WorldWideScience

Sample records for musculoskeletal modeling component

  1. A Computational Model of Torque Generation: Neural, Contractile, Metabolic and Musculoskeletal Components

    Science.gov (United States)

    Callahan, Damien M.; Umberger, Brian R.; Kent-Braun, Jane A.

    2013-01-01

    The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output. PMID:23405245

  2. Musculoskeletal Modelling and the Physiome Project

    NARCIS (Netherlands)

    Fernandez, Justin; Zhang, Ju; Shim, Vickie; Munro, Jacob T.; Sartori, Massimo; Besier, Thor; Lloyd, David G.; Nickerson, David P.; Hunter, Peter; Pivonka, Peter

    2018-01-01

    This chapter presents developments as part of the International Union of Physiological Sciences (IUPS) Physiome Project. Models are multiscale, multispatial and multiphysics, hence, suitable numerical tools and platforms have been developed to address these challenges for the musculoskeletal system.

  3. An entropy-assisted musculoskeletal shoulder model.

    Science.gov (United States)

    Xu, Xu; Lin, Jia-Hua; McGorry, Raymond W

    2017-04-01

    Optimization combined with a musculoskeletal shoulder model has been used to estimate mechanical loading of musculoskeletal elements around the shoulder. Traditionally, the objective function is to minimize the summation of the total activities of the muscles with forces, moments, and stability constraints. Such an objective function, however, tends to neglect the antagonist muscle co-contraction. In this study, an objective function including an entropy term is proposed to address muscle co-contractions. A musculoskeletal shoulder model is developed to apply the proposed objective function. To find the optimal weight for the entropy term, an experiment was conducted. In the experiment, participants generated various 3-D shoulder moments in six shoulder postures. The surface EMG of 8 shoulder muscles was measured and compared with the predicted muscle activities based on the proposed objective function using Bhattacharyya distance and concordance ratio under different weight of the entropy term. The results show that a small weight of the entropy term can improve the predictability of the model in terms of muscle activities. Such a result suggests that the concept of entropy could be helpful for further understanding the mechanism of muscle co-contractions as well as developing a shoulder biomechanical model with greater validity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Scaling of musculoskeletal models from static and dynamic trials

    DEFF Research Database (Denmark)

    Lund, Morten Enemark; Andersen, Michael Skipper; de Zee, Mark

    2015-01-01

    Subject-specific scaling of cadaver-based musculoskeletal models is important for accurate musculoskeletal analysis within multiple areas such as ergonomics, orthopaedics and occupational health. We present two procedures to scale ‘generic’ musculoskeletal models to match segment lengths and joint...... three scaling methods to an inverse dynamics-based musculoskeletal model and compared predicted knee joint contact forces to those measured with an instrumented prosthesis during gait. Additionally, a Monte Carlo study was used to investigate the sensitivity of the knee joint contact force to random...

  5. Establishing key components of yoga interventions for musculoskeletal conditions: a Delphi survey

    Science.gov (United States)

    2014-01-01

    Background Evidence suggests yoga is a safe and effective intervention for the management of physical and psychosocial symptoms associated with musculoskeletal conditions. However, heterogeneity in the components and reporting of clinical yoga trials impedes both the generalization of study results and the replication of study protocols. The aim of this Delphi survey was to address these issues of heterogeneity, by developing a list of recommendations of key components for the design and reporting of yoga interventions for musculoskeletal conditions. Methods Recognised experts involved in the design, conduct, and teaching of yoga for musculoskeletal conditions were identified from a systematic review, and invited to contribute to the Delphi survey. Forty-one of the 58 experts contacted, representing six countries, agreed to participate. A three-round Delphi was conducted via electronic surveys. Round 1 presented an open-ended question, allowing panellists to individually identify components they considered key to the design and reporting of yoga interventions for musculoskeletal conditions. Thematic analysis of Round 1 identified items for quantitative rating in Round 2; items not reaching consensus were forwarded to Round 3 for re-rating. Results Thirty-six panellists (36/41; 88%) completed the three rounds of the Delphi survey. Panellists provided 348 comments to the Round 1 question. These comments were reduced to 49 items, grouped under five themes, for rating in subsequent rounds. A priori group consensus of ≥80% was reached on 28 items related to five themes concerning defining the yoga intervention, types of yoga practices to include in an intervention, delivery of the yoga protocol, domains of outcome measures, and reporting of yoga interventions for musculoskeletal conditions. Additionally, a priori consensus of ≥50% was reached on five items relating to minimum values for intervention parameters. Conclusions Expert consensus has provided a non

  6. Predicting kinetics using musculoskeletal modeling and inertial motion capture

    NARCIS (Netherlands)

    Karatsidis, Angelos; Jung, Moonki; Schepers, H. Martin; Bellusci, Giovanni; de Zee, Mark; Veltink, Peter H.; Andersen, Michael Skipper

    2018-01-01

    Inverse dynamic analysis using musculoskeletal modeling is a powerful tool, which is utilized in a range of applications to estimate forces in ligaments, muscles, and joints, non-invasively. To date, the conventional input used in this analysis is derived from optical motion capture (OMC) and force

  7. A musculoskeletal foot model for clinical gait analysis.

    Science.gov (United States)

    Saraswat, Prabhav; Andersen, Michael S; Macwilliams, Bruce A

    2010-06-18

    Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion-extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6+/-1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns. Published by Elsevier Ltd.

  8. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Science.gov (United States)

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  9. Human Posture and Movement Prediction based on Musculoskeletal Modeling

    DEFF Research Database (Denmark)

    Farahani, Saeed Davoudabadi

    2014-01-01

    Abstract This thesis explores an optimization-based formulation, so-called inverse-inverse dynamics, for the prediction of human posture and motion dynamics performing various tasks. It is explained how this technique enables us to predict natural kinematic and kinetic patterns for human posture...... and motion using AnyBody Modeling System (AMS). AMS uses inverse dynamics to analyze musculoskeletal systems and is, therefore, limited by its dependency on input kinematics. We propose to alleviate this dependency by assuming that voluntary postures and movement strategies in humans are guided by a desire...... expenditure, joint forces and other physiological properties derived from the detailed musculoskeletal analysis. Several attempts have been made to uncover the principles underlying motion control strategies in the literature. In case of some movements, like human squat jumping, there is almost no doubt...

  10. Morphing patient-specific musculoskeletal models

    DEFF Research Database (Denmark)

    Rasmussen, John; Galibarov, Pavel E.; Al-Munajjed, Amir

    the resulting models do indeed represent the patients’ biomechanics. As a particularly challenging case, foot deformities based only on point sets recovered from surface scans are considered as shown in the figure. The preliminary results are promising for the cases of severe flat foot and metatarsalgia while...... other conditions may require CT or MRI data. The method and its theoretical assumptions, advantages and limitations are presented, and several examples will illustrate morphing to patient-specific models. [1] Carbes S; Tørholm S; Rasmussen, J. A Detailed Twenty-six Segments Kinematic Foot model...

  11. Design-validation of a hand exoskeleton using musculoskeletal modeling.

    Science.gov (United States)

    Hansen, Clint; Gosselin, Florian; Ben Mansour, Khalil; Devos, Pierre; Marin, Frederic

    2018-04-01

    Exoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users. This traditionally results in numerous prototypes which are progressively fitted to each individual person. In this paper, we propose instead to validate the design of a hand exoskeleton in a fully digital environment, without the need for a physical prototype. The purpose of this study is thus to examine whether finger kinematics are altered when using a given hand exoskeleton. Therefore, user specific musculoskeletal models were created and driven by a motion capture system to evaluate the fingers' joint kinematics when performing two industrial related tasks. The kinematic chain of the exoskeleton was added to the musculoskeletal models and its compliance with the hand movements was evaluated. Our results show that the proposed exoskeleton design does not influence fingers' joints angles, the coefficient of determination between the model with and without exoskeleton being consistently high (R 2 ¯=0.93) and the nRMSE consistently low (nRMSE¯ = 5.42°). These results are promising and this approach combining musculoskeletal and robotic modeling driven by motion capture data could be a key factor in the ergonomics validation of the design of orthotic devices and exoskeletons prior to manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.

    Science.gov (United States)

    Durandau, Guillaume; Farina, Dario; Sartori, Massimo

    2018-03-01

    Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.

  13. A Trap Motion in Validating Muscle Activity Prediction from Musculoskeletal Model using EMG

    NARCIS (Netherlands)

    Wibawa, A. D.; Verdonschot, N.; Halbertsma, J.P.K.; Burgerhof, J.G.M.; Diercks, R.L.; Verkerke, G. J.

    2016-01-01

    Musculoskeletal modeling nowadays is becoming the most common tool for studying and analyzing human motion. Besides its potential in predicting muscle activity and muscle force during active motion, musculoskeletal modeling can also calculate many important kinetic data that are difficult to measure

  14. Children, computer exposure and musculoskeletal outcomes: the development of pathway models for school and home computer-related musculoskeletal outcomes.

    Science.gov (United States)

    Harris, Courtenay; Straker, Leon; Pollock, Clare; Smith, Anne

    2015-01-01

    Children's computer use is rapidly growing, together with reports of related musculoskeletal outcomes. Models and theories of adult-related risk factors demonstrate multivariate risk factors associated with computer use. Children's use of computers is different from adult's computer use at work. This study developed and tested a child-specific model demonstrating multivariate relationships between musculoskeletal outcomes, computer exposure and child factors. Using pathway modelling, factors such as gender, age, television exposure, computer anxiety, sustained attention (flow), socio-economic status and somatic complaints (headache and stomach pain) were found to have effects on children's reports of musculoskeletal symptoms. The potential for children's computer exposure to follow a dose-response relationship was also evident. Developing a child-related model can assist in understanding risk factors for children's computer use and support the development of recommendations to encourage children to use this valuable resource in educational, recreational and communication environments in a safe and productive manner. Computer use is an important part of children's school and home life. Application of this developed model, that encapsulates related risk factors, enables practitioners, researchers, teachers and parents to develop strategies that assist young people to use information technology for school, home and leisure in a safe and productive manner.

  15. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components

    Directory of Open Access Journals (Sweden)

    Chisa Shukunami, DDS, PhD

    2016-11-01

    Full Text Available Tendons and ligaments are dense fibrous bands of connective tissue that integrate musculoskeletal components in vertebrates. Tendons connect skeletal muscles to the bone and function as mechanical force transmitters, whereas ligaments bind adjacent bones together to stabilize joints and restrict unwanted joint movement. Fibroblasts residing in tendons and ligaments are called tenocytes and ligamentocytes, respectively. Tenomodulin (Tnmd is a type II transmembrane glycoprotein that is expressed at high levels in tenocytes and ligamentocytes, and is also present in periodontal ligament cells and tendon stem/progenitor cells. Tnmd is related to chondromodulin-1 (Chm1, a cartilage-derived angiogenesis inhibitor, and both Tnmd and Chm1 are expressed in the CD31− avascular mesenchyme. The conserved C-terminal hydrophobic domain of these proteins, which is characterized by the eight Cys residues to form four disulfide bonds, may have an anti-angiogenic function. This review highlights the molecular characterization and function of Tnmd, a specific marker of tendons and ligaments.

  16. Developing a Model Component

    Science.gov (United States)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  17. Forces in the Shoulder Joint : On validation of musculoskeletal shoulder models

    NARCIS (Netherlands)

    Asadi Nikooyan, A.

    2011-01-01

    Detailed information about muscle forces in the human musculoskeletal system are highly demanded for several applications. Unfortunately, the measurement of muscle forces in-vivo is hardly possible. To date, musculoskeletal models are best alternative for the direct measurement of these forces. A

  18. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.

    Science.gov (United States)

    Kia, Mohammad; Stylianou, Antonis P; Guess, Trent M

    2014-03-01

    Knowledge of the forces acting on musculoskeletal joint tissues during movement benefits tissue engineering, artificial joint replacement, and our understanding of ligament and cartilage injury. Computational models can be used to predict these internal forces, but musculoskeletal models that simultaneously calculate muscle force and the resulting loading on joint structures are rare. This study used publicly available gait, skeletal geometry, and instrumented prosthetic knee loading data [1] to evaluate muscle driven forward dynamics simulations of walking. Inputs to the simulation were measured kinematics and outputs included muscle, ground reaction, ligament, and joint contact forces. A full body musculoskeletal model with subject specific lower extremity geometries was developed in the multibody framework. A compliant contact was defined between the prosthetic femoral component and tibia insert geometries. Ligament structures were modeled with a nonlinear force-strain relationship. The model included 45 muscles on the right lower leg. During forward dynamics simulations a feedback control scheme calculated muscle forces using the error signal between the current muscle lengths and the lengths recorded during inverse kinematics simulations. Predicted tibio-femoral contact force, ground reaction forces, and muscle forces were compared to experimental measurements for six different gait trials using three different gait types (normal, trunk sway, and medial thrust). The mean average deviation (MAD) and root mean square deviation (RMSD) over one gait cycle are reported. The muscle driven forward dynamics simulations were computationally efficient and consistently reproduced the inverse kinematics motion. The forward simulations also predicted total knee contact forces (166Nphysiological motor control patterns during gait. Consequently, the simulations did not accurately predict medial/lateral tibio-femoral force distribution and muscle activation timing. Copyright

  19. Three-body segment musculoskeletal model of the upper limb

    Directory of Open Access Journals (Sweden)

    Valdmanová L.

    2013-06-01

    Full Text Available The main aim is to create a computational three-body segment model of an upper limb of a human body for determination of muscle forces generated to keep a given loaded upper limb position. The model consists of three segments representing arm, forearm, hand and of all major muscles connected to the segments. Muscle origins and insertions determination corresponds to a real anatomy. Muscle behaviour is defined according to the Hill-type muscle model consisting of contractile and viscoelastic element. The upper limb is presented by a system of three rigid bars connected by rotational joints. The whole limb is fixed to the frame in the shoulder joint. A static balance problem is solved by principle of virtual work. The system of equation describing the musculoskeletal system is overdetermined because more muscles than necessary contribute to get the concrete upper limb position. Hence the mathematical problem is solved by an optimization method searching the least energetically-consuming solution. The upper limb computational model is verified by electromyography of the biceps brachii muscle.

  20. Evaluation of a Musculoskeletal Model with Prosthetic Knee through Six Experimental Gait Trials

    OpenAIRE

    Kia, Mohammad; Stylianou, Antonis P.; Guess, Trent M.

    2014-01-01

    Knowledge of the forces acting on musculoskeletal joint tissues during movement benefits tissue engineering, artificial joint replacement, and our understanding of ligament and cartilage injury. Computational models can be used to predict these internal forces, but musculoskeletal models that simultaneously calculate muscle force and the resulting loading on joint structures are rare. This study used publicly available gait, skeletal geometry, and instrumented prosthetic knee loading data [1]...

  1. Investigation on musculoskeletal discomfort and ergonomics risk factors among production team members at an automotive component assembly plant

    Science.gov (United States)

    Aziz, Fazilah Abdul; Ghazalli, Zakri; Zuki Mohamed, Nik Mohd; Isfar, Amri

    2017-10-01

    Musculoskeletal discomfort (MSD) is very common condition in automotive industry. MSD is affecting the worker’s health, well-being and lower down the productivity. Therefore, the main objective of this study was to identify the prevalence of MSD and ergonomics risk factors among the production team members at a selected automotive component manufacturer in Malaysia. MSD data were collected by conducting structure interview with all participants by referring to the Cornell Musculoskeletal Disorder Questionnaire (CMDQ). Those production team members who achieved a total discomfort score for all body regions more than 100 was selected for job task assessment. The physical exposure risk factors of work related musculoskeletal disorders (WMSD) has evaluated by using Quick Exposure Check (QEC) techniques. The results of the study identified the severe MSD associated with production assembly team members. It is expected that the prevalence of MSD for those production assembly team members was lower back (75.4%), upper back (63.2%), right shoulder (61.4%), and right wrist (60%). The QEC analysis discovered that about 70% of job tasks had very high risks for neck posture and 60% had high risks for the back (in moving condition) and shoulder/arm postures. There were 80% of respondents have produced a high score for exposure risk to vibration. As a conclusion, the main implication of the current study is that special attention should be paid to the physical and psychosocial aspects in production team members with musculoskeletal discomfort to improve their safety, health, and well-being, maintain work ability and productivity.

  2. Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling

    Science.gov (United States)

    Zhang, J.; Heidlauf, T.; Sartori, M.; Besier, T.; Röhrle, O.; Lloyd, D.

    2016-01-01

    This paper proposes methods and technologies that advance the state of the art for modelling the musculoskeletal system across the spatial and temporal scales; and storing these using efficient ontologies and tools. We present population-based modelling as an efficient method to rapidly generate individual morphology from only a few measurements and to learn from the ever-increasing supply of imaging data available. We present multiscale methods for continuum muscle and bone models; and efficient mechanostatistical methods, both continuum and particle-based, to bridge the scales. Finally, we examine both the importance that muscles play in bone remodelling stimuli and the latest muscle force prediction methods that use electromyography-assisted modelling techniques to compute musculoskeletal forces that best reflect the underlying neuromuscular activity. Our proposal is that, in order to have a clinically relevant virtual physiological human, (i) bone and muscle mechanics must be considered together; (ii) models should be trained on population data to permit rapid generation and use underlying principal modes that describe both muscle patterns and morphology; and (iii) these tools need to be available in an open-source repository so that the scientific community may use, personalize and contribute to the database of models. PMID:27051510

  3. Musculoskeletal Model Development of the Elbow Joint with an Experimental Evaluation

    Directory of Open Access Journals (Sweden)

    Munsur Rahman

    2018-04-01

    Full Text Available A dynamic musculoskeletal model of the elbow joint in which muscle, ligament, and articular surface contact forces are predicted concurrently would be an ideal tool for patient-specific preoperative planning, computer-aided surgery, and rehabilitation. Existing musculoskeletal elbow joint models have limited clinical applicability because of idealizing the elbow as a mechanical hinge joint or ignoring important soft tissue (e.g., cartilage contributions. The purpose of this study was to develop a subject-specific anatomically correct musculoskeletal elbow joint model and evaluate it based on experimental kinematics and muscle electromyography measurements. The model included three-dimensional bone geometries, a joint constrained by multiple ligament bundles, deformable contacts, and the natural oblique wrapping of ligaments. The musculoskeletal model predicted the bone kinematics reasonably accurately in three different velocity conditions. The model predicted timing and number of muscle excitations, and the normalized muscle forces were also in agreement with the experiment. The model was able to predict important in vivo parameters that are not possible to measure experimentally, such as muscle and ligament forces, and cartilage contact pressure. In addition, the developed musculoskeletal model was computationally efficient for body-level dynamic simulation. The maximum computation time was less than 30 min for our 35 s simulation. As a predictive clinical tool, the potential medical applications for this model and modeling approach are significant.

  4. Musculoskeletal Simulation Model Generation from MRI Data Sets and Motion Capture Data

    Science.gov (United States)

    Schmid, Jérôme; Sandholm, Anders; Chung, François; Thalmann, Daniel; Delingette, Hervé; Magnenat-Thalmann, Nadia

    Today computer models and computer simulations of the musculoskeletal system are widely used to study the mechanisms behind human gait and its disorders. The common way of creating musculoskeletal models is to use a generic musculoskeletal model based on data derived from anatomical and biomechanical studies of cadaverous specimens. To adapt this generic model to a specific subject, the usual approach is to scale it. This scaling has been reported to introduce several errors because it does not always account for subject-specific anatomical differences. As a result, a novel semi-automatic workflow is proposed that creates subject-specific musculoskeletal models from magnetic resonance imaging (MRI) data sets and motion capture data. Based on subject-specific medical data and a model-based automatic segmentation approach, an accurate modeling of the anatomy can be produced while avoiding the scaling operation. This anatomical model coupled with motion capture data, joint kinematics information, and muscle-tendon actuators is finally used to create a subject-specific musculoskeletal model.

  5. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.

    Science.gov (United States)

    Valente, Giordano; Crimi, Gianluigi; Vanella, Nicola; Schileo, Enrico; Taddei, Fulvia

    2017-12-01

    Musculoskeletal modeling and simulations of movement have been increasingly used in orthopedic and neurological scenarios, with increased attention to subject-specific applications. In general, musculoskeletal modeling applications have been facilitated by the development of dedicated software tools; however, subject-specific studies have been limited also by time-consuming modeling workflows and high skilled expertise required. In addition, no reference tools exist to standardize the process of musculoskeletal model creation and make it more efficient. Here we present a freely available software application, nmsBuilder 2.0, to create musculoskeletal models in the file format of OpenSim, a widely-used open-source platform for musculoskeletal modeling and simulation. nmsBuilder 2.0 is the result of a major refactoring of a previous implementation that moved a first step toward an efficient workflow for subject-specific model creation. nmsBuilder includes a graphical user interface that provides access to all functionalities, based on a framework for computer-aided medicine written in C++. The operations implemented can be used in a workflow to create OpenSim musculoskeletal models from 3D surfaces. A first step includes data processing to create supporting objects necessary to create models, e.g. surfaces, anatomical landmarks, reference systems; and a second step includes the creation of OpenSim objects, e.g. bodies, joints, muscles, and the corresponding model. We present a case study using nmsBuilder 2.0: the creation of an MRI-based musculoskeletal model of the lower limb. The model included four rigid bodies, five degrees of freedom and 43 musculotendon actuators, and was created from 3D surfaces of the segmented images of a healthy subject through the modeling workflow implemented in the software application. We have presented nmsBuilder 2.0 for the creation of musculoskeletal OpenSim models from image-based data, and made it freely available via nmsbuilder

  6. Work-related musculoskeletal disorders (WMDs) risk assessment at core assembly production of electronic components manufacturing company

    Science.gov (United States)

    Yahya, N. M.; Zahid, M. N. O.

    2018-03-01

    This study conducted to assess the work-related musculoskeletal disorders (WMDs) among the workers at core assembly production in an electronic components manufacturing company located in Pekan, Pahang, Malaysia. The study is to identify the WMDs risk factor and risk level. A set of questionnaires survey based on modified Nordic Musculoskeletal Disorder Questionnaires have been distributed to respective workers to acquire the WMDs risk factor identification. Then, postural analysis was conducted in order to measure the respective WMDs risk level. The analysis were based on two ergonomics assessment tools; Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). The study found that 30 respondents out of 36 respondents suffered from WMDs especially at shoulder, wrists and lower back. The WMDs risk have been identified from unloading process, pressing process and winding process. In term of the WMDs risk level, REBA and RULA assessment tools have indicated high risk level to unloading and pressing process. Thus, this study had established the WMDs risk factor and risk level of core assembly production in an electronic components manufacturing company at Malaysia environment.

  7. Estimating Co-Contraction Activation of Trunk Muscles Using a Novel Musculoskeletal Model for Pregnant Women

    Directory of Open Access Journals (Sweden)

    Saori Morino

    2017-10-01

    Full Text Available Weight gain and stretched abdominal muscles from an enlarged gravid uterus are remarkable features during pregnancy. These changes elicit postural instability and place strain on body segments, contributing to lower back pain. In general, the agonist and antagonist muscles act simultaneously to increase joint stabilization; however, this can cause additional muscle stress during movement. Furthermore, this activation can be observed in pregnant women because of their unstable body joints. Hence, physical modalities based on assessments of muscle activation are useful for managing low back pain during pregnancy. Musculoskeletal models are common when investigating muscle load. However, it is difficult to apply such models to pregnant women and estimate the co-contraction of muscles using musculoskeletal models. Therefore, the purpose of this study is to construct a musculoskeletal model for pregnant women that estimates the co-contraction of trunk muscles. First, motion analysis was conducted on a pregnant woman and the muscle activations of the rectus abdominis and erector spinae were measured. Then, the musculoskeletal model was specifically modified for pregnant women. Finally, the co-contraction was estimated from the results of the musculoskeletal model and electromyography data using a genetic algorithm. With the proposed methods, weakened abdominal muscle torque and the co-contraction activation of trunk muscles were estimated successfully.

  8. "What if": The use of biomechanical models for understanding and treating upper extremity musculoskeletal disorders

    NARCIS (Netherlands)

    Veeger, H.E.J.

    2011-01-01

    To aid understanding of the working of the upper extremity, several musculoskeletal models of the shoulder and arm have been developed. These models comprise the full shoulder girdle, which implies that the thoracohumeral link is formed by a scapular and clavicular segment. These models are based

  9. Analysis of isometric cervical strength with a nonlinear musculoskeletal model with 48 degrees of freedom

    NARCIS (Netherlands)

    De Bruijn, E.; Van der Helm, F.C.T.; Happee, R.

    2015-01-01

    Background: Musculoskeletal models served to analyze head–neck motion and injury during automotive impact. Although muscle activation is known to affect the kinematic response, a model with properly validated muscle contributions does not exist to date. The goal of this study was to enhance a

  10. Component Reification in Systems Modelling

    DEFF Research Database (Denmark)

    Bendisposto, Jens; Hallerstede, Stefan

    When modelling concurrent or distributed systems in Event-B, we often obtain models where the structure of the connected components is specified by constants. Their behaviour is specified by the non-deterministic choice of event parameters for events that operate on shared variables. From a certain......? These components may still refer to shared variables. Events of these components should not refer to the constants specifying the structure. The non-deterministic choice between these components should not be via parameters. We say the components are reified. We need to address how the reified components get...... reflected into the original model. This reflection should indicate the constraints on how to connect the components....

  11. Supporting the Evaluation and Implementation of Musculoskeletal Models of Care: A Globally Informed Framework for Judging Readiness and Success.

    Science.gov (United States)

    Briggs, Andrew M; Jordan, Joanne E; Jennings, Matthew; Speerin, Robyn; Bragge, Peter; Chua, Jason; Woolf, Anthony D; Slater, Helen

    2017-04-01

    To develop a globally informed framework to evaluate readiness for implementation and success after implementation of musculoskeletal models of care (MOCs). Three phases were undertaken: 1) a qualitative study with 27 Australian subject matter experts (SMEs) to develop a draft framework; 2) an eDelphi study with an international panel of 93 SMEs across 30 nations to evaluate face validity, and refine and establish consensus on the framework components; and 3) translation of the framework into a user-focused resource and evaluation of its acceptability with the eDelphi panel. A comprehensive evaluation framework was developed for judging the readiness and success of musculoskeletal MOCs. The framework consists of 9 domains, with each domain containing a number of themes underpinned by detailed elements. In the first Delphi round, scores of "partly agree" or "completely agree" with the draft framework ranged 96.7%-100%. In the second round, "essential" scores ranged 58.6%-98.9%, resulting in 14 of 34 themes being classified as essential. SMEs strongly agreed or agreed that the final framework was useful (98.8%), usable (95.1%), credible (100%) and appealing (93.9%). Overall, 96.3% strongly supported or supported the final structure of the framework as it was presented, while 100%, 96.3%, and 100% strongly supported or supported the content within the readiness, initiating implementation, and success streams, respectively. An empirically derived framework to evaluate the readiness and success of musculoskeletal MOCs was strongly supported by an international panel of SMEs. The framework provides an important internationally applicable benchmark for the development, implementation, and evaluation of musculoskeletal MOCs. © 2016, American College of Rheumatology.

  12. Component Composition Using Feature Models

    DEFF Research Database (Denmark)

    Eichberg, Michael; Klose, Karl; Mitschke, Ralf

    2010-01-01

    interface description languages. If this variability is relevant when selecting a matching component then human interaction is required to decide which components can be bound. We propose to use feature models for making this variability explicit and (re-)enabling automatic component binding. In our...... approach, feature models are one part of service specifications. This enables to declaratively specify which service variant is provided by a component. By referring to a service's variation points, a component that requires a specific service can list the requirements on the desired variant. Using...... these specifications, a component environment can then determine if a binding of the components exists that satisfies all requirements. The prototypical environment Columbus demonstrates the feasibility of the approach....

  13. On the use of musculoskeletal models to interpret motor control strategies from performance data

    Science.gov (United States)

    Cheng, Ernest J.; Loeb, Gerald E.

    2008-06-01

    The intrinsic viscoelastic properties of muscle are central to many theories of motor control. Much of the debate over these theories hinges on varying interpretations of these muscle properties. In the present study, we describe methods whereby a comprehensive musculoskeletal model can be used to make inferences about motor control strategies that would account for behavioral data. Muscle activity and kinematic data from a monkey were recorded while the animal performed a single degree-of-freedom pointing task in the presence of pseudo-random torque perturbations. The monkey's movements were simulated by a musculoskeletal model with accurate representations of musculotendon morphometry and contractile properties. The model was used to quantify the impedance of the limb while moving rapidly, the differential action of synergistic muscles, the relative contribution of reflexes to task performance and the completeness of recorded EMG signals. Current methods to address these issues in the absence of musculoskeletal models were compared with the methods used in the present study. We conclude that musculoskeletal models and kinetic analysis can improve the interpretation of kinematic and electrophysiological data, in some cases by illuminating shortcomings of the experimental methods or underlying assumptions that may otherwise escape notice.

  14. MATHEMATICAL MODEL OF AUTOMATED REHABILITATION SYSTEM WITH BIOLOGICAL FEEDBACK FOR REHABILITATION AND DEVELOPMENT OF MUSCULOSKELETAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Kirill A. Kalyashin

    2013-01-01

    Full Text Available In order to increase the efficiency and safety of rehabilitation of musculoskeletal system, the model and the algorithm for patient interaction with automated rehabilitation system with biological feedback was developed, based on registration and management of the second functional parameter, which prevents risks of overwork while intensive exercises.

  15. Sensitivity of subject-specific models to errors in musculo-skeletal geometry

    NARCIS (Netherlands)

    Carbone, V.; van der Krogt, M.M.; Koopman, H.F.J.M.; Verdonschot, N.

    2012-01-01

    Subject-specific musculo-skeletal models of the lower extremity are an important tool for investigating various biomechanical problems, for instance the results of surgery such as joint replacements and tendon transfers. The aim of this study was to assess the potential effects of errors in

  16. Closed-loop EMG-informed model-based analysis of human musculoskeletal mechanics on rough terrains

    NARCIS (Netherlands)

    Varotto, C.; Sawacha, Z.; Gizzi, L; Farina, D.; Sartori, M.

    2017-01-01

    This work aims at estimating the musculoskeletal forces acting in the human lower extremity during locomotion on rough terrains. We employ computational models of the human neuro-musculoskeletal system that are informed by multi-modal movement data including foot-ground reaction forces, 3D marker

  17. A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine

    International Nuclear Information System (INIS)

    Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum; Jung Moon Ki

    2016-01-01

    The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.

  18. A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Cheol; Ta, Duc manh; Koo, Seung Bum [Chung-Ang University, Seoul (Korea, Republic of); Jung Moon Ki [AnyBody Technology A/S, Aalborg (Denmark)

    2016-06-15

    The objective of this study was to develop a musculoskeletal spine model that allows relative movements in the thoracic spine for calculation of intra-discal forces in the lumbar and thoracic spine. The thoracic part of the spine model was composed of vertebrae and ribs connected with mechanical joints similar to anatomical joints. Three different muscle groups around the thoracic spine were inserted, along with eight muscle groups around the lumbar spine in the original model from AnyBody. The model was tested using joint kinematics data obtained from two normal subjects during spine flexion and extension, axial rotation and lateral bending motions beginning from a standing posture. Intra-discal forces between spine segments were calculated in a musculoskeletal simulation. The force at the L4-L5 joint was chosen to validate the model's prediction against the lumbar model in the original AnyBody model, which was previously validated against clinical data.

  19. Robotic assessment of neuromuscular characteristics using musculoskeletal models: A pilot study.

    Science.gov (United States)

    Jayaneththi, V R; Viloria, J; Wiedemann, L G; Jarrett, C; McDaid, A J

    2017-07-01

    Non-invasive neuromuscular characterization aims to provide greater insight into the effectiveness of existing and emerging rehabilitation therapies by quantifying neuromuscular characteristics relating to force production, muscle viscoelasticity and voluntary neural activation. In this paper, we propose a novel approach to evaluate neuromuscular characteristics, such as muscle fiber stiffness and viscosity, by combining robotic and HD-sEMG measurements with computational musculoskeletal modeling. This pilot study investigates the efficacy of this approach on a healthy population and provides new insight on potential limitations of conventional musculoskeletal models for this application. Subject-specific neuromuscular characteristics of the biceps and triceps brachii were evaluated using robot-measured kinetics, kinematics and EMG activity as inputs to a musculoskeletal model. Repeatability experiments in five participants revealed large variability within each subjects evaluated characteristics, with almost all experiencing variation greater than 50% of full scale when repeating the same task. The use of robotics and HD-sEMG, in conjunction with musculoskeletal modeling, to quantify neuromuscular characteristics has been explored. Despite the ability to predict joint kinematics with relatively high accuracy, parameter characterization was inconsistent i.e. many parameter combinations gave rise to minimal kinematic error. The proposed technique is a novel approach for in vivo neuromuscular characterization and is a step towards the realization of objective in-home robot-assisted rehabilitation. Importantly, the results have confirmed the technical (robot and HD-sEMG) feasibility while highlighting the need to develop new musculoskeletal models and optimization techniques capable of achieving consistent results across a range of dynamic tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Development and evaluation of a musculoskeletal model of the elbow joint complex

    Science.gov (United States)

    Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.

    1993-01-01

    This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.

  1. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    Science.gov (United States)

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  2. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?

    Directory of Open Access Journals (Sweden)

    Giordano Valente

    Full Text Available Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312 across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force

  3. Twente spine model : A complete and coherent dataset for musculo-skeletal modeling of the thoracic and cervical regions of the human spine

    NARCIS (Netherlands)

    Bayoglu, Riza; Geeraedts, Leo; Groenen, Karlijn H.J.; Verdonschot, Nico; Koopman, Bart; Homminga, Jasper

    2017-01-01

    Musculo-skeletal modeling could play a key role in advancing our understanding of the healthy and pathological spine, but the credibility of such models are strictly dependent on the accuracy of the anatomical data incorporated. In this study, we present a complete and coherent musculo-skeletal

  4. Simulating an elastic bipedal robot based on musculoskeletal modeling

    NARCIS (Netherlands)

    Bortoletto, Roberto; Sartori, Massimo; He, Fuben; Pagello, Enrico

    2012-01-01

    Many of the processes involved into the synthesis of human motion have much in common with problems found in robotics research. This paper describes the modeling and the simulation of a novel bipedal robot based on series elastic actuators [1]. The robot model takes in- spiration from the human

  5. Geometry parameters for musculoskeletal modelling of the shoulder system

    NARCIS (Netherlands)

    Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H

    A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of

  6. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    Science.gov (United States)

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  7. Sensitivity of subject-specific models to errors in musculo-skeletal geometry.

    Science.gov (United States)

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2012-09-21

    Subject-specific musculo-skeletal models of the lower extremity are an important tool for investigating various biomechanical problems, for instance the results of surgery such as joint replacements and tendon transfers. The aim of this study was to assess the potential effects of errors in musculo-skeletal geometry on subject-specific model results. We performed an extensive sensitivity analysis to quantify the effect of the perturbation of origin, insertion and via points of each of the 56 musculo-tendon parts contained in the model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by only the perturbed musculo-tendon parts and by all the remaining musculo-tendon parts, respectively, during a simulated gait cycle. Results indicated that, for each musculo-tendon part, only two points show a significant sensitivity: its origin, or pseudo-origin, point and its insertion, or pseudo-insertion, point. The most sensitive points belong to those musculo-tendon parts that act as prime movers in the walking movement (insertion point of the Achilles Tendon: LSI=15.56%, OSI=7.17%; origin points of the Rectus Femoris: LSI=13.89%, OSI=2.44%) and as hip stabilizers (insertion points of the Gluteus Medius Anterior: LSI=17.92%, OSI=2.79%; insertion point of the Gluteus Minimus: LSI=21.71%, OSI=2.41%). The proposed priority list provides quantitative information to improve the predictive accuracy of subject-specific musculo-skeletal models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task

    Science.gov (United States)

    Crouch, Dustin L.; (Helen Huang, He

    2017-06-01

    Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r  =  0.25, p  bodied subjects in 8 of 10 trials. For able-bodied subjects, tracing accuracy was lower at the extremes of the model’s range of motion, though there was no apparent relationship between tracing accuracy and fingertip location for the amputee. Our result suggests that, unlike able-bodied subjects, the amputee’s motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.

  9. Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models

    Directory of Open Access Journals (Sweden)

    Michael Plüss

    2018-01-01

    Full Text Available Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM. The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations.

  10. Psychosocial factors, musculoskeletal disorders and work-related fatigue amongst nurses in Brunei: structural equation model approach.

    Science.gov (United States)

    Abdul Rahman, Hanif; Abdul-Mumin, Khadizah; Naing, Lin

    2017-09-01

    Psychosocial factors, musculoskeletal disorders and work-related fatigue have adverse effects on individual nurses and place a substantial financial burden on health care. Evidence of an association has been reported in the literature, but no theoretical explanation has been published to date. To explore and develop a structural model to provide a theoretical explanation for this relationship. A cross-sectional study using data from 201 valid samples of emergency and critical care nurses across public hospitals in Brunei was performed via self-administered questionnaire. The structural equation model was assessed using partial least squares analysis. A valid and robust structural model was constructed. This revealed that 61.5% of the variance in chronic fatigue could be explained by psychosocial factors and musculoskeletal disorders pathways. Among the psychosocial factors, work-family conflict was identified as a key mediator for progression of musculoskeletal problems and subsequent fatigue through stress and burnout. This report provides a novel theoretical contribution to understanding the relationship between psychosocial factors, musculoskeletal disorders and work-related fatigue. These preliminary results may be useful for future studies on the development of work-related fatigue and musculoskeletal disorders, particularly the central role of work-family conflict. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine.

    Science.gov (United States)

    Actis, Jason A; Honegger, Jasmin D; Gates, Deanna H; Petrella, Anthony J; Nolasco, Luis A; Silverman, Anne K

    2018-02-08

    Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Lumbar spinal loading during bowling in cricket: a kinetic analysis using a musculoskeletal modelling approach.

    Science.gov (United States)

    Zhang, Yanxin; Ma, Ye; Liu, Guangyu

    2016-01-01

    The objective of the study was to evaluate two types of cricket bowling techniques by comparing the lumbar spinal loading using a musculoskeletal modelling approach. Three-dimensional kinematic data were recorded by a Vicon motion capture system under two cricket bowling conditions: (1) participants bowled at their absolute maximal speeds (max condition), and (2) participants bowled at their absolute maximal speeds while simultaneously forcing their navel down towards their thighs starting just prior to ball release (max-trunk condition). A three-dimensional musculoskeletal model comprised of the pelvis, sacrum, lumbar vertebrae and torso segments, which enabled the motion of the individual lumbar vertebrae in the sagittal, frontal and coronal planes to be actuated by 210 muscle-tendon units, was used to simulate spinal loading based on the recorded kinematic data. The maximal lumbar spine compressive force is 4.89 ± 0.88BW for the max condition and 4.58 ± 0.54BW for the max-trunk condition. Results showed that there was no significant difference between the two techniques in trunk moments and lumbar spine forces. This indicates that the max-trunk technique may not increase lower back injury risks. The method proposed in this study could be served as a tool to evaluate lower back injury risks for cricket bowling as well as other throwing activities.

  13. Biomechanical Evaluation of an Electric Power-Assisted Bicycle by a Musculoskeletal Model

    Science.gov (United States)

    Takehara, Shoichiro; Murakami, Musashi; Hase, Kazunori

    In this study, we construct an evaluation system for the muscular activity of the lower limbs when a human pedals an electric power-assisted bicycle. The evaluation system is composed of an electric power-assisted bicycle, a numerical simulator and a motion capture system. The electric power-assisted bicycle in this study has a pedal with an attached force sensor. The numerical simulator for pedaling motion is a musculoskeletal model of a human. The motion capture system measures the joint angles of the lower limb. We examine the influence of the electric power-assisted force on each muscle of the human trunk and legs. First, an experiment of pedaling motion is performed. Then, the musculoskeletal model is calculated by using the experimental data. We discuss the influence on each muscle by electric power-assist. It is found that the muscular activity is decreased by the electric power-assist bicycle, and the reduction of the muscular force required for pedaling motion was quantitatively shown for every muscle.

  14. Cervical Spine Injuries: A Whole-Body Musculoskeletal Model for the Analysis of Spinal Loading.

    Directory of Open Access Journals (Sweden)

    Dario Cazzola

    Full Text Available Cervical spine trauma from sport or traffic collisions can have devastating consequences for individuals and a high societal cost. The precise mechanisms of such injuries are still unknown as investigation is hampered by the difficulty in experimentally replicating the conditions under which these injuries occur. We harness the benefits of computer simulation to report on the creation and validation of i a generic musculoskeletal model (MASI for the analyses of cervical spine loading in healthy subjects, and ii a population-specific version of the model (Rugby Model, for investigating cervical spine injury mechanisms during rugby activities. The musculoskeletal models were created in OpenSim, and validated against in vivo data of a healthy subject and a rugby player performing neck and upper limb movements. The novel aspects of the Rugby Model comprise i population-specific inertial properties and muscle parameters representing rugby forward players, and ii a custom scapula-clavicular joint that allows the application of multiple external loads. We confirm the utility of the developed generic and population-specific models via verification steps and validation of kinematics, joint moments and neuromuscular activations during rugby scrummaging and neck functional movements, which achieve results comparable with in vivo and in vitro data. The Rugby Model was validated and used for the first time to provide insight into anatomical loading and cervical spine injury mechanisms related to rugby, whilst the MASI introduces a new computational tool to allow investigation of spinal injuries arising from other sporting activities, transport, and ergonomic applications. The models used in this study are freely available at simtk.org and allow to integrate in silico analyses with experimental approaches in injury prevention.

  15. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.

    Science.gov (United States)

    Martelli, Saulo; Valente, Giordano; Viceconti, Marco; Taddei, Fulvia

    2015-01-01

    Subject-specific musculoskeletal models have become key tools in the clinical decision-making process. However, the sensitivity of the calculated solution to the unavoidable errors committed while deriving the model parameters from the available information is not fully understood. The aim of this study was to calculate the sensitivity of all the kinematics and kinetics variables to the inter-examiner uncertainty in the identification of the lower limb joint models. The study was based on the computer tomography of the entire lower-limb from a single donor and the motion capture from a body-matched volunteer. The hip, the knee and the ankle joint models were defined following the International Society of Biomechanics recommendations. Using a software interface, five expert anatomists identified on the donor's images the necessary bony locations five times with a three-day time interval. A detailed subject-specific musculoskeletal model was taken from an earlier study, and re-formulated to define the joint axes by inputting the necessary bony locations. Gait simulations were run using OpenSim within a Monte Carlo stochastic scheme, where the locations of the bony landmarks were varied randomly according to the estimated distributions. Trends for the joint angles, moments, and the muscle and joint forces did not substantially change after parameter perturbations. The highest variations were as follows: (a) 11° calculated for the hip rotation angle, (b) 1% BW × H calculated for the knee moment and (c) 0.33 BW calculated for the ankle plantarflexor muscles and the ankle joint forces. In conclusion, the identification of the joint axes from clinical images is a robust procedure for human movement modelling and simulation.

  16. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  17. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives.

    Science.gov (United States)

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario

    2013-01-01

    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive

  18. Pulsatile Lavage of Musculoskeletal Wounds Causes Muscle Necrosis and Dystrophic Calcification in a Rat Model.

    Science.gov (United States)

    Chiaramonti, Alexander M; Robertson, Astor D; Nguyen, Thao P; Jaffe, David E; Hanna, E Lex; Holmes, Robert; Barfield, William R; Fourney, William L; Stains, Joseph P; Pellegrini, Vincent D

    2017-11-01

    Adequate irrigation of open musculoskeletal injuries is considered the standard of care to decrease bacterial load and other contaminants. While the benefit of debris removal compared with the risk of further seeding by high-pressure lavage has been studied, the effects of irrigation on muscle have been infrequently reported. Our aim in the present study was to assess relative damage to muscle by pulsatile lavage compared with bulb-syringe irrigation. In an animal model of heterotopic ossification, 24 Sprague-Dawley rats underwent hindlimb blast amputation via detonation of a submerged explosive, with subsequent through-the-knee surgical amputation proximal to the zone of injury. All wounds were irrigated and underwent primary closure. In 12 of the animals, pulsatile lavage (20 psi [138 kPa]) was used as the irrigation method, and in the other 12 animals, bulb-syringe irrigation was performed. A third group of 6 rats did not undergo the blast procedure but instead underwent surgical incision into the left thigh muscle followed by pulsatile lavage. Serial radiographs of the animals were made to monitor the formation of soft-tissue radiopaque lesions until euthanasia at 6 months. Image-guided muscle biopsies were performed at 8 weeks and 6 months (at euthanasia) on representative animals from each group. Histological analysis was performed with hematoxylin and eosin, alizarin red, and von Kossa staining on interval biopsy and postmortem specimens. All animals managed with pulsatile lavage, with or without blast injury, developed soft-tissue radiopaque lesions, whereas no animal that had bulb-syringe irrigation developed these lesions (p = 0.001). Five of the 12 animals that underwent blast amputation with pulsatile lavage experienced wound complications, whereas no animal in the other 2 groups experienced wound complications (p = 0.014). Radiopaque lesions appeared approximately 10 days postoperatively, increased in density until approximately 16 weeks, then

  19. Modelling Livestock Component in FSSIM

    NARCIS (Netherlands)

    Thorne, P.J.; Hengsdijk, H.; Janssen, S.J.C.; Louhichi, K.; Keulen, van H.; Thornton, P.K.

