatment. Exogenous expression of MPL led to constitutive activation of STAT3 and 5, ERK1/2, and AKT, cytokine-independent growth, and reduction of apoptosis similar to the effects seen in the spontaneously outgrown cells. We observed low CALR-mutant protein amounts in cellular lysates of stably transduced cells, and this was due to accelerated protein degradation that occurred independently from the ubiquitin-proteasome system as well as autophagy. CALR-mutant degradation was attenuated by MPL expression. Interestingly, we found high levels of mutated CALR and loss of downstream signaling after blockage of the secretory pathway and protein glycosylation. Conclusions These

  7. Preferência de Bemisia tabaci biótipo B em linhagens mutantes de algodoeiro Bemisia tabaci biotype B preference in mutant cotton lines

    Directory of Open Access Journals (Sweden)

    Francisco das Chagas Vidal Neto

    2008-02-01

    Full Text Available Os efeitos de caracteres mutantes morfológicos do algodoeiro (Gossypium hirsutum L. r. latifolium Hutch.: folha okra, bráctea frego e planta vermelha, em relação à resistência à mosca-branca (Bemisia tabaci biótipo B Hemiptera: Aleyrodidae, foram avaliados em experimentos com ou sem chance de escolha. Os experimentos foram conduzidos em casa-de-vegetação, no delineamento de blocos ao acaso, em fatorial 23 + 1, com quatro repetições. O mutante com a característica planta vermelha foi menos atrativo e menos preferido para oviposição, em relação à planta verde, em ambos os ensaios, com ou sem escolha. Não houve preferência quanto à forma da folha e ao tipo de bráctea.The effects of cotton lines (Gossypium hirsutum L. r. latifolium Hutch. with mutants morphologic characteristics: okra leaf, frego bract and red plant in relation to host plant resistance to whitefly (Bemisia tabaci bioyipe B Hemiptera: Aleyrodidae, were evaluated in choice or no choice assays. The assays were carried out in the greenhouse conditions, according to a completely randomized block design, in a 23 + 1 in a factorial arrangement with four replications. The mutant with red plant characteristic was less attractive and less preferred for oviposition than the normal green plant does, in both, whit or without choice tests. It did not have preference in relation to the form of the leaf and bract type.

  8. Development of technique on the induction and selection of in vitro mutant lines (Potato, Solanum tuberosum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jang Ryoel; Lee, Yeong Il; Song, Hee Seop; Kim, Jae Seong; Sin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-09-01

    For the development of the technique on the plant tissue culture and application of nuclear technique in the in vitro mutation breeding, present research laid emphasis on the development of techniques of potato tissue culture, and on the induction and selection of radiation mutation. Another culture for haploid induction, optimum radiation dosage for cybrid formation of potato and mutation induction from in vitro cultured microtuber and plantlets were investigated for modelling the technique on the induction and selection of in vitro mutant lines. Inheritance stability of the selected mutants were also studied in field condition. In vitro system of micropropagation and selection of mutation was summarized.

  9. Development of technique on the induction and selection of in vitro mutant lines (Potato, Solanum tuberosum L.)

    International Nuclear Information System (INIS)

    Yoo, Jang Ryoel; Lee, Yeong Il; Song, Hee Seop; Kim, Jae Seong; Sin, In Cheol; Lee, Sang Jae; Lee, Ki Un; Lim, Yong Taek

    1993-09-01

    For the development of the technique on the plant tissue culture and application of nuclear technique in the in vitro mutation breeding, present research laid emphasis on the development of techniques of potato tissue culture, and on the induction and selection of radiation mutation. Another culture for haploid induction, optimum radiation dosage for cybrid formation of potato and mutation induction from in vitro cultured microtuber and plantlets were investigated for modelling the technique on the induction and selection of in vitro mutant lines. Inheritance stability of the selected mutants were also studied in field condition. In vitro system of micropropagation and selection of mutation was summarized

  10. Effects of mycoplasma contamination on phenotypic expression of mitochondrial mutants in human cells.

    Science.gov (United States)

    Doersen, C J; Stanbridge, E J

    1981-04-01

    HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis.

  11. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases

    OpenAIRE

    Adnan, Humaira; Zhang, Zhenbo; Park, Hyun-Joo; Tailor, Chetankumar; Che, Clare; Kamani, Mustafa; Spitalny, George; Binnington, Beth; Lingwood, Clifford

    2016-01-01

    Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subu...

  12. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  13. Molecular analyses of in vivo hprt mutant T cells from atomic bomb survivors

    International Nuclear Information System (INIS)

    Hakoda, M.; Hirai, Y.; Kyoizumi, S.; Akiyama, M.

    1989-01-01

    In vivo-derived hprt-deficient mutant T cells isolated from three nonirradiated controls and two atomic bomb survivors were studied by Southern blot analysis to investigate the molecular spectra of the mutations. Mutant frequencies for the three controls were 1.8, 2.3, and 7.3 x 10(-6), and those for the two survivors (who had received radiation doses of 2.46 and 2.15 Gy, based upon the revised atomic bomb shielded kerma estimates) were 9.3 and 14.4 x 10(-6), respectively. Fourteen (13%) of 105 mutant T-cell colonies from the controls showed various structural changes in the hprt gene. The frequency of mutants with hprt gene structural changes in one atomic bomb survivor, who exhibited a mutant frequency of 9.3 x 10(-6), was 26% (16/61), which was significantly higher than that of the controls. However, the frequency of structural changes in the other survivor (14%, 8/59) was not higher than that of the controls. Two sets of mutants (in total, eight mutants) from the survivor, who showed a significantly higher frequency of mutants with hprt gross alterations than did the controls, had the same hprt changes and the same rearrangements of T-cell receptor (TcR) beta- and gamma-chain genes, indicating a clonal expansion from one progenitor mutant. This phenomenon may reflect an in vivo recovery process of T cells in the periphery after exposure to atomic bomb radiation. However, when comparing the frequency of mutations, these two sets of mutants should be reduced. After reducing the total number of mutants from the number of gross hprt changes, the frequency was not significantly higher than that of the controls

  14. Development of improved advanced mutant lines of cereal and native grains through radiation-induced mutagenesis in Peru

    International Nuclear Information System (INIS)

    Gomez, L.; Aldaba, G.; Yarango, D.; Argumedo, K.; Ibannez, N.; Falconi, J.

    2015-01-01

    In Peru it is very important to increase the food production in amount and quality, especially in the rural areas where a high poverty and malnutrition problems are usually founded. Mutation induction method is used to improve well adapted cultivars, thru the upgraded in one or two changed characteristics, retaining all its original attributes. Quinoa (Chenopodium quinoa), accession LM 89, was treated with gamma rays at the doses 150 and 250 Gray. In M 2 and following generations mutation in morphological traits were observed and 8 mutant lines were selected among them MQLM89-149 with higher yield equal to 4258.6 Kg/ha, surpassing the witness at 205.63% and MQLM89-42 with 14.7 of grain protein, superior to the parent material with 12.3%. Kiwicha (Amaranthus caudatus) CICA- UNASAC cultivar was irradiated with gamma ray (400 and 600 Gray). Mutations of morphological and physiological characteristics were identified and nine mutant lines with 27 to 50% better yield potential than the parent material were selected. In barley (Hordeum vulgare) mutant lines were developed from the cultivar UNALM 96, through the application of gamma rays at a dose of 200 and 300 Gray. Mutant lines were selected a M 8 generation with higher agronomic performance and nutritive quality adapted to the highland with grain yield within the range of 5100 - 8731 kg/ha, over the value of the parent material with of 4246 kg/ha and had improvement in the content of P-131 mg/g DW, Zn66 mg/g DW, Mn55 mg/g DW, Fe57 mg/g DW and Cu63 ug/g DW. (Author)

  15. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  16. Combination therapy with vemurafenib (PLX4032/RG7204 and metformin in melanoma cell lines with distinct driver mutations

    Directory of Open Access Journals (Sweden)

    Recio Juan A

    2011-05-01

    Full Text Available Abstract Background A molecular linkage between the MAPK and the LKB1-AMPK energy sensor pathways suggests that combined MAPK oncogene inhibition and metabolic modulation of AMPK would be more effective than either manipulation alone in melanoma cell lines. Materials and methods The combination of the BRAF inhibitor vemurafenib (formerly PLX4032 and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis. Signaling molecules in the MAPK, PI3K-AKT and LKB1-AMPK pathways were studied by Western blot. Results Single agent metformin inhibited proliferation in 12 out of 19 cell lines irrespective of the BRAF mutation status, but in one NRASQ61K mutant cell line it powerfully stimulated cell growth. Synergistic anti-proliferative effects of the combination of metformin with vemurafenib were observed in 6 out of 11 BRAFV600E mutants, including highly synergistic effects in two BRAFV600E mutant melanoma cell lines. Antagonistic effects were noted in some cell lines, in particular in BRAFV600E mutant cell lines resistant to single agent vemurafenib. Seven out of 8 BRAF wild type cell lines showed marginally synergistic anti-proliferative effects with the combination, and one cell line had highly antagonistic effects with the combination. The differential effects were not dependent on the sensitivity to each drug alone, effects on cell cycle or signaling pathways. Conclusions The combination of vemurafenib and metformin tended to have stronger anti-proliferative effects on BRAFV600E mutant cell lines. However, determinants of vemurafenib and metformin synergism or antagonism need to be understood with greater detail before any potential clinical utility of this combination.

  17. Molecular and biochemical analyses of spontaneous and X-ray-induced mutants in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Liber, H L; Call, K M; Little, J B

    1987-05-01

    The authors have isolated a series of 14 spontaneously arising and 28 X-ray-induced mutants at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in human lymphoblastoid cells. Among the spontaneous mutants, 5/14 (36%) had detectable alterations in their restriction fragment pattern after hybridization with a human cDNA probe for hgprt. Of the 10 remaining mutants, 4 had partial HGPRT enzyme activity, which suggested that they contained point mutations. Among the 28 mutants induced by 150 rad of X-rays, 15 (54%) had deletions of part or all of the hgprt gene. Of the remaining 13 (18% overall) 5 had partial HGPRT enzyme activity, which suggested that they contained point mutations. These data imply that in this human cell system, X-rays induce both point mutants which have residual enzyme activity as well as mutations involving relatively large deletions of DNA. 48 reference, 1 figure, 4 tables.

  18. Alcohol-tolerant mutants of cyanobacterium Synechococcus elongatus PCC 7942 obtained by single-cell mutant screening system.

    Science.gov (United States)

    Arai, Sayuri; Hayashihara, Kayoko; Kanamoto, Yuki; Shimizu, Kazunori; Hirokawa, Yasutaka; Hanai, Taizo; Murakami, Akio; Honda, Hiroyuki

    2017-08-01

    Enhancement of alcohol tolerance in microorganisms is an important strategy for improving bioalcohol productivity. Although cyanobacteria can be used as a promising biocatalyst to produce various alcohols directly from CO 2 , low productivity, and low tolerance against alcohols are the main issues to be resolved. Nevertheless, to date, a mutant with increasing alcohol tolerance has rarely been reported. In this study, we attempted to select isopropanol (IPA)-tolerant mutants of Synechococcus elongatus PCC 7942 using UV-C-induced random mutagenesis, followed by enrichment of the tolerant candidates in medium containing 10 g/L IPA and screening of the cells with a high growth rate in the single cell culture system in liquid medium containing 10 g/L IPA. We successfully acquired the most tolerant strain, SY1043, which maintains the ability to grow in medium containing 30 g/L IPA. The photosynthetic oxygen-evolving activities of SY1043 were almost same in cells after 72 h incubation under light with or without 10 g/L IPA, while the activity of the wild-type was remarkably decreased after the incubation with IPA. SY1043 also showed higher tolerance to ethanol, 1-butanol, isobutanol, and 1-pentanol than the wild type. These results suggest that SY1043 would be a promising candidate to improve alcohol production using cyanobacteria. Biotechnol. Bioeng. 2017;114: 1771-1778. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells

    Science.gov (United States)

    Li, Luyuan; Paz, Ana C.; Wilky, Breelyn A.; Johnson, Britt; Galoian, Karina; Rosenberg, Andrew; Hu, Guozhi; Tinoco, Gabriel; Bodamer, Olaf; Trent, Jonathan C.

    2015-01-01

    Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2) were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG) in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas. PMID:26368816

  20. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Luyuan Li

    Full Text Available Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2 were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.

  1. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2005-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICPO mutants in prostate cancer cells given the relationship between ICPO and two tumor...

  2. Molecular Characterization of Prostate Cancer Cell Oncolysis by Herpes Simplex Virus ICP0 Mutants

    National Research Council Canada - National Science Library

    Mossman, Karen

    2006-01-01

    .... Briefly, the goals of the proposal were to characterize the oncolytic capacity of Herpes simplex virus type 1 ICP0 mutants in prostate cancer cells given the relationship between ICP0 and two tumor...

  3. Yield and Quality Traits of some Rice Mutant Lines as Affected by Different Nitrogen Levels

    International Nuclear Information System (INIS)

    Sobieh, S.El-S.S.

    2007-01-01

    Two field experiments were carried out during two growing seasons (2004 and 2005) at a farm located in Sahafa village, Sharkia Governorate, to evaluate newly rice mutants comparing with the local cultivar Sakha 104 for yield and quality characteristics as affected by nitrogen fertilizer levels. The obtained results showed that: 1- Rice grain yield and yield attributes were significantly increased with increasing N levels from 23 to 69 kg N fed '. 2- Both mutant MG 16 and MS 6 exhibited highly significant increases in mean values for yield attributes except for number of panicles/m2, as compared with the local cultivar Sakha 104. 3- Percentage of yield increases were 26.85 and 16.21 % for mutant MG16 and MS6 comparing with the local variety Sakha 104, respectively. Mutant MG 16 showed the highest mean values for plant height, panicle length, number of grains per panicle, panicle weight, 1000-grain weight, grain yield/fed, and straw yield/fed, as compared with the mutant MS 6 and Sakha 104. 4- Hulling and milling % were significantly increased as increasing of nitrogen levels from 23 to 69 kg N fed 1 , whereas head rice, gel consistency and amylose content were not significantly affect. 5- Significant differences were obtained between the three rice genotypes for hulling %, milling %, head rice %, amylose content and gel consistency

  4. Study of genetic behavior of some early maturing and high yielding mutant lines of soybean in different locations

    International Nuclear Information System (INIS)

    Mir Ali, N.; Moualla, M.

    2007-01-01

    this study aimed at checking the stability of some mutant lines from soybean varieties in different locations and to select the best performing lines in each location. These lines 15 were selected according to previous experiments as being early maturing and/or that yield higher than the control. The study lasted three years, the experiment plants were grown in 3 locations: Raqa, Idleb and Lattakia. The experiment was designed as RCBD with 3 replicates for each variety. Results showed significant difference between lines, Locations and year in both earliness and yield, A significant interaction was realized between (line X location) and (line X year) for earliness and yield. For earliness (line X year) was not significant. The reverse situation was realized for yield. Location X year of yield and earliness was significant. Earliness was correlated positively with all characters (except for 100-seed-weight). Yield was positively and significantly correlated with characters of all lines. Three lines with higher yield than the control (142.61%) and same maturity time were selected. (author)

  5. NF-κB signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-01-01

    Highlights: ► EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. ► Degradation of IκB and activation of NF-κB are observed in 3D-cultured cells. ► Inhibiting NF-κB enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of IκBα, the inhibitor of nuclear factor (NF)-κB, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-κB. Moreover, the inhibition of NF-κB with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-κB signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  6. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Yuling; Asano, Tomoya; Fujiwara, Makoto T; Yoshida, Shigeo; Machida, Yasunori; Yoshioka, Yasushi

    2009-05-01

    Plastids are maintained in cells by proliferating prior to cell division and being partitioned to each daughter cell during cell division. It is unclear, however, whether cells without plastids are generated when plastid division is suppressed. The crumpled leaf (crl) mutant of Arabidopsis thaliana is a plastid division mutant that displays severe abnormalities in plastid division and plant development. We show that the crl mutant contains cells lacking detectable plastids; this situation probably results from an unequal partitioning of plastids to each daughter cell. Our results suggest that crl has a partial defect in plastid expansion, which is suggested to be important in the partitioning of plastids to daughter cells when plastid division is suppressed. The absence of cells without detectable plastids in the accumulation and replication of chloroplasts 6 (arc6) mutant, another plastid division mutant of A. thaliana having no significant defects in plant morphology, suggests that the generation of cells without detectable plastids is one of the causes of the developmental abnormalities seen in crl plants. We also demonstrate that plastids with trace or undetectable amounts of chlorophyll are generated from enlarged plastids by a non-binary fission mode of plastid replication in both crl and arc6.

  7. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    International Nuclear Information System (INIS)

    Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1989-01-01

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well

  8. Quantitative and molecular analyses of mutation in a pSV2gpt transformed CHO cell line

    International Nuclear Information System (INIS)

    Stankowski, L.F. Jr.; Tindall, K.R.; Hsie, A.W.

    1983-01-01

    Following NDA-mediated gene transfer we have isolated a cell line useful for studying gene mutation at the molecular level. This line, AS52, derived from a hypoxanthine-guanine phosphoribosyl transferase (HGPRT) deficient Chinese hamster ovary (CHO) cell line, carries a single copy of the E. coli xanthine-guanine phosphoribosyl transferase (XGPRT) gene (gpt) and exhibits a spontaneous mutant frequency of 20 TG/sup r/ mutants/10 6 clonable cells. As with HGPRT - mutants, XGPRT - mutants can be selected in 6-thioguanine. AS52 (XGPRT + ) and wild type CHO (HGPRT + ) cell exhibit almost identical cytotoxic responses to various agents. We observed significant differences in mutation induction by UV light and ethyl methanesulfonate (EMS). Ratios of XGPRT - to HGPRT - mutants induced per unit dose (J/m 2 for UV light and μg/ml for EMS) are 1.4 and 0.70, respectively. Preliminary Southern blot hybridization analyses has been performed on 30 XGPRT - AS52 mutants. A majority of spontaneous mutants have deletions ranging in size from 1 to 4 kilobases (9/19) to complete loss of gpt sequences (4/19); the remainder have no detectable (5/19) or only minor (1/19) alterations. 5/5 UV-induced and 5/6 EMS-induced mutants do not show a detectable change. Similar analyses are underway for mutations induced by x-irradiation and ICR 191 treatment

  9. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    International Nuclear Information System (INIS)

    Lammering, G.; Hewit, T.H.; Contessa, J.N.; Hawkins, W.; Lin, P.S.; Valerie, K.; Mikkelsen, R.; Dent, P.; Schmidt-Ullrich, R.K.

    2001-01-01

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts from human carcinoma and malignant glioma cells invariably expressed the constitutively active EGFR mutant, EGFRvIII. This mutant EGFRvIII is frequently found in vivo in glioblastoma, breast, prostate, lung and ovarian carcinoma, but does not appear to be expressed in tumor cells under in vitro conditions. The functional consequences of EGFRvIII expression on tumor cell radiation responses are currently unknown. We have therefore investigated in a transient transfection cell system the responses of EGFRvIII and downstream signal transduction pathways to IR. In addition, the capacity of EGFR-CD533 to disrupt the function of EGFRvIII was tested. Materials and Methods: The MDA-MB-231, U-87 MG and U-373 MG cell lines were established as tumors and then intratumorally transduced with Ad-EGFR-CD533 or Ad-LacZ (control vector). The transduction efficiency was > 40% in MDA-MB-231 tumors and reached > 70% in the glioma xenografts. Radiosensitivity was measured by ex vivo colony formation and growth delay assays. The functional consequences of EGFRvIII expression on cellular IR responses were studied in transiently transfected Chinese hamster ovary (CHO) cells because tumor cells do not express EGFRvIII in vitro. Transfection with null vectors and vectors encoding either EGFRvIII or EGFR were performed and similar protein expression levels were verified by Western blot analyses. Results: The radiosensitivity of Ad-EGFR-CD533 transduced tumors was significantly increased compared with Ad-LacZ transduced

  10. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  11. The Phosphoinositide 3-Kinaseα Selective Inhibitor, BYL719, Enhances the Effect of the Protein Kinase C Inhibitor, AEB071, in GNAQ/GNA11 Mutant Uveal Melanoma Cells

    Science.gov (United States)

    Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K.

    2014-01-01

    G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-Kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (Sotrastaurin) and PI3k/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11 mutant cells with AEB071 versus no activity in WT cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of MARCKS, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal anti-proliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11 mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ and GNA11 mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ mutant model. These findings suggest a new therapy treatment option for G-protein mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy. PMID:24563540

  12. Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase.

    Directory of Open Access Journals (Sweden)

    Safiatou T Coulibaly

    Full Text Available Identifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK mutant (G12 that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36 that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC, for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches.

  13. Pea mutant risnod27 as reference line for field assessment of impact of symbiotic nitrogen fixation

    Czech Academy of Sciences Publication Activity Database

    Biedermannová, E.; Novák, Karel; Vondrys, J.

    2002-01-01

    Roč. 25, č. 9 (2002), s. 2051-2066 ISSN 0190-4167 R&D Projects: GA ČR GA521/00/0937 Institutional research plan: CEZ:AV0Z5020903 Keywords : pea mutant * symbiotic nodules Subject RIV: EE - Microbiology, Virology Impact factor: 0.593, year: 2002

  14. Susceptibility of glucokinase-MODY mutants to inactivation by oxidative stress in pancreatic β-cells.

    Science.gov (United States)

    Cullen, Kirsty S; Matschinsky, Franz M; Agius, Loranne; Arden, Catherine

    2011-12-01

    The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non-β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non-β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells.

  15. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

    Science.gov (United States)

    Khurshed, Mohammed; Aarnoudse, Niels; Hulsbos, Renske; Hira, Vashendriya V V; van Laarhoven, Hanneke W M; Wilmink, Johanna W; Molenaar, Remco J; van Noorden, Cornelis J F

    2018-06-07

    Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1 MUT ) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely-used anticancer agent cisplatin in IDH1 MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1 MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1 MUT cancer cells, as compared with IDH1 wild-type ( IDH1 WT ) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1 MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1 MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1 MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutated cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

  16. Evaluation of some chemical and technological properties of induced erect chickpea mutant lines developed under drought stressed conditions

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Ali, H.G.M.

    2009-01-01

    Seeds of the chickpea variety Flip 99-47 C were treated with gamma rays at doses of 0, 50 and 75 Gy and sown in the winter season of 2004/2005 to raise M1 generation under ordinary (normal) irrigation conditions. Bulked seeds from each treatment were planted in the subsequent growing seasons of 2005/2006 and 2006/2007 to advance M2 and M3 generations, respectively under either ordinary (normal) irrigation or drought stress condition. In the third generation, three erect mutant lines were derived from 75 Gy mutagenic treatment under drought stress compared to semi spreading growth habit of the initiated variety Flip 99-47 C. In the winter season of 2007/2008, M4 bulked seeds from the three erect lines as well as unirradiated seeds of the original variety grown under either ordinary (normal) irrigation (2152.5 m 3 /fad.) or drought (1159.2 m 3 /fad.) conditions were analyzed for the chemical composition and nutritional values. Obtained results indicated that there were slight decreases in protein and fat contents accompanied with marginal increases in both ash and carbohydrates in seed samples of the erect mutant developed under drought stress as compared to unirradiated seeds of the original variety grown under ordinary (normal) irrigation treatment. An opposite trend was noticed between seed samples derived from the erect lines compared to seeds of the parent variety developed under drought condition. Negligible changes in levels of the minerals (iron, magnesium, calcium and phosphorus) were detected between seeds of the erect lines and the original variety that grown under either ordinary (normal) irrigation or drought conditions. Cooking time (min) and hydration coefficient values did not much differ between the three tested seed samples. Marginal differences in essential and non-essential amino acids were detected between seeds of the erect mutants and those of the initial variety grown under ordinary (normal) irrigation or drought stressed conditions

  17. Scalable production in human cells and biochemical characterization of full-length normal and mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available Huntingtin (Htt is a 350 kD intracellular protein, ubiquitously expressed and mainly localized in the cytoplasm. Huntington's disease (HD is caused by a CAG triplet amplification in exon 1 of the corresponding gene resulting in a polyglutamine (polyQ expansion at the N-terminus of Htt. Production of full-length Htt has been difficult in the past and so far a scalable system or process has not been established for recombinant production of Htt in human cells. The ability to produce Htt in milligram quantities would be a prerequisite for many biochemical and biophysical studies aiming in a better understanding of Htt function under physiological conditions and in case of mutation and disease. For scalable production of full-length normal (17Q and mutant (46Q and 128Q Htt we have established two different systems, the first based on doxycycline-inducible Htt expression in stable cell lines, the second on "gutless" adenovirus mediated gene transfer. Purified material has then been used for biochemical characterization of full-length Htt. Posttranslational modifications (PTMs were determined and several new phosphorylation sites were identified. Nearly all PTMs in full-length Htt localized to areas outside of predicted alpha-solenoid protein regions. In all detected N-terminal peptides methionine as the first amino acid was missing and the second, alanine, was found to be acetylated. Differences in secondary structure between normal and mutant Htt, a helix-rich protein, were not observed in our study. Purified Htt tends to form dimers and higher order oligomers, thus resembling the situation observed with N-terminal fragments, although the mechanism of oligomer formation may be different.

  18. Evaluation of symbiotic performance of some mutant lines of soybean inoculated with two bradyrhizobium japonicum strains using 15N technique

    International Nuclear Information System (INIS)

    Kurdali, F.; Mir-Ali, N.; Al-Nabulsi, I.

    2002-11-01

    A pot experiment was conducted to study the symbiotic performance of two soybean varieties and some of their mutants (that were obtained as a result of a previous mutation breeding program) with two bradyrhizobium japonicum strains (RG and FA3) using 15 N isotopic dilution method. Random amplified polymorphic DNA technique (RAPD) was used to study the genetic relationships among the soybean genotypes and to make sure that the two rhizobial strains are different. The 25 random primers used discriminated the different soybean genotypes and the dendrogram resultants from shared polymorphic fragments put each variety and its mutants in two separate clusters asserting that the mutants and their mother lines are different. Both strains of B. japonicum were able to form effective nodules on all soybean plants. However, number of nodules, dry matter yield and N-uptake from the available sources by soybeans were affected by both plant genotype and rhizobial strains. N 2 -fixation was affected to a large extent by different strain and plant genotype combinations. Percentage of fixed N 2 (N dfa) ranged between 35 and 49%; whereas, the actual amounts of fixed N 2 were between 105 and 210 mg N/pot. Amounts of N 2 -fixed by FA3 strain were higher than of RG in both soybean varieties, whereas, the latter strain showed higher performance in the mutant lines. The results showed that total plant N estimation may not be a sufficient indicator for high N 2 -fixation. the results also showed that it is very important to determine both the amount of nitrogen derived from N 2 -fixation and N derived from soil for evaluating the symbiotic performance ability. Moreover, the performance of symbiotic N 2 -fixation in soybean was shown to depend on both plant genotype and rhizobial strain and the amount of N 2 -fixation can be increased by combining the best plant genotypes and the most adapted strain. (author)

  19. Specific TP53 Mutants Overrepresented in Ovarian Cancer Impact CNV, TP53 Activity, Responses to Nutlin-3a, and Cell Survival

    Directory of Open Access Journals (Sweden)

    Lisa K. Mullany

    2015-10-01

    Full Text Available Evolutionary Action analyses of The Cancer Gene Atlas data sets show that many specific p53 missense and gain-of-function mutations are selectively overrepresented and functional in high-grade serous ovarian cancer (HGSC. As homozygous alleles, p53 mutants are differentially associated with specific loss of heterozygosity (R273; chromosome 17; copy number variation (R175H; chromosome 9; and up-stream, cancer-related regulatory pathways. The expression of immune-related cytokines was selectively related to p53 status, showing for the first time that specific p53 mutants impact, and are related to, the immune subtype of ovarian cancer. Although the majority (31% of HGSCs exhibit loss of heterozygosity, a significant number (24% maintain a wild-type (WT allele and represent another HGSC subtype that is not well defined. Using human and mouse cell lines, we show that specific p53 mutants differentially alter endogenous WT p53 activity; target gene expression; and responses to nutlin-3a, a small molecular that activates WT p53 leading to apoptosis, providing “proof of principle” that ovarian cancer cells expressing WT and mutant alleles represent a distinct ovarian cancer subtype. We also show that siRNA knock down of endogenous p53 in cells expressing homozygous mutant alleles causes apoptosis, whereas cells expressing WT p53 (or are heterozygous for WT and mutant p53 alleles are highly resistant. Therefore, despite different gene regulatory pathways associated with specific p53 mutants, silencing mutant p53 might be a suitable, powerful, global strategy for blocking ovarian cancer growth in those tumors that rely on mutant p53 functions for survival. Knowing p53 mutational status in HGSC should permit new strategies tailored to control this disease.

  20. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells.

    Science.gov (United States)

    Langlands, Alistair J; Carroll, Thomas D; Chen, Yu; Näthke, Inke

    2018-02-15

    More than 90% of colorectal cancers carry mutations in Apc that drive tumourigenesis. A 'just-right' signalling model proposes that Apc mutations stimulate optimal, but not excessive Wnt signalling, resulting in a growth advantage of Apc mutant over wild-type cells. Reversal of this growth advantage constitutes a potential therapeutic approach. We utilised intestinal organoids to compare the growth of Apc mutant and wild-type cells. Organoids derived from Apc Min/+ mice recapitulate stages of intestinal polyposis in culture. They eventually form spherical cysts that reflect the competitive growth advantage of cells that have undergone loss of heterozygosity (LOH). We discovered that this emergence of cysts was inhibited by Chiron99021 and Valproic acid, which potentiates Wnt signalling. Chiron99021 and Valproic acid restrict the growth advantage of Apc mutant cells while stimulating that of wild-type cells, suggesting that excessive Wnt signalling reduces the relative fitness of Apc mutant cells. As a proof of concept, we demonstrated that Chiron99021-treated Apc mutant organoids were rendered susceptible to TSA-induced apoptosis, while wild-type cells were protected.

  1. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division.

    Science.gov (United States)

    Riley, Bruce B; Sweet, Elly M; Heck, Rebecca; Evans, Adrienne; McFarland, Karen N; Warga, Rachel M; Kane, Donald A

    2010-03-01

    We have characterized mutations in the early arrest gene, harpy (hrp), and show that they introduce premature stops in the coding region of early mitotic inhibitor1 (Rca1/emi1). In harpy mutants, cells stop dividing during early gastrulation. Lineage analysis confirms that there is little change in cell number after approximately cycle-14. Gross patterning occurs relatively normally, and many organ primordia are produced on time but with smaller numbers of cells. Despite the lack of cell division, some organ systems continue to increase in cell number, suggesting recruitment from surrounding areas. Analysis of bromodeoxyuridine incorporation shows that endoreduplication continues in many cells well past the first day of development, but cells cease endoreduplication once they begin to differentiate and express cell-type markers. Despite relatively normal gross patterning, harpy mutants show several defects in morphogenesis, cell migration and differentiation resulting directly or indirectly from the arrest of cell division. Copyright (c) 2010 Wiley-Liss, Inc.

  2. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  3. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  4. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    Science.gov (United States)

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  5. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  6. Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT-20 cells.

    OpenAIRE

    Gross, D J; Halban, P A; Kahn, C R; Weir, G C; Villa-Komaroff, L

    1989-01-01

    A patient with type II diabetes associated with hyperproinsulinemia has been shown to have a point mutation in one insulin gene allele, resulting in replacement of histidine with aspartic acid at position 10 of the B-chain. To investigate the basis of the proinsulin processing defect, we introduced an identical mutation in the rat insulin II gene and expressed both the normal and the mutant genes in the AtT-20 pituitary corticotroph cell line. Cells expressing the mutant gene showed increased...

  7. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants

    DEFF Research Database (Denmark)

    Marriott, Poppy E; Sibout, Richard; Lapierre, Catherine

    2014-01-01

    saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants...

  8. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    OpenAIRE

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The...

  9. Seed coat color, weight and eye pattern inheritance in gamma-rays induced cowpea M2-mutant line

    Directory of Open Access Journals (Sweden)

    Reda M. Gaafar

    2016-06-01

    Full Text Available Gamma radiation is a very effective tool for inducing genetic variation in characters of many plants. Black seeds of M2 mutant were obtained after exposure of an Egyptian cowpea cultivar (Kaha 1 to a low dose of gamma rays. Segregation of seed coat color, weight of 100 seeds and seed eye pattern of the black seeds of this mutant line were further examined in this study. Four colors were observed for seed coat in the M3 plants ranging from cream to reddish brown and three eye patterns were distinguished from each other. SDS–PAGE of the seed storage proteins showed 18 protein bands; five of these bands disappeared in the seeds of M3 plants compared to M2 and M0 controls while other 5 protein bands were specifically observed in seeds of M3 plants. PCR analysis using twelve ISSR primers showed 47 polymorphic and 8 unique amplicons. The eight unique amplicons were characteristic of the cream coat color and brown wide eye pattern (M03-G10 while the polymorphic bands were shared by 6 coat-color groups. A PCR fragment of 850 bp was amplified, using primer HB-12, in M3-G04 which showed high-100 seed weight. These results demonstrated the mutagenic effects of gamma rays on seed coat color, weight of 100 seeds and eye pattern of cowpea M3 mutant plants.

  10. Molecular characterization of thymidine kinase mutants of human cells induced by densely ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A; Little, J B

    1989-04-01

    In order to characterize the nature of mutants induced by densely ionizing radiations at an autosomal locus, the authors have isolated a series of 99 thymidine kinase (tk) mutants of human TK6 lymphoblastoid cells iraadiated with either fast neutrons or accelerated argon ions. Individual muant clones were examined for alterations in their restriction fragment pattern after hybridization with a human cDNA probe for tk. A restriction fragment length polymorphism (RFLP) allowed identification of the active tk allele. Among the neutron-induced mutants, 34/52 exhibited loss of the previously active allele while 6/52 exhibited intragenic rearrangements. Among the argon-induced mutants 27/46 exhibited allele loses and 10/46 showed rearrangements within the tk locus. The remaining mutants had restriction patterns indistinguishable from the TK6 parent. Each of the mutant clones was further examined for structural alterations within the c-erbAl locus which has been localized to chromosome 17q11-q22, at some unknown distance from the human tk locus at chromosome 17q21-q22. A substantial proportion (54%) of tk mutants induced by densely ionizing radiation showed loss of the c-erb locus on the homologous chromosome, suggesting that the mutations involve large-scale genetic changes. (author). 51 refs.; 2 figs.; 6 tabs.

  11. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  13. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  14. Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants.

    Science.gov (United States)

    Nishino, Kohei; Kushima, Misaki; Kaino, Tomohiro; Matsuo, Yasuhiro; Kawamukai, Makoto

    2017-07-01

    Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.

  15. Accumulation of dry matter and nitrogen in the developing seeds of high protein mutant lines of Triticum Aestivum (L.) produced by the IAEA

    International Nuclear Information System (INIS)

    Mir Ali, N.; Nabulsi, I.

    1993-03-01

    Accumulation patterns of dry matter and nitrogen in the developing seeds of nine mutant lines produced by the IAEA and their mother Triticum Aestivum (L.) line were studied. The experiments lasted 2 years under rain fed conditions. Significant differences were found among the lines in dry matter and nitrogen rates, and periods of accumulation, whereas no significant differences were found in the final seed weight of the lines. The highest rates of accumulation for dry matter and nitrogen were accompanied with the shortest period of accumulation in two late flowering mutant lines. However, these two lines were the lowest in their yield per plot. The other mutant lines achieved the high nitrogen percentage in their seeds through the relative reduction in dry matter accumulation rate compared to their mother line rather than through higher rate of nitrogen accumulation. This study revealed some of the potential reasons behind the higher percentage of protein in the seeds of the mutant lines under investigation. (author). 17 refs., 3 figs., 2 tabs

  16. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-01-01

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs

  17. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  18. The effect of the lamin A and its mutants on nuclear structure, cell proliferation, protein stability, and mobility in embryonic cells.

    Science.gov (United States)

    Piekarowicz, Katarzyna; Machowska, Magdalena; Dratkiewicz, Ewelina; Lorek, Daria; Madej-Pilarczyk, Agnieszka; Rzepecki, Ryszard

    2017-08-01

    LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins' impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.

  19. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    International Nuclear Information System (INIS)

    Cuthill, S.; Poellinger, L.

    1988-01-01

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant [ 3 H]dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin

  20. Thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, K; Some, H; Tamura, G

    1976-01-01

    Thermonsensitive division mutants were derived from Bacillus subtilis Marburg 168 thy trp/sub 2/ by means of membrane filtration after nitrosoguanidine mutagenesis. Among them, ts42 requiring uracil for normal growth at 48/sup 0/C was investigated. In the absence of uracil, the mutant cells grew normally at 37/sup 0/C and stopped dividing after temperature shift to 48/sup 0/C resulting in filaments of two to four times length of normal rods. The total cell number after the temperature shift increased two to three fold in 90 min and remained constant thereafter. The viable count after the temperature shift to 48/sup 0/C, increased 1.5 to 2 fold in initial 60 min and then decreased exponentially. A rapid restoration of colony forming ability was shown when the mutant cells were shifted back to the permissive temperature after 120 to 180 min of incubation at 48/sup 0/C or when uracil was introduced to the culture at 48/sup 0/C. This recovery of viability was partly observed even in the presence of chloramphenicol. The synthesis of RNA of this mutant was shown to decline 20 min after the temperature shift to 48/sup 0/C whereas the syntheses of DNA and protein proceeded for more than 80 min at that temperature. No newly isolated uracil requiring mutants formed filaments in the medium lacking uracil or showed growth pattern like ts42.

  1. Peptidomic analysis of human cell lines

    Science.gov (United States)

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  2. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  3. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  4. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  5. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  6. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    International Nuclear Information System (INIS)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M.; Wehnert, Manfred; Huebner, Stefan

    2009-01-01

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  7. Isolation of hypoxanthine phosphoribosyltransferase-defective mutants in Chinese hamster V79 cells by tritium suicide

    International Nuclear Information System (INIS)

    Bryant, R.E.; Schauer, I.E.; Hatcher, D.G.

    1981-01-01

    Tritium suicide was shown to be a highly efficient method for isolating mutants defective in hypoxanthine incorporation in the Chinese hamster lung of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of ( 3 H) hypoxanthine for 5 or 10 min, followed by storage of 3 H-labelled cells at -70 0 C for 4-10 days. 12 clones that survived the 3rd kill cycle were tested for incorporation of ( 3 H)hypoxanthine and all were found to be defective. At least 6 of the clones have defective hypoxanthine phosphoribosyltransferase (HPRT) activity. One mutant, H19, chosen for further characterization, had HPRT with a 13-fold elevation in apparent Ksub(m) for phosphoribosylpyrophosphate (PRPP). Thin-layer chromatography of cell extracts showed that this mutant was incapable of converting intracellular hypoxanthine to IMP or to other purine metabolites. In addition, H19 was resistant to 6-thioguanine. (orig.)

  8. A Dominant-Negative PPARγ Mutant Promotes Cell Cycle Progression and Cell Growth in Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Joey Z. Liu

    2009-01-01

    Full Text Available PPARγ ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN PPARγ mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs. In quiescent CASMCs, adenovirus-expressed DN-PPARγ promoted G1→S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation. DN-PPARγ expression also markedly enhanced positive regulators of the cell cycle, increasing Rb and CDC2 phosphorylation and the expression of cyclin A, B1, D1, and MCM7. Conversely, overexpression of wild-type (WT or constitutively-active (CA PPARγ inhibited cell cycle progression and the activity and expression of positive regulators of the cell cycle. DN-PPARγ expression, however, did not up-regulate positive cell cycle regulators in PPARγ-deficient cells, strongly suggesting that DN-PPARγ effects on cell cycle result from blocking the function of endogenous wild-type PPARγ. DN-PPARγ expression enhanced phosphorylation of ERK MAPKs. Furthermore, the ERK specific-inhibitor PD98059 blocked DN-PPARγ-induced phosphorylation of Rb and expression of cyclin A and MCM7. Our data thus suggest that DN-PPARγ promotes cell cycle progression and cell growth in CASMCs by modulating fundamental cell cycle regulatory proteins and MAPK mitogenic signaling pathways in vascular smooth muscle cells (VSMCs.

  9. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria.

    Science.gov (United States)

    Grangette, Corinne; Müller-Alouf, Heide; Hols, Pascal; Goudercourt, Denise; Delcour, Jean; Turneer, Mireille; Mercenier, Annick

    2004-05-01

    The potential of recombinant lactic acid bacteria (LAB) to deliver heterologous antigens to the immune system and to induce protective immunity has been best demonstrated by using the C subunit of tetanus toxin (TTFC) as a model antigen. Two types of LAB carriers have mainly been used, Lactobacillus plantarum and Lactococcus lactis, which differ substantially in their abilities to resist passage through the stomach and to persist in the mouse gastrointestinal tract. Here we analyzed the effect of a deficiency in alanine racemase, an enzyme that participates in cell wall synthesis, in each of these bacterial carriers. Recombinant wild-type and mutant strains of L. plantarum NCIMB8826 and L. lactis MG1363 producing TTFC intracellularly were constructed and used in mouse immunization experiments. Remarkably, we observed that the two cell wall mutant strains were far more immunogenic than their wild-type counterparts when the intragastric route was used. However, intestinal TTFC-specific immunoglobulin A was induced only after immunization with the recombinant L. plantarum mutant strain. Moreover, the alanine racemase mutant of either LAB strain allowed induction of a much stronger serum TTFC-specific immune response after immunization via the vagina, which is a quite different ecosystem than the gastrointestinal tract. The design and use of these mutants thus resulted in a major improvement in the mucosal delivery of antigens exhibiting vaccine properties.

  10. Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells

    International Nuclear Information System (INIS)

    Nakajima, Hideaki; Shibata, Fumi; Fukuchi, Yumi; Goto-Koshino, Yuko; Ito, Miyuki; Urano, Atsushi; Nakahata, Tatsutoshi; Aburatani, Hiroyuki; Kitamura, Toshio

    2006-01-01

    Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix

  11. Poliovirus mutants excreted by a chronically infected hypogammaglobulinemic patient establish persistent infections in human intestinal cells

    International Nuclear Information System (INIS)

    Labadie, Karine; Pelletier, Isabelle; Saulnier, Aure; Martin, Javier; Colbere-Garapin, Florence

    2004-01-01

    Immunodeficient patients whose gut is chronically infected by vaccine-derived poliovirus (VDPV) may excrete large amounts of virus for years. To investigate how poliovirus (PV) establishes chronic infections in the gut, we tested whether it is possible to establish persistent VDPV infections in human intestinal Caco-2 cells. Four type 3 VDPV mutants, representative of the viral evolution in the gut of a hypogammaglobulinemic patient over almost 2 years [J. Virol. 74 (2000) 3001], were used to infect both undifferentiated, dividing cells, and differentiated, polarized enterocytes. A VDPV mutant excreted 36 days postvaccination by the patient was lytic in both types of intestinal cell cultures, like the parental Sabin 3 (S3) strain. In contrast, three VDPVs excreted 136, 442, and 637 days postvaccination, established persistent infections both in undifferentiated cells and in enterocytes. Thus, viral determinants selected between day 36 and 136 conferred on VDPV mutants the capacity to infect intestinal cells persistently. The percentage of persistently VDPV-infected cultures was higher in enterocytes than in undifferentiated cells, implicating cellular determinants involved in the differentiation of enterocytes in persistent VDPV infections. The establishment of persistent infections in enterocytes was not due to poor replication of VDPVs in these cells, but was associated with reduced viral adsorption to the cell surface

  12. Weaver mutant mouse cerebellar granule cells respond normally to chronic depolarization

    DEFF Research Database (Denmark)

    Bjerregaard, Annette; Mogensen, Helle Smidt; Hack, N

    1997-01-01

    We studied the effects of chronic K(+)-induced membrane depolarization and treatment with N-methyl-D-aspartate (NMDA) on cerebellar granule cells (CGCs) from weaver mutant mice and non-weaver litter-mates. The weaver mutation is a Gly-to-Ser substitution in a conserved region of the Girk2 G prote...

  13. Cell surface physico chemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants

    NARCIS (Netherlands)

    Flemming, CA; Palmer, RJ; Arrage, AA; van der Mei, H.C.; White, DC

    1999-01-01

    The hydrophobic and electrostatic characteristics of bacterial cell surfaces were compared with attachment proclivity and biomass accumulation over time between wildtype Pseudomonas aeruginosa serotype O6 (possesses A and B band LPS), and three LPS-deficient mutants, vi;. A28 (A(+)B(-)), R5

  14. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    Science.gov (United States)

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  15. A universal mammalian vaccine cell line substrate.

    Directory of Open Access Journals (Sweden)

    Jackelyn Murray

    Full Text Available Using genome-wide small interfering RNA (siRNA screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205 showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.

  16. Caspase Activation and Aberrant Cell Growth in a p53+/+ Cell Line from a Li-Fraumeni Syndrome Family

    Directory of Open Access Journals (Sweden)

    Zaki A. Sherif

    2015-01-01

    Full Text Available Wild-type p53 is well known to induce cell cycle arrest and apoptosis to block aberrant cell growth. However, p53’s unique role in apoptosis and cell proliferation in Li-Fraumeni Syndrome (LFS has not been well elucidated. The aim of this study is to characterize the activity of wild-type p53 protein in LFS family dominated by a germline negative mutant p53. As expected, etoposide-treated wild-type p53-containing cell lines, LFS 2852 and control Jurkat, showed a greater rate of caspase- and annexin V-induced apoptotic cell death compared to the p53-mutant LFS 2673 cell line although mitochondrial and nuclear assays could not detect apoptosis in these organelles. The most intriguing part of the observation was the abnormal proliferation rate of the wild-type p53-containing cell line, which grew twice as fast as 2673 and Jurkat cells. This is important because apoptosis inducers acting through the mitochondrial death pathway are emerging as promising drugs against tumors where the role of p53 is not only to target gene regulation but also to block cell proliferation. This study casts a long shadow on the possible dysregulation of p53 mediators that enable cell proliferation. The deregulation of proliferation pathways represents an important anticancer therapeutic strategy for patients with the LFS phenotype.

  17. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Adriana Rodríguez-Marí

    2010-07-01

    Full Text Available The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53 mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination.

  18. A novel RNA sequencing data analysis method for cell line authentication.

    Directory of Open Access Journals (Sweden)

    Erik Fasterius

    Full Text Available We have developed a novel analysis method that can interrogate the authenticity of biological samples used for generation of transcriptome profiles in public data repositories. The method uses RNA sequencing information to reveal mutations in expressed transcripts and subsequently confirms the identity of analysed cells by comparison with publicly available cell-specific mutational profiles. Cell lines constitute key model systems widely used within cancer research, but their identity needs to be confirmed in order to minimise the influence of cell contaminations and genetic drift on the analysis. Using both public and novel data, we demonstrate the use of RNA-sequencing data analysis for cell line authentication by examining the validity of COLO205, DLD1, HCT15, HCT116, HKE3, HT29 and RKO colorectal cancer cell lines. We successfully authenticate the studied cell lines and validate previous reports indicating that DLD1 and HCT15 are synonymous. We also show that the analysed HKE3 cells harbour an unexpected KRAS-G13D mutation and confirm that this cell line is a genuine KRAS dosage mutant, rather than a true isogenic derivative of HCT116 expressing only the wild type KRAS. This authentication method could be used to revisit the numerous cell line based RNA sequencing experiments available in public data repositories, analyse new experiments where whole genome sequencing is not available, as well as facilitate comparisons of data from different experiments, platforms and laboratories.

  19. The phenotype of FancB-mutant mouse embryonic stem cells

    OpenAIRE

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu, Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslink...

  20. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    International Nuclear Information System (INIS)

    Chen Wenshu; Lee Yijang; Yu Yichu; Hsaio Chinghui

    2010-01-01

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of γ-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells but not human keratocyte HaCaT cells; it also prolonged radiation-induced G 2 /M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.

  1. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.

    Science.gov (United States)

    Ellis, Christine; Karafyllidis, Ioannis; Wasternack, Claus; Turner, John G

    2002-07-01

    Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.

  2. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  3. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone.

    Directory of Open Access Journals (Sweden)

    Dale W Hailey

    Full Text Available Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.

  5. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    DEFF Research Database (Denmark)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H

    2016-01-01

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and the...

  6. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    Science.gov (United States)

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  7. Proteomics Characterization of the Molecular Mechanisms of Mutant P53 Reactivation with PRIMA-1 in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Daoud, Sayed S

    2006-01-01

    The main purpose of the study is to identify novel protein-protein interactions in various locations of cells to establish the molecular mechanisms of mutant p53 reactivation with PRIMA-1 in breast cancer cells...

  8. Disjunction or non-disjunction in F2 generation according to the cross between a wheat mutant and its original lines

    International Nuclear Information System (INIS)

    Touvin, H.

    1973-01-01

    An early homogeneous mutant line (B) was obtained in M 2 generation following the gamma-rays (15kR) treatment of the dry seeds of a fixed homogeneous line of soft wheat (A). The study of this mutant leads to the following observations: the earliness is stable in the mutant stock during successive generations and in different climatic conditions; the products of reciprocal crosses between the mutant B and the original line A, compared in micro-tests under greenhouse conditions gave following different results according to the cross; in the F 1 , the reciprocal hybrids (AxB, BxA) are earlier than the mutant. The F 1 offsprings (BxA) which received the earliness characteristic from the female parent, develop more rapidly than the reciprocal F 1 hybrid (AxB). Thus, this shows that there exist a maternal effect from the mutant side. In the F 2 , the descendants of the hybrid (AxB) segregated phenotypically in two classes, early and late, whereas the other hybrid (BxA) produces only early plants. The F 3 offsprings confirm the observations made in the F 2 generation. Although the F 3 generation of the hybrid (AxB) is composed of the early homogenous, the heterogeneous and the late homogeneous lines, but no segregation occurs in the cross (BxA). The segregation ratio in F 2 and in most of the backcrosses progenies indicates that the transmission of the earliness character is monogenic. From these results the existence of a major gene for earliness can be supposed, the expression of which appears to be under the control of the cytoplasm. The conclusion emphasizes the importance of the reciprocal crosses in the use of the mutants [fr

  9. Prion Propagation in Cells Expressing PrP Glycosylation Mutants

    Science.gov (United States)

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  10. PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p

    NARCIS (Netherlands)

    Okumoto, K.; Shimozawa, N.; Kawai, A.; Tamura, S.; Tsukamoto, T.; Osumi, T.; Moser, H.; Wanders, R. J.; Suzuki, Y.; Kondo, N.; Fujiki, Y.

    1998-01-01

    Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11-20, 1997), using a transient transfection assay and

  11. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells

    DEFF Research Database (Denmark)

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna

    2017-01-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na(+)) and, indirectly, serum potassium (K(+)) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis...

  12. Binding of cetuximab to the EGFRvIII deletion mutant and its biological consequences in malignant glioma cells

    International Nuclear Information System (INIS)

    Jutten, Barry; Dubois, Ludwig; Li Younan; Aerts, Hugo; Wouters, Bradly G.; Lambin, Philippe; Theys, Jan; Lammering, Guido

    2009-01-01

    Background and purpose: Despite the clinical use of cetuximab, a chimeric antibody against EGFR, little is known regarding its interaction with EGFRvIII, a frequently expressed deletion mutant of EGFR. Therefore, we investigated the interaction and the functional consequences of cetuximab treatment on glioma cells stably expressing EGFRvIII. Materials and methods: The human glioma cell line U373 genetically modified to express EGFRvIII was used to measure the binding of cetuximab and its internalization using flow cytometry and confocal microscopy. Proliferation and cell survival were analyzed by cell growth and clonogenic survival assays. Results: Cetuximab is able to bind to EGFRvIII and causes an internalization of the receptor and decreases its expression levels. Furthermore, in contrast to EGF, cetuximab was able to activate EGFRvIII which was evidenced by multiple phosphorylation sites and its downstream signaling targets. Despite this activation, the growth rate and the radiosensitivity of the EGFRvIII-expressing glioma cells were not modulated. Conclusions: Cetuximab binds to EGFRvIII and leads to the initial activation, internalization and subsequent downregulation of EGFRvIII, but it does not seem to modulate the proliferation or radiosensitivity of EGFRvIII-expressing glioma cells. Thus, approaches to treat EGFRvIII-expressing glioma cells should be evaluated more carefully.

  13. Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.

    Science.gov (United States)

    Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred

    2018-05-28

    The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2017. Published by Elsevier Inc.

  14. Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-1α and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress.

    Science.gov (United States)

    Deben, Christophe; Deschoolmeester, Vanessa; De Waele, Jorrit; Jacobs, Julie; Van den Bossche, Jolien; Wouters, An; Peeters, Marc; Rolfo, Christian; Smits, Evelien; Lardon, Filip; Pauwels, Patrick

    2018-04-21

    The compound APR-246 (PRIMA-1 MET ) is a known reactivator of (mutant) p53 and inducer of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However, the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study focusses on the role of hypoxia-inducible factor-1α (HIF-1α) and the p53 tumor suppressor protein in hypoxia-induced cisplatin resistance in non-small cell lung cancer (NSCLC) cells and the potential of APR-246 to overcome this resistance. We observed that hypoxia-induced cisplatin resistance only occurred in the p53 mutant NCI-H2228 Q331 * cell line, and not in the wild type A549 and mutant NCI-H1975 R273H cell lines. Cisplatin reduced HIF-1α protein levels in NCI-H2228 Q331 * cells, leading to a shift in expression from HIF-1α-dependent to p53-dependent transcription targets under hypoxia. APR-246 was able to overcome hypoxia-induced cisplatin resistance in NCI-H2228 Q331 * cells in a synergistic manner without affecting mutant p53 Q331 * transcriptional activity, but significantly depleting total glutathione levels more efficiently under hypoxic conditions. Synergism was dependent on the presence of mutant p53 Q331 * and the induction of reactive oxygen species, with depletion of one or the other leading to loss of synergism. Our data further support the rationale of combining APR-246 with cisplatin in NSCLC, since their synergistic interaction is retained or enforced under hypoxic conditions in the presence of mutant p53.

  15. Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-1α and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Christophe Deben

    2018-04-01

    Full Text Available The compound APR-246 (PRIMA-1MET is a known reactivator of (mutant p53 and inducer of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However, the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study focusses on the role of hypoxia-inducible factor-1α (HIF-1α and the p53 tumor suppressor protein in hypoxia-induced cisplatin resistance in non-small cell lung cancer (NSCLC cells and the potential of APR-246 to overcome this resistance. We observed that hypoxia-induced cisplatin resistance only occurred in the p53 mutant NCI-H2228Q331* cell line, and not in the wild type A549 and mutant NCI-H1975R273H cell lines. Cisplatin reduced HIF-1α protein levels in NCI-H2228Q331* cells, leading to a shift in expression from HIF-1α-dependent to p53-dependent transcription targets under hypoxia. APR-246 was able to overcome hypoxia-induced cisplatin resistance in NCI-H2228Q331* cells in a synergistic manner without affecting mutant p53Q331* transcriptional activity, but significantly depleting total glutathione levels more efficiently under hypoxic conditions. Synergism was dependent on the presence of mutant p53Q331* and the induction of reactive oxygen species, with depletion of one or the other leading to loss of synergism. Our data further support the rationale of combining APR-246 with cisplatin in NSCLC, since their synergistic interaction is retained or enforced under hypoxic conditions in the presence of mutant p53.

  16. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    International Nuclear Information System (INIS)

    Miyazaki, Nobuyoshi; Nagai, Kazuo; Tamura, Gakuzo

    1976-01-01

    A thermosensitive mutant ts 42, of Bacillus subtilis Marburg 168 thy trp2 which requires uracil, was examined as to the colony-forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in modified woese's medium. However, the cells retained the viability when sodium succinate or potassium chloride was added to the medium at that temperature, although uranil deficiency was unchanged. A little but significant incorporation of adenine-8- 14 C into RNA still continued even after the incorporation of N-acetyl- 3 H-D-glucosamine into the acid-insoluble fraction of the cells terminated in the modified Woese's medium at 48 0 C. Both incorporations as well as the increase of absorbance were slowed down in the presence of sodium succinate at 48 0 C. This mutant, ts42, was more sensitive to deoxycholate than the parent wild strain. The resoration of the colony-forming ability after the temperature shifted back from 48 0 to 37 0 C was suppressed by the addition of deoxycholate to the medium. However, the cells became resistant to deoxycholate when uracil had been added to the medium prior to the temperature shift. (Kobatake, H.)

  17. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, N; Nagai, K; Tamura, G

    1976-01-01

    A thermosensitive uracil requiring mutant of Bacillus subtilis Marburg 168 thy trp/sub 2/ ts42 was examined as to the colony forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in the modified Woese's (MW) medium. However, the cells retained viability when sodium succinate or potassium chloride was added to the medium at that temperature although uracil deficiency was unchanged. A little but significant incorporation of adenine-8-/sup 14/C into RNA still continued even after the incorporation of N-acetyl-/sup 3/H-D-glucosamine into acid insoluble fraction of the cells terminated in the MW medium at 48/sup 0/C. Both incorporations as well as increase of absorbance were slowed down in the presence of sodium succinate at 48/sup 0/C. This mutant, ts-42, was more sensitive to deoxycholate (DOC) than the parent strain. The restoration of colony forming ability after the temperature shift back to 37/sup 0/C was suppressed by the addition of DOC to the medium. However, the cell became resistant to DOC when uracil was added to the medium prior to the temperature shift.

  18. Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands.

    Directory of Open Access Journals (Sweden)

    Carlos Bueno

    Full Text Available Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the

  19. The phosphoinositide 3-kinase α selective inhibitor BYL719 enhances the effect of the protein kinase C inhibitor AEB071 in GNAQ/GNA11-mutant uveal melanoma cells.

    Science.gov (United States)

    Musi, Elgilda; Ambrosini, Grazia; de Stanchina, Elisa; Schwartz, Gary K

    2014-05-01

    G-protein mutations are one of the most common mutations occurring in uveal melanoma activating the protein kinase C (PKC)/mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K)/AKT pathways. In this study, we described the effect of dual pathway inhibition in uveal melanoma harboring GNAQ and GNA11 mutations via PKC inhibition with AEB071 (sotrastaurin) and PI3K/AKT inhibition with BYL719, a selective PI3Kα inhibitor. Growth inhibition was observed in GNAQ/GNA11-mutant cells with AEB071 versus no activity in wild-type cells. In the GNAQ-mutant cells, AEB071 decreased phosphorylation of myristoylated alanine-rich C-kinase substrate, a substrate of PKC, along with ERK1/2 and ribosomal S6, but persistent AKT activation was present. BYL719 had minimal antiproliferative activity in all uveal melanoma cell lines, and inhibited phosphorylation of AKT in most cell lines. In the GNA11-mutant cell line, similar effects were observed with ERK1/2 inhibition, mostly inhibited by BYL719. With the combination treatment, both GNAQ- and GNA11-mutant cell lines showed synergistic inhibition of cell proliferation and apoptotic cell death. In vivo studies correlated with in vitro findings showing reduced xenograft tumor growth with the combination therapy in a GNAQ-mutant model. These findings suggest a new therapy treatment option for G-protein-mutant uveal melanoma with a focus on specific targeting of multiple downstream pathways as part of combination therapy.

  20. Radiation and thermal characteristics of mouse lymphoma cells and their radiation-sensitive mutant

    International Nuclear Information System (INIS)

    Baba, Yuji; Yasunaga, Tadamasa; Uozumi, Hideaki; Takahashi, Mutsumasa; Sawada, Shozo.

    1988-01-01

    Radiation and thermal characteristics of L5178Y cells and their radiation-sensitive mutant M10 cells were studied by the colony-forming method and the dye-exclusion method using eosin-Y. Although M10 cells were remarkably radiation-sensitive compared with L5178Y cells, it was diffcult to cause interphase death of M10 after a large dose of irradiation. After heat treatments, L5178Y cells revealed more cell destruction and were stained well by eosin-Y, but it was relatively difficult to produce cell destruction of M10 cells, which showed poor staining by eosin-Y. When assayed by the colony-forming method, M10 cells were also heat-resistant compared to L5178Y. The dye-exclusion rate was closely correlated with cell survival after hyperthermia of L5178Y cells, suggesting that this is a simple method of detecting the thermosensitivity and thermotolerance of cancer cells. The difference in survival of L5178Y cells and M10 cells after combined treatment with gamma irradiation and hyperthermia was smaller than with gamma irradiation alone. It was also found that there was a relationship between radiation-induced interphase death and hyperthermia-induced interphase death, and that interphase death accounted for a major part of cell death caused by hyperthermia in mouse leukemia cells. (author)

  1. A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Williams Briana

    2003-10-01

    Full Text Available Abstract Background In Arabidopsis thaliana, the gene Tousled encodes a protein kinase of unknown function, but mutations in the gene lead to flowering and leaf morphology defects. We have recently cloned a mammalian Tousled-Like Kinase (TLK1B and found that it phosphorylates specifically histone H3, in vitro and in vivo. We now report the effects that overexpression of a kinase-dead mutant of TLK1B mediates in a normal diploid cell line. Results Expression of a kinase-dead mutant resulted in reduction of phosphorylated histone H3, which could have consequences in mitotic segregation of chromosomes. When analyzed by FACS and microscopy, these cells displayed high chromosome number instability and aneuploidy. This phenomenon was accompanied by less condensed chromosomes at mitosis; failure of a number of chromosomes to align properly on the metaphase plate; failure of some chromosomes to attach to microtubules; and the occasional presentation of two bipolar spindles. We also used a different method (siRNA to reduce the level of endogenous TLK1, but in this case, the main result was a strong block of cell cycle progression suggesting that TLK1 may also play a role in progression from G1. This block in S phase progression could also offer a different explanation of some of the later mitotic defects. Conclusions TLK1 has a function important for proper chromosome segregation and maintenance of diploid cells at mitosis in mammalian cells that could be mediated by reduced phosphorylation of histone H3 and condensation of chromosomes, although other explanations to the phenotype are possible.

  2. Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell.

    Science.gov (United States)

    Liu, Jun; Guo, Ting; Wang, Dong; Ying, Hanjie

    2015-01-01

    A Clostridium beijerinckii mutant M13 was derived from C. beijerinckii NCIMB 8052 by atmospheric pressure glow discharge. C. beijerinckii M13 generated a maximum output power density of 79.2 mW m(-2) and a maximum output voltage of 230 mV in a microbial fuel cell containing 1 g glucose l(-1) as carbon source and 0.15 g methyl viologen l(-1) as an electron carrier.

  3. Nimotuzumab enhances temozolomide?induced growth suppression of glioma cells expressing mutant EGFR in vivo

    OpenAIRE

    Nitta, Yusuke; Shimizu, Saki; Shishido?Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    Abstract A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti?EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild?type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and pho...

  4. Plant regeneration of bananas Ambon kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source

    International Nuclear Information System (INIS)

    Dewi, Azri K; Ishak

    1998-01-01

    Plant regeneration of bananas Ambon Kuning and Barangan mutant lines were carried out by using female organ and shoot-tip as explants source. Female organ was taken from heart of banana stem, while shoot-tip taken from sucker in banana plantation at Pasar Jumat, Jakarta. Those explants were cultured on MS medium containing 3 mg/l BAP, 0.5 mg/l IAA and supplemented by 100 tyrosin and 80 mg/l adenin hemisulphate. Observation showed that 180 and 42 buds were obtained from JBR 02 mutant lines respectively, while 84 and 79 buds for JAK 01 and JAK 02 respectively. The highest shoot formation was 1.013 shoots were obtained from BRC variety and lowest one was JBR 01 mutant line. statistical data analysis indicated that shoot formation between BRC variety and another mutant lines were significant difference using LSD test at level 0.05. Plantlet formation derived from female organ as well as shoot-tip showed that BRC variety produced number of plantlets per bottle was higher that another one. (author)

  5. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    ." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  6. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  7. Radiotherapy for asymptomatic brain metastasis in epidermal growth factor receptor mutant non-small cell lung cancer without prior tyrosine kinase inhibitors treatment: a retrospective clinical study

    International Nuclear Information System (INIS)

    Liu, SongRan; Qiu, Bo; Chen, LiKun; Wang, Fang; Liang, Ying; Cai, PeiQiang; Zhang, Li; Chen, ZhaoLin; Liu, ShiLiang; Liu, MengZhong; Liu, Hui

    2015-01-01

    Non-small cell lung cancer (NSCLC) with brain metastasis (BM) harboring an epidermal growth factor receptor (EGFR) mutation shows good response to tyrosine kinase inhibitors (TKIs). This study is to assess the appropriate timing of brain radiotherapy (RT) for asymptomatic BM in EGFR mutant NSCLC patients. There were 628 patients diagnosed with EGFR mutant NSCLC between October 2005 and December 2011. Treatment outcomes had been retrospectively evaluated in 96 patients with asymptomatic BM without prior TKI treatment. 39 patients received first-line brain RT, 23 patients received delayed brain RT, and 34 patients did not receive brain RT. With a median follow-up of 26 months, the 2-year OS was 40.6 %. Univariate analyses revealed that ECOG performance status (p = 0.006), other distant metastases (p = 0.002) and first line systemic treatment (p = 0.032) were significantly associated with overall survival (OS). Multivariate analyses revealed that other sites of distant metastases (p = 0.030) were prognostic factor. The timing of brain RT was not significantly related to OS (p = 0.246). The 2-year BM progression-free survival (PFS) was 26.9 %. Brain RT as first-line therapy failed to demonstrate a significant association with BM PFS (p = 0.643). First-line brain RT failed to improve long-term survival in TKI-naïve EGFR mutant NSCLC patients with asymptomatic BM. Prospective studies are needed to validate these clinical findings

  8. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non‑small cell lung cancer cell lines.

    Science.gov (United States)

    Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu

    2015-01-01

    The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.

  9. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  10. Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Falko Lange

    2014-01-01

    Full Text Available Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC patients, to evaluate effects of the small molecule kinase inhibitors (SMI vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

  11. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines.

    Science.gov (United States)

    Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S

    2018-04-24

    The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The Cellosaurus, a Cell-Line Knowledge Resource

    Science.gov (United States)

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  13. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    Science.gov (United States)

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  14. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.

    Science.gov (United States)

    Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L

    2015-10-15

    Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.

  15. The Eye Drop Preservative Benzalkonium Chloride Potently Induces Mitochondrial Dysfunction and Preferentially Affects LHON Mutant Cells.

    Science.gov (United States)

    Datta, Sandipan; Baudouin, Christophe; Brignole-Baudouin, Francoise; Denoyer, Alexandre; Cortopassi, Gino A

    2017-04-01

    Benzalkonium chloride (BAK) is the most commonly used eye drop preservative. Benzalkonium chloride has been associated with toxic effects such as "dry eye" and trabecular meshwork degeneration, but the underlying biochemical mechanism of ocular toxicity by BAK is unclear. In this study, we propose a mechanistic basis for BAK's adverse effects. Mitochondrial O2 consumption rates of human corneal epithelial primary cells (HCEP), osteosarcoma cybrid cells carrying healthy (control) or Leber hereditary optic neuropathy (LHON) mutant mtDNA [11778(G>A)], were measured before and after acute treatment with BAK. Mitochondrial adenosine triphosphate (ATP) synthesis and cell viability were also measured in the BAK-treated control: LHON mutant and human-derived trabecular meshwork cells (HTM3). Benzalkonium chloride inhibited mitochondrial ATP (IC50, 5.3 μM) and O2 consumption (IC50, 10.9 μM) in a concentration-dependent manner, by directly targeting mitochondrial complex I. At its pharmaceutical concentrations (107-667 μM), BAK inhibited mitochondrial function >90%. In addition, BAK elicited concentration-dependent cytotoxicity to cybrid cells (IC50, 22.8 μM) and induced apoptosis in HTM3 cells at similar concentrations. Furthermore, we show that BAK directly inhibits mitochondrial O2 consumption in HCEP cells (IC50, 3.8 μM) at 50-fold lower concentrations than used in eye drops, and that cells bearing mitochondrial blindness (LHON) mutations are further sensitized to BAK's mitotoxic effect. Benzalkonium chloride inhibits mitochondria of human corneal epithelial cells and cells bearing LHON mutations at pharmacologically relevant concentrations, and we suggest this is the basis of BAK's ocular toxicity. Prescribing BAK-containing eye drops should be avoided in patients with mitochondrial deficiency, including LHON patients, LHON carriers, and possibly primary open-angle glaucoma patients.

  16. Determining the role of inflammation in the selection of JAK2 mutant cells in myeloproliferative neoplasms.

    Science.gov (United States)

    Zhang, Jie; Fleischman, Angela G; Wodarz, Dominik; Komarova, Natalia L

    2017-07-21

    Myeloproliferative neoplasm (MPN) is a hematologic malignancy characterized by the clonal outgrowth of hematopoietic cells with a somatically acquired mutation most commonly in JAK2 (JAK2 V617F ). This mutation endows upon myeloid progenitors cytokine independent growth and consequently leads to excessive production of myeloid lineage cells. It has been previously suggested that inflammation may play a role in the clonal evolution of JAK2 V617F mutants. In particular, it is possible that one or more cellular kinetic parameters of hematopoietic stem cells (HSCs) are affected by inflammation, such as division or death rates of cells, and the probability of HSC differentiation. This suggests a mechanism that can steer the outcome of the cellular competition in favor of the mutants, initiating the disease. In this paper we create a number of mathematical evolutionary models, from very abstract to more concrete, that describe cellular competition in the context of inflammation. It is possible to build a model axiomatically, where only very general assumptions are imposed on the modeling components and no arbitrary (and generally unknown) functional forms are used, and still generate a set of testable predictions. In particular, we show that, if HSC death is negligible, the evolutionary advantage of mutant cells can only be conferred by an increase in differentiation probability of HSCs in the presence of inflammation, and if death plays a significant role in the dynamics, an additional mechanism may be an increase of HSC's division-to-death ratio in the presence of inflammation. Further, we show that in the presence of inflammation, the wild type cell population is predicted to shrink under inflammation (even in the absence of mutants). Finally, it turns out that if only the differentiation probability is affected by the inflammation, then the resulting steady state population of wild type cells will contain a relatively smaller percentage of HSCs under inflammation. If

  17. Transformation of UV-hypersensitive Chinese hamster ovary cell mutants with UV-irradiated plasmids

    International Nuclear Information System (INIS)

    Nairn, R.S.; Humphrey, R.M.; Adair, G.M.

    1988-01-01

    Transfection of UV-hypersensitive, DNA repair-deficient Chinese hamster ovary (CHO) cell lines and parental, repair-proficient CHO cells with UV-irradiated pHaprt-1 or pSV2gpt plasmids resulted in different responses by recipient cell lines to UV damage in transfected DNA. Unlike results reported for human cells, UV irradiation of transfecting DNA did not stimulate genetic transformation of CHO recipient cells. In repair-deficient CHO cells, proportionally fewer transformants were produced with increasing UV damage than in repair-proficient cells in transfections with UV-irradiated hamster adenine phosphoribosyltransferase (APRT) gene contained in plasmid pHaprt-1. Transfection of CHO cells with UV-irradiated pSV2gpt resulted in neither decline in transformation frequencies in repair-deficient cell lines relative to repair-proficient cells nor stimulation of genetic transformation by UV damage in the plasmid. Blot hybridization analysis of DNA samples isolated from transformed cells showed no dramatic changes in copy number or arrangement of transfected plasmid DNA with increasing UV dose. The authors conclude responses of recipient cells to UV-damaged transfecting plasmids depend on type of recipient cell and characteristics of the genetic sequence used for transfection. (author)

  18. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  19. Enhancement of hypermutation frequency in the chicken B cell line DT40 for efficient diversification of the antibody repertoire

    Energy Technology Data Exchange (ETDEWEB)

    Magari, Masaki; Kanehiro, Yuichi; Todo, Kagefumi; Ikeda, Mika; Kanayama, Naoki, E-mail: nkanayama@cc.okayama-u.ac.jp; Ohmori, Hitoshi

    2010-05-28

    Chicken B cell line DT40 continuously accumulates mutations in the immunoglobulin variable region (IgV) gene by gene conversion and point mutation, both of which are mediated by activation-induced cytidine deaminase (AID), thereby producing an antibody (Ab) library that is useful for screening monoclonal Abs (mAbs) in vitro. We previously generated an engineered DT40 line named DT40-SW, whose AID expression can be reversibly switched on or off, and developed an in vitro Ab generation system using DT40-SW cells. To efficiently create an Ab library with sufficient diversity, higher hypermutation frequency is advantageous. To this end, we generated a novel cell line DT40-SW{Delta}C, which conditionally expresses a C-terminus-truncated AID mutant lacking the nuclear export signal. The transcription level of the mutant AID gene in DT40-SW{Delta}C cells was similar to that of the wild-type gene in DT40-SW cells. However, the protein level of the truncated AID mutant was less than that of the wild type. The mutant protein was enriched in the nuclei of DT40-SW{Delta}C cells, although the protein might be highly susceptible to degradation. In DT40-SW{Delta}C cells, both gene conversion and point mutation occurred in the IgV gene with over threefold higher frequency than in DT40-SW cells, suggesting that a lower level of the mutant AID protein was sufficient to increase mutation frequency. Thus, DT40-SW{Delta}C cells may be useful for constructing Ab libraries for efficient screening of mAbs in vitro.

  20. Autoradiographic assay of mutants resistant to diphtheria toxin in mammalian cells in vitro

    International Nuclear Information System (INIS)

    Ronen, A.; Gingerich, J.D.; Duncan, A.M.V.; Heddle, J.A.

    1984-01-01

    Diptheria toxin kills mammalian cells by ribosylating elongation factor 2, a protein factor necessary for protein synthesis. The frequency of cells able to form colonies in the presence of the toxin can be used as an assay for mutation to diphtheria toxin resistance. Resistance to diphtheria toxin can also be detected autoradiographically in cells exposed to [ 3 H]leucine after treatment with the toxin. In cultures of Chinese hamster ovary cells, the frequency of such resistant cells is increased by exposure of the cells to γ-rays, ultraviolet light, ethylnitrosourea, mitomycin c, ethidium bromide, and 5-bromo-2'-deoxyuridine in a dose- and time-dependent manner. The resistant cells form discrete microcolonies if they are allowed to divide several times before intoxication which indicates that they are genuine mutants. The assay is potentially adaptable to any cell population that can be intoxicated with diphtheria toxin and labeled with [ 3 H]leucine, whether or not the cells can form colonies. It may be useful, therefore, for measuring mutation rates in slowly growing or nondividing cell populations such as breast, brain, and liver, as well as in cells that do divide but cannot be readily cloned, such as the colonic epithelium. 23 references, 6 figures

  1. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea L Radtke

    Full Text Available The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2, double (SPI-1/2 and complete T3SS knockout (SPI-1/SPI-2: flhDC also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.

  2. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  3. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Science.gov (United States)

    Fisher, Cynthia L; Marks, Hendrik; Cho, Lily Ting-Yin; Andrews, Robert; Wormald, Sam; Carroll, Thomas; Iyer, Vivek; Tate, Peri; Rosen, Barry; Stunnenberg, Hendrik G; Fisher, Amanda G; Skarnes, William C

    2017-12-01

    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.

    Science.gov (United States)

    Yun, Jihye; Mullarky, Edouard; Lu, Changyuan; Bosch, Kaitlyn N; Kavalier, Adam; Rivera, Keith; Roper, Jatin; Chio, Iok In Christine; Giannopoulou, Eugenia G; Rago, Carlo; Muley, Ashlesha; Asara, John M; Paik, Jihye; Elemento, Olivier; Chen, Zhengming; Pappin, Darryl J; Dow, Lukas E; Papadopoulos, Nickolas; Gross, Steven S; Cantley, Lewis C

    2015-12-11

    More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations. Copyright © 2015, American Association for the Advancement of Science.

  5. Cystogenesis in ARPKD results from increased apoptosis in collecting duct epithelial cells of Pkhd1 mutant kidneys

    International Nuclear Information System (INIS)

    Hu, Bo; He, Xiusheng; Li, Ao; Qiu, Qingchao; Li, Cunxi; Liang, Dan; Zhao, Ping; Ma, Jie; Coffey, Robert J.; Zhan, Qimin; Wu, Guanqing

    2011-01-01

    Mutations in the PKHD1 gene result in autosomal recessive polycystic kidney disease (ARPKD) in humans. To determine the molecular mechanism of the cystogenesis in ARPKD, we recently generated a mouse model for ARPKD that carries a targeted mutation in the mouse orthologue of human PKHD1. The homozygous mutant mice display hepatorenal cysts whose phenotypes are similar to those of human ARPKD patients. By littermates of this mouse, we developed two immortalized renal collecting duct cell lines with Pkhd1 and two without. Under nonpermissive culture conditions, the Pkhd1 -/- renal cells displayed aberrant cell-cell contacts and tubulomorphogenesis. The Pkhd1 -/- cells also showed significantly reduced cell proliferation and elevated apoptosis. To validate this finding in vivo, we examined proliferation and apoptosis in the kidneys of Pkhd1 -/- mice and their wildtype littermates. Using proliferation (PCNA and Histone-3) and apoptosis (TUNEL and caspase-3) markers, similar results were obtained in the Pkhd1 -/- kidney tissues as in the cells. To identify the molecular basis of these findings, we analyzed the effect of Pkhd1 loss on multiple putative signaling regulators. We demonstrated that the loss of Pkhd1 disrupts multiple major phosphorylations of focal adhesion kinase (FAK), and these disruptions either inhibit the Ras/C-Raf pathways to suppress MEK/ERK activity and ultimately reduce cell proliferation, or suppress PDK1/AKT to upregulate Bax/caspase-9/caspase-3 and promote apoptosis. Our findings indicate that apoptosis may be a major player in the cyst formation in ARPKD, which may lead to new therapeutic strategies for human ARPKD.

  6. Morphological and functional responses of a metal-tolerant sunflower mutant line to a copper-contaminated soil series.

    Science.gov (United States)

    Kolbas, Aliaksandr; Kolbas, Natallia; Marchand, Lilian; Herzig, Rolf; Mench, Michel

    2018-04-02

    The potential use of a metal-tolerant sunflower mutant line for biomonitoring Cu phytoavailability, Cu-induced soil phytotoxicity, and Cu phytoextraction was assessed on a Cu-contaminated soil series (13-1020 mg Cu kg -1 ) obtained by fading a sandy topsoil from a wood preservation site with a similar uncontaminated soil. Morphological and functional plant responses as well as shoot, leaf, and root ionomes were measured after a 1-month pot experiment. Hypocotyl length, shoot and root dry weight (DW) yields, and leaf area gradually decreased as soil Cu exposure rose. Their dose-response curves (DRC) plotted against indicators of Cu exposure were generally well fitted by sigmoidal curves. The half-maximal effective concentration (EC 50 ) of morphological parameters ranged between 203 and 333 mg Cu kg -1 soil, corresponding to 290-430 μg Cu L -1 in the soil pore water, and 20 ± 5 mg Cu kg -1 DW in the shoots. The EC 10 for shoot Cu concentration (13-15 mg Cu kg -1 DW) coincided to 166 mg Cu kg -1 soil. Total chlorophyll content and total antioxidant capacity (TAC) were early biomarkers (EC 10 : 23 and 51 mg Cu kg -1 soil). Their DRC displayed a biphasic response. Photosynthetic pigment contents, e.g., carotenoids, correlated with TAC. Ionome was changed in Cu-stressed roots, shoots, and leaves. Shoot Cu removal peaked roughly at 280 μg Cu L -1 in the soil pore water.

  7. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  8. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  9. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2011-03-01

    Tuberous sclerosis complex (TSC is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin or TSC2 (encodes tuberin genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242 in the tsc2 gene. This tsc2vu242 allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2vu242 is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2vu242/vu242 homozygous zebrafish, and is moderately increased in tsc2vu242/+ heterozygotes. Forebrain neurons are poorly organized in tsc2vu242/vu242 homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2vu242/vu242 mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  10. Efficient procedure for transferring specific human genes into Chinese hamster cell mutants: interspecific transfer of the human genes encoding leucyl- and asparaginyl-tRNA synthetases

    International Nuclear Information System (INIS)

    Cirullo, R.E.; Dana, S.; Wasmuth, J.J.

    1983-01-01

    A simple and efficient procedure for transferring specific human genes into mutant Chinese hamster ovary cell recipients has been developed that does not rely on using calcium phosphate-precipitated high-molecular-weight DNA. Interspecific cell hybrids between human leukocytes and temperature-sensitive Chinese hamster cell mutants with either a thermolabile leucyl-tRNA synthetase or a thermolabile asparaginyl-tRNA synthetase were used as the starting material in these experiments. These hybrids contain only one or a few human chromosomes and require expression of the appropriate human aminoacyl-tRNA synthetase gene to grow at 39 degrees C. Hybrids were exposed to very high doses of gamma-irradiation to extensively fragment the chromosomes and re-fused immediately to the original temperature-sensitive Chinese hamster mutant, and secondary hybrids were isolated at 39 degrees C. Secondary hybrids, which had retained small fragments of the human genome containing the selected gene, were subjected to another round of irradiation, refusion, and selection at 39 degrees C to reduce the amount of human DNA even further. Using this procedure, Chinese hamster cell lines have been constructed that express the human genes encoding either asparaginyl- or leucyl-tRNA synthetase, yet less than 0.1% of their DNA is derived from the human genome, as quantitated by a sensitive dot-blot nucleic acid hybridization procedure

  11. Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours.

    Science.gov (United States)

    Chen, Lindi; Esfandiari, Arman; Reaves, William; Vu, Annette; Hogarty, Michael D; Lunec, John; Tweddle, Deborah A

    2018-03-01

    Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.

  12. Isolation and characterization of a Chinese hamster ovary cell line deficient in fatty alcohol:NAD+ oxidoreductase activity

    International Nuclear Information System (INIS)

    James, P.F.; Lee, J.; Rizzo, W.B.; Zoeller, R.A.

    1990-01-01

    The authors have isolated a mutant Chinese hamster ovary cell line that is defective in long-chain fatty alcohol oxidation. The ability of the mutant cells to convert labeled hexadecanol to the corresponding fatty acid in vivo was reduced to 5% of the parent strain. Whole-cell homogenates from the mutant strain, FAA.1, were deficient in long-chain fatty alcohol:NAD + oxidoreductase activity, which catalyzes the oxidation of hexadecanol to hexadecanoic acid, although the intermediate fatty aldehyde was formed normally. A direct measurement of fatty aldehyde dehydrogenase showed that the FAA.1, strain was defective in this component of FAO activity. FAA.1 is a two-stage mutant that was selected from a previously described parent strain, ZR-82, which is defective in ether lipid biosynthesis and peroxisome assembly. Because of combined defects in ether lipid biosynthesis and fatty alcohol oxidation, the ability of the FAA.1 cells to incorporate hexadecanol into complex lipids was greatly impaired, resulting in a 60-fold increase in cellular fatty alcohol levels. As the FAO deficiency in FAA.1 cells appears to be identical to the defect associated with the human genetic disorder Sjoegren-Larsson syndrome, the FAA.1 cell line may be useful in studying this disease

  13. A shift to organismal stress resistance in programmed cell death mutants.

    Directory of Open Access Journals (Sweden)

    Meredith E Judy

    Full Text Available Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1 mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.

  14. Mutation induction in γ-irradiated primary human bronchial epithelial cells and molecular analysis of the HPRT- mutants

    International Nuclear Information System (INIS)

    Suzuki, Keiji; Hei, Tom K.

    1996-01-01

    We have examined various radiobiological parameters using commercially-available primary normal human bronchial epithelial (NHBE) cells, which can be subcultured more than 20 population doublings, and have established the mutation system in order to characterize the molecular changes in γ-irradiated primary cells. The survival curve, obtained after irradiation of cells with 137 Cs γ-rays, indicates that the D 0 , D q , and n values are 1.34 Gy, 1.12 Gy, and 2.3, respectively. The induction of HPRT - mutation was dose-dependent and the mutant fraction increased in a non-linear fashion. Since the doubling number of NHBE cells is limited, DNA was extracted directly from the single mutant colonies and alteration in the HPRT gene locus was analyzed using multiplex PCR technique. Among spontaneous mutants, the proportion with total and partial deletions of the gene was 10.0% (2/20) and 60.0% (12/20), respectively, while 30.0% (6/20) did not have any detectable changes in the nine exons examined. On the other hand, the fraction of total deletion increased by more than 2-fold among mutants induced by γ-rays in that 26.3% (10/38) of them showed the total gene deletions. Twenty-five out of 38 γ-induced mutants (65.8%) had partial deletions and 3 mutants (7.9%) had no detectable alteration. The present results showed that γ-irradiation efficiently induced HPRT gene mutation in primary human epithelial cells and that most of the induced mutants suffered larger deletions compared to that observed in spontaneous mutants. This system provides a useful tool for determination of mutagenicity and understanding the molecular mechanisms of environmental carcinogens in primary human bronchial cells

  15. Heat and UV light resistance of vegetative cells and spores of Bacillus subtilis rec-mutants

    International Nuclear Information System (INIS)

    Hanlin, J.H.; Lombardi, S.J.; Slepecky, R.A.

    1985-01-01

    The heat and UV light resistance of spores and vegetative cells of Bacillus subtilis BD170 (rec+) were greater than those of B. subtilis BD224 (recE4). Strain BD170 can repair DNA whereas BD224 is repair deficient due to the presence of the recE4 allele. Spores of a GSY Rec+ strain were more heat resistant than spores of GSY Rec- and Uvr- mutants. The overall level of heat and UV light resistance attained by spores may in part be determined by their ability to repair deoxyribonucleic acid after exposure to these two physical mutagens

  16. Dose selenomethionine have radio-protective effect on cell lines with wild type p53?

    International Nuclear Information System (INIS)

    Tsuji, K.; Hagihira, T.; Ohnishi, K.; Ohnishi, T.; Matsumoto, H.

    2003-01-01

    Full text: Selenium compounds are known to have cancer preventive effects. It is reported recently that selenium in the form of selenomethionine (SeMet) can protect cells with wild type p53 from UV-induced cell killing by activating the DNA repair mechanism of p53 tumor suppressor protein via redox factor Ref1 by reducing p53 cysteine residue 275 and 277. In contrast, SeMet has no protective effect on UV-induced cell killing in p53-null cells. If SeMet also has protective effect in cells with wild type p53 on cell killing by photon irradiation, SeMet can be used as normal tissue radio-protector. We examined the effect of SeMet on cell killing by X-ray irradiation in several cell lines with different p53 status at exponentially growing phase. Cell lines used in this experiment were as follows: H1299/neo; human lung cancer cell line of p53 null type tranfected with control vector with no p53, H1299/wp53; wild type p53 transfected counterpart. A172/neo; human glioblastoma cell line with wild type p53, A172/mp53-248; mp53-248 (248-mutant, ARG >TRP) transfected counterpart. SAS/neo; human tongue cancer cell line with wild type p53, and SAS/mp53-248; mp53-248 transfected counterpart. Cells were subcultured at monolayer in D-MEM containing 10% FBS. Survivals of the cells were determined by colony forming ability. Ten-MV linac X-ray was used to irradiate the cells. Exponentially growing cells were incubated with 20μM of SeMet for 15 hours before irradiation. After 24 hours exposure of SeMet, cells were incubated up to two weeks in growth medium for colony formation. Twenty-four hours exposure of 20μM of SeMet had no cytotoxicity on these cell lines. SeMet had no modification effect on cell killing by photon irradiation in H1299/neo, H1299/wp53, SAS/neo, SAS/mp53-248, and A172/mp53-248. On the other hand, SeMet sensitized A172/neo in radiation cell killing. The effects of p53 on interaction of SeMet and photon irradiation differ according to cell lines

  17. The phenotype of FancB-mutant mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan; Hasty, Paul

    2011-01-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  18. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum.

    Science.gov (United States)

    Verheijen, Bert M; Gentier, Romina J G; Hermes, Denise J H P; van Leeuwen, Fred W; Hopkins, David A

    2017-06-01

    The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B +1 (UBB +1 ), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB +1 -expressing transgenic mice display widespread labeling for UBB +1 in brain and exhibit behavioral deficits. Here, we show that UBB +1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB +1 -expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.

  19. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  20. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  1. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  2. ERK Regulates Renal Cell Proliferation and Renal Cyst Expansion in inv Mutant Mice

    International Nuclear Information System (INIS)

    Okumura, Yasuko; Sugiyama, Noriyuki; Tanimura, Susumu; Nishida, Masashi; Hamaoka, Kenji; Kohno, Michiaki; Yokoyama, Takahiko

    2009-01-01

    Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage kidney disease in children and young adults. Inv mice are a model for human nephronophthisis type 2 (NPHP2) and characterized by multiple renal cysts and situs inversus. Renal epithelial cells in inv cystic kidneys show increased cell proliferation. We studied the ERK pathway to understand the mechanisms that induce cell proliferation and renal cyst progression in inv kidneys. We studied the effects of ERK suppression by administering PD184352, an oral mitogen-activated protein kinase kinase (MEK) inhibitor on renal cyst expansion, extracellular signal-regulated protein kinase (ERK) activity, bromo-deoxyuridine (BrdU) incorporation and expression of cell-cycle regulators in invΔC kidneys. Phosphorylated ERK (p-ERK) level increased along with renal cyst enlargement. Cell-cycle regulators showed a high level of expression in invΔC kidneys. PD184352 successfully decreased p-ERK level and inhibited renal cyst enlargement. The inhibitor also decreased expression of cell-cycle regulators and BrdU incorporation in renal epithelial cells. The present results showed that ERK regulated renal cell proliferation and cyst expansion in inv mutants

  3. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  4. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    Wate, Reika; Ito, Hidefumi; Kusaka, Hirofumi; Takahashi, Sentaro; Kubota, Yoshihisa; Suetomi, Katsutoshi; Sato, Hiroshi; Okayasu, Ryuichi

    2005-01-01

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  5. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  6. Phosphorus Partitioning of Soybean Lines Containing Different Mutant Alleles of Two Soybean Seed-Specific Adenosine Triphosphate-Binding Cassette Phytic Acid Transporter Paralogs

    Directory of Open Access Journals (Sweden)

    Jason D. Gillman

    2013-03-01

    Full Text Available Seed phytate is a repository of P and minerals in soybean [ (L. Merr.] seeds that limits P and mineral bioavailability for monogastric animals (e.g., humans, swine [], and poultry [especially chicken, ] due to insufficient digestive tract phytase activity. We previously identified epistatic recessive mutations affecting two paralogous adenosine triphosphate-binding cassette phytic acid transporter genes (one a nonsense mutation in and the other a missense mutation in as the molecular genetic basis in the ethyl methanesulfonate (EMS-induced mutant low phytate soybean line M153. An additional mutant low phytate line, M766, contained one single nucleotide polymorphism within the ninth intron of the locus as well as a nonsense mutation in . The objectives of this research were to clarify the genetics underlying the low phytate phenotype in line M766 and to determine P partitioning in new combinations of mutant alleles from M766 and M153. Inheritance of nonsense alleles affecting both ( genes (one from M153 and one from M766 led to the production of viable seeds that contained transgressive reductions in total seed phytate and significantly higher levels of inorganic phosphate than has been reported for nontransgenic soybean material and will allow efficient molecular selection of soybeans with even greater reductions of phytate for improved quality soybean meal.

  7. Evaluation of Nitrogen Uptake and Growth Performance of Advanced Mutant Lines MR219-4 and MR219-9 Grown Under Aerobic Conditions

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Rusli Ibrahim; Khairuddin Abdul Rahim

    2014-01-01

    Developing a good crop production management package; drought resistance variety, effective water and nutrient management in rice production practices is crucial for global climate change adaptation. A research project under IAEA RAS5065 (Supporting Climate-Proofing Rice Production Systems (CRiPS) Based on Nuclear Applications) was conducted from 2012 to 2013, in collaboration with MARDI. Two advanced mutant lines, MR219-4 and MR219-9 were used in this research project to evaluate growth, yield potential and fertilizer uptake under different water input condition (flooded and aerobic). The advanced mutant line MR219-9 showed comparable growth, yield and nitrogen uptake under both flooded and aerobic conditions. The yield and yield components are not significantly different from the parent variety (MR219) but total N uptake was lower than MR219 regardless of water regime. The field trial showed that MR219-9 has a better total N content which is comparable to the aerobic rice variety (MRIA 1) and this indicates that this advance mutant line MR219-9 is a potential aerobic rice variety. (author)

  8. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    International Nuclear Information System (INIS)

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka

    2007-01-01

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-κB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells

  9. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  10. Mitochondrial uncoupler exerts a synthetic lethal effect against β-catenin mutant tumor cells.

    Science.gov (United States)

    Shikata, Yuki; Kiga, Masaki; Futamura, Yushi; Aono, Harumi; Inoue, Hiroyuki; Kawada, Manabu; Osada, Hiroyuki; Imoto, Masaya

    2017-04-01

    The wingless/int-1 (Wnt) signal transduction pathway plays a central role in cell proliferation, survival, differentiation and apoptosis. When β-catenin: a component of the Wnt pathway, is mutated into an active form, cell growth signaling is hyperactive and drives oncogenesis. As β-catenin is mutated in a wide variety of tumors, including up to 10% of all sporadic colon carcinomas and 20% of hepatocellular carcinomas, it has been considered a promising target for therapeutic interventions. Therefore, we screened an in-house natural product library for compounds that exhibited synthetic lethality towards β-catenin mutations and isolated nonactin, an antibiotic mitochondrial uncoupler, as a hit compound. Nonactin, as well as other mitochondrial uncouplers, induced apoptosis selectively in β-catenin mutated tumor cells. Significant tumor regression was observed in the β-catenin mutant HCT 116 xenograft model, but not in the β-catenin wild type A375 xenograft model, in response to daily administration of nonactin in vivo. Furthermore, we found that expression of an active mutant form of β-catenin induced a decrease in the glycolysis rate. Taken together, our results demonstrate that tumor cells with mutated β-catenin depend on mitochondrial oxidative phosphorylation for survival. Therefore, they undergo apoptosis in response to mitochondrial dysfunction following the addition of mitochondrial uncouplers, such as nonactin. These results suggest that targeting mitochondria is a potential chemotherapeutic strategy for tumor cells that harbor β-catenin mutations. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    Science.gov (United States)

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  12. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases.

    Directory of Open Access Journals (Sweden)

    Humaira Adnan

    Full Text Available Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD, to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon, to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin containing genetically inactivated (± an N-terminal polyleucine tail A subunit can, within 2-4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF mutant (5-10x, F508delCFTR Golgi maturation (<10x, cell surface expression (20x and chloride transport (2x in F508del CFTR transfected cells and patient-derived F508delCFTR bronchiolar epithelia, without apparent cytopathology. These toxoids also increase glucocerobrosidase (GCC in N370SGCC Gaucher Disease fibroblasts (3x, another ERAD-exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases.

  13. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  14. Evolving of mutant lines resistant to lodging, blast, and high yield in rice by induce mutation using gamma ray (physical mutagen)

    International Nuclear Information System (INIS)

    Majd, F.; Rahimi, M.; Rezazadeh, M.

    2003-01-01

    Induction of mutation for the purpose of producing variations in the gene pool has been used in recent years. In this experiment the locally adapted rice C V Moosa-Tarom was used as a high quality, tall and very lodging susceptible mutation material. The main purpose of this project was to evolve lodging resistant mutants of high yielding. The elite seeds of Moosa-Tarom variety after moisture regulation were exposed to 100, 200 and 300 Gy from Cobalt 60 source at the Nuclear Research Center. The irradiated seeds were sown in the field along with a comparable number of unirradiated seeds taken as control. All the first panicles of M1 plants were individually harvested and classified according to the dose rate as M2 material . Among M2 plant populations 203 plants that appeared from the agronomic point of view, along with a number of on unirradiated seeds, were selected and moved to the next generations. During subsequent screening for three generations (M 3-M 5) and due to lodging resistant, height and efficient factors of yield potential some mutant lines were harvested. From these lines in a preliminary and advanced randomized complete design agronomic traits, 13 promising lines were selected. From the experiment, line 43-3 were confirmed, which is characterized by lodging resistant and high yield. This line showed relative superiority and introduced to Rice Research Institute

  15. Glycerol restores the p53 function in human lingual cancer cells bearing mutant p53

    International Nuclear Information System (INIS)

    Ota, Ichiro; Yane, Katsunari; Yuki, Kazue; Kanata, Hirokazu; Hosoi, Hiroshi; Miyahara, Hiroshi

    2001-01-01

    Mutations in p53, tumor suppressor gene, have recently been shown to have an impact on the clinical course of several human tumors, including head and neck cancers. The genetic status of the p53 gene has been focused on as the most important candidate among various cancer-related genes for prognosis-predictive assays of cancer therapy. We examined the restoration of radiation- or cisplatin (CDDP)-induced p53-dependent apoptosis in human lingual cancer cells. The results suggest that glycerol is effective in inducing a conformational change of p53 and restoring normal function of mutant p53, leading to enhanced radiosensitivity or chemosensitivity through the induction of apoptosis. We have also represented the same results in vivo as in vitro. Thus, this novel tool for enhancement of radiosensitivity or chemosensitivity in cancer cells bearing m p53 may be applicable for p53-targeted cancer therapy. (author)

  16. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  17. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  18. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  19. Isolation and partial characterisation of a mammalian cell mutant hypersensitive to topoisomerase II inhibitors and X-rays

    International Nuclear Information System (INIS)

    Davies, S.M.; Davies, S.L.; Hickson, I.D.; Hall, A.G.

    1990-01-01

    The authors have isolated, following one-step mutagenesis, a Chinese hamster ovary cell mutant hypersensitive to the intercalating agent, adriamycin. This agent exerts at least part of its cytotoxic action via inhibition of the nuclear enzyme, topoisomerase II. The mutant, designated ADR-3, showed hypersensitivity to all classes of topoisomerase II inhibitors, inlcuding actinomycin D, amsacrine (m-AMSA), etoposide (VP16) and mitoxantrone. ADR-3 cells also showed cross-sensitivity to ionizing radiation, but not no UV light. Topoisomerase II activity was elevated to a small but significant degree in ADR-3 cells, and this was reflected in a 1.5-fold higher level of topoisomerase II protein in ADR-3 than in CHO-K1 cells, as judged by Western blotting. ADR-3 cells were hypersensitive to cumene hydroperoxide but cross-resistant to hydrogen peroxide, suggesting possible abnormality in the detoxification of peroxides by glutathione peroxidase or catalase. Glutathione peroxidase activity against hydroperoxide was elevated to a small but significant extent in mutant cells. Catalase levels were not significantly different in ADR-3 and CHO-K1 cells. ADR-3 cells were recessive in hybrids with parental CHO-K1 cells with respect to sensitivity to topoisomerase II inhibitors and X-rays, and represent a different genetic complementation group from the previously reported adriamycin-sensitive mutant, ADR-1. (author). 34 refs.; 5 figs.; 3 tabs

  20. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  1. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  2. Radiation response of haematopoietic cell lines of human origin

    International Nuclear Information System (INIS)

    Lehnert, S.; Rybka, W.B.; Suissa, S.; Giambattisto, D.

    1986-01-01

    Six human haematopoietic cell lines, five of leukaemic origin, including cells with myeloid, lymphoid and undifferentiated phenotype have been studied with respect to radiation response. The intrinsic radio-sensitivity of the cells varied widely, the D 0 s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed some capacity to accumulate sublethal damage; in three of these, enhanced survival was demonstrated in split-dose experiments. One cell line (HL-60) was anomalous in that although little accumulation of sublethal damage was demonstrable, survival was enhanced by fractionation of the dose. Five of the six cell lines studied were of leukaemic origin. The results support the belief that, in contrast to the almost constant radiosensitivity of normal haematopoietic cell progenitors, leukaemic cell progenitors may show a wide range of radiosensitivities. (author)

  3. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: Utility and pitfalls

    Directory of Open Access Journals (Sweden)

    Ashley R.P. Hinson

    2013-07-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.

  4. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    Science.gov (United States)

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  5. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells

    Science.gov (United States)

    van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G

    2013-01-01

    Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104

  6. Inhibitors of pan PI3K signaling synergize with BRAF or MEK inhibitors to prevent BRAF-mutant melanoma cell growth

    Directory of Open Access Journals (Sweden)

    Melanie eSweetlove

    2015-06-01

    Full Text Available BRAF and MEK inhibitors have improved outcomes for patients with BRAF-mutant melanoma, but their efficacy is limited by both intrinsic and acquired resistance. Activation of the PI3K pathway can mediate resistance to these agents, providing a strong rationale for combination therapy in melanoma. Here, a panel of 9 low passage human metastatic melanoma cell lines with BRAF mutations were tested in cell proliferation and protein expression assays for sensitivity to inhibitors of MEK (selumetinib and BRAF (vemurafenib as single agents and in combination with inhibitors of pan-PI3K (ZSTK474, pan-PI3K/mTOR (BEZ235, individual PI3K isoforms (p110α, A66; p110β, TGX-221; p110γ, AS-252424; p110δ, idelalisib, or mTORC1/2 (KU-0063794. Selumetinib and vemurafenib potently inhibited cell proliferation in all cell lines, especially in those that expressed low levels of pAKT. ZSTK474 and BEZ235 also inhibited cell proliferation in all cell lines and enhanced the antitumor activity of selumetinib and vemurafenib in the majority of lines by either interacting synergistically or additively to increase potency or by inducing cytotoxicity by significantly increasing the magnitude of cell growth inhibition. Furthermore, ZSTK474 or BEZ235 combined with selumetinib to produce robust inhibition of pERK, pAKT and pS6 expression and synergistic inhibition of NZM20 tumor growth. The inhibitors of individual PI3K isoforms or mTORC1/2 were less effective at inhibiting cell proliferation either as single agents or in combination with selumetinib or vemurafenib, although KU-0063794 synergistically interacted with vemurafenib and increased the magnitude of cell growth inhibition with selumetinib or vemurafenib in certain cell lines. Overall, these results suggest that the sensitivity of BRAF-mutant melanoma cells to BRAF or MEK inhibitors is at least partly mediated by activation of the PI3K pathway and can be enhanced by combined inhibition of the BRAF/MEK and PI3K

  7. Multiple kinase pathways involved in the different de novo sensitivity of pancreatic cancer cell lines to 17-AAG.

    Science.gov (United States)

    Liu, Heping; Zhang, Ti; Chen, Rong; McConkey, David J; Ward, John F; Curley, Steven A

    2012-07-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) specifically targets heat shock protein (HSP)90 and inhibits its chaperoning functions for multiple kinases involved in cancer cell growth and survival. To select responsive patients, the molecular mechanisms underlying the sensitivity of cancer cells to 17-AAG must be elucidated. We used cytotoxicity assays and Western blotting to explore the effects of 17-AAG and sorafenib on cell survival and expression of multiple kinases in the pancreatic cancer cell lines AsPC-1 and Panc-1. Gene cloning and transfection, siRNA silencing, and immunohistochemistry were used to evaluate the effects of mutant p53 protein on 17-AAG sensitivity. AsPC-1 and Panc-1 responded differently to 17-AAG, with half maximal inhibitory concentration (IC(50)) values of 0.12 and 3.18 μM, respectively. Comparable expression of HSP90, HSP70, and HSP27 was induced by 17-AAG in AsPC-1 and Panc-1 cells. P-glycoprotein and mutant p53 did not affect 17-AAG sensitivity in these cell lines. Multiple kinases are more sensitive to HSP90 inhibition in AsPC-1 than in Panc-1 cells. After 17-AAG treatment, p-Bad (S112) decreased in AsPC-1 cells and increased in Panc-1 cells. Sorafenib markedly increased p-Akt, p-ERK1/2, p-GSK-3β, and p-S6 in both cell lines. Accordingly, 17-AAG and sorafenib acted antagonistically in AsPC-1 and Panc-1 cells, except at high concentrations in AsPC-1 cells. Differential inhibition of multiple kinases is responsible for the different de novo sensitivity of AsPC-1 and Panc-1 cells to HSP90 inhibition. P-glycoprotein and mutant p53 protein did not play a role in the sensitivity of pancreatic cancer cells to 17-AAG. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  9. Comparison of responses of human melanoma cell lines to MEK and BRAF inhibitors

    Directory of Open Access Journals (Sweden)

    Clare Judith Stones

    2013-05-01

    Full Text Available The NRAS and BRAF genes are frequently mutated in melanoma, suggesting that the NRAS-BRAF-MEK-ERK signalling pathway is an important target for therapy. Two classes of drugs, one targeting activated BRAF and one targeting MEK, are currently undergoing clinical evaluation. We have analysed the NRAS and BRAF mutational status of a series of 44 early passage lines developed from New Zealand patients with metastatic melanoma. 41% of the lines analysed had BRAF mutations, 23% had NRAS mutations and 36% had neither. We then determined IC50 values (drug concentrations for 50% growth inhibition for CI-1040, a commonly used inhibitor of MEK kinase; trametinib, a clinical agent targeting MEK kinase; and vemurafenib, an inhibitor of mutant BRAF kinase. Cell lines with activating BRAF mutations were significantly more sensitive to vemurafenib than lines with NRAS mutations or lines lacking either mutation (p < 0.001. IC50 values for CI-1040 and trametinib were strongly correlated (r = 0.98 with trametinib showing ~100-fold greater potency. Cell lines sensitive to vemurafenib were also sensitive to CI-1040 and trametinib, but there was no relationship between IC50 values and NRAS mutation status. A small number of lines lacking a BRAF mutation were sensitive to CI-1040 but resistant to vemurafenib. We used western blotting to investigate the effect on ERK phosphorylation of CI-1040 in four lines, of vemurafenib in two lines and of trametinib in two lines. The results support the view that MEK inhibitors might be combined with BRAF inhibitors in the treatment melanomas of with activated BRAF. The high sensitivity to trametinib of some lines with wild-type BRAF status also suggests that MEK inhibitors could have a therapeutic effect against some melanomas as single agents.

  10. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    Science.gov (United States)

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Mutation induction in a mouse lymphoma cell mutant sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation

    International Nuclear Information System (INIS)

    Sato, K.; Hieda, N.

    1980-01-01

    The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells. (orig.)

  12. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  13. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  14. Evaluation and characterization of advanced rice mutant line of rice (Oryza sativa), MR219-4 and MR219-9 under drought condition

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Zarith Shafika Kamarudin; Abdullah, M.Z.; Anna, L.P.K.; Sobri Hussain; Rusli Ibrahim; Khairuddin abdul Rahim

    2012-01-01

    Two advance rice mutant lines, MR219-4 and MR219-9 derived from mutagenesis of Oryza sativa cv. MR219 with gamma radiation at 300 Gy were evaluated in simulated drought condition in the greenhouse at Malaysian Nuclear Agency. The mutants were evaluated simultaneously with ARN1, a drought resistant variety and MR211 a susceptible cultivar as a check. Randomized complete block design with three replicates was used in the experiment. The evaluation and selection were done based on leaf rolling and leaf drying as well as other agronomic traits, such as, number of tillers per plant, plant height, flag leaf area, grain weight per plant, grain yield per plant, 100-grain weight, harvest index, panicle length and plant biomass. The mutants MR219-4 showed moderate tolerance and MR219-9 showed tolerance to drought respectively as compare to the check variety (ARN1, MR211) and control MR219. Leaf rolling, leaf drying, days to flowering and days to maturity are valuable secondary traits that may provide additional information for selection because of associating with the plant survival under water stress. Further research on expression of drought-tolerant lines under different drought conditions is essential in order to identify particular traits that are associated with drought tolerance and high yield potential. Similarly the importance of secondary traits, relative to other putative traits for drought tolerance, needs to be tested in various environments. (author)

  15. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  16. The Utilization of Premix Flour with Sorghum Mutant Lines Zh-30 Based as Material For Dough Making And Dry Noodle Industry

    International Nuclear Information System (INIS)

    Dwi Djoko Slamet Santosa

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induced plant genetic variability. Through selection processes on several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher yield than the original variety. Research on flour quality of this mutant line was done to identify its potential use in dry noodle. Subsequent experiments, i.e. the effect of kansui (alkaline salt Na 2 CO 3 and K 2 CO 3 ) on rheological properties of dough, the effect of egg addition on rheological properties of dough and cooked noodles. Observations were done on dough which were premix flour I, II and III with 10.2 %, 14.5 % and 17.4 % protein content respectively. The influence of each alkaline salt and their mixture on dough rheology i.e., dough consistency and resistant to extension and extensibility. The kansui Concentration applied were 0, 0.5, 1.0 and 1.5 %. Obviously premix flour I + 0.5 % kansui gave optimal consistency, resistance and extensibility of the dough. The addition of five ml egg to premix I dough + 0.5 % kansui gave optimal results. The increase of egg mellowed the dough, and increase noodle texture and reduce stickiness. Addition of five ml egg already gave significant increase of elasticity, with the highest elasticity was reached by addition of 35 ml egg, although no difference was found for 5 - 35 ml.. (author)

  17. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.

    Science.gov (United States)

    Ma, Hailun; Galvin, Teresa A; Glasner, Dustin R; Shaheduzzaman, Syed; Khan, Arifa S

    2014-06-01

    The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell

  18. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  19. The effect of defective DNA double-strand break repair on mutations and chromosome aberrations in the Chinese hamster cell mutant XR-V15B

    International Nuclear Information System (INIS)

    Helbig, R.; Speit, G.; Zdzienicka, M.Z.

    1995-01-01

    The radiosensitive Chinese hamster cell line XR-V15B was used to study the effect of decreased rejoining of DNA double-strand breaks (DSBs) on gene mutations and chromosome aberrations. XR-V15B cells are hypersensitive to the cytotoxic effects of neocarzinostatin (NCS) and methyl methanesulfonate (MMS). Both mutagens induced more chromosome aberrations in XR-V15B cells than in the parental cell strain. The clastogenic action of NCS was characterized by the induction of predominantly chromosome-type aberrations in cells of both strains, whereas MMS induced mainly chromatid aberrations. The frequency of induced gene mutations at the hprt locus was not increased compared to the parental V79 cells when considering the same survival level. Molecular analysis by multiplex polymerase chain reaction (PCR) of mutants induced by NCS revealed a high frequency of deletions in cells of both cell lines. Methyl methane-sulfonate induced mainly mutations without visible change in the PCR pattern, which probably represent point mutations. Our findings suggest a link between a defect in DNA DSB repair and increased cytotoxic and clastogenic effects. However, a decreased ability to rejoin DNA DSBs does not seem to influence the incidence and types of gene mutations at the hprt locus induced by NCS and MMS. 28 refs., 4 figs., 3 tabs

  20. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/Wv mutant mouse colon.

    Science.gov (United States)

    Tamada, Hiromi; Kiyama, Hiroshi

    2015-01-01

    Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/Wv mice carrying W and Wv mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/Wv mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/Wv mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/Wv mutant colon.The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers,but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/Wv mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/Wv mutant mice.

  1. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Ligand-independent Thrombopoietin Mutant Receptor Requires Cell Surface Localization for Endogenous Activity*

    Science.gov (United States)

    Marty, Caroline; Chaligné, Ronan; Lacout, Catherine; Constantinescu, Stefan N.; Vainchenker, William; Villeval, Jean-Luc

    2009-01-01

    The activating W515L mutation in the thrombopoietin receptor (MPL) has been identified in primary myelofibrosis and essential thrombocythemia. MPL belongs to a subset of the cytokine receptor superfamily that requires the JAK2 kinase for signaling. We examined whether the ligand-independent MPLW515L mutant could signal intracellularly. Addition of the endoplasmic reticulum (ER) retention KDEL sequence to the receptor C terminus efficiently locked MPLW515L within its natural ER/Golgi maturation pathway. In contrast to cells expressing the parental MPLW515L, MPLW515L-KDEL-expressing FDC-P1 cells were unable to grow autonomously and to produce tumors in nude mice. When observed, tumor nodules resulted from in vivo selection of cells leaking the receptor at their surface. JAK2 co-immunoprecipitated with MPLW515L-KDEL but was not phosphorylated. We generated disulfide-bonded MPLW515L homodimers by the S402C substitution, both in the normal and KDEL context. Unlike MPLW515L-KDEL, MPLW515L-S402C-KDEL signaled constitutively and exhibited cell surface localization. These data establish that MPLW515L with appended JAK2 matures through the ER/Golgi system in an inactive conformation and suggest that the MPLW515L/JAK2 complex requires membrane localization for JAK2 phosphorylation, resulting in autonomous receptor signaling. PMID:19261614

  3. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  5. Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.

    Science.gov (United States)

    Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras

    2009-12-31

    In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.

  6. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  7. Application of DNA fingerprints for cell-line individualization.

    Science.gov (United States)

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-09-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.

  8. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status

    International Nuclear Information System (INIS)

    Oya, N.; Zoelzer, F.; Werner, F.; Streffer, C.

    2003-01-01

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in starvation medium (0.5% FCS) for 1-6 days, changes in cell cycle distribution, induction of apoptosis and necrosis, and changes in radiation sensitivity were assessed by two-parameter flow cytometric measurements of DNA content/BrdU labeling, two-parameter flow cytometric measurements of DNA-dye-exclusion/Annexin V binding, and a conventional colony assay, respectively. Results: p53 wild-type cell lines showed a decrease in the BrdU labeling index and an increase in the apoptotic cell frequency in starvation medium. p53 mutant cell lines showed a decrease in the BrdU labeling index but no evidence of apoptosis. These cells went into necrosis instead. The radiation sensitivity was increased in 4451 and slightly decreased in Be11 and 4197 in starvation medium. Conclusion: These data suggest a functional involvement of p53 in starvation-induced G1-block and apoptosis in tumor cells. Altered radiosensitivity after culture in starvation medium seemed to be explained at least in part by the starvation-induced G1-block. The frequency of starvation-induced apoptosis or necrosis was not correlated with radiation sensitivity. (orig.)

  9. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  10. Mutant p53 - heat shock response oncogenic cooperation: a new mechanism of cancer cell survival

    Directory of Open Access Journals (Sweden)

    Evguenia eAlexandrova

    2015-04-01

    Full Text Available The main tumor suppressor function of p53 as a ‘guardian of the genome’ is to respond to cellular stress by transcriptional activation of apoptosis, growth arrest or senescence in damaged cells. Not surprisingly, mutations in the p53 gene are the most frequent genetic alteration in human cancers. Importantly, mutant p53 (mutp53 proteins not only lose their wild-type tumor suppressor activity, but also can actively promote tumor development. Two main mechanisms accounting for mutp53 proto-oncogenic activity are inhibition of the wild-type p53 in a dominant-negative fashion and gain of additional oncogenic activities known as gain-of-function (GOF. Here we discuss a novel mechanism of mutp53 GOF, which relies on its oncogenic cooperation with the heat shock machinery. This coordinated adaptive mechanism renders cancer cells more resistant to proteotoxic stress and provides both, a strong survival advantage to cancer cells and a promising means for therapeutic intervention.

  11. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  12. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  13. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity.

  14. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  15. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats.

    Science.gov (United States)

    Cui, Xiang; Liu, Kun; Xu, Dandan; Zhang, Youyou; He, Xun; Liu, Hao; Gao, Xinyan; Zhu, Bing

    2018-01-01

    Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs) may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant-induced MC-deficient rats. WsRC-Ws/Ws rats and their wild-type (WT) littermates (WsRC-+/+) were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA]) were applied randomly on different days. Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats ( P 0.05). Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline ( P <0.01, P <0.001). In WsRC-Ws/Ws rats, only noxious stimuli could produce anti-nociceptive effects for mechanical pain (46°C, 3 mA EA, MA) ( P <0.01, P <0.001). Additionally, the net increases in MWL and MWT induced by most stimuli were greater in WT than in mutant rats ( P <0.05). For thermal nociception, either high- or low-intensity stimuli could significantly augment TWL in two rats ( P <0.001), and the net increases of TWL evoked by most stimuli were to the same extent in two genetic variants. MCs influence the basic mechanical but not thermal pain threshold. MCs participate in acupuncture analgesia in mechanical but not in thermal nociception, in that MC deficiency may attenuate the mechanical analgesia evoked by high-intensity stimuli and eliminate analgesia provoked by low-intensity stimuli.

  16. A stromal myoid cell line provokes thymic erythropoiesis between ...

    African Journals Online (AJOL)

    Background: The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular ...

  17. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  18. Endoplasmic Reticulum-Targeted Subunit Toxins Provide a New Approach to Rescue Misfolded Mutant Proteins and Revert Cell Models of Genetic Diseases.

    Science.gov (United States)

    Adnan, Humaira; Zhang, Zhenbo; Park, Hyun-Joo; Tailor, Chetankumar; Che, Clare; Kamani, Mustafa; Spitalny, George; Binnington, Beth; Lingwood, Clifford

    2016-01-01

    Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2-4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (glucocerobrosidase (GCC) in N370SGCC Gaucher Disease fibroblasts (3x), another ERAD-exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases.

  19. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

    LENUS (Irish Health Repository)

    Stordal, Britta

    2013-06-01

    Mutations in BRCA1\\/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1\\/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1\\/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1\\/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1\\/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1\\/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1\\/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1\\/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1\\/2 deleterious mutations 1\\/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective

  20. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  1. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  2. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  3. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  4. Ultraviolet-endonuclease activity in cell extracts of Saccharomyces cerevisiae mutants defective in excision of pyrimidine dimers

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1980-01-01

    Cell-free extracts of ultraviolet-sensitive mutants of Saccharomyces cerevisiae defective in excision of pyrimidine dimers, rad1, rad2, rad3, rad4, rad10, and rad16, as well as the extracts of the wild-type strain RAD+, display ultraviolet-endonuclease activity

  5. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis.

    Science.gov (United States)

    Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.

  6. DNA fingerprinting of the NCI-60 cell line panel.

    Science.gov (United States)

    Lorenzi, Philip L; Reinhold, William C; Varma, Sudhir; Hutchinson, Amy A; Pommier, Yves; Chanock, Stephen J; Weinstein, John N

    2009-04-01

    The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.

  7. Effect of Spermidine Analogues on Cell Growth of Escherichia coli Polyamine Requiring Mutant MA261.

    Directory of Open Access Journals (Sweden)

    Taketo Yoshida

    Full Text Available The effects of spermidine analogues [norspermidine (NSPD, 33, spermidine (SPD, 34, homospermidine (HSPD, 44 and aminopropylcadaverine (APCAD, 35] on cell growth were studied using Escherichia coli polyamine-requiring mutant MA261. Cell growth was compared at 32°C, 37°C, and 42°C. All four analogues were taken up mainly by the PotABCD spermidine-preferential uptake system. The degree of stimulation of cell growth at 32°C and 37°C was NSPD ≥ SPD ≥ HSPD > APCAD, and SPD ≥ HSPD ≥ NSPD > APCAD, respectively. However, at 42°C, it was HSPD » SPD > NSPD > APCAD. One reason for this is HSPD was taken up effectively compared with other triamines. In addition, since natural polyamines (triamines and teteraamines interact mainly with RNA, and the structure of RNA is more flexible at higher temperatures, HSPD probably stabilized RNA more tightly at 42°C. We have thus far found that 20 kinds of protein syntheses are stimulated by polyamines at the translational level. Among them, synthesis of OppA, RpoE and StpA was more strongly stimulated by HSPD at 42°C than at 37°C. Stabilization of the initiation region of oppA and rpoE mRNA was tighter by HSPD at 42°C than 37°C determined by circular dichroism (CD. The degree of polyamine stimulation of OppA, RpoE and StpA synthesis by NSPD, SPD and APCAD was smaller than that by HSPD at 42°C. Thus, the degree of stimulation of cell growth by spermidine analogues at the different temperatures is dependent on the stimulation of protein synthesis by some components of the polyamine modulon.

  8. Nitrogen Use Efficiency and Carbon Isotope Discrimination Study on NMR151 and NMR152 Mutant Lines Rice at Field Under Different Nitrogen Rates and Water Potentials

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abdul Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Latiffah Nordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2016-01-01

    This study was conducted to evaluate the nitrogen use efficiency and "1"3C isotope discrimination of rice mutant lines viz. NMR151 and NMR152. Both cultivars are developed under rice radiation mutagenesis programme for adaptability to aerobic conditions. In the present study, NMR151 and NMR152 were grown under conditions of varying water potentials and nitrogen levels in a field. Two water potentials and three nitrogen rates in a completely randomized design with three replications were carried out. The rice mutants were grown for 110 days under two water potentials, (i) Field capacity from 0 to 110 DAS [FC], and (ii) Field capacity from 0 to 40 DAS and 30 % dry of field capacity from 41 to 110 DAS [SS] and three nitrogen rates, (i) 0 kg N/ ha (0N), (ii) 60 kg N/ ha (60N), and (iii) 120 kg N/ ha (120N). "1"5N isotopic tracer technique was used in this study, whereby the "1"5N labeled urea fertilizer 5.20 % atom excess (a.e) was utilized as a tracer for nitrogen use efficiency (NUE) study. "1"5N isotope presence in the samples was determined using emission spectrometry and percentage of total nitrogen was determined by the Kjeldahl method. "1"5N a.e values of the samples were used in the determination of the NUE. The value of "1"3C isotope discrimination (Δ"1"3C) in the sample was determined using isotope ratio mass spectrometry (IRMS). The "1"3C isotope discrimination technique was used as a tool to identify drought resistance rice cultivars with improves water use efficiency. The growth and agronomy data, viz. plant height, number of tillers, grain yield, straw yield, and 1000 grain weight also were recorded. Results from this study showed nitrogen rates imparted significant effects on yield (grain and straw) plant height, number of tillers and 1000 grain weight. Water potentials had significant effects only on 1000 grain weight and Δ"1"3C. The NUE for both mutant lines rice showed no significant different between treatments. Both Rice mutant lines rice NMR151

  9. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    Science.gov (United States)

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  10. Application of DNA fingerprints for cell-line individualization.

    OpenAIRE

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-01-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they d...

  11. The pht4;1-3 mutant line contains a loss of function allele in the Fatty Acid Desaturase 7 gene caused by a remnant inactivated selection marker-a cautionary tale.

    Science.gov (United States)

    Nilsson, Anders K; Andersson, Mats X

    2017-01-01

    A striking and unexpected biochemical phenotype was found in an insertion mutant line in the model plant Arabidopsis thaliana . One of two investigated insertion mutant lines in the gene encoding the phosphate transporter PHT4;1 demonstrated a prominent loss of trienoic fatty acids, whereas the other insertion line was indistinguishable from wild type in this aspect. We demonstrate that the loss of trienoic fatty acids was due to a remnant inactive negative selection marker gene in this particular transposon tagged line, pht4;1-3 . This constitutes a cautionary tale that warns of the importance to confirm the loss of this type of selection markers and the importance of verifying the relationship between a phenotype and genotype by more than one independent mutant line or alternatively genetic complementation.

  12. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  13. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    Choi, Sang Wook; Ham, Yong Hoh; Kim, Mee Heui

    1994-04-01

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  14. Gamma-ray induction of a mutant soybean [Glycine max (L.) Merrill] line lacking all seed lipoxygenases

    International Nuclear Information System (INIS)

    Hajika, Makita; Suda, Ikuo; Sakai, Shinji; Takahashi, Masakazu

    1997-01-01

    Induction of a soybean line lacking all isozymes of seed lipoxygenase was attempted using γ-radiation and of 1,813 seeds in M 3 generation, only one was identified as a seed lacking all the isozymes by SDS-PAGE. This line did not present any physiological abnormality over 10 generations or more (M 4 -M 14 ) and no significant influence of the enzyme on the agricultural traits was observed during the performance test in fields. In the resistance test against insect pests, significant differences were not found among the varieties and the lines tested. These results suggest that deletion of all lipoxygenase isozymes would not affect the soybean production in practice. The lipoxygenase activity was not detected in the leaves as well as the seeds of this line, suggesting that this enzyme are not indispensable for the soybean growth. The validity of this line in food processing fields was examined through determining the levels of hexanal production and DETBA. This line was found able to improve the taste of soybean cookies and use in combination with other materials as flour, egg, etc. because the line has no lipoxygenase activity. (M.N.)

  15. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    Science.gov (United States)

    Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-12-01

    Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  17. dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells.

    Directory of Open Access Journals (Sweden)

    Marcello Ziosi

    2010-09-01

    Full Text Available Genetic analyses in Drosophila epithelia have suggested that the phenomenon of "cell competition" could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki. Recent data indicate also that mutations in several Hpo pathway members provide cells with a competitive advantage by unknown mechanisms. Here we provide insight into the mechanism by which the Hpo pathway is linked to cell competition, by identifying dMyc as a target gene of the Hpo pathway, transcriptionally upregulated by the activity of Yki with different binding partners. We show that the cell-autonomous upregulation of dMyc is required for the supercompetitive behavior of Yki-expressing cells and Hpo pathway mutant cells, whereas the relative levels of dMyc between Hpo pathway mutant cells and wild-type neighboring cells are critical for determining whether cell competition promotes a tumor-suppressing or tumor-inducing behavior. All together, these data provide a paradigmatic example of cooperation between tumor suppressor genes and oncogenes in tumorigenesis and suggest a dual role for cell competition during tumor progression depending on the output of the genetic interactions occurring between confronted cells.

  18. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  19. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  20. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  1. Selection of radioresistant cells by vitamin A deficiency in a small cell lung cancer cell line

    International Nuclear Information System (INIS)

    Terasaki, Takeo; Shimosato, Yukio; Wada, Makio; Yokota, Jun; Terada, Masaaki

    1990-01-01

    Radiation sensitivity of a human small cell lung cancer cell line, Lu-134-B cells, cultured in serum-supplemented medium and of cells transferred to and cultured in delipidized serum-supplemented (vitamin A-deficient) medium was studied. The cells cultured in serum-supplemented medium showed the phenotype of classic small cell lung cancer sensitive to radiation, while cells transferred to delipidized serum-supplemented medium showed partial squamous cell differentiation and became resistant to radiation. These results suggest that some small cell lung cancer cells in vitro change their morphology and radiosensitivity depending on the culture conditions. The change in radiosensitivity was reproducible, and was not reversible by culture of the radioresistant cells in delipidized serum-supplemented medium with addition of retinoic acid (vitamin A-sufficient medium) for two months, although squamous cells disappeared. Acquisition of radioresistancy was considered to occur as the result of clonal selective growth in delipidized medium of a minor cell population in the original cell culture, based on a study of chromosome number. It was also found that there was no association of myc-family oncogenes with the changes of radiosensitivity in this cell line. (author)

  2. Establishment of screening technique for mutant cell and analysis of base sequence in the mutation

    International Nuclear Information System (INIS)

    Sofuni, Toshio; Nomi, Takehiko; Yamada, Masami; Masumura, Kenichi

    2000-01-01

    This research project aimed to establish an easy and quick detection method for radiation-induced mutation using molecular-biological techniques and an effective analyzing method for the molecular changes in base sequence. In this year, Spi mutants derived from γ-radiation exposed mouse were analyzed by PCR method and DNA sequence method. Male transgenic mice were exposed to γ-ray at 5,10, 50 Gy and the transgene was taken out from the genome DNA from the spleen in vivo packaging method. Spi mutant plaques were obtained by infecting the recovered phage to E. coli. Sequence analysis for the mutants was made using ALFred DNA sequencer and SequiTherm TM Long-Red Cycle sequencing kit. Sequence analysis was carried out for 41 of 50 independent Spi mutants obtained. The deletions were classified into 4 groups; Group 1 included 15 mutants that were characterized with a large deletion (43 bp-10 kb) with a short homologous sequence. Group 2 included 11 mutants of a large deletion having no homologous sequence at the connecting region. Group 3 included 11 mutants having a short deletion of less than 20 bp, which occurred in the non-repetitive sequence of gam gene and possibly caused by oxidative breakage of DNA or recombination of DNA fragment produced by the breakage. Group 4 included 4 mutants having deletions as short as 20 bp or less in the repetitive sequence of gam gene, resulting in an alteration of the reading frame. Thus, the synthesis of Gam protein was terminated by the appearance of TGA between code 13 and 14 of redB gene, leading to inactivation of gam gene and redBA gene. These results indicated that most of Spi mutants had a deletion in red/gam region and the deletions in more than half mutants occurred in homologous sequences as short as 8 bp. (M.N.)

  3. Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish.

    Science.gov (United States)

    López-Schier, Hernán; Starr, Catherine J; Kappler, James A; Kollmar, Richard; Hudspeth, A J

    2004-09-01

    The proper orientation of mechanosensory hair cells along the lateral-line organ of a fish or amphibian is essential for the animal's ability to sense directional water movements. Within the sensory epithelium, hair cells are polarized in a stereotyped manner, but the mechanisms that control their alignment relative to the body axes are unknown. We have found, however, that neuromasts can be oriented either parallel or perpendicular to the anteroposterior body axis. By characterizing the strauss mutant zebrafish line and by tracking labeled cells, we have demonstrated that neuromasts of these two orientations originate from, respectively, the first and second primordia. Furthermore, altering the migratory pathway of a primordium reorients a neuromast's axis of planar polarity. We propose that the global orientation of hair cells relative to the body axes is established through an interaction between directional movement by primordial cells and the timing of neuromast maturation.

  4. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  5. A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis

    NARCIS (Netherlands)

    Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; van den Hondel, C.A.M.J.J.; Ram, A.F.J.

    2008-01-01

    To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative

  6. A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis

    NARCIS (Netherlands)

    Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2008-01-01

    To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative a-glucan

  7. Proteomic analysis of cell lines to identify the irinotecan resistance ...

    Indian Academy of Sciences (India)

    MADHU

    was selected from the wild-type LoVo cell line by chronic exposure to irinotecan ... dose–effect curves of anticancer drugs were drawn on semilogarithm .... alcohol metabolites daunorubicinol (Forrest and Gonzalez. 2000; Mordente et al. ..... Chen L, Huang C and Wei Y 2007 Proteomic analysis of liver cancer cells treated ...

  8. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  9. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  10. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  11. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  12. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  13. Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer's disease cells

    Science.gov (United States)

    Wei, Fang; Li, Xiang; Cai, Meichun; Liu, Yanping; Jung, Peter; Shuai, Jianwei

    2017-06-01

    In neurons of patients with Alzheimer's disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer's disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.

  14. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  15. Isolation of αL I domain mutants mediating firm cell adhesion using a novel flow-based sorting method.

    Science.gov (United States)

    Pepper, Lauren R; Parthasarathy, Ranganath; Robbins, Gregory P; Dang, Nicholas N; Hammer, Daniel A; Boder, Eric T

    2013-08-01

    The inserted (I) domain of αLβ2 integrin (LFA-1) contains the entire binding site of the molecule. It mediates both rolling and firm adhesion of leukocytes at sites of inflammation depending on the activation state of the integrin. The affinity change of the entire integrin can be mimicked by the I domain alone through mutations that affect the conformation of the molecule. High-affinity mutants of the I domain have been discovered previously using both rational design and directed evolution. We have found that binding affinity fails to dictate the behavior of I domain adhesion under shear flow. In order to better understand I domain adhesion, we have developed a novel panning method to separate yeast expressing a library of I domain variants on the surface by adhesion under flow. Using conditions analogous to those experienced by cells interacting with the post-capillary vascular endothelium, we have identified mutations supporting firm adhesion that are not found using typical directed evolution techniques that select for tight binding to soluble ligands. Mutants isolated using this method do not cluster with those found by sorting with soluble ligand. Furthermore, these mutants mediate shear-driven cell rolling dynamics decorrelated from binding affinity, as previously observed for I domains bearing engineered disulfide bridges to stabilize activated conformational states. Characterization of these mutants supports a greater understanding of the structure-function relationship of the αL I domain, and of the relationship between applied force and bioadhesion in a broader context.

  16. Bifenthrin activates homotypic aggregation in human T-cell lines.

    Science.gov (United States)

    Hoffman, Nataly; Tran, Van; Daniyan, Anthony; Ojugbele, Olutosin; Pryor, Stephen C; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-03-01

    Here, we addressed the concern that, despite the lack of overt toxicity, exposure to low levels of the common household pyrethroid pesticide, bifenthrin, could cause harm to the immune system. To do this, we measure the effect of bifenthrin on phytohemagglutinin (PHA) activation of homotypic aggregation in human T-cell lines. The human CD4+ H9, and Jurkat cell lines and the human promonocyte U937 cell line, were exposed to varying concentrations of bifenthrin. Cell viability was determined using the AlmarBlue Toxicity Assay. Concentrations of bifenthrin which did not reduce cell viability were determined and these concentrations were tested for the effect of bifenthrin on PHA-mediated homotypic aggregation. Blocking antibodies to ICAM and LFA-1 were used to disrupt aggregation and a nonspecific IgG was used as a control. Bifenthrin was found to be nontoxic at concentrations ranging from 10(-4) to 10(-13) M. Bifenthrin did not inhibit PHA induced cell aggregation in all cell lines tested. However, at 10(-4) M, bifenthrin to form aggregates stimulated homotypic aggregation in the H9 and Jurkat T-cell lines. The bifenthrin-induced aggregate formation, like that seen with PHA, was blocked by treating the cells with antibodies to either LFA-1 or ICAM. The results here show that bifenthrin activates T-cell function by stimulating ICAM/LFA-1 mediated homotypic aggregation. This data suggests that exposure to bifenthrin, even at "acceptable" limits, can increase the risk for and frequency of inflammatory responses and diseases such as asthma.

  17. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  18. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/W(v) mutant mouse colon.

    Science.gov (United States)

    Tamada, Hiromi; Kiyama, Hiroshi

    2015-01-01

    Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.

  19. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  20. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  1. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  2. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  3. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status.

    Directory of Open Access Journals (Sweden)

    Simon Memmel

    Full Text Available Glioblastoma multiforme (GBM is characterized by rapid growth, invasion and resistance to chemo-/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM, the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN exhibited the lowest degree of membrane folding, probed by the area-specific capacitance C m = 1.9 µF/cm(2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19 showed the highest C m values of 3.7-4.0 µF/cm(2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the

  4. Nature of mutants induced by ionizing radiation in cultured hamster cells. II. Antigenic response and reverse mutation of HPRT-deficient mutants induced by. gamma. -rays or ethyl methanesulphonate

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R; Stretch, A; Thacker, J

    1986-04-01

    A large series of independent mutants deficient in HPRT enzyme activity, isolated from V79-4 hamster cells, were assessed for properties which reflect the nature of the genetic changes induced. A total of 88 mutants were screened, 43 isolated from ..gamma..-ray-treated cultures and 45 induced by ethyl methanesulphonate (EMS). Firstly, each mutant was assayed for the presence of protein with the antigenic response of HPRT. In a competitive inhibition assay, 31% of EMS-induced mutants were CRM-positive compared to 7% of the ..gamma..-ray series. Secondly, each mutant was tested for ability to revert to HPRT proficiency. All except 2 of the EMS-induced mutants reverted with ethyl nitrosourea ENU, and many reverted spontaneously, under the given conditions. However reversion was not detected in about 80% of ..gamma..-ray-induced mutants, suggesting that the types of forward mutation caused by ionizing radiation differ qualitatively from those caused by EMS. (Auth.). 30 refs.; 6 figs.; 2 tabs.

  5. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang, E-mail: wolfgang.marwan@ovgu.de

    2013-05-24

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  6. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    International Nuclear Information System (INIS)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang

    2013-01-01

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level

  7. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  8. Immortalization of human neural stem cells with the c-myc mutant T58A.

    Directory of Open Access Journals (Sweden)

    Lidia De Filippis

    Full Text Available Human neural stem cells (hNSC represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC. T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%. Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in

  9. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  10. Isolation and cross-sensitivity of X-ray-sensitive mutants of V79-4 hamster cells

    International Nuclear Information System (INIS)

    Jones, N.J.; Cox, R.; Thacker, J.

    1987-01-01

    The V79-4 Chinese hamster line was mutagenized and surviving clones screened for X-ray sensitivity using a replica microwell technique. One slightly sensitive clone and 3 clearly sensitive clones were isolated from approximately 5000 screened, and designated irs 1 to irs 4. The 3 more sensitive clones showed different responses to the genotoxic agents mitomycin C (MMC), ethyl methanesulphonate (EMS) and ultraviolet light (UV). irs 1 showed considerable sensitivity to all the agents tested, in the order MMC >> EMS > UV. irs 2 and irs 3 had similar sensitivities to EMS and to UV (EMS > UV) but irs 3 was more sensitive than irs 2 to MMC. None of these mutants is identical in phenotype to previously published mutants. (Auth.)

  11. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification.

    Science.gov (United States)

    Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung

    2004-03-15

    The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.

  12. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells.

    Directory of Open Access Journals (Sweden)

    Madalina Rujoi

    2010-09-01

    Full Text Available Niemann-Pick type C (NPC disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165.

  13. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Perryman, L.A.; Blair, J.M.; Kingsley, E.A.; Szymanska, B.; Ow, K.T.; Wen, V.W.; MacKenzie, K.L.; Vermeulen, P.B.; Jackson, P.; Russell, P.J.

    2006-01-01

    This study has investigated the impact of three specific dominant-negative p53 mutants (F134L, M237L, and R273H) on tumorigenesis by LNCaP prostate cancer cells. Mutant p53 proteins were associated with an increased subcutaneous 'take rate' in NOD-SCID mice, and increased production of PSA. Tumors expressing F134L and R273H grew slower than controls, and were associated with decreased necrosis and apoptosis, but not hypoxia. Interestingly, hypoxia levels were increased in tumors expressing M237L. There was less proliferation in F134L-bearing tumors compared to control, but this was not statistically significant. Angiogenesis was decreased in tumors expressing F134L and R273H compared with M237L, or controls. Conditioned medium from F134L tumors inhibited growth of normal human umbilical-vein endothelial cells but not telomerase-immortalized bone marrow endothelial cells. F134L tumor supernatants showed lower levels of VEGF and endostatin compared with supernatants from tumors expressing other mutants. Our results support the possibility that decreased angiogenesis might account for reduced growth rate of tumor cells expressing the F134L p53 mutation

  14. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  15. Topical grape seed proanthocyandin extract reduces sunburn cells and mutant p53 positive epidermal cell formation, and prevents depletion of Langerhans cells in an acute sunburn model.

    Science.gov (United States)

    Yuan, Xiao-Ying; Liu, Wei; Hao, Jian-Chun; Gu, Wei-Jie; Zhao, Yan-Shuang

    2012-01-01

    The purpose of this study was to investigate whether grape seed proanthocyanidin extract (GSPE) can provide photoprotection against ultraviolet (UV) irradiation. Study has shown that GSPE is a natural oxidant, and is used in many fields such as ischemia-reperfusion injury, chronic pancreatitis, and even cancer. However, the effect of GSPE on UV irradiation is as yet unknown. Cutaneous areas on the backs of normal volunteers were untreated or treated with GSPE solutions or vehicles 30 min before exposure to two minimal erythema doses (MED) of solar simulated radiation. Cutaneous areas at different sites were examined histologically for the number of sunburn cells, or immunohistochemically for Langerhans cells and mutant p53 epidermal cells. On histological and immunohistochemical examination, skin treated with GSPE before UV radiation showed fewer sunburn cells and mutant p53-positive epidermal cells and more Langerhans cells compared with skin treated with 2-MED UV radiation only (p<0.001, p<0.001, and p<0.01, respectively). GSPE may be a possible preventive agent for photoprotection.

  16. Tissue inhibitor of matrix metalloproteinase-1 suppresses apoptosis of mouse bone marrow stromal cell line MBA-1.

    Science.gov (United States)

    Guo, L-J; Luo, X-H; Xie, H; Zhou, H-D; Yuan, L-Q; Wang, M; Liao, E-Y

    2006-05-01

    We investigated the action of tissue inhibitor of metalloproteinase-1 (TIMP-1) on apoptosis and differentiation of mouse bone marrow stromal cell line MBA-1. TIMP-1 did not affect alkaline phosphatase (ALP) activity, suggesting that it is not involved in osteoblastic differentiation in MBA-1 cells. However, TIMP-1 inhibited MBA-1 apoptosis induced by serum deprivation in a dose-dependent manner. Our study also showed increased Bcl-2 protein expression and decreased Bax protein expression with TIMP-1 treatment. TIMP-1 decreased cytochrome c release and caspase-3 activation in MBA-1 cells. TIMP-1 activated phosphatidylinositol 3-kinase (PI3-kinase) and c-Jun N-terminal kinase (JNK), and the PI3-kinase inhibitor LY294002 or the JNK inhibitor SP600125 abolished its antiapoptotic activity. To investigate whether antiapoptotic action of TIMP-1 was mediated through its inhibition on MMP activities, we constructed mutant TIMP-1 by side-directed mutagenesis, which abolished the inhibitory activity of MMPs by deletion of Cys1 to Ala4. Wild-type TIMP-1 and mutant TIMP-1 expression plasmids were transfected in MBA-1 cells, and results showed that mutant TIMP-1 still protected the induced MBA-1 cell against apoptosis. These data suggest that TIMP-1 antiapoptotic actions are mediated via the PI3-kinase and JNK signaling pathways and independent of TIMP-1 inhibition of MMP activities.

  17. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    OpenAIRE

    Zhang Ping; Zhang Zhiyuan; Zhou Xiaojian; Qiu Weiliu; Chen Fangan; Chen Wantao

    2006-01-01

    Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differe...

  18. Antiproliferative activity of flavonoids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-05-01

    Twenty-seven Citrus flavonoids were examined for their antiproliferative activities against several tumor and normal human cell lines. As a result, 7 flavonoids were judged to be active against the tumor cell lines, while they had weak antiproliferative activity against the normal human cell lines. The rank order of potency was luteolin, natsudaidain, quercetin, tangeretin, eriodictyol, nobiletin, and 3,3',4',5,6,7,8-heptamethoxyflavone. The structure-activity relationship established from comparison among these flavones and flavanones showed that the ortho-catechol moiety in ring B and a C2-C3 double bond were important for the antiproliferative activity. As to polymethoxylated flavones, C-3 hydroxyl and C-8 methoxyl groups were essential for high activity.

  19. DNA double strand break repair in a radioresistant cell line

    International Nuclear Information System (INIS)

    Koval, T.M.; Kazmar, E.R.

    1987-01-01

    TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. The authors therefore measured the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with /sup 137/Cs γ rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy are similar for both cell lines. Approximately 80% of the DSB are rejoined in both lines by 1 hr postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 hr postirradiation, whereas 90% of the DSB are rejoined in the V79 cells by 2 hr postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for the V79 cells but remains constant for the TN-368 cells. These findings do not support the hypothesis that unrejoined DNA DSB represent the major lesion resulting in cell death

  20. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  1. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  2. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  3. Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Nagasawa, Hatsumi; Little, J.B.; Okayasu, Ryuichi; Iliakis, G.E.

    1995-01-01

    This investigation was designed to determine whether the cytotoxic effects of different restriction endonucleases are related to the number and type of DNA double-strand breaks (DSBs) they produce. Chinese hamster ovary (CHO) K1 and xrs-5 cells, a radiosensitive mutant of CHO K1, were exposed to restriction endonucleases HaeIII, HinfI, PvuII and BamHI by electroporation. These enzymes represent both blunt and sticky end cutters with differing recognition sequence lengths. The number of DSBs was measured by pulsed-field gel electrophoresis (PFGE). Two forms of PFGE were employed: asymmetric field-inversion gel electrophoresis (AFIGE) for measuring the kinetics of DNA breaks by enzyme digestion and clamped homogeneous gel electrophoresis (CHEF) for examining the size distributions of damaged DNA. The amount of DNA damage induced by exposure to all four restriction enzymes was significantly greater in xrs-5 compared to CHO K1 cells, consistent with the reported DSB repair deficiency in these cells. Since restriction endonucleases produce DSBs alone as opposed to the various types of DNA damage induced by X rays, these results confirm that the repair defect in this mutant involves the rejoining of DSBs. Although the cutting frequency was directly related to the length of the recognition sequence for four restriction enzymes, there was no simple correlation between the cytotoxic effect and the amount of DNA damage produced by each enzyme in either cell line. This finding suggests that the type or nature of the cutting sequence itself may play a role in restriction enzyme-induced cell killing. 32 refs., 6 figs., 3 tabs

  4. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo

    International Nuclear Information System (INIS)

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O 6 -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy

  5. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  6. Reduced host cell invasiveness and oxidative stress tolerance in double and triple csp gene family deletion mutants of Listeria monocytogenes.

    Science.gov (United States)

    Loepfe, Chantal; Raimann, Eveline; Stephan, Roger; Tasara, Taurai

    2010-07-01

    The cold shock protein (Csp) family comprises small, highly conserved proteins that bind nucleic acids to modulate various bacterial gene expressions. In addition to cold adaptation functions, this group of proteins is thought to facilitate various cellular processes to promote normal growth and stress adaptation responses. Three proteins making up the Listeria monocytogenes Csp family (CspA, CspB, and CspD) promote both cold and osmotic stress adaptation functions in this bacterium. The contribution of these three Csps in the host cell invasion processes of L. monocytogenes was investigated based on human Caco-2 and murine macrophage in vitro cell infection models. The DeltacspB, DeltacspD, DeltacspAB, DeltacspAD, DeltacspBD, and DeltacspABD strains were all significantly impaired in Caco-2 cell invasion compared with the wild-type strain, whereas in the murine macrophage infection assay only, the double (DeltacspBD) and triple (DeltacspABD) csp mutants were also significantly impaired in cell invasion compared with the wild-type strain. The DeltacspBD and DeltacspABD mutants displayed the most severely impaired invasion phenotypes. The invasion ability of these two mutant strains was also further analyzed using cold-stress-exposed organisms. In both cell infection models a significant reduction in invasiveness was observed after cold stress exposure of Listeria organisms. The negative impact of cold stress on subsequent cell invasion ability was, however, more severe in cold-sensitive csp mutants (DeltacspBD and DeltacspABD) compared with the wild type. The impaired macrophage invasion and intracellular growth of DeltacspBD and DeltacspABD also led us to examine oxidative stress resistance capacity in these two mutant strains. Both strains also displayed higher oxidative stress sensitivity relative to the wild-type strain. Our data indicate that besides cold and osmotic stress adaptation roles, Csp family proteins also promote efficient host cell invasion and

  7. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  8. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  9. Mouse DRG Cell Line with Properties of Nociceptors.

    Science.gov (United States)

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C; Grundy, David; Nassar, Mohammed A

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons.

  10. Effect of selected insecticides on SF9 insect cell line

    International Nuclear Information System (INIS)

    Saleh, M.; Rahmo, A.; Hajjar, J.

    2013-01-01

    The toxic effect of three insecticides: dimethoate (organophosphate insecticide), acetamiprid (neonicotinoid insecticide) and deltamethrin (pyrethroid insecticide) were evaluated in vitro on cultured Sf9 cell line. Cell growth inhibition was measured by the 3- (4,5- dimethylthiazol - 2-yl) - 2,5 - diphenyl tetrazolium bromide (MTT) assay. Regression Analysis was used to estimate the 20% inhibition of cells growth (IC 20). The IC 20 values obtained for deltamethrin, acetamipridand dimethoate were: 46.8, 61.6 and 68.9 μM, respectively. The proportion of phagocytic cells was positively correlated with the applied concentrations of the insecticides. (author)

  11. The antiproliferative effect of coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y

    2001-01-01

    Twenty-one coumarins were examined for their antiproliferative activity towards several cancer cell lines, namely lung carcinoma (A549), melanin pigment producing mouse melanoma (B16 melanoma 4A5), human T-cell leukemia (CCRF-HSB-2), and human gastric cancer, lymph node metastasized (TGBC11TKB). The structure-activity relationship established from the results revealed that the 6,7-dihydroxy moiety had an important role for their antiproliferative activity. Analysis of cell cycle distribution indicated that esculetin-treated cells accumulated in the G1 (at 400 microM) or in S phase (at 100 microM).

  12. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds.

    Science.gov (United States)

    Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina

    2017-12-01

    Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  14. Effect of Potent γ-Secretase Modulator in Human Neurons Derived From Multiple Presenilin 1–Induced Pluripotent Stem Cell Mutant Carriers

    Science.gov (United States)

    Liu, Qing; Waltz, Shannon; Woodruff, Grace; Ouyang, Joe; Israel, Mason A.; Herrera, Cheryl; Sarsoza, Floyd; Tanzi, Rudolph E.; Koo, Edward H.; Ringman, John M.; Goldstein, Lawrence S. B.; Wagner, Steven L.; Yuan, Shauna H.

    2015-01-01

    Importance Although considerable effort has been expended developing drug candidates for Alzheimer disease, none have yet succeeded owing to the lack of efficacy or to safety concerns. One potential shortcoming of current approaches to Alzheimer disease drug discovery and development is that they rely primarily on transformed cell lines and animal models that substantially overexpress wild-type or mutant proteins. It is possible that drug development failures thus far are caused in part by the limits of these approaches, which do not accurately reveal how drug candidates will behave in naive human neuronal cells. Objective To analyze purified neurons derived from human induced pluripotent stem cells from patients carrying 3 different presenilin 1 (PS1) mutations and nondemented control individuals in the absence of any overexpression. We tested the efficacy of γ-secretase inhibitor and γ-secretase modulator (GSM) in neurons derived from both normal control and 3 PS1 mutations (A246E, H163R, and M146L). Design, Setting, and Participants Adult human skin biopsies were obtained from volunteers at the Alzheimer Disease Research Center, University of California, San Diego. Cell cultures were treated with γ-secretase inhibitor or GSM. Comparisons of total β-amyloid (Aβ) and Aβ peptides 38, 40, and 42 in the media were made between vehicle- vs drug-treated cultures. Main Outcomes and Measures Soluble Aβ levels in the media were measured by enzyme-linked immunosorbent assay. Results As predicted, mutant PS1 neurons exhibited an elevated Aβ42:Aβ40 ratio (P <.05) at the basal state as compared with the nondemented control neurons. Treatment with a potent non–nonsteroidal anti-inflammatory druglike GSM revealed a new biomarker signature that differs from all previous cell types and animals tested. This new signature was the same in both the mutant and control neurons and consisted of a reduction in Aβ42, Aβ40, and Aβ38 and in the Aβ42:Aβ40 ratio, with no

  15. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  16. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  17. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats

    Directory of Open Access Journals (Sweden)

    Cui X

    2018-03-01

    Full Text Available Xiang Cui,1,2,* Kun Liu,1,* Dandan Xu,1,3 Youyou Zhang,1,4 Xun He,1 Hao Liu,1,5 Xinyan Gao,1 Bing Zhu1 1Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; 2College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China; 3Classic TCM Department, The Affiliated Hospital of Shandong University of TCM, Jinan, China; 4Acupuncture and Massage Department, Hangzhou Qihuang Traditional Chinese Medicine Clinic, Hangzhou, China; 5TCM and Rehabilitation Department, The Third Hospital of Ulanchap, Ulanchap, China *These authors contributed equally to this work Background: Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant–induced MC-deficient rats. Materials and methods: WsRC-Ws/Ws rats and their wild-type (WT littermates (WsRC-+/+ were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL, mechanical withdrawal threshold (MWT, and thermal withdrawal latency (TWL were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA] were applied randomly on different days. Results: Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats (P<0.001. For pain thresholds, MWL and MWT were higher in WsRC-Ws/Ws compared to WsRC-+/+ on bilateral paws (P<0.05, but TWL was not different between the two rats (P>0.05. Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline (P<0.01, P<0.001. In WsRC-Ws/Ws rats, only noxious stimuli could produce antinociceptive

  18. Establishment of clinically relevant radioresistant cell lines and their characteristics

    International Nuclear Information System (INIS)

    Fukumoto, Manabu; Kuwahara, Yoshikazu; Suzuki, Masatoshi

    2014-01-01

    Although radiotherapy is one of the major therapeutic modalities for eradicating malignant tumors, the existence of radioresistant cells remains one of the most critical obstacles. Standard radiotherapy consists of fractionated radiation (FR) of 2-Gy X-rays once a day, 5 days a week, over 60 Gy in total. To understand the characteristics of radioresistant cells and to develop more effective radiotherapy, we have established novel radioresistant cell lines by long-term (> 5 years) exposure to moderate doses of fractionated X-rays. While all the parental human cancer cells ceased, their radioresistant derivatives continue to proliferate with daily exposure to 2-Gy FR for more than 30 days. We have coined those cells as 'clinically relevant radioresistant' (CRR) cells. Transplanted tumors into nude mice were also CRR, indicating that CRR cell lines are powerful tools to improve cancer radiotherapy. We have shown that the suppression of autophagic cell death but not apoptosis was mainly involved in cellular radioresistance. An inhibitor of the mTOR pathway which enhances autophagy was effective to overcome CRR tumors induced in nude mice. But the underlined mechanism was not through the inhibition of autophagy. Guanine nucleotide-binding protein 1 (GBP1) over expression was necessary for maintaining the CRR phenotype, but radioresistant cells were not necessarily cancer stem cells (CSCs). Targeting GBP1 positive cancer cells may be a more efficient method in conquering cancer than targeting CSCs. Slight but significant radioresistance was acquired by 0.5 Gy/12 hrs of long-term FR exposures to parental cells for more than 31 days in accordance with cyclinD1 over expression. This acquired radioresistance (ARR) was stably maintained in the tumor cells even on 31 days after the cessation of 0.5-Gy FR. Present observations give a mechanistic insight for ARR of tumor cells through long-term FR exposure, and provide novel therapeutic targets for radiosensitization

  19. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines

    OpenAIRE

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2016-01-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However,...

  20. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  1. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  2. Monitoring cell line identity in collections of human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Raquel Sarafian

    2018-04-01

    Full Text Available The ability to reprogram somatic cells into induced pluripotent stem