WorldWideScience

Sample records for muscle total creatine

  1. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    Science.gov (United States)

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  2. Extracellular creatine regulates creatine transport in rat and human muscle cells.

    OpenAIRE

    Loike, J D; Zalutsky, D L; Kaback, E; Miranda, A F; Silverstein, S C

    1988-01-01

    Muscle cells do not synthesize creatine; they take up exogenous creatine by specific Na+-dependent plasma membrane transporters. We found that extracellular creatine regulates the level of expression of these creatine transporters in L6 rat muscle cells. L6 myoblasts maintained for 24 hr in medium containing 1 mM creatine exhibited 1/3rd of the creatine transport activity of cells maintained for 24 hr in medium without creatine. Down-regulation of creatine transport was partially reversed whe...

  3. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik

    2016-01-01

    In this randomized, double-blind, crossover trial, we evaluated whether 4-week supplementation with guanidinoacetic acid (GAA) is superior to creatine in facilitating creatine levels in healthy men (n = 5). GAA (3.0 g/day) resulted in a more powerful rise (up to 16.2%) in tissue creatine levels...... in vastus medialis muscle, middle-cerebellar peduncle, and paracentral grey matter, as compared with creatine (P creatine for improved bioenergetics in energy-demanding tissues....

  4. Beyond muscles: The untapped potential of creatine.

    Science.gov (United States)

    Riesberg, Lisa A; Weed, Stephanie A; McDonald, Thomas L; Eckerson, Joan M; Drescher, Kristen M

    2016-08-01

    Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Beyond Muscles: The Untapped Potential of Creatine

    OpenAIRE

    Riesberg, Lisa A.; Weed, Stephanie A.; McDonald, Thomas L.; Eckerson, Joan M.; Drescher, Kristen M.

    2016-01-01

    Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the br...

  6. Creatine Supplementation and Skeletal Muscle Metabolism for Building Muscle Mass- Review of the Potential Mechanisms of Action.

    Science.gov (United States)

    Farshidfar, Farnaz; Pinder, Mark A; Myrie, Semone B

    2017-01-01

    Creatine, a very popular supplement among athletic populations, is of growing interest for clinical applications. Since over 90% of creatine is stored in skeletal muscle, the effect of creatine supplementation on muscle metabolism is a widely studied area. While numerous studies over the past few decades have shown that creatine supplementation has many favorable effects on skeletal muscle physiology and metabolism, including enhancing muscle mass (growth/hypertrophy); the underlying mechanisms are poorly understood. This report reviews studies addressing the mechanisms of action of creatine supplementation on skeletal muscle growth/hypertrophy. Early research proposed that the osmotic effect of creatine supplementation serves as a cellular stressor (osmosensing) that acts as an anabolic stimulus for protein synthesis signal pathways. Other reports indicated that creatine directly affects muscle protein synthesis via modulations of components in the mammalian target of rapamycin (mTOR) pathway. Creatine may also directly affect the myogenic process (formation of muscle tissue), by altering secretions of myokines, such as myostatin and insulin-like growth factor-1, and expressions of myogenic regulatory factors, resulting in enhanced satellite cells mitotic activities and differentiation into myofiber. Overall, there is still no clear understanding of the mechanisms of action regarding how creatine affects muscle mass/growth, but current evidence suggests it may exert its effects through multiple approaches, with converging impacts on protein synthesis and myogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate

    Directory of Open Access Journals (Sweden)

    Jagim Andrew R

    2012-09-01

    ± 23.2; CrM 11.3 ± 23.9, 22.3 ± 21.0 mmol/kg DW, p = 0.46. However, while no overall group differences were observed (p = 0.14, pairwise comparison between the KA-L and CrM groups revealed that changes in muscle creatine content tended to be greater in the CrM group (KA-L −1.1 ± 4.3, CrM 11.2 ± 4.3 mmol/kg DW, p = 0.053 [mean ± SEM]. Although some significant time effects were observed, no significant group x time interactions (p > 0.05 were observed in changes in body mass, fat free mass, fat mass, percent body fat, or total body water; bench press and leg press 1RM strength; WAC mean power, peak power, or total work; serum blood lipids, markers of catabolism and bone status, and serum electrolyte status; or, whole blood makers of lymphocytes and red cells. Serum creatinine levels increased in all groups (p  Conclusions Neither manufacturers recommended doses of KA (1.5 g/d or KA with equivalent loading (20 g/d for 7-days and maintenance doses (5 g/d for 21-days of CrM promoted greater changes in muscle creatine content, body composition, strength, or anaerobic capacity than CrM (20 g/d for 7-days, 5 g/d for 21-days. There was no evidence that supplementing the diet with a buffered form of creatine resulted in fewer side effects than CrM. These findings do not support claims that consuming a buffered form of creatine is a more efficacious and/or safer form of creatine to consume than creatine monohydrate.

  8. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate.

    Science.gov (United States)

    Jagim, Andrew R; Oliver, Jonathan M; Sanchez, Adam; Galvan, Elfego; Fluckey, James; Riechman, Steven; Greenwood, Michael; Kelly, Katherine; Meininger, Cynthia; Rasmussen, Christopher; Kreider, Richard B

    2012-09-13

    .0 mmol/kg DW, p = 0.46). However, while no overall group differences were observed (p = 0.14), pairwise comparison between the KA-L and CrM groups revealed that changes in muscle creatine content tended to be greater in the CrM group (KA-L -1.1 ± 4.3, CrM 11.2 ± 4.3 mmol/kg DW, p = 0.053 [mean ± SEM]). Although some significant time effects were observed, no significant group x time interactions (p > 0.05) were observed in changes in body mass, fat free mass, fat mass, percent body fat, or total body water; bench press and leg press 1RM strength; WAC mean power, peak power, or total work; serum blood lipids, markers of catabolism and bone status, and serum electrolyte status; or, whole blood makers of lymphocytes and red cells. Serum creatinine levels increased in all groups (p CrM group but returned to baseline during the maintenance phase. No side effects were reported. Neither manufacturers recommended doses of KA (1.5 g/d) or KA with equivalent loading (20 g/d for 7-days) and maintenance doses (5 g/d for 21-days) of CrM promoted greater changes in muscle creatine content, body composition, strength, or anaerobic capacity than CrM (20 g/d for 7-days, 5 g/d for 21-days). There was no evidence that supplementing the diet with a buffered form of creatine resulted in fewer side effects than CrM. These findings do not support claims that consuming a buffered form of creatine is a more efficacious and/or safer form of creatine to consume than creatine monohydrate.

  9. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: a superiority pilot trial in healthy men.

    Science.gov (United States)

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik; Vranes, Milan

    2016-09-01

    In this randomized, double-blind, crossover trial, we evaluated whether 4-week supplementation with guanidinoacetic acid (GAA) is superior to creatine in facilitating creatine levels in healthy men (n = 5). GAA (3.0 g/day) resulted in a more powerful rise (up to 16.2%) in tissue creatine levels in vastus medialis muscle, middle-cerebellar peduncle, and paracentral grey matter, as compared with creatine (P creatine for improved bioenergetics in energy-demanding tissues.

  10. Oral creatine supplementation attenuates muscle loss caused by limb immobilization: a systematic review

    Directory of Open Access Journals (Sweden)

    Camila Souza Padilha

    Full Text Available Abstract Introduction: Recent studies have pointing creatine supplementation as a promising therapeutic alterna- tive in several diseases, especially myopathies and neurodegenerative disorder. Objective: elucidate the role of creatine supplementation on deleterious effect caused by limb immobilization in humans and rats. Methods: Analyzed articles were searched by three online databases, PubMed, SportDicus e Scielo. After a review and analysis, the studies were included in this review articles on effect of creatine supplementation on skeletal muscle in humans and rat, before, during and after a period of limb immobilization. Results: Studies analyzed demonstrated positive points in use of creatine supplementation as a therapeutic tool to mitigating the deleterious effects of limb immobilization, in humans and rat. Conclusion: The dataset of this literature review allows us to conclude that creatine supplementation may reduce muscle loss and/or assist in the recovery of muscle atrophy caused by immobilization and disuse in rats and humans. Also, we note that further research with better methodological rigor is needed to clarify the mechanisms by which creatine support the recovery of muscle atrophy. Moreover, these effects are positive and promising in the field of muscle rehabilitation, especially after member’s immobilization.

  11. Manipulation of Muscle Creatine and Glycogen Changes Dual X-ray Absorptiometry Estimates of Body Composition.

    Science.gov (United States)

    Bone, Julia L; Ross, Megan L; Tomcik, Kristyen A; Jeacocke, Nikki A; Hopkins, Will G; Burke, Louise M

    2017-05-01

    Standardizing a dual x-ray absorptiometry (DXA) protocol is thought to provide a reliable measurement of body composition. We investigated the effects of manipulating muscle glycogen and creatine content independently and additively on DXA estimates of lean mass. Eighteen well-trained male cyclists undertook a parallel group application of creatine loading (n = 9) (20 g·d for 5 d loading; 3 g·d maintenance) or placebo (n = 9) with crossover application of glycogen loading (12 v 6 g·kg BM per day for 48 h) as part of a larger study involving a glycogen-depleting exercise protocol. Body composition, total body water, muscle glycogen and creatine content were assessed via DXA, bioelectrical impedance spectroscopy and standard biopsy techniques. Changes in the mean were assessed using the following effect-size scale: >0.2 small, >0.6, moderate, >1.2 large and compared with the threshold for the smallest worthwhile effect of the treatment. Glycogen loading, both with and without creatine loading, resulted in substantial increases in estimates of lean body mass (mean ± SD; 3.0% ± 0.7% and 2.0% ± 0.9%) and leg lean mass (3.1% ± 1.8% and 2.6% ± 1.0%) respectively. A substantial decrease in leg lean mass was observed after the glycogen depleting condition (-1.4% ± 1.6%). Total body water showed substantial increases after glycogen loading (2.3% ± 2.3%), creatine loading (1.4% ± 1.9%) and the combined treatment (2.3% ± 1.1%). Changes in muscle metabolites and water content alter DXA estimates of lean mass during periods in which minimal change in muscle protein mass is likely. This information needs to be considered in interpreting the results of DXA-derived estimates of body composition in athletes.

  12. Interactions of Aging, Overload, and Creatine Supplementation in Rat Plantaris Muscle

    Directory of Open Access Journals (Sweden)

    Mark D. Schuenke

    2011-01-01

    Full Text Available Attenuation of age-related sarcopenia by creatine supplementation has been equivocal. In this study, plantaris muscles of young (Y; 5m and aging (A; 24m Fisher 344 rats underwent four weeks of either control (C, creatine supplementation (Cr, surgical overload (O, or overload plus creatine (OCr. Creatine alone had no effect on muscle fiber cross-sectional area (CSA or heat shock protein (HSP70 and increased myonuclear domain (MND only in young rats. Overload increased CSA and HSP70 content in I and IIA fibers, regardless of age, and MND in IIA fibers of YO rats. CSA and MND increased in all fast fibers of YOCr, and CSA increased in I and IIA fibers of AOCr. OCR did not alter HSP70, regardless of age. MND did not change in aging rats, regardless of treatment. These data indicate creatine alone had no significant effect. Creatine with overload produced no additional hypertrophy relative to overload alone and attenuated overload-induced HSP70 expression.

  13. Effect of creatine on aerobic and anaerobic metabolism in skeletal muscle in swimmers.

    OpenAIRE

    Thompson, C H; Kemp, G J; Sanderson, A L; Dixon, R M; Styles, P; Taylor, D J; Radda, G K

    1996-01-01

    OBJECTIVE: To examine the effect of a relatively low dose of creatine on skeletal muscle metabolism and oxygen supply in a group of training athletes. METHODS: 31P magnetic resonance and near-infrared spectroscopy were used to study calf muscle metabolism in a group of 10 female members of a university swimming team. Studies were performed before and after a six week period of training during which they took either 2 g creatine daily or placebo. Calf muscle metabolism and creatine/choline rat...

  14. Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain.

    Science.gov (United States)

    Gualano, Bruno; Rawson, Eric S; Candow, Darren G; Chilibeck, Philip D

    2016-08-01

    This narrative review aims to summarize the recent findings on the adjuvant application of creatine supplementation in the management of age-related deficits in skeletal muscle, bone and brain metabolism in older individuals. Most studies suggest that creatine supplementation can improve lean mass and muscle function in older populations. Importantly, creatine in conjunction with resistance training can result in greater adaptations in skeletal muscle than training alone. The beneficial effect of creatine upon lean mass and muscle function appears to be applicable to older individuals regardless of sex, fitness or health status, although studies with very old (>90 years old) and severely frail individuals remain scarce. Furthermore, there is evidence that creatine may affect the bone remodeling process; however, the effects of creatine on bone accretion are inconsistent. Additional human clinical trials are needed using larger sample sizes, longer durations of resistance training (>52 weeks), and further evaluation of bone mineral, bone geometry and microarchitecture properties. Finally, a number of studies suggest that creatine supplementation improves cognitive processing under resting and various stressed conditions. However, few data are available on older adults, and the findings are discordant. Future studies should focus on older adults and possibly frail elders or those who have already experienced an age-associated cognitive decline.

  15. The Regulation and Expression of the Creatine Transporter: A Brief Review of Creatine Supplementation in Humans and Animals

    OpenAIRE

    Schoch, Ryan D; Willoughby, Darryn; Greenwood, Mike

    2006-01-01

    Abstract Creatine monohydrate has become one of the most popular ergogenic sport supplements used today. It is a nonessential dietary compound that is both endogenously synthesized and naturally ingested through diet. Creatine ingested through supplementation has been observed to be absorbed into the muscle exclusively by means of a creatine transporter, CreaT1. The major rationale of creatine supplementation is to maximize the increase within the intracellular pool of total creatine (creatin...

  16. On the importance of exchangeable NH protons in creatine for the magnetic coupling of creatine methyl protons in skeletal muscle

    NARCIS (Netherlands)

    Kruiskamp, M.J.; Nicolaij, K.

    2001-01-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the

  17. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    Science.gov (United States)

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  18. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Science.gov (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  19. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  20. Mobility of creatine phosphokinase and beta-enolase in cultured muscle cells.

    Science.gov (United States)

    Arrio-Dupont, M; Foucault, G; Vacher, M; Douhou, A; Cribier, S

    1997-11-01

    The diffusion of beta-enolase and creatine phosphokinase in muscle cells has been studied by modulated fringe pattern photobleaching. Beta-enolase is mobile in the sarcoplasm. At 20 degrees C, the diffusion coefficient is 13.5 +/- 2.5 microm2 s(-1) in the cytosol and 56 microm2 s(-1) in aqueous media. As in the case of dextrans of the same hydrodynamic radius, its mobility is hindered by both the crowding of the fluid phase of the cytoplasm and the screening effect due to myofilaments. A fraction of creatine phosphokinase is mobile in the sarcoplasm. Its diffusion coefficient in the cytosol, 4.5 +/- 1 microm2 s(-1), is lower than that of the dextran of equivalent size. The other fraction (20 to 50%) is very slightly mobile, with an apparent diffusion coefficient varying from 0.0035 to 0.043 microm2 s(-1). This low mobility might be attributed to exchange between free and bound creatine phosphokinase. The bound fraction of the endogenous enzyme was localized by immunocytofluorescence on the cultured muscle cells. Our results favor a localization of bound cytosolic creatine phosphokinase on the M-line and a diffuse distribution in all myotubes.