    2009-01-01

    This document summarises the development of a ruminant livestock component for the Farm System Simulator (FSSIM). This includes treatments of energy and protein transactions in ruminant livestock that have been used as a basis for the biophysical simulations that will generate the input production

  20. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics

    Institute of Scientific and Technical Information of China (English)

    Akihiko Murai; Q. Youn Hong; Katsu Yamane; Jessica K. Hodgins

    2017-01-01

    Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation (movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence (slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.

  1. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics

    Institute of Scientific and Technical Information of China (English)

    Akihiko Murai; Q.Youn Hong; Katsu Yamane; Jessica K.Hodgins

    2017-01-01

    Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation(movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence(slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.

  2. Modeling the degradation of nuclear components

    International Nuclear Information System (INIS)

    Stock, D.; Samanta, P.; Vesely, W.

    1993-01-01

    This paper describes component level reliability models that use information on degradation to predict component reliability, and which have been used to evaluate different maintenance and testing policies. The models are based on continuous time Markov processes, and are a generalization of reliability models currently used in Probabilistic Risk Assessment. An explanation of the models, the model parameters, and an example of how these models can be used to evaluate maintenance policies are discussed

  3. Model reduction by weighted Component Cost Analysis

    Science.gov (United States)

    Kim, Jae H.; Skelton, Robert E.

    1990-01-01

    Component Cost Analysis considers any given system driven by a white noise process as an interconnection of different components, and assigns a metric called 'component cost' to each component. These component costs measure the contribution of each component to a predefined quadratic cost function. A reduced-order model of the given system may be obtained by deleting those components that have the smallest component costs. The theory of Component Cost Analysis is extended to include finite-bandwidth colored noises. The results also apply when actuators have dynamics of their own. Closed-form analytical expressions of component costs are also derived for a mechanical system described by its modal data. This is very useful to compute the modal costs of very high order systems. A numerical example for MINIMAST system is presented.

  4. Models of care for musculoskeletal health: a cross-sectional qualitative study of Australian stakeholders' perspectives on relevance and standardised evaluation.

    Science.gov (United States)

    Briggs, Andrew M; Jordan, Joanne E; Speerin, Robyn; Jennings, Matthew; Bragge, Peter; Chua, Jason; Slater, Helen

    2015-11-16

    The prevalence and impact of musculoskeletal conditions are predicted to rapidly escalate in the coming decades. Effective strategies are required to minimise 'evidence-practice', 'burden-policy' and 'burden-service' gaps and optimise health system responsiveness for sustainable, best-practice healthcare. One mechanism by which evidence can be translated into practice and policy is through Models of Care (MoCs), which provide a blueprint for health services planning and delivery. While evidence supports the effectiveness of musculoskeletal MoCs for improving health outcomes and system efficiencies, no standardised national approach to evaluation in terms of their 'readiness' for implementation and 'success' after implementation, is yet available. Further, the value assigned to MoCs by end users is uncertain. This qualitative study aimed to explore end users' views on the relevance of musculoskeletal MoCs to their work and value of a standardised evaluation approach. A cross-sectional qualitative study was undertaken. Subject matter experts (SMEs) with health, policy and administration and consumer backgrounds were drawn from three Australian states. A semi-structured interview schedule was developed and piloted to explore perceptions about musculoskeletal MoCs including: i) aspects important to their work (or life, for consumers) ii) usefulness of standardised evaluation frameworks to judge 'readiness' and 'success' and iii) challenges associated with standardised evaluation. Verbatim transcripts were analysed by two researchers using a grounded theory approach to derive key themes. Twenty-seven SMEs (n = 19; 70.4 % female) including five (18.5 %) consumers participated in the study. MoCs were perceived as critical for influencing and initiating changes to best-practice healthcare planning and delivery and providing practical guidance on how to implement and evaluate services. A 'readiness' evaluation framework assessing whether critical components across the

  5. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  6. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  7. Maternal Smoking During Pregnancy Is Associated With Offspring's Musculoskeletal Pain in Adolescence: Structural Equation Modeling.

    Science.gov (United States)

    Määttä, Anni-Julia; Paananen, Markus; Marttila, Riikka; Auvinen, Juha; Miettunen, Jouko; Karppinen, Jaro

    2017-07-01

    Smoking and behavioral problems are related to musculoskeletal (MS) pain in adolescence. Maternal smoking during pregnancy (MSDP) is associated with offspring's behavioral problems but its relation to MS pain in adolescence is unknown. Our purpose was to investigate whether there is an association between MSDP, the number of pain sites in adolescence, and the factors that potentially mediate this relationship. We evaluated the association of MSDP with offspring's MS pain at 16 years among participants of the Northern Finland Birth Cohort 1986 (n = 6436, 3360 girls, 68% of all births) using Chi-square test and independent samples t test. We used structural equation modeling to assess the mediating factors stratified by gender. MSDP was frequent (22%) associating with paternal smoking (p adolescents whose mothers had smoked during pregnancy than among those whose mothers were nonsmokers (p = .002 boys, p = .012 girls). The association between MSDP and MS pain at 16 years was mediated by externalizing problems at 8 years (p adolescence, and the association was mediated by offspring's externalizing problems during childhood and early adolescence. This study indicates that MSDP increases the risk of MS pain in adolescence and the effect is mediated by externalizing problems. Our results add to the evidence on harmfulness of MSDP for offspring, and can be used as additional information in interventions aiming to influence MSDP. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle

    OpenAIRE

    Goh, Colleen; Blanchard, Mary L.; Crompton, Robin H.; Gunther, Michael M.; Macaulay, Sophie; Bates, Karl T.

    2017-01-01

    Abstract Three?dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodolog...

  9. Analyzing musculoskeletal neck pain, measured as present pain and periods of pain, with three different regression models: a cohort study

    Directory of Open Access Journals (Sweden)

    Hagberg Mats

    2009-06-01

    Full Text Available Abstract Background In the literature there are discussions on the choice of outcome and the need for more longitudinal studies of musculoskeletal disorders. The general aim of this longitudinal study was to analyze musculoskeletal neck pain, in a group of young adults. Specific aims were to determine whether psychosocial factors, computer use, high work/study demands, and lifestyle are long-term or short-term factors for musculoskeletal neck pain, and whether these factors are important for developing or ongoing musculoskeletal neck pain. Methods Three regression models were used to analyze the different outcomes. Pain at present was analyzed with a marginal logistic model, for number of years with pain a Poisson regression model was used and for developing and ongoing pain a logistic model was used. Presented results are odds ratios and proportion ratios (logistic models and rate ratios (Poisson model. The material consisted of web-based questionnaires answered by 1204 Swedish university students from a prospective cohort recruited in 2002. Results Perceived stress was a risk factor for pain at present (PR = 1.6, for developing pain (PR = 1.7 and for number of years with pain (RR = 1.3. High work/study demands was associated with pain at present (PR = 1.6; and with number of years with pain when the demands negatively affect home life (RR = 1.3. Computer use pattern (number of times/week with a computer session ≥ 4 h, without break was a risk factor for developing pain (PR = 1.7, but also associated with pain at present (PR = 1.4 and number of years with pain (RR = 1.2. Among life style factors smoking (PR = 1.8 was found to be associated to pain at present. The difference between men and women in prevalence of musculoskeletal pain was confirmed in this study. It was smallest for the outcome ongoing pain (PR = 1.4 compared to pain at present (PR = 2.4 and developing pain (PR = 2.5. Conclusion By using different regression models different

  10. Inspiration from nature: dynamic modelling of the musculoskeletal structure of the seahorse tail.

    Science.gov (United States)

    Praet, Tomas; Adriaens, Dominique; Van Cauter, Sofie; Masschaele, Bert; De Beule, Matthieu; Verhegghe, Benedict

    2012-10-01

    Technological advances are often inspired by nature, considering that engineering is frequently faced by the same challenges as organisms in nature. One such interesting challenge is creating a structure that is at the same time stiff in a certain direction, yet flexible in another. The seahorse tail combines both radial stiffness and bending flexibility in a particularly elegant way: even though the tail is covered in a protective armour, it still shows sufficient flexibility to fully function as a prehensile organ. We therefore study the complex mechanics and dynamics of the musculoskeletal system of the seahorse tail from an engineering point of view. The seahorse tail derives its combination of flexibility and resilience from a chain of articulating skeletal segments. A versatile dynamic model of those segments was constructed, on the basis of automatic recognition of joint positions and muscle attachments. Both muscle structures that are thought to be responsible for ventral and ventral-lateral tail bending, namely the median ventral muscles and the hypaxial myomere muscles, were included in the model. Simulations on the model consist mainly of dynamic multi-body simulations. The results show that the sequential structure of uniformly shaped bony segments can remain flexible because of gliding joints that connect the corners of the segments. Radial stiffness on the other hand is obtained through the support that the central vertebra provides to the tail plating. Such insights could help in designing biomedical instruments that specifically require both high bending flexibility and radial stiffness (e.g. flexible stents and steerable catheters). Copyright © 2012 John Wiley & Sons, Ltd.

  11. Tweaking the Four-Component Model

    Science.gov (United States)

    Curzer, Howard J.

    2014-01-01

    By maintaining that moral functioning depends upon four components (sensitivity, judgment, motivation, and character), the Neo-Kohlbergian account of moral functioning allows for uneven moral development within individuals. However, I argue that the four-component model does not go far enough. I offer a more accurate account of moral functioning…

  12. Pump Component Model in SPACE Code

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kyoung Doo

    2010-08-01

    This technical report describes the pump component model in SPACE code. A literature survey was made on pump models in existing system codes. The models embedded in SPACE code were examined to check the confliction with intellectual proprietary rights. Design specifications, computer coding implementation, and test results are included in this report

  13. Overview of the model component in ECOCLIM

    DEFF Research Database (Denmark)

    Geels, Camilla; Boegh, Eva; Bendtsen, J

    and atmospheric models. We will use the model system to 1) quantify the potential effects of climate change on ecosystem exchange of GHG and 2) estimate the impacts of changes in management practices including land use change and nitrogen (N) loads. Here the various model components will be introduced...

  14. International Combined Orthopaedic Research Societies: A model for international collaboration to promote orthopaedic and musculoskeletal research

    Directory of Open Access Journals (Sweden)

    Theodore Miclau

    2014-10-01

    Full Text Available In October 2013, the International Combined Orthopaedic Research Societies (ICORS; http://i-cors.org was founded with inaugural member organisations from the previous Combined Orthopaedic Research Society, which had sponsored combined meetings for more than 2 decades. The ICORS is dedicated to the stimulation of orthopaedic and musculoskeletal research in fields such as biomedical engineering, biology, chemistry, and veterinary and human clinical research. The ICORS seeks to facilitate communication with member organisations to enhance international research collaborations and to promote the development of new international orthopaedic and musculoskeletal research organisations. Through new categories of membership, the ICORS represents the broadest coalition of orthopaedic research organisations globally.

  15. Musculoskeletal injuries

    International Nuclear Information System (INIS)

    Gigirey, V

    2012-01-01

    This presentation is about musculoskeletal injuries and the diagnosis of osseous tumors. The use of the radiology, bone scintigraphy, computed tomography and magnetic resonance contribute to detect the localization of the osseous lesions as well as the density (lytic, sclerotic, mixed) and the benign and malignant tumors.

  16. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model

    Directory of Open Access Journals (Sweden)

    Shaowei Yao

    2018-04-01

    Full Text Available Various rehabilitation robots have been employed to recover the motor function of stroke patients. To improve the effect of rehabilitation, robots should promote patient participation and provide compliant assistance. This paper proposes an adaptive admittance control scheme (AACS consisting of an admittance filter, inner position controller, and electromyography (EMG-driven musculoskeletal model (EDMM. The admittance filter generates the subject's intended motion according to the joint torque estimated by the EDMM. The inner position controller tracks the intended motion, and its parameters are adjusted according to the estimated joint stiffness. Eight healthy subjects were instructed to wear the ankle exoskeleton robot, and they completed a series of sinusoidal tracking tasks involving ankle dorsiflexion and plantarflexion. The robot was controlled by the AACS and a non-adaptive admittance control scheme (NAACS at four fixed parameter levels. The tracking performance was evaluated using the jerk value, position error, interaction torque, and EMG levels of the tibialis anterior (TA and gastrocnemius (GAS. For the NAACS, the jerk value and position error increased with the parameter levels, and the interaction torque and EMG levels of the TA tended to decrease. In contrast, the AACS could maintain a moderate jerk value, position error, interaction torque, and TA EMG level. These results demonstrate that the AACS achieves a good tradeoff between accurate tracking and compliant assistance because it can produce a real-time response to stiffness changes in the ankle joint. The AACS can alleviate the conflict between accurate tracking and compliant assistance and has potential for application in robot-assisted rehabilitation.

  17. Musculoskeletal sporotrichosis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A.C.; Destouet, J.M.; Murphy, W.A.

    1984-06-01

    Sporotrichosis is a chronic, indolent, fungal infection that rarely involves the musculoskeletal system. The etiologic agent, Sporothrix schenckii, is ubiquitous in nature and has been isolated from soil, timber, decaying vegetation, and a variety of foliage. The organism gains entrance to the body through trauma to the skin or, in rare instances, by inhalation. The vast majority of infections in humans is characterized by nodular or ulcerated lesions of the cutaneous tissues and adjacent lymphatics. Osteoarticular involvement may occur either by contiguous spread from a cutaneous focus, through direct inoculation of tissue by the organism, or by hematogenous dissemination. The rarity of musculoskeletal sporotrichosis often causes a delay in diagnosis which leads to inappropriate therapy and permanent deformity in some patients. Three cases which show a spectrum of bone and joint involvement are presented.

  18. Musculoskeletal sporotrichosis

    International Nuclear Information System (INIS)

    Chang, A.C.; Destouet, J.M.; Murphy, W.A.

    1984-01-01

    Sporotrichosis is a chronic, indolent, fungal infection that rarely involves the musculoskeletal system. The etiologic agent, Sporothrix schenckii, is ubiquitous in nature and has been isolated from soil, timber, decaying vegetation, and a variety of foliage. The organism gains entrance to the body through trauma to the skin or, in rare instances, by inhalation. The vast majority of infections in humans is characterized by nodular or ulcerated lesions of the cutaneous tissues and adjacent lymphatics. Osteoarticular involvement may occur either by contiguous spread from a cutaneous focus, through direct inoculation of tissue by the organism, or by hematogenous dissemination. The rarity of musculoskeletal sporotrichosis often causes a delay in diagnosis which leads to inappropriate therapy and permanent deformity in some patients. Three cases which show a spectrum of bone and joint involvement are presented. (orig.)

  19. Emotion Work and Musculoskeletal Pain in Supermarket Cashiers: A Test of a Sleep-Mediation Model

    Directory of Open Access Journals (Sweden)

    Maria U. Kottwitz

    2017-08-01

    Full Text Available Repetitive movement and a lack of postural change are known risk factors for musculoskeletal pain in cashiers. This study tests emotional dissonance – the demand to keep being polite to impolite customers – as an additional risk factor. Furthermore, sleep problems are expected to mediate the link between emotion work and musculoskeletal pain. Data contains 103 female supermarket cashiers from three supermarkets of a large retailer responded to a questionnaire (participation rate 60.6%. An open question asked for the most negative job facets in daily work. Standardized questionnaire were used to assess emotional dissonance, sleep problems and musculoskeletal pain. Responses to the open question showed experience of unkind customers as the most prevalent negative experience at work reported by 47.6% of cashiers, followed by prolonged sitting (8.7%. Emotional dissonance was a significant predictor of neck and back pain when BMI, age, part-time work, and change of hand function during their shift (work rotation were controlled (β = .30, p < .01. Moreover, sleep problems were confirmed as a mediator with respect to neck and back pain (B = .21, SE = .10, CI = 02–.22. No mediation was found in prediction of pain in arms and shoulders or hips, legs, and feet. Emotional dissonance in work of cashiers appeared as a unique risk factor of neck and back pain. Work design should pay more attention to the social demands of cashier work.

  20. Probabilistic Modeling of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei

    Wind energy is one of several energy sources in the world and a rapidly growing industry in the energy sector. When placed in offshore or onshore locations, wind turbines are exposed to wave excitations, highly dynamic wind loads and/or the wakes from other wind turbines. Therefore, most components...... in a wind turbine experience highly dynamic and time-varying loads. These components may fail due to wear or fatigue, and this can lead to unplanned shutdown repairs that are very costly. The design by deterministic methods using safety factors is generally unable to account for the many uncertainties. Thus......, a reliability assessment should be based on probabilistic methods where stochastic modeling of failures is performed. This thesis focuses on probabilistic models and the stochastic modeling of the fatigue life of the wind turbine drivetrain. Hence, two approaches are considered for stochastic modeling...

  1. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  2. A principal components model of soundscape perception.

    Science.gov (United States)

    Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta

    2010-11-01

    There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.

  3. Thermochemical modelling of multi-component systems

    International Nuclear Information System (INIS)

    Sundman, B.; Gueneau, C.

    2015-01-01

    Computational thermodynamic, also known as the Calphad method, is a standard tool in industry for the development of materials and improving processes and there is an intense scientific development of new models and databases. The calculations are based on thermodynamic models of the Gibbs energy for each phase as a function of temperature, pressure and constitution. Model parameters are stored in databases that are developed in an international scientific collaboration. In this way, consistent and reliable data for many properties like heat capacity, chemical potentials, solubilities etc. can be obtained for multi-component systems. A brief introduction to this technique is given here and references to more extensive documentation are provided. (authors)

  4. Independent Component Analysis in Multimedia Modeling

    DEFF Research Database (Denmark)

    Larsen, Jan

    2003-01-01

    largely refers to text, images/video, audio and combinations of such data. We review a number of applications within single and combined media with the hope that this might provide inspiration for further research in this area. Finally, we provide a detailed presentation of our own recent work on modeling......Modeling of multimedia and multimodal data becomes increasingly important with the digitalization of the world. The objective of this paper is to demonstrate the potential of independent component analysis and blind sources separation methods for modeling and understanding of multimedia data, which...

  5. Temporal Role for MyD88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation.

    Science.gov (United States)

    Lacey, Carolyn A; Mitchell, William J; Brown, Charles R; Skyberg, Jerod A

    2017-03-01

    Brucella spp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of Brucella do not develop these complications. Here we report C57BL/6 WT mice infected via the footpad with 10 3 to 10 6 CFU of Brucella spp. display neutrophil and monocyte infiltration of the joint space and surrounding musculoskeletal tissue. Joint inflammation is detectable as early as 1 day postinfection and peaks 1 to 2 weeks later, after which WT mice are able to slowly resolve inflammation. B and T cells were dispensable for the onset of swelling but required for resolution of joint inflammation and infection. At early time points, MyD88 -/- mice display decreased joint inflammation, swelling, and proinflammatory cytokine levels relative to WT mice. Subsequently, swelling of MyD88 -/- joints surpassed WT joint swelling, and resolution of joint inflammation was prolonged. Joint bacterial loads in MyD88 -/- mice were significantly greater than those in WT mice by day 3 postinfection and at all time points thereafter. In addition, MyD88 -/- joint inflammatory cytokine levels on day 3 and beyond were similar to WT levels. Collectively these data demonstrate MyD88 signaling mediates early inflammatory responses in the joint but also contributes to subsequent clearance of Brucella and resolution of inflammation. This work also establishes a mouse model for studying Brucella -induced arthritis, musculoskeletal complications, and systemic responses, which will lead to a better understanding of focal complications of brucellosis. Copyright © 2017 American Society for Microbiology.

  6. PCA: Principal Component Analysis for spectra modeling

    Science.gov (United States)

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  7. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.

    Science.gov (United States)

    Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O

    2018-05-01

    Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Pool scrubbing models for iodine components

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K [Battelle Ingenieurtechnik GmbH, Eschborn (Germany)

    1996-12-01

    Pool scrubbing is an important mechanism to retain radioactive fission products from being carried into the containment atmosphere or into the secondary piping system. A number of models and computer codes has been developed to predict the retention of aerosols and fission product vapours that are released from the core and injected into water pools of BWR and PWR type reactors during severe accidents. Important codes in this field are BUSCA, SPARC and SUPRA. The present paper summarizes the models for scrubbing of gaseous Iodine components in these codes, discusses the experimental validation, and gives an assessment of the state of knowledge reached and the open questions which persist. The retention of gaseous Iodine components is modelled by the various codes in a very heterogeneous manner. Differences show up in the chemical species considered, the treatment of mass transfer boundary layers on the gaseous and liquid sides, the gas-liquid interface geometry, calculation of equilibrium concentrations and numerical procedures. Especially important is the determination of the pool water pH value. This value is affected by basic aerosols deposited in the water, e.g. Cesium and Rubidium compounds. A consistent model requires a mass balance of these compounds in the pool, thus effectively coupling the pool scrubbing phenomena of aerosols and gaseous Iodine species. Since the water pool conditions are also affected by drainage flow of condensate water from different regions in the containment, and desorption of dissolved gases on the pool surface is determined by the gas concentrations above the pool, some basic limitations of specialized pool scrubbing codes are given. The paper draws conclusions about the necessity of coupling between containment thermal-hydraulics and pool scrubbing models, and proposes ways of further simulation model development in order to improve source term predictions. (author) 2 tabs., refs.

  9. Pool scrubbing models for iodine components

    International Nuclear Information System (INIS)

    Fischer, K.

    1996-01-01

    Pool scrubbing is an important mechanism to retain radioactive fission products from being carried into the containment atmosphere or into the secondary piping system. A number of models and computer codes has been developed to predict the retention of aerosols and fission product vapours that are released from the core and injected into water pools of BWR and PWR type reactors during severe accidents. Important codes in this field are BUSCA, SPARC and SUPRA. The present paper summarizes the models for scrubbing of gaseous Iodine components in these codes, discusses the experimental validation, and gives an assessment of the state of knowledge reached and the open questions which persist. The retention of gaseous Iodine components is modelled by the various codes in a very heterogeneous manner. Differences show up in the chemical species considered, the treatment of mass transfer boundary layers on the gaseous and liquid sides, the gas-liquid interface geometry, calculation of equilibrium concentrations and numerical procedures. Especially important is the determination of the pool water pH value. This value is affected by basic aerosols deposited in the water, e.g. Cesium and Rubidium compounds. A consistent model requires a mass balance of these compounds in the pool, thus effectively coupling the pool scrubbing phenomena of aerosols and gaseous Iodine species. Since the water pool conditions are also affected by drainage flow of condensate water from different regions in the containment, and desorption of dissolved gases on the pool surface is determined by the gas concentrations above the pool, some basic limitations of specialized pool scrubbing codes are given. The paper draws conclusions about the necessity of coupling between containment thermal-hydraulics and pool scrubbing models, and proposes ways of further simulation model development in order to improve source term predictions. (author) 2 tabs., refs

  10. Computational needs for modelling accelerator components

    International Nuclear Information System (INIS)

    Hanerfeld, H.

    1985-06-01

    The particle-in-cell MASK is being used to model several different electron accelerator components. These studies are being used both to design new devices and to understand particle behavior within existing structures. Studies include the injector for the Stanford Linear Collider and the 50 megawatt klystron currently being built at SLAC. MASK is a 2D electromagnetic code which is being used by SLAC both on our own IBM 3081 and on the CRAY X-MP at the NMFECC. Our experience with running MASK illustrates the need for supercomputers to continue work of the kind described. 3 refs., 2 figs

  11. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae

    2008-01-01

    Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics...... of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical...... constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems) is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI), University of Southern Denmark. Once specified, the software model has...

  12. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  13. Predictive Models of Work-Related Musculoskeletal Disorders (WMSDs Among Sewing Machine Operators in the Garments Industry

    Directory of Open Access Journals (Sweden)

    Carlos Ignacio P. Lugay

    2015-02-01

    Full Text Available The Philippine garments industry has been a driving force in the country’s economy, with apparel manufacturing firms catering to the local and global markets and providing employment opportunities for skilled Filipinos. Tight competition from neighboring Asian countries however, has made the industry’s situation difficult to flourish, especially in the wake of the Association of Southeast Asian Nations (ASEAN 2015 Integration. To assist the industry, this research examined one of the more common problems among sewing machine operators, termed as Work-related Musculoskeletal Disorders (WMSDs. These disorders are reflective in the frequency and severity of the pain experienced by the sewers while accomplishing their tasks. The causes of these disorders were identified and were correlated with the frequency and severity of pain in various body areas of the operator. To forecast pain from WMSDs among the operators, mathematical models were developed to predict the combined frequency and severity of the pain from WMSDs. Loss time or “unofficial breaktimes” due to pain from WMSDs was likewise forecasted to determine its effects on the firm’s production capacity. Both these predictive models were developed in order to assist garment companies in anticipating better the effects of WMSDs and loss time in their operations. Moreover, ergonomic interventions were suggested to minimize pain from WMSDs, with the expectation of increased productivity of the operators and improved quality of their outputs.

  14. Building multidisciplinary health workforce capacity to support the implementation of integrated, people-centred Models of Care for musculoskeletal health.

    Science.gov (United States)

    Chehade, M J; Gill, T K; Kopansky-Giles, D; Schuwirth, L; Karnon, J; McLiesh, P; Alleyne, J; Woolf, A D

    2016-06-01

    To address the burden of musculoskeletal (MSK) conditions, a competent health workforce is required to support the implementation of MSK models of care. Funding is required to create employment positions with resources for service delivery and training a fit-for-purpose workforce. Training should be aligned to define "entrustable professional activities", and include collaborative skills appropriate to integrated and people-centred care and supported by shared education resources. Greater emphasis on educating MSK healthcare workers as effective trainers of peers, students and patients is required. For quality, efficiency and sustainability of service delivery, education and research capabilities must be integrated across disciplines and within the workforce, with funding models developed based on measured performance indicators from all three domains. Greater awareness of the societal and economic burden of MSK conditions is required to ensure that solutions are prioritised and integrated within healthcare policies from local to regional to international levels. These healthcare policies require consumer engagement and alignment to social, economic, educational and infrastructure policies to optimise effectiveness and efficiency of implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Association between Upper Extremity Musculoskeletal Disorders and Psychosocial Factors at Work: A Review on the Job DCS Model's Perspective.

    Science.gov (United States)

    Park, Jung-Keun; Jang, Seung-Hee

    2010-09-01

    Over years it has been increasingly concerned with how upper extremity musculoskeletal disorders (UEMSDs) are attributed to psychosocial job stressors. A review study was conducted to examine associations between UEMSDs and psychosocial work factors, and to recommend what to consider for the associations. For studies in which the job demand-control-support (DCS) model or its variables were specifically employed, published papers were selected and reviewed. A number of studies have reported relationships between UEMSDs symptoms and psychosocial exposure variables. For example, the findings are: higher numbness in the upper extremity was significantly attributed to by less decision latitude at work; work demands were significantly associated with neck and shoulder symptoms while control over time was associated with neck symptoms; and the combination of high psychosocial demands and low decision latitude was a significant predictor for shoulder and neck pain in a female working population. Sources of bias, such as interaction or study design, were discussed. UEMSDs were shown to be associated with psychosocial work factors in various studies where the job DCS model was addressed. Nonetheless, this review suggests that further studies should be conducted to much more clarify the association between UEMSDs and psychosocial factors.

  16. Structure, function, and control of the human musculoskeletal network.

    Directory of Open Access Journals (Sweden)

    Andrew C Murphy

    2018-01-01

    Full Text Available The human body is a complex organism, the gross mechanical properties of which are enabled by an interconnected musculoskeletal network controlled by the nervous system. The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and robustness to injury. However, a fundamental understanding of this network and its control by neural systems has remained elusive. Here we address this gap in knowledge by utilizing medical databases and mathematical modeling to reveal the organizational structure, predicted function, and neural control of the musculoskeletal system. We constructed a highly simplified whole-body musculoskeletal network in which single muscles connect to multiple bones via both origin and insertion points. We demonstrated that, using this simplified model, a muscle's role in this network could offer a theoretical prediction of the susceptibility of surrounding components to secondary injury. Finally, we illustrated that sets of muscles cluster into network communities that mimic the organization of control modules in primary motor cortex. This novel formalism for describing interactions between the muscular and skeletal systems serves as a foundation to develop and test therapeutic responses to injury, inspiring future advances in clinical treatments.

  17. Knee medial and lateral contact forces in a musculoskeletal model with subject-specific contact point trajectories.

    Science.gov (United States)

    Zeighami, A; Aissaoui, R; Dumas, R

    2018-03-01

    Contact point (CP) trajectory is a crucial parameter in estimating medial/lateral tibio-femoral contact forces from the musculoskeletal (MSK) models. The objective of the present study was to develop a method to incorporate the subject-specific CP trajectories into the MSK model. Ten healthy subjects performed 45 s treadmill gait trials. The subject-specific CP trajectories were constructed on the tibia and femur as a function of extension-flexion using low-dose bi-plane X-ray images during a quasi-static squat. At each extension-flexion position, the tibia and femur CPs were superimposed in the three directions on the medial side, and in the anterior-posterior and proximal-distal directions on the lateral side to form the five kinematic constraints of the knee joint. The Lagrange multipliers associated to these constraints directly yielded the medial/lateral contact forces. The results from the personalized CP trajectory model were compared against the linear CP trajectory and sphere-on-plane CP trajectory models which were adapted from the commonly used MSK models. Changing the CP trajectory had a remarkable impact on the knee kinematics and changed the medial and lateral contact forces by 1.03 BW and 0.65 BW respectively, in certain subjects. The direction and magnitude of the medial/lateral contact force were highly variable among the subjects and the medial-lateral shift of the CPs alone could not determine the increase/decrease pattern of the contact forces. The suggested kinematic constraints are adaptable to the CP trajectories derived from a variety of joint models and those experimentally measured from the 3D imaging techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  19. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  20. A 3D musculoskeletal model of the western lowland gorilla hind limb: moment arms and torque of the hip, knee and ankle.

    Science.gov (United States)

    Goh, Colleen; Blanchard, Mary L; Crompton, Robin H; Gunther, Michael M; Macaulay, Sophie; Bates, Karl T

    2017-10-01

    Three-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method. Considerable differences were found which we attribute to the different methodologies in this specific case. In this instance, we argue that our 3D model provides more accurate and reliable moment arm data than previously published data on the gorilla because our model incorporates more detailed consideration of the 3D geometry of muscles and the geometric constraints that exist on their lines-of-action about limb joints. Our new data have led us to revaluate the previous conclusion that muscle moment arms in the gorilla hind limb are optimised for locomotion with crouched or flexed limb postures. Furthermore, we found that bipedalism and terrestrial quadrupedalism coincided more regularly with higher moment arms and torque around the hip, knee and ankle than did vertical climbing. This indicates that the ability of a gorilla to walk bipedally is not restricted by musculoskeletal adaptations for quadrupedalism and vertical climbing, at least in terms of moment arms and torque about hind limb joints. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  1. Use of eHealth technologies to enable the implementation of musculoskeletal Models of Care: Evidence and practice.

    Science.gov (United States)

    Slater, Helen; Dear, Blake F; Merolli, Mark A; Li, Linda C; Briggs, Andrew M

    2016-06-01

    Musculoskeletal (MSK) conditions are the second leading cause of morbidity-related burden of disease globally. EHealth is a potentially critical factor that enables the implementation of accessible, sustainable and more integrated MSK models of care (MoCs). MoCs serve as a vehicle to drive evidence into policy and practice through changes at a health system, clinician and patient level. The use of eHealth to implement MoCs is intuitive, given the capacity to scale technologies to deliver system and economic efficiencies, to contribute to sustainability, to adapt to low-resource settings and to mitigate access and care disparities. We follow a practice-oriented approach to describing the 'what' and 'how' to harness eHealth in the implementation of MSK MoCs. We focus on the practical application of eHealth technologies across care settings to those MSK conditions contributing most substantially to the burden of disease, including osteoarthritis and inflammatory arthritis, skeletal fragility-associated conditions and persistent MSK pain. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning

    International Nuclear Information System (INIS)

    Diamond, A; Holland, O E

    2014-01-01

    ‘Anthropomimetic’ robots mimic both human morphology and internal structure—skeleton, muscles, compliance and high redundancy—thus presenting a formidable challenge to conventional control. Here we derive a novel controller for this class of robot which learns effective reaching actions through the sustained activation of weighted muscle synergies, an approach which draws upon compelling, recent evidence from animal and human studies, but is almost unexplored to date in the musculoskeletal robot literature. Since the effective synergy patterns for a given robot will be unknown, we derive a reinforcement-learning approach intended to allow their emergence, in particular those patterns aiding linearization of control. Using an extensive physics-based model of the anthropomimetic ECCERobot, we find that effective reaching actions can be learned comprising only two sequential motor co-activation patterns, each controlled by just a single common driving signal. Factor analysis shows the emergent muscle co-activations can be largely reconstructed using weighted combinations of only 13 common fragments. Testing these ‘candidate’ synergies as drivable units, the same controller now learns the reaching task both faster and better. (paper)

  3. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  4. Musculoskeletal infections: ultrasound appearances

    Energy Technology Data Exchange (ETDEWEB)

    Chau, C.L.F. [Department of Radiology, North District Hospital, NTEC, Fanling, NT, Hong Kong (China)]. E-mail: c8681@yahoo.com; Griffith, J.F. [Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, NTEC, Shatin, NT, Hong Kong (China)

    2005-02-01

    Musculoskeletal infections are commonly encountered in clinical practice. This review will discuss the ultrasound appearances of a variety of musculoskeletal infections such as cellulitis, infective tenosynovitis, pyomyositis, soft-tissue abscesses, septic arthritis, acute and chronic osteomyelitis, and post-operative infection. The peculiar sonographic features of less common musculoskeletal infections, such as necrotizing fasciitis, and rice body formation in atypical mycobacterial tenosynovitis, and bursitis will also be presented.

  5. Musculoskeletal infections: ultrasound appearances

    International Nuclear Information System (INIS)

    Chau, C.L.F.; Griffith, J.F.

    2005-01-01

    Musculoskeletal infections are commonly encountered in clinical practice. This review will discuss the ultrasound appearances of a variety of musculoskeletal infections such as cellulitis, infective tenosynovitis, pyomyositis, soft-tissue abscesses, septic arthritis, acute and chronic osteomyelitis, and post-operative infection. The peculiar sonographic features of less common musculoskeletal infections, such as necrotizing fasciitis, and rice body formation in atypical mycobacterial tenosynovitis, and bursitis will also be presented

  6. Musculoskeletal Modeling of a Forward Lunge Movement:Implications for ACL Loading

    DEFF Research Database (Denmark)

    Alkjaer, T; Wieland, MR; Andersen, MS

    2010-01-01

    are loaded during forward lunge? 2) Does the mechanical equilibrium cause ACL loads? Design: Computational modeling. Setting: The biomechanical forward lunge model was based on experimental motion capture data. Patients or Other Participants: One healthy female subject (height 5 169 cm, weight 5 59.6 kg, age....... The model and the pelvis. The hips were modeled as spherical joints, the knees as hinge joints, and the ankles as universal joints. Each according to a minimum fatigue criterion. Main Outcome Measures: Muscle and joint reaction forces that pulled the tibia in anterior or posterior direction. The forces were...... at the time of peak knee flexion. At peak knee flexion, the knee reaction was the only force that pulled the tibia anteriorly (2880 N). This was primarily counterbalanced by the musculus gluteus maximus (21940 N). Conclusions: The loading of the knee joint during lunging never required any stabilization...

  7. Mathematical models of soft tissue injury repair : towards understanding musculoskeletal disorders

    OpenAIRE

    Dunster, Joanne L.

    2012-01-01

    The process of soft tissue injury repair at the cellular lew I can be decomposed into three phases: acute inflammation including coagulation, proliferation and remodelling. While the later phases are well understood the early phase is less so. We produce a series of new mathematical models for the early phases coagulation and inflammation. The models produced are relevant not only to soft tissue injury repair but also to the many disease states in which coagulation and inflammation play a rol...

  8. The effectiveness of a training method using self-modeling webcam photos for reducing musculoskeletal risk among office workers using computers.

    Science.gov (United States)

    Taieb-Maimon, Meirav; Cwikel, Julie; Shapira, Bracha; Orenstein, Ido

    2012-03-01

    An intervention study was conducted to examine the effectiveness of an innovative self-modeling photo-training method for reducing musculoskeletal risk among office workers using computers. Sixty workers were randomly assigned to either: 1) a control group; 2) an office training group that received personal, ergonomic training and workstation adjustments or 3) a photo-training group that received both office training and an automatic frequent-feedback system that displayed on the computer screen a photo of the worker's current sitting posture together with the correct posture photo taken earlier during office training. Musculoskeletal risk was evaluated using the Rapid Upper Limb Assessment (RULA) method before, during and after the six weeks intervention. Both training methods provided effective short-term posture improvement; however, sustained improvement was only attained with the photo-training method. Both interventions had a greater effect on older workers and on workers suffering more musculoskeletal pain. The photo-training method had a greater positive effect on women than on men. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  9. Common running musculoskeletal injuries among recreational half ...

    African Journals Online (AJOL)

    probing the prevalence and nature of running musculoskeletal injuries in the 12 months preceding ... or agony, and which prevented them from physical activity for ..... injuries to professional football players: Developing the UEFA model.

  10. Validation of hamstrings musculoskeletal modeling by calculating peak hamstrings length at different hip angles

    NARCIS (Netherlands)

    van der Krogt, M.M.; Doorenbosch, C.A.M.; Harlaar, J.

    2008-01-01

    Accurate estimates of hamstrings lengths are useful, for example, to facilitate planning for surgical lengthening of the hamstrings in patients with cerebral palsy. In this study, three models used to estimate hamstrings length (M1: Delp, M2: Klein Horsman, M3: Hawkins and Hull) were evaluated. This

  11. Multiscale Mechanics of Articular Cartilage: Potentials and Challenges of Coupling Musculoskeletal, Joint, and Microscale Computational Models

    Science.gov (United States)

    Halloran, J. P.; Sibole, S.; van Donkelaar, C. C.; van Turnhout, M. C.; Oomens, C. W. J.; Weiss, J. A.; Guilak, F.; Erdemir, A.

    2012-01-01

    Articular cartilage experiences significant mechanical loads during daily activities. Healthy cartilage provides the capacity for load bearing and regulates the mechanobiological processes for tissue development, maintenance, and repair. Experimental studies at multiple scales have provided a fundamental understanding of macroscopic mechanical function, evaluation of the micromechanical environment of chondrocytes, and the foundations for mechanobiological response. In addition, computational models of cartilage have offered a concise description of experimental data at many spatial levels under healthy and diseased conditions, and have served to generate hypotheses for the mechanical and biological function. Further, modeling and simulation provides a platform for predictive risk assessment, management of dysfunction, as well as a means to relate multiple spatial scales. Simulation-based investigation of cartilage comes with many challenges including both the computational burden and often insufficient availability of data for model development and validation. This review outlines recent modeling and simulation approaches to understand cartilage function from a mechanical systems perspective, and illustrates pathways to associate mechanics with biological function. Computational representations at single scales are provided from the body down to the microstructure, along with attempts to explore multiscale mechanisms of load sharing that dictate the mechanical environment of the cartilage and chondrocytes. PMID:22648577

  12. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  13. Three job stress models and their relationship with musculoskeletal pain in blue- and white-collar workers

    NARCIS (Netherlands)

    Herr, R.M.; Bosch, J.A.; Loerbroks, A.; van Vianen, A.E.M.; Jarczok, M.N.; Fischer, J.E.; Schmidt, B.

    2015-01-01

    Objectives: Musculoskeletal pain has been found to co-occur with psychosocial job stress. However, different conceptualizations of job stress exist, each emphasizing different aspects of the work environment, and it is unknown which of these aspects show the strongest associations with

  14. Work load and musculoskeletal complaints during pregnancy.

    Science.gov (United States)

    Paul, J A; van Dijk, F J; Frings-Dresen, M H

    1994-06-01

    Many pregnant women have musculoskeletal complaints, the onset and aggravation of which are thought to be associated with their activity or work postures. The purpose of this paper was to obtain more insight into the influence of pregnancy on the load of the musculoskeletal system at work to provide a better basis for preventing complaints. To this end, literature pertinent to a model called "work load of the musculoskeletal system" was reviewed. The model was developed to describe how work contributes to musculoskeletal complaints. It was found that pregnancy causes changes in a worker's characteristics. These changes can lead to changes in the work situation, activity pattern, and postural characteristics and possibly result in a change in work load. In addition, physical changes such as weight gain increase the work load in a given posture. The load-bearing capacity of the musculoskeletal system decreases due to pregnancy. The changes in load and the decrease in load-bearing capacity singly or simultaneously increase the risk of musculoskeletal complaints. The multifactorial cause of musculoskeletal complaints during pregnancy reveals various possibilities for prevention.

  15. Tritium permeation model for plasma facing components

    Science.gov (United States)

    Longhurst, G. R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included.

  16. Tritium permeation model for plasma facing components

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1992-12-01

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included

  17. Modelamento Multicorpo do Sistema Musculoesquelético/Multibody modeling of the Musculoskeletal System

    Directory of Open Access Journals (Sweden)

    José Elias Tomazini

    2012-12-01

    Full Text Available Vários sistemas podem ser tratados com formalismos multicorpos: mecanismos de máquinas em geral, robôs industriais e manipuladores, estruturas espaciais, motores e, ainda, sistemas biomecânicos. A locomoção ou marcha humana e animal podem ser estudadas através de formalismos multicorpos.Nos últimos anos, diversos trabalhos relacionados à biomecânica, e utilizando formalismos multicorpos, têm sido apresentados. Muitos estudos in vitro e in vivo têm sido realizados, objetivando descrever o potencial de sobrecarga nas articulações do corpo humano e de modelos animais. O objetivo desta revisão foi apresentar estudos envolvendo o modelamento matemático aplicado à bioengenharia, biomecânica e engenharia biomédica. Conclui-se que o modelamento matemático é uma ferramenta muito útil, barata e não invasiva que vem contribuir nos estudos envolvendo o sistema multicorpo mecânico e complexo, que é o corpo humano. Several systems can be treated with multibody formalisms: mechanisms of general machinery, industrial robots and manipulators, space structures, engines, and also biomechanical systems. The locomotion or human gait can be studied using multibody formalisms. Several studies related to biomechanics, and using multibody formalisms, have been presented in recent years. Many studies in vitro and in vivo have been carried out, aiming to describe the potential overload in the joints of the human body and animal models. The aim of this review was to present studies involving mathematical modeling applied to bioengineering, biomechanics and biomedical engineering. We have concluded that mathematical modeling is a useful, inexpensive and noninvasive tool which comes to contribute in studies involving the mechanical and complex multibody system which is the human body.

  18. Developing Animal Models for Optimizing the Musculoskeletal Repair Potential of Emerging Human Progenitor Cell Therapies

    Science.gov (United States)

    2014-06-01

    into a central hub for group analysis and reporting. It is now being used for a just received R21 award to assess skeletal variation in a population...model to produce, and the use of the 3D X-rays the extent of deformity and the tempo of repair can be easily documented. Addition of the...Liu, Y., Boyd, N., Dennis, J., Jiang, X., Xin, X., Wang, L., Aguila, H., Rowe, D., Lichtler, A. and Goldberg , J. Developmental engineering of bone

  19. Nitrogen component in nonpoint source pollution models

    Science.gov (United States)

    Pollutants entering a water body can be very destructive to the health of that system. Best Management Practices (BMPs) and/or conservation practices are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid...

  20. Biomechanical implications of skeletal muscle hypertrophy and atrophy: a musculoskeletal model

    Directory of Open Access Journals (Sweden)

    Andrew D. Vigotsky

    2015-11-01

    Full Text Available Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.

  1. How Many Separable Sources? Model Selection In Independent Components Analysis

    DEFF Research Database (Denmark)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though....../Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from...... might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian....

  2. Median nerve trauma in a rat model of work-related musculoskeletal disorder.

    Science.gov (United States)

    Clark, Brian D; Barr, Ann E; Safadi, Fayez F; Beitman, Lisa; Al-Shatti, Talal; Amin, Mamta; Gaughan, John P; Barbe, Mary F

    2003-07-01

    Anatomical and physiological changes were evaluated in the median nerves of rats trained to perform repetitive reaching. Motor degradation was evident after 4 weeks. ED1-immunoreactive macrophages were seen in the transcarpal region of the median nerve of both forelimbs by 5-6 weeks. Fibrosis, characterized by increased immunoexpression of collagen type I by 8 weeks and connective tissue growth factor by 12 weeks, was evident. The conduction velocity (NCV) within the carpal tunnel showed a modest but significant decline after 9-12 weeks. The lowest NCV values were found in animals that refused to participate in the task for the full time available. Thus, both anatomical and physiological signs of progressive tissue damage were present in this model. These results, together with other recent findings indicate that work-related carpal tunnel syndrome develops through mechanisms that include injury, inflammation, fibrosis and subsequent nerve compression.

  3. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  4. Modeling money demand components in Lebanon using autoregressive models

    International Nuclear Information System (INIS)

    Mourad, M.

    2008-01-01

    This paper analyses monetary aggregate in Lebanon and its different component methodology of AR model. Thirteen variables in monthly data have been studied for the period January 1990 through December 2005. Using the Augmented Dickey-Fuller (ADF) procedure, twelve variables are integrated at order 1, thus they need the filter (1-B)) to become stationary, however the variable X 1 3,t (claims on private sector) becomes stationary with the filter (1-B)(1-B 1 2) . The ex-post forecasts have been calculated for twelve horizons and for one horizon (one-step ahead forecast). The quality of forecasts has been measured using the MAPE criterion for which the forecasts are good because the MAPE values are lower. Finally, a pursuit of this research using the cointegration approach is proposed. (author)

  5. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae; Top, Søren

    2008-01-01

    , communication and constraints, using computational blocks and aggregates for both discrete and continuous behaviour, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite...... to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set...... of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behaviour, and the transformation of the software system into the S-functions. The general aim of this work is the improvement of multi-disciplinary development of embedded systems with the focus on the relation...

  6. Public health component in building information modeling

    Science.gov (United States)

    Trufanov, A. I.; Rossodivita, A.; Tikhomirov, A. A.; Berestneva, O. G.; Marukhina, O. V.

    2018-05-01

    A building information modelling (BIM) conception has established itself as an effective and practical approach to plan, design, construct, and manage buildings and infrastructure. Analysis of the governance literature has shown that the BIM-developed tools do not take fully into account the growing demands from ecology and health fields. In this connection, it is possible to offer an optimal way of adapting such tools to the necessary consideration of the sanitary and hygienic specifications of materials used in construction industry. It is proposed to do it through the introduction of assessments that meet the requirements of national sanitary standards. This approach was demonstrated in the case study of Revit® program.

  7. How Many Separable Sources? Model Selection In Independent Components Analysis

    Science.gov (United States)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  8. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  9. Efficient transfer of sensitivity information in multi-component models

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.; Rabiti, Cristian

    2011-01-01

    In support of adjoint-based sensitivity analysis, this manuscript presents a new method to efficiently transfer adjoint information between components in a multi-component model, whereas the output of one component is passed as input to the next component. Often, one is interested in evaluating the sensitivities of the responses calculated by the last component to the inputs of the first component in the overall model. The presented method has two advantages over existing methods which may be classified into two broad categories: brute force-type methods and amalgamated-type methods. First, the presented method determines the minimum number of adjoint evaluations for each component as opposed to the brute force-type methods which require full evaluation of all sensitivities for all responses calculated by each component in the overall model, which proves computationally prohibitive for realistic problems. Second, the new method treats each component as a black-box as opposed to amalgamated-type methods which requires explicit knowledge of the system of equations associated with each component in order to reach the minimum number of adjoint evaluations. (author)

  10. The role of burnout syndrome as a mediator for the effect of psychosocial risk factors on the intensity of musculoskeletal disorders: a structural equation modeling approach.

    Science.gov (United States)

    Gholami, Tahereh; Pahlavian, Ahmad Heidari; Akbarzadeh, Mahdi; Motamedzade, Majid; Moghaddam, Rashid Heidari

    2016-01-01

    This study examined the hypothesis that burnout syndrome mediates effects of psychosocial risk factors and intensity of musculoskeletal disorders (MSDs) among hospital nurses. The sample was composed of 415 nurses from various wards across five hospitals of Iran's Hamedan University of Medical Sciences. Data were collected through three questionnaires: job content questionnaire, Maslach burnout inventory and visual analogue scale. Results of structural equation modeling with a mediating effect showed that psychosocial risk factors were significantly related to changes in burnout, which in turn affects intensity of MSDs.

  11. Component based modelling of piezoelectric ultrasonic actuators for machining applications

    International Nuclear Information System (INIS)

    Saleem, A; Ahmed, N; Salah, M; Silberschmidt, V V

    2013-01-01

    Ultrasonically Assisted Machining (UAM) is an emerging technology that has been utilized to improve the surface finishing in machining processes such as turning, milling, and drilling. In this context, piezoelectric ultrasonic transducers are being used to vibrate the cutting tip while machining at predetermined amplitude and frequency. However, modelling and simulation of these transducers is a tedious and difficult task. This is due to the inherent nonlinearities associated with smart materials. Therefore, this paper presents a component-based model of ultrasonic transducers that mimics the nonlinear behaviour of such a system. The system is decomposed into components, a mathematical model of each component is created, and the whole system model is accomplished by aggregating the basic components' model. System parameters are identified using Finite Element technique which then has been used to simulate the system in Matlab/SIMULINK. Various operation conditions are tested and performed to demonstrate the system performance

  12. Components in models of learning: Different operationalisations and relations between components

    Directory of Open Access Journals (Sweden)

    Mirkov Snežana

    2013-01-01

    Full Text Available This paper provides the presentation of different operationalisations of components in different models of learning. Special emphasis is on the empirical verifications of relations between components. Starting from the research of congruence between learning motives and strategies, underlying the general model of school learning that comprises different approaches to learning, we have analyzed the empirical verifications of factor structure of instruments containing the scales of motives and learning strategies corresponding to these motives. Considering the problems in the conceptualization of the achievement approach to learning, we have discussed the ways of operational sing the goal orientations and exploring their role in using learning strategies, especially within the model of the regulation of constructive learning processes. This model has served as the basis for researching learning styles that are the combination of a large number of components. Complex relations between the components point to the need for further investigation of the constructs involved in various models. We have discussed the findings and implications of the studies of relations between the components involved in different models, especially between learning motives/goals and learning strategies. We have analyzed the role of regulation in the learning process, whose elaboration, as indicated by empirical findings, can contribute to a more precise operationalisation of certain learning components. [Projekat Ministarstva nauke Republike Srbije, br. 47008: Unapređivanje kvaliteta i dostupnosti obrazovanja u procesima modernizacije Srbije i br. 179034: Od podsticanja inicijative, saradnje i stvaralaštva u obrazovanju do novih uloga i identiteta u društvu

  13. Models for integrated components coupled with their EM environment

    NARCIS (Netherlands)

    Ioan, D.; Schilders, W.H.A.; Ciuprina, G.; Meijs, van der N.P.; Schoenmaker, W.

    2008-01-01

    Abstract: Purpose – The main aim of this study is the modelling of the interaction of on-chip components with their electromagnetic environment. Design/methodology/approach – The integrated circuit is decomposed in passive and active components interconnected by means of terminals and connectors

  14. Feature-based component model for design of embedded systems

    Science.gov (United States)

    Zha, Xuan Fang; Sriram, Ram D.

    2004-11-01

    An embedded system is a hybrid of hardware and software, which combines software's flexibility and hardware real-time performance. Embedded systems can be considered as assemblies of hardware and software components. An Open Embedded System Model (OESM) is currently being developed at NIST to provide a standard representation and exchange protocol for embedded systems and system-level design, simulation, and testing information. This paper proposes an approach to representing an embedded system feature-based model in OESM, i.e., Open Embedded System Feature Model (OESFM), addressing models of embedded system artifacts, embedded system components, embedded system features, and embedded system configuration/assembly. The approach provides an object-oriented UML (Unified Modeling Language) representation for the embedded system feature model and defines an extension to the NIST Core Product Model. The model provides a feature-based component framework allowing the designer to develop a virtual embedded system prototype through assembling virtual components. The framework not only provides a formal precise model of the embedded system prototype but also offers the possibility of designing variation of prototypes whose members are derived by changing certain virtual components with different features. A case study example is discussed to illustrate the embedded system model.

  15. Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo

    KAUST Repository

    Martinez, Josue G.; Liang, Faming; Zhou, Lan; Carroll, Raymond J.

    2010-01-01

    model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order

  16. Musculoskeletal ultrasound in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Kathrin, E-mail: kathrin.maurer@i-med.ac.at

    2014-09-15

    Ultrasonography is one of the first line imaging modalities for the evaluation of musculoskeletal disorders in children. This article provides an overview of the most important pathologic entities in which ultrasonography significantly contributes to the diagnostic workup.

  17. Background, design and conceptual model of the cluster randomized multiple-component workplace study: FRamed Intervention to Decrease Occupational Muscle pain - "FRIDOM"

    Directory of Open Access Journals (Sweden)

    Jeanette Reffstrup Christensen

    2016-10-01

    Full Text Available Abstract Background Several RCT studies have aimed to reduce either musculoskeletal disorders, sickness presenteeism, sickness absenteeism or a combination of these among females with high physical work demands. These studies have provided evidence that workplace health promotion (WHP interventions are effective, but long-term effects are still uncertain. These studies either lack to succeed in maintaining intervention effects or lack to document if effects are maintained past a one-year period. This paper describes the background, design and conceptual model of the FRIDOM (FRamed Intervention to Decrease Occupational Muscle pain WHP program among health care workers. A job group characterized by having high physical work demands, musculoskeletal disorders, high sickness presenteeism - and absenteeism. Methods FRIDOM aimed to reduce neck and shoulder pain. Secondary aims were to decrease sickness presenteeism, sickness absenteeism and lifestyle-diseases such as other musculoskeletal disorders as well as metabolic-, and cardiovascular disorders – and to maintain participation to regular physical exercise training, after a one year intervention period. The entire concept was tailored to a population of female health care workers. This was done through a multi-component intervention including 1 intelligent physical exercise training (IPET, dietary advice and weight loss (DAW and cognitive behavioural training (CBT. Discussion The FRIDOM program has the potential to provide evidence-based knowledge of the pain reducing effect of a multi component WHP among a female group of employees with a high prevalence of musculoskeletal disorders and in a long term perspective evaluate the effects on sickness presenteeism and absenteeism as well as risk of life-style diseases. Trial registration NCT02843269 , 06.27.2016 - retrospectively registered.

  18. Background, design and conceptual model of the cluster randomized multiple-component workplace study: FRamed Intervention to Decrease Occupational Muscle pain - "FRIDOM".

    Science.gov (United States)

    Christensen, Jeanette Reffstrup; Bredahl, Thomas Viskum Gjelstrup; Hadrévi, Jenny; Sjøgaard, Gisela; Søgaard, Karen

    2016-10-24

    Several RCT studies have aimed to reduce either musculoskeletal disorders, sickness presenteeism, sickness absenteeism or a combination of these among females with high physical work demands. These studies have provided evidence that workplace health promotion (WHP) interventions are effective, but long-term effects are still uncertain. These studies either lack to succeed in maintaining intervention effects or lack to document if effects are maintained past a one-year period. This paper describes the background, design and conceptual model of the FRIDOM (FRamed Intervention to Decrease Occupational Muscle pain) WHP program among health care workers. A job group characterized by having high physical work demands, musculoskeletal disorders, high sickness presenteeism - and absenteeism. FRIDOM aimed to reduce neck and shoulder pain. Secondary aims were to decrease sickness presenteeism, sickness absenteeism and lifestyle-diseases such as other musculoskeletal disorders as well as metabolic-, and cardiovascular disorders - and to maintain participation to regular physical exercise training, after a one year intervention period. The entire concept was tailored to a population of female health care workers. This was done through a multi-component intervention including 1) intelligent physical exercise training (IPET), dietary advice and weight loss (DAW) and cognitive behavioural training (CBT). The FRIDOM program has the potential to provide evidence-based knowledge of the pain reducing effect of a multi component WHP among a female group of employees with a high prevalence of musculoskeletal disorders and in a long term perspective evaluate the effects on sickness presenteeism and absenteeism as well as risk of life-style diseases. NCT02843269 , 06.27.2016 - retrospectively registered.

  19. Robustness of Component Models in Energy System Simulators

    DEFF Research Database (Denmark)

    Elmegaard, Brian

    2003-01-01

    During the development of the component-based energy system simulator DNA (Dynamic Network Analysis), several obstacles to easy use of the program have been observed. Some of these have to do with the nature of the program being based on a modelling language, not a graphical user interface (GUI......). Others have to do with the interaction between models of the nature of the substances in an energy system (e.g., fuels, air, flue gas), models of the components in a system (e.g., heat exchangers, turbines, pumps), and the solver for the system of equations. This paper proposes that the interaction...

  20. Option valuation with the simplified component GARCH model

    DEFF Research Database (Denmark)

    Dziubinski, Matt P.

    We introduce the Simplified Component GARCH (SC-GARCH) option pricing model, show and discuss sufficient conditions for non-negativity of the conditional variance, apply it to low-frequency and high-frequency financial data, and consider the option valuation, comparing the model performance...

  1. Integrating environmental component models. Development of a software framework

    NARCIS (Netherlands)

    Schmitz, O.

    2014-01-01

    Integrated models consist of interacting component models that represent various natural and social systems. They are important tools to improve our understanding of environmental systems, to evaluate cause–effect relationships of human–natural interactions, and to forecast the behaviour of

  2. A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model.

    Science.gov (United States)

    Scarton, Alessandra; Guiotto, Annamaria; Malaquias, Tiago; Spolaor, Fabiola; Sinigaglia, Giacomo; Cobelli, Claudio; Jonkers, Ilse; Sawacha, Zimi

    2018-02-01

    Diabetic foot is one of the most debilitating complications of diabetes and may lead to plantar ulcers. In the last decade, gait analysis, musculoskeletal modelling (MSM) and finite element modelling (FEM) have shown their ability to contribute to diabetic foot prevention and suggested that the origin of the plantar ulcers is in deeper tissue layers rather than on the plantar surface. Hence the aim of the current work is to develop a methodology that improves FEM-derived foot internal stresses prediction, for diabetic foot prevention applications. A 3D foot FEM was combined with MSM derived force to predict the sites of excessive internal stresses on the foot. In vivo gait analysis data, and an MRI scan of a foot from a healthy subject were acquired and used to develop a six degrees of freedom (6 DOF) foot MSM and a 3D subject-specific foot FEM. Ankle kinematics were applied as boundary conditions to the FEM together with: 1. only Ground Reaction Forces (GRFs); 2. OpenSim derived extrinsic muscles forces estimated with a standard OpenSim MSM; 3. extrinsic muscle forces derived through the (6 DOF) foot MSM; 4. intrinsic and extrinsic muscles forces derived through the 6 DOF foot MSM. For model validation purposes, simulated peak pressures were extracted and compared with those measured experimentally. The importance of foot muscles in controlling plantar pressure distribution and internal stresses is confirmed by the improved accuracy in the estimation of the peak pressures obtained with the inclusion of intrinsic and extrinsic muscle forces. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Developing predictive models for return to work using the Military Power, Performance and Prevention (MP3) musculoskeletal injury risk algorithm: a study protocol for an injury risk assessment programme.

    Science.gov (United States)

    Rhon, Daniel I; Teyhen, Deydre S; Shaffer, Scott W; Goffar, Stephen L; Kiesel, Kyle; Plisky, Phil P

    2018-02-01

    Musculoskeletal injuries are a primary source of disability in the US Military, and low back pain and lower extremity injuries account for over 44% of limited work days annually. History of prior musculoskeletal injury increases the risk for future injury. This study aims to determine the risk of injury after returning to work from a previous injury. The objective is to identify criteria that can help predict likelihood for future injury or re-injury. There will be 480 active duty soldiers recruited from across four medical centres. These will be patients who have sustained a musculoskeletal injury in the lower extremity or lumbar/thoracic spine, and have now been cleared to return back to work without any limitations. Subjects will undergo a battery of physical performance tests and fill out sociodemographic surveys. They will be followed for a year to identify any musculoskeletal injuries that occur. Prediction algorithms will be derived using regression analysis from performance and sociodemographic variables found to be significantly different between injured and non-injured subjects. Due to the high rates of injuries, injury prevention and prediction initiatives are growing. This is the first study looking at predicting re-injury rates after an initial musculoskeletal injury. In addition, multivariate prediction models appear to have move value than models based on only one variable. This approach aims to validate a multivariate model used in healthy non-injured individuals to help improve variables that best predict the ability to return to work with lower risk of injury, after a recent musculoskeletal injury. NCT02776930. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Component and system simulation models for High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Sozer, A.

    1989-08-01

    Component models for the High Flux Isotope Reactor (HFIR) have been developed. The models are HFIR core, heat exchangers, pressurizer pumps, circulation pumps, letdown valves, primary head tank, generic transport delay (pipes), system pressure, loop pressure-flow balance, and decay heat. The models were written in FORTRAN and can be run on different computers, including IBM PCs, as they do not use any specific simulation languages such as ACSL or CSMP. 14 refs., 13 figs

  5. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos

    2012-07-01

    We present an approach to synthesizing shapes from complex domains, by identifying new plausible combinations of components from existing shapes. Our primary contribution is a new generative model of component-based shape structure. The model represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation that can be effectively learned without supervision from a set of compatibly segmented shapes. We evaluate the model on a number of shape datasets with complex structural variability and demonstrate its application to amplification of shape databases and to interactive shape synthesis. © 2012 ACM 0730-0301/2012/08-ART55.

  6. Musculoskeletal ultrasonography in children

    International Nuclear Information System (INIS)

    Teo, E.-L.H.; Strouse, P.J.; Chhem, R.K.

    2002-01-01

    With the development of high-resolution ultrasound transducers, the role of ultrasonography (US) in evaluating the musculoskeletal system has increased. It is now possible to obtain detailed images of bones and soft-tissue structures that were previously unattainable. The advantages of US, when compared with other imaging modalities, are many. It is less expensive than magnetic resonance imaging (MRI) and computed tomography (CT). It does not expose the patient to ionizing radiation, so US examinations can be repeated without harm to the patient. Furthermore, US is performed in real-time, making it possible to assess the musculoskeletal system dynamically, in multiple planes and with contralateral comparison. In experienced hands, US is a quick, noninvasive and cost-effective way to assess the musculoskeletal system in children. It is used to evaluate soft-tissue masses, joint swelling, infections, lesions involving the chest and abdominal walls, bones, muscles and clubfoot deformity and to locate any foreign bodies. (author)

  7. Imaging of musculoskeletal tuberculosis

    International Nuclear Information System (INIS)

    Boussel, L.; Marchand, B.; Blineau, N.; Picaud, G.; Emn, M.; Coulon, A.; Pagnon, P.; Rode, A.; Pin-Leveugle, J.; Berthezene, Y.; Pariset, C.; Boibieux, A.; Hermier, M.

    2002-01-01

    Purpose and methods. To perform an illustrated and educational review of musculoskeletal tuberculosis. Results. As the incidence of musculoskeletal tuberculosis still increases, a review appears justified. The following four main presentations are detailed and illustrated, by emphasizing the value of both CT and MR imaging: a) spine tuberculosis (∼ 50 %/) commonly involves two adjacent vertebral bodies with usual large paravertebral abscesses. The following lesions are highly suggestive of tuberculosis: solitary vertebral involvement, solitary epidural abscess with or without erosive spondylitis; b) osteo-arthritis: peripherally located erosions at synovial insertions with gradual narrowing of the joint space are highly suggestive; c) osteomyelitis: unusual, may involve any bones; d) tenosynovitis and bursitis. Conclusion. Imaging studies are essential for diagnosis and to assess the extent of musculo-skeletal tuberculosis. (author)

  8. Towards a Component Based Model for Database Systems

    Directory of Open Access Journals (Sweden)

    Octavian Paul ROTARU

    2004-02-01

    Full Text Available Due to their effectiveness in the design and development of software applications and due to their recognized advantages in terms of reusability, Component-Based Software Engineering (CBSE concepts have been arousing a great deal of interest in recent years. This paper presents and extends a component-based approach to object-oriented database systems (OODB introduced by us in [1] and [2]. Components are proposed as a new abstraction level for database system, logical partitions of the schema. In this context, the scope is introduced as an escalated property for transactions. Components are studied from the integrity, consistency, and concurrency control perspective. The main benefits of our proposed component model for OODB are the reusability of the database design, including the access statistics required for a proper query optimization, and a smooth information exchange. The integration of crosscutting concerns into the component database model using aspect-oriented techniques is also discussed. One of the main goals is to define a method for the assessment of component composition capabilities. These capabilities are restricted by the component’s interface and measured in terms of adaptability, degree of compose-ability and acceptability level. The above-mentioned metrics are extended from database components to generic software components. This paper extends and consolidates into one common view the ideas previously presented by us in [1, 2, 3].[1] Octavian Paul Rotaru, Marian Dobre, Component Aspects in Object Oriented Databases, Proceedings of the International Conference on Software Engineering Research and Practice (SERP’04, Volume II, ISBN 1-932415-29-7, pages 719-725, Las Vegas, NV, USA, June 2004.[2] Octavian Paul Rotaru, Marian Dobre, Mircea Petrescu, Integrity and Consistency Aspects in Component-Oriented Databases, Proceedings of the International Symposium on Innovation in Information and Communication Technology (ISIICT

  9. Modeling fabrication of nuclear components: An integrative approach

    Energy Technology Data Exchange (ETDEWEB)

    Hench, K.W.

    1996-08-01

    Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components in an environment of intense regulation and shrinking budgets. This dissertation presents an integrative two-stage approach to modeling the casting operation for fabrication of nuclear weapon primary components. The first stage optimizes personnel radiation exposure for the casting operation layout by modeling the operation as a facility layout problem formulated as a quadratic assignment problem. The solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.

  10. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    Alammouri, Ahmad; Elsawy, Hesham; Salem, Ahmed Sultan; Di Renzo, Marco; Alouini, Mohamed-Slim

    2016-01-01

    to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks

  11. Modeling the evaporation of sessile multi-component droplets

    NARCIS (Netherlands)

    Diddens, C.; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Wijshoff, H.M.A.

    2017-01-01

    We extended a mathematical model for the drying of sessile droplets, based on the lubrication approximation, to binary mixture droplets. This extension is relevant for e.g. inkjet printing applications, where ink consisting of several components are used. The extension involves the generalization of

  12. Incremental principal component pursuit for video background modeling

    Science.gov (United States)

    Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt

    2017-03-14

    An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.

  13. Do Knowledge-Component Models Need to Incorporate Representational Competencies?

    Science.gov (United States)

    Rau, Martina Angela

    2017-01-01

    Traditional knowledge-component models describe students' content knowledge (e.g., their ability to carry out problem-solving procedures or their ability to reason about a concept). In many STEM domains, instruction uses multiple visual representations such as graphs, figures, and diagrams. The use of visual representations implies a…

  14. Hybrid time/frequency domain modeling of nonlinear components

    DEFF Research Database (Denmark)

    Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth

    2007-01-01

    This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...

  15. Appraised leadership styles, psychosocial work factors, and musculoskeletal pain among public employees.

    Science.gov (United States)

    Fjell, Ylva; Osterberg, Mia; Alexanderson, Kristina; Karlqvist, Lena; Bildt, Carina

    2007-10-01

    The main aim of this study was to explore the associations between appraised leadership styles, psychosocial work factors and musculoskeletal pain among subordinates in four different public service sectors from an epidemiological perspective. A cross-sectional questionnaire study was conducted; data from 2,403 public sector employees in subordinate positions (86% women) were analysed. The appraised leadership styles were measured through items from a modified version of the CPE questionnaire (C change, P production/structure, E employee/relation). The structure validity of the CPE-model was examined by principal component analysis (PCA). Univariate and multivariate analyses of associations between levels of musculoskeletal pain and appraised leadership styles and with psychosocial work factors were conducted. Odds ratios (ORs) with confidence intervals (CIs) of 95% were used as a measure of associations. There were small variations in the appraisals of the immediate manager among the subordinates. However, the associations between musculoskeletal pain and leadership styles varied according to sector. Poor appraisals (low scores) on "change" and "employee relation" dimensions were associated with high levels of musculoskeletal pain in two sectors: home and health care services. In the domestic catering services, poor appraisals of managers in the "production/structure" dimension had the strongest association with high levels of pain. In general, poor appraisals of the "change" dimension was most strongly associated with high levels of musculoskeletal pain. "High work demands" had the strongest association with high levels of pain, particularly among the men. Poor appraisals of managers and their leadership styles were associated with high levels of musculoskeletal pain among both female and male subordinates in different public service sectors. There is therefore a great need of further studies of the mechanisms behind the relationships between the leadership

  16. Data and information needs for WPP testing and component modeling

    International Nuclear Information System (INIS)

    Kuhn, W.L.

    1987-01-01

    The modeling task of the Waste Package Program (WPP) is to develop conceptual models that describe the interactions of waste package components with their environment and the interactions among waste package components. The task includes development and maintenance of a database of experimental data, and statistical analyses to fit model coefficients, test the significance of the fits, and propose experimental designs. The modeling task collaborates with experimentalists to apply physicochemical principles to develop the conceptual models, with emphasis on the subsequent mathematical development. The reason for including the modeling task in the predominantly experimental WPP is to keep the modeling of component behavior closely associated with the experimentation. Whenever possible, waste package degradation processes are described in terms of chemical reactions or transport processes. The integration of equations for assumed or calculated repository conditions predicts variations with time in the repository. Within the context of the waste package program, the composition and rate of arrival of brine to the waste package are environmental variables. These define the environment to be simulated or explored during waste package component and interactions testing. The containment period is characterized by rapid changes in temperature, pressure, oxygen fugacity, and salt porosity. Brine migration is expected to be most rapid during this period. The release period is characterized by modest and slowly changing temperatures, high pressure, low oxygen fugacity, and low porosity. The need is to define the scenario within which waste package degradation calculations are to be made and to quantify the rate of arrival and composition of the brine. Appendix contains 4 vugraphs

  17. Sparse Principal Component Analysis in Medical Shape Modeling

    DEFF Research Database (Denmark)

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...

  18. Modeling cellular networks in fading environments with dominant specular components

    KAUST Repository

    AlAmmouri, Ahmad

    2016-07-26

    Stochastic geometry (SG) has been widely accepted as a fundamental tool for modeling and analyzing cellular networks. However, the fading models used with SG analysis are mainly confined to the simplistic Rayleigh fading, which is extended to the Nakagami-m fading in some special cases. However, neither the Rayleigh nor the Nakagami-m accounts for dominant specular components (DSCs) which may appear in realistic fading channels. In this paper, we present a tractable model for cellular networks with generalized two-ray (GTR) fading channel. The GTR fading explicitly accounts for two DSCs in addition to the diffuse components and offers high flexibility to capture diverse fading channels that appear in realistic outdoor/indoor wireless communication scenarios. It also encompasses the famous Rayleigh and Rician fading as special cases. To this end, the prominent effect of DSCs is highlighted in terms of average spectral efficiency. © 2016 IEEE.

  19. Cognitive components underpinning the development of model-based learning.

    Science.gov (United States)

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Models for describing the thermal characteristics of building components

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik

    2008-01-01

    , for example. For the analysis of these tests, dynamic analysis models and methods are required. However, a wide variety of models and methods exists, and the problem of choosing the most appropriate approach for each particular case is a non-trivial and interdisciplinary task. Knowledge of a large family....... The characteristics of each type of model are highlighted. Some available software tools for each of the methods described will be mentioned. A case study also demonstrating the difference between linear and nonlinear models is considered....... of these approaches may therefore be very useful for selecting a suitable approach for each particular case. This paper presents an overview of models that can be applied for modelling the thermal characteristics of buildings and building components using data from outdoor testing. The choice of approach depends...

  1. Formal Model-Driven Engineering: Generating Data and Behavioural Components

    Directory of Open Access Journals (Sweden)

    Chen-Wei Wang

    2012-12-01

    Full Text Available Model-driven engineering is the automatic production of software artefacts from abstract models of structure and functionality. By targeting a specific class of system, it is possible to automate aspects of the development process, using model transformations and code generators that encode domain knowledge and implementation strategies. Using this approach, questions of correctness for a complex, software system may be answered through analysis of abstract models of lower complexity, under the assumption that the transformations and generators employed are themselves correct. This paper shows how formal techniques can be used to establish the correctness of model transformations used in the generation of software components from precise object models. The source language is based upon existing, formal techniques; the target language is the widely-used SQL notation for database programming. Correctness is established by giving comparable, relational semantics to both languages, and checking that the transformations are semantics-preserving.

  2. Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo

    KAUST Repository

    Martinez, Josue G.

    2010-06-01

    The authors consider the analysis of hierarchical longitudinal functional data based upon a functional principal components approach. In contrast to standard frequentist approaches to selecting the number of principal components, the authors do model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order to overcome this, the authors show how to apply Stochastic Approximation Monte Carlo (SAMC) to this problem, a method that has the potential to explore the entire space and does not become trapped in local extrema. The combination of reversible jump methods and SAMC in hierarchical longitudinal functional data is simplified by a polar coordinate representation of the principal components. The approach is easy to implement and does well in simulated data in determining the distribution of the number of principal components, and in terms of its frequentist estimation properties. Empirical applications are also presented.

  3. A minimal model for two-component dark matter

    International Nuclear Information System (INIS)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z_2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  4. Evaluation of the RELAP5/MOD3 multidimensional component model

    International Nuclear Information System (INIS)

    Tomlinson, E.T.; Rens, T.E.; Coffield, R.D.

    1994-01-01

    Accurate plenum predictions, which are directly related to the mixing models used, are an important plant modeling consideration because of the consequential impact on basic transient performance calculations for the integrated system. The effect of plenum is a time shift between inlet and outlet temperature changes to the particular volume. Perfect mixing, where the total volume interacts instantaneously with the total inlet flow, does not occur because of effects such as inlet/outlet nozzle jetting, flow stratification, nested vortices within the volume and the general three-dimensional velocity distribution of the flow field. The time lag which exists between the inlet and outlet flows impacts the predicted rate of temperature change experienced by various plant system components and this impacts local component analyses which are affected by the rate of temperature change. This study includes a comparison of two-dimensional plenum mixing predictions using CFD-FLOW3D, RELAP5/MOD3 and perfect mixing models. Three different geometries (flat, square and tall) are assessed for scalar transport times using a wide range of inlet velocity and isothermal conditions. In addition, the three geometries were evaluated for low flow conditions with the inlet flow experiencing a large step temperature decrease. A major conclusion from this study is that the RELAP5/MOD3 multidimensional component model appears to be adequately predicting plenum mixing for a wide range of thermal-hydraulic conditions representative of plant transients

  5. Evaluating fugacity models for trace components in landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Shafi, Sophie [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Sweetman, Andrew [Department of Environmental Science, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Hough, Rupert L. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Smith, Richard [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Rosevear, Alan [Science Group - Waste and Remediation, Environment Agency, Reading RG1 8DQ (United Kingdom); Pollard, Simon J.T. [Integrated Waste Management Centre, Sustainable Systems Department, Building 61, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL (United Kingdom)]. E-mail: s.pollard@cranfield.ac.uk

    2006-12-15

    A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95 300 {mu}g m{sup -3}; 43 {mu}g m{sup -3}) fell within measured ranges observed in gas from landfills (24 300-180 000 {mu}g m{sup -3}; 20-70 {mu}g m{sup -3}). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas. - Fugacity for trace component in landfill gas.

  6. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  7. Scale modeling flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  8. Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury.

    Science.gov (United States)

    Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David

    2013-06-01

    We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.

  9. Comparative Analysis of Predictive Models of Pain Level from Work-Related Musculoskeletal Disorders among Sewing Machine Operators in the Garments Industry

    Directory of Open Access Journals (Sweden)

    Carlos Ignacio P. Luga

    2017-02-01

    Full Text Available The Philippine garments industry has been experiencing a roller-coaster ride during the past decades, with much competition from its Asian neighbors, especially in the wake of the ASEAN 2015 Integration. One of the areas in the industry which can be looked into and possibly improved is the concern on Work-related Musculoskeletal Disorders (WMSDs. Literatures have shown that pain from WMSDs among sewing machine operators in this industry is very prevalent and its effects on the same operators have been very costly. After identifying the risk factors which may cause pain from WMSDs, this study generated three models which would predict the said pain level. These models were analyzed, compared and the best model was identified to make the most accurate prediction of pain level. This predictive model would be helpful for management of garment firms since first, the risk factors have been identified and hence can be used as bases for proposed improvements. Second, the prediction of each operator’s pain level would allow management to assess better its employees in terms of their sewing capacity vis-à-vis the company’s production plans.

  10. Two-component mixture cure rate model with spline estimated nonparametric components.

    Science.gov (United States)

    Wang, Lu; Du, Pang; Liang, Hua

    2012-09-01

    In some survival analysis of medical studies, there are often long-term survivors who can be considered as permanently cured. The goals in these studies are to estimate the noncured probability of the whole population and the hazard rate of the susceptible subpopulation. When covariates are present as often happens in practice, to understand covariate effects on the noncured probability and hazard rate is of equal importance. The existing methods are limited to parametric and semiparametric models. We propose a two-component mixture cure rate model with nonparametric forms for both the cure probability and the hazard rate function. Identifiability of the model is guaranteed by an additive assumption that allows no time-covariate interactions in the logarithm of hazard rate. Estimation is carried out by an expectation-maximization algorithm on maximizing a penalized likelihood. For inferential purpose, we apply the Louis formula to obtain point-wise confidence intervals for noncured probability and hazard rate. Asymptotic convergence rates of our function estimates are established. We then evaluate the proposed method by extensive simulations. We analyze the survival data from a melanoma study and find interesting patterns for this study. © 2011, The International Biometric Society.

  11. Modelling raster-based monthly water balance components for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ulmen, C.

    2000-11-01

    The terrestrial runoff component is a comparatively small but sensitive and thus significant quantity in the global energy and water cycle at the interface between landmass and atmosphere. As opposed to soil moisture and evapotranspiration which critically determine water vapour fluxes and thus water and energy transport, it can be measured as an integrated quantity over a large area, i.e. the river basin. This peculiarity makes terrestrial runoff ideally suited for the calibration, verification and validation of general circulation models (GCMs). Gauging stations are not homogeneously distributed in space. Moreover, time series are not necessarily continuously measured nor do they in general have overlapping time periods. To overcome this problems with regard to regular grid spacing used in GCMs, different methods can be applied to transform irregular data to regular so called gridded runoff fields. The present work aims to directly compute the gridded components of the monthly water balance (including gridded runoff fields) for Europe by application of the well-established raster-based macro-scale water balance model WABIMON used at the Federal Institute of Hydrology, Germany. Model calibration and validation is performed by separated examination of 29 representative European catchments. Results indicate a general applicability of the model delivering reliable overall patterns and integrated quantities on a monthly basis. For time steps less then too weeks further research and structural improvements of the model are suggested. (orig.)

  12. Learning musculoskeletal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vilanova, Joan C. (eds.) [Girona Univ. (Spain). Clinica Girona; Ribes, Ramon

    2010-07-01

    This introduction to musculoskeletal imaging is a further volume in the Learning Imaging series. Written in a user-friendly format, it takes into account that musculoskeletal radiology is a subspecialty which has widely expanded its scope and imaging capabilities with the advent of ultrasound, MRI, multidetector CT, and PET. The book is divided into ten sections covering: infection and arthritis, tumors, tendons and muscles, bone marrow, spine, shoulder, elbow, hand and wrist, hip and pelvis, knee, and ankle and foot. Each chapter is presented with an introduction and ten case studies with illustrations and comments from anatomical, physiopathological and radiological standpoints along with bibliographic recommendations. Learning Imaging is a unique case-based series for those in professional education in general and for physicians in particular. (orig.)

  13. Learning musculoskeletal imaging

    International Nuclear Information System (INIS)

    Vilanova, Joan C.; Ribes, Ramon

    2010-01-01

    This introduction to musculoskeletal imaging is a further volume in the Learning Imaging series. Written in a user-friendly format, it takes into account that musculoskeletal radiology is a subspecialty which has widely expanded its scope and imaging capabilities with the advent of ultrasound, MRI, multidetector CT, and PET. The book is divided into ten sections covering: infection and arthritis, tumors, tendons and muscles, bone marrow, spine, shoulder, elbow, hand and wrist, hip and pelvis, knee, and ankle and foot. Each chapter is presented with an introduction and ten case studies with illustrations and comments from anatomical, physiopathological and radiological standpoints along with bibliographic recommendations. Learning Imaging is a unique case-based series for those in professional education in general and for physicians in particular. (orig.)

  14. Three-Component Forward Modeling for Transient Electromagnetic Method

    Directory of Open Access Journals (Sweden)

    Bin Xiong

    2010-01-01

    Full Text Available In general, the time derivative of vertical magnetic field is considered only in the data interpretation of transient electromagnetic (TEM method. However, to survey in the complex geology structures, this conventional technique has begun gradually to be unsatisfied with the demand of field exploration. To improve the integrated interpretation precision of TEM, it is necessary to study the three-component forward modeling and inversion. In this paper, a three-component forward algorithm for 2.5D TEM based on the independent electric and magnetic field has been developed. The main advantage of the new scheme is that it can reduce the size of the global system matrix to the utmost extent, that is to say, the present is only one fourth of the conventional algorithm. In order to illustrate the feasibility and usefulness of the present algorithm, several typical geoelectric models of the TEM responses produced by loop sources at air-earth interface are presented. The results of the numerical experiments show that the computation speed of the present scheme is increased obviously and three-component interpretation can get the most out of the collected data, from which we can easily analyze or interpret the space characteristic of the abnormity object more comprehensively.

  15. Integrated modelling of the edge plasma and plasma facing components

    International Nuclear Information System (INIS)

    Coster, D.P.; Bonnin, X.; Mutzke, A.; Schneider, R.; Warrier, M.

    2007-01-01

    Modelling of the interaction between the edge plasma and plasma facing components (PFCs) has tended to place more emphasis on either the plasma or the PFCs. Either the PFCs do not change with time and the plasma evolution is studied, or the plasma is assumed to remain static and the detailed interaction of the plasma and the PFCs are examined, with no back-reaction on the plasma taken into consideration. Recent changes to the edge simulation code, SOLPS, now allow for changes in both the plasma and the PFCs to be considered. This has been done by augmenting the code to track the time-development of the properties of plasma facing components (PFCs). Results of standard mixed-materials scenarios (base and redeposited C; Be) are presented

  16. A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO: the WOMED concept of lateral tension and its general implications in disease

    Directory of Open Access Journals (Sweden)

    Moncayo Helga

    2007-02-01

    Full Text Available Abstract Background Low level connective tissue inflammation has been proposed to play a role in thyroid associated ophthalmopathy (TAO. The aim of this study was to investigate this postulate by a musculoskeletal approach together with biochemical parameters. Methods 13 patients with TAO and 16 controls were examined. Erythrocyte levels of Zn, Cu, Ca2+, Mg, and Fe were determined. The musculoskeletal evaluation included observational data on body posture with emphasis on the orbit-head region. The angular foot position in the frontal plane was quantified following gait observation. The axial orientation of the legs and feet was evaluated in an unloaded supine position. Functional propioceptive tests based on stretch stimuli were done by using foot inversion and foot rotation. Results Alterations in the control group included neck tilt in 3 cases, asymmetrical foot angle during gait in 2, and a reaction to foot inversion in 5 cases. TAO patients presented facial asymmetry with displaced eye fissure inclination (mean 9.1° as well as tilted head-on-neck position (mean 5.7°. A further asymmetry feature was external rotation of the legs and feet (mean 27°. Both foot inversion as well as foot rotation induced a condition of neuromuscular deficit. This condition could be regulated by gentle acupressure either on the lateral abdomen or the lateral ankle at the acupuncture points gall bladder 26 or bladder 62, respectively. In 5 patients, foot rotation produced a phenomenon of moving toes in the contra lateral foot. In addition foot rotation was accompanied by an audible tendon snapping. Lower erythrocyte Zn levels and altered correlations between Ca2+, Mg, and Fe were found in TAO. Conclusion This whole body observational study has revealed axial deviations and body asymmetry as well as the phenomenon of moving toes in TAO. The most common finding was an arch-like displacement of the body, i.e. eccentric position, with foot inversion and head tilt

  17. Two-component scattering model and the electron density spectrum

    Science.gov (United States)

    Zhou, A. Z.; Tan, J. Y.; Esamdin, A.; Wu, X. J.

    2010-02-01

    In this paper, we discuss a rigorous treatment of the refractive scintillation caused by a two-component interstellar scattering medium and a Kolmogorov form of density spectrum. It is assumed that the interstellar scattering medium is composed of a thin-screen interstellar medium (ISM) and an extended interstellar medium. We consider the case that the scattering of the thin screen concentrates in a thin layer represented by a δ function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with the observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight (LOS). The theoretical modulation indices are comparatively less sensitive to the scattering strength of the thin-screen medium, but they critically depend on the distance from the observer to the thin screen. The logarithmic slope of the structure function is sensitive to the scattering strength of the thin-screen medium, but is relatively insensitive to the thin-screen location. Therefore, the proposed model can be applied to interpret the structure functions of flux density observed in pulsar PSR B2111 + 46 and PSR B0136 + 57. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the interstellar medium. Thus our work provides some insight into the distribution of the scattering along the LOS to the pulsar PSR B2111 + 46 and PSR B0136 + 57.

  18. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  19. Flexible Multibody Systems Models Using Composite Materials Components

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambr'osio, Jorge A. C.; Leal, Rog'erio Pereira

    2004-01-01

    The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method

  20. Sparse principal component analysis in medical shape modeling

    Science.gov (United States)

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  1. Modeling for thermodynamic activities of components in simulated reprocessing solutions

    International Nuclear Information System (INIS)

    Sasahira, Akira; Hoshikawa, Tadahiro; Kawamura, Fumio

    1992-01-01

    Analyses of chemical reactions have been widely carried out for soluble fission products encountered in nuclear fuel reprocessing. For detailed analyses of reactions, a prediction of the activity or activity coefficient for nitric acid, water, and several nitrates of fission products is needed. An idea for the predicted nitric acid activity was presented earlier. The model, designated the hydration model, does not predict the nitrate activity. It did, however, suggest that the activity of water would be a function of nitric acid activity but not the molar fraction of water. If the activities of nitric acid and water are accurately predicted, the activity of the last component, nitrate, can be calculated using the Gibbs-Duhem relation for chemical potentials. Therefore, in this study, the earlier hydration model was modified to evaluate the water activity more accurately. The modified model was experimentally examined in stimulated reprocessing solutions. It is concluded that the modified model was suitable for water activity, but further improvement was needed for the activity evaluation of nitric acid in order to calculate the nitrate activity

  2. Surgical Simulations Based on Limited Quantitative Data: Understanding How Musculoskeletal Models Can Be Used to Predict Moment Arms and Guide Experimental Design.

    Directory of Open Access Journals (Sweden)

    Jennifer A Nichols

    Full Text Available The utility of biomechanical models and simulations to examine clinical problems is currently limited by the need for extensive amounts of experimental data describing how a given procedure or disease affects the musculoskeletal system. Methods capable of predicting how individual biomechanical parameters are altered by surgery are necessary for the efficient development of surgical simulations. In this study, we evaluate to what extent models based on limited amounts of quantitative data can be used to predict how surgery influences muscle moment arms, a critical parameter that defines how muscle force is transformed into joint torque. We specifically examine proximal row carpectomy and scaphoid-excision four-corner fusion, two common surgeries to treat wrist osteoarthritis. Using models of these surgeries, which are based on limited data and many assumptions, we perform simulations to formulate a hypothesis regarding how these wrist surgeries influence muscle moment arms. Importantly, the hypothesis is based on analysis of only the primary wrist muscles. We then test the simulation-based hypothesis using a cadaveric experiment that measures moment arms of both the primary wrist and extrinsic thumb muscles. The measured moment arms of the primary wrist muscles are used to verify the hypothesis, while those of the extrinsic thumb muscles are used as cross-validation to test whether the hypothesis is generalizable. The moment arms estimated by the models and measured in the cadaveric experiment both indicate that a critical difference between the surgeries is how they alter radial-ulnar deviation versus flexion-extension moment arms at the wrist. Thus, our results demonstrate that models based on limited quantitative data can provide novel insights. This work also highlights that synergistically utilizing simulation and experimental methods can aid the design of experiments and make it possible to test the predictive limits of current computer

  3. Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: a systematic review.

    Science.gov (United States)

    Wingbermühle, Roel W; van Trijffel, Emiel; Nelissen, Paul M; Koes, Bart; Verhagen, Arianne P

    2018-01-01

    Which multivariable prognostic model(s) for recovery in people with neck pain can be used in primary care? Systematic review of studies evaluating multivariable prognostic models. People with non-specific neck pain presenting at primary care. Baseline characteristics of the participants. Recovery measured as pain reduction, reduced disability, or perceived recovery at short-term and long-term follow-up. Fifty-three publications were included, of which 46 were derivation studies, four were validation studies, and three concerned combined studies. The derivation studies presented 99 multivariate models, all of which were at high risk of bias. Three externally validated models generated usable models in low risk of bias studies. One predicted recovery in non-specific neck pain, while two concerned participants with whiplash-associated disorders (WAD). Discriminative ability of the non-specific neck pain model was area under the curve (AUC) 0.65 (95% CI 0.59 to 0.71). For the first WAD model, discriminative ability was AUC 0.85 (95% CI 0.79 to 0.91). For the second WAD model, specificity was 99% (95% CI 93 to 100) and sensitivity was 44% (95% CI 23 to 65) for prediction of non-recovery, and 86% (95% CI 73 to 94) and 55% (95% CI 41 to 69) for prediction of recovery, respectively. Initial Neck Disability Index scores and age were identified as consistent prognostic factors in these three models. Three externally validated models were found to be usable and to have low risk of bias, of which two showed acceptable discriminative properties for predicting recovery in people with neck pain. These three models need further validation and evaluation of their clinical impact before their broad clinical use can be advocated. PROSPERO CRD42016042204. [Wingbermühle RW, van Trijffel E, Nelissen PM, Koes B, Verhagen AP (2018) Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: a systematic review

  4. Finite Element Simulations of Hard-On-Soft Hip Joint Prosthesis Accounting for Dynamic Loads Calculated from a Musculoskeletal Model during Walking

    Directory of Open Access Journals (Sweden)

    Alessandro Ruggiero

    2018-04-01

    Full Text Available The hip joint replacement is one of the most successful orthopedic surgical procedures although it involves challenges to overcome. The patient group undergoing total hip arthroplasty now includes younger and more active patients who require a broad range of motion and a longer service lifetime for the replacement joint. It is well known that wear tests have a long duration and they are very expensive, thus studying the effects of geometry, loading, or alignment perturbations may be performed by Finite Element Analysis. The aim of the study was to evaluate total deformation and stress intensity on ultra-high molecular weight polyethylene liner coupled with hard material head during one step. Moving toward in-silico wear assessment of implants, in the presented simulations we used a musculoskeletal multibody model of a human body giving the loading and relative kinematic of the investigated tribo-system during the gait. The analysis compared two frictional conditions -dry and wet and two geometrical cases- with and without radial clearance. The loads and rotations followed the variability of the gait cycle as well as stress/strain acting in the UHWMPE cup. The obtained results allowed collection of the complete stress/strain description of the polyethylene cup during the gait and calculation of the maximum contact pressure on the lateral edge of the insert. The tensional state resulted in being more influenced by the geometrical conditions in terms of radial clearance than by the variation of the friction coefficients due to lubrication phenomena.

  5. Finite Element Simulations of Hard-On-Soft Hip Joint Prosthesis Accounting for Dynamic Loads Calculated from a Musculoskeletal Model during Walking.

    Science.gov (United States)

    Ruggiero, Alessandro; Merola, Massimiliano; Affatato, Saverio

    2018-04-09

    The hip joint replacement is one of the most successful orthopedic surgical procedures although it involves challenges to overcome. The patient group undergoing total hip arthroplasty now includes younger and more active patients who require a broad range of motion and a longer service lifetime for the replacement joint. It is well known that wear tests have a long duration and they are very expensive, thus studying the effects of geometry, loading, or alignment perturbations may be performed by Finite Element Analysis. The aim of the study was to evaluate total deformation and stress intensity on ultra-high molecular weight polyethylene liner coupled with hard material head during one step. Moving toward in-silico wear assessment of implants, in the presented simulations we used a musculoskeletal multibody model of a human body giving the loading and relative kinematic of the investigated tribo-system during the gait. The analysis compared two frictional conditions -dry and wet and two geometrical cases- with and without radial clearance. The loads and rotations followed the variability of the gait cycle as well as stress/strain acting in the UHWMPE cup. The obtained results allowed collection of the complete stress/strain description of the polyethylene cup during the gait and calculation of the maximum contact pressure on the lateral edge of the insert. The tensional state resulted in being more influenced by the geometrical conditions in terms of radial clearance than by the variation of the friction coefficients due to lubrication phenomena.

  6. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    Researchers and practioners alike recognize that "the national goal that every child in the United States has access to high-quality school education in science and mathematics cannot be realized without the availability of effective professional development of teachers" (Hewson, 1997, p. 16). Further, there is a plethora of reports calling for the improvement of professional development efforts (Guskey & Huberman, 1995; Kyle, 1995; Loucks-Horsley, Hewson, Love, & Stiles, 1997). In this study I analyze a successful 3-year teacher enhancement program, one form of professional development, to: (1) identify essential components of an effective teacher enhancement program; and (2) create a model to identify and articulate the critical issues in designing, implementing, and evaluating teacher enhancement programs. Five primary sources of information were converted into data: (1) exit questionnaires, (2) exit surveys, (3) exit interview transcripts, (4) focus group transcripts, and (5) other artifacts. Additionally, a focus group was used to conduct member checks. Data were analyzed in an iterative process which led to the development of the list of essential components. The Components are categorized by three organizers: Structure (e.g., science research experience, a mediator throughout the program), Context (e.g., intensity, collaboration), and Participant Interpretation (e.g., perceived to be "safe" to examine personal beliefs and practices, actively engaged). The model is based on: (1) a 4-year study of a successful teacher enhancement program; (2) an analysis of professional development efforts reported in the literature; and (3) reflective discussions with implementors, evaluators, and participants of professional development programs. The model consists of three perspectives, cognitive, symbolic interaction, and organizational, representing different viewpoints from which to consider issues relevant to the success of a teacher enhancement program. These

  7. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  8. Modeling photoionization of aqueous DNA and its components.

    Science.gov (United States)

    Pluhařová, Eva; Slavíček, Petr; Jungwirth, Pavel

    2015-05-19

    Radiation damage to DNA is usually considered in terms of UVA and UVB radiation. These ultraviolet rays, which are part of the solar spectrum, can indeed cause chemical lesions in DNA, triggered by photoexcitation particularly in the UVB range. Damage can, however, be also caused by higher energy radiation, which can ionize directly the DNA or its immediate surroundings, leading to indirect damage. Thanks to absorption in the atmosphere, the intensity of such ionizing radiation is negligible in the solar spectrum at the surface of Earth. Nevertheless, such an ionizing scenario can become dangerously plausible for astronauts or flight personnel, as well as for persons present at nuclear power plant accidents. On the beneficial side, ionizing radiation is employed as means for destroying the DNA of cancer cells during radiation therapy. Quantitative information about ionization of DNA and its components is important not only for DNA radiation damage, but also for understanding redox properties of DNA in redox sensing or labeling, as well as charge migration along the double helix in nanoelectronics applications. Until recently, the vast majority of experimental and computational data on DNA ionization was pertinent to its components in the gas phase, which is far from its native aqueous environment. The situation has, however, changed for the better due to the advent of photoelectron spectroscopy in liquid microjets and its most recent application to photoionization of aqueous nucleosides, nucleotides, and larger DNA fragments. Here, we present a consistent and efficient computational methodology, which allows to accurately evaluate ionization energies and model photoelectron spectra of aqueous DNA and its individual components. After careful benchmarking, the method based on density functional theory and its time-dependent variant with properly chosen hybrid functionals and polarizable continuum solvent model provides ionization energies with accuracy of 0.2-0.3 e

  9. Engineering Musculoskeletal Tissue Interfaces

    Directory of Open Access Journals (Sweden)

    Ece Bayrak

    2018-04-01

    Full Text Available Tissue engineering aims to bring together biomaterials, cells, and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that mimic the complex structural and functional features of tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet, and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

  10. On combined gravity gradient components modelling for applied geophysics

    International Nuclear Information System (INIS)

    Veryaskin, Alexey; McRae, Wayne

    2008-01-01

    Gravity gradiometry research and development has intensified in recent years to the extent that technologies providing a resolution of about 1 eotvos per 1 second average shall likely soon be available for multiple critical applications such as natural resources exploration, oil reservoir monitoring and defence establishment. Much of the content of this paper was composed a decade ago, and only minor modifications were required for the conclusions to be just as applicable today. In this paper we demonstrate how gravity gradient data can be modelled, and show some examples of how gravity gradient data can be combined in order to extract valuable information. In particular, this study demonstrates the importance of two gravity gradient components, Txz and Tyz, which, when processed together, can provide more information on subsurface density contrasts than that derived solely from the vertical gravity gradient (Tzz)

  11. Modelling safety of multistate systems with ageing components

    Energy Technology Data Exchange (ETDEWEB)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna [Gdynia Maritime University, Department of Mathematics ul. Morska 81-87, Gdynia 81-225 Poland (Poland)

    2016-06-08

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  12. Modelling safety of multistate systems with ageing components

    International Nuclear Information System (INIS)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    2016-01-01

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics of the consecutive “m out of n: F” is presented as well.

  13. Component vibration of VVER-reactors - diagnostics and modelling

    International Nuclear Information System (INIS)

    Altstadt, E.; Scheffler, M.; Weiss, F.-P.

    1995-01-01

    Flow induced vibrations of reactor pressure vessel (RPV) internals (control element and core barrel motions) at VVER-440 reactors have led to the development of dedicated methods for on-line monitoring. These methods need a certain developed stage of the faults to be detected. To achieve a real sensitive early detection of mechanical faults of RPV internals, a theoretical vibration model was developed based on finite elements. The model comprises the whole primary circuit including the steam generators (SG). By means of that model all eigenfrequencies up to 30 Hz and the corresponding mode shapes were calculated for the normal vibration behaviour. Moreover the shift of eigenfrequencies and of amplitudes due to the degradation or to the failure of internal clamping and spring elements could be investigated, showing that a recognition of such degradations even inside the RPV is possible by pure excore vibration measurements. A true diagnostic, that is the identification of the failed component, might become possible because different faults influence different and well separated eigenfrequencies. (author)

  14. BWR Refill-Reflood Program, Task 4.7 - model development: TRAC-BWR component models

    International Nuclear Information System (INIS)

    Cheung, Y.K.; Parameswaran, V.; Shaug, J.C.

    1983-09-01

    TRAC (Transient Reactor Analysis Code) is a computer code for best-estimate analysis for the thermal hydraulic conditions in a reactor system. The development and assessment of the BWR component models developed under the Refill/Reflood Program that are necessary to structure a BWR-version of TRAC are described in this report. These component models are the jet pump, steam separator, steam dryer, two-phase level tracking model, and upper-plenum mixing model. These models have been implemented into TRAC-B02. Also a single-channel option has been developed for individual fuel-channel analysis following a system-response calculation

  15. Stochastic Models of Defects in Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2013-01-01

    The drivetrain in a wind turbine nacelle typically consists of a variety of heavily loaded components, like the main shaft, bearings, gearbox and generator. The variations in environmental load challenge the performance of all the components of the drivetrain. Failure of each of these components...

  16. Exploring a minimal two-component p53 model

    International Nuclear Information System (INIS)

    Sun, Tingzhe; Zhu, Feng; Shen, Pingping; Yuan, Ruoshi; Xu, Wei

    2010-01-01

    The tumor suppressor p53 coordinates many attributes of cellular processes via interlocked feedback loops. To understand the biological implications of feedback loops in a p53 system, a two-component model which encompasses essential feedback loops was constructed and further explored. Diverse bifurcation properties, such as bistability and oscillation, emerge by manipulating the feedback strength. The p53-mediated MDM2 induction dictates the bifurcation patterns. We first identified irradiation dichotomy in p53 models and further proposed that bistability and oscillation can behave in a coordinated manner. Further sensitivity analysis revealed that p53 basal production and MDM2-mediated p53 degradation, which are central to cellular control, are most sensitive processes. Also, we identified that the much more significant variations in amplitude of p53 pulses observed in experiments can be derived from overall amplitude parameter sensitivity. The combined approach with bifurcation analysis, stochastic simulation and sampling-based sensitivity analysis not only gives crucial insights into the dynamics of the p53 system, but also creates a fertile ground for understanding the regulatory patterns of other biological networks

  17. Modeling and validation of existing VAV system components

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2004-07-01

    The optimization of supervisory control strategies and local-loop controllers can improve the performance of HVAC (heating, ventilating, air-conditioning) systems. In this study, the component model of the fan, the damper and the cooling coil were developed and validated against monitored data of an existing variable air volume (VAV) system installed at Montreal's Ecole de Technologie Superieure. The measured variables that influence energy use in individual HVAC models included: (1) outdoor and return air temperature and relative humidity, (2) supply air and water temperatures, (3) zone airflow rates, (4) supply duct, outlet fan, mixing plenum static pressures, (5) fan speed, and (6) minimum and principal damper and cooling and heating coil valve positions. The additional variables that were considered, but not measured were: (1) fan and outdoor airflow rate, (2) inlet and outlet cooling coil relative humidity, and (3) liquid flow rate through the heating or cooling coils. The paper demonstrates the challenges of the validation process when monitored data of existing VAV systems are used. 7 refs., 11 figs.

  18. Parameter estimation of component reliability models in PSA model of Krsko NPP

    International Nuclear Information System (INIS)

    Jordan Cizelj, R.; Vrbanic, I.

    2001-01-01

    In the paper, the uncertainty analysis of component reliability models for independent failures is shown. The present approach for parameter estimation of component reliability models in NPP Krsko is presented. Mathematical approaches for different types of uncertainty analyses are introduced and used in accordance with some predisposed requirements. Results of the uncertainty analyses are shown in an example for time-related components. As the most appropriate uncertainty analysis proved the Bayesian estimation with the numerical estimation of a posterior, which can be approximated with some appropriate probability distribution, in this paper with lognormal distribution.(author)

  19. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation

    NARCIS (Netherlands)

    Groot, J.H.; Rozendaal, L.A.; Meskers, C.G.M.; Arwert, H.J.

    2004-01-01

    Objective. To present an isometric method for validation of a shoulder model simulation by means of experimentally obtained electromyography and addressing all muscles active around the shoulder joints. Background. Analysis of muscle force distribution in the shoulder by means of electromyography

  20. Computed tomography of the musculoskeletal system

    International Nuclear Information System (INIS)

    Scott, W.W.; Magid, D.; Fishman, E.K.

    1987-01-01

    This book contain 10 chapters. The chapter titles are: Soft Tissue Masses; Primary Bone Tumors; The Role of CT in the Therapeutic Management of Soft Tissue Sarcomas; Assessment of Musculoskeletal Inflammation; Assessment of Musculoskeletal Trauma; The Foot and Ankle; The Shoulder; Measurement of Bone Mineral for Early Detection of Osteoporosis; MRI of the Musculoskeletal System; and Advances in CT Imaging of Musculoskeletal Pathology

  1. Connected Component Model for Multi-Object Tracking.

    Science.gov (United States)

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  2. Two-component network model in voice identification technologies

    Directory of Open Access Journals (Sweden)

    Edita K. Kuular

    2018-03-01

    Full Text Available Among the most important parameters of biometric systems with voice modalities that determine their effectiveness, along with reliability and noise immunity, a speed of identification and verification of a person has been accentuated. This parameter is especially sensitive while processing large-scale voice databases in real time regime. Many research studies in this area are aimed at developing new and improving existing algorithms for presentation and processing voice records to ensure high performance of voice biometric systems. Here, it seems promising to apply a modern approach, which is based on complex network platform for solving complex massive problems with a large number of elements and taking into account their interrelationships. Thus, there are known some works which while solving problems of analysis and recognition of faces from photographs, transform images into complex networks for their subsequent processing by standard techniques. One of the first applications of complex networks to sound series (musical and speech analysis are description of frequency characteristics by constructing network models - converting the series into networks. On the network ontology platform a previously proposed technique of audio information representation aimed on its automatic analysis and speaker recognition has been developed. This implies converting information into the form of associative semantic (cognitive network structure with amplitude and frequency components both. Two speaker exemplars have been recorded and transformed into pertinent networks with consequent comparison of their topological metrics. The set of topological metrics for each of network models (amplitude and frequency one is a vector, and together  those combine a matrix, as a digital "network" voiceprint. The proposed network approach, with its sensitivity to personal conditions-physiological, psychological, emotional, might be useful not only for person identification

  3. Musculoskeletal modelling of an ostrich (Struthio camelus pelvic limb: influence of limb orientation on muscular capacity during locomotion

    Directory of Open Access Journals (Sweden)

    John R. Hutchinson

    2015-06-01

    Full Text Available We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures. This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our

  4. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.

    Science.gov (United States)

    Xu, Chun; Silder, Amy; Zhang, Ju; Hughes, Julie; Unnikrishnan, Ginu; Reifman, Jaques; Rakesh, Vineet

    2016-10-01

    Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.

  5. Musculoskeletal dysfunction in dental practice

    Directory of Open Access Journals (Sweden)

    Hakim A. Larbi and Dmitry Ye. Suyetenkov

    2012-06-01

    Full Text Available This article highlights the comparative statistics of musculoskeletal system deseases depending on a type of dental method. The practical recommendations on prevention of diseases of joints, ligaments and spine were done.

  6. The Belfast musculoskeletal ultrasound course.

    LENUS (Irish Health Repository)

    Taggart, Allister J

    2009-09-01

    To conduct a training course in musculoskeletal ultrasound (MSUS) for rheumatologists in Northern Ireland with the aim of equipping the participants with a basic knowledge of the theoretical and practical aspects of MSUS as they are applied to rheumatology.

  7. Model validation and calibration based on component functions of model output

    International Nuclear Information System (INIS)

    Wu, Danqing; Lu, Zhenzhou; Wang, Yanping; Cheng, Lei

    2015-01-01

    The target in this work is to validate the component functions of model output between physical observation and computational model with the area metric. Based on the theory of high dimensional model representations (HDMR) of independent input variables, conditional expectations are component functions of model output, and the conditional expectations reflect partial information of model output. Therefore, the model validation of conditional expectations tells the discrepancy between the partial information of the computational model output and that of the observations. Then a calibration of the conditional expectations is carried out to reduce the value of model validation metric. After that, a recalculation of the model validation metric of model output is taken with the calibrated model parameters, and the result shows that a reduction of the discrepancy in the conditional expectations can help decrease the difference in model output. At last, several examples are employed to demonstrate the rationality and necessity of the methodology in case of both single validation site and multiple validation sites. - Highlights: • A validation metric of conditional expectations of model output is proposed. • HDRM explains the relationship of conditional expectations and model output. • An improved approach of parameter calibration updates the computational models. • Validation and calibration process are applied at single site and multiple sites. • Validation and calibration process show a superiority than existing methods

  8. An ontology for component-based models of water resource systems

    Science.gov (United States)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  9. Improving musculoskeletal health: global issues.

    Science.gov (United States)

    Mody, Girish M; Brooks, Peter M

    2012-04-01

    Musculoskeletal (MSK) disorders are among the leading reasons why patients consult a family or primary health practitioner, take time off work and become disabled. Many of the MSK disorders are more common in the elderly. Thus, as the proportion of the elderly increases all over the world, MSK disorders will make a greater contribution to the global burden of disease. Epidemiological studies have shown that the spectrum of MSK disorders in developing countries is similar to that seen in industrialised countries, but the burden of disease tends to be higher due to a delay in diagnosis or lack of access to adequate health-care facilities for effective treatment. Musculoskeletal pain is very common in the community while fibromyalgia is being recognised as part of a continuum of chronic widespread pain rather than a narrowly defined entity. This will allow research to improve our understanding of pain in a variety of diffuse pain syndromes. The availability of newer more effective therapies has resulted in efforts to initiate therapy at an earlier stage of diseases. The new criteria for rheumatoid arthritis, and the diagnosis of axial and peripheral involvement in spondyloarthritis, permit an earlier diagnosis without having to wait for radiological changes. One of the major health challenges is the global shortage of health workers, and based on current training of health workers and traditional models of care for service delivery, the global situation is unlikely to change in the near future. Thus, new models of care and strategies to train community health-care workers and primary health-care practitioners to detect and initiate the management of patients with MSK disorders at an earlier stage are required. There is also a need for prevention strategies with campaigns to educate and raise awareness among the entire population. Lifestyle interventions such as maintaining an ideal body weight to prevent obesity, regular exercises, avoidance of smoking and alcohol

  10. A probabilistic model for component-based shape synthesis

    KAUST Repository

    Kalogerakis, Evangelos; Chaudhuri, Siddhartha; Koller, Daphne; Koltun, Vladlen

    2012-01-01

    represents probabilistic relationships between properties of shape components, and relates them to learned underlying causes of structural variability within the domain. These causes are treated as latent variables, leading to a compact representation

  11. Measurement and Modelling of MIC Components Using Conductive Lithographic Films

    OpenAIRE

    Shepherd, P. R.; Taylor, C.; Evans l, P. S. A.; Harrison, D. J.

    2001-01-01

    Conductive Lithographic Films (CLFs) have previously demonstrated useful properties in printed mi-crowave circuits, combining low cost with high speed of manufacture. In this paper we examine the formation of various passive components via the CLF process, which enables further integration of printed microwave integrated circuits. The printed components include vias, resistors and overlay capacitors, and offer viable alternatives to traditional manufacturing processes for Microwave Inte-grate...

  12. Musculoskeletal MRI: dedicated systems

    International Nuclear Information System (INIS)

    Masciocchi, C.; Barile, A.; Satragno, L.

    2000-01-01

    The ''dedicated'' MRI units have characteristics of high diagnostic accuracy and lower installation and management costs as compared with whole-body systems. The dedicated MRI units are easy to install. The low weight allows their installation also under unfavorable circumstances. In a dedicated system cost-effectiveness and ease of installation must be accompanied by the capability of providing high-quality images. In our experience, the high number of examinations performed, the most part of which provided with the surgical controls, allowed an accurate evaluation of the diagnostic potentialities of the dedicated magnet. We were not able to perform the examinations in only 3 % of cases due to the physical shape of the patient and the clinical condition of the patient which may hinder the correct positioning of the limb. The overlapping of the diagnostic accuracy of the E-scan and Artoscan units in the study of the lower limbs, compared with whole-body units and surgery, prompted us to exploit the potentialities of the E-Scan in the study of the shoulder. We had a good correlation between E-Scan, whole-body units, and surgical findings, which confirmed the high diagnostic accuracy of the dedicated system. In conclusion, in our experience carried out in the musculoskeletal system, the dedicated magnets showed promising results. Their diagnostic reliability and utility was comparable to that obtained from conventional units operating at higher magnetic fields. (orig.)

  13. A practical description and student perspective of the integration of radiology into lower limb musculoskeletal anatomy.

    Science.gov (United States)

    Davy, S; O'Keeffe, G W; Mahony, N; Phelan, N; Barry, D S

    2017-05-01

    Anatomy educators are increasing their utilisation of radiology in anatomy education in line with growing requirements for undergraduate radiology competency and clinical need. We aimed to evaluate student perceptions of radiology and to outline the technical and academic considerations underlying the integration of radiology into musculoskeletal practical anatomy sessions. The formal integration of radiology into anatomy practical sessions took place over a 5-week period during the lower limb musculoskeletal component of the anatomy course taught to first-year medical students. During practical sessions, students were required to rotate between aligned audio-visual radiology presentations, osteology/anatomical models, and prosection/dissection learning stations. After completing the course, students were invited to complete a survey to establish their opinions on radiology as a mode of learning and their satisfaction with radiological integration in anatomical practical sessions. Most students were not familiar with radiology prior to attending our university. All our students agreed or strongly agreed that learning to read radiographs in anatomy is important and most agreed that radiology is a valid assessment tool. Sixty percent stated that radiology facilitated their understanding of anatomy. The majority believed that radiology was best suited to clinically relevant anatomy and X-rays were their preferred learning tool. The practical approach to integrating radiology into undergraduate musculoskeletal anatomy described here did not place strain on existing academic resources. Most students agreed that radiology should be increased in anatomy education and that learning to understand radiographs in anatomy was important for clinical practice.

  14. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  15. Association Between Smartphone Use and Musculoskeletal Discomfort in Adolescent Students.

    Science.gov (United States)

    Yang, Shang-Yu; Chen, Ming-De; Huang, Yueh-Chu; Lin, Chung-Ying; Chang, Jer-Hao

    2017-06-01

    Despite the substantial increase in the number of adolescent smartphone users, few studies have investigated the behavioural effects of smartphone use on adolescent students as it relates to musculoskeletal discomfort. The purpose of this study was to explore the association between smartphone use and musculoskeletal discomfort in students at a Taiwanese junior college. We hypothesised that the duration of smartphone use would be associated with increased instances of musculoskeletal discomfort in these students. This cross-sectional study employed a convenience sampling method to recruit students from a junior college in southern Taiwan. All the students (n = 315) were asked to answer questionnaires on smartphone use. A descriptive analysis, stepwise regression, and logistic regression were used to examine specific components of smartphone use and their relationship to musculoskeletal discomfort. Nearly half of the participants experienced neck and shoulder discomfort. The stepwise regression results indicated that the number of body parts with discomfort (F = 6.009, p smartphone functions. The logistic regression analysis showed that the students who talked on the phone >3 h/day had a higher risk of upper back discomfort than did those who talked on the phone smartphone use and musculoskeletal discomfort is related to the duration of smartphone ancillary function use. Moreover, hours spent talking on the phone was a predictor of upper back discomfort.

  16. Ecological, psychological, and cognitive components of reading difficulties: testing the component model of reading in fourth graders across 38 countries.

    Science.gov (United States)

    Chiu, Ming Ming; McBride-Chang, Catherine; Lin, Dan

    2012-01-01

    The authors tested the component model of reading (CMR) among 186,725 fourth grade students from 38 countries (45 regions) on five continents by analyzing the 2006 Progress in International Reading Literacy Study data using measures of ecological (country, family, school, teacher), psychological, and cognitive components. More than 91% of the differences in student difficulty occurred at the country (61%) and classroom (30%) levels (ecological), with less than 9% at the student level (cognitive and psychological). All three components were negatively associated with reading difficulties: cognitive (student's early literacy skills), ecological (family characteristics [socioeconomic status, number of books at home, and attitudes about reading], school characteristics [school climate and resources]), and psychological (students' attitudes about reading, reading self-concept, and being a girl). These results extend the CMR by demonstrating the importance of multiple levels of factors for reading deficits across diverse cultures.

  17. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.; Long, N.; Swindler, A.

    2012-05-01

    This paper describes the Building Component Library (BCL), the U.S. Department of Energy's (DOE) online repository of building components that can be directly used to create energy models. This comprehensive, searchable library consists of components and measures as well as the metadata which describes them. The library is also designed to allow contributors to easily add new components, providing a continuously growing, standardized list of components for users to draw upon.

  18. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S

    2015-02-25

    The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.

  19. MODELING OF SYSTEM COMPONENTS OF EDUCATIONAL PROGRAMS IN HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    E. K. Samerkhanova

    2016-01-01

    Full Text Available Based on the principles of System Studies, describes the components of the educational programs of the control system. Educational Program Management is a set of substantive, procedural, resource, subject-activity, efficiently and evaluation components, which ensures the integrity of integration processes at all levels of education. Ensuring stability and development in the management of educational programs is achieved by identifying and securing social norms, the status of the educational institution program managers to ensure the achievement of modern quality of education.Content Management provides the relevant educational content in accordance with the requirements of the educational and professional standards; process control ensures the efficient organization of rational distribution process flows; Resource Management provides optimal distribution of personnel, information and methodological, material and technical equipment of the educational program; contingent management provides subject-activity interaction of participants of the educational process; quality control ensures the quality of educational services.

  20. Implementing components of the routines-based model

    OpenAIRE

    McWilliam, Robin; Fernández Valero, Rosa

    2015-01-01

    The MBR is comprised of 17 components that can generally be grouped into practices related to (a) functional assessment and intervention planning (for example, Routines-Based Interview), (b) organization of services (including location and staffing), (c) service delivery to children and families (using a consultative approach with families and teachers, integrated therapy), (d) classroom organization (for example, classroom zones), and (e) supervision and training through ch...

  1. Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, T.J.; Long, K.S.; Sayre, J.A. [Sandia National Labs., Albuquerque, NM (United States); Hull, A.L. [Sandia National Labs., Livermore, CA (United States); Carey, D.A.; Sim, J.R.; Smith, M.G. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.

    1994-08-01

    The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.

  2. Effect of Model Selection on Computed Water Balance Components

    NARCIS (Netherlands)

    Jhorar, R.K.; Smit, A.A.M.F.R.; Roest, C.W.J.

    2009-01-01

    Soil water flow modelling approaches as used in four selected on-farm water management models, namely CROPWAT. FAIDS, CERES and SWAP, are compared through numerical experiments. The soil water simulation approaches used in the first three models are reformulated to incorporate ail evapotranspiration

  3. Exploring component-based approaches in forest landscape modeling

    Science.gov (United States)

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  4. Scalable Power-Component Models for Concept Testing

    Science.gov (United States)

    2011-08-17

    motor speed can be either positive or negative dependent upon the propelling or regenerative braking scenario. The simulation provides three...the machine during generation or regenerative braking . To use the model, the user modifies the motor model criteria parameters by double-clicking... SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN

  5. Modeling dynamics of biological and chemical components of aquatic ecosystems

    International Nuclear Information System (INIS)

    Lassiter, R.R.

    1975-05-01

    To provide capability to model aquatic ecosystems or their subsystems as needed for particular research goals, a modeling strategy was developed. Submodels of several processes common to aquatic ecosystems were developed or adapted from previously existing ones. Included are submodels for photosynthesis as a function of light and depth, biological growth rates as a function of temperature, dynamic chemical equilibrium, feeding and growth, and various types of losses to biological populations. These submodels may be used as modules in the construction of models of subsystems or ecosystems. A preliminary model for the nitrogen cycle subsystem was developed using the modeling strategy and applicable submodels. (U.S.)

  6. Musculoskeletal Findings in Behcet's Disease

    Directory of Open Access Journals (Sweden)

    Ali Bicer

    2012-01-01

    Full Text Available Behcet's disease is a multisystem disease characterized by recurrent oral and genital ulcers, relapsing uveitis, mucocutaneous, articular, gastrointestinal, neurologic, and vascular manifestations. Rheumatologic manifestations may also occur in Behcet's disease, and arthritis and arthralgia are the most common musculoskeletal findings followed by enthesopathy, avascular necrosis, myalgia, and myositis. Although the main pathology of Behcet's disease has been known to be the underlying vasculitis, the etiology and exact pathogenesis of the disease are still unclear. Musculoskeletal findings of Behcet's disease, the relationship between Behcet's disease and spondyloarthropathy disease complex, and the status of bone metabolism in patients with Behcet's disease were discussed in this paper.

  7. A three-component, hierarchical model of executive attention

    OpenAIRE

    Whittle, Sarah; Pantelis, Christos; Testa, Renee; Tiego, Jeggan; Bellgrove, Mark

    2017-01-01

    Executive attention refers to the goal-directed control of attention. Existing models of executive attention distinguish between three correlated, but empirically dissociable, factors related to selectively attending to task-relevant stimuli (Selective Attention), inhibiting task-irrelevant responses (Response Inhibition), and actively maintaining goal-relevant information (Working Memory Capacity). In these models, Selective Attention and Response Inhibition are moderately strongly correlate...

  8. Economic Modeling as a Component of Academic Strategic Planning.

    Science.gov (United States)

    MacKinnon, Joyce; Sothmann, Mark; Johnson, James

    2001-01-01

    Computer-based economic modeling was used to enable a school of allied health to define outcomes, identify associated costs, develop cost and revenue models, and create a financial planning system. As a strategic planning tool, it assisted realistic budgeting and improved efficiency and effectiveness. (Contains 18 references.) (SK)

  9. Component vibration of VVER-reactors - diagnostics and modelling

    International Nuclear Information System (INIS)

    Altstadt, E.; Scheffler, M.; Weiss, F.P.

    1994-01-01

    The model comprises the whole primary circuit, including steam generators, loops, coolant pumps, main isolating valves and certainly the reactor pressure vessel and its internals. It was developed using the finite-element-code ANSYS. The model has a modular structure, so that various operational and assembling states can easily be considered. (orig./DG)

  10. PyCatch: Component based hydrological catchment modelling

    NARCIS (Netherlands)

    Lana-Renault, N.; Karssenberg, D.J.

    2013-01-01

    Dynamic numerical models are powerful tools for representing and studying environmental processes through time. Usually they are constructed with environmental modelling languages, which are high-level programming languages that operate at the level of thinking of the scientists. In this paper we

  11. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  12. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung Kyu; Cho, Jeong Yeon; Lee, Young Ho; Kim, Ei Jeong; Chun, Yi Kyeong [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    Focal musculoskeletal anomalies are various and may be an isolated finding or may be found in conjunction with numerous associations, including genetic syndromes, Karyotype abnormals, central nervous system anomalies and other general musculoskeletal disorders. Early prenatal diagnosis of these focal musculoskeletal anomalies nor only affects prenatal care and postnatal outcome but also helps in approaching other numerous associated anomalies.

  13. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    International Nuclear Information System (INIS)

    Ryu, Jung Kyu; Cho, Jeong Yeon; Lee, Young Ho; Kim, Ei Jeong; Chun, Yi Kyeong

    2002-01-01

    Focal musculoskeletal anomalies are various and may be an isolated finding or may be found in conjunction with numerous associations, including genetic syndromes, Karyotype abnormals, central nervous system anomalies and other general musculoskeletal disorders. Early prenatal diagnosis of these focal musculoskeletal anomalies nor only affects prenatal care and postnatal outcome but also helps in approaching other numerous associated anomalies.

  14. Multiparticle production in a two-component dual parton model

    International Nuclear Information System (INIS)

    Aurenche, P.; Bopp, F.W.; Capella, A.; Kwiecinski, J.; Maire, M.; Ranft, J.; Tran Thanh Van, J.

    1992-01-01

    The dual parton model (DPM) describes soft and semihard multiparticle production. The version of the DPM presented in this paper includes soft and hard mechanisms as well as diffractive processes. The model is formulated as a Monte Carlo event generator. We calculate in this model, in the energy range of the hadron colliders, rapidity distributions and the rise of the rapidity plateau with the collision energy, transverse-momentum distributions and the rise of average transverse momenta with the collision energy, multiplicity distributions in different pseudorapidity regions, and transverse-energy distributions. For most of these quantities we find a reasonable agreement with experimental data

  15. Comprehensive FDTD modelling of photonic crystal waveguide components

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Borel, Peter Ingo; Frandsen, Lars Hagedorn

    2004-01-01

    Planar photonic crystal waveguide structures have been modelled using the finite-difference-time-domain method and perfectly matched layers have been employed as boundary conditions. Comprehensive numerical calculations have been performed and compared to experimentally obtained transmission...

  16. [Musculoskeletal medicine--strategies towards a "good musculoskeletal consultation"].

    Science.gov (United States)

    Vulfsons, Simon

    2011-03-01

    The burden of musculoskeletal disease and disability is huge. The direct costs of diagnosis and treatment are dwarfed by the indirect costs to society comprised of sick leave, early retirement, pension funds and disability allowances. Chronic musculoskeletal pain and dysfunction account for the most common cause for chronic pain and for up to 25% of all consultations to family practitioners in the developed world. It is therefore surprising to find that education and training in musculoskeletal medicine has been given short shrift by medical schools, specialist training programs for family practitioners and post graduate continuing medical education. This has been shown quite comprehensively by Mashov and Tabenkin in this edition of the journal. At the close of the Bone and Joint Decade 2000-2010, as declared by the WHO, it is timely to see what has been achieved in terms of the original goals for this decade. There has been a major effort for increasing awareness both in the health community and the general public towards managing chronic musculoskeletal pain. Much has been written, but far less performed in changing the priorities of medical schools and family practice programs towards teaching and training doctors to adequately recognize and treat patients suffering from chronic musculoskeletal problems. In Israel, it is estimated that the indirect costs through lost productivity amount to up to 1.15 billion shekels a year. Investing time and money in training programs for medical students and doctors, together with building an incentive program for primary care physicians to adequately treat this huge chronically disabled population is not only feasible, but can also make great inroads towards easing suffering while curtailing costs.

  17. New methods for the characterization of pyrocarbon; The two component model of pyrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Luhleich, H.; Sutterlin, L.; Hoven, H.; Nickel, H.

    1972-04-19

    In the first part, new experiments to clarify the origin of different pyrocarbon components are described. Three new methods (plasma-oxidation, wet-oxidation, ultrasonic method) are presented to expose the carbon black like component in the pyrocarbon deposited in fluidized beds. In the second part, a two component model of pyrocarbon is proposed and illustrated by examples.

  18. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  19. Motion control of musculoskeletal systems with redundancy.

    Science.gov (United States)

    Park, Hyunjoo; Durand, Dominique M

    2008-12-01

    Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle-subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.

  20. A Bayesian Analysis of Unobserved Component Models Using Ox

    Directory of Open Access Journals (Sweden)

    Charles S. Bos

    2011-05-01

    Full Text Available This article details a Bayesian analysis of the Nile river flow data, using a similar state space model as other articles in this volume. For this data set, Metropolis-Hastings and Gibbs sampling algorithms are implemented in the programming language Ox. These Markov chain Monte Carlo methods only provide output conditioned upon the full data set. For filtered output, conditioning only on past observations, the particle filter is introduced. The sampling methods are flexible, and this advantage is used to extend the model to incorporate a stochastic volatility process. The volatility changes both in the Nile data and also in daily S&P 500 return data are investigated. The posterior density of parameters and states is found to provide information on which elements of the model are easily identifiable, and which elements are estimated with less precision.

  1. Mass models for disk and halo components in spiral galaxies

    International Nuclear Information System (INIS)

    Athanassoula, E.; Bosma, A.

    1987-01-01

    The mass distribution in spiral galaxies is investigated by means of numerical simulations, summarizing the results reported by Athanassoula et al. (1986). Details of the modeling technique employed are given, including bulge-disk decomposition; computation of bulge and disk rotation curves (assuming constant mass/light ratios for each); and determination (for spherical symmetry) of the total halo mass out to the optical radius, the concentration indices, the halo-density power law, the core radius, the central density, and the velocity dispersion. Also discussed are the procedures for incorporating galactic gas and checking the spiral structure extent. It is found that structural constraints limit disk mass/light ratios to a range of 0.3 dex, and that the most likely models are maximum-disk models with m = 1 disturbances inhibited. 19 references

  2. Modeling of a remote inspection system for NSSS components

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Kim, Jae Hee; Lee, Jae Cheol

    2003-03-01

    Safety inspection for safety-critical unit of nuclear power plant has been processed using off-line technology. Thus we can not access safety inspection system and inspection data via network such as internet. We are making an on-line control and data access system based on WWW and JAVA technologies which can be used during plant operation to overcome these problems. Users can access inspection systems and inspection data only using web-browser. This report discusses about analysis of the existing remote system and essential techniques such as Web, JAVA, client/server model, and multi-tier model. This report also discusses about a system modeling that we have been developed using these techniques and provides solutions for developing an on-line control and data access system

  3. Pain relief after musculoskeletal trauma

    NARCIS (Netherlands)

    Helmerhorst, G.T.T.

    2018-01-01

    This thesis showed that, in spite of seemingly similar nociception (pathophysiology), there are substantial cultural differences in experiencing and managing pain after surgery of musculoskeletal trauma. The United States and Canada are in the midst of a crisis of opioid use, misuse, overdose, and

  4. Three-Component Dust Models for Interstellar Extinction C ...

    Indian Academy of Sciences (India)

    without standard' method were used to constrain the dust characteristics in the mean ISM (RV = 3.1), ... Interstellar dust models have evolved as the observational data have advanced, and the most popular dust ... distribution comes from the IRAS observation which shows an excess of 12 μ and. 25 μ emission from the ISM ...

  5. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  6. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  7. Component-based modeling of systems for automated fault tree generation

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2009-01-01

    One of the challenges in the field of automated fault tree construction is to find an efficient modeling approach that can support modeling of different types of systems without ignoring any necessary details. In this paper, we are going to represent a new system of modeling approach for computer-aided fault tree generation. In this method, every system model is composed of some components and different types of flows propagating through them. Each component has a function table that describes its input-output relations. For the components having different operational states, there is also a state transition table. Each component can communicate with other components in the system only through its inputs and outputs. A trace-back algorithm is proposed that can be applied to the system model to generate the required fault trees. The system modeling approach and the fault tree construction algorithm are applied to a fire sprinkler system and the results are presented

  8. Musculoskeletal System Symptoms in Goiter

    Directory of Open Access Journals (Sweden)

    Sevim Akin

    2013-04-01

    Full Text Available Aim: The aim of this study was to investigate the prevalence of musculoskeletal manifestations in patients with thyroid dysfunction. Methods: One hundred and twenty-three patients (100 female, 23 male who visited the nuclear medicine department for thyroid gland scintigraphy were included in our study. According to thyroid hormone levels, patients were allocated into five categories: hyperthyroidism, subclinical hyperthyroidism, euthyroid, subclinical hypothyroidism, and hypothyroidism. Before neurological and musculoskeletal examinations, a standardized symptom questionnaire was completed including questions about sensory symptoms, muscle weakness, restricted joint mobility, musculoskeletal pain. Neurological examination, range of motion of joints, effusion or swelling of joints was assessed. Diagnosis of osteoarthritis was done by the clinical and radiological characteristics. The diagnosis of FMS was made according to criteria of American College of Rheumatology. According to the World Health Organization (WHO, a T-score ≤ -2.5 was classified as osteoporosis, whereas a T-score between -2.5 and -1.0 was classified as osteopenia. Thyroid status was determined by serum TSH levels. Results: Eighty-one percent of the patients were female (100 and 19% were male (23. Mean age of female patients was 49.99±15.27 years (range 20-87 and mean age of male patients was 61.8±12.33 years (range 34-88. When divided according to thyroid status, 21.1% (n=26 had hyperthyroidism, 21.1% (n=26 had subclinical hyperthyroidism, 49.6% (n=61 were euthyroid, 4.9% (n=6 had subclinical hypothyroidism and 3.3% (n=4 were hypothyroid. None of 59% of patients had any musculoskeletal diagnosis. Osteoporosis was the most common problem, affecting 23.7% of patients Conclusion: The presence of musculoskeletal symptoms in patients with goiter should be considered and investigated. [Cukurova Med J 2013; 38(2.000: 261-269

  9. Musculoskeletal pain in obese adolescents.

    Science.gov (United States)

    Jannini, Suely Nóbrega; Dória-Filho, Ulysses; Damiani, Durval; Silva, Clovis Artur Almeida

    2011-01-01

    To determine the prevalence of pain, musculoskeletal syndromes, orthopedic disorders and using computers and playing videogames among obese adolescents. This was a cross-sectional study that investigated 100 consecutive obese adolescents and 100 healthy-weight controls using a confidential, self-report questionnaire covering demographic data, sports participation, painful musculoskeletal system symptoms and using computers and playing videogames. The questionnaire's test-retest reliability was tested. Physical examination covered six musculoskeletal syndromes and seven orthopedic disorders. The kappa index for test-retest was 0.724. Pain and musculoskeletal syndromes were equally prevalent in both groups (44 vs. 56%, p = 0.09; 12 vs. 16%, p = 0.541; respectively). Notwithstanding, orthopedic disorders (98 vs. 76%, p = 0.0001), tight quadriceps (89 vs. 44%, p = 0.0001) and genu valgum (87 vs. 24%, p = 0.0001) were significantly more prevalent in obese adolescents than in controls. Median time spent using a computer the day before, on Saturdays and on Sundays were all lower among the obese subjects (30 vs. 60 minutes, p = 0.0001; 1 vs. 60 minutes, p = 0.001; and 0 vs. 30 minutes, p = 0.02; respectively). Obese adolescents were less likely to play handheld videogames (2 vs. 11%, p = 0.003) and there was no difference in the two groups' use of full-sized videogames (p > 0.05). Comparing obese adolescents with pain to those free from pain revealed that pain was more frequent among females (59 vs. 39%, p = 0.048) and was associated with greater median time spent playing on Sundays [0 (0-720) vs. 0 (0-240) minutes, p = 0.028]. Obesity can cause osteoarticular system damage at the start of adolescence, particularly to the lower limbs. Programs developed specifically for obese female adolescents with musculoskeletal pain are needed.

  10. Can high social capital at the workplace buffer against stress and musculoskeletal pain?

    DEFF Research Database (Denmark)

    Jay, Kenneth; Andersen, Lars L.

    2018-01-01

    Work-related musculoskeletal pain and stress are both highly prevalent in the working environment and relate well to the biopsychosocial model. While the onset of musculoskeletal pain is often dependent on the biological element of the biopsychosocial model, chronic pain is often influenced...... by psychological and social factors. Similarly, stress is also influenced by biological, psychological, and social factors. This study investigates the possibility of social capital being a buffer for stress and musculoskeletal pain in a group of female laboratory technicians.Female laboratory technicians (n = 500......) replied to questions about stress (Cohens Perceived Stress Scale-10), musculoskeletal pain (0-10 visual analog scale), and social capital at the workplace (bonding [in teams], bridging [between teams], and linking [between teams and leaders]). Outcome variables were stress and musculoskeletal pain...

  11. Research on development model of nuclear component based on life cycle management

    International Nuclear Information System (INIS)

    Bao Shiyi; Zhou Yu; He Shuyan

    2005-01-01

    At present the development process of nuclear component, even nuclear component itself, is more and more supported by computer technology. This increasing utilization of the computer and software has led to the faster development of nuclear technology on one hand and also brought new problems on the other hand. Especially, the combination of hardware, software and humans has increased nuclear component system complexities to an unprecedented level. To solve this problem, Life Cycle Management technology is adopted in nuclear component system. Hence, an intensive discussion on the development process of a nuclear component is proposed. According to the characteristics of the nuclear component development, such as the complexities and strict safety requirements of the nuclear components, long-term design period, changeable design specifications and requirements, high capital investment, and satisfaction for engineering codes/standards, the development life-cycle model of nuclear component is presented. The development life-cycle model is classified at three levels, namely, component level development life-cycle, sub-component development life-cycle and component level verification/certification life-cycle. The purposes and outcomes of development processes are stated in detailed. A process framework for nuclear component based on system engineering and development environment of nuclear component is discussed for future research work. (authors)

  12. Five-component propagation model for steam explosion analysis

    International Nuclear Information System (INIS)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun

    1999-01-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  13. Component-oriented approach to the development and use of numerical models in high energy physics

    International Nuclear Information System (INIS)

    Amelin, N.S.; Komogorov, M.Eh.

    2002-01-01

    We discuss the main concepts of a component approach to the development and use of numerical models in high energy physics. This approach is realized as the NiMax software system. The discussed concepts are illustrated by numerous examples of the system user session. In appendix chapter we describe physics and numerical algorithms of the model components to perform simulation of hadronic and nuclear collisions at high energies. These components are members of hadronic application modules that have been developed with the help of the NiMax system. Given report is served as an early release of the NiMax manual mainly for model component users

  14. Mathematical Model for Multicomponent Adsorption Equilibria Using Only Pure Component Data

    DEFF Research Database (Denmark)

    Marcussen, Lis

    2000-01-01

    A mathematical model for nonideal adsorption equilibria in multicomponent mixtures is developed. It is applied with good results for pure substances and for prediction of strongly nonideal multicomponent equilibria using only pure component data. The model accounts for adsorbent...

  15. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    International Nuclear Information System (INIS)

    Carl Stern; Martin Lee

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models

  16. Automatic component calibration and error diagnostics for model-based accelerator control. Phase I final report

    CERN Document Server

    Carl-Stern

    1999-01-01

    Phase I work studied the feasibility of developing software for automatic component calibration and error correction in beamline optics models. A prototype application was developed that corrects quadrupole field strength errors in beamline models.

  17. Three Fundamental Components of the Autopoiesic Leadership Model

    Directory of Open Access Journals (Sweden)

    Mateja Kalan

    2017-06-01

    Full Text Available Research Question (RQ: What type of leadership could be developed upon transformational leadership? Purpose: The purpose of the research was to create a new leadership style. Its variables can be further developed upon transformational leadership variables. Namely, this leadership style is known as a successful leadership style in successful organisations. Method: In the research of published papers from scientific databases, we relied on the triangulation of theories. To clarify the research question, we have researched different authors, who based their research papers on different hypotheses. In some articles, hypotheses were even contradictory. Results: Through the research, we have concluded that authors often changed certain variables when researching the topic of transformational leadership. We have correlated these variables and developed a new model, naming it autopoiesic leadership. Its main variables are (1 goal orientation, (2 emotional sensitivity, and (3 manager’s flexibility in organisations. Organisation: Our research can have a positive effect on managers in terms of recognising the importance of selected variables. Practical application of autopoiesic leadership can imply more efficiency in business processes of a company, increasing its financial performance. Society: Autopoiesic leadership is a leadership style that largely influences the use of the individual’s internal resources. Thus, she or he becomes internally motivated, and this is the basis for quality work. This strengthens employees’ social aspect which consequently also has a positive effect on their life outside the organisational system, i.e. their family and broader living environment. Originality: In the worldwide literature, we have noticed the concept autopoiesis in papers about management subjects, but the autopoiesic leadership model has not been developed so far. Limitations / Future Research: We based our research on the triangulation of theories

  18. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    Jan 5, 2016 ... We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments.

  19. Modelling insights on the partition of evapotranspiration components across biomes

    Science.gov (United States)

    Fatichi, Simone; Pappas, Christoforos

    2017-04-01

    Recent studies using various methodologies have found a large variability (from 35 to 90%) in the ratio of transpiration to total evapotranspiration (denoted as T:ET) across biomes or even at the global scale. Concurrently, previous results suggest that T:ET is independent of mean precipitation and has a positive correlation with Leaf Area Index (LAI). We used the mechanistic ecohydrological model, T&C, with a refined process-based description of soil resistance and a detailed treatment of canopy biophysics and ecophysiology, to investigate T:ET across multiple biomes. Contrary to observation-based estimates, simulation results highlight a well-constrained range of mean T:ET across biomes that is also robust to perturbations of the most sensitive parameters. Simulated T:ET was confirmed to be independent of average precipitation, while it was found to be uncorrelated with LAI across biomes. Higher values of LAI increase evaporation from interception but suppress ground evaporation with the two effects largely cancelling each other in many sites. These results offer mechanistic, model-based, evidence to the ongoing research about the range of T:ET and the factors affecting its magnitude across biomes.

  20. Virtual Models Linked with Physical Components in Construction

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch

    The use of virtual models supports a fundamental change in the working practice of the construction industry. It changes the primary information carrier (drawings) from simple manually created depictions of the building under construction to visually realistic digital representations that also...... engineering and business development in an iterative and user needs centred system development process. The analysis of future business perspectives presents an extensive number of new working processes that can assist in solving major challenges in the construction industry. Three of the most promising...... practices and development of new ontologies. Based on the experiences gained in this PhD project, some of the important future challenges are also to show the benefits of using modern information and communication technology to practitioners in the construction industry and to communicate this knowledge...

  1. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  2. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses

    International Nuclear Information System (INIS)

    Reynolds, Jacob G.

    2013-01-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH 4 H 2 O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H 2 O, NaOH, and NaAl(OH) 4 are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components

  3. Modelling the effect of mixture components on permeation through skin.

    Science.gov (United States)

    Ghafourian, T; Samaras, E G; Brooks, J D; Riviere, J E

    2010-10-15

    A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the skin and rate of transport. Despite the huge amount of effort made for the understanding and modelling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from formulations remains a challenging objective. In this investigation, quantitative structure-activity relationship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression analysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant descriptors were octanol/water partition coefficient, logP and the ninth order path molecular connectivity index, and the solvent property was the difference between boiling and melting points. The negative relationship between skin permeability coefficient and logP was attributed to the fact that most of the drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the common skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles with small boiling and melting point gaps will be expected to have higher permeation through skin. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396. The chemical space of the dataset was compared with that of the known skin permeability datasets and gaps were identified for future skin permeability measurements. Copyright 2010 Elsevier B.V. All rights reserved.

  4. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  5. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    Science.gov (United States)

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  6. Musculoskeletal manifestations of bacterial endocarditis

    Directory of Open Access Journals (Sweden)

    Érika Bevilaqua Rangel

    2000-09-01

    Full Text Available CONTEXT: The incidence of staphylococcal infection has been increasing during the last 20 years. OBJECTIVE: Report a case of staphylococcal endocarditis preceded by musculoskeletal manifestations, which is a rare form of clinical presentation. DESIGN: Case report. CASE REPORT: A 45-year-old-man, without addictions and without known previous cardiopathy, was diagnosed as having definitive acute bacterial endocarditis due to Staphylococcus aureus. Its etiology was community-acquired, arising from a non-apparent primary focus. In addition, the musculoskeletal symptoms preceded the infective endocarditis (IE by about 1 month, which occurred together with other symptoms, e.g. mycotic aneurysms and petechiae. Later, the patient showed perforation of the mitral valve and moderate mitral insufficiency with clinical control.

  7. Incidental findings in musculoskeletal radiology

    International Nuclear Information System (INIS)

    Wuennemann, F.; Rehnitz, C.; Weber, M.A.

    2017-01-01

    Increasing numbers of conventional X-rays, computed tomography and magnetic resonance imaging in the inpatient, outpatient and scientific routine leads to an increasing number of incidental findings. The correct interpretation of these incidental findings with respect to the relevance and the evaluation concerning further work-up is an important task of radiologists. Description of common incidental findings in musculoskeletal imaging and their clinical classification. A PubMed literature search was performed using the following terms: incidental findings, population-based imaging, musculoskeletal imaging, non-ossifying fibroma, enchondroma, osteodystrophia deformans, chondrosarcoma, fibrous dysplasia, simple bone cyst, unicameral bone cyst, solitary bone cyst, aneurysmal bone cyst, vertebral hemangioma, bone island, osteopoikilosis, Tarlov cyst and diffuse idiopathic skeletal hyperostosis (DISH). Incidental findings are observed in up to 40% of imaging procedures. In up to 6% these incidental findings involve the skeletal system. Common incidental findings are discussed and their clinical relevance is explained. (orig.) [de

  8. Radionuclide imaging of musculoskeletal infection

    International Nuclear Information System (INIS)

    Palestr, Christopher J.; North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY; Love, Charito

    2007-01-01

    Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of 'complicating osteomyelitis' such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose. (author)

  9. Radionuclide imaging of musculoskeletal infection

    Energy Technology Data Exchange (ETDEWEB)

    Palestr, Christopher J. [Albert Einstein College of Medicine, Bronx, NY (United States); North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY (United States). Div. of Nuclear Medicine and Molecular Imaging; E-mail: palestro@lij.edu; Love, Charito [North Shore Long Island Jewish Health System, Manhasset and New Hyde Park, NY (United States). Div. of Nuclear Medicine and Molecular Imaging

    2007-09-15

    Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of 'complicating osteomyelitis' such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose. (author)

  10. Musculoskeletal ultrasound in pediatric rheumatology

    Directory of Open Access Journals (Sweden)

    Özçakar Levent

    2011-09-01

    Full Text Available Abstract Although musculoskeletal ultrasound (MSUS has emerged as an indispensible tool among physicians involved in musculoskeletal medicine in the last two decades, only recently has it become more attractive to pediatric rheumatologists. Thereafter, the use of MSUS in pediatric rheumatology has started to increase. Yet, an ever-growing body of literature shows parity and even superiority of MSUS when compared to physical examination and other imaging modalities. MSUS is suitable for examination of children of all ages and it has certain advantages over other imaging modalities; as it is cheaper, mobile, instantly accessible bedside, easy to combine with clinical assessment (interactivity and non-invasive. It does not require sedation, which facilitates repetitive examinations. Assessment of multiple locations is possible during the same session. Agitation is rarely a problem and small children can be seated in their parents' lap or they can even play while being examined.

  11. Radiology of musculoskeletal stress injuries

    International Nuclear Information System (INIS)

    Keats, T.E.

    1989-01-01

    With the new emphasis on physical fitness, musculoskeletal stress injuries are being seen with greater frequency in children and adults, and in locations that are not widely associated with stress injury. Some of the injuries continue to be mistaken for signs of more serious illnesses, such as infection and neoplasm, and this may lead to unnecessary investigative effort. This book covers both the classic stress injuries and the new manifestations

  12. Purinergic signalling in the musculoskeletal system.

    Science.gov (United States)

    Burnstock, Geoffrey; Arnett, Timothy R; Orriss, Isabel R

    2013-12-01

    It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.

  13. Imaging in percutaneous musculoskeletal interventions

    International Nuclear Information System (INIS)

    Gangi, Afshin; Guth, Stephane; Guermazi, Ali

    2009-01-01

    This is one of the first books to deal specifically with imaging in percutaneous musculoskeletal interventions. The use of different imaging modalities during these procedures is well described. In the first chapter, the basic procedures and different guidance techniques are presented and discussed. The ensuing chapters describe in exhaustive detail the abilities and uses of imaging in guiding procedures ranging from biopsy and joint injection to management of pain and tumors. These procedures are extensively documented in adults as well as in the pediatric population. The third part of the book describes the different indications for vascular interventions in musculoskeletal lesions. The final chapter focuses on ultrasound-guided interventions, as they are more common and tend to be fashionable. The book is well illustrated with carefully chosen and technically excellent images. Each of the 18 chapters is written by an expert of international repute, making this book the most current and complete treatment of the subject available. It should be of great interest to interventional radiologists and also musculoskeletal and general radiologists. (orig.)

  14. Musculoskeletal diseases in forestry workers

    Directory of Open Access Journals (Sweden)

    Vuković Slađana

    2004-01-01

    Full Text Available The most common hazards in the forestry that may induce disorders of the musculoskeletal system are vibrations, unfavorable microclimatic conditions, noise, over-time working hours, work load and long-term repeated movements. The objective of this study was to analyze the prevalence of musculoskeletal diseases and its difference among workers engaged in various jobs in the forestry. Two groups of workers were selected: woodcutters operating with chain-saw (N=33 and other loggers (N=32. Selected workers were of the similar age and had similar total length of employment as well as the length of service in the forestry. Both groups of workers employed in the forestry had the high prevalence of musculoskeletal diseases (woodcutters 69.7% and other loggers 62.5%, respectively. Degenerative diseases of spinal column were very frequent, in dependently of the type of activity in the forestry. Non-significantly higher risk of carpal tunnel syndrome was found in woodcutters with chain-saw compared to workers having other jobs in the forestry (OR=3.09; 95%CI=0.64-19.72. The lateral epicondylitis was found only in woodcutters operating with chain-saw with the prevalence of 18.2%.

  15. Experiment planning using high-level component models at W7-X

    International Nuclear Information System (INIS)

    Lewerentz, Marc; Spring, Anett; Bluhm, Torsten; Heimann, Peter; Hennig, Christine; Kühner, Georg; Kroiss, Hugo; Krom, Johannes G.; Laqua, Heike; Maier, Josef; Riemann, Heike; Schacht, Jörg; Werner, Andreas; Zilker, Manfred

    2012-01-01

    Highlights: ► Introduction of models for an abstract description of fusion experiments. ► Component models support creating feasible experiment programs at planning time. ► Component models contain knowledge about physical and technical constraints. ► Generated views on models allow to present crucial information. - Abstract: The superconducting stellarator Wendelstein 7-X (W7-X) is a fusion device, which is capable of steady state operation. Furthermore W7-X is a very complex technical system. To cope with these requirements a modular and strongly hierarchical component-based control and data acquisition system has been designed. The behavior of W7-X is characterized by thousands of technical parameters of the participating components. The intended sequential change of those parameters during an experiment is defined in an experiment program. Planning such an experiment program is a crucial and complex task. To reduce the complexity an abstract, more physics-oriented high-level layer has been introduced earlier. The so-called high-level (physics) parameters are used to encapsulate technical details. This contribution will focus on the extension of this layer to a high-level component model. It completely describes the behavior of a component for a certain period of time. It allows not only defining simple value ranges but also complex dependencies between physics parameters. This can be: dependencies within components, dependencies between components or temporal dependencies. Component models can now be analyzed to generate various views of an experiment. A first implementation of such an analyze process is already finished. A graphical preview of a planned discharge can be generated from a chronological sequence of component models. This allows physicists to survey complex planned experiment programs at a glance.

  16. Evaluation of mechanical load in the musculoskeletal system : development of experimental and modeling methodologies for the study of the effect of exercise in human models

    OpenAIRE

    João, Filipa Oliveira da Silva

    2013-01-01

    Doutoramento em Motricidade Humana, na especialidade de Biomecânica A major concern of Biomechanics research is the evaluation of the mechanical load and power that the human body develops and endorses when performing high to moderate sport activities. With the purpose of increasing performance and reducing the risk of injury, substantial advances were accomplished to pursuit this goal, either on the laboratory techniques as well as modelling and simulation. Traditionally, the main focus w...

  17. A new model for reliability optimization of series-parallel systems with non-homogeneous components

    International Nuclear Information System (INIS)

    Feizabadi, Mohammad; Jahromi, Abdolhamid Eshraghniaye

    2017-01-01

    In discussions related to reliability optimization using redundancy allocation, one of the structures that has attracted the attention of many researchers, is series-parallel structure. In models previously presented for reliability optimization of series-parallel systems, there is a restricting assumption based on which all components of a subsystem must be homogeneous. This constraint limits system designers in selecting components and prevents achieving higher levels of reliability. In this paper, a new model is proposed for reliability optimization of series-parallel systems, which makes possible the use of non-homogeneous components in each subsystem. As a result of this flexibility, the process of supplying system components will be easier. To solve the proposed model, since the redundancy allocation problem (RAP) belongs to the NP-hard class of optimization problems, a genetic algorithm (GA) is developed. The computational results of the designed GA are indicative of high performance of the proposed model in increasing system reliability and decreasing costs. - Highlights: • In this paper, a new model is proposed for reliability optimization of series-parallel systems. • In the previous models, there is a restricting assumption based on which all components of a subsystem must be homogeneous. • The presented model provides a possibility for the subsystems’ components to be non- homogeneous in the required conditions. • The computational results demonstrate the high performance of the proposed model in improving reliability and reducing costs.

  18. Exploring musculoskeletal injuries in the podiatry profession: an international cross sectional study.

    Science.gov (United States)

    Williams, Cylie M; Penkala, Stefania; Smith, Peter; Haines, Terry; Bowles, Kelly-Ann

    2017-01-01

    Workplace injury is an international costly burden. Health care workers are an essential component to managing musculoskeletal disorders, however in doing this, they may increase their own susceptibility. While there is substantial evidence about work-related musculoskeletal disorders across the health workforce, understanding risk factors in specific occupational groups, such as podiatry, is limited. The primary aim of this study was to determine the prevalence and intensity of work related low back pain in podiatrists. This was an international cross-sectional survey targeting podiatrists in Australia, New Zealand and the United Kingdom. The survey had two components; general demographic variables and variables relating to general musculoskeletal pain in general or podiatry work-related musculoskeletal pain. Multivariable regression analyses were used to identify factors associated with musculoskeletal stiffness and pain and low back pain intensity. Thematic analysis was used to group comments podiatrists made about their musculoskeletal health. There were 948 survey responses (5% of Australian, New Zealand and United Kingdom registered podiatrists). There were 719 (76%) podiatrists reporting musculoskeletal pain as a result of their work practices throughout their career. The majority of injuries reported were in the first five years of practice ( n  = 320, 45%). The body area reported as being the location of the most significant injury was the low back (203 of 705 responses, 29%). Being female ( p  < 0.001) and working in private practice ( p  = 0.003) was associated with musculoskeletal pain or stiffness in the past 12 months. There were no variables associated with pain or stiffness in the past four weeks. Being female was the only variable associated with higher pain ( p  = 0.018). There were four main themes to workplace musculoskeletal pain: 1. Organisational and procedural responses to injury, 2. Giving up work, taking time off, reducing

  19. Musculoskeletal manifestations in type 2 diabetes mellitus

    OpenAIRE

    Deepti P. Deshmukh; Asmita G. Akarte

    2017-01-01

    Background: Musculoskeletal complications of diabetes have been generally ignored and poorly treated as compared to other complications. Hence we carried out this study to find the prevalence of musculoskeletal manifestations in type II diabetes mellitus and its correlation with age, BMI, duration of diabetes, and control of diabetes. Methods: 100 consecutive patients of type II diabetes were studied. Duration of diabetes, control of diabetes, and any musculoskeletal complaints were noted....

  20. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble. Debasish Majumdar Kamakshya Prasad Modak Subhendu Rakshit. Special: Cosmology Volume 86 Issue ...

  1. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this project is model-based design (MBD) tools for predicting the performance and useful life of commercial-off-the-shelf (COTS) components and...

  2. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S; Elwardany, Ahmed E; Heikal, Morgan R

    2015-01-01

    numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model

  3. Multi-component fiber track modelling of diffusion-weighted magnetic resonance imaging data

    Directory of Open Access Journals (Sweden)

    Yasser M. Kadah

    2010-01-01

    Full Text Available In conventional diffusion tensor imaging (DTI based on magnetic resonance data, each voxel is assumed to contain a single component having diffusion properties that can be fully represented by a single tensor. Even though this assumption can be valid in some cases, the general case involves the mixing of components, resulting in significant deviation from the single tensor model. Hence, a strategy that allows the decomposition of data based on a mixture model has the potential of enhancing the diagnostic value of DTI. This project aims to work towards the development and experimental verification of a robust method for solving the problem of multi-component modelling of diffusion tensor imaging data. The new method demonstrates significant error reduction from the single-component model while maintaining practicality for clinical applications, obtaining more accurate Fiber tracking results.

  4. Detailed finite element method modeling of evaporating multi-component droplets

    Energy Technology Data Exchange (ETDEWEB)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    2017-07-01

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet. Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.

  5. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan

    2007-01-01

    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary...

  6. A proposed centralised distribution model for the South African automotive component industry

    Directory of Open Access Journals (Sweden)

    Micheline J. Naude

    2009-12-01

    Full Text Available Purpose: This article explores the possibility of developing a distribution model, similar to the model developed and implemented by the South African pharmaceutical industry, which could be implemented by automotive component manufacturers for supply to independent retailers. Problem Investigated: The South African automotive components distribution chain is extensive with a number of players of varying sizes, from the larger spares distribution groups to a number of independent retailers. Distributing to the smaller independent retailers is costly for the automotive component manufacturers. Methodology: This study is based on a preliminary study of an explorative nature. Interviews were conducted with a senior staff member from a leading automotive component manufacturer in KwaZulu Natal and nine participants at a senior management level at five of their main customers (aftermarket retailers. Findings: The findings from the empirical study suggest that the aftermarket component industry is mature with the role players well established. The distribution chain to the independent retailer is expensive in terms of transaction and distribution costs for the automotive component manufacturer. A proposed centralised distribution model for supply to independent retailers has been developed which should reduce distribution costs for the automotive component manufacturer in terms of (1 the lowest possible freight rate; (2 timely and controlled delivery; and (3 reduced congestion at the customer's receiving dock. Originality: This research is original in that it explores the possibility of implementing a centralised distribution model for independent retailers in the automotive component industry. Furthermore, there is a dearth of published research on the South African automotive component industry particularly addressing distribution issues. Conclusion: The distribution model as suggested is a practical one and should deliver added value to automotive

  7. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  8. Revealing the equivalence of two clonal survival models by principal component analysis

    International Nuclear Information System (INIS)

    Lachet, Bernard; Dufour, Jacques

    1976-01-01

    The principal component analysis of 21 chlorella cell survival curves, adjusted by one-hit and two-hit target models, lead to quite similar projections on the principal plan: the homologous parameters of these models are linearly correlated; the reason for the statistical equivalence of these two models, in the present state of experimental inaccuracy, is revealed [fr

  9. A model-based software development methodology for high-end automotive components

    NARCIS (Netherlands)

    Ravanan, Mahmoud

    2014-01-01

    This report provides a model-based software development methodology for high-end automotive components. The V-model is used as a process model throughout the development of the software platform. It offers a framework that simplifies the relation between requirements, design, implementation,

  10. Stability equation and two-component Eigenmode for domain walls in scalar potential model

    International Nuclear Information System (INIS)

    Dias, G.S.; Graca, E.L.; Rodrigues, R. de Lima

    2002-08-01

    Supersymmetric quantum mechanics involving a two-component representation and two-component eigenfunctions is applied to obtain the stability equation associated to a potential model formulated in terms of two coupled real scalar fields. We investigate the question of stability by introducing an operator technique for the Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS states on two domain walls in a scalar potential model with minimal N 1-supersymmetry. (author)

  11. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  12. Efficacy of a multi-component exercise programme and nutritional supplementation on musculoskeletal health in men treated with androgen deprivation therapy for prostate cancer (IMPACT): study protocol of a randomised controlled trial.

    Science.gov (United States)

    Owen, Patrick J; Daly, Robin M; Livingston, Patricia M; Mundell, Niamh L; Dalla Via, Jack; Millar, Jeremy L; Fraser, Steve F

    2017-10-03

    Prostate cancer is the most commonly diagnosed cancer in men in developed countries. Androgen deprivation therapy (ADT) is a systemic treatment shown to increase survival in selected patients with prostate cancer. The use of ADT continues to increase for all stages and grades of prostate cancer despite known treatment-induced adverse effects. The primary aim of this study is to examine the efficacy of a targeted, multi-component resistance and impact-loading exercise programme together with a daily protein-, calcium- and vitamin D-enriched supplement on bone health in men treated with ADT for prostate cancer. Secondary aims are to determine the effects of this intervention on measures of total body and regional body composition, cardiometabolic risk, inflammatory markers, health-related quality of life and cognitive function. This study is a two-arm randomised controlled trial. Men currently treated with ADT for prostate cancer will be randomised to either a 52-week, community-based, exercise training and nutritional supplementation intervention (n = 51) or usual care control (n = 51). Participants will be assessed at baseline, 26 weeks and 52 weeks for all measures. The primary outcome measures are proximal femur and lumbar spine areal bone mineral density (BMD). Secondary outcomes comprise: changes in tibial and radial bone structure and strength, total body and regional body composition, muscle strength and function, as well as cardiometabolic health, catabolic/inflammatory and anabolic/anti-inflammatory cytokines, health-related quality of life and cognitive function. This study investigates whether a multi-component intervention incorporating a targeted bone and muscle-loading programme in combination with a protein-, calcium- and vitamin D-enriched supplement can ameliorate multiple adverse effects of ADT when compared to usual care. The results will contribute to the development of exercise training and nutrition guidelines for optimising overall

  13. The n-component cubic model and flows: subgraph break-collapse method

    International Nuclear Information System (INIS)

    Essam, J.W.; Magalhaes, A.C.N. de.

    1988-01-01

    We generalise to the n-component cubic model the subgraph break-collapse method which we previously developed for the Potts model. The relations used are based on expressions which we recently derived for the Z(λ) model in terms of mod-λ flows. Our recursive algorithm is similar, for n = 2, to the break-collapse method for the Z(4) model proposed by Mariz and coworkers. It allows the exact calculation for the partition function and correlation functions for n-component cubic clusters with n as a variable, without the need to examine all of the spin configurations. (author) [pt

  14. Design and control of a pneumatic musculoskeletal biped robot.

    Science.gov (United States)

    Zang, Xizhe; Liu, Yixiang; Liu, Xinyu; Zhao, Jie

    2016-04-29

    Pneumatic artificial muscles are quite promising actuators for humanoid robots owing to their similar characteristics with human muscles. Moreover, biologically inspired musculoskeletal systems are particularly important for humanoid robots to perform versatile dynamic tasks. This study aims to develop a pneumatic musculoskeletal biped robot, and its controller, to realize human-like walking. According to the simplified musculoskeletal structure of human lower limbs, each leg of the biped robot is driven by nine muscles, including three pairs of monoarticular muscles which are arranged in the flexor-extensor form, as well as three biarticular muscles which span two joints. To lower cost, high-speed on/off solenoid valves rather than proportional valves are used to control the muscles. The joint trajectory tracking controller based on PID control method is designed to achieve the desired motion. Considering the complex characteristics of pneumatic artificial muscles, the control model is obtained through parameter identification experiments. Preliminary experimental results demonstrate that the biped robot is able to walk with this control strategy. The proposed musculoskeletal structure and control strategy are effective for the biped robot to achieve human-like walking.

  15. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    Science.gov (United States)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  16. Musculoskeletal Pain in Gynecologic Surgeons

    Science.gov (United States)

    Adams, Sonia R.; Hacker, Michele R.; McKinney, Jessica L.; Elkadry, Eman A.; Rosenblatt, Peter L.

    2013-01-01

    Objective To describe the prevalence of musculoskeletal pain and symptoms in gynecologic surgeons. Design Prospective cross-sectional survey study (Canadian Task Force classification II-2). Setting Virtual. All study participants were contacted and participated via electronic means. Participants Gynecologic surgeons. Interventions An anonymous, web-based survey was distributed to gynecologic surgeons via electronic newsletters and direct E-mail. Measurements and Main Results There were 495 respondents with complete data. When respondents were queried about their musculoskeletal symptoms in the past 12 months, they reported a high prevalence of lower back (75.6%) and neck (72.9%) pain and a slightly lower prevalence of shoulder (66.6%), upper back (61.6%), and wrist/hand (60.9%) pain. Many respondents believed that performing surgery caused or worsened the pain, ranging from 76.3% to 82.7% in these five anatomic regions. Women are at an approximately twofold risk of pain, with adjusted odds ratios (OR) of 1.88 (95% confidence interval [CI], 1.1–3.2; p 5 .02) in the lower back region, OR 2.6 (95% CI, 1.4–4.8; p 5 .002) in the upper back, and OR 2.9 (95% CI, 1.8–4.6; p 5 .001) in the wrist/hand region. Conclusion Musculoskeletal symptoms are highly prevalent among gynecologic surgeons. Female sex is associated with approximately twofold risk of reported pain in commonly assessed anatomic regions. Journal of Minimally Invasive Gynecology (2013) 20, 656-660 PMID:23796512

  17. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  18. Biopsy in Musculoskeletal Tumors

    Directory of Open Access Journals (Sweden)

    Mohammad Gharehdaghi

    2014-09-01

    other anatomic structures? (4 Carcinomas are homogeneous, and a simple CNB is usually sufficient for diagnosis, but in soft tissue sarcomas, the periphery of the tumor is the growing part and usually represents the authentic underlying malignancy. The center of the tumor may be hemorrhagic or necrotic, thus taking biopsy from this part may distract from the correct diagnosis.Extraosseus part of a bone sarcoma is as representative as bony component of the tumor. Violating the bone and weakening the cortex may predispose it to pathologic fracture, so biopsy of an extraosseus part is sufficient for the diagnosis if present (3. The biopsy tract “open or CNB” is contaminated by tumor cells and should be widely excised if a wide excision or amputation is performed. For this reason, excision of the biopsy incision or needle entrance should be planned along with the definitive tumor excision to prevent complications and the need for altering the treatment strategy (Figure A, B, C. Open incisional biopsy provides sufficient material for microscopic diagnosis as well as immune- histochemical, cytogenetic, or electron microscopic studies. It has some disadvantages such as wound healing problems, infection, tumor cell contamination, and nerve and vessel injuries (1. For open biopsies, the incision should be as small as necessary and longitudinal. Transverse incisions are not advisable. To perform an intraosseus biopsy, the window should be circular or oblong, and as small as needed to prevent a pathologic fracture. Closing this window by PMMA prevents tumor cell contamination. Compressing the PMMA exceeds the chance of metastasis. As a rule, culture what you biopsy and biopsy what you culture. Use of a tourniquet without exsanguinations helps better visualization and meticulous hemostasis which prevents spreading of the tumor cells in hematoma. Importantly, it should be deflated before closing the wound (3. The port of entry of drains, if necessary, must be in line and

  19. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors

    KAUST Repository

    Simpson, Daniel

    2017-04-06

    In this paper, we introduce a new concept for constructing prior distributions. We exploit the natural nested structure inherent to many model components, which defines the model component to be a flexible extension of a base model. Proper priors are defined to penalise the complexity induced by deviating from the simpler base model and are formulated after the input of a user-defined scaling parameter for that model component, both in the univariate and the multivariate case. These priors are invariant to repa-rameterisations, have a natural connection to Jeffreys\\' priors, are designed to support Occam\\'s razor and seem to have excellent robustness properties, all which are highly desirable and allow us to use this approach to define default prior distributions. Through examples and theoretical results, we demonstrate the appropriateness of this approach and how it can be applied in various situations.

  20. Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors

    KAUST Repository

    Simpson, Daniel; Rue, Haavard; Riebler, Andrea; Martins, Thiago G.; Sø rbye, Sigrunn H.

    2017-01-01

    In this paper, we introduce a new concept for constructing prior distributions. We exploit the natural nested structure inherent to many model components, which defines the model component to be a flexible extension of a base model. Proper priors are defined to penalise the complexity induced by deviating from the simpler base model and are formulated after the input of a user-defined scaling parameter for that model component, both in the univariate and the multivariate case. These priors are invariant to repa-rameterisations, have a natural connection to Jeffreys' priors, are designed to support Occam's razor and seem to have excellent robustness properties, all which are highly desirable and allow us to use this approach to define default prior distributions. Through examples and theoretical results, we demonstrate the appropriateness of this approach and how it can be applied in various situations.

  1. Musculoskeletal pareidolia in medical education.

    Science.gov (United States)

    Foye, Patrick; Abdelshahed, Dena; Patel, Shounuck

    2014-07-01

    Medical educators use a variety of strategies to help medical students and resident doctors understand and remember complex topics. One teaching tool is matching up radiographic appearances with unrelated, common, non-medical images, in order to help students easily recognise clinical patterns. However, even among medical educators who use this approach, many are not aware of the neuropsychiatric phenomenon they are using, known as pareidolia. We will describe pareidolia (a form of patternicity) and give two examples of its use in the clinical teaching of musculoskeletal imaging abnormalities: the winking owl and the Scottie dog. © 2014 John Wiley & Sons Ltd.

  2. Relationship between Comorbid Health Problems and Musculoskeletal Disorders Resulting in Musculoskeletal Complaints and Musculoskeletal Sickness Absence among Employees in Korea.

    Science.gov (United States)

    Baek, Ji Hye; Kim, Young Sun; Yi, Kwan Hyung

    2015-06-01

    To investigate the relationship between musculoskeletal disorders and comorbid health problems, including depression/anxiety disorder, insomnia/sleep disorder, fatigue, and injury by accident, and to determine whether certain physical and psychological factors reduce comorbid health problems. In total, 29,711 employees were selected from respondents of the Third Korean Working Conditions Survey and categorized into two groups: Musculoskeletal Complaints or Musculoskeletal Sickness Absence. Four self-reported health indicators (overall fatigue, depression/anxiety, insomnia/sleep disorder, and injury by accident) were selected as outcomes, based on their high prevalence in Korea. We used multiple logistic regression analysis to determine the relationship between comorbid health problems, musculoskeletal complaints, and sickness absence. The prevalence of musculoskeletal complaints and musculoskeletal sickness absence due to muscular pain was 32.26% and 0.59%, respectively. Compared to the reference group, depression/anxiety disorder and overall fatigue were 5.2-6.1 times more prevalent in the Musculoskeletal Complaints Group and insomnia/sleep disorder and injury by accident were 7.6-11.0 times more prevalent in the Sickness Absence Group. When adjusted for individual and work-related physical factors, prevalence of all four comorbid health problems were slightly decreased in both groups. Increases in overall fatigue and depression/anxiety disorder were observed in the Musculoskeletal Complaints Group, while increases in insomnia/sleep disorder and injury by accident were observed in the Sickness Absence Group. For management of musculoskeletal complaints and sickness absence in the workplace, differences in health problems between employees with musculoskeletal complaints and those with sickness absence as well as the physical and psychological risk factors should be considered.

  3. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    Science.gov (United States)

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Work load and musculoskeletal complaints during pregnancy

    NARCIS (Netherlands)

    Paul, J. A.; van Dijk, F. J.; Frings-Dresen, M. H.

    1994-01-01

    Many pregnant women have musculoskeletal complaints, the onset and aggravation of which are thought to be associated with their activity or work postures. The purpose of this paper was to obtain more insight into the influence of pregnancy on the load of the musculoskeletal system at work to provide

  5. Baggage handler seniority and musculoskeletal symptoms

    DEFF Research Database (Denmark)

    Bern, Stine Hvid; Brauer, Charlotte; Møller, Karina Lauenborg

    2013-01-01

    Heavy lifting is associated with musculoskeletal disorders but it is unclear whether it is related to acute reversible effects or to chronic effects from cumulated exposure. The aim of this study was to examine whether musculoskeletal symptoms in Danish airport baggage handlers were associated wi...... with their seniority as baggage handler, indicating chronic effects from cumulated workload....

  6. Epidemiology and clinical profile of common musculoskeletal ...

    African Journals Online (AJOL)

    Epidemiology and clinical profile of common musculoskeletal diseases in patients with diabetes mellitus at Tikur Anbessa Specialized Hospital in Addis Ababa, Ethiopia. ... or worsening of MSD. Keywords: musculoskeletal complications; diabetic foot; foot care; trigger finger; Dupuytren's contracture; stiff frozen shoulder ...

  7. Selection related to musculoskeletal complaints among employees

    NARCIS (Netherlands)

    de Zwart, B. C.; Broersen, J. P.; van der Beek, A. J.; Frings-Dresen, M. H.; van Dijk, F. J.

    1997-01-01

    To (a) describe differences in the outcome of cross sectional and longitudinal analysis on musculoskeletal complaints relative to age and work demands, and (b) to assess the entrance and drop out selection on musculoskeletal complaints among groups of employees relative to age and work demands. A

  8. The prevalence and factors associated with musculoskeletal ...

    African Journals Online (AJOL)

    Background: Sickle cell anaemia (SCA) is a condition characterized by a predominance of haemoglobin S (hbss) in the red blood cells. Musculoskeletal involvement is one of the commonest clinical manifestations of SCA. There is limited information on the prevalence, patterns and factors associated with Musculoskeletal ...

  9. A comparative study of the proposed models for the components of the national health information system.

    Science.gov (United States)

    Ahmadi, Maryam; Damanabi, Shahla; Sadoughi, Farahnaz

    2014-04-01

    National Health Information System plays an important role in ensuring timely and reliable access to Health information, which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system - for better planning and management influential factors of performanceseems necessary, therefore, in this study different attitudes towards components of this system are explored comparatively. This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process and output. In this context, search for information using library resources and internet search were conducted, and data analysis was expressed using comparative tables and qualitative data. The findings showed that there are three different perspectives presenting the components of national health information system Lippeveld and Sauerborn and Bodart model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008, and Gattini's 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities and equipment. Plus, in the "process" section from three models, we pointed up the actions ensuring the quality of health information system, and in output section, except for Lippeveld Model, two other models consider information products and use and distribution of information as components of the national health information system. the results showed that all the three models have had a brief discussion about the

  10. A discrimination-association model for decomposing component processes of the implicit association test.

    Science.gov (United States)

    Stefanutti, Luca; Robusto, Egidio; Vianello, Michelangelo; Anselmi, Pasquale

    2013-06-01

    A formal model is proposed that decomposes the implicit association test (IAT) effect into three process components: stimuli discrimination, automatic association, and termination criterion. Both response accuracy and reaction time are considered. Four independent and parallel Poisson processes, one for each of the four label categories of the IAT, are assumed. The model parameters are the rate at which information accrues on the counter of each process and the amount of information that is needed before a response is given. The aim of this study is to present the model and an illustrative application in which the process components of a Coca-Pepsi IAT are decomposed.

  11. OSCAR2000 : a multi-component 3-dimensional oil spill contingency and response model

    International Nuclear Information System (INIS)

    Reed, M.; Daling, P.S.; Brakstad, O.G.; Singsaas, I.; Faksness, L.-G.; Hetland, B.; Ekrol, N.

    2000-01-01

    Researchers at SINTEF in Norway have studied the weathering of surface oil. They developed a realistic model to analyze alternative spill response strategies. The model represented the formation and composition of the water-accommodated fraction (WAF) of oil for both treated and untreated oil spills. As many as 25 components, pseudo-components, or metabolites were allowed for the specification of oil. Calculations effected using OSCAR were verified in great detail on numerous occasions. The model made it possible to determine rather realistically the dissolution, transformation, and toxicology of dispersed oil clouds, as well as evaporation, emulsification, and natural dispersion. OSCAR comprised a data-based oil weathering model, a three-dimensional oil trajectory and chemical fates model, an oil spill combat model, exposure models for birds, marine mammals, fish and ichthyoplankton. 17 refs., 1 tab., 11 figs

  12. Structural assessment of aerospace components using image processing algorithms and Finite Element models

    DEFF Research Database (Denmark)

    Stamatelos, Dimtrios; Kappatos, Vassilios

    2017-01-01

    Purpose – This paper presents the development of an advanced structural assessment approach for aerospace components (metallic and composites). This work focuses on developing an automatic image processing methodology based on Non Destructive Testing (NDT) data and numerical models, for predicting...... the residual strength of these components. Design/methodology/approach – An image processing algorithm, based on the threshold method, has been developed to process and quantify the geometric characteristics of damages. Then, a parametric Finite Element (FE) model of the damaged component is developed based...... on the inputs acquired from the image processing algorithm. The analysis of the metallic structures is employing the Extended FE Method (XFEM), while for the composite structures the Cohesive Zone Model (CZM) technique with Progressive Damage Modelling (PDM) is used. Findings – The numerical analyses...

  13. Model of the fine-grain component of martian soil based on Viking lander data

    International Nuclear Information System (INIS)

    Nussinov, M.D.; Chernyak, Y.B.; Ettinger, J.L.

    1978-01-01

    A model of the fine-grain component of the Martian soil is proposed. The model is based on well-known physical phenomena, and enables an explanation of the evolution of the gases released in the GEX (gas exchange experiments) and GCMS (gas chromatography-mass spectrometer experiments) of the Viking landers. (author)

  14. Individual differences in anxiety responses to stressful situations : A three-mode component analysis model

    NARCIS (Netherlands)

    Van Mechelen, Iven; Kiers, Henk A.L.

    1999-01-01

    The three-mode component analysis model is discussed as a tool for a contextualized study of personality. When applied to person x situation x response data, the model includes sets of latent dimensions for persons, situations, and responses as well as a so-called core array, which may be considered

  15. Musculoskeletal trauma services in Uganda.

    Science.gov (United States)

    Naddumba, E K

    2008-10-01

    Approximately 2000 lives are lost in Uganda annually through road traffic accidents. In Kampala, they account for 39% of all injuries, primarily in males aged 16-44 years. They are a result of rapid motorization and urbanization in a country with a poor economy. Uganda's population is an estimated 28 million with a growth rate of 3.4% per year. Motorcycles and omnibuses, the main taxi vehicles, are the primary contributors to the accidents. Poor roads and drivers compound the situation. Twenty-three orthopaedic surgeons (one for every 1,300,000 people) provide specialist services that are available only at three regional hospitals and the National Referral Hospital in Kampala. The majority of musculoskeletal injuries are managed nonoperatively by 200 orthopaedic officers distributed at the district, regional and national referral hospitals. Because of the poor economy, 9% of the national budget is allocated to the health sector. Patients with musculoskeletal injuries in Uganda frequently fail to receive immediate care due to inadequate resources and most are treated by traditional bonesetters. Neglected injuries typically result in poor outcomes. Possible solutions include a public health approach for prevention of road traffic injuries, training of adequate human resources, and infrastructure development.

  16. Imaging features of musculoskeletal tuberculosis

    International Nuclear Information System (INIS)

    Vuyst, Dimitri De; Vanhoenacker, Filip; Bernaerts, Anja; Gielen, Jan; Schepper, Arthur M. de

    2003-01-01

    The purpose of this article is to review the imaging characteristics of musculoskeletal tuberculosis. Skeletal tuberculosis represents one-third of all cases of tuberculosis occurring in extrapulmonary sites. Hematogenous spread from a distant focus elsewhere in the body is the cornerstone in the understanding of imaging features of musculoskeletal tuberculosis. The most common presentations are tuberculous spondylitis, arthritis, osteomyelitis, and soft tissue involvement. The diagnostic value of the different imaging techniques, which include conventional radiography, CT, and MR imaging, are emphasized. Whereas conventional radiography is the mainstay in the diagnosis of tuberculous arthritis and osteomyelitis, MR imaging may detect associated bone marrow and soft tissue abnormalities. MR imaging is generally accepted as the imaging modality of choice for diagnosis, demonstration of the extent of the disease of tuberculous spondylitis, and soft tissue tuberculosis. Moreover, it may be very helpful in the differential diagnosis with pyogenic spondylodiscitis, as it may easily demonstrate anterior corner destruction, the relative preservation of the intervertebral disk, multilevel involvement with or without skip lesions, and a large soft tissue abscess, as these are all arguments in favor of a tuberculous spondylitis. On the other hand, CT is still superior in the demonstration of calcifications, which are found in chronic tuberculous abscesses. (orig.)

  17. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    Science.gov (United States)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  18. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales

  19. A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy

    International Nuclear Information System (INIS)

    Gholinezhad, Hadi; Zeinal Hamadani, Ali

    2017-01-01

    This paper develops a new model for redundancy allocation problem. In this paper, like many recent papers, the choice of the redundancy strategy is considered as a decision variable. But, in our model each subsystem can exploit both active and cold-standby strategies simultaneously. Moreover, the model allows for component mixing such that components of different types may be used in each subsystem. The problem, therefore, boils down to determining the types of components, redundancy levels, and number of active and cold-standby units of each type for each subsystem to maximize system reliability by considering such constraints as available budget, weight, and space. Since RAP belongs to the NP-hard class of optimization problems, a genetic algorithm (GA) is developed for solving the problem. Finally, the performance of the proposed algorithm is evaluated by applying it to a well-known test problem from the literature with relatively satisfactory results. - Highlights: • A new model for the redundancy allocation problem in series–parallel systems is proposed. • The redundancy strategy of each subsystem is considered as a decision variable and can be active, cold-standby or mixed. • Component mixing is allowed, in other words components of any subsystem can be non-identical. • A genetic algorithm is developed for solving the problem. • Computational experiments demonstrate that the new model leads to interesting results.

  20. Assessing Internet addiction using the parsimonious Internet addiction components model - a preliminary study [forthcoming

    OpenAIRE

    Kuss, DJ; Shorter, GW; Van Rooij, AJ; Griffiths, MD; Schoenmakers, T

    2014-01-01

    Internet usage has grown exponentially over the last decade. Research indicates that excessive Internet use can lead to symptoms associated with addiction. To date, assessment of potential Internet addiction has varied regarding populations studied and instruments used, making reliable prevalence estimations difficult. To overcome the present problems a preliminary study was conducted testing a parsimonious Internet addiction components model based on Griffiths’ addiction components (2005), i...

  1. 3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    Science.gov (United States)

    Wilson, R. B.; Banerjee, P. K.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.

  2. Proportional and scale change models to project failures of mechanical components with applications to space station

    Science.gov (United States)

    Taneja, Vidya S.

    1996-01-01

    In this paper we develop the mathematical theory of proportional and scale change models to perform reliability analysis. The results obtained will be applied for the Reaction Control System (RCS) thruster valves on an orbiter. With the advent of extended EVA's associated with PROX OPS (ISSA & MIR), and docking, the loss of a thruster valve now takes on an expanded safety significance. Previous studies assume a homogeneous population of components with each component having the same failure rate. However, as various components experience different stresses and are exposed to different environments, their failure rates change with time. In this paper we model the reliability of a thruster valves by treating these valves as a censored repairable system. The model for each valve will take the form of a nonhomogeneous process with the intensity function that is either treated as a proportional hazard model, or a scale change random effects hazard model. Each component has an associated z, an independent realization of the random variable Z from a distribution G(z). This unobserved quantity z can be used to describe heterogeneity systematically. For various models methods for estimating the model parameters using censored data will be developed. Available field data (from previously flown flights) is from non-renewable systems. The estimated failure rate using such data will need to be modified for renewable systems such as thruster valve.

  3. Layout Optimization Model for the Production Planning of Precast Concrete Building Components

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2018-05-01

    Full Text Available Precast concrete comprises the basic components of modular buildings. The efficiency of precast concrete building component production directly impacts the construction time and cost. In the processes of precast component production, mold setting has a significant influence on the production efficiency and cost, as well as reducing the resource consumption. However, the development of mold setting plans is left to the experience of production staff, with outcomes dependent on the quality of human skill and experience available. This can result in sub-optimal production efficiencies and resource wastage. Accordingly, in order to improve the efficiency of precast component production, this paper proposes an optimization model able to maximize the average utilization rate of pallets used during the molding process. The constraints considered were the order demand, the size of the pallet, layout methods, and the positional relationship of components. A heuristic algorithm was used to identify optimization solutions provided by the model. Through empirical analysis, and as exemplified in the case study, this research is significant in offering a prefabrication production planning model which improves pallet utilization rates, shortens component production time, reduces production costs, and improves the resource utilization. The results clearly demonstrate that the proposed method can facilitate the precast production plan providing strong practical implications for production planners.

  4. Characterizing and Modeling the Cost of Rework in a Library of Reusable Software Components

    Science.gov (United States)

    Basili, Victor R.; Condon, Steven E.; ElEmam, Khaled; Hendrick, Robert B.; Melo, Walcelio

    1997-01-01

    In this paper we characterize and model the cost of rework in a Component Factory (CF) organization. A CF is responsible for developing and packaging reusable software components. Data was collected on corrective maintenance activities for the Generalized Support Software reuse asset library located at the Flight Dynamics Division of NASA's GSFC. We then constructed a predictive model of the cost of rework using the C4.5 system for generating a logical classification model. The predictor variables for the model are measures of internal software product attributes. The model demonstrates good prediction accuracy, and can be used by managers to allocate resources for corrective maintenance activities. Furthermore, we used the model to generate proscriptive coding guidelines to improve programming, practices so that the cost of rework can be reduced in the future. The general approach we have used is applicable to other environments.

  5. SASSYS-1 balance-of-plant component models for an integrated plant response

    International Nuclear Information System (INIS)

    Ku, J.-Y.

    1989-01-01

    Models of power plant heat transfer components and rotating machinery have been added to the balance-of-plant model in the SASSYS-1 liquid metal reactor systems analysis code. This work is part of a continuing effort in plant network simulation based on the general mathematical models developed. The models described in this paper extend the scope of the balance-of-plant model to handle non-adiabatic conditions along flow paths. While the mass and momentum equations remain the same, the energy equation now contains a heat source term due to energy transfer across the flow boundary or to work done through a shaft. The heat source term is treated fully explicitly. In addition, the equation of state is rewritten in terms of the quality and separate parameters for each phase. The models are simple enough to run quickly, yet include sufficient detail of dominant plant component characteristics to provide accurate results. 5 refs., 16 figs., 2 tabs

  6. Low-level profiling and MARTE-compatible modeling of software components for real-time systems

    NARCIS (Netherlands)

    Triantafyllidis, K.; Bondarev, E.; With, de P.H.N.

    2012-01-01

    In this paper, we present a method for (a) profiling of individual components at high accuracy level, (b) modeling of the components with the accurate data obtained from profiling, and (c) model conversion to the MARTE profile. The resulting performance models of individual components are used at

  7. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  8. A Component-Based Modeling and Validation Method for PLC Systems

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2014-05-01

    Full Text Available Programmable logic controllers (PLCs are complex embedded systems that are widely used in industry. This paper presents a component-based modeling and validation method for PLC systems using the behavior-interaction-priority (BIP framework. We designed a general system architecture and a component library for a type of device control system. The control software and hardware of the environment were all modeled as BIP components. System requirements were formalized as monitors. Simulation was carried out to validate the system model. A realistic example from industry of the gates control system was employed to illustrate our strategies. We found a couple of design errors during the simulation, which helped us to improve the dependability of the original systems. The results of experiment demonstrated the effectiveness of our approach.

  9. COMPONENT SUPPLY MODEL FOR REPAIR ACTIVITIES NETWORK UNDER CONDITIONS OF PROBABILISTIC INDEFINITENESS.

    Directory of Open Access Journals (Sweden)

    Victor Yurievich Stroganov

    2017-02-01

    Full Text Available This article contains the systematization of the major production functions of repair activities network and the list of planning and control functions, which are described in the form of business processes (BP. Simulation model for analysis of the delivery effectiveness of components under conditions of probabilistic uncertainty was proposed. It has been shown that a significant portion of the total number of business processes is represented by the management and planning of the parts and components movement. Questions of construction of experimental design techniques on the simulation model in the conditions of non-stationarity were considered.

  10. Towards a Complete Model for Software Component Deployment on Heterogeneous Platform

    Directory of Open Access Journals (Sweden)

    Švogor Ivan

    2014-12-01

    Full Text Available This report briefly describes an ongoing research related to optimization of allocating software components to heterogeneous computing platform (which includes CPU, GPU and FPGA. Research goal is also presented, along with current hot topics of the research area, related research teams, and finally results and contribution of my research. It involves mathematical modelling which results in goal function, optimization method which finds a suboptimal solution to the goal function and a software modeling tool which enables graphical representation of the problem at hand and help developers determine component placement in the system design phase.

  11. Musculoskeletal phenotype through the life course: the role of nutrition.

    Science.gov (United States)

    Ward, Kate

    2012-02-01

    This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.

  12. Development of Rasch-based item banks for the assessment of work performance in patients with musculoskeletal diseases.

    Science.gov (United States)

    Mueller, Evelyn A; Bengel, Juergen; Wirtz, Markus A

    2013-12-01

    This study aimed to develop a self-description assessment instrument to measure work performance in patients with musculoskeletal diseases. In terms of the International Classification of Functioning, Disability and Health (ICF), work performance is defined as the degree of meeting the work demands (activities) at the actual workplace (environment). To account for the fact that work performance depends on the work demands of the job, we strived to develop item banks that allow a flexible use of item subgroups depending on the specific work demands of the patients' jobs. Item development included the collection of work tasks from literature and content validation through expert surveys and patient interviews. The resulting 122 items were answered by 621 patients with musculoskeletal diseases. Exploratory factor analysis to ascertain dimensionality and Rasch analysis (partial credit model) for each of the resulting dimensions were performed. Exploratory factor analysis resulted in four dimensions, and subsequent Rasch analysis led to the following item banks: 'impaired productivity' (15 items), 'impaired cognitive performance' (18), 'impaired coping with stress' (13) and 'impaired physical performance' (low physical workload 20 items, high physical workload 10 items). The item banks exhibited person separation indices (reliability) between 0.89 and 0.96. The assessment of work performance adds the activities component to the more commonly employed participation component of the ICF-model. The four item banks can be adapted to specific jobs where necessary without losing comparability of person measures, as the item banks are based on Rasch analysis.

  13. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  14. Component Degradation Susceptibilities As The Bases For Modeling Reactor Aging Risk

    International Nuclear Information System (INIS)

    Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

    2010-01-01

    The extension of nuclear power plant operating licenses beyond 60 years in the United States will be necessary if we are to meet national energy needs while addressing the issues of carbon and climate. Characterizing the operating risks associated with aging reactors is problematic because the principal tool for risk-informed decision-making, Probabilistic Risk Assessment (PRA), is not ideally-suited to addressing aging systems. The components most likely to drive risk in an aging reactor - the passives - receive limited treatment in PRA, and furthermore, standard PRA methods are based on the assumption of stationary failure rates: a condition unlikely to be met in an aging system. A critical barrier to modeling passives aging on the wide scale required for a PRA is that there is seldom sufficient field data to populate parametric failure models, and nor is there the availability of practical physics models to predict out-year component reliability. The methodology described here circumvents some of these data and modeling needs by using materials degradation metrics, integrated with conventional PRA models, to produce risk importance measures for specific aging mechanisms and component types. We suggest that these measures have multiple applications, from the risk-screening of components to the prioritization of materials research.

  15. Common and Critical Components Among Community Health Assessment and Community Health Improvement Planning Models.

    Science.gov (United States)

    Pennel, Cara L; Burdine, James N; Prochaska, John D; McLeroy, Kenneth R

    Community health assessment and community health improvement planning are continuous, systematic processes for assessing and addressing health needs in a community. Since there are different models to guide assessment and planning, as well as a variety of organizations and agencies that carry out these activities, there may be confusion in choosing among approaches. By examining the various components of the different assessment and planning models, we are able to identify areas for coordination, ways to maximize collaboration, and strategies to further improve community health. We identified 11 common assessment and planning components across 18 models and requirements, with a particular focus on health department, health system, and hospital models and requirements. These common components included preplanning; developing partnerships; developing vision and scope; collecting, analyzing, and interpreting data; identifying community assets; identifying priorities; developing and implementing an intervention plan; developing and implementing an evaluation plan; communicating and receiving feedback on the assessment findings and/or the plan; planning for sustainability; and celebrating success. Within several of these components, we discuss characteristics that are critical to improving community health. Practice implications include better understanding of different models and requirements by health departments, hospitals, and others involved in assessment and planning to improve cross-sector collaboration, collective impact, and community health. In addition, federal and state policy and accreditation requirements may be revised or implemented to better facilitate assessment and planning collaboration between health departments, hospitals, and others for the purpose of improving community health.

  16. Musculoskeletal manifestations of diabetes mellitus.

    Science.gov (United States)

    Merashli, M; Chowdhury, T A; Jawad, A S M

    2015-11-01

    The prevalence of Type 1 and Type 2 diabetes are increasing significantly worldwide. Whilst vascular complications of diabetes are well recognized, and account for principle mortality and morbidity from the condition, musculoskeletal manifestations of diabetes are common and whilst not life threatening, are an important cause of morbidity, pain and disability. Joints affected by diabetes include peripheral joints and the axial skeleton. Charcot neuroarthropathy is an important cause of deformity and amputation associated with peripheral neuropathy. A number of fibrosing conditions of the hands and shoulder are recognized, including carpal tunnel syndrome, adhesive capsulitis, tenosynovitis and limited joint mobility. People with diabetes are more prone to gout and osteoporosis. Management of these conditions requires early recognition and close liaison between diabetes and rheumatology specialists. © The Author 2015. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Musculoskeletal imaging insight 2015: Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Kathryn J. [Stanford University School of Medicine, Department of Radiology, Stanford, CA (United States); Mutiso, Kavulani [Aga Khan University Hospital, Department of Radiology, Nairobi (Kenya); Sconfienza, Luca Maria [University of Milan, Department of Biomedical Sciences for Health, Milan (Italy); IRCCS Istituto Ortopedico Galeazzi, Unit of Radiology, Milan (Italy); Monu, Johnny [University of Rochester Medical Center, Rochester, NY (United States)

    2016-07-15

    Over the past 6 years the International Skeletal Society (ISS) outreach programs have become popular amongst the various radiology organizations in sub-Saharan Africa. So much so that that the ISS outreach is now routinely expected to participate in many of the international radiology conferences in that part of the world. The organizational planning for an outreach visit to Kenya took place over a 3-year period. Eventually a double-headed event; the seventh and eighth sub-Saharan outreach efforts were organized in Nairobi and in Mombasa, Kenya. The Nairobi outreach was an educational course on musculoskeletal imaging at the University of Nairobi and the Aga Khan University in Nairobi from 26 to 28 May 2015. The Mombasa outreach was organized in collaboration with the African Society of Radiology (ASR) at their annual meeting in Mombasa from 30 May to 2 June 2015. (orig.)

  18. Musculoskeletal imaging insight 2015: Kenya

    International Nuclear Information System (INIS)

    Stevens, Kathryn J.; Mutiso, Kavulani; Sconfienza, Luca Maria; Monu, Johnny

    2016-01-01

    Over the past 6 years the International Skeletal Society (ISS) outreach programs have become popular amongst the various radiology organizations in sub-Saharan Africa. So much so that that the ISS outreach is now routinely expected to participate in many of the international radiology conferences in that part of the world. The organizational planning for an outreach visit to Kenya took place over a 3-year period. Eventually a double-headed event; the seventh and eighth sub-Saharan outreach efforts were organized in Nairobi and in Mombasa, Kenya. The Nairobi outreach was an educational course on musculoskeletal imaging at the University of Nairobi and the Aga Khan University in Nairobi from 26 to 28 May 2015. The Mombasa outreach was organized in collaboration with the African Society of Radiology (ASR) at their annual meeting in Mombasa from 30 May to 2 June 2015. (orig.)

  19. NON-MUSCULOSKELETAL SPORTS MEDICINE LEARNING IN FAMILY MEDICINE RESIDENCY PROGRAMS

    Directory of Open Access Journals (Sweden)

    Pasqualino Caputo

    2008-06-01

    for fellowship along with its standard error. The inverse of the square of the standard error for each study served as the weighting factor to find a weighted average across years. For the global significance test of the fellowship effect, we compared the weighted average against its standard error (this is the analysis with statistical control. We also computed sample size weighted average correlations among the study variables (this is the analysis without statistical control.Study results are shown by year in Table 1. The table shows (by year the number of items in each of the two scales, Cronbach's alpha reliability estimates for each scale, the number of examinees in the sports medicine and control groups, and the correlation between the non-musculoskeletal scale and group membership, which was coded so that a positive correlation means that the sports medicine group had higher scores than the control group. The average correlations across years for all study variables are shown in Table 2. As can be seen in Table 2, there is a small but significant correlation between fellowship participation and both family medicine scores and non-musculoskeletal sports medicine scores. The result of the meta-analysis was a weighted mean effect (regression coefficient of 0.025 (p < 0. 05, a value slightly smaller than the average correlation between fellowship and the non- musculoskeletal sports medicine scale shown in Table 2. Thus, the statistical adjustment for differences in general family medicine scores had very little effect. Meta-analysis of the fellowship regression coefficient indicated that the results were somewhat heterogeneous (Q with 4 df = 34.56, p < 0.05; the random-effects variance component was 0.0007, so a random-effects model was assumed and used to compute the overall mean effect (of 0.025. Hunter and Schmidt (Hunter and Schmidt, 2004 provided a method of meta-analysis that allows for the correction of observed effect sizes for reliability of measurement

  20. [Quality of professional life and musculoskeletal disorders in nurses].

    Science.gov (United States)

    Rodarte-Cuevas, Lilia; Araujo-Espino, Roxana; Trejo-Ortiz, Perla María; González-Tovar, José

    To characterize the conditions of quality of working life, the presence of muscle- skeletal disorders and the association between these variables in nursing staff of a public hospital in Zacatecas, Mexico. A cross-sectional study with descriptive-correlational scope was designed. A stratified random sampling per shift was used in 107 cases. The Questionnaire Professional Quality of Life (CVP-35) was applied as well as the Nordic Questionnaire Standardized for musculoskeletal pain and work-related risk factors questionnaire. The quality of working life gained an average of 55.62 (SD=13.57), the intrinsic motivation was the best rated component with (M=75.06, SD=18.44), contrary to managerial support that got the lowest scores with (M=43.74, SD=21.71). The presence of risk factors in the development work of musculoskeletal problems obtained a mean of 50.10 (SD=26.69). The main musculoskeletal disorders occurred in the neck region, lumbar spine and knees with 42.1% for each one. The quality of working life decreased in the presence of muscle-skeletal problems in the lumbar region with (-0.188, p≤.050), dorsal (-0.206, p≤.050), neck (-0.175, p≤.050) and knees (-0.220, p≤.010). It is necessary to improve the working conditions of nurses to reduce the presence of musculoskeletal problems and improve their quality of working life. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  1. Musculoskeletal pain in Dentistry students

    Directory of Open Access Journals (Sweden)

    Rosane Batista e Silva

    2010-06-01

    Full Text Available Objective: To investigate the frequency of musculoskeletal pain in dental students. Methods: A descriptive study of observational and cross-sectional approach in which was used an Ergonomics and Posture Questionnaire for Dentists adapted by the researchers, associated with the Cooler Quiz. The sample comprised 43 students who attended between the 6th, 8th and 10th academic periods. The data were submitted to descriptive analysis and expressed as percentages, means and standard deviations, also maximum and minimum. For the comparative analysis between the variables, we used the chi-square test, chi-square test with Yates correction or Fisher exact test, when necessary, considering the significance level of 5%. Results: Among the students surveyed 20 (46.51% were men and 23 (53.5% women with a mean age of 23.14 ± 10.24 years, maximum of 35 years and minimum of 19. It was found that 40 (93.02% reported pain in some part of the body, 23 (53.5% in the upper limbs, 20 (46.5% in the lower limbs and 37 (86% in axial skeleton, with no difference between genders (p = 0.59. Pain intensity was classified as mild 10 (25%, moderate 21(52.5% and severe 7 (17.5%. In the assessment we evidenced the direct correlation between the hours of trainning and the intensity of pain. Conclusions: The results of the survey showed that the students assessed developed high frequency of musculoskeletal pain and that pain was associated with hours of daily training held during graduation at the dental clinic.

  2. Musculoskeletal disorders in main battle tank personnel

    DEFF Research Database (Denmark)

    Nissen, Lars Ravnborg; Guldager, Bernadette; Gyntelberg, Finn

    2009-01-01

    PURPOSE: To compare the prevalence of musculoskeletal disorders of personnel in the main battle tank (MBT) units in the Danish army with those of personnel in other types of army units, and to investigate associations between job function in the tank, military rank, and musculoskeletal problems......, and ankle. RESULTS AND CONCLUSIONS: There were only 4 women in the MBT group; as a consequence, female personnel were excluded from the study. The participation rate was 58.0% (n = 184) in the MBT group and 56.3% (n = 333) in the reference group. The pattern of musculoskeletal disorders among personnel...

  3. A new model for predicting thermodynamic properties of ternary metallic solution from binary components

    International Nuclear Information System (INIS)

    Fang Zheng; Zhang Quanru

    2006-01-01

    A model has been derived to predict thermodynamic properties of ternary metallic systems from those of its three binaries. In the model, the excess Gibbs free energies and the interaction parameter ω 123 for three components of a ternary are expressed as a simple sum of those of the three sub-binaries, and the mole fractions of the components of the ternary are identical with the sub-binaries. This model is greatly simplified compared with the current symmetrical and asymmetrical models. It is able to overcome some shortcomings of the current models, such as the arrangement of the components in the Gibbs triangle, the conversion of mole fractions between ternary and corresponding binaries, and some necessary processes for optimizing the various parameters of these models. Two ternary systems, Mg-Cu-Ni and Cd-Bi-Pb are recalculated to demonstrate the validity and precision of the present model. The calculated results on the Mg-Cu-Ni system are better than those in the literature. New parameters in the Margules equations expressing the excess Gibbs free energies of three binary systems of the Cd-Bi-Pb ternary system are also given

  4. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    Energy Technology Data Exchange (ETDEWEB)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  5. Imaging review of lipomatous musculoskeletal lesions

    Directory of Open Access Journals (Sweden)

    Burt Ashley M.

    2017-01-01

    Full Text Available Lipomatous lesions are common musculoskeletal lesions that can arise within the soft tissues, bone, neurovascular structures, and synovium. The majority of these lesions are benign, and many of the benign lesions can be diagnosed by radiologic evaluation. However, radiologic differences between benign and malignant lipomatous lesions may be subtle and pathologic correlation is often needed. The use of sonography, computed tomography (CT, and magnetic resonance imaging (MRI is useful not only in portraying fat within the lesion, but also for evaluating the presence and extent of soft tissue components. Lipomas make up most soft tissue lipomatous lesions, but careful evaluation must be performed to distinguish these lesions from a low-grade liposarcoma. In addition to the imaging appearance, the location of the lesion and the patient demographics can be utilized to help diagnose other soft tissue lipomatous lesions, such as elastofibroma dorsi, angiolipoma, lipoblastoma, and hibernoma. Osseous lipomatous lesions such as a parosteal lipoma and intraosseous lipoma occur less commonly as their soft tissue counterpart, but are also benign. Neurovascular and synovial lipomatous lesions are much rarer lesions but demonstrate more classic radiologic findings, particularly on MRI. A review of the clinical, radiologic, and pathologic characteristics of these lesions is presented.

  6. Musculoskeletal Imaging Findings of Hematologic Malignancies.

    Science.gov (United States)

    Navarro, Shannon M; Matcuk, George R; Patel, Dakshesh B; Skalski, Matthew; White, Eric A; Tomasian, Anderanik; Schein, Aaron J

    2017-01-01

    Hematologic malignancies comprise a set of prevalent yet clinically diverse diseases that can affect every organ system. Because blood components originate in bone marrow, it is no surprise that bone marrow is a common location for both primary and metastatic hematologic neoplasms. Findings of hematologic malignancy can be seen with most imaging modalities including radiography, computed tomography (CT), technetium 99m ( 99m Tc) methylene diphosphonate (MDP) bone scanning, fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, and magnetic resonance (MR) imaging. Because of the diversity of imaging appearances and clinical behavior of this spectrum of disease, diagnosis can be challenging, and profound understanding of the underlying pathophysiologic changes and current treatment modalities can be daunting. The appearance of normal bone marrow at MR imaging and FDG PET/CT is also varied due to dynamic compositional changes with normal aging and in response to hematologic demand or treatment, which can lead to false-positive interpretation of imaging studies. In this article, the authors review the normal maturation and imaging appearance of bone marrow. Focusing on lymphoma, leukemia, and multiple myeloma, they present the spectrum of imaging findings of hematologic malignancy affecting the musculoskeletal system and the current imaging tools available to the radiologist. They discuss the imaging findings of posttreatment bone marrow and review commonly used staging systems and consensus recommendations for appropriate imaging for staging, management, and assessment of clinical remission. © RSNA, 2017.

  7. Verification of the component accuracy prediction obtained by physical modelling and the elastic simulation of the die/component interaction

    DEFF Research Database (Denmark)

    Ravn, Bjarne Gottlieb; Andersen, Claus Bo; Wanheim, Tarras

    2001-01-01

    There are three demands on a component that must undergo a die-cavity elasticity analysis. The demands to the product are specified as: (i) to be able to measure the loading profile which results in elestic die-cavity deflections; (ii) to be able to compute the elestic deflections using FE; (iii...

  8. Reliability Assessment of IGBT Modules Modeled as Systems with Correlated Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    configuration. The estimated system reliability by the proposed method is a conservative estimate. Application of the suggested method could be extended for reliability estimation of systems composing of welding joints, bolts, bearings, etc. The reliability model incorporates the correlation between...... was applied for the systems failure functions estimation. It is desired to compare the results with the true system failure function, which is possible to estimate using simulation techniques. Theoretical model development should be applied for the further research. One of the directions for it might...... be modeling the system based on the Sequential Order Statistics, by considering the failure of the minimum (weakest component) at each loading level. The proposed idea to represent the system by the independent components could also be used for modeling reliability by Sequential Order Statistics....

  9. Refinement and verification in component-based model-driven design

    DEFF Research Database (Denmark)

    Chen, Zhenbang; Liu, Zhiming; Ravn, Anders Peter

    2009-01-01

    Modern software development is complex as it has to deal with many different and yet related aspects of applications. In practical software engineering this is now handled by a UML-like modelling approach in which different aspects are modelled by different notations. Component-based and object-o...... be integrated in computer-aided software engineering (CASE) tools for adding formally supported checking, transformation and generation facilities.......Modern software development is complex as it has to deal with many different and yet related aspects of applications. In practical software engineering this is now handled by a UML-like modelling approach in which different aspects are modelled by different notations. Component-based and object...

  10. Statistical intercomparison of global climate models: A common principal component approach with application to GCM data

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Boyle, J.S.

    1993-05-01

    Variables describing atmospheric circulation and other climate parameters derived from various GCMs and obtained from observations can be represented on a spatio-temporal grid (lattice) structure. The primary objective of this paper is to explore existing as well as some new statistical methods to analyze such data structures for the purpose of model diagnostics and intercomparison from a statistical perspective. Among the several statistical methods considered here, a new method based on common principal components appears most promising for the purpose of intercomparison of spatio-temporal data structures arising in the task of model/model and model/data intercomparison. A complete strategy for such an intercomparison is outlined. The strategy includes two steps. First, the commonality of spatial structures in two (or more) fields is captured in the common principal vectors. Second, the corresponding principal components obtained as time series are then compared on the basis of similarities in their temporal evolution

  11. Photonic Beamformer Model Based on Analog Fiber-Optic Links’ Components

    International Nuclear Information System (INIS)

    Volkov, V A; Gordeev, D A; Ivanov, S I; Lavrov, A P; Saenko, I I

    2016-01-01

    The model of photonic beamformer for wideband microwave phased array antenna is investigated. The main features of the photonic beamformer model based on true-time-delay technique, DWDM technology and fiber chromatic dispersion are briefly analyzed. The performance characteristics of the key components of photonic beamformer for phased array antenna in the receive mode are examined. The beamformer model composed of the components available on the market of fiber-optic analog communication links is designed and tentatively investigated. Experimental demonstration of the designed model beamforming features includes actual measurement of 5-element microwave linear array antenna far-field patterns in 6-16 GHz frequency range for antenna pattern steering up to 40°. The results of experimental testing show good accordance with the calculation estimates. (paper)

  12. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    2000-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the envelope (matrix) computer code TRACE 3-D as a part of the development of a suite of electrostatic beamline element models which includes lenses, acceleration columns, quadrupoles and prisms. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the first-order modeling of cylindrical, spherical and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low-energy beamline at the Center for Accelerator Mass Spectrometry. Although initial tests following installation of the new beamline showed that the new spherical electrostatic analyzer was not behaving as predicted by these first-order models, operational conditions were found under which the analyzer now works properly as a double-focusing spherical electrostatic prism

  13. A review of multi-component maintenance models with economic dependence

    NARCIS (Netherlands)

    R. Dekker (Rommert); R.E. Wildeman (Ralph); F.A. van der Duyn Schouten (Frank)

    1997-01-01

    textabstractIn this paper we review the literature on multi-component maintenance models with economic dependence. The emphasis is on papers that appeared after 1991, but there is an overlap with Section 2 of the most recent review paper by Cho and Parlar (1991). We distinguish between stationary

  14. Specification and Generation of Environment for Model Checking of Software Components

    Czech Academy of Sciences Publication Activity Database

    Pařízek, P.; Plášil, František

    2007-01-01

    Roč. 176, - (2007), s. 143-154 ISSN 1571-0661 R&D Projects: GA AV ČR 1ET400300504 Institutional research plan: CEZ:AV0Z10300504 Keywords : software components * behavior protocols * model checking * automated generation of environment Subject RIV: JC - Computer Hardware ; Software

  15. Helpful Components Involved in the Cognitive-Experiential Model of Dream Work

    Science.gov (United States)

    Tien, Hsiu-Lan Shelley; Chen, Shuh-Chi; Lin, Chia-Huei

    2009-01-01

    The purpose of the study was to examine the helpful components involved in the Hill's cognitive-experiential dream work model. Participants were 27 volunteer clients from colleges and universities in northern and central parts of Taiwan. Each of the clients received 1-2 sessions of dream interpretations. The cognitive-experiential dream work model…

  16. A Bayesian analysis of the PPP puzzle using an unobserved components model

    NARCIS (Netherlands)

    R.H. Kleijn (Richard); H.K. van Dijk (Herman)

    2001-01-01

    textabstractThe failure to describe the time series behaviour of most real exchange rates as temporary deviations from fixed long-term means may be due to time variation of the equilibria themselves, see Engel (2000). We implement this idea using an unobserved components model and decompose the

  17. Passively model-locked Nd: YAG laser with a component GaAs

    International Nuclear Information System (INIS)

    Zhang Zhuhong; Qian Liejia; Chen Shaohe; Fan Dianyuan; Mao Hongwei

    1992-01-01

    An all solid-state passively mode-locked Nd: YAG laser with a 400 μm, (100) oriented GaAs component is reported for the first time and model locked pulses with a duration of 16 ps, average energy of 10 μJ were obtained with a probability of 90%

  18. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2017-01-01

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive

  19. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    Theoretical framework. In the present work, the dark matter candidate has two components S and S′ both of ... The scalar sector potential (for Higgs and two real singlet scalars) in this framework can then be written .... In this work we obtain the allowed values of model parameters (δ2, δ′2, MS and M′S) using three direct ...

  20. Ontologies to Support RFID-Based Link between Virtual Models and Construction Components

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2010-01-01

    the virtual models and the physical components in the construction process can improve the information handling and sharing in construction and building operation management. Such a link can be created by means of Radio Frequency Identification (RFID) technology. Ontologies play an important role...

  1. Correlation inequalities for two-component hypercubic φ4 models. Pt. 2

    International Nuclear Information System (INIS)

    Soria, J.L.; Instituto Tecnologico de Tijuana

    1990-01-01

    We continue the program started in the first paper (J. Stat. Phys. 52 (1988) 711-726). We find new and already known correlation inequalities for a family of two-component hypercubic φ 4 models, using techniques of rotated correlation inequalities and random walk representation. (orig.)

  2. A model for determining condition-based maintenance policies for deteriorating multi-component systems

    NARCIS (Netherlands)

    Hontelez, J.A.M.; Wijnmalen, D.J.D.

    1993-01-01

    We discuss a method to determine strategies for preventive maintenance of systems consisting of gradually deteriorating components. A model has been developed to compute not only the range of conditions inducing a repair action, but also inspection moments based on the last known condition value so

  3. Quantifying functional connectivity in multi-subject fMRI data using component models

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Churchill, Nathan William; Mørup, Morten

    2017-01-01

    of functional connectivity, evaluated on both simulated and experimental resting-state fMRI data. It was demonstrated that highly flexible subject-specific component subspaces, as well as very constrained average models, are poor predictors of whole-brain functional connectivity, whereas the best...

  4. Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox

    DEFF Research Database (Denmark)

    Nonejad, Nima

    This paper details Particle Markov chain Monte Carlo techniques for analysis of unobserved component time series models using several economic data sets. PMCMC combines the particle filter with the Metropolis-Hastings algorithm. Overall PMCMC provides a very compelling, computationally fast...... and efficient framework for estimation. These advantages are used to for instance estimate stochastic volatility models with leverage effect or with Student-t distributed errors. We also model changing time series characteristics of the US inflation rate by considering a heteroskedastic ARFIMA model where...

  5. Around power law for PageRank components in Buckley-Osthus model of web graph

    OpenAIRE

    Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil

    2017-01-01

    In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.

  6. The use of error components models in business finance. : a review article and an application

    OpenAIRE

    Καραθανάσης, Γεώργιος Α.; Φίλιππας, Νικόλαος

    1993-01-01

    This study applies and tests several stock valuation models of companies whose shares are traded in the Athens Stock Exchange. The relevant equations are estimated for the five major sectors of the Athens Stock Exchange (Banks, Textiles, Foods, Buildings, Commercials) using a specification which combines cross sectional and time series data. This is the Error Components Model. In view of the results obtained the most important variables across sectors appear to be dividends fol...

  7. Component simulation in problems of calculated model formation of automatic machine mechanisms

    OpenAIRE

    Telegin Igor; Kozlov Alexander; Zhirkov Alexander

    2017-01-01

    The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gap...

  8. Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

    OpenAIRE

    Matteo Manera; Angelo Marzullo

    2003-01-01

    Since oil is a non-renewable resource with a high environmental impact, and its most common use is to produce combustibles for electricity, reliable methods for modelling electricity consumption can contribute to a more rational employment of this hydrocarbon fuel. In this paper we apply the Principal Components (PC) method to modelling the load curves of Italy, France and Greece on hourly data of aggregate electricity consumption. The empirical results obtained with the PC approach are compa...

  9. Space-time latent component Modeling of Geo-referenced health data

    OpenAIRE

    Lawson, Andrew B.; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-01-01

    Latent structure models have been proposed in many applications. For space time health data it is often important to be able to find underlying trends in time which are supported by subsets of small areas. Latent structure modeling is one approach to this analysis. This paper presents a mixture-based approach that can be appied to component selction. The analysis of a Georgia ambulatory asthma county level data set is presented and a simulation-based evaluation is made.

  10. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    Science.gov (United States)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  11. Mixture modeling of multi-component data sets with application to ion-probe zircon ages

    Science.gov (United States)

    Sambridge, M. S.; Compston, W.

    1994-12-01

    A method is presented for detecting multiple components in a population of analytical observations for zircon and other ages. The procedure uses an approach known as mixture modeling, in order to estimate the most likely ages, proportions and number of distinct components in a given data set. Particular attention is paid to estimating errors in the estimated ages and proportions. At each stage of the procedure several alternative numerical approaches are suggested, each having their own advantages in terms of efficency and accuracy. The methodology is tested on synthetic data sets simulating two or more mixed populations of zircon ages. In this case true ages and proportions of each population are known and compare well with the results of the new procedure. Two examples are presented of its use with sets of SHRIMP U-238 - Pb-206 zircon ages from Palaeozoic rocks. A published data set for altered zircons from bentonite at Meishucun, South China, previously treated as a single-component population after screening for gross alteration effects, can be resolved into two components by the new procedure and their ages, proportions and standard errors estimated. The older component, at 530 +/- 5 Ma (2 sigma), is our best current estimate for the age of the bentonite. Mixture modeling of a data set for unaltered zircons from a tonalite elsewhere defines the magmatic U-238 - Pb-206 age at high precision (2 sigma +/- 1.5 Ma), but one-quarter of the 41 analyses detect hidden and significantly older cores.

  12. Hierarchical modeling of systems with similar components: A framework for adaptive monitoring and control

    International Nuclear Information System (INIS)

    Memarzadeh, Milad; Pozzi, Matteo; Kolter, J. Zico

    2016-01-01

    System management includes the selection of maintenance actions depending on the available observations: when a system is made up by components known to be similar, data collected on one is also relevant for the management of others. This is typically the case of wind farms, which are made up by similar turbines. Optimal management of wind farms is an important task due to high cost of turbines' operation and maintenance: in this context, we recently proposed a method for planning and learning at system-level, called PLUS, built upon the Partially Observable Markov Decision Process (POMDP) framework, which treats transition and emission probabilities as random variables, and is therefore suitable for including model uncertainty. PLUS models the components as independent or identical. In this paper, we extend that formulation, allowing for a weaker similarity among components. The proposed approach, called Multiple Uncertain POMDP (MU-POMDP), models the components as POMDPs, and assumes the corresponding parameters as dependent random variables. Through this framework, we can calibrate specific degradation and emission models for each component while, at the same time, process observations at system-level. We compare the performance of the proposed MU-POMDP with PLUS, and discuss its potential and computational complexity. - Highlights: • A computational framework is proposed for adaptive monitoring and control. • It adopts a scheme based on Markov Chain Monte Carlo for inference and learning. • Hierarchical Bayesian modeling is used to allow a system-level flow of information. • Results show potential of significant savings in management of wind farms.

  13. Computational models for residual creep life prediction of power plant components

    International Nuclear Information System (INIS)

    Grewal, G.S.; Singh, A.K.; Ramamoortry, M.

    2006-01-01

    All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)

  14. The Tripartite Model of Risk Perception (TRIRISK): Distinguishing Deliberative, Affective, and Experiential Components of Perceived Risk.

    Science.gov (United States)

    Ferrer, Rebecca A; Klein, William M P; Persoskie, Alexander; Avishai-Yitshak, Aya; Sheeran, Paschal

    2016-10-01

    Although risk perception is a key predictor in health behavior theories, current conceptions of risk comprise only one (deliberative) or two (deliberative vs. affective/experiential) dimensions. This research tested a tripartite model that distinguishes among deliberative, affective, and experiential components of risk perception. In two studies, and in relation to three common diseases (cancer, heart disease, diabetes), we used confirmatory factor analyses to examine the factor structure of the tripartite risk perception (TRIRISK) model and compared the fit of the TRIRISK model to dual-factor and single-factor models. In a third study, we assessed concurrent validity by examining the impact of cancer diagnosis on (a) levels of deliberative, affective, and experiential risk perception, and (b) the strength of relations among risk components, and tested predictive validity by assessing relations with behavioral intentions to prevent cancer. The tripartite factor structure was supported, producing better model fit across diseases (studies 1 and 2). Inter-correlations among the components were significantly smaller among participants who had been diagnosed with cancer, suggesting that affected populations make finer-grained distinctions among risk perceptions (study 3). Moreover, all three risk perception components predicted unique variance in intentions to engage in preventive behavior (study 3). The TRIRISK model offers both a novel conceptualization of health-related risk perceptions, and new measures that enhance predictive validity beyond that engendered by unidimensional and bidimensional models. The present findings have implications for the ways in which risk perceptions are targeted in health behavior change interventions, health communications, and decision aids.

  15. Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: A systematic review

    NARCIS (Netherlands)

    R.W. Wingbermühle (Roel); E. van Trijffel (Emiel); Nelissen, P.M. (Paul M.); B.W. Koes (Bart); A.P. Verhagen (Arianne)

    2017-01-01

    markdownabstractQuestion: Which multivariable prognostic model(s) for recovery in people with neck pain can be used in primary care? Design: Systematic review of studies evaluating multivariable prognostic models. Participants: People with non-specific neck pain presenting at primary care.

  16. Clinical applications of dynamic functional musculoskeletal ultrasound

    Directory of Open Access Journals (Sweden)

    Petscavage-Thomas J

    2014-02-01

    Full Text Available Jonelle Petscavage-Thomas Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA Abstract: There is an increasing trend in medicine to utilize ultrasound for diagnosis of musculoskeletal pathology. Although magnetic resonance imaging provides excellent spatial resolution of musculoskeletal structures in multiple imaging planes and is generally the cross-sectional modality of choice, it does not provide dynamic functional assessment of muscles, tendons, and ligaments. Dynamic maneuvers with ultrasound provide functional data and have been shown to be accurate for diagnosis. Ultrasound is also less expensive, portable, and more readily available. This article will review the common snapping, impingement, and friction syndromes imaged with dynamic ultrasound. It will also discuss future areas of research, including musculoskeletal sonoelastography. Keywords: snapping, dynamic, ultrasound, functional, musculoskeletal

  17. Prevalence and factors contributing to musculoskeletal disorder ...

    African Journals Online (AJOL)

    Journal Home > Vol 9, No 5S (2017) > ... Method used in this study is standard Nordic questionnaire (SNQ) Malay version for 150 garage workers ... Keywords: vehicle maintenance; musculoskeletal disorder; ache, pain, discomfort; prevalence ...

  18. Algorithm of Functional Musculoskeletal Disorders Diagnostics

    OpenAIRE

    Alexandra P. Eroshenko

    2012-01-01

    The article scientifically justifies the algorithm of complex diagnostics of functional musculoskeletal disorders during resort treatment, aimed at the optimal application of modern methods of physical rehabilitation (correction programs formation), based on diagnostic methodologies findings

  19. Algorithm of Functional Musculoskeletal Disorders Diagnostics

    Directory of Open Access Journals (Sweden)

    Alexandra P. Eroshenko

    2012-04-01

    Full Text Available The article scientifically justifies the algorithm of complex diagnostics of functional musculoskeletal disorders during resort treatment, aimed at the optimal application of modern methods of physical rehabilitation (correction programs formation, based on diagnostic methodologies findings

  20. injury to presentation delays among musculoskeletal trauma ...

    African Journals Online (AJOL)

    Background: Injuries are a common cause of morbidity and mortality in the developing world with road traffic ... Methods: All musculoskeletal injury patients presenting to Mulago Hospital were prospectively .... who fell or were injured in sports.

  1. Prevalence of Work Related Musculoskeletal Disorders Among ...

    African Journals Online (AJOL)

    Journal Home > Vol 4, No 4 (2014) > ... Background: Work related musculoskeletal disorders (MSDs) are one of the common occupational ... of the doctor, duration of practice, working hours per week, physical activity and working environment.

  2. Assessment of Functional and Musculoskeletal Problems, and ...

    African Journals Online (AJOL)

    Jibril Mohammed

    services. The questionnaires were administered to 384 elderly consenting individuals (aged 60 years and above) ... musculoskeletal problems had good ADL performance capacity rating. ..... may be that many of them scored high on tasks that.

  3. Psychosocial stressors at work and musculoskeletal problems

    NARCIS (Netherlands)

    Houtman, I.L.D.; Bongers, P.M.; Smulders, P.G.W.; Kompier, M.A.J.

    1994-01-01

    Objectives - This paper examines the relationship between work stressors and the following health indicators: psychosomatic complaints, health behavior, and musculoskeletal problems. Methods - Secondary analyses were performed on data from the National Work and Living Condition Survey, which

  4. Chest pain in focal musculoskeletal disorders

    DEFF Research Database (Denmark)

    Stochkendahl, Mette Jensen; Christensen, Henrik Wulff

    2010-01-01

    overlapping conditions and syndromes of focal disorders, including Tietze syndrome, costochondritis, chest wall syndrome, muscle tenderness, slipping rib, cervical angina, and segmental dysfunction of the cervical and thoracic spine, have been reported to cause pain. For most of these syndromes, evidence......The musculoskeletal system is a recognized source of chest pain. However, despite the apparently benign origin, patients with musculoskeletal chest pain remain under-diagnosed, untreated, and potentially continuously disabled in terms of anxiety, depression, and activities of daily living. Several...... arises mainly from case stories and empiric knowledge. For segmental dysfunction, clinical features of musculoskeletal chest pain have been characterized in a few clinical trials. This article summarizes the most commonly encountered syndromes of focal musculoskeletal disorders in clinical practice....

  5. The limping child: an algorithm to outrule musculoskeletal sepsis.

    LENUS (Irish Health Repository)

    Delaney, R A

    2012-02-03

    BACKGROUND: The acutely limping child presents a significant diagnostic challenge. AIM: The purpose of this study was to create a clinically useful algorithm to allow exclusion of \\'musculoskeletal sepsis\\' as a differential diagnosis in the child presenting with limp. METHODS: Data were collected on all 286 limping children admitted to our centre over a 3-year-period. Using logistic regression analysis, the predictive model was constructed, to exclude infection. RESULTS: Duration of symptoms, constitutional symptoms, temperature, white cell count and ESR were significantly different in children with musculoskeletal infection (P < 0.05). Multivariate analysis demonstrated that when all three variables of duration of symptoms >1, <5 days; temperature >37.0 degrees C; and ESR >35 mm\\/h were present, the predicted probability of infection was 0.66, falling to 0.01 when none were present. CONCLUSION: This multivariate model enables us to rule out musculoskeletal infection with 99% certainty in limping children with none of these three presenting variables.

  6. EM Simulation Accuracy Enhancement for Broadband Modeling of On-Wafer Passive Components

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Jiang, Chenhui; Hadziabdic, Dzenan

    2007-01-01

    This paper describes methods for accuracy enhancement in broadband modeling of on-wafer passive components using electromagnetic (EM) simulation. It is shown that standard excitation schemes for integrated component simulation leads to poor correlation with on-wafer measurements beyond the lower...... GHz frequency range. We show that this is due to parasitic effects and higher-order modes caused by the excitation schemes. We propose a simple equivalent circuit for the parasitic effects in the well-known ground ring excitation scheme. An extended L-2L calibration method is shown to improve...

  7. Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components

    Science.gov (United States)

    Dong, Z. H.; Ye, X.; Yang, F.

    2018-05-01

    Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.

  8. Finsler Geometry Modeling of Phase Separation in Multi-Component Membranes

    Directory of Open Access Journals (Sweden)

    Satoshi Usui

    2016-08-01

    Full Text Available A Finsler geometric surface model is studied as a coarse-grained model for membranes of three components, such as zwitterionic phospholipid (DOPC, lipid (DPPC and an organic molecule (cholesterol. To understand the phase separation of liquid-ordered (DPPC rich L o and liquid-disordered (DOPC rich L d , we introduce a binary variable σ ( = ± 1 into the triangulated surface model. We numerically determine that two circular and stripe domains appear on the surface. The dependence of the morphological change on the area fraction of L o is consistent with existing experimental results. This provides us with a clear understanding of the origin of the line tension energy, which has been used to understand these morphological changes in three-component membranes. In addition to these two circular and stripe domains, a raft-like domain and budding domain are also observed, and the several corresponding phase diagrams are obtained.

  9. Sub-component modeling for face image reconstruction in video communications

    Science.gov (United States)

    Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.

    2008-08-01

    Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.

  10. Modelling Creativity: Identifying Key Components through a Corpus-Based Approach.

    Science.gov (United States)

    Jordanous, Anna; Keller, Bill

    2016-01-01

    Creativity is a complex, multi-faceted concept encompassing a variety of related aspects, abilities, properties and behaviours. If we wish to study creativity scientifically, then a tractable and well-articulated model of creativity is required. Such a model would be of great value to researchers investigating the nature of creativity and in particular, those concerned with the evaluation of creative practice. This paper describes a unique approach to developing a suitable model of how creative behaviour emerges that is based on the words people use to describe the concept. Using techniques from the field of statistical natural language processing, we identify a collection of fourteen key components of creativity through an analysis of a corpus of academic papers on the topic. Words are identified which appear significantly often in connection with discussions of the concept. Using a measure of lexical similarity to help cluster these words, a number of distinct themes emerge, which collectively contribute to a comprehensive and multi-perspective model of creativity. The components provide an ontology of creativity: a set of building blocks which can be used to model creative practice in a variety of domains. The components have been employed in two case studies to evaluate the creativity of computational systems and have proven useful in articulating achievements of this work and directions for further research.

  11. CT of AIDS-related musculoskeletal infections

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.

    1990-01-01

    This paper characterizes musculoskeletal inflammatory diseases in human immunodeficiency virus-positive patients and with acquired immunodeficiency syndrome (AIDS). CT, radiographic, and clinical data were reviewed in 10 patients, and patterns and features were compared with those in musculoskeletal infections occurring in non-AIDS patients. Infection was confirmed by means of biopsy or aspiration in eight cases and strongly suggested in the other two by blood cultures, cell counts, and other data

  12. Using Patient Demographics and Statistical Modeling to Predict Knee Tibia Component Sizing in Total Knee Arthroplasty.

    Science.gov (United States)

    Ren, Anna N; Neher, Robert E; Bell, Tyler; Grimm, James

    2018-06-01

    Preoperative planning is important to achieve successful implantation in primary total knee arthroplasty (TKA). However, traditional TKA templating techniques are not accurate enough to predict the component size to a very close range. With the goal of developing a general predictive statistical model using patient demographic information, ordinal logistic regression was applied to build a proportional odds model to predict the tibia component size. The study retrospectively collected the data of 1992 primary Persona Knee System TKA procedures. Of them, 199 procedures were randomly selected as testing data and the rest of the data were randomly partitioned between model training data and model evaluation data with a ratio of 7:3. Different models were trained and evaluated on the training and validation data sets after data exploration. The final model had patient gender, age, weight, and height as independent variables and predicted the tibia size within 1 size difference 96% of the time on the validation data, 94% of the time on the testing data, and 92% on a prospective cadaver data set. The study results indicated the statistical model built by ordinal logistic regression can increase the accuracy of tibia sizing information for Persona Knee preoperative templating. This research shows statistical modeling may be used with radiographs to dramatically enhance the templating accuracy, efficiency, and quality. In general, this methodology can be applied to other TKA products when the data are applicable. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Modeling and numerical simulation of multi-component flow in porous media

    International Nuclear Information System (INIS)

    Saad, B.

    2011-01-01

    This work deals with the modelization and numerical simulation of two phase multi-component flow in porous media. The study is divided into two parts. First we study and prove the mathematical existence in a weak sense of two degenerate parabolic systems modeling two phase (liquid and gas) two component (water and hydrogen) flow in porous media. In the first model, we assume that there is a local thermodynamic equilibrium between both phases of hydrogen by using the Henry's law. The second model consists of a relaxation of the previous model: the kinetic of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is no longer instantaneous. The second part is devoted to the numerical analysis of those models. Firstly, we propose a numerical scheme to compare numerical solutions obtained with the first model and numerical solutions obtained with the second model where the characteristic time to recover the thermodynamic equilibrium goes to zero. Secondly, we present a finite volume scheme with a phase-by-phase upstream weighting scheme without simplified assumptions on the state law of gas densities. We also validate this scheme on a 2D test cases. (author)

  14. Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    2017-06-27

    The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulating HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.

  15. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA.

    Science.gov (United States)

    Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W

    2018-01-01

    The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and

  16. Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components

    KAUST Repository

    Zhang, Saijuan

    2011-01-06

    There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole

  17. Fitting a Bivariate Measurement Error Model for Episodically Consumed Dietary Components

    KAUST Repository

    Zhang, Saijuan; Krebs-Smith, Susan M.; Midthune, Douglas; Perez, Adriana; Buckman, Dennis W.; Kipnis, Victor; Freedman, Laurence S.; Dodd, Kevin W.; Carroll, Raymond J

    2011-01-01

    There has been great public health interest in estimating usual, i.e., long-term average, intake of episodically consumed dietary components that are not consumed daily by everyone, e.g., fish, red meat and whole grains. Short-term measurements of episodically consumed dietary components have zero-inflated skewed distributions. So-called two-part models have been developed for such data in order to correct for measurement error due to within-person variation and to estimate the distribution of usual intake of the dietary component in the univariate case. However, there is arguably much greater public health interest in the usual intake of an episodically consumed dietary component adjusted for energy (caloric) intake, e.g., ounces of whole grains per 1000 kilo-calories, which reflects usual dietary composition and adjusts for different total amounts of caloric intake. Because of this public health interest, it is important to have models to fit such data, and it is important that the model-fitting methods can be applied to all episodically consumed dietary components.We have recently developed a nonlinear mixed effects model (Kipnis, et al., 2010), and have fit it by maximum likelihood using nonlinear mixed effects programs and methodology (the SAS NLMIXED procedure). Maximum likelihood fitting of such a nonlinear mixed model is generally slow because of 3-dimensional adaptive Gaussian quadrature, and there are times when the programs either fail to converge or converge to models with a singular covariance matrix. For these reasons, we develop a Monte-Carlo (MCMC) computation of fitting this model, which allows for both frequentist and Bayesian inference. There are technical challenges to developing this solution because one of the covariance matrices in the model is patterned. Our main application is to the National Institutes of Health (NIH)-AARP Diet and Health Study, where we illustrate our methods for modeling the energy-adjusted usual intake of fish and whole

  18. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  19. Modelling with Relational Calculus of Object and Component Systems - rCOS

    DEFF Research Database (Denmark)

    Chen, Zhenbang; Hannousse, Abdel Hakim; Hung, Dang Van

    2008-01-01

    This chapter presents a formalization of functional and behavioural requirements, and a refinement of requirements to a design for CoCoME using the Relational Calculus of Object and Component Systems (rCOS). We give a model of requirements based on an abstraction of the use cases described...... in Chapter 3.2. Then the refinement calculus of rCOS is used to derive design models corresponding to the top level designs of Chapter 3.4. We demonstrate how rCOS supports modelling different views and their relationships of the system and the separation of concerns in the development....

  20. Detailed measurements and modelling of thermo active components using a room size test facility

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    measurements in an office sized test facility with thermo active ceiling and floor as well as modelling of similar conditions in a computer program designed for analysis of building integrated heating and cooling systems. A method for characterizing the cooling capacity of thermo active components is described...... typically within 1-2K of the measured results. The simulation model, whose room model splits up the radiative and convective heat transfer between room and surfaces, can also be used to predict the dynamical conditions, where especially the temperature rise during the day is important for designing...

  1. Design logistics performance measurement model of automotive component industry for srengthening competitiveness of dealing AEC 2015

    Science.gov (United States)

    Amran, T. G.; Janitra Yose, Mindy

    2018-03-01

    As the free trade Asean Economic Community (AEC) causes the tougher competition, it is important that Indonesia’s automotive industry have high competitiveness as well. A model of logistics performance measurement was designed as an evaluation tool for automotive component companies to improve their logistics performance in order to compete in AEC. The design of logistics performance measurement model was based on the Logistics Scorecard perspectives, divided into two stages: identifying the logistics business strategy to get the KPI and arranging the model. 23 KPI was obtained. The measurement result can be taken into consideration of determining policies to improve the performance logistics competitiveness.

  2. Radionuclide imaging of musculoskeletal infection

    Directory of Open Access Journals (Sweden)

    Christopher J. Palestro

    2007-09-01

    Full Text Available Radionuclide imaging studies are routinely used to evaluate patients suspected of having musculoskeletal infection. Three-phase bone imaging is readily available, relatively inexpensive, and very accurate in the setting of otherwise normal bone. Labeled leukocyte imaging should be used in cases of "complicating osteomyelitis" such as prosthetic joint infection. This test also is useful in clinically unsuspected diabetic pedal osteomyelitis as well as in the neuropathic joint. It is often necessary, however, to perform complementary bone marrow imaging, to maximize the accuracy of labeled leukocyte imaging. In contrast to other regions in the skeleton, labeled leukocyte imaging is not useful for diagnosing spinal osteomyelitis. At the moment, gallium is the preferred radionuclide procedure for this condition and is a useful adjunct to magnetic resonance imaging. FDG-PET likely will play an important role in the evaluation of musculoskeletal infection, especially spinal osteomyelitis, and may replace gallium imaging for this purpose.Estudos através de imagens com o uso de radionuclídeos são rotineiramente usadas para avaliar pacientes suspeitos de terem infecção músculo-esquelética. A imagem óssea em tridimensional é facilmente avaliável, relativamente de baixo custo, e muito precisa na localização de alterações ósseas. Imagem com leucócito marcado poderia ser usada nos casos de "osteomielite com complicações" tais como infecção prostética articular. Esse teste também é útil na não suspeita clinica de osteomielite associada ao pé diabético tanto quanto nas junções neuropáticas. É sempre necessário, por outro lado, realizar imagem complementar da medula óssea para aumentar a precisão da imagem com leucócito marcado. Em contraste com outras regiões no esqueleto, imagem com leucócito marcado não é útil para diagnosticar osteomielite da coluna vertebral. Até agora, o gálio é o radionuclídeo preferido para

  3. Equivalent water height extracted from GRACE gravity field model with robust independent component analysis

    Science.gov (United States)

    Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Dai, Honglei

    2014-08-01

    The Level-2 monthly GRACE gravity field models issued by Center for Space Research (CSR), GeoForschungs Zentrum (GFZ), and Jet Propulsion Laboratory (JPL) are treated as observations used to extract the equivalent water height (EWH) with the robust independent component analysis (RICA). The smoothing radii of 300, 400, and 500 km are tested, respectively, in the Gaussian smoothing kernel function to reduce the observation Gaussianity. Three independent components are obtained by RICA in the spatial domain; the first component matches the geophysical signal, and the other two match the north-south strip and the other noises. The first mode is used to estimate EWHs of CSR, JPL, and GFZ, and compared with the classical empirical decorrelation method (EDM). The EWH STDs for 12 months in 2010 extracted by RICA and EDM show the obvious fluctuation. The results indicate that the sharp EWH changes in some areas have an important global effect, like in Amazon, Mekong, and Zambezi basins.

  4. Addressing Neuroplastic Changes in Distributed Areas of the Nervous System Associated With Chronic Musculoskeletal Disorders.

    Science.gov (United States)

    Pelletier, René; Higgins, Johanne; Bourbonnais, Daniel

    2015-11-01

    Present interventions utilized in musculoskeletal rehabilitation are guided, in large part, by a biomedical model where peripheral structural injury is believed to be the sole driver of the disorder. There are, however, neurophysiological changes across different areas of the peripheral and central nervous systems, including peripheral receptors, dorsal horn of the spinal cord, brain stem, sensorimotor cortical areas, and the mesolimbic and prefrontal areas associated with chronic musculoskeletal disorders, including chronic low back pain, osteoarthritis, and tendon injuries. These neurophysiological changes appear not only to be a consequence of peripheral structural injury but also to play a part in the pathophysiology of chronic musculoskeletal disorders. Neurophysiological changes are consistent with a biopsychosocial formulation reflecting the underlying mechanisms associated with sensory and motor findings, psychological traits, and perceptual changes associated with chronic musculoskeletal conditions. These changes, therefore, have important implications in the clinical manifestation, pathophysiology, and treatment of chronic musculoskeletal disorders. Musculoskeletal rehabilitation professionals have at their disposal tools to address these neuroplastic changes, including top-down cognitive-based interventions (eg, education, cognitive-behavioral therapy, mindfulness meditation, motor imagery) and bottom-up physical interventions (eg, motor learning, peripheral sensory stimulation, manual therapy) that induce neuroplastic changes across distributed areas of the nervous system and affect outcomes in patients with chronic musculoskeletal disorders. Furthermore, novel approaches such as the use of transcranial direct current stimulation and repetitive transcranial magnetic stimulation may be utilized to help renormalize neurological function. Comprehensive treatment addressing peripheral structural injury as well as neurophysiological changes occurring across

  5. The ORC method. Effective modelling of thermal performance of multilayer building components

    Energy Technology Data Exchange (ETDEWEB)

    Akander, Jan

    2000-02-01

    The ORC Method (Optimised RC-networks) provides a means of modelling one- or multidimensional heat transfer in building components, in this context within building simulation environments. The methodology is shown, primarily applied to heat transfer in multilayer building components. For multilayer building components, the analytical thermal performance is known, given layer thickness and material properties. The aim of the ORC Method is to optimise the values of the thermal resistances and heat capacities of an RC-model such as to give model performance a good agreement with the analytical performance, for a wide range of frequencies. The optimisation procedure is made in the frequency domain, where the over-all deviation between model and analytical frequency response, in terms of admittance and dynamic transmittance, is minimised. It is shown that ORC's are effective in terms of accuracy and computational time in comparison to finite difference models when used in building simulations, in this case with IDA/ICE. An ORC configuration of five mass nodes has been found to model building components in Nordic countries well, within the application of thermal comfort and energy requirement simulations. Simple RC-networks, such as the surface heat capacity and the simple R-C-configuration are not appropriate for detailed building simulation. However, these can be used as basis for defining the effective heat capacity of a building component. An approximate method is suggested on how to determine the effective heat capacity without the use of complex numbers. This entity can be calculated on basis of layer thickness and material properties with the help of two time constants. The approximate method can give inaccuracies corresponding to 20%. In-situ measurements have been carried out in an experimental building with the purpose of establishing the effective heat capacity of external building components that are subjected to normal thermal conditions. The auxiliary

  6. Estimating cranial musculoskeletal constraints in theropod dinosaurs.

    Science.gov (United States)

    Lautenschlager, Stephan

    2015-11-01

    Many inferences on the biology, behaviour and ecology of extinct vertebrates are based on the reconstruction of the musculature and rely considerably on its accuracy. Although the advent of digital reconstruction techniques has facilitated the creation and testing of musculoskeletal hypotheses in recent years, muscle strain capabilities have rarely been considered. Here, a digital modelling approach using the freely available visualization and animation software Blender is applied to estimate cranial muscle length changes and optimal and maximal possible gape in different theropod dinosaurs. Models of living archosaur taxa (Alligator mississippiensis, Buteo buteo) were used in an extant phylogenetically bracketed framework to validate the method. Results of this study demonstrate that Tyrannosaurus rex, Allosaurus fragilis and Erlikosaurus andrewsi show distinct differences in the recruitment of the jaw adductor musculature and resulting gape, confirming previous dietary and ecological assumptions. While the carnivorous taxa T. rex and Allo. fragilis were capable of a wide gape and sustained muscle force, the herbivorous therizinosaurian E. andrewsi was constrained to small gape angles.

  7. Antidepressant Potentials of Components from Trichilia monadelpha (Thonn. J.J. de Wilde in Murine Models

    Directory of Open Access Journals (Sweden)

    Kennedy Kwami Edem Kukuia

    2018-01-01

    Full Text Available Trichilia monadelpha is a common medicinal plant used traditionally in treating central nervous system conditions such as epilepsy, depression, pain, and psychosis. In this study, the antidepressant-like effect of crude extracts of the stem bark of T. monadelpha was investigated using two classical murine models, forced swimming test (FST and tail suspension test (TST. The extracts, petroleum ether, ethyl acetate, and hydroethanolic extracts (30–300 mg/kg, p.o., standard drug (imipramine; fluoxetine, 3–30 mg/kg, p.o., and saline (vehicle were given to mice one hour prior to the acute study. In a separate experiment the components (flavonoids, saponins, alkaloids, tannins, and terpenoids; 30–300 mg/kg, p.o. from the most efficacious extract fraction were screened to ascertain which components possessed the antidepressant effect. All the extracts and components significantly induced a decline in immobility in the FST and TST, indicative of an antidepressant-like activity. The extracts and some components showed increase in swimming and climbing in the FST as well as a significant enhancement in swinging and/or curling scores in the TST, suggesting a possible involvement of monoaminergic and/or opioidergic activity. This study reveals the antidepressant-like potential of the stem bark extracts and components of T. monadelpha.

  8. Superfluid drag in the two-component Bose-Hubbard model

    Science.gov (United States)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  9. Reliability modeling of digital component in plant protection system with various fault-tolerant techniques

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Kim, Hee Eun; Lee, Seung Jun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Integrated fault coverage is introduced for reflecting characteristics of fault-tolerant techniques in the reliability model of digital protection system in NPPs. • The integrated fault coverage considers the process of fault-tolerant techniques from detection to fail-safe generation process. • With integrated fault coverage, the unavailability of repairable component of DPS can be estimated. • The new developed reliability model can reveal the effects of fault-tolerant techniques explicitly for risk analysis. • The reliability model makes it possible to confirm changes of unavailability according to variation of diverse factors. - Abstract: With the improvement of digital technologies, digital protection system (DPS) has more multiple sophisticated fault-tolerant techniques (FTTs), in order to increase fault detection and to help the system safely perform the required functions in spite of the possible presence of faults. Fault detection coverage is vital factor of FTT in reliability. However, the fault detection coverage is insufficient to reflect the effects of various FTTs in reliability model. To reflect characteristics of FTTs in the reliability model, integrated fault coverage is introduced. The integrated fault coverage considers the process of FTT from detection to fail-safe generation process. A model has been developed to estimate the unavailability of repairable component of DPS using the integrated fault coverage. The new developed model can quantify unavailability according to a diversity of conditions. Sensitivity studies are performed to ascertain important variables which affect the integrated fault coverage and unavailability

  10. Simplifying and upscaling water resources systems models that combine natural and engineered components

    Science.gov (United States)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.

  11. Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking

    Directory of Open Access Journals (Sweden)

    Hiekata Takashi

    2006-01-01

    Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.

  12. User's guide to the weather model: a component of the western spruce budworm modeling system.

    Science.gov (United States)

    W. P. Kemp; N. L. Crookston; P. W. Thomas

    1989-01-01

    A stochastic model useful in simulating daily maximum and minimum temperature and precipitation developed by Bruhn and others has been adapted for use in the western spruce budworm modeling system. This document describes how to use the weather model and illustrates some aspects of its behavior.

  13. Resolution and Probabilistic Models of Components in CryoEM Maps of Mature P22 Bacteriophage

    Science.gov (United States)

    Pintilie, Grigore; Chen, Dong-Hua; Haase-Pettingell, Cameron A.; King, Jonathan A.; Chiu, Wah

    2016-01-01

    CryoEM continues to produce density maps of larger and more complex assemblies with multiple protein components of mixed symmetries. Resolution is not always uniform throughout a cryoEM map, and it can be useful to estimate the resolution in specific molecular components of a large assembly. In this study, we present procedures to 1) estimate the resolution in subcomponents by gold-standard Fourier shell correlation (FSC); 2) validate modeling procedures, particularly at medium resolutions, which can include loop modeling and flexible fitting; and 3) build probabilistic models that combine high-accuracy priors (such as crystallographic structures) with medium-resolution cryoEM densities. As an example, we apply these methods to new cryoEM maps of the mature bacteriophage P22, reconstructed without imposing icosahedral symmetry. Resolution estimates based on gold-standard FSC show the highest resolution in the coat region (7.6 Å), whereas other components are at slightly lower resolutions: portal (9.2 Å), hub (8.5 Å), tailspike (10.9 Å), and needle (10.5 Å). These differences are indicative of inherent structural heterogeneity and/or reconstruction accuracy in different subcomponents of the map. Probabilistic models for these subcomponents provide new insights, to our knowledge, and structural information when taking into account uncertainty given the limitations of the observed density. PMID:26743049

  14. Machine learning of frustrated classical spin models. I. Principal component analysis

    Science.gov (United States)

    Wang, Ce; Zhai, Hui

    2017-10-01

    This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.

  15. The multi-component model of working memory: explorations in experimental cognitive psychology.

    Science.gov (United States)

    Repovs, G; Baddeley, A

    2006-04-28

    There are a number of ways one can hope to describe and explain cognitive abilities, each of them contributing a unique and valuable perspective. Cognitive psychology tries to develop and test functional accounts of cognitive systems that explain the capacities and properties of cognitive abilities as revealed by empirical data gathered by a range of behavioral experimental paradigms. Much of the research in the cognitive psychology of working memory has been strongly influenced by the multi-component model of working memory [Baddeley AD, Hitch GJ (1974) Working memory. In: Recent advances in learning and motivation, Vol. 8 (Bower GA, ed), pp 47-90. New York: Academic Press; Baddeley AD (1986) Working memory. Oxford, UK: Clarendon Press; Baddeley A. Working memory: Thought and action. Oxford: Oxford University Press, in press]. By expanding the notion of a passive short-term memory to an active system that provides the basis for complex cognitive abilities, the model has opened up numerous questions and new lines of research. In this paper we present the current revision of the multi-component model that encompasses a central executive, two unimodal storage systems: a phonological loop and a visuospatial sketchpad, and a further component, a multimodal store capable of integrating information into unitary episodic representations, termed episodic buffer. We review recent empirical data within experimental cognitive psychology that has shaped the development of the multicomponent model and the understanding of the capacities and properties of working memory. Research based largely on dual-task experimental designs and on neuropsychological evidence has yielded valuable information about the fractionation of working memory into independent stores and processes, the nature of representations in individual stores, the mechanisms of their maintenance and manipulation, the way the components of working memory relate to each other, and the role they play in other

  16. A Modeling Framework to Investigate the Radial Component of the Pushrim Force in Manual Wheelchair Propulsion

    Directory of Open Access Journals (Sweden)

    Ackermann Marko

    2015-01-01

    Full Text Available The ratio of tangential to total pushrim force, the so-called Fraction Effective Force (FEF, has been used to evaluate wheelchair propulsion efficiency based on the fact that only the tangential component of the force on the pushrim contributes to actual wheelchair propulsion. Experimental studies, however, consistently show low FEF values and recent experimental as well as modelling investigations have conclusively shown that a more tangential pushrim force direction can lead to a decrease and not increase in propulsion efficiency. This study aims at quantifying the contributions of active, inertial and gravitational forces to the normal pushrim component. In order to achieve this goal, an inverse dynamics-based framework is proposed to estimate individual contributions to the pushrim forces using a model of the wheelchair-user system. The results show that the radial pushrim force component arise to a great extent due to purely mechanical effects, including inertial and gravitational forces. These results corroborate previous findings according to which radial pushrim force components are not necessarily a result of inefficient propulsion strategies or hand-rim friction requirements. This study proposes a novel framework to quantify the individual contributions of active, inertial and gravitational forces to pushrim forces during wheelchair propulsion.

  17. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  18. Thermodynamically consistent modeling and simulation of multi-component two-phase flow model with partial miscibility

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2016-01-01

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest

  19. Mini Treadmill for Musculoskeletal Health

    Science.gov (United States)

    Humphreys, Bradley

    2015-01-01

    Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.

  20. Motor control and the management of musculoskeletal dysfunction.

    Science.gov (United States)

    van Vliet, Paulette M; Heneghan, Nicola R

    2006-08-01

    This paper aims to develop understanding of three important motor control issues--feedforward mechanisms, cortical plasticity and task-specificity and assess the implications for musculoskeletal practice. A model of control for the reach-to-grasp movement illustrates how the central nervous system integrates sensorimotor processes to control complex movements. Feedforward mechanisms, an essential element of motor control, are altered in neurologically intact patients with chronic neck pain and low back pain. In healthy subjects, cortical mapping studies using transcranial magnetic stimulation have demonstrated that neural pathways adapt according to what and how much is practised. Neuroplasticity has also been demonstrated in a number of musculoskeletal conditions, where cortical maps are altered compared to normal. Behavioural and neurophysiological studies indicate that environmental and task constraints such as the goal of the task and an object's shape and size, are determinants of the motor schema for reaching and other movements. Consideration of motor control issues as well as signs and symptoms, may facilitate management of musculoskeletal conditions and improve outcome. Practice of entire everyday tasks at an early stage and systematic variation of the task is recommended. Training should be directed with the aim of re-educating feedforward mechanisms where necessary and the amount of practice should be sufficient to cause changes in cortical activity.

  1. NCWin — A Component Object Model (COM) for processing and visualizing NetCDF data

    Science.gov (United States)

    Liu, Jinxun; Chen, J.M.; Price, D.T.; Liu, S.

    2005-01-01

    NetCDF (Network Common Data Form) is a data sharing protocol and library that is commonly used in large-scale atmospheric and environmental data archiving and modeling. The NetCDF tool described here, named NCWin and coded with Borland C + + Builder, was built as a standard executable as well as a COM (component object model) for the Microsoft Windows environment. COM is a powerful technology that enhances the reuse of applications (as components). Environmental model developers from different modeling environments, such as Python, JAVA, VISUAL FORTRAN, VISUAL BASIC, VISUAL C + +, and DELPHI, can reuse NCWin in their models to read, write and visualize NetCDF data. Some Windows applications, such as ArcGIS and Microsoft PowerPoint, can also call NCWin within the application. NCWin has three major components: 1) The data conversion part is designed to convert binary raw data to and from NetCDF data. It can process six data types (unsigned char, signed char, short, int, float, double) and three spatial data formats (BIP, BIL, BSQ); 2) The visualization part is designed for displaying grid map series (playing forward or backward) with simple map legend, and displaying temporal trend curves for data on individual map pixels; and 3) The modeling interface is designed for environmental model development by which a set of integrated NetCDF functions is provided for processing NetCDF data. To demonstrate that the NCWin can easily extend the functions of some current GIS software and the Office applications, examples of calling NCWin within ArcGIS and MS PowerPoint for showing NetCDF map animations are given.

  2. Roadmap for Lean implementation in Indian automotive component manufacturing industry: comparative study of UNIDO Model and ISM Model

    Science.gov (United States)

    Jadhav, J. R.; Mantha, S. S.; Rane, S. B.

    2015-06-01

    The demands for automobiles increased drastically in last two and half decades in India. Many global automobile manufacturers and Tier-1 suppliers have already set up research, development and manufacturing facilities in India. The Indian automotive component industry started implementing Lean practices to fulfill the demand of these customers. United Nations Industrial Development Organization (UNIDO) has taken proactive approach in association with Automotive Component Manufacturers Association of India (ACMA) and the Government of India to assist Indian SMEs in various clusters since 1999 to make them globally competitive. The primary objectives of this research are to study the UNIDO-ACMA Model as well as ISM Model of Lean implementation and validate the ISM Model by comparing with UNIDO-ACMA Model. It also aims at presenting a roadmap for Lean implementation in Indian automotive component industry. This paper is based on secondary data which include the research articles, web articles, doctoral thesis, survey reports and books on automotive industry in the field of Lean, JIT and ISM. ISM Model for Lean practice bundles was developed by authors in consultation with Lean practitioners. The UNIDO-ACMA Model has six stages whereas ISM Model has eight phases for Lean implementation. The ISM-based Lean implementation model is validated through high degree of similarity with UNIDO-ACMA Model. The major contribution of this paper is the proposed ISM Model for sustainable Lean implementation. The ISM-based Lean implementation framework presents greater insight of implementation process at more microlevel as compared to UNIDO-ACMA Model.

  3. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Teeraphan Laomettachit

    Full Text Available To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.

  4. General model for Pc-based simulation of PWR and BWR plant components

    Energy Technology Data Exchange (ETDEWEB)

    Ratemi, W M; Abomustafa, A M [Faculty of enginnering, alfateh univerity Tripoli, (Libyan Arab Jamahiriya)

    1995-10-01

    In this paper, we present a basic mathematical model derived from physical principles to suit the simulation of PWR-components such as pressurizer, intact steam generator, ruptured steam generator, and the reactor component of a BWR-plant. In our development, we produced an NMMS-package for nuclear modular modelling simulation. Such package is installed on a personal computer and it is designed to be user friendly through color graphics windows interfacing. The package works under three environments, namely, pre-processor, simulation, and post-processor. Our analysis of results using cross graphing technique for steam generator tube rupture (SGTR) accident, yielded a new proposal for on-line monitoring of control strategy of SGTR-accident for nuclear or conventional power plant. 4 figs.

  5. The Internet addiction components model and personality: establishing construct validity via a nomological network

    OpenAIRE

    Kuss, DJ; Shorter, GW; Van Rooij, AJ; Van de Mheen, D; Griffiths, MD

    2014-01-01

    There is growing concern over excessive and sometimes problematic Internet use. Drawing upon the framework of the components model of addiction (Griffiths, 2005), Internet addiction appears as behavioural addiction characterised by the following symptoms: salience, withdrawal, tolerance, mood modification, relapse and conflict. A number of factors have been associated with an increased risk for Internet addiction, including personality traits. The overall aim of this study was to establish th...

  6. Evaluation of low dose ionizing radiation effect on some blood components in animal model

    OpenAIRE

    El-Shanshoury, H.; El-Shanshoury, G.; Abaza, A.

    2016-01-01

    Exposure to ionizing radiation is known to have lethal effects in blood cells. It is predicted that an individual may spend days, weeks or even months in a radiation field without becoming alarmed. The study aimed to discuss the evaluation of low dose ionizing radiation (IR) effect on some blood components in animal model. Hematological parameters were determined for 110 animal rats (divided into 8 groups) pre- and post-irradiation. An attempt to explain the blood changes resulting from both ...

  7. Some results of model calculations of the solar S-component radio emission

    International Nuclear Information System (INIS)

    Krueger, A.; Hildebrandt, J.

    1985-01-01

    Numerical calculations of special characteristics of the solar S-component microwave radiation are presented on the basis of recent sunspot and plage models. Quantitative results are discussed and can be used for the plasma diagnostics of solar active regions by comparisons with observations with high spatial and spectral resolution. The possibility of generalized applications to magnetic stars and stellar activity is briefly noted. (author)

  8. The Effect of Multidimensional Motivation Interventions on Cognitive and Behavioral Components of Motivation: Testing Martin's Model

    OpenAIRE

    Fatemeh PooraghaRoodbarde; Siavash Talepasand; Issac Rahimian Boogar

    2017-01-01

    Objective: The present study aimed at examining the effect of multidimensional motivation interventions based on Martin's model on cognitive and behavioral components of motivation.Methods: The research design was prospective with pretest, posttest, and follow-up, and 2 experimental groups. In this study, 90 students (45 participants in the experimental group and 45 in the control group) constituted the sample of the study, and they were selected by available sampling method. Motivation inter...

  9. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  10. BANK CAPITAL AND MACROECONOMIC SHOCKS: A PRINCIPAL COMPONENTS ANALYSIS AND VECTOR ERROR CORRECTION MODEL

    Directory of Open Access Journals (Sweden)

    Christian NZENGUE PEGNET

    2011-07-01

    Full Text Available The recent financial turmoil has clearly highlighted the potential role of financial factors on amplification of macroeconomic developments and stressed the importance of analyzing the relationship between banks’ balance sheets and economic activity. This paper assesses the impact of the bank capital channel in the transmission of schocks in Europe on the basis of bank's balance sheet data. The empirical analysis is carried out through a Principal Component Analysis and in a Vector Error Correction Model.

  11. Activity Recognition Using A Combination of Category Components And Local Models for Video Surveillance

    OpenAIRE

    Lin, Weiyao; Sun, Ming-Ting; Poovendran, Radha; Zhang, Zhengyou

    2015-01-01

    This paper presents a novel approach for automatic recognition of human activities for video surveillance applications. We propose to represent an activity by a combination of category components, and demonstrate that this approach offers flexibility to add new activities to the system and an ability to deal with the problem of building models for activities lacking training data. For improving the recognition accuracy, a Confident-Frame- based Recognition algorithm is also proposed, where th...

  12. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  13. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  14. New component-based normalization method to correct PET system models

    International Nuclear Information System (INIS)

    Kinouchi, Shoko; Miyoshi, Yuji; Suga, Mikio; Yamaya, Taiga; Yoshida, Eiji; Nishikido, Fumihiko; Tashima, Hideaki

    2011-01-01

    Normalization correction is necessary to obtain high-quality reconstructed images in positron emission tomography (PET). There are two basic types of normalization methods: the direct method and component-based methods. The former method suffers from the problem that a huge count number in the blank scan data is required. Therefore, the latter methods have been proposed to obtain high statistical accuracy normalization coefficients with a small count number in the blank scan data. In iterative image reconstruction methods, on the other hand, the quality of the obtained reconstructed images depends on the system modeling accuracy. Therefore, the normalization weighing approach, in which normalization coefficients are directly applied to the system matrix instead of a sinogram, has been proposed. In this paper, we propose a new component-based normalization method to correct system model accuracy. In the proposed method, two components are defined and are calculated iteratively in such a way as to minimize errors of system modeling. To compare the proposed method and the direct method, we applied both methods to our small OpenPET prototype system. We achieved acceptable statistical accuracy of normalization coefficients while reducing the count number of the blank scan data to one-fortieth that required in the direct method. (author)

  15. Measurement and modeling of shortwave irradiance components in cloud-free atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Halthore, R.N.

    1999-08-04

    Atmosphere scatters and absorbs incident solar radiation modifying its spectral content and decreasing its intensity at the surface. It is very useful to classify the earth-atmospheric solar radiation into several components--direct solar surface irradiance (E{sub direct}), diffuse-sky downward surface irradiance (E{sub diffuse}), total surface irradiance, and upwelling flux at the surface and at the top-of-the atmosphere. E{sub direct} depends only on the extinction properties of the atmosphere without regard to details of extinction, namely scattering or absorption; furthermore it can be accurately measured to high accuracy (0.3%) with the aid of an active cavity radiometer (ACR). E{sub diffuse} has relatively larger uncertainties both in its measurement using shaded pyranometers and in model estimates, owing to the difficulty in accurately characterizing pyranometers and in measuring model inputs such as surface reflectance, aerosol single scattering albedo, and phase function. Radiative transfer model simulations of the above surface radiation components in cloud-free skies using measured atmospheric properties show that while E{sub direct} estimates are closer to measurements, E{sub diffuse} is overestimated by an amount larger than the combined uncertainties in model inputs and measurements, illustrating a fundamental gap in the understanding of the magnitude of atmospheric absorption in cloud-free skies. The excess continuum type absorption required to reduce the E{sub diffuse} model overestimate ({approximately}3--8% absorptance) would significantly impact climate prediction and remote sensing. It is not clear at present what the source for this continuum absorption is. Here issues related to measurements and modeling of the surface irradiance components are discussed.

  16. Three-component model of solar wind--interstellar medium interaction: some numerical results

    International Nuclear Information System (INIS)

    Baranov, V.; Ermakov, M.; Lebedev, M.

    1981-01-01

    A three-component (electrons, protons, H atoms) model for the interaction between the local interstellar medium and the solar wind is considered. A numerical analysis has been performed to determine how resonance charge exchange in interstellar H atoms that have penetrated the solar wind would affect the two-shock model developed previously by Baranov et al. In particular, if n/sub Hinfinity//n/sub e/infinity>10 (n/sub Hinfinity/, n/sub e/infinity denote the number density of H atoms and electrons in the local ISM) the inner shock may approach the sun as closely as the outer planetary orbits

  17. Space-time latent component modeling of geo-referenced health data.

    Science.gov (United States)

    Lawson, Andrew B; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-08-30

    Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made. Copyright (c) 2010 John Wiley & Sons, Ltd.

  18. Transformation of renormalization groups in 2N-component fermion hierarchical model

    International Nuclear Information System (INIS)

    Stepanov, R.G.

    2006-01-01

    The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru

  19. Mixture estimation with state-space components and Markov model of switching

    Czech Academy of Sciences Publication Activity Database

    Nagy, Ivan; Suzdaleva, Evgenia

    2013-01-01

    Roč. 37, č. 24 (2013), s. 9970-9984 ISSN 0307-904X R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : probabilistic dynamic mixtures, * probability density function * state-space models * recursive mixture estimation * Bayesian dynamic decision making under uncertainty * Kerridge inaccuracy Subject RIV: BC - Control Systems Theory Impact factor: 2.158, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/nagy-mixture estimation with state-space components and markov model of switching.pdf

  20. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT

    International Nuclear Information System (INIS)

    Depeursinge, Adrien; Yanagawa, Masahiro; Leung, Ann N.; Rubin, Daniel L.

    2015-01-01

    Purpose: To investigate the importance of presurgical computed tomography (CT) intensity and texture information from ground-glass opacities (GGO) and solid nodule components for the prediction of adenocarcinoma recurrence. Methods: For this study, 101 patients with surgically resected stage I adenocarcinoma were selected. During the follow-up period, 17 patients had disease recurrence with six associated cancer-related deaths. GGO and solid tumor components were delineated on presurgical CT scans by a radiologist. Computational texture models of GGO and solid regions were built using linear combinations of steerable Riesz wavelets learned with linear support vector machines (SVMs). Unlike other traditional texture attributes, the proposed texture models are designed to encode local image scales and directions that are specific to GGO and solid tissue. The responses of the locally steered models were used as texture attributes and compared to the responses of unaligned Riesz wavelets. The texture attributes were combined with CT intensities to predict tumor recurrence and patient hazard according to disease-free survival (DFS) time. Two families of predictive models were compared: LASSO and SVMs, and their survival counterparts: Cox-LASSO and survival SVMs. Results: The best-performing predictive model of patient hazard was associated with a concordance index (C-index) of 0.81 ± 0.02 and was based on the combination of the steered models and CT intensities with survival SVMs. The same feature group and the LASSO model yielded the highest area under the receiver operating characteristic curve (AUC) of 0.8 ± 0.01 for predicting tumor recurrence, although no statistically significant difference was found when compared to using intensity features solely. For all models, the performance was found to be significantly higher when image attributes were based on the solid components solely versus using the entire tumors (p < 3.08 × 10 −5 ). Conclusions: This study

  1. Self-reported musculoskeletal disorder pain: The role of job hazards and work-life interaction.

    Science.gov (United States)

    Weale, Victoria P; Wells, Yvonne; Oakman, Jodi

    2018-02-01

    Previous research identified an association between work-family conflict and musculoskeletal pain. This study explores how the work-life interface might affect pain experienced by residential aged care staff. A cross-sectional survey of 426 employees in residential aged care was analyzed to assess the impacts of workplace hazards, work-family conflict, and work-life balance on self-reported musculoskeletal pain. Work-family conflict acts as a mediator of the relationships between workplace hazards and the total number of body regions at which musculoskeletal pain was experienced. Work-life balance only acts as a mediator for particular hazards and only if work-family conflict is not taken into account. Addressing work-life interaction, and in particular work-family conflict, warrants further investigation as a legitimate means through which musculoskeletal disorder risk can be reduced. Policies and practices to improve work-life interaction and reduce work-family conflict should be considered as integral components of musculoskeletal disorder risk management strategies. © 2017 Wiley Periodicals, Inc.

  2. Integrated model-experimental framework to assess carbon cycle components in disturbed mountainous terrain

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.; Berardi, D.; McNellis, B.; Walsh, E.

    2017-12-01

    In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.

  3. The Effect of Multidimensional Motivation Interventions on Cognitive and Behavioral Components of Motivation: Testing Martin's Model

    Directory of Open Access Journals (Sweden)

    Fatemeh PooraghaRoodbarde

    2017-04-01

    Full Text Available Objective: The present study aimed at examining the effect of multidimensional motivation interventions based on Martin's model on cognitive and behavioral components of motivation.Methods: The research design was prospective with pretest, posttest, and follow-up, and 2 experimental groups. In this study, 90 students (45 participants in the experimental group and 45 in the control group constituted the sample of the study, and they were selected by available sampling method. Motivation interventions were implemented for fifteen 60-minute sessions 3 times a week, which lasted for about 2 months. Data were analyzed using repeated measures multivariate variance analysis test.Results: The findings revealed that multidimensional motivation interventions resulted in a significant increase in the scores of cognitive components such as self-efficacy, mastery goal, test anxiety, and feeling of lack of control, and behavioral components such as task management. The results of one-month follow-up indicated the stability of the created changes in test anxiety and cognitive strategies; however, no significant difference was found between the 2 groups at the follow-up in self-efficacy, mastery goals, source of control, and motivation.Conclusions: The research evidence indicated that academic motivation is a multidimensional component and is affected by cognitive and behavioral factors; therefore, researchers, teachers, and other authorities should attend to these factors to increase academic motivation.

  4. Component simulation in problems of calculated model formation of automatic machine mechanisms

    Directory of Open Access Journals (Sweden)

    Telegin Igor

    2017-01-01

    Full Text Available The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gaps in kinematic pairs, friction forces, design and technological loads. As an example in the paper there are considered a formalization of stages in the computer model formation of the cutting mechanism in cold stamping automatic machine AV1818 and methods of for the computation of their parameters on the basis of its solid-state model.

  5. A two component model describing nucleon structure functions in the low-x region

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, E.V. [Institute for Nuclear Research of the Russian Academy of Sciences, 7a, 60th October Anniversary prospect, Moscow 117312 (Russian Federation); Mangazeev, B.V. [Irkutsk State University, 1, Karl Marx Street, Irkutsk 664003 (Russian Federation)

    2009-12-15

    A two component model describing the electromagnetic nucleon structure functions in the low-x region, based on generalized vector dominance and color dipole approaches is briefly described. The model operates with the mesons of rho-family having the mass spectrum of the form m{sub n}{sup 2}=m{sub r}ho{sup 2}(1+2n) and takes into account the nondiagonal transitions in meson-nucleon scattering. The special cut-off factors are introduced in the model, to exclude the gamma-qq-bar-V transitions in the case of narrow qq-bar-pairs. For the color dipole part of the model the well known FKS-parameterization is used.

  6. Level shift two-components autoregressive conditional heteroscedasticity modelling for WTI crude oil market

    Science.gov (United States)

    Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow

    2017-04-01

    This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.

  7. Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.

    Science.gov (United States)

    O'Donnell, Katherine M; Thompson, Frank R; Semlitsch, Raymond D

    2015-01-01

    Detectability of individual animals is highly variable and nearly always binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.

  8. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    Science.gov (United States)

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  9. A four-component model of age-related memory change.

    Science.gov (United States)

    Healey, M Karl; Kahana, Michael J

    2016-01-01

    We develop a novel, computationally explicit, theory of age-related memory change within the framework of the context maintenance and retrieval (CMR2) model of memory search. We introduce a set of benchmark findings from the free recall and recognition tasks that include aspects of memory performance that show both age-related stability and decline. We test aging theories by lesioning the corresponding mechanisms in a model fit to younger adult free recall data. When effects are considered in isolation, many theories provide an adequate account, but when all effects are considered simultaneously, the existing theories fail. We develop a novel theory by fitting the full model (i.e., allowing all parameters to vary) to individual participants and comparing the distributions of parameter values for older and younger adults. This theory implicates 4 components: (a) the ability to sustain attention across an encoding episode, (b) the ability to retrieve contextual representations for use as retrieval cues, (c) the ability to monitor retrievals and reject intrusions, and (d) the level of noise in retrieval competitions. We extend CMR2 to simulate a recognition memory task using the same mechanisms the free recall model uses to reject intrusions. Without fitting any additional parameters, the 4-component theory that accounts for age differences in free recall predicts the magnitude of age differences in recognition memory accuracy. Confirming a prediction of the model, free recall intrusion rates correlate positively with recognition false alarm rates. Thus, we provide a 4-component theory of a complex pattern of age differences across 2 key laboratory tasks. (c) 2015 APA, all rights reserved).

  10. A Four–Component Model of Age–Related Memory Change

    Science.gov (United States)

    Healey, M. Karl; Kahana, Michael J.

    2015-01-01

    We develop a novel, computationally explicit, theory of age–related memory change within the framework of the context maintenance and retrieval (CMR2) model of memory search. We introduce a set of benchmark findings from the free recall and recognition tasks that includes aspects of memory performance that show both age-related stability and decline. We test aging theories by lesioning the corresponding mechanisms in a model fit to younger adult free recall data. When effects are considered in isolation, many theories provide an adequate account, but when all effects are considered simultaneously, the existing theories fail. We develop a novel theory by fitting the full model (i.e., allowing all parameters to vary) to individual participants and comparing the distributions of parameter values for older and younger adults. This theory implicates four components: 1) the ability to sustain attention across an encoding episode, 2) the ability to retrieve contextual representations for use as retrieval cues, 3) the ability to monitor retrievals and reject intrusions, and 4) the level of noise in retrieval competitions. We extend CMR2 to simulate a recognition memory task using the same mechanisms the free recall model uses to reject intrusions. Without fitting any additional parameters, the four–component theory that accounts for age differences in free recall predicts the magnitude of age differences in recognition memory accuracy. Confirming a prediction of the model, free recall intrusion rates correlate positively with recognition false alarm rates. Thus we provide a four–component theory of a complex pattern of age differences across two key laboratory tasks. PMID:26501233

  11. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA: Positioning and Analysis Considerations

    Directory of Open Access Journals (Sweden)

    Nicolas H. Hart, Sophia Nimphius, Tania Spiteri, Jodie L. Cochrane, Robert U. Newton

    2015-09-01

    Full Text Available Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1 positioning and analysis procedures using DXA and 2 reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46 football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 % using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV and intraclass correlation coefficients (ICC were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988 and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980 reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures

  12. Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Considerations.

    Science.gov (United States)

    Hart, Nicolas H; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L; Newton, Robert U

    2015-09-01

    Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coefficients (ICC) were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures outlined in this

  13. The Relationship between Musculoskeletal Symptoms and Work-related Risk Factors in Hotel Workers.

    Science.gov (United States)

    Lee, Jin Woo; Lee, Ju Jong; Mun, Hyeon Je; Lee, Kyung-Jae; Kim, Joo Ja

    2013-10-11

    To identify work-related musculoskeletal symptoms and any associated work-related risk factors, focusing on structural labor factors among hotel workers. A total of 1,016 hotel workers (620 men and 396 women) were analyzed. The questionnaire surveyed participants' socio-demographics, health-related behaviors, job-related factors, and work-related musculoskeletal symptoms. Work-related musculoskeletal symptoms were assessed using the Nordic musculoskeletal questionnaire. All analyses were stratified by gender, and multiple logistic regression modeling was used to determine associations between work-related musculoskeletal symptoms and work-related risk factors. The risk of developing work-related musculoskeletal symptoms was 1.9 times higher among male workers in the kitchen department than males in the room department (OR = 1.92, 95% CI = 1.03-3.79), and 2.5 times higher among male workers with lower sleep satisfaction than those with higher sleep satisfaction (OR = 2.52, 95% CI = 1.57-4.04). All of the aforementioned cases demonstrated a statistically significant association with work-related musculoskeletal symptoms. Moreover, the risk of developing work-related musculoskeletal symptoms was 3.3 times higher among female workers aged between 30 and 34 than those aged 24 or younger (OR = 3.32, 95% CI = 1.56-7.04); 0.3 times higher among females in the back office department than those in the room department (OR = 0.34, 95% CI = 0.12-0.91); 1.6 times higher among females on shift schedules than those who were not (OR = 1.60, 95% CI = 1.02-2.59); 1.8 times higher among females who performed more intensive work than those who performed less intensive work (OR = 1.88, 95% CI = 1.17-3.02), and; 2.1 times higher among females with lower sleep satisfaction than those with higher sleep satisfaction (OR = 2.17, 95% CI = 1.34-3.50). All of the aforementioned cases also displayed a statistically significant association with work-related musculoskeletal symptoms. This study

  14. Forward modelling of multi-component induction logging tools in layered anisotropic dipping formations

    International Nuclear Information System (INIS)

    Gao, Jie; Xu, Chenhao; Xiao, Jiaqi

    2013-01-01

    Multi-component induction logging provides great assistance in the exploration of thinly laminated reservoirs. The 1D parametric inversion following an adaptive borehole correction is the key step in the data processing of multi-component induction logging responses. To make the inversion process reasonably fast, an efficient forward modelling method is necessary. In this paper, a modelling method has been developed to simulate the multi-component induction tools in deviated wells drilled in layered anisotropic formations. With the introduction of generalized reflection coefficients, the analytic expressions of magnetic field in the form of a Sommerfeld integral were derived. The fast numerical computation of the integral has been completed by using the fast Fourier–Hankel transform and fast Hankel transform methods. The latter is so time efficient that it is competent enough for real-time multi-parameter inversion. In this paper, some simulated results have been presented and they are in excellent agreement with the finite difference method code's solution. (paper)

  15. Vitamin D status modifies the association between statin use and musculoskeletal pain: a population based study.

    Science.gov (United States)

    Morioka, Travis Y; Lee, Alice J; Bertisch, Suzanne; Buettner, Catherine

    2015-01-01

    Past studies examining the effect of vitamin D on statin myalgia have been variable; however, these studies were done in limited samples not representative of the general population. We aimed to evaluate whether vitamin D status modifies the association between statin use and musculoskeletal pain in a sample representative of the general population. We conducted a cross-sectional study using the National Health and Nutrition Examination Survey 2001-2004. Musculoskeletal symptoms and statin use were self-reported. Vitamin D status was assessed using serum 25 hydroxyvitamin D (25[OH]D), categorized as statin use and prevalent musculoskeletal pain, we performed multivariable-adjusted logistic regression models stratified by 25(OH)D status. Among 5907 participants ≥40 years old, mean serum 25(OH)D was 23.6 ng/mL (95% CI, 22.9-24.3). In stratified multivariable-adjusted logistic regression models, individuals with 25(OH)D statin had a significantly higher odds of musculoskeletal pain compared to those not using a statin (adjusted odds ratio [aOR], 1.90; 95% CI, 1.18-3.05). Among those with 25(OH)D ≥15 ng/mL, we found no significant association between statin use and musculoskeletal pain (aOR, 0.91; 95% CI, 0.71-1.16). Among adults ≥ 40 years old with 25(OH)D statin users had nearly 2 times greater odds of reporting musculoskeletal pain compared to non-statin users. Our findings support the hypothesis that vitamin D deficiency modifies the risk of musculoskeletal symptoms experienced with statin use. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. What Time Is Sunrise? Revisiting the Refraction Component of Sunrise/set Prediction Models

    Science.gov (United States)

    Wilson, Teresa; Bartlett, Jennifer L.; Hilton, James Lindsay

    2017-01-01

    Algorithms that predict sunrise and sunset times currently have an error of one to four minutes at mid-latitudes (0° - 55° N/S) due to limitations in the atmospheric models they incorporate. At higher latitudes, slight changes in refraction can cause significant discrepancies, even including difficulties determining when the Sun appears to rise or set. While different components of refraction are known, how they affect predictions of sunrise/set has not yet been quantified. A better understanding of the contributions from temperature profile, pressure, humidity, and aerosols could significantly improve the standard prediction. We present a sunrise/set calculator that interchanges the refraction component by varying the refraction model. We then compare these predictions with data sets of observed rise/set times to create a better model. Sunrise/set times and meteorological data from multiple locations will be necessary for a thorough investigation of the problem. While there are a few data sets available, we will also begin collecting this data using smartphones as part of a citizen science project. The mobile application for this project will be available in the Google Play store. Data analysis will lead to more complete models that will provide more accurate rise/set times for the benefit of astronomers, navigators, and outdoorsmen everywhere.

  17. Bee venom and its component apamin as neuroprotective agents in a Parkinson disease mouse model.

    Science.gov (United States)

    Alvarez-Fischer, Daniel; Noelker, Carmen; Vulinović, Franca; Grünewald, Anne; Chevarin, Caroline; Klein, Christine; Oertel, Wolfgang H; Hirsch, Etienne C; Michel, Patrick P; Hartmann, Andreas

    2013-01-01

    Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.

  18. Isotropic vs. anisotropic components of BAO data: a tool for model selection

    Science.gov (United States)

    Haridasu, Balakrishna S.; Luković, Vladimir V.; Vittorio, Nicola

    2018-05-01

    We conduct a selective analysis of the isotropic (DV) and anisotropic (AP) components of the most recent Baryon Acoustic Oscillations (BAO) data. We find that these components provide significantly different constraints and could provide strong diagnostics for model selection, also in view of more precise data to arrive. For instance, in the ΛCDM model we find a mild tension of ~ 2 σ for the Ωm estimates obtained using DV and AP separately. Considering both Ωk and w as free parameters, we find that the concordance model is in tension with the best-fit values provided by the BAO data alone at 2.2σ. We complemented the BAO data with the Supernovae Ia (SNIa) and Observational Hubble datasets to perform a joint analysis on the ΛCDM model and its standard extensions. By assuming ΛCDM scenario, we find that these data provide H0 = 69.4 ± 1.7 km/s Mpc‑1 as the best-fit value for the present expansion rate. In the kΛCDM scenario we find that the evidence for acceleration using the BAO data alone is more than ~ 5.8σ, which increases to 8.4 σ in our joint analysis.

  19. A Simplified Multipath Component Modeling Approach for High-Speed Train Channel Based on Ray Tracing

    Directory of Open Access Journals (Sweden)

    Jingya Yang

    2017-01-01

    Full Text Available High-speed train (HST communications at millimeter-wave (mmWave band have received a lot of attention due to their numerous high-data-rate applications enabling smart rail mobility. Accurate and effective channel models are always critical to the HST system design, assessment, and optimization. A distinctive feature of the mmWave HST channel is that it is rapidly time-varying. To depict this feature, a geometry-based multipath model is established for the dominant multipath behavior in delay and Doppler domains. Because of insufficient mmWave HST channel measurement with high mobility, the model is developed by a measurement-validated ray tracing (RT simulator. Different from conventional models, the temporal evolution of dominant multipath behavior is characterized by its geometry factor that represents the geometrical relationship of the dominant multipath component (MPC to HST environment. Actually, during each dominant multipath lifetime, its geometry factor is fixed. To statistically model the geometry factor and its lifetime, the dominant MPCs are extracted within each local wide-sense stationary (WSS region and are tracked over different WSS regions to identify its “birth” and “death” regions. Then, complex attenuation of dominant MPC is jointly modeled by its delay and Doppler shift both which are derived from its geometry factor. Finally, the model implementation is verified by comparison between RT simulated and modeled delay and Doppler spreads.

  20. Maximum likelihood estimation of semiparametric mixture component models for competing risks data.

    Science.gov (United States)

    Choi, Sangbum; Huang, Xuelin

    2014-09-01

    In the analysis of competing risks data, the cumulative incidence function is a useful quantity to characterize the crude risk of failure from a specific event type. In this article, we consider an efficient semiparametric analysis of mixture component models on cumulative incidence functions. Under the proposed mixture model, latency survival regressions given the event type are performed through a class of semiparametric models that encompasses the proportional hazards model and the proportional odds model, allowing for time-dependent covariates. The marginal proportions of the occurrences of cause-specific events are assessed by a multinomial logistic model. Our mixture modeling approach is advantageous in that it makes a joint estimation of model parameters associated with all competing risks under consideration, satisfying the constraint that the cumulative probability of failing from any cause adds up to one given any covariates. We develop a novel maximum likelihood scheme based on semiparametric regression analysis that facilitates efficient and reliable estimation. Statistical inferences can be conveniently made from the inverse of the observed information matrix. We establish the consistency and asymptotic normality of the proposed estimators. We validate small sample properties with simulations and demonstrate the methodology with a data set from a study of follicular lymphoma. © 2014, The International Biometric Society.

  1. Towards a three-component model of fan loyalty: a case study of Chinese youth.

    Science.gov (United States)

    Zhang, Xiao-xiao; Liu, Li; Zhao, Xian; Zheng, Jian; Yang, Meng; Zhang, Ji-qi

    2015-01-01

    The term "fan loyalty" refers to the loyalty felt and expressed by a fan towards the object of his/her fanaticism in both everyday and academic discourses. However, much of the literature on fan loyalty has paid little attention to the topic from the perspective of youth pop culture. The present study explored the meaning of fan loyalty in the context of China. Data were collected by the method of in-depth interviews with 16 young Chinese people aged between 19 and 25 years who currently or once were pop fans. The results indicated that fan loyalty entails three components: involvement, satisfaction, and affiliation. These three components regulate the process of fan loyalty development, which can be divided into four stages: inception, upgrade, zenith, and decline. This model provides a conceptual explanation of why and how young Chinese fans are loyal to their favorite stars. The implications of the findings are discussed.

  2. Towards a three-component model of fan loyalty: a case study of Chinese youth.

    Directory of Open Access Journals (Sweden)

    Xiao-xiao Zhang

    Full Text Available The term "fan loyalty" refers to the loyalty felt and expressed by a fan towards the object of his/her fanaticism in both everyday and academic discourses. However, much of the literature on fan loyalty has paid little attention to the topic from the perspective of youth pop culture. The present study explored the meaning of fan loyalty in the context of China. Data were collected by the method of in-depth interviews with 16 young Chinese people aged between 19 and 25 years who currently or once were pop fans. The results indicated that fan loyalty entails three components: involvement, satisfaction, and affiliation. These three components regulate the process of fan loyalty development, which can be divided into four stages: inception, upgrade, zenith, and decline. This model provides a conceptual explanation of why and how young Chinese fans are loyal to their favorite stars. The implications of the findings are discussed.

  3. Strange statistics, braid group representations and multipoint functions in the N-component model

    International Nuclear Information System (INIS)

    Lee, H.C.; Ge, M.L.; Couture, M.; Wu, Y.S.

    1989-01-01

    The statistics of fields in low dimensions is studied from the point of view of the braid group B n of n strings. Explicit representations M R for the N-component model, N = 2 to 5, are derived by solving the Yang-Baxter-like braid group relations for the statistical matrix R, which describes the transformation of the bilinear product of two N-component fields under the transposition of coordinates. When R 2 not equal to 1 the statistics is neither Bose-Einstein nor Fermi-Dirac; it is strange. It is shown that for each N, the N + 1 parameter family of solutions obtained is the most general one under a given set of constraints including charge conservation. Extended Nth order (N > 2) Alexander-Conway relations for link polynomials are derived. They depend nonhomogeneously only on one of the N + 1 parameters. The N = 3 and 4 ones agree with those previously derived

  4. Model of components in a process of acoustic diagnosis correlated with learning

    International Nuclear Information System (INIS)

    Seballos, S.; Costabal, H.; Matamala, P.

    1992-06-01

    Using Linden's functional scheme as a theoretical reference framework, we define a matrix of component for clinical and field applications in the acoustic diagnostic process and correlations with audiologic, learning and behavioral problems. It is expected that the model effectively contributes to classify and provide a greater knowledge about this multidisciplinary problem. Although the exact nature of this component is at present a matter to be defined, its correlation can be hypothetically established. Applying this descriptive and integral approach in the diagnostic process it is possible if not to avoid, at least to decrease, the uncertainties and assure the proper solutions becoming a powerful tool applicable to environmental studies and/or social claims. (author). 8 refs, 2 figs

  5. A Three-Component Model for Magnetization Transfer. Solution by Projection-Operator Technique, and Application to Cartilage

    Science.gov (United States)

    Adler, Ronald S.; Swanson, Scott D.; Yeung, Hong N.

    1996-01-01

    A projection-operator technique is applied to a general three-component model for magnetization transfer, extending our previous two-component model [R. S. Adler and H. N. Yeung,J. Magn. Reson. A104,321 (1993), and H. N. Yeung, R. S. Adler, and S. D. Swanson,J. Magn. Reson. A106,37 (1994)]. The PO technique provides an elegant means of deriving a simple, effective rate equation in which there is natural separation of relaxation and source terms and allows incorporation of Redfield-Provotorov theory without any additional assumptions or restrictive conditions. The PO technique is extended to incorporate more general, multicomponent models. The three-component model is used to fit experimental data from samples of human hyaline cartilage and fibrocartilage. The fits of the three-component model are compared to the fits of the two-component model.

  6. Research on CO2 ejector component efficiencies by experiment measurement and distributed-parameter modeling

    International Nuclear Information System (INIS)

    Zheng, Lixing; Deng, Jianqiang

    2017-01-01

    Highlights: • The ejector distributed-parameter model is developed to study ejector efficiencies. • Feasible component and total efficiency correlations of ejector are established. • New efficiency correlations are applied to obtain dynamic characteristics of EERC. • More suitable fixed efficiency value can be determined by the proposed correlations. - Abstract: In this study we combine the experimental measurement data and the theoretical model of ejector to determine CO 2 ejector component efficiencies including the motive nozzle, suction chamber, mixing section, diffuser as well as the total ejector efficiency. The ejector is modeled utilizing the distributed-parameter method, and the flow passage is divided into a number of elements and the governing equations are formulated based on the differential equation of mass, momentum and energy conservation. The efficiencies of ejector are investigated under different ejector geometric parameters and operational conditions, and the corresponding empirical correlations are established. Moreover, the correlations are incorporated into a transient model of transcritical CO 2 ejector expansion refrigeration cycle (EERC) and the dynamic simulations is performed based on variable component efficiencies and fixed values. The motive nozzle, suction chamber, mixing section and diffuser efficiencies vary from 0.74 to 0.89, 0.86 to 0.96, 0.73 to 0.9 and 0.75 to 0.95 under the studied conditions, respectively. The response diversities of suction flow pressure and discharge pressure are obvious between the variable efficiencies and fixed efficiencies referring to the previous studies, while when the fixed value is determined by the presented correlations, their response differences are basically the same.

  7. Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling

    International Nuclear Information System (INIS)

    Janczura, Joanna; Trück, Stefan; Weron, Rafał; Wolff, Rodney C.

    2013-01-01

    An important issue in fitting stochastic models to electricity spot prices is the estimation of a component to deal with trends and seasonality in the data. Unfortunately, estimation routines for the long-term and short-term seasonal pattern are usually quite sensitive to extreme observations, known as electricity price spikes. Improved robustness of the model can be achieved by (a) filtering the data with some reasonable procedure for outlier detection, and then (b) using estimation and testing procedures on the filtered data. In this paper we examine the effects of different treatments of extreme observations on model estimation and on determining the number of spikes (outliers). In particular we compare results for the estimation of the seasonal and stochastic components of electricity spot prices using either the original or filtered data. We find significant evidence for a superior estimation of both the seasonal short-term and long-term components when the data have been treated carefully for outliers. Overall, our findings point out the substantial impact the treatment of extreme observations may have on these issues and, therefore, also on the pricing of electricity derivatives like futures and option contracts. An added value of our study is the ranking of different filtering techniques used in the energy economics literature, suggesting which methods could be and which should not be used for spike identification. - Highlights: • First comprehensive study on the impact of spikes on seasonal pattern estimation • The effects of different treatments of spikes on model estimation are examined. • Cleaning spot prices for outliers yields superior estimates of the seasonal pattern. • Removing outliers provides better parameter estimates for the stochastic process. • Rankings of filtering techniques suggested in the literature are provided

  8. Improved predictive model for n-decane kinetics across species, as a component of hydrocarbon mixtures.

    Science.gov (United States)

    Merrill, E A; Gearhart, J M; Sterner, T R; Robinson, P J

    2008-07-01

    n-Decane is considered a major component of various fuels and industrial solvents. These hydrocarbon products are complex mixtures of hundreds of components, including straight-chain alkanes, branched chain alkanes, cycloalkanes, diaromatics, and naphthalenes. Human exposures to the jet fuel, JP-8, or to industrial solvents in vapor, aerosol, and liquid forms all have the potential to produce health effects, including immune suppression and/or neurological deficits. A physiologically based pharmacokinetic (PBPK) model has previously been developed for n-decane, in which partition coefficients (PC), fitted to 4-h exposure kinetic data, were used in preference to measured values. The greatest discrepancy between fitted and measured values was for fat, where PC values were changed from 250-328 (measured) to 25 (fitted). Such a large change in a critical parameter, without any physiological basis, greatly impedes the model's extrapolative abilities, as well as its applicability for assessing the interactions of n-decane or similar alkanes with other compounds in a mixture model. Due to these limitations, the model was revised. Our approach emphasized the use of experimentally determined PCs because many tissues had not approached steady-state concentrations by the end of the 4-h exposures. Diffusion limitation was used to describe n-decane kinetics for the brain, perirenal fat, skin, and liver. Flow limitation was used to describe the remaining rapidly and slowly perfused tissues. As expected from the high lipophilicity of this semivolatile compound (log K(ow) = 5.25), sensitivity analyses showed that parameters describing fat uptake were next to blood:air partitioning and pulmonary ventilation as critical in determining overall systemic circulation and uptake in other tissues. In our revised model, partitioning into fat took multiple days to reach steady state, which differed considerably from the previous model that assumed steady-state conditions in fat at 4 h post

  9. High frequent modelling of a modular multilevel converter using passive components

    DEFF Research Database (Denmark)

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    ). This means that a high frequency model of the converter has to be designed, which gives a better overview of the impact of high frequency transients etc. The functionality of the model is demonstrated by application to grid connections of off-shore wind power plants. Grid connection of an offshore wind power...... wind power plant employing HVDC. In the present study, a back to back HVDC transmission system is designed in PSCAD/EMTDC. Simulations and results showing the importance of high frequent modeling are presented....... plant using HVDC fundamentally changes the electrical environment for the power plant. Detailed knowledge and understanding of the characteristics and behavior of all relevant power system components under all conditions, including under transients, are required in order to develop reliable offshore...

  10. An Evaluation of Semiempirical Models for Partitioning Photosynthetically Active Radiation Into Diffuse and Direct Beam Components

    Science.gov (United States)

    Oliphant, Andrew J.; Stoy, Paul C.

    2018-03-01

    Photosynthesis is more efficient under diffuse than direct beam photosynthetically active radiation (PAR) per unit PAR, but diffuse PAR is infrequently measured at research sites. We examine four commonly used semiempirical models (Erbs et al., 1982, https://doi.org/10.1016/0038-092X(82)90302-4; Gu et al., 1999, https://doi.org/10.1029/1999JD901068; Roderick, 1999, https://doi.org/10.1016/S0168-1923(99)00028-3; Weiss & Norman, 1985, https://doi.org/10.1016/0168-1923(85)90020-6) that partition PAR into diffuse and direct beam components based on the negative relationship between atmospheric transparency and scattering of PAR. Radiation observations at 58 sites (140 site years) from the La Thuille FLUXNET data set were used for model validation and coefficient testing. All four models did a reasonable job of predicting the diffuse fraction of PAR (ϕ) at the 30 min timescale, with site median r2 values ranging between 0.85 and 0.87, model efficiency coefficients (MECs) between 0.62 and 0.69, and regression slopes within 10% of unity. Model residuals were not strongly correlated with astronomical or standard meteorological variables. We conclude that the Roderick (1999, https://doi.org/10.1016/S0168-1923(99)00028-3) and Gu et al. (1999, https://doi.org/10.1029/1999JD901068) models performed better overall than the two older models. Using the basic form of these models, the data set was used to find both individual site and universal model coefficients that optimized predictive accuracy. A new universal form of the model is presented in section 5 that increased site median MEC to 0.73. Site-specific model coefficients increased median MEC further to 0.78, indicating usefulness of local/regional training of coefficients to capture the local distributions of aerosols and cloud types.

  11. Aquatic exercise & balneotherapy in musculoskeletal conditions.

    Science.gov (United States)

    Verhagen, Arianne P; Cardoso, Jefferson R; Bierma-Zeinstra, Sita M A

    2012-06-01

    This is a best-evidence synthesis providing an evidence-based summary on the effectiveness of aquatic exercises and balneotherapy in the treatment of musculoskeletal conditions. The most prevalent musculoskeletal conditions addressed in this review include: low back pain, osteoarthritis, fibromyalgia and rheumatoid arthritis. Over 30 years of research demonstrates that exercises in general, and specifically aquatic exercises, are beneficial for reducing pain and disability in many musculoskeletal conditions demonstrating small to moderate effect sizes ranging between 0.19 and 0.32. Balneotherapy might be beneficial, but the evidence is yet insufficient to make a definitive statement about its use. High-quality trials are needed on balneotherapy and aquatic exercises research especially in specific patient categories that might benefit most. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Musculoskeletal disorder survey for pond workers

    Science.gov (United States)

    Maryani, A.; Partiwi, S. G.; Dewi, H. N. F.

    2018-04-01

    Mucsuloskeletal disorder will affect worker performance and become serious injury when ignored, so that workers cannot work normally. Therefore, an effective strategy plan is needed to reduce the risk of musculoskeletal disorder. A pond worker is profession with high risk of physical complain. Four main activities are ponds preparation, seed distribution, pond maintenance, and harvesting. The methods employed in this current musculoskeletal disorder survey are questionnaire and interview. The result from 73 questionnaires shown that most of pond workers were working for 7 days a week. Prevalence physical complain are on neck, shoulders, upper back, lower back, and knees. The level of perceived complaint is moderate pain. However, most of them do not contact therapists or physicians. Therefore it is necessary to improve the working methods to be able to reduce physical complains due to musculoskeletal disorder.

  13. Complementary and alternative treatment of musculoskeletal pain.

    Science.gov (United States)

    Grazio, Simeon; Balen, Diana

    2011-12-01

    The use of complementary and alternative medicine (CAM) is high and increasing worldwide. Patients usually use CAM in addition to conventional medicine, mainly to treat pain. In a large number of cases, people use CAM for chronic musculoskeletal pain as in osteoarthritis, back pain, neck pain, or fibromyalgia. Herewith, a review is presented of CAM efficacy in treating musculoskeletal pain for which, however, no scientific research has so far provided evidence solid enough. In some rare cases where adequate pain control cannot be achieved, CAM might be considered in rational and individual approach based on the first general rule in medicine "not to harm" and on the utility theory of each intervention, i.e. according to the presumed mechanism of painful stimulus and with close monitoring of the patient's response. Further high quality studies are warranted to elucidate the efficacy and side effects of CAM methods. Therefore, conventional medicine remains the main mode of treatment for patients with musculoskeletal painful conditions.

  14. Common acute and chronic musculoskeletal injuries among female ...

    African Journals Online (AJOL)

    The hip/lower back was the most prevalent anatomical site of chronic musculoskeletal injury. (p<0.001). The intrinsic ..... Musculoskeletal disorders among nursing personnel in Korea. Int J ... Marieb E. Human Anatomy and Physiology. 7th ed.

  15. Physical Ergonomics and Musculoskeletal Disorders: What's hot? What's cool?

    NARCIS (Netherlands)

    Beek, A.J. van der; IJmker, S.

    2007-01-01

    This chapter discusses the physical ergonomics and musculoskeletal disorders and summarizes the Triennial International Ergonomics Association (IEA) World Congress 2006-IEA2006-highlights on physical ergonomics and work-related MusculoSkeletal Disorders (MSDs). Two general trends are observed.

  16. Simulated lumbar minimally invasive surgery educational model with didactic and technical components.

    Science.gov (United States)

    Chitale, Rohan; Ghobrial, George M; Lobel, Darlene; Harrop, James

    2013-10-01

    The learning and development of technical skills are paramount for neurosurgical trainees. External influences and a need for maximizing efficiency and proficiency have encouraged advancements in simulator-based learning models. To confirm the importance of establishing an educational curriculum for teaching minimally invasive techniques of pedicle screw placement using a computer-enhanced physical model of percutaneous pedicle screw placement with simultaneous didactic and technical components. A 2-hour educational curriculum was created to educate neurosurgical residents on anatomy, pathophysiology, and technical aspects associated with image-guided pedicle screw placement. Predidactic and postdidactic practical and written scores were analyzed and compared. Scores were calculated for each participant on the basis of the optimal pedicle screw starting point and trajectory for both fluoroscopy and computed tomographic navigation. Eight trainees participated in this module. Average mean scores on the written didactic test improved from 78% to 100%. The technical component scores for fluoroscopic guidance improved from 58.8 to 52.9. Technical score for computed tomography-navigated guidance also improved from 28.3 to 26.6. Didactic and technical quantitative scores with a simulator-based educational curriculum improved objectively measured resident performance. A minimally invasive spine simulation model and curriculum may serve a valuable function in the education of neurosurgical residents and outcomes for patients.

  17. Design of aseismic class components: measurement of frequency parameters and optimization of analytical models

    International Nuclear Information System (INIS)

    Panet, M.; Delmas, J.; Ballester, J.L.

    1993-04-01

    In each plant unit, there are about 250 earthquake-qualified safety related valves. Justifying their aseismic capacity has proved complex. The structures are so diversified that it is not easy for designers to determine a generic model. Generally speaking, the models tend to overestimate the resonance frequencies. An approach more representative of the actual structure of the component was consequently sought, on which qualification of technological options with respect to the safety authorities would be based, thereby optimizing vibrating table qualification test schedules. The paper describes application of the approximate spectral identification method from the OPTDIM system, which determines basic structure modal data to forecast the approximate eigenfrequencies of a sub-domain, materialized by the component. It is used for a posteriori justification of topworks in operating equipment (900 MWe series), with respect to the 33 Hz ≤ f condition, which guarantees zero amplification of seismic induced internal loads. In the seismic design context and supplementing the preliminary eigenfrequency studies, inverse method solution techniques are used to define the most representative model of the modal behaviour of an electrically controlled motor-operated valve. (authors). 6 figs., 6 tabs., 11 refs

  18. A multi-component oil spill model for calculation of evaporation and dissolution of condensate

    International Nuclear Information System (INIS)

    Rye, H.

    1994-01-01

    It is sometimes argued that oil spilled on the sea surface will go much faster into evaporation than solution. This statement may not always be true due to effects from wave action. In such cases high concentrations in the water may occur which could be harmful to biologic life below the sea surface. This paper explains a numerical model which simulates the surface spreading of a continuous spill, exposed to currents, wind and wave action. The spill is decomposed into the different constituents present in the spill. The oil or condensate is divided into 20 different classes with increasing carbon number within the interval C4 to C55. Asphalthenes are not included (non-emulgating spill). Within each class, the hydrocarbons are divided further into 5 subsets (n-alcanes, cycloalcanes, aromatics, napthenes and resins). The model then keeps track of what happens to each of the components (evaporation, dissolution, as droplets or remains in the slick) during an actual spill event. The effect of wave action is included by assuming a balance between the downward flux of hydrocarbons caused by the breaking waves, and the upward flux of droplets driven by the boyancy of the droplets. The dissolution and evaporation of the different oil (or spill) components are then computed. The model shows that the evaporation and dissolution may in some cases be competing processes, in particular for the aromatic compounds. The paper outlines the approach chosen, as well as some example results. 16 refs., 2 figs., 4 tabs

  19. A participatory systems approach to modeling social, economic, and ecological components of bioenergy

    International Nuclear Information System (INIS)

    Buchholz, Thomas S.; Volk, Timothy A.; Luzadis, Valerie A.

    2007-01-01

    Availability of and access to useful energy is a crucial factor for maintaining and improving human well-being. Looming scarcities and increasing awareness of environmental, economic, and social impacts of conventional sources of non-renewable energy have focused attention on renewable energy sources, including biomass. The complex interactions of social, economic, and ecological factors among the bioenergy system components of feedstock supply, conversion technology, and energy allocation have been a major obstacle to the broader development of bioenergy systems. For widespread implementation of bioenergy to occur there is a need for an integrated approach to model the social, economic, and ecological interactions associated with bioenergy. Such models can serve as a planning and evaluation tool to help decide when, where, and how bioenergy systems can contribute to development. One approach to integrated modeling is by assessing the sustainability of a bioenergy system. The evolving nature of sustainability can be described by an adaptive systems approach using general systems principles. Discussing these principles reveals that participation of stakeholders in all components of a bioenergy system is a crucial factor for sustainability. Multi-criteria analysis (MCA) is an effective tool to implement this approach. This approach would enable decision-makers to evaluate bioenergy systems for sustainability in a participatory, transparent, timely, and informed manner

  20. Joint Inflammation and Early Degeneration Induced by High-Force Reaching Are Attenuated by Ibuprofen in an Animal Model of Work-Related Musculoskeletal Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Driban

    2011-01-01

    Full Text Available We used our voluntary rat model of reaching and grasping to study the effect of performing a high-repetition and high-force (HRHF task for 12 weeks on wrist joints. We also studied the effectiveness of ibuprofen, administered in the last 8 weeks, in attenuating HRHF-induced changes in these joints. With HRHF task performance, ED1+ and COX2+ cells were present in subchondral radius, carpal bones and synovium; IL-1alpha and TNF-alpha increased in distal radius/ulna/carpal bones; chondrocytes stained with Terminal deoxynucleotidyl Transferase- (TDT- mediated dUTP-biotin nick end-labeling (TUNEL increased in wrist articular cartilages; superficial structural changes (e.g., pannus and reduced proteoglycan staining were observed in wrist articular cartilages. These changes were not present in normal controls or ibuprofen treated rats, although IL-1alpha was increased in reach limbs of trained controls. HRHF-induced increases in serum C1,2C (a biomarker of collagen I and II degradation, and the ratio of collagen degradation to synthesis (C1,2C/CPII; the latter a biomarker of collage type II synthesis were also attenuated by ibuprofen. Thus, ibuprofen treatment was effective in attenuating HRHF-induced inflammation and early articular cartilage degeneration.

  1. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  2. Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.

    Directory of Open Access Journals (Sweden)

    Katherine M O'Donnell

    Full Text Available Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling, while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling. By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and

  3. Correlation inequalities for two-component hypercubic /varreverse arrowphi/4 models

    International Nuclear Information System (INIS)

    Soria, J.L.

    1988-01-01

    A collection of new and already known correlation inequalities is found for a family of two-component hypercubic /varreverse arrowphi/ 4 models, using techniques of duplicated variables, rotated correlation inequalities, and random walk representation. Among the interesting new inequalities are: rotated very special Dunlop-Newman inequality 2 ; /varreverse arrowphi//sub 1z/ 2 + /varreverse arrowphi//sub 2z/ 2 ≥ 0, rotated Griffiths I inequality 2 - /varreverse arrowphi//sub 2z/ 2 > ≥ 0, and anti-Lebowitz inequality u 4 1111 ≥ 0

  4. Dynamic models of reduced order of main components of a M SR

    International Nuclear Information System (INIS)

    Garcia B, F. B.; Morales S, J. B.; Polo L, M. A.; Espinosa P, G.

    2011-11-01

    The reactors of melted salts called Molten Salt Fast Reactor (MSFR), have seen a resurgence of interest in the last decade. This design is one of the six proposed for the IV generation reactors. The most active development was in the middle of 1950 and principles of 1970 in the Oak Ridge National Laboratories (ORNL). In this work the mathematician modeling of the main components in the primary and secondary circuits of a M SR is presented. In particular the dynamics of the heat exchanger is analyzed and they are considered several materials to optimize the system thermodynamically. (Author)

  5. Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models

    OpenAIRE

    Wang, Quan

    2012-01-01

    Principal component analysis (PCA) is a popular tool for linear dimensionality reduction and feature extraction. Kernel PCA is the nonlinear form of PCA, which better exploits the complicated spatial structure of high-dimensional features. In this paper, we first review the basic ideas of PCA and kernel PCA. Then we focus on the reconstruction of pre-images for kernel PCA. We also give an introduction on how PCA is used in active shape models (ASMs), and discuss how kernel PCA can be applied ...

  6. Field-theoretic model of Harari's two component phenomenological theory of high energy hadron scattering

    International Nuclear Information System (INIS)

    Dymski, T.C.

    1976-01-01

    For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature

  7. Atmospheric Constituents in GEOS-5: Components for an Earth System Model

    Science.gov (United States)

    Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah

    2011-01-01

    The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.

  8. MR imaging of appendicular musculoskeletal trauma

    International Nuclear Information System (INIS)

    Kathol, M.H.; Montgomery, W.J.; Yuh, W.T.C.; El-Khoury, G.Y.

    1987-01-01

    Thirty cases of musculoskeletal trauma to the extremities examined by MR imaging have been reviewed retrospectively. Examples of various injuries will be shown, including disruption of ligament and tendon, muscular tear and edema, hemorrhage (local or diffuse), vascular injury, bone marrow contusion, osteocartilaginous fracture, meniscal tear, and joint fluid. Many of these patients were collegiate athletes, and MR was valuable in establishing a rapid, accurate diagnosis influencing not only treatment but also return to competition. Negative examinations allowed resumption of competition with a high degree of confidence. The advantages and disadvantages of MR in musculo-skeletal trauma are discussed

  9. Work-organisational and personal factors associated with upper body musculoskeletal disorders among sewing machine operators.

    Science.gov (United States)

    Wang, P-C; Rempel, D M; Harrison, R J; Chan, J; Ritz, B R

    2007-12-01

    To assess the contribution of work-organisational and personal factors to the prevalence of work-related musculoskeletal disorders (WMSDs) among garment workers in Los Angeles. This is a cross-sectional study of self-reported musculoskeletal symptoms among 520 sewing machine operators from 13 garment industry sewing shops. Detailed information on work-organisational factors, personal factors, and musculoskeletal symptoms were obtained in face-to-face interviews. The outcome of interest, upper body WMSD, was defined as a worker experiencing moderate or severe musculoskeletal pain. Unconditional logistic regression models were adopted to assess the association between both work-organisational factors and personal factors and the prevalence of musculoskeletal pain. The prevalence of moderate or severe musculoskeletal pain in the neck/shoulder region was 24% and for distal upper extremity it was 16%. Elevated prevalence of upper body pain was associated with age less than 30 years, female gender, Hispanic ethnicity, being single, having a diagnosis of a MSD or a systemic illness, working more than 10 years as a sewing machine operator, using a single sewing machine, work in large shops, higher work-rest ratios, high physical exertion, high physical isometric loads, high job demand, and low job satisfaction. Work-organisational and personal factors were associated with increased prevalence of moderate or severe upper body musculoskeletal pain among garment workers. Owners of sewing companies may be able to reduce or prevent WMSDs among employees by adopting rotations between different types of workstations thus increasing task variety; by either shortening work periods or increasing rest periods to reduce the work-rest ratio; and by improving the work-organisation to control psychosocial stressors. The findings may guide prevention efforts in the garment sector and have important public health implications for this workforce of largely immigrant labourers.

  10. Epidemiology of musculoskeletal injuries in a population of harness Standardbred racehorses in training

    Science.gov (United States)

    2014-01-01

    Background There is a substantial paucity of studies concerning musculoskeletal injuries in harness Standardbred racehorses. Specifically, little is known about the epidemiology of exercise-related musculoskeletal injuries. Most studies on this subject involve Thoroughbred racehorses, whose biomechanics and racing speed differ from Standardbred, making comparisons difficult. Here, a population of Standardbred racehorses trained at the same racecourse was studied over four years and a classification system for exercise-related musculoskeletal injuries was designed. The incidence rates of musculoskeletal injuries causing horses’ withdrawal from training for 15 days or longer were investigated. A mixed-effects Poisson regression model was used to estimate musculoskeletal injury rates and to describe significance of selected risk factors for exercise-related injuries in this population. Results A total of 356 trotter racehorses from 10 different stables contributed 8961 months at risk of musculoskeletal injuries. Four-hundred-and-twenty-nine injuries were reported and classified into 16 categories, based on their aetiology and anatomical localisation. The overall exercise-related injury rate was 4.79 per 100 horse months. When considering risk factors one by one in separate univariable analyses, we obtained the following results: rates did not differ significantly between genders and classes of age, whereas one driver seemed to cause fewer injuries than the others. Racing speed and racing intensity, as well as recent medical history, seemed to be significant risk factors (p fracture are lower in Standardbreds compared to Thoroughbreds, whereas the opposite is true for tendon and suspensory ligament injuries. In addition to identification of risk factors for musculoskeletal injuries among Standardbred racehorses, results suggest that racing intensity seems to be a protective predictor of risk and recent medical history could be used to identify horses at risk of

  11. International spinal cord injury musculoskeletal basic data set

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Burns, A S; Curt, A

    2012-01-01

    To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International.......To develop an International Spinal Cord Injury (SCI) Musculoskeletal Basic Data Set as part of the International SCI Data Sets to facilitate consistent collection and reporting of basic musculoskeletal findings in the SCI population.Setting:International....

  12. Fabrication of nuclear ship reactor MRX model and study on inspection and maintenance of components

    International Nuclear Information System (INIS)

    Kasahara, Yoshiyuki; Nakazawa, Toshio; Kusunoki, Tsuyoshi; Takahashi, Hiroki; Yoritsune, Tsutomu.

    1997-10-01

    The MRX (Marine Reactor X) is an integral type small reactor adopting passive safety systems. As for an integral type reactor, primary system components are installed in the reactor vessel. It is therefor important to establish the appropriate procedure for construction, inspection and maintenance, dismauntling, etc., for all components in the reactor vessel as well as in the reactor containment, because inspection space is limited. To study these subjects, a one-fifth model of the MRX was fabricated and operation capabilities were studied. As a result of studies, the following results are obtained. (1) Manufacturing and installing problems of the reactor pressure vessel, the containment vessel and internal components are basically not abserved. (2) Heat transfer tube structures of the steam generator and the heat exchangers of emergency decay heat removal system and containment water cooler were not seen of any problem for fabrication. However, due consideration is required in the detailed design of supports of heat transfer tubes. (3) Further studies should be needed for designs of flange penetrations and leak countermeasures for pipes instrument cables. (4) Arrangements of equipments in the containment should be taken in consideration in detail because the space is narrow. (5) Further discussion is required for installation methods of instruments and cables. (author)

  13. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  14. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  15. CONCEPT AND MODELS FOR EVALUATION OF BLACK AND WHITE SMOKE COMPONENTS IN DIESEL ENGINE EXHAUST

    Directory of Open Access Journals (Sweden)

    Igor BLYANKINSHTEIN

    2017-09-01

    Full Text Available A method for measuring exhaust smoke opacity has been developed, which allows estimating the differentiated components forming black exhaust and those forming white smoke. The method is based on video recording and special software for processing the video recording data. The flow of the diesel exhaust gas is visualised using the digital camera, against the background of the screen, on a cut of an exhaust pipe, and with sufficient illumination of the area. The screen represents standards of whiteness and blackness. The content of the black components (soot is determined by the degree of blackening of the white standard in the frames of the video, and the content of whitish components (unburned fuel and oil, etc. is determined by the degree of whitening of black standard on the frames of the video. The paper describes the principle and the results of testing the proposed method of measuring exhaust smoke opacity. We present an algorithm for the frame-by-frame analysis of the video sequence, and static and dynamic mathematical models of exhaust opacity, measured under free-acceleration of a diesel engine.

  16. THM modelling of buffer, backfill and other system components. Critical processes and scenarios

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Kristensson, Ola; Boergesson, Lennart; Dueck, Ann; Hernelind, Jan

    2010-03-01

    A number of critical thermo-hydro-mechanical processes and scenarios for the buffer, tunnel backfill and other filling components in the repository have been identified. These processes and scenarios representing different aspects of the repository evolution have been pinpointed and modelled. In total, 22 cases have been modelled. Most cases have been analysed with finite element (FE) calculations, using primarily the two codes Abaqus and Code B right. For some cases analytical methods have been used either to supplement the FE calculations or due to that the scenario has a character that makes it unsuitable or very difficult to use the FE method. Material models and element models and choice of parameters as well as presumptions have been stated for all modelling cases. In addition, the results have been analysed and conclusions drawn for each case. The uncertainties have also been analysed. Besides the information given for all cases studied, the codes and material models have been described in a separate so called data report

  17. THM modelling of buffer, backfill and other system components. Critical processes and scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Kristensson, Ola; Boergesson, Lennart; Dueck, Ann (Clay Technology AB, Lund (Sweden)); Hernelind, Jan (5T-Engineering AB, Vaesteraas (Sweden))

    2010-03-15

    A number of critical thermo-hydro-mechanical processes and scenarios for the buffer, tunnel backfill and other filling components in the repository have been identified. These processes and scenarios representing different aspects of the repository evolution have been pinpointed and modelled. In total, 22 cases have been modelled. Most cases have been analysed with finite element (FE) calculations, using primarily the two codes Abaqus and Code-Bright. For some cases analytical methods have been used either to supplement the FE calculations or due to that the scenario has a character that makes it unsuitable or very difficult to use the FE method. Material models and element models and choice of parameters as well as presumptions have been stated for all modelling cases. In addition, the results have been analysed and conclusions drawn for each case. The uncertainties have also been analysed. Besides the information given for all cases studied, the codes and material models have been described in a separate so called data report

  18. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    Science.gov (United States)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a

  19. Dose rates modeling of pressurized water reactor primary loop components with SCALE6.0

    International Nuclear Information System (INIS)

    Matijević, Mario; Pevec, Dubravko; Trontl, Krešimir

    2015-01-01

    Highlights: • Shielding analysis of the typical PWR primary loop components was performed. • FW-CADIS methodology was thoroughly investigated using SCALE6.0 code package. • Versatile ability of SCALE6.0/FW-CADIS for deep penetration models was proved. • The adjoint source with focus on specific material can improve MC modeling. - Abstract: The SCALE6.0 simulation model of a typical PWR primary loop components for effective dose rates calculation based on hybrid deterministic–stochastic methodology was created. The criticality sequence CSAS6/KENO-VI of the SCALE6.0 code package, which includes KENO-VI Monte Carlo code, was used for criticality calculations, while neutron and gamma dose rates distributions were determined by MAVRIC/Monaco shielding sequence. A detailed model of a combinatorial geometry, materials and characteristics of a generic two loop PWR facility is based on best available input data. The sources of ionizing radiation in PWR primary loop components included neutrons and photons originating from critical core and photons from activated coolant in two primary loops. Detailed calculations of the reactor pressure vessel and the upper reactor head have been performed. The efficiency of particle transport for obtaining global Monte Carlo dose rates was further examined and quantified with a flexible adjoint source positioning in phase-space. It was demonstrated that generation of an accurate importance map (VR parameters) is a paramount step which enabled obtaining Monaco dose rates with fairly uniform uncertainties. Computer memory consumption by the S N part of hybrid methodology represents main obstacle when using meshes with large number of cells together with high S N /P N parameters. Detailed voxelization (homogenization) process in Denovo together with high S N /P N parameters is essential for precise VR parameters generation which will result in optimized MC distributions. Shielding calculations were also performed for the reduced PWR

  20. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    Science.gov (United States)

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.