  1. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    International Nuclear Information System (INIS)

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-01-01

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used 31 P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate for V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution

  2. Creatine monohydrate supplementation does not increase muscle strength, lean body mass, or muscle phosphocreatine in patients with myotonic dystrophy type 1.

    Science.gov (United States)

    Tarnopolsky, Mark; Mahoney, Douglas; Thompson, Terry; Naylor, Heather; Doherty, Timothy J

    2004-01-01

    Creatine monohydrate (CrM) supplementation may increase strength in some types of muscular dystrophy. A recent study in myotonic muscular dystrophy type 1 (DM1) did not find a significant treatment effect, but measurements of muscle phosphocreatine (PCr) were not performed. We completed a randomized, double-blind, cross-over trial using 34 genetically confirmed adult DM1 patients without significant cognitive impairment. Participants received CrM (5 g, approximately 0.074 g/kg daily) and a placebo for each 4-month phase with a 6-week wash-out. Spirometry, manual muscle testing, quantitative isometric strength testing of handgrip, foot dorsiflexion, and knee extension, handgrip and foot dorsiflexion endurance, functional tasks, activity of daily living scales, body composition (total, bone, and fat-free mass), serum creatine kinase activity, serum creatinine concentration and clearance, and liver function tests were completed before and after each intervention, and muscle PCr/beta-adenosine triphosphate (ATP) ratios of the forearm flexor muscles were completed at the end of each phase. CrM supplementation did not increase any of the outcome measurements except for plasma creatinine concentration (but not creatinine clearance). Thus, CrM supplementation at 5 g daily does not have any effects on muscle strength, body composition, or activities of daily living in patients with DM1, perhaps because of a failure of the supplementation to increase muscle PCr/beta-ATP content.

  3. Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats

    Directory of Open Access Journals (Sweden)

    Michel Barbosa de Araújo

    2013-12-01

    Full Text Available The purpose of this study was to evaluate the effect of creatine supplementation in the diet on indicators of glucose metabolism in skeletal muscle of exercised rats. Forty Wistar adult rats were distributed into four groups for eight weeks: 1 Control: sedentary rats that received balanced diet; 2 Creatine control: sedentary rats that received supplementation of 2% creatine in the balanced diet; 3 Trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received balanced diet; and 4 Supplemented-trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received creatine supplementation (2% in the balanced diet. The hydric intake increased and the body weight gain decreased in the supplemented-trained group. In the soleus muscle, the glucose oxidation increased in both supplemented groups. The production of lactate and glycemia during glucose tolerance test decreased in the supplemented-trained group. Creatine supplementation in conjunction with exercise training improved muscular glycidic metabolism of rats.

  4. AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation

    DEFF Research Database (Denmark)

    Eijnde, Bert O.; Derave, Wim; Wojtaszewski, Jørgen

    2005-01-01

    The effects of leg immobilization and retraining in combination with oral creatine intake on muscle AMP-activated protein kinase (AMPK) protein expression and phosphorylation status were investigated. A double-blind trial was performed in young healthy volunteers (n = 22). A cast immobilized...... the right leg for 2 wk, whereafter the knee-extensor muscles of that leg were retrained for 6 wk. Half of the subjects received creatine monohydrate throughout the study (Cr; from 15 g down to 2.5 g daily), and the others ingested placebo (P; maltodextrin). Before and after immobilization and retraining...... that immobilization-induced muscle inactivity for 2 wk does not alter AMPK a1-, a2-, and ß2-subunit expression or a-AMPK phosphorylation status. Furthermore, the present observations indicate that AMPK probably is not implicated in the previously reported beneficial effects of oral creatine supplementation on muscle...

  5. Effects of creatine supplementation on exercise performance.

    Science.gov (United States)

    Demant, T W; Rhodes, E C

    1999-07-01

    While creatine has been known to man since 1835, when a French scientist reported finding this constitutent of meat, its presence in athletics as a performance enhancer is relatively new. Amid claims of increased power and strength, decreased performance time and increased muscle mass, creatine is being hailed as a true ergogenic aid. Creatinine is synthesised from the amino acids glycine, arginine and methionine in the kidneys, liver and pancreas, and is predominantly found in skeletal muscle, where it exists in 2 forms. Approximately 40% is in the free creatine form (Crfree), while the remaining 60% is in the phosphorylated form, creatine phosphate (CP). The daily turnover rate of approximately 2 g per day is equally met via exogenous intake and endogenous synthesis. Although creatine concentration (Cr) is greater in fast twitch muscle fibres, slow twitch fibres have a greater resynthesis capability due to their increased aerobic capacity. There appears to be no significant difference between males and females in Cr, and training does not appear to effect Cr. The 4 roles in which creatine is involved during performance are temporal energy buffering, spatial energy buffering, proton buffering and glycolysis regulation. Creatine supplementation of 20 g per day for at least 3 days has resulted in significant increases in total Cr for some individuals but not others, suggesting that there are 'responders' and 'nonresponders'. These increases in total concentration among responders is greatest in individuals who have the lowest initial total Cr, such as vegetarians. Increased concentrations of both Crfree and CP are believed to aid performance by providing more short term energy, as well as increase the rate of resynthesis during rest intervals. Creatine supplementation does not appear to aid endurance and incremental type exercises, and may even be detrimental. Studies investigating the effects of creatine supplementation on short term, high intensity exercises have

  6. Creatine and creatine forms intended for sports nutrition.

    Science.gov (United States)

    Andres, Susanne; Ziegenhagen, Rainer; Trefflich, Iris; Pevny, Sophie; Schultrich, Katharina; Braun, Hans; Schänzer, Wilhelm; Hirsch-Ernst, Karen Ildico; Schäfer, Bernd; Lampen, Alfonso

    2017-06-01

    Creatine is a popular ergogenic supplement in sports nutrition. Yet, supplementation of creatine occasionally caused adverse effects such as gastrointestinal complaints, muscle cramps and an increase in body weight. Creatine monohydrate has already been evaluated by different competent authorities and several have come to the conclusion that a daily intake of 3 g creatine per person is unlikely to pose safety concerns, focusing on healthy adults with exclusion of pregnant and breastfeeding women. Possible vulnerable subgroups were also discussed in relation to the safety of creatine. The present review provides an up-to-date overview of the relevant information with special focus on human studies regarding the safety of creatine monohydrate and other marketed creatine forms, in particular creatine pyruvate, creatine citrate, creatine malate, creatine taurinate, creatine phosphate, creatine orotate, creatine ethyl ester, creatine pyroglutamate, creatine gluconate, and magnesium creatine chelate. Limited data are available with regard to the safety of the latter creatine forms. Considering an acceptable creatine intake of 3 g per day, most of the evaluated creatine forms are unlikely to pose safety concerns, however some safety concerns regarding a supplementary intake of creatine orotate, creatine phosphate, and magnesium creatine chelate are discussed here. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: a study of structure and function of hind limb muscle in the spiny mouse.

    Science.gov (United States)

    LaRosa, Domenic A; Ellery, Stacey J; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-12-01

    Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine's potential to prevent damage to axial skeletal muscles. Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis. Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance. This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.

  8. EXERCISE PERFORMANCE AND MUSCLE CONTRACTILE PROPERTIES AFTER CREATINE MONOHYDRATE SUPPLEMENTATION IN AEROBIC-ANAEROBIC TRAINING RATS

    Directory of Open Access Journals (Sweden)

    Nickolay Boyadjiev

    2007-12-01

    Full Text Available The purpose of this study was to investigate the effects of creatine monohydrate supplementation on exercise performance and contractile variables in aerobic-anaerobic training rats. Twenty 90-day-old male Sprague Dawley rats were divided into two groups - creatine (Cr and controls (K. The creatine group received creatine monohydrate as a nutritional supplement, whereas the control group was given placebo. Both groups were trained 5 days a week on a treadmill for 20 days in a mixed (aerobic-anaerobic metabolic working regimen (27 m·min-1, 15% elevation for 40 min. The exercise performance (sprint-test, contractile properties (m. tibialis anterior, oxidative enzyme activity (SDH, LDH, NADH2 in m. soleus and blood hematological and chemical variables were assessed in the groups at the end of the experiment. It was found out that creatine supplementation improved the exercise performance after 20 days of administration in a dose of 60 mg per day on the background of a mixed (aerobic-anaerobic exercise training. At the end of the trial the Cr-group demonstrated better values for the variables which characterize the contractile properties of m. tibialis anterior containing predominantly types IIA and IIB muscle fibers. On the other hand, a higher oxidative capacity was found out in m. soleus (type I muscle fibers as a result of 20-day creatine supplementation. No side effects of creatine monohydrate supplementation were assessed by the hematological and blood biochemical indices measured in this study

  9. Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake

    Science.gov (United States)

    Nabuurs, C I; Choe, C U; Veltien, A; Kan, H E; van Loon, L J C; Rodenburg, R J T; Matschke, J; Wieringa, B; Kemp, G J; Isbrandt, D; Heerschap, A

    2013-01-01

    Creatine (Cr) plays an important role in muscle energy homeostasis by its participation in the ATP–phosphocreatine phosphoryl exchange reaction mediated by creatine kinase. Given that the consequences of Cr depletion are incompletely understood, we assessed the morphological, metabolic and functional consequences of systemic depletion on skeletal muscle in a mouse model with deficiency of l-arginine:glycine amidinotransferase (AGAT−/−), which catalyses the first step of Cr biosynthesis. In vivo magnetic resonance spectroscopy showed a near-complete absence of Cr and phosphocreatine in resting hindlimb muscle of AGAT−/− mice. Compared with wild-type, the inorganic phosphate/β-ATP ratio was increased fourfold, while ATP levels were reduced by nearly half. Activities of proton-pumping respiratory chain enzymes were reduced, whereas F1F0-ATPase activity and overall mitochondrial content were increased. The Cr-deficient AGAT−/− mice had a reduced grip strength and suffered from severe muscle atrophy. Electron microscopy revealed increased amounts of intramyocellular lipid droplets and crystal formation within mitochondria of AGAT−/− muscle fibres. Ischaemia resulted in exacerbation of the decrease of pH and increased glycolytic ATP synthesis. Oral Cr administration led to rapid accumulation in skeletal muscle (faster than in brain) and reversed all the muscle abnormalities, revealing that the condition of the AGAT−/− mice can be switched between Cr deficient and normal simply by dietary manipulation. Systemic creatine depletion results in mitochondrial dysfunction and intracellular energy deficiency, as well as structural and physiological abnormalities. The consequences of AGAT deficiency are more pronounced than those of muscle-specific creatine kinase deficiency, which suggests a multifaceted involvement of creatine in muscle energy homeostasis in addition to its role in the phosphocreatine–creatine kinase system. PMID:23129796

  10. Creatine Monohydrate Enhances Energy Status and Reduces Glycolysis via Inhibition of AMPK Pathway in Pectoralis Major Muscle of Transport-Stressed Broilers.

    Science.gov (United States)

    Zhang, Lin; Wang, Xiaofei; Li, Jiaolong; Zhu, Xudong; Gao, Feng; Zhou, Guanghong

    2017-08-16

    Creatine monohydrate (CMH) contributes to reduce transport-induced muscle rapid glycolysis and improve meat quality of broilers, but the underlying mechanism is still unknown. Therefore, this study aimed to investigate the molecular mechanisms underlying the ameliorative effects of CMH on muscle glycolysis metabolism of transported broilers during summer. The results showed that 3 h transport during summer elevated chicken live weight loss and plasma corticosterone concentration; decreased muscle concentrations of ATP, creatine, and energy charge value; increased muscle AMP concentration and AMP/ATP ratio; and upregulated muscle mRNA expression of LKB1 and AMPKα2, as well as protein expression of p-LKB1 Thr189 and p-AMPKα Thr172 , which subsequently resulted in rapid glycolysis in the pectoralis major muscle and consequent reduction of meat quality. Dietary addition of CMH at 1200 mg/kg ameliorated transport-induced rapid muscle glycolysis and reduction of meat quality via enhancement of the energy-buffering capacity of intramuscular phosphocreatine/creatine system and inhibition of AMPK pathway.

  11. Scientific basis and practical aspects of creatine supplementation for athletes.

    Science.gov (United States)

    Volek, Jeff S; Rawson, Eric S

    2004-01-01

    A large number of studies have been published on creatine supplementation over the last decade. Many studies show that creatine supplementation in conjunction with resistance training augments gains in muscle strength and size. The underlying physiological mechanism(s) to explain this ergogenic effect remain unclear. Increases in muscle fiber hypertrophy and myosin heavy chain expression have been observed with creatine supplementation. Creatine supplementation increases acute weightlifting performance and training volume, which may allow for greater overload and adaptations to training. Creatine supplementation may also induce a cellular swelling in muscle cells, which in turn may affect carbohydrate and protein metabolism. Several studies point to the conclusion that elevated intramuscular creatine can enhance glycogen levels but an effect on protein synthesis/degradation has not been consistently detected. As expected there is a distribution of responses to creatine supplementation that can be largely explained by the degree of creatine uptake into muscle. Thus, there is wide interest in methods to maximize muscle creatine levels. A carbohydrate or carbohydrate/protein-induced insulin response appears to benefit creatine uptake. In summary, the predominance of research indicates that creatine supplementation represents a safe, effective, and legal method to enhance muscle size and strength responses to resistance training.

  12. Effects of Creatine Supplementation on Muscle Strength and Optimal Individual Post-Activation Potentiation Time of the Upper Body in Canoeists.

    Science.gov (United States)

    Wang, Chia-Chi; Lin, Shu-Cheng; Hsu, Shu-Ching; Yang, Ming-Ta; Chan, Kuei-Hui

    2017-10-27

    Creatine supplementation reduces the impact of muscle fatigue on post-activation potentiation (PAP) of the lower body, but its effects on the upper body remain unknown. This study examined the effects of creatine supplementation on muscle strength, explosive power, and optimal individual PAP time of the upper body during a set of complex training bouts in canoeists. Seventeen male high school canoeists performed a bench row for one repetition at maximum strength and conducted complex training bouts to determine the optimal individual timing of PAP and distance of overhead medicine ball throw before and after the supplementation. Subjects were assigned to a creatine or placebo group, and later consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After supplementation, the maximal strength in the creatine group significantly increased ( p creatine group was significantly earlier than the pre-supplementation times ( p creatine supplementation increases maximal strength and shortens the optimal individual PAP time of the upper body in high school athletes, but has no effect on explosive power. Moreover, it was found that the recovery time between a bench row and an overhead medicine ball throw in a complex training bout is an individual phenomenon.

  13. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

    OpenAIRE

    Allen, Patricia J.

    2012-01-01

    Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy me...

  14. Creatine Loading Does Not Preserve Muscle Mass or Strength During Leg Immobilization in Healthy, Young Males

    NARCIS (Netherlands)

    Backx, Evelien M.P.; Hangelbroek, Roland; Snijders, Tim; Verscheijden, Marie Louise; Verdijk, Lex B.; Groot, de Lisette C.P.G.M.; Loon, van Luc J.C.

    2017-01-01

    Background: A short period of leg immobilization leads to rapid loss of muscle mass and strength. Creatine supplementation has been shown to increase lean body mass in active individuals and can be used to augment gains in muscle mass and strength during prolonged resistance-type exercise

  15. The role of dietary creatine.

    Science.gov (United States)

    Brosnan, Margaret E; Brosnan, John T

    2016-08-01

    The daily requirement of a 70-kg male for creatine is about 2 g; up to half of this may be obtained from a typical omnivorous diet, with the remainder being synthesized in the body Creatine is a carninutrient, which means that it is only available to adults via animal foodstuffs, principally skeletal muscle, or via supplements. Infants receive creatine in mother's milk or in milk-based formulas. Vegans and infants fed on soy-based formulas receive no dietary creatine. Plasma and muscle creatine levels are usually somewhat lower in vegetarians than in omnivores. Human intake of creatine was probably much higher in Paleolithic times than today; some groups with extreme diets, such as Greenland and Alaskan Inuit, ingest much more than is currently typical. Creatine is synthesized from three amino acids: arginine, glycine and methionine (as S-adenosylmethionine). Humans can synthesize sufficient creatine for normal function unless they have an inborn error in a creatine-synthetic enzyme or a problem with the supply of substrate amino acids. Carnivorous animals, such as lions and wolves, ingest much larger amounts of creatine than humans would. The gastrointestinal tract and the liver are exposed to dietary creatine in higher concentrations before it is assimilated by other tissues. In this regard, our observations that creatine supplementation can prevent hepatic steatosis (Deminice et al. J Nutr 141:1799-1804, 2011) in a rodent model may be a function of the route of dietary assimilation. Creatine supplementation has also been reported to improve the intestinal barrier function of the rodent suffering from inflammatory bowel disease.

  16. Effects of Creatine Supplementation on Muscle Strength and Optimal Individual Post-Activation Potentiation Time of the Upper Body in Canoeists

    Directory of Open Access Journals (Sweden)

    Chia-Chi Wang

    2017-10-01

    Full Text Available Creatine supplementation reduces the impact of muscle fatigue on post-activation potentiation (PAP of the lower body, but its effects on the upper body remain unknown. This study examined the effects of creatine supplementation on muscle strength, explosive power, and optimal individual PAP time of the upper body during a set of complex training bouts in canoeists. Seventeen male high school canoeists performed a bench row for one repetition at maximum strength and conducted complex training bouts to determine the optimal individual timing of PAP and distance of overhead medicine ball throw before and after the supplementation. Subjects were assigned to a creatine or placebo group, and later consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After supplementation, the maximal strength in the creatine group significantly increased (p < 0.05. The optimal individual PAP time in the creatine group was significantly earlier than the pre-supplementation times (p < 0.05. There was no significant change in explosive power for either group. Our findings support the notion that creatine supplementation increases maximal strength and shortens the optimal individual PAP time of the upper body in high school athletes, but has no effect on explosive power. Moreover, it was found that the recovery time between a bench row and an overhead medicine ball throw in a complex training bout is an individual phenomenon.

  17. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training

    DEFF Research Database (Denmark)

    Olsen, Steen; Aagaard, Per; Kadi, Fawzi

    2006-01-01

    The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19-26 years) were assigned to stren......The present study investigated the influence of creatine and protein supplementation on satellite cell frequency and number of myonuclei in human skeletal muscle during 16 weeks of heavy-resistance training. In a double-blinded design 32 healthy, male subjects (19-26 years) were assigned...

  18. Effect of creatine supplementation and drop-set resistance training in untrained aging adults.

    Science.gov (United States)

    Johannsmeyer, Sarah; Candow, Darren G; Brahms, C Markus; Michel, Deborah; Zello, Gordon A

    2016-10-01

    To investigate the effects of creatine supplementation and drop-set resistance training in untrained aging adults. Participants were randomized to one of two groups: Creatine (CR: n=14, 7 females, 7 males; 58.0±3.0yrs, 0.1g/kg/day of creatine+0.1g/kg/day of maltodextrin) or Placebo (PLA: n=17, 7 females, 10 males; age: 57.6±5.0yrs, 0.2g/kg/day of maltodextrin) during 12weeks of drop-set resistance training (3days/week; 2 sets of leg press, chest press, hack squat and lat pull-down exercises performed to muscle fatigue at 80% baseline 1-repetition maximum [1-RM] immediately followed by repetitions to muscle fatigue at 30% baseline 1-RM). Prior to and following training and supplementation, assessments were made for body composition, muscle strength, muscle endurance, tasks of functionality, muscle protein catabolism and diet. Drop-set resistance training improved muscle mass, muscle strength, muscle endurance and tasks of functionality (pcreatine to drop-set resistance training significantly increased body mass (p=0.002) and muscle mass (p=0.007) compared to placebo. Males on creatine increased muscle strength (lat pull-down only) to a greater extent than females on creatine (p=0.005). Creatine enabled males to resistance train at a greater capacity over time compared to males on placebo (p=0.049) and females on creatine (p=0.012). Males on creatine (p=0.019) and females on placebo (p=0.014) decreased 3-MH compared to females on creatine. The addition of creatine to drop-set resistance training augments the gains in muscle mass from resistance training alone. Creatine is more effective in untrained aging males compared to untrained aging females. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of age, diet, and tissue type on PCr response to creatine supplementation.

    Science.gov (United States)

    Solis, Marina Yazigi; Artioli, Guilherme Giannini; Otaduy, Maria Concepción García; Leite, Claudia da Costa; Arruda, Walquiria; Veiga, Raquel Ramos; Gualano, Bruno

    2017-08-01

    Creatine/phosphorylcreatine (PCr) responses to creatine supplementation may be modulated by age, diet, and tissue, but studies assessing this possibility are lacking. Therefore we aimed to determine whether PCr responses vary as a function of age, diet, and tissue. Fifteen children, 17 omnivorous and 14 vegetarian adults, and 18 elderly individuals ("elderly") participated in this study. Participants were given placebo and subsequently creatine (0.3 g·kg -1 ·day -1 ) for 7 days in a single-blind fashion. PCr was measured through phosphorus magnetic resonance spectroscopy ( 31 P-MRS) in muscle and brain. Creatine supplementation increased muscle PCr in children ( P creatine supplementation in any group, and delta changes in brain PCr (-0.7 to +3.9%) were inferior to those in muscle PCr content (+10.3 to +27.6%; P creatine protocol (0.3 g·kg -1 ·day -1 for 7 days) may be affected by age, diet, and tissue. Whereas creatine supplementation was able to increase muscle PCr in all groups, although to different extents, brain PCr was shown to be unresponsive overall. These findings demonstrate the need to tailor creatine protocols to optimize creatine/PCr accumulation both in muscle and in brain, enabling a better appreciation of the pleiotropic properties of creatine. NEW & NOTEWORTHY A standardized creatine supplementation protocol (0.3 g·kg -1 ·day -1 for 7 days) effectively increased muscle, but not brain, phosphorylcreatine. Older participants responded better than younger participants whereas vegetarians responded better than omnivores. Responses to supplementation are thus dependent on age, tissue, and diet. This suggests that a single "universal" protocol, originally designed for increasing muscle creatine in young individuals, may lead to heterogeneous muscle responses in different populations or even no responses in tissues other than skeletal muscle. Copyright © 2017 the American Physiological Society.

  20. Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value?

    Science.gov (United States)

    Allen, Patricia J.

    2012-01-01

    Athletes, body builders, and military personnel use dietary creatine as an ergogenic aid to boost physical performance in sports involving short bursts of high-intensity muscle activity. Lesser known is the essential role creatine, a natural regulator of energy homeostasis, plays in brain function and development. Creatine supplementation has shown promise as a safe, effective, and tolerable adjunct to medication for the treatment of brain-related disorders linked with dysfunctional energy metabolism, such as Huntington’s Disease and Parkinson’s Disease. Impairments in creatine metabolism have also been implicated in the pathogenesis of psychiatric disorders, leaving clinicians, researchers and patients alike wondering if dietary creatine has therapeutic value for treating mental illness. The present review summarizes the neurobiology of the creatine-phosphocreatine circuit and its relation to psychological stress, schizophrenia, mood and anxiety disorders. While present knowledge of the role of creatine in cognitive and emotional processing is in its infancy, further research on this endogenous metabolite has the potential to advance our understanding of the biological bases of psychopathology and improve current therapeutic strategies. PMID:22465051

  1. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.

    NARCIS (Netherlands)

    Katz, A.; Andersson, D.C.; Yu, J.; Norman, B.; Sandstrom, M.E.; Wieringa, B.; Westerblad, H.

    2003-01-01

    Skeletal muscle that is deficient in creatine kinase (CK-/-) exhibits accelerated glycogenolysis during contraction. Understanding this phenomenon could provide insight into the control of glycogenolysis during contraction. Therefore, glycogen breakdown was investigated in isolated extensor

  2. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise

    DEFF Research Database (Denmark)

    Apple, F. S.; Hellsten, Ylva; Clarkson, P. M.

    1988-01-01

    We could detect skeletal muscle injury early after an acute exercise bout by measuring creatine kinase (CK, EC 2.7.3.2) MM isoforms in serum. Eleven men performed 120 alternating-arm, eccentric (muscle lengthening) biceps contractions with the intensity of each contraction being 110% of maximal...

  3. Purification and characterization of creatine kinase isozymes from the nurse shark Ginglymostoma cirratum.

    Science.gov (United States)

    Gray, K A; Grossman, S H; Summers, D D

    1986-01-01

    Creatine kinase from nurse shark brain and muscle has been purified to apparent homogeneity. In contrast to creatine kinases from most other vertebrate species, the muscle isozyme and the brain isozyme from nurse shark migrate closely in electrophoresis and, unusually, the muscle isozyme is anodal to the brain isozyme. The isoelectric points are 5.3 and 6.2 for the muscle and brain isozymes, respectively. The purified brain preparation also contains a second active protein with pI 6.0. The amino acid content of the muscle isozyme is compared with other isozymes of creatine kinase using the Metzger Difference Index as an estimation of compositional relatedness. All comparisons show a high degree of compositional similarity including arginine kinase from lobster muscle. The muscle isozyme is marginally more resistant to temperature inactivation than the brain isozyme; the muscle protein does not exhibit unusual stability towards high concentrations of urea. Kinetic analysis of the muscle isozyme reveals Michaelis constants of 1.6 mM MgATP, 12 mM creatine, 1.2 mM MgADP and 50 mM creatine phosphate. Dissociation constants for the same substrate from the binary and ternary enzyme-substrate complex do not differ significantly, indicating limited cooperatively in substrate binding. Enzyme activity is inhibited by small planar anions, most severely by nitrate. Shark muscle creatine kinase hybridizes in vitro with rabbit muscle or monkey brain creatine kinase; shark brain isozyme hybridizes with monkey brain or rabbit brain creatine kinase. Shark muscle and shark brain isozymes, under a wide range of conditions, failed to produce a detectable hybrid.

  4. Creatine Supplementation Increases Total Body Water in Soccer Players: a Deuterium Oxide Dilution Study.

    Science.gov (United States)

    Deminice, R; Rosa, F T; Pfrimer, K; Ferrioli, E; Jordao, A A; Freitas, E

    2016-02-01

    This study aimed to evaluate changes in total body water (TBW) in soccer athletes using a deuterium oxide dilution method and bioelectrical impedance (BIA) formulas after 7 days of creatine supplementation. In a double-blind controlled manner, 13 healthy (under-20) soccer players were divided randomly in 2 supplementation groups: Placebo (Pla, n=6) and creatine supplementation (CR, n=7). Before and after the supplementation period (0.3 g/kg/d during 7 days), TBW was determined by deuterium oxide dilution and BIA methods. 7 days of creatine supplementation lead to a large increase in TBW (2.3±1.0 L) determined by deuterium oxide dilution, and a small but significant increase in total body weight (1.0±0.4 kg) in Cr group compared to Pla. The Pla group did not experience any significant changes in TBW or body weight. Although 5 of 6 BIA equations were sensitive to determine TBW changes induced by creatine supplementation, the Kushner et al. 16 method presented the best concordance levels when compared to deuterium dilution method. In conclusion, 7-days of creatine supplementation increased TBW determined by deuterium oxide dilution or BIA formulas. BIA can be useful to determine TBW changes promoted by creatine supplementation in soccer athletes, with special concern for formula choice. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q(10), and creatine.

    Science.gov (United States)

    Purchas, R W; Rutherfurd, S M; Pearce, P D; Vather, R; Wilkinson, B H P

    2004-03-01

    Levels of taurine, carnosine, coenzyme Q(10), and creatine were measured in beef liver and several muscles of beef and lamb and in cooked and uncooked meat. The amino acid taurine has numerous biological functions, the dipeptide carnosine is a buffer as well as an antioxidant, coenzyme Q(10) is also an antioxidant present within mitochondria, and creatine along with creatine phosphate is involved with energy metabolism in muscle. Large differences were shown for all compounds between beef cheek muscle (predominantly red fibres) and beef semitendinosus muscle (mainly white fibres), with cheek muscle containing 9.9 times as much taurine, and 3.2 times as much coenzyme Q(10), but only 65% as much creatine and 9% as much carnosine. Levels in lamb relative to beef semitendinosus muscles were higher for taurine but slightly lower for carnosine, coenzyme Q(10) and creatine. Values for all the compounds varied significantly between eight lamb muscles, possibly due in part to differences in the proportion of muscle fibre types. Slow cooking (90 min at 70 °C) of lamb longissimus and semimembranosus muscles led to significant reductions in the content of taurine, carnosine, and creatine (Plamb, but that these levels vary between muscles, between animals, and with cooking.

  6. Living Without Creatine: Unchanged Exercise Capacity and Response to Chronic Myocardial Infarction in Creatine-Deficient Mice

    Science.gov (United States)

    Lygate, Craig A.; Aksentijevic, Dunja; Dawson, Dana; Hove, Michiel ten; Phillips, Darci; de Bono, Joseph P.; Medway, Debra J.; Sebag-Montefiore, Liam; Hunyor, Imre; Channon, Keith M.; Clarke, Kieran; Zervou, Sevasti; Watkins, Hugh; Balaban, Robert S.; Neubauer, Stefan

    2014-01-01

    Rationale Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at high workloads and under conditions of pathological stress. Objective We therefore hypothesised that the consequences of creatine-deficiency in mice would be impaired running capacity, and exacerbation of heart failure following myocardial infarction. Methods and Results Surprisingly, mice with whole-body creatine deficiency due to knockout of the biosynthetic enzyme (guanidinoacetate N-methyltransferase – GAMT) voluntarily ran just as fast and as far as controls (>10km/night) and performed the same level of work when tested to exhaustion on a treadmill. Furthermore, survival following myocardial infarction was not altered, nor was subsequent LV remodelling and development of chronic heart failure exacerbated, as measured by 3D-echocardiography and invasive hemodynamics. These findings could not be accounted for by compensatory adaptations, with no differences detected between WT and GAMT−/− proteomes. Alternative phosphotransfer mechanisms were explored; adenylate kinase activity was unaltered, and although GAMT−/− hearts accumulated the creatine pre-cursor guanidinoacetate, this had negligible energy-transfer activity, while mitochondria retained near normal function. Conclusions Creatine-deficient mice show unaltered maximal exercise capacity and response to chronic myocardial infarction, and no obvious metabolic adaptations. Our results question the paradigm that creatine is essential for high workload and chronic stress responses in heart and skeletal muscle. PMID:23325497

  7. Mobility of creatine phosphokinase and beta-enolase in cultured muscle cells

    OpenAIRE

    Arrio-Dupont, M.; Foucault, G.; Vacher, M.; Douhou, A.; Cribier, S.

    1997-01-01

    The diffusion of beta-enolase and creatine phosphokinase in muscle cells has been studied by modulated fringe pattern photobleaching. Beta-enolase is mobile in the sarcoplasm. At 20 degrees C, the diffusion coefficient is 13.5 +/- 2.5 microm2 s(-1) in the cytosol and 56 microm2 s(-1) in aqueous media. As in the case of dextrans of the same hydrodynamic radius, its mobility is hindered by both the crowding of the fluid phase of the cytoplasm and the screening effect due to myofilaments. A frac...

  8. Free creatine available to the creatine phosphate energy shuttle in isolated rat atria

    International Nuclear Information System (INIS)

    Savabi, F.

    1988-01-01

    To measure the actual percentage of intracellular free creatine participating in the process of energy transport, the incorporation of [1- 14 C]creatine into the free creatine and phosphocreatine (PCr) pools in spontaneously beating isolated rat atria, under various conditions, was examined. The atria were subjected to three consecutive periods, control, anoxia, and postanoxic recover, in medium containing tracers of [1- 14 C]creatine. The tissue content and specific activity of creatine and PCr were determined at the end of each period. The higher specific activity found for tissue PCr (1.87 times) than creatine, independent of the percentage of total intracellular creatine that was present as free creatine, provides evidence for the existence of two separate pools of free creatine. Analysis of the data shows that in the normal oxygenated state ∼ 9% of the total intracellular creatine is actually free to participate in the process of energy transport (shuttle pool). About 36% of the total creatine is bound to unknown intracellular components and the rest exists as PCr. The creatine that was taken up and the creatine that was released from the breakdown of PCr have much greater access to the site of phosphorylation than the rest of the intracellular creatine. A sharp increase in the specific activity of residual PCr on prolongation of anoxic time was also observed. This provides evidence for a nonhomogeneous pool of PCr, for the most recently formed (radioactive) PCr appeared to be hydrolyzed last

  9. Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults.

    Science.gov (United States)

    Burke, Darren G; Candow, Darren G; Chilibeck, Philip D; MacNeil, Lauren G; Roy, Brian D; Tarnopolsky, Mark A; Ziegenfuss, Tim

    2008-08-01

    The purpose of this study was to compare changes in muscle insulin-like growth factor-I (IGF-I) content resulting from resistance-exercise training (RET) and creatine supplementation (CR). Male (n=24) and female (n=18) participants with minimal resistance-exercise-training experience (=1 year) who were participating in at least 30 min of structured physical activity (i.e., walking, jogging, cycling) 3-5 x/wk volunteered for the study. Participants were randomly assigned in blocks (gender) to supplement with creatine (CR: 0.25 g/kg lean-tissue mass for 7 days; 0.06 g/kg lean-tissue mass for 49 days; n=22, 12 males, 10 female) or isocaloric placebo (PL: n=20, 12 male, 8 female) and engage in a whole-body RET program for 8 wk. Eighteen participants were classified as vegetarian (lacto-ovo or vegan; CR: 5 male, 5 female; PL: 3 male, 5 female). Muscle biopsies (vastus lateralis) were taken before and after the intervention and analyzed for IGF-I using standard immunohistochemical procedures. Stained muscle cross-sections were examined microscopically and IGF-I content quantified using image-analysis software. Results showed that RET increased intramuscular IGF-I content by 67%, with greater accumulation from CR (+78%) than PL (+54%; p=.06). There were no differences in IGF-I between vegetarians and nonvegetarians. These findings indicate that creatine supplementation during resistance-exercise training increases intramuscular IGF-I concentration in healthy men and women, independent of habitual dietary routine.

  10. Creatine fails to augment the benefits from resistance training in patients with HIV infection: a randomized, double-blind, placebo-controlled study.

    Directory of Open Access Journals (Sweden)

    Giorgos K Sakkas

    Full Text Available Progressive resistance exercise training (PRT improves physical functioning in patients with HIV infection. Creatine supplementation can augment the benefits derived from training in athletes and improve muscle function in patients with muscle wasting. The objective of this study was to determine whether creatine supplementation augments the effects of PRT on muscle strength, energetics, and body composition in HIV-infected patients.This is a randomized, double blind, placebo-controlled, clinical research center-based, outpatient study in San Francisco. 40 HIV-positive men (20 creatine, 20 placebo enrolled in a 14-week study. Subjects were randomly assigned to receive creatine monohydrate or placebo for 14 weeks. Treatment began with a loading dose of 20 g/day or an equivalent number of placebo capsules for 5 days, followed by maintenance dosing of 4.8 g/day or placebo. Beginning at week 2 and continuing to week 14, all subjects underwent thrice-weekly supervised resistance exercise while continuing on the assigned study medication (with repeated 6-week cycles of loading and maintenance. The main outcome measurements included muscle strength (one repetition maximum, energetics ((31P magnetic resonance spectroscopy, composition and size (magnetic resonance imaging, as well as total body composition (dual-energy X-ray absorptiometry. Thirty-three subjects completed the study (17 creatine, 16 placebo. Strength increased in all 8 muscle groups studied following PRT, but this increase was not augmented by creatine supplementation (average increase 44 vs. 42%, difference 2%, 95% CI -9.5% to 13.9% in creatine and placebo, respectively. There were no differences between groups in changes in muscle energetics. Thigh muscle cross-sectional area increased following resistance exercise, with no additive effect of creatine. Lean body mass (LBM increased to a significantly greater extent with creatine. CONCLUSIONS / SIGNIFICANCE: Resistance exercise improved

  11. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    NARCIS (Netherlands)

    ter Veld, F; Jeneson, JAL; Nicolay, K

    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single-

  12. Creatine, energetic function, metabolism and supplementation effects on sports

    Directory of Open Access Journals (Sweden)

    Emerson Gimenes Bernardo da Silva

    2008-06-01

    Full Text Available The purpose of this work is to review the literature regarding creatine ingestion by athletes and physical activity enthusiasts, discussing its necessity and, if possible, predicting some consequences. In order to achieve this purpose it was necessary to study the relationship between the muscles energetic system and their regulation. It was also proved necessary to investigate the creatine cycle, its endogenous origin, its metabolizing and conversion into creatine-phosphate. A bibliography was used to collect information about the subject. The research lead to the following conclusions: diet supplementation with creatine leads to increased phosphocreatine levels in human muscles. However, new in vivo experiments are most desirable, because it is already known that creatine interferes with the regulation of some metabolic pathways.

  13. Temporal changes in serum creatine kinase concentration and degree of muscle rigidity in 24 patients with neuroleptic malignant syndrome

    Directory of Open Access Journals (Sweden)

    Nisijima K

    2013-06-01

    Full Text Available Koichi Nisijima, Katutoshi ShiodaDepartment of Psychiatry, Jichi Medical University, Tochigi, JapanAbstract: Neuroleptic malignant syndrome (NMS is a dangerous adverse response to antipsychotic drugs. It is characterized by the four major clinical symptoms of hyperthermia, severe muscle rigidity, autonomic dysfunction, and altered mental state. Serum creatine kinase (CK elevation occurs in over 90% of NMS cases. In the present study, the detailed temporal changes in serum CK and degree of muscle rigidity, and the relationship between CK concentration and degree of muscle rigidity over the time course from fever onset, were evaluated in 24 affected patients. The results showed that serum CK peaked on day 2 after onset of fever and returned to within normal limits at day 12. Mild muscle rigidity was observed before the onset of fever in 17 of 24 cases (71%. Muscle rigidity was gradually exacerbated and worsened until day 4 after onset of fever. These findings confirm physicians' empirical understanding of serum CK concentrations and muscle rigidity in NMS based on data accumulated from numerous patients with the syndrome, and they indicate that serum CK may contribute to the early detection of NMS.Keywords: neuroleptic malignant syndrome, creatine kinase, muscle rigidity

  14. Comparison of new forms of creatine in raising plasma creatine levels

    Directory of Open Access Journals (Sweden)

    Purpura Martin

    2007-11-01

    since absorption of CrM is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading.

  15. Creatine and creatine analogues in hypertension and cardiovascular disease

    NARCIS (Netherlands)

    Horjus, Deborah L.; Oudman, Inge; van Montfrans, Gert A.; Brewster, Lizzy M.

    2011-01-01

    The creatine kinase system, the central regulatory system of cellular energy metabolism, provides ATP in situ at ATP-ases involved in ion transport and muscle contraction. Furthermore, the enzyme system provides relative protection from tissue ischaemia and acidosis. The system could therefore be a

  16. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.

    Science.gov (United States)

    Kucherenko, I S; Soldatkin, O O; Lagarde, F; Jaffrezic-Renault, N; Dzyadevych, S V; Soldatkin, A P

    2015-11-01

    Creatine kinase (CK: adenosine-5-triphosphate-creatine phosphotransferase) is an important enzyme of muscle cells; the presence of a large amount of the enzyme in blood serum is a biomarker of muscular injuries, such as acute myocardial infarction. This work describes a bi-enzyme (glucose oxidase and hexokinase based) biosensor for rapid and convenient determination of CK activity by measuring the rate of ATP production by this enzyme. Simultaneously the biosensor determines glucose concentration in the sample. Platinum disk electrodes were used as amperometric transducers. Glucose oxidase and hexokinase were co-immobilized via cross-linking with BSA by glutaraldehyde and served as a biorecognition element of the biosensor. The biosensor work at different concentrations of CK substrates (ADP and creatine phosphate) was investigated; optimal concentration of ADP was 1mM, and creatine phosphate - 10 mM. The reproducibility of the biosensor responses to glucose, ATP and CK during a day was tested (relative standard deviation of 15 responses to glucose was 2%, to ATP - 6%, to CK - 7-18% depending on concentration of the CK). Total time of CK analysis was 10 min. The measurements of creatine kinase in blood serum samples were carried out (at 20-fold sample dilution). Twentyfold dilution of serum samples was chosen as optimal for CK determination. The biosensor could distinguish healthy and ill people and evaluate the level of CK increase. Thus, the biosensor can be used as a test-system for CK analysis in blood serum or serve as a component of multibiosensors for determination of important blood substances. Determination of activity of other kinases by the developed biosensor is also possible for research purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. New Developments in Creatine Supplementation Research: Mechanisms of Athletic Performance Enhancement

    OpenAIRE

    DerHovanessian, Ariss

    2002-01-01

    In the last decade creatine supplementation has become the most popular ergogenic aid among athletes, with particular performance enhancements found in high-power output, anaerobic exercises. Physiologically, creatine and phosphocreatine provide an energy reservoir in skeletal muscle. Recent studies have also shown that the ergogenic effects of creatine are caused by muscle protein metabolism (or reduced catabolism), satellite cell proliferation, protective oxidant scavenging, and membrane st...

  18. Creatine in combination with resistance training and improvement in muscle strength: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    on the scientific substantiation of a health claim related to creatine in combination with resistance training and improvement in muscle strength. The Panel considers that the food constituent, creatine, which is the subject of the health claim, is sufficiently characterised. The Panel considers that improvement...... substantiation of the claim. In weighing the evidence the Panel took into account that, overall, the human intervention studies submitted provide evidence for an effect of creatine, consumed at doses of at least 3 g/day in combination with regular resistance training (three times per week for several weeks......) of moderate intensity, on muscle strength in adults over the age of 55, while no such effect was observed when similar doses of creatine on a weekly basis were given on training days only (three times per week). The Panel also took into account the plausible mechanism by which daily consumption of creatine...

  19. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice

    Science.gov (United States)

    Roman, Brian B.; Meyer, Ronald A.; Wiseman, Robert W.

    2002-01-01

    Phosphocreatine (PCr) depletion during isometric twitch stimulation at 5 Hz was measured by (31)P-NMR spectroscopy in gastrocnemius muscles of pentobarbital-anesthetized MM creatine kinase knockout (MMKO) vs. wild-type C57B (WT) mice. PCr depletion after 2 s of stimulation, estimated from the difference between spectra gated to times 200 ms and 140 s after 2-s bursts of contractions, was 2.2 +/- 0.6% of initial PCr in MMKO muscle vs. 9.7 +/- 1.6% in WT muscles (mean +/- SE, n = 7, P muscle after 2 s only if ADP-stimulated oxidative phosphorylation was included in the model. Taken together, the results suggest that cytoplasmic ADP more rapidly increases and oxidative phosphorylation is more rapidly activated at the onset of contractions in MMKO compared with WT muscles.

  20. Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players.

    Science.gov (United States)

    Yáñez-Silva, Aquiles; Buzzachera, Cosme F; Piçarro, Ivan Da C; Januario, Renata S B; Ferreira, Luis H B; McAnulty, Steven R; Utter, Alan C; Souza-Junior, Tacito P

    2017-01-01

    To determine the effects of a low dose, short-term Creatine monohydrate (Cr) supplementation (0.03 g.kg.d -1 during 14 d) on muscle power output in elite youth soccer players. Using a two-group matched, double blind, placebo-controlled design, nineteen male soccer players (mean age = 17.0 ± 0.5 years) were randomly assigned to either Cr ( N  = 9) or placebo ( N  = 10) group. Before and after supplementation, participants performed a 30s Wingate Anaerobic Test (WAnT) to assess peak power output (PPO), mean power output (MPO), fatigue index (FI), and total work. There were significant increases in both PPO and MPO after the Cr supplementation period ( P  ≤ 0.05) but not the placebo period. There were also significant increases in total work, but not FI, after the Cr supplementation and placebo periods ( P  ≤ 0.05). Notably, there were differences in total work between the Cr and placebo groups after ( P  ≤ 0.05) but not before the 14 d supplementation period. There is substantial evidence to indicate that a low-dose, short-term oral Cr supplementation beneficially affected muscle power output in elite youth soccer players.

  1. Side effects of creatine supplementation in athletes.

    OpenAIRE

    Francaux, Marc; Poortmans, Jacques R

    2006-01-01

    Context: Allegations about side effects of creatine supplementation by athletes have been published in the popular media and scientific publications. Purpose: To examine the experimental evidence relating to the physiological effects of creatine supplementation. Results: One of the purported effects of oral creatine supplementation is increased muscle mass. A review of the literature reveals a 1.0% to 2.3% increase in body mass, which is attributed to fat-free mass and, more specifically, to ...

  2. Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse.

    Science.gov (United States)

    Do, Kyong-Tak; Cho, Hyun-Woo; Badrinath, Narayanasamy; Park, Jeong-Woong; Choi, Jae-Young; Chung, Young-Hwa; Lee, Hak-Kyo; Song, Ki-Duk; Cho, Byung-Wook

    2015-12-01

    Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses.

  3. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    Science.gov (United States)

    Nasrallah, F.; Feki, M.; Chamari, K.; Omar, S.; Alouane-Trabelsi, L.; Ben Mansour, A.; Kaabachi, N.

    2014-01-01

    Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC) was significantly lower in sprinters than controls (34±30 vs. 74±3 µmol/mmol creatinine, p creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes. PMID:24917689

  4. A comparison of mutagen production in fried ground chicken and beef: effect of supplemental creatine.

    Science.gov (United States)

    Knize, M G; Shen, N H; Felton, J S

    1988-11-01

    Ground chicken breast and ground beef with either endogenous or a 10-fold increase in the concentration of creatine were fried at 220 degrees C for 10 min per side. One patty (100 g) of chicken meat yielded 120,000 Salmonella (TA1538) revertants following metabolic activation. The pan residues had 39% of the total activity. Added creatine (10-fold the endogenous level) increased mutagen yields an average of 2-fold. Beef cooked under identical conditions yielded 150,000 revertants/100 g for the meat patties and pan residues combined. Added creatine to beef prior to cooking increased mutagen yields 3-fold. The mutagenic profiles following initial HPLC separation showed that chicken samples with endogenous or added creatine were remarkably similar. Chicken and beef HPLC mutagenicity profiles were also similar to each other, but not identical. This suggests that the general mutagen-forming reactions with the two different types of muscle are qualitatively similar with only minor quantitative differences. The pan residues from both meat types with and without added creatine showed some significant differences in the mutagen peak profile. This work suggests that the types of mutagens formed in chicken are similar to those formed in beef and that creatine appears to be involved in the formation of all the mutagenic compounds produced from fried muscle tissue.

  5. The Effects of Creatine Supplementation on Explosive Performance and Optimal Individual Postactivation Potentiation Time

    Directory of Open Access Journals (Sweden)

    Chia-Chi Wang

    2016-03-01

    Full Text Available Creatine plays an important role in muscle energy metabolism. Postactivation potentiation (PAP is a phenomenon that can acutely increase muscle power, but it is an individualized process that is influenced by muscle fatigue. This study examined the effects of creatine supplementation on explosive performance and the optimal individual PAP time during a set of complex training bouts. Thirty explosive athletes performed tests of back squat for one repetition maximum (1RM strength and complex training bouts for determining the individual optimal timing of PAP, height and peak power of a counter movement jump before and after the supplementation. Subjects were assigned to a creatine or placebo group and then consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After the supplementation, the 1RM strength in the creatine group significantly increased (p < 0.05. The optimal individual PAP time in the creatine group was also significant earlier than the pre-supplementation and post-supplementation of the placebo group (p < 0.05. There was no significant difference in jump performance between the groups. This study demonstrates that creatine supplementation improves maximal muscle strength and the optimal individual PAP time of complex training but has no effect on explosive performance.

  6. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  7. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    Science.gov (United States)

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  8. Similar mitochondrial activation kinetics in wild-type and creatine kinase-deficient fast-twitch muscle indicate significant Pi control of respiration

    NARCIS (Netherlands)

    Jeneson, J.A.L.; Veld, ter F.; Schmitz, J.P.J.; Meyer, R.A.; Hilbers, P.A.J.; Nicolay, K.

    2011-01-01

    Past simulations of oxidative ATP metabolism in skeletal muscle have predicted that elimination of the creatine kinase (CK) reaction should result in dramatically faster oxygen consumption dynamics during transitions in ATP turnover rate. This hypothesis was investigated. Oxygen consumption of

  9. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial.

    Science.gov (United States)

    Blancquaert, Laura; Baguet, Audrey; Bex, Tine; Volkaert, Anneke; Everaert, Inge; Delanghe, Joris; Petrovic, Mirko; Vervaet, Chris; De Henauw, Stefaan; Constantin-Teodosiu, Dumitru; Greenhaff, Paul; Derave, Wim

    2018-04-01

    Balanced vegetarian diets are popular, although they are nearly absent in creatine and carnosine and contain considerably less carnitine than non-vegetarian diets. Few longitudinal intervention studies investigating the effect of a vegetarian diet on the availability of these compounds currently exist. We aimed to investigate the effect of transiently switching omnivores onto a vegetarian diet for 6 months on muscle and plasma creatine, carnitine and carnosine homeostasis. In a 6-month intervention, forty omnivorous women were ascribed to three groups: continued omnivorous diet (control, n 10), vegetarian diet without supplementation (Veg+Pla, n 15) and vegetarian diet combined with daily β-alanine (0·8-0·4 g/d) and creatine supplementation (1 g creatine monohydrate/d) (Veg+Suppl, n 15). Before (0 months; 0M), after 3 months (3M) and 6 months (6M), a fasted venous blood sample and 24-h urine was collected, and muscle carnosine content was determined by proton magnetic resonance spectroscopy (1H-MRS). Muscle biopsies were obtained at 0M and 3M. Plasma creatine and muscle total creatine content declined from 0M to 3M in Veg+Pla (P=0·013 and P=0·009, respectively), whereas plasma creatine increased from 0M in Veg+Suppl (P=0·004). None of the carnitine-related compounds in plasma or muscle showed a significant time×group interaction effect. 1H-MRS-determined muscle carnosine content was unchanged over 6M in control and Veg+Pla, but increased in Veg+Suppl in soleus (Pvegetarian diet in omnivorous women, which was ameliorated when accompanied by low-dose dietary creatine supplementation. Carnitine and carnosine homeostasis was unaffected by a 3- or 6-month vegetarian diet, respectively.

  10. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. I. An immunohistochemical analysis of creatine kinase isoenzyme expression patterns

    NARCIS (Netherlands)

    Wessels, A.; Vermeulen, J. L.; Virágh, S.; Kálmán, F.; Morris, G. E.; Man, N. T.; Lamers, W. H.; Moorman, A. F.

    1990-01-01

    Using monoclonal antibodies against the M and B subunit isoforms of creatine kinase (CK) we have investigated their distribution in developing human skeletal and cardiac muscle immunohistochemically. It is demonstrated that in skeletal muscle, a switch from CK-B to CK-M takes place around the week 8

  11. Creatine Phosphokinase and Visual Analogue Scale as Indicators for Muscle Injury in Untrained Bodybuilders

    Directory of Open Access Journals (Sweden)

    Suresh Shanmugam

    2015-06-01

    Full Text Available Background: Skeletal muscle is a vital tissue in the human body to enable breathing, walking and performing several sports activities. However, this muscle is persistently injured throughout every sports session. Some exercises demand a muscle injury occurrence in order to build a stronger muscle through an adaptation process namely bodybuilding exercise. Importantly, every muscle injury should occur within a physiological range which can be identified by several biomarkers as well as pain scale. The aim of this study was to identify changes on the level of Creatine phosphokinase (CPK and Visual analogue scale (VAS between pre and post training sessions and the correlation between these two indicators. Methods: This was an observational analytical cross sectional comparison study which was conducted in October 2012 and the subjects were adult untrained bodybuilders at the Jatinangor fitness center. The data was obtained by measuring serum CPK and marked VAS. The data were analyzed by t-test, Wilcoxon’s test and Spearman’s correlation. Results: Both CPK and VAS increased significantly by 296 U/L and 19.9 mm respectively. There was a strong positive significant correlation between VAS and CPK (p=0.01, r = 0.711. Conclusion: The healthy untrained bodybuilders chosen in this study experienced a mild (<2000 U/L muscle injury throughout the training sessions with general increased CPK levels and VAS measurement.

  12. Creatine Use and Exercise Heat Tolerance in Dehydrated Men

    OpenAIRE

    Watson, Greig; Casa, Douglas J; Fiala, Kelly A; Hile, Amy; Roti, Melissa W; Healey, Julie C; Armstrong, Lawrence E; Maresh, Carl M

    2006-01-01

    Context: Creatine monohydrate (CrM) use is highly prevalent in team sports (eg, football, lacrosse, ice hockey) and by athletes at the high school, college, professional, and recreational levels. Concerns have been raised about whether creatine use is associated with increased cramping, muscle injury, heat intolerance, and risk of dehydration.

  13. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: a randomized, double-blind placebo-controlled study.

    Science.gov (United States)

    Evans, Malkanthi; Guthrie, Najla; Pezzullo, John; Sanli, Toran; Fielding, Roger A; Bellamine, Aouatef

    2017-01-01

    Progressive decline in skeletal muscle mass and function are growing concerns in an aging population. Diet and physical activity are important for muscle maintenance but these requirements are not always met. This highlights the potential for nutritional supplementation. As a primary objective, we sought to assess the effect of a novel combination of L-Carnitine, creatine and leucine on muscle mass and performance in older subjects. Forty-two healthy older adults aged 55-70 years were randomized to receive either a novel L-Carnitine (1500 mg), L-leucine (2000 mg), creatine (3000 mg), Vitamin D3 (10 μg) (L-Carnitine-combination) product ( n  = 14), L-Carnitine (1500 mg) ( n  = 14), or a placebo ( n  = 14) for eight weeks. We evaluated body mass by DXA, upper and lower strength by dynamometry, and walking distance by a 6-min walk test at baseline and after eight weeks of intervention. These measures, reflecting muscle mass, functional strength and mobility have been combined to generate a primary composite score. Quality of life, blood safety markers, and muscle biopsies for protein biomarker analysis were also conducted at baseline and the end of the study. The primary composite outcome improved by 63.5 percentage points in the L-Carnitine-combination group vs. placebo ( P  = 0.013). However, this composite score did not change significantly in the L-Carnitine group ( P =  0.232), and decreased slightly in the placebo group ( P =  0.534). Participants supplemented with the L-Carnitine-combination showed a 1.0 kg increase in total lean muscle mass ( P  = 0.013), leg lean muscle mass (0.35 kg, P =  0.005), and a 1.0 kg increase in lower leg strength ( P  = 0.029) at week 8. In addition, these increases were significant when compared to the placebo group (P =  0.034, P =  0.026, and P =  0.002, respectively). Total mTOR protein expression was increased in participants in the L-Carnitine-combination group at the end of

  14. Proteinase K processing of rabbit muscle creatine kinase

    DEFF Research Database (Denmark)

    Leydier, C; Andersen, Jens S.; Couthon, F

    1997-01-01

    Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent...... of monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328-K380). However...

  15. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    International Nuclear Information System (INIS)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-01-01

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. 31 P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts

  16. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    I. Bezrati-Benayed

    2014-07-01

    Full Text Available Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatography mass spectrometry. Basal urinary creatine (UC was significantly lower in sprinters than controls (34±30 vs. 74±3 μmol/mmol creatinine, p<0.05. UC was inversely correlated with body mass (r=-0.34, p<0.01 and lean mass (r=- 0.30, p<0.05, and positively correlated with fat mass (r=0.32, p<0.05. After acute exercise, urinary creatine significantly decreased in both athletes and controls. UC is low in sprinters at rest and further decreases after exercise, most likely due to a high uptake and use of creatine by muscles, as muscle mass and physical activity are supposed to be greater in athletes than untrained subjects. Further studies are needed to test the value of urinary creatine as a non-invasive marker of physical condition and as a parameter for managing Cr supplementation in athletes.

  17. Creatine biosynthesis and transport in health and disease.

    Science.gov (United States)

    Joncquel-Chevalier Curt, Marie; Voicu, Pia-Manuela; Fontaine, Monique; Dessein, Anne-Frédérique; Porchet, Nicole; Mention-Mulliez, Karine; Dobbelaere, Dries; Soto-Ares, Gustavo; Cheillan, David; Vamecq, Joseph

    2015-12-01

    water by muscle). This review encompasses all these aspects by providing an illustrated metabolic account for brain and body creatine in health and disease, an algorithm to diagnose metabolic and gene bases of primary and secondary creatine deficiencies, and a metabolic exploration by (1)H-MRS assessment of cerebral creatine levels and response to therapeutic measures. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Use of oral creatine as an ergogenic aid for increased sports performance: perceptions of adolescent athletes.

    Science.gov (United States)

    Ray, T R; Eck, J C; Covington, L A; Murphy, R B; Williams, R; Knudtson, J

    2001-06-01

    Competitive athletes, including adolescents, seek ways to gain advantage over competitors. One ergogenic aid is creatine, a naturally occurring nitrogen compound found primarily in skeletal muscle. Increasing creatine levels may prolong skeletal muscle activity, enhancing work output. A questionnaire assessing awareness and use of creatine supplementation was completed by 674 athletes from 11 high schools. Data were statistically analyzed to determine variation among groups. Of those surveyed, 75% had knowledge of creatine supplements, and 16% used creatine to enhance athletic performance. Percentage of use increased with age and grade level. Awareness and use were greater among boys than girls. Adverse effects were reported by 26%. Most athletes consumed creatine using a method inconsistent with scientific recommendations. Use of creatine by adolescent athletes is significant and inconsistent with optimal dosing. Physicians, athletic trainers, and coaches should disseminate proper information and advise these adolescent athletes.

  19. Exploratory studies of the potential anti-cancer effects of creatine.

    Science.gov (United States)

    Campos-Ferraz, P L; Gualano, B; das Neves, W; Andrade, I T; Hangai, I; Pereira, R T S; Bezerra, R N; Deminice, R; Seelaender, M; Lancha, A H

    2016-08-01

    Two experiments were performed, in which male Wistar Walker 256 tumor-bearing rats were inoculated with 4 × 10(7) tumor cells subcutaneously and received either creatine (300 mg/kg body weight/day; CR) or placebo (water; PL) supplementation via intragastric gavage. In experiment 1, 50 rats were given PL (n = 22) or CR (n = 22) and a non-supplemented, non-inoculated group served as control CT (n = 6), for 40 days, and the survival rate and tumor mass were assessed. In experiment 2, 25 rats were given CR or PL for 15 days and sacrificed for biochemical analysis. Again, a non-supplemented, non-inoculated group served as control (CT; n = 6). Tumor and muscle creatine kinase (CK) activity and total creatine content, acidosis, inflammatory cytokines, and antioxidant capacity were assessed. Tumor growth was significantly reduced by approximately 30 % in CR when compared with PL (p = 0.03), although the survival rate was not significantly different between CR and PL (p = 0.65). Tumor creatine content tended to be higher in CR than PL (p = 0.096). Tumor CK activity in the cytosolic fraction was higher in CR than PL (p Creatine supplementation was able to slow tumor growth without affecting the overall survival rate, probably due to the re-establishment of the CK-creatine system in cancer cells, leading to attenuation in acidosis, inflammation, and oxidative stress. These findings support the role of creatine as a putative anti-cancer agent as well as help in expanding our knowledge on its potential mechanisms of action in malignancies.

  20. Effects of creatine supplementation on oxidative stress profile of athletes

    Science.gov (United States)

    2012-01-01

    Background Creatine (Cr) supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. Methods A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9), placebo group (GP, N = 9), no treatment group (COT, N = 8) for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS), total antioxidant status (TAS), and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance) were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds) and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Results Only GC group showed increase in 1RM (54 ± 9 vs. 63 ± 10 kg; p = 0.0356) and uric acid (4.6 ± 1.0 vs. 7.4 ± 1.6 mg/dl; p = 0.025), with a decrease in TAS (1.11 ± 0.34 vs. 0.60 ± 0.19 mmol/l; p = 0.001). No differences (pre- vs. post-training) in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (−0.51 ± 0.36 vs. -0.02 ± 0.50 mmol/l; p = 0.0268), higher increase in 1RM (8.30 ± 2.26 vs. 5.29 ± 2.36 kg; p = 0.0209) and uric acid (2.77 ± 1.70 vs. 1.00 ± 1.03 mg/dl; p = 0.0276). Conclusion We conclude that Cr monohydrate

  1. Effects of creatine supplementation on oxidative stress profile of athletes

    Directory of Open Access Journals (Sweden)

    Percário Sandro

    2012-12-01

    Full Text Available Abstract Background Creatine (Cr supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. Methods A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9, placebo group (GP, N = 9, no treatment group (COT, N = 8 for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS, total antioxidant status (TAS, and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Results Only GC group showed increase in 1RM (54 ± 9 vs. 63 ± 10 kg; p = 0.0356 and uric acid (4.6 ± 1.0 vs. 7.4 ± 1.6 mg/dl; p = 0.025, with a decrease in TAS (1.11 ± 0.34 vs. 0.60 ± 0.19 mmol/l; p = 0.001. No differences (pre- vs. post-training in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (−0.51 ± 0.36 vs. -0.02 ± 0.50 mmol/l; p = 0.0268, higher increase in 1RM (8.30 ± 2.26 vs. 5.29 ± 2.36 kg; p = 0.0209 and uric acid (2.77 ± 1.70 vs. 1.00 ± 1.03 mg/dl; p = 0.0276. Conclusion We conclude that Cr

  2. Nuclear Overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase

    International Nuclear Information System (INIS)

    Rosevear, P.R.; Powers, V.M.; Dowhan, D.; Mildvan, A.S.; Kenyon, G.L.

    1987-01-01

    Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (X = 78 +/- 10 0 ) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH 3 ) 4 ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides. Distance geometry calculations also suggest that upper limit distances, when low enough (≤ 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker

  3. In ovo feeding of creatine pyruvate alters energy reserves, satellite cell mitotic activity and myogenic gene expression of breast muscle in embryos and neonatal broilers.

    Science.gov (United States)

    Zhao, M M; Gao, T; Zhang, L; Li, J L; Lv, P A; Yu, L L; Gao, F; Zhou, G H

    2017-09-01

    We investigated the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on energy reserves, satellite cell mitotic activity (SCMA) and myogenic gene expression in breast muscle of embryos and neonatal broilers. A total of 960 eggs were randomly allocated into three treatments: 1) non-injected control group, 2) saline group injected with 0.6 mL of physiological saline (0.75%), and 3) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg at 17.5 d of incubation. After hatching, a total of 120 male chicks were randomly assigned to each treatment group, with eight replicate sets per group. Selected chicks had body BW close to the average of their pooled group. Our results showed that the total and relative breast muscle weights of broilers subjected to CrPyr treatment were higher than those in the control and saline groups on 19 d of incubation (19 E), the day of hatch, 3 and 7 d post-hatch (P creatine concentrations on 19 E, the day of hatch and 3 d post-hatch, the same treatment increased phosphocreatine concentrations on 19 E. Broilers in the CrPyr group showed higher expression of myogenic differentiation 1 (MyoD) (P < 0.05), myogenin and paired box 7 (Pax7), as well as higher index of SCMA on 3 d post-hatch. However, myostatin mRNA expression in CrPyr-treated broilers was down-regulated on 3 d post-hatch (P < 0.05). These results indicated that IOF of CrPyr increased energy reserves of embryos and SCMA of broilers on 3 d post-hatch, which led to enhanced muscle growth in the late embryos and neonatal broilers. Additionally, IOF of CrPyr increased the activity of satellite cells possibly through up-regulating MyoD, myogenin, and Pax7 mRNA expression and down-regulating myostatin mRNA expression. © 2017 Poultry Science Association Inc.

  4. Efficacy and safety of creatine supplementation in juvenile dermatomyositis: A randomized, double-blind, placebo-controlled crossover trial.

    Science.gov (United States)

    Solis, Marina Yazigi; Hayashi, Ana Paula; Artioli, Guilherme Giannini; Roschel, Hamilton; Sapienza, Marcelo Tatit; Otaduy, Maria Concepción; De Sã Pinto, Ana Lucia; Silva, Clovis Artur; Sallum, Adriana Maluf Elias; Pereira, Rosa Maria R; Gualano, Bruno

    2016-01-01

    It has been suggested that creatine supplementation is safe and effective for treating idiopathic inflammatory myopathies, but no pediatric study has been conducted to date. The objective of this study was to examine the efficacy and safety of creatine supplementation in juvenile dermatomyositis (JDM) patients. In this study, JDM patients received placebo or creatine supplementation (0.1 g/kg/day) in a randomized, crossover, double-blind design. Subjects were assessed at baseline and after 12 weeks. The primary outcome was muscle function. Secondary outcomes included body composition, aerobic conditioning, health-related quality of life, and muscle phosphocreatine (PCr) content. Safety was assessed by laboratory parameters and kidney function measurements. Creatine supplementation did not affect muscle function, intramuscular PCr content, or any other secondary outcome. Kidney function was not affected, and no side effects were reported. Twelve weeks of creatine supplementation in JDM patients were well-tolerated and free of adverse effects, but treatment did not affect muscle function, intramuscular PCr, or any other parameter. © 2015 Wiley Periodicals, Inc.

  5. Proton NMR studies of creatine in human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kuchel, P W; Chapman, B E [Sydney Univ. (Australia). Dept. of Biochemistry

    1983-09-01

    Proton spin-echo nuclear magnetic resonance spectroscopy was used to measure the relative levels of some metabolites in intact human erythrocytes that had been fractionated by density gradient centrifugation. Age dependent changes in the concentrations of free glycine, choline and ergothioneine were seen for the first time, while glutathione was essentially invariant. In addition, there was a 10-fold decrease in creatine levels from the youngest to oldest cells. This confirms earlier reports and provides a simple explanation for the variable creatine resonance intensities seen in spectra obtained from different erythrocyte samples prepared from the same donor. The different chemical shifts of the methylene resonances of creatine and creatine phosphate was demonstrated and hence confirmed that the bulk of the creatine in intact erythrocytes is not phosphorylated. The chemical shift difference enabled the monitoring of the creatine phosphokinase catalysed reaction in lysates to which the rabbit muscle enzyme had been added. This experiment indicated that the enzyme is not significantly inhibited by factors in the lysates, and introduced a new means of assaying the in situ activity of the enzyme.

  6. Proton NMR studies of creatine in human erythrocytes

    International Nuclear Information System (INIS)

    Kuchel, P.W.; Chapman, B.E.

    1983-01-01

    Proton spin-echo nuclear magnetic resonance spectroscopy was used to measure the relative levels of some metabolites in intact human erythrocytes that had been fractionated by density gradient centrifugation. Age dependent changes in the concentrations of free glycine, choline and ergothioneine were seen for the first time, while glutathione was essentially invariant. In addition, there was a 10-fold decrease in creatine levels from the youngest to oldest cells. This confirms earlier reports and provides a simple explanation for the variable creatine resonance intensities seen in spectra obtained from different erythrocyte samples prepared from the same donor. The different chemical shifts of the methylene resonances of creatine and creatine phosphate was demonstrated and hence confirmed that the bulk of the creatine in intact erythrocytes is not phosphorylated. The chemical shift difference enabled the monitoring of the creatine phosphokinase catalysed reaction in lysates to which the rabbit muscle enzyme had been added. This experiment indicated that the enzyme is not significantly inhibited by factors in the lysates, and introduced a new means of assaying the in situ activity of the enzyme. (author)

  7. A review of creatine supplementation in age-related diseases: more than a supplement for athletes

    Science.gov (United States)

    Smith, Rachel N.; Agharkar, Amruta S.; Gonzales, Eric B.

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement’s usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer’s disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases. PMID:25664170

  8. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer

    Directory of Open Access Journals (Sweden)

    Tai Phillip WL

    2011-07-01

    Full Text Available Abstract Background Hundreds of genes, including muscle creatine kinase (MCK, are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. Results Modulatory region 1 (MR1 is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE containing a paired E-box/myocyte enhancer factor 2 (MEF2 regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively, but is not required for expression in fast-twitch muscle fibers (types IIb and IId. Conclusions In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.

  9. Creatine and Caffeine: Considerations for Concurrent Supplementation.

    Science.gov (United States)

    Trexler, Eric T; Smith-Ryan, Abbie E

    2015-12-01

    Nutritional supplementation is a common practice among athletes, with creatine and caffeine among the most commonly used ergogenic aids. Hundreds of studies have investigated the ergogenic potential of creatine supplementation, with consistent improvements in strength and power reported for exercise bouts of short duration (≤ 30 s) and high intensity. Caffeine has been shown to improve endurance exercise performance, but results are mixed in the context of strength and sprint performance. Further, there is conflicting evidence from studies comparing the ergogenic effects of coffee and caffeine anhydrous supplementation. Previous research has identified independent mechanisms by which creatine and caffeine may improve strength and sprint performance, leading to the formulation of multi-ingredient supplements containing both ingredients. Although scarce, research has suggested that caffeine ingestion may blunt the ergogenic effect of creatine. While a pharmacokinetic interaction is unlikely, authors have suggested that this effect may be explained by opposing effects on muscle relaxation time or gastrointestinal side effects from simultaneous consumption. The current review aims to evaluate the ergogenic potential of creatine and caffeine in the context of high-intensity exercise. Research directly comparing coffee and caffeine anhydrous is discussed, along with previous studies evaluating the concurrent supplementation of creatine and caffeine.

  10. Creatine, L-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle.

    Science.gov (United States)

    D'Antona, Giuseppe; Nabavi, Seyed Mohammad; Micheletti, Piero; Di Lorenzo, Arianna; Aquilani, Roberto; Nisoli, Enzo; Rondanelli, Mariangela; Daglia, Maria

    2014-01-01

    Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.

  11. Creatine, L-Carnitine, and ω3 Polyunsaturated Fatty Acid Supplementation from Healthy to Diseased Skeletal Muscle

    Science.gov (United States)

    D'Antona, Giuseppe; Nabavi, Seyed Mohammad; Micheletti, Piero; Aquilani, Roberto; Nisoli, Enzo; Rondanelli, Mariangela; Daglia, Maria

    2014-01-01

    Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases. PMID:25243159

  12. Structural Changes of Creatine Kinase upon Substrate Binding

    OpenAIRE

    Forstner, Michael; Kriechbaum, Manfred; Laggner, Peter; Wallimann, Theo

    1998-01-01

    Small-angle x-ray scattering was used to investigate structural changes upon binding of individual substrates or a transition state analog complex (TSAC; Mg-ADP, creatine, and KNO3) to creatine kinase (CK) isoenzymes (dimeric muscle-type (M)-CK and octameric mitochondrial (Mi)-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-nucleotide or TSAC. The radius of gyration of Mi-CK was reduced from 55.6 A (free enzym...

  13. Relaxation-compensated CEST-MRI at 7 T for mapping of creatine content and pH--preliminary application in human muscle tissue in vivo.

    Science.gov (United States)

    Rerich, Eugenia; Zaiss, Moritz; Korzowski, Andreas; Ladd, Mark E; Bachert, Peter

    2015-11-01

    The small biomolecule creatine is involved in energy metabolism. Mapping of the total creatine (mostly PCr and Cr) in vivo has been done with chemical shift imaging. Chemical exchange saturation transfer (CEST) allows an alternative detection of creatine via water MRI. Living tissue exhibits CEST effects from different small metabolites, including creatine, with four exchanging protons of its guanidinium group resonating about 2 ppm from the water peak and hence contributing to the amine proton CEST peak. The intermediate exchange rate (≈ 1000 Hz) of the guanidinium protons requires high RF saturation amplitude B1. However, strong B1 fields also label semi-solid magnetization transfer (MT) effects originating from immobile protons with broad linewidths (~kHz) in the tissue. Recently, it was shown that endogenous CEST contrasts are strongly affected by the MT background as well as by T1 relaxation of the water protons. We show that this influence can be corrected in the acquired CEST data by an inverse metric that yields the apparent exchange-dependent relaxation (AREX). AREX has some useful linearity features that enable preparation of both concentration, and--by using the AREX-ratio of two RF irradiation amplitudes B1--purely exchange-rate-weighted CEST contrasts. These two methods could be verified in phantom experiments with different concentration and pH values, but also varying water relaxation properties. Finally, results from a preliminary application to in vivo CEST imaging data of the human calf muscle before and after exercise are presented. The creatine concentration increases during exercise as expected and as confirmed by (31)P NMR spectroscopic imaging. However, the estimated concentrations obtained by our method were higher than the literature values: cCr,rest=24.5±3.74mM to cCr,ex=38.32±13.05mM. The CEST-based pH method shows a pH decrease during exercise, whereas a slight increase was observed by (31)P NMR spectroscopy. Copyright © 2015

  14. URINARY CREATINE AT REST AND AFTER REPEATED SPRINTS IN ATHLETES: A PILOT STUDY

    OpenAIRE

    Bezrati-Benayed, I.; Nasrallah, F.; Feki, M.; Chamari, K.; Omar, S.; Alouane-Trabelsi, L.; Ben Mansour, A.; Kaabachi, N.

    2014-01-01

    Creatine plays a key role in muscle function and its evaluation is important in athletes. In this study, urinary creatine concentration was measured in order to highlight its possible significance in monitoring sprinters. The study included 51 sprinters and 25 age- and sex-matched untrained subjects as a control group. Body composition was measured and dietary intake estimated. Urine samples were collected before and after standardized physical exercise. Creatine was assessed by gas chromatog...

  15. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    V. I. Petrov

    2015-09-01

    Full Text Available Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months, р<0.0001 and in higher doses, than patients without muscle pain/weakness. There were not significant differences in creatine kinase levels between patients with and without muscle symptoms. Patients with SLCO1B1*5 genotype were revealed in both groups, but more often (58% among patients with muscle symptoms. Patients with abnormal C allele having muscle symptoms received statins significantly longer, than these without muscle signs (54.7 vs 13.9 months, р=0.0028.Conclusion. Association between occurrence of muscle symptoms and SLCO1B1*5 allele carriership, statin dose and therapy duration was revealed. Creatine kinase examination was not valuable for finding of statin-induced muscle damage.

  16. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    V. I. Petrov

    2013-01-01

    Full Text Available Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months, р<0.0001 and in higher doses, than patients without muscle pain/weakness. There were not significant differences in creatine kinase levels between patients with and without muscle symptoms. Patients with SLCO1B1*5 genotype were revealed in both groups, but more often (58% among patients with muscle symptoms. Patients with abnormal C allele having muscle symptoms received statins significantly longer, than these without muscle signs (54.7 vs 13.9 months, р=0.0028.Conclusion. Association between occurrence of muscle symptoms and SLCO1B1*5 allele carriership, statin dose and therapy duration was revealed. Creatine kinase examination was not valuable for finding of statin-induced muscle damage.

  17. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics

    DEFF Research Database (Denmark)

    Young, Jette Feveile; Larsen, Lotte Bach; Malmendal, Anders

    2010-01-01

    Creatine is a key intermediate in energy metabolism and supplementation of creatine has been used for increasing muscle mass, strength and endurance. Creatine supplementation has also been reported to trigger the skeletal muscle expression of insulin like growth factor I, to increase the fat......-free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating...... the explorative techniques, proteomics and NMR metabonomics, in a systems biology approach. METHODS: Differentiated mouse myotube cultures (C2C12) were exposed to 5 mM creatine monohydrate (CMH) for 24 hours. For proteomics studies, lysed myotubes were analyzed in single 2-DGE gels where the first dimension...

  18. The tyrosyl residues in creatine kinase. Modification by iodine.

    Science.gov (United States)

    Fattoum, A; Kassab, R; Pradel, L A

    1975-10-20

    The effect of the iodination of tyrosyl residues in creatine kinase from rabbit muscle has been investigated at alkaline pH after reversible masking of the reactive thiol groups. The conversion of 4-5 tyrosyl residues to monoiodotyrosines as measured by spectrotitration and by radioactive iodine labelling resulted in almost total loss of enzymic activity. The modified enzyme was unable to bind its nucleotide substrates but no significant conformational change was revealed by optical rotatory dispersion or Stokes radius measurements. However, change in the reactivity of some non-essential thiol groups, presumably those located near the active thiol groups, was observed.

  19. Effect of statins on skeletal muscle function.

    Science.gov (United States)

    Parker, Beth A; Capizzi, Jeffrey A; Grimaldi, Adam S; Clarkson, Priscilla M; Cole, Stephanie M; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S; Simpson, Kathleen; White, C Michael; Thompson, Paul D

    2013-01-01

    Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials, and the effect of statins on muscle performance has not been carefully studied. The Effect of Statins on Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase, exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo was administered for 6 months to 420 healthy, statin-naive subjects. No individual creatine kinase value exceeded 10 times normal, but average creatine kinase increased 20.8±141.1 U/L (Pmuscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 versus 10; P=0.05). Myalgic subjects on atorvastatin or placebo had decreased muscle strength in 5 of 14 and 4 of 14 variables, respectively (P=0.69). These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average creatine kinase, suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in creatine kinase should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00609063.

  20. Creatine supplementation with specific view to exercise/sports performance: an update

    Directory of Open Access Journals (Sweden)

    Cooper Robert

    2012-07-01

    Full Text Available Abstract Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly.

  1. Creatine in the central nervous system: From magnetic resonance spectroscopy to creatine deficiencies.

    Science.gov (United States)

    Rackayova, Veronika; Cudalbu, Cristina; Pouwels, Petra J W; Braissant, Olivier

    2017-07-15

    Creatine (Cr) is an important organic compound acting as intracellular high-energy phosphate shuttle and in energy storage. While located in most cells where it plays its main roles in energy metabolism and cytoprotection, Cr is highly concentrated in muscle and brain tissues, in which Cr also appears to act in osmoregulation and neurotransmission. This review discusses the basis of Cr metabolism, synthesis and transport within brain cells. The importance of Cr in brain function and the consequences of its impaired metabolism in primary and secondary Cr deficiencies are also discussed. Cr and phosphocreatine (PCr) in living systems can be well characterized using in vivo magnetic resonance spectroscopy (MRS). This review describes how 1 H MRS allows the measurement of Cr and PCr, and how 31 P MRS makes it possible to estimate the creatine kinase (CK) rate constant and so detect dynamic changes in the Cr/PCr/CK system. Absolute quantification by MRS using creatine as internal reference is also debated. The use of in vivo MRS to study brain Cr in a non-invasive way is presented, as well as its use in clinical and preclinical studies, including diagnosis and treatment follow-up in patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Creatine salts provide neuroprotection even after partial impairment of the creatine transporter.

    Science.gov (United States)

    Adriano, E; Garbati, P; Salis, A; Damonte, G; Millo, E; Balestrino, M

    2017-01-06

    Creatine, a compound that is critical for energy metabolism of nervous cells, crosses the blood-brain barrier (BBB) and the neuronal plasma membrane with difficulty, and only using its specific transporter. In the hereditary condition where the creatine transporter is defective (creatine transporter deficiency) there is no creatine in the brain, and administration of creatine is useless lacking the transporter. The disease is severe and incurable. Creatine-derived molecules that could cross BBB and plasma membrane independently of the transporter might be useful to cure this condition. Moreover, such molecules could be useful also in stroke and other brain ischemic conditions. In this paper, we investigated three creatine salts, creatine ascorbate, creatine gluconate and creatine glucose. Of these, creatine glucose was ineffective after transporter block with guanidine acetic acid (GPA) administration. Creatine ascorbate was not superior to creatine in increasing tissue creatine and phosphocreatine content after transporter impairment, however even after such impairment it delayed synaptic failure during anoxia. Finally, creatine gluconate was superior to creatine in increasing tissue content of creatine after transporter block and slowed down PS disappearance during anoxia, an effect that creatine did not have. These findings suggest that coupling creatine to molecules having a specific transporter may be a useful strategy in creatine transporter deficiency. In particular, creatine ascorbate has effects comparable to those of creatine in normal conditions, while being superior to it under conditions of missing or impaired creatine transporter. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effects of whole-body x irradiation on the biogenesis of creatine in the rat

    International Nuclear Information System (INIS)

    Thyagarajan, P.; Vakil, U.K.; Sreenivasan, A.

    1977-01-01

    Influences of whole-body x irradiation on various aspects of creatine metabolism have been studied. Exposures to sublethal or lethal doses of x radiation results in excessive urinary excretion as well as higher accumulation of creatine in the skeletal muscle of x-irradiated rats. A sudden fall in CPK activity in muscle with a concomitant rise in serum suggests that changes in serum and tissue CPK activity are of an adaptive nature in rats exposed to sublethal doses of x radiation. In vitro studies on creatine synthesis shows that transaminidase and methyl transferase activities in kidneys and liver, respectively, are decreased on the 5th day in the x-irradiated, are decreased on the 5th day in the x-irradiated rat. However, on the 8th day, the enzyme activities are restored to normal

  4. Is there a rationale for the use of creatine either as nutritional supplementation or drug administration in humans participating in a sport?

    Science.gov (United States)

    Benzi, G

    2000-03-01

    Even though no unambiguous proof for enhanced performance during high-intensity exercise has yet been reported, the creatine administration is charged to improve physical performance and has become a popular practice among subjects participating in different sports. Appropriate creatine dosage may be also used as a medicinal product since, in accordance with the Council Directive 65/65/CEE, any substance which may be administered with a view to restoring, correcting or modifying physiological functions in human beings is considered a medicinal product. Thus, quality, efficacy and safety must characterize the substance. In biochemical terms, creatine administration enhances both creatine and phosphocreatine concentrations, allowing for an increased total creatine pool in skeletal muscle. In thermodynamics terms, creatine interferes with the creatine-creatine kinase-phosphocreatine circuit, which is related to the mitochondrial function as a highly organized system for the energy control of the subcellular adenylate pool. In pharmacokinetics terms, creatine entry into skeletal muscle is initially dependent on the extracellular concentration, but the creatine transport is subsequently down-regulated. In pharmacodynamics terms, the creatine enhances the possibility to maintain power output during brief periods of high-intensity exercises. In spite of uncontrolled daily dosage and long-term administration, no research on creatine safety in humans has been set up by specific standard protocol of clinical pharmacology and toxicology, as currently occurs in phase I for the products for human use. More or less documented side effects induced by creatine are weight gain; influence on insulin production; feedback inhibition of endogenous creatine synthesis; long-term damages on renal function. A major point that related to the quality of creatine products is the amount of creatine ingested in relation to the amount of contaminants present. During the production of creatine

  5. Musculus soleus of rats at physical activity and L-carnitine and creatine phosphate effect

    Directory of Open Access Journals (Sweden)

    Irina A. Khutorskaya

    2017-09-01

    Full Text Available Introduction: The study of the effect of metabolic drugs on the histochemical characteristics of soleus muscle is relevant for solving the problem of providing the training process in Russia with non-doping drugs for safe correction of the consequences of intense physical activity in athletes. Materials and Methods: Dynamic physical activity in rats (n = 24 was simulated by swimming “to the limit” with weighting of 10 % of body weight (20 days, 1 time per day. The experimental animals were divided into four groups (6 animals each: № 1 – control, № 2 – swimming + isotonic NaCl solution, № 3 and № 4 – swimming + L-carnitine or creatine phosphate 100.0 mg/kg daily intraperitoneally. The object of the study was musculus soleus. Differentiation of muscle fibers was carried out by the intensity of histochemical activity of succinate dehydrogenase (SDG and alkaline stable adenosine triphosphate (ATP of myosin. The percentage of muscle fibers was evaluated and their diameter was defined by the direct morphometry. The obtained data were treated statistically by Student’s T-test. Results: Swimming of the animals “to the limit” do not affect the ratio of fibers with different phenotypes in the soleus muscle. This indicator is genetically determined and was not modified by L-carnitine and creatine phosphate. Dynamic physical activity promotes the development of hypertrophy of muscle fibers of various types. The investigated medicaments of the metabolic type either do not influence on the formation of exerciseinduced hypertrophy (predominantly creatine phosphate or reduce the intensity of the hypertrophic process (predominantly L-carnitine under dynamic physical activity. Discussion and Conclusions: The obtained data indicate L-carnitine and creatine phosphate do not have an anabolic effect. Taking into account the relevant data on ability of L-carnitine and creatine phosphate to effectively correct a negative effects of intensive

  6. Serum creatine kinase isoenzymes in children with osteogenesis imperfecta.

    Science.gov (United States)

    D'Eufemia, P; Finocchiaro, R; Zambrano, A; Lodato, V; Celli, L; Finocchiaro, S; Persiani, P; Turchetti, A; Celli, M

    2017-01-01

    This study evaluates serum creatine kinase isoenzyme activity in children with osteogenesis imperfecta to determine its usefulness as a biochemical marker during treatment with bisphosphonate. The changes of creatine kinase (CK) isoenzyme activity during and after discontinuation therapy were observed. These results could be useful in addressing over-treatment risk prevention. The brain isoenzyme of creatine kinase (CKbb) is highly expressed in mature osteoclasts during osteoclastogenesis, thus plays an important role in bone resorption. We previously identified high serum CKbb levels in 18 children with osteogenesis imperfect (OI) type 1 treated for 1 year with bisphosphonate (neridronate). In the present study, serum CK isoenzymes were evaluated in the same children with continuous versus discontinued neridronate treatment over a further 2-year follow-up period. This study included 18 children with OI type 1, 12 with continued (group A) and 6 with ceased (group B) neridronate treatment. Auxological data, serum biochemical markers of bone metabolism, bone mineral density z-score, and serum total CK and isoenzyme activities were determined in both groups. Serum CKbb was progressively and significantly increased in group A (p < 0.004) but rapidly decreased to undetectable levels in group B. In both groups, the cardiac muscle creatine kinase isoenzyme (CKmb) showed a marked decrease, while serum C-terminal telopeptide (CTx) levels were almost unchanged. This study provides evidence of the cumulative effect of neridronate administration in increasing serum CKbb levels and the reversible effect after its discontinuation. This approach could be employed for verifying the usefulness of serum CKbb as a biochemical marker in patients receiving prolonged bisphosphonate treatment. Moreover, the decreased serum CKmb levels suggest a systemic effect of these drugs.

  7. Creatine supplementation elicits greater muscle hypertrophy in upper than lower limbs and trunk in resistance-trained men.

    Science.gov (United States)

    Nunes, João Pedro; Ribeiro, Alex S; Schoenfeld, Brad J; Tomeleri, Crisieli M; Avelar, Ademar; Trindade, Michele Cc; Nabuco, Hellen Cg; Cavalcante, Edilaine F; Junior, Paulo Sugihara; Fernandes, Rodrigo R; Carvalho, Ferdinando O; Cyrino, Edilson S

    2017-12-01

    Creatine (Cr) supplementation associated with resistance training produces greater muscular strength improvements in the upper compared with the lower body; however, no study has investigated if such region-specific results are seen with gains in muscle mass. We aimed to evaluate the effect of Cr supplementation in combination with resistance training on lean soft tissue changes in the upper and lower limbs and trunk in resistance-trained young adult men. In a randomized, double-blind and placebo-controlled design, 43 resistance-trained men (22.7 ± 3.0 years, 72.9 ± 8.7 kg, 177.9 ± 5.7 cm, 23.0 ± 2.5 kg/m 2 ) received either creatine (Cr, n = 22) or placebo (PLA, n = 21) over an 8-week study period. The supplementation protocol included a loading phase (7 days, four doses of 0.3 g/kg per day) and a maintenance phase (7 weeks, single dose of 0.03 g/kg per day). During the same period, subjects performed resistance training four times per week using the following two-way split routine: Monday and Thursday = pectoral, shoulders, triceps, and abdomen, Tuesday and Friday = back, biceps, thighs, and calves. Lean soft tissue of the upper limbs (ULLST), lower limbs (LLLST), and trunk (TLST) was assessed by dual-energy X-ray absorptiometry before and after the intervention. Both groups showed significant ( p hypertrophy (ULLST = 1.6 ± 3.0%; LLLST = 0.7 ± 2.8%; TLST = 0.7 ± 2.8%). Our results suggest that Cr supplementation can positively augment muscle hypertrophy in resistance-trained young adult men, particularly in the upper limbs.

  8. Creatine Supplementation Associated or Not with Strength Training upon Emotional and Cognitive Measures in Older Women: A Randomized Double-Blind Study

    Science.gov (United States)

    Alves, Christiano Robles Rodrigues; Merege Filho, Carlos Alberto Abujabra; Benatti, Fabiana Braga; Brucki, Sonia; Pereira, Rosa Maria R.; de Sá Pinto, Ana Lucia; Lima, Fernanda Rodrigues; Roschel, Hamilton; Gualano, Bruno

    2013-01-01

    Purpose To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman. Methods This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks. Results After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged. Conclusion Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training per se improved emotional state and muscle strength, but not cognition, with no additive effects of creatine supplementation

  9. Changes in neutrophil count, creatine kinases and muscle soreness ...

    African Journals Online (AJOL)

    Objective. A primary objective was to examine circulating neutrophil count after repeated bouts of downhill running. An additional aim was to determine creatine kinase (CK) levels during the initial 12 hours, after repeated DHRs. Design. Eleven healthy, untrained Caucasian males performed 2 x 60 min bouts of DHR ...

  10. A review of creatine supplementation in age-related diseases: more than a supplement for athletes [v1; ref status: indexed, http://f1000r.es/4ak

    OpenAIRE

    Rachel N. Smith; Amruta S. Agharkar; Eric B. Gonzales

    2014-01-01

    Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may b...

  11. Use of plasma creatine kinase pharmacokinetics to estimate the amount of excercise-induced muscle damage in Beagles.

    Science.gov (United States)

    Chanoit, G P; Lefebvre, H P; Orcel, K; Laroute, V; Toutain, P L; Braun, J P

    2001-09-01

    To assess the effects of moderate exercise on plasma creatine kinase (CK) pharmacokinetics and to estimate exercise-induced muscle damage in dogs. 6 untrained adult Beagles. The study was divided into 3 phases. In phase 1, dogs ran for 1 hour at a speed of 9 km/h, and samples were used to determine the area under the plasma CK activity versus time curve (AUC) induced by exercise. In phases 2 and 3, pharmacokinetics of CK were calculated in dogs during exercise and at rest, respectively. Values for AUC and plasma clearance (CI) were used to estimate muscle damage. At rest, values for Cl, steady-state volume of distribution (Vdss), and mean retention time (MRT) were 0.32+/-0.02 ml/kg of body weight/min, 57+/-173 ml/kg, and 3.0+/-0.57 h, respectively. During exercise, Cl decreased significantly (0.26+/-0.03 ml/kg/min), MRT increased significantly, (4.4+/-0.97 h), and Vdss remained unchanged. Peak of plasma CK activity (151+/-58.8 U/L) was observed 3 hours after completion of exercise. Estimated equivalent amount of muscle corresponding to the quantity of CK released was 41+/-29.3 mg/kg. These results revealed that exercise had a minor effect on CK disposition and that the equivalent amount of muscle damaged by moderate exercise was negligible. This study illustrates the relevance for use of the minimally invasive and quantitative pharmacokinetic approach when estimating muscle damage.

  12. 21 CFR 862.1215 - Creatine phosphokinase/creatine kinase or isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Creatine phosphokinase/creatine kinase or... Clinical Chemistry Test Systems § 862.1215 Creatine phosphokinase/creatine kinase or isoenzymes test system. (a) Identification. A creatine phosphokinase/creatine kinase or isoenzymes test system is a device...

  13. Treatment of Creatine Transporter (SLC6A8) Deficiency With Oral S-Adenosyl Methionine as Adjunct to L-arginine, Glycine, and Creatine Supplements.

    Science.gov (United States)

    Jaggumantri, Sravan; Dunbar, Mary; Edgar, Vanessa; Mignone, Cristina; Newlove, Theresa; Elango, Rajavel; Collet, Jean Paul; Sargent, Michael; Stockler-Ipsiroglu, Sylvia; van Karnebeek, Clara D M

    2015-10-01

    Creatine transporter (SLC6A8) deficiency is an X-linked inborn error of metabolism characterized by cerebral creatine deficiency, behavioral problems, seizures, hypotonia, and intellectual developmental disability. A third of patients are amenable to treatment with high-dose oral creatine, glycine, and L-arginine supplementation. Given the limited treatment response, we initiated an open-label observational study to evaluate the effect of adjunct S-adenosyl methionine to further enhance intracerebral creatine synthesis. Significant and reproducible issues with sleep and behavior were noted in both male patients on a dose of 50/mg/kg. One of the two patients stopped S-adenosyl methionine and did not come for any follow-up. A safe and tolerable dose (17 mg/kg/day) was identified in the other patient. On magnetic resonance spectroscopy, this 8-year-old male did not show an increase in intracerebral creatine. However, significant improvement in speech/language skills, muscle mass were observed as well as in personal outcomes as defined by the family in activities related to communication and decision making. Further research is needed to assess the potential of S-adenosyl methionine as an adjunctive therapy for creatine transporter deficiency patients and to define the optimal dose. Our study also illustrates the importance of pathophysiology-based treatment, individualized outcome assessment, and patient/family participation in rare diseases research. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Efeitos da suplementação de creatina sobre força e hipertrofia muscular: atualizações Effects of creatine supplementation on strength and muscle hypertrophy: current concepts

    Directory of Open Access Journals (Sweden)

    Bruno Gualano

    2010-06-01

    Full Text Available A suplementação de creatina vem sendo utilizada amplamente na tentativa de aumentar força e massa magra em sujeitos saudáveis e atletas. Além disso, diversos estudos têm sido conduzidos no intuito de desvendar os mecanismos responsáveis pelas eventuais adaptações a esse suplemento. Diante disso, essa revisão teve como objetivos: 1 discutir os principais estudos que investigaram os efeitos da suplementação de creatina na força e hipertrofia; e 2 reunir as evidências acerca dos possíveis mecanismos responsáveis pelo aumento de força e massa magra como consequência desse suplemento, enfatizando os mais recentes achados e as perspectivas sobre o tema. De fato, existem fortes evidências demonstrando que a suplementação de creatina é capaz de promover aumentos de força e hipertrofia. Os efeitos desse suplemento sobre a retenção hídrica, o balanço proteico, a expressão de genes/proteínas associados à hipertrofia e ativação de células satélites, podem explicar as adaptações musculoesqueléticas observadas. Diante desses achados, os potenciais efeitos terapêuticos desse suplemento emergem como um futuro e promissor campo de estudo.Creatine supplementation has been widely used to increase both muscle strength and lean mass in healthy individuals and athletes. Furthermore, several studies have investigated the mechanisms responsible for such adaptations. Thus, this review aimed at 1 examining the major studies investigating the effects of creatine supplementation on strength and hypertrophy, and 2 exploring the mechanisms underlying these responses, stressing the most recent findings and perspectives regarding creatine supplementation. There is strong evidence demonstrating that creatine supplementation is able to enhance strength and hypertrophy. The effects of creatine on water retention, protein balance, genes/proteins related to hypertrophy, and satellite cells activation may explain the creatine-mediated muscle

  15. Radioimmunoassay of creatine kinase isoenzymes in human serum: isoenzyme MM

    International Nuclear Information System (INIS)

    Van Steirteghem, A.C.; Zweig, M.H.; Schechter, A.N.

    1978-01-01

    Measurement of the mass concentration of serum enzymes by radioimmunoassay provides direct quantitation of specific isoenzymes and may be less subject to some of the limitations of traditional assay procedures for enzymes. We describe the development of a sensitive and specific radioimmunoassay for the muscle isoenzyme of creatine kinase, CK-MM, in human serum. CK-MM, purified from human skeletal muscle, was used to raise high-titer antisera and for iodination by the Chloramine T method. The radioimmunoassay required 50 μl of sample, utilized a double-antibody separation method, and was completed in 24 h. Cross reactivity with CK-BB was virtually zero, 3 to 17 percent with CK-MB. The mass concentration of CK-MM in the serum of healthy subjects ranged from 36 to 1668 μg/liter and correlated closely with total CK enzymatic activity. Serum concentrations of CK-MM from casually selected patients correlated less well with total CK enzymatic activity, suggesting the existence of other CK isoenzymes or the presence of inactive forms

  16. Creatine supplementation with methylglyoxal: a potent therapy for cancer in experimental models.

    Science.gov (United States)

    Pal, Aparajita; Roy, Anirban; Ray, Manju

    2016-08-01

    The anti-cancer effect of methylglyoxal (MG) is now well established in the literature. The main aim of this study was to investigate the effect of creatine as a supplement in combination with MG both in vitro and in vivo. In case of the in vitro studies, two different cell lines, namely MCF-7 (human breast cancer cell line) and C2C12 (mouse myoblast cell line) were chosen. MG in combination with creatine showed enhanced apoptosis as well as higher cytotoxicity in the breast cancer MCF-7 cell line, compared to MG alone. Pre-treatment of well-differentiated C2C12 myotubes with cancerogenic 3-methylcholanthrene (3MC) induced a dedifferentiation of these myotubes towards cancerous cells (that mimic the effect of 3MC observed in solid fibro-sarcoma animal models) and subsequent exposure of these induced cancer cells with MG proved to be cytotoxic. Thus, creatine plus ascorbic acid enhanced the anti-cancer effects of MG. In contrast, when normal C2C12 muscle cells or myotubes (mouse normal myoblast cell line) were treated with MG or MG plus creatine and ascorbic acid, no detrimental effects were seen. This indicated that cytotoxic effects of MG are specifically limited towards cancer cells and are further enhanced when MG is used in combination with creatine and ascorbic acid. For the in vivo studies, tumors were induced by injecting Sarcoma-180 cells (2 × 10(6) cells/mouse) in the left hind leg. After 7 days of tumor inoculation, treatments were started with MG (20 mg/kg body wt/day, via the intravenous route), with or without creatine (150 mg/kg body wt/day, fed orally) and ascorbic acid (50 mg/kg body wt/day, fed orally) and continued for 10 consecutive days. Significant regression of tumor size was observed when Sarcoma-180 tumor-bearing mice were treated with MG and even more so with the aforesaid combination. The creatine-supplemented group demonstrated better overall survival in comparison with tumor-bearing mice without creatine. In conclusion, it may be

  17. Creatine salts provide neuroprotection even after partial impairment of the creatine transporter

    OpenAIRE

    Adriano, E.; Garbati, P.; Salis, A.; Damonte, G.; Millo, E.; Balestrino, M.

    2017-01-01

    Creatine, a compound that is critical for energy metabolism of nervous cells, crosses the blood-brain barrier (BBB) and the neuronal plasma membrane with difficulty, and only using its specific transporter. In the hereditary condition where the creatine transporter is defective (creatine transporter deficiency) there is no creatine in the brain, and administration of creatine is useless lacking the transporter. The disease is severe and incurable. Creatine-derived molecules that could cross B...

  18. Treatment with Creatine Monohydrate in Spinal and Bulbar Muscular Atrophy: Protocol for a Randomized, Double-Blind, Placebo-Controlled Trial.

    Science.gov (United States)

    Hijikata, Yasuhiro; Katsuno, Masahisa; Suzuki, Keisuke; Hashizume, Atsushi; Araki, Amane; Yamada, Shinichiro; Inagaki, Tomonori; Ito, Daisuke; Hirakawa, Akihiro; Kinoshita, Fumie; Gosho, Masahiko; Sobue, Gen

    2018-03-05

    Although spinal and bulbar muscular atrophy (SBMA) has been classified as a motor neuron disease, several reports have indicated the primary involvement of skeletal muscle in the pathogenesis of this devastating disease. Recent studies reported decreased intramuscular creatine levels in skeletal muscles in both patients with SBMA and transgenic mouse models of SBMA, which appears to contribute to muscle weakness. The present study aimed to examine the efficacy and safety of oral creatine supplementation to improve motor function in patients with SBMA. A randomized, double-blind, placebo-controlled, three-armed clinical trial was conducted to assess the safety and efficacy of creatine therapy in patients with SBMA. Patients with SBMA eligible for this study were assigned randomly in a 1:1:1 ratio to each group of placebo, 10 g, or 15 g daily dose of creatine monohydrate in a double-blind fashion. Participants took creatine or placebo orally 3 times a day for 8 weeks. Outcome measurements were results of neurological assessments, examinations, and questionnaires collected at baseline and at weeks 4, 8, and 16 after a washout period. The primary endpoint was the change in handgrip strength values from baseline to week 8. The secondary endpoints included the following: results of maximum voluntary isometric contraction tests of extremities; tongue pressure; results of the 15-foot timed walk test and the rise from bed test; modified quantitative myasthenia gravis score; respiratory function test results; activities of daily living assessed with the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale and the Spinal and Bulbar Muscular Atrophy Functional Rating Scale; skeletal muscle mass measured with dual-energy X-ray absorptiometry; urinary 8-hydroxydeoxyguanosine levels; and questionnaires examining the quality of life, swallowing function, and fatigue. Participant enrollment in the trial started from June 2014 and follow-up was completed in July 2015. The

  19. Creatine for women: a review of the relationship between creatine and the reproductive cycle and female-specific benefits of creatine therapy.

    Science.gov (United States)

    Ellery, Stacey J; Walker, David W; Dickinson, Hayley

    2016-08-01

    The creatine/phosphocreatine/creatine kinase circuit is instrumental in regulating high-energy phosphate metabolism, and the maintenance of cellular energy turnover. The mechanisms by which creatine is able to buffer and regulate cellular energy balance, maintain acid-base balance, and reduce the effects of oxidative stress have led to a large number of studies into the use of creatine supplementation in exercise performance and to treat diseases associated with cellular energy depletion. Some of these studies have identified sex-specific responses to creatine supplementation, as such; there is the perception, that females might be less receptive to the benefits of creatine supplementation and therapy, compared to males. This review will describe the differences in male and female physique and physiology that may account for such differences, and discuss the apparent endocrine modulation of creatine metabolism in females. Hormone-driven changes to endogenous creatine synthesis, creatine transport and creatine kinase expression suggest that significant changes in this cellular energy circuit occur during specific stages of a female's reproductive life, including pregnancy and menopause. Recent studies suggest that creatine supplementation may be highly beneficial for women under certain conditions, such as depression. A greater understanding of these pathways, and the consequences of alterations to creatine bioavailability in females are needed to ensure that creatine is used to full advantage as a dietary supplement to optimize and enhance health outcomes for women.

  20. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter

    Science.gov (United States)

    Abplanalp, Jeannette; Laczko, Endre; Philp, Nancy J.; Neidhardt, John; Zuercher, Jurian; Braun, Philipp; Schorderet, Daniel F.; Munier, Francis L.; Verrey, François; Berger, Wolfgang; Camargo, Simone M.R.; Kloeckener-Gruissem, Barbara

    2013-01-01

    Creatine transport has been assigned to creatine transporter 1 (CRT1), encoded by mental retardation associated SLC6A8. Here, we identified a second creatine transporter (CRT2) known as monocarboxylate transporter 12 (MCT12), encoded by the cataract and glucosuria associated gene SLC16A12. A non-synonymous alteration in MCT12 (p.G407S) found in a patient with age-related cataract (ARC) leads to a significant reduction of creatine transport. Furthermore, Slc16a12 knockout (KO) rats have elevated creatine levels in urine. Transport activity and expression characteristics of the two creatine transporters are distinct. CRT2 (MCT12)-mediated uptake of creatine was not sensitive to sodium and chloride ions or creatine biosynthesis precursors, breakdown product creatinine or creatine phosphate. Increasing pH correlated with increased creatine uptake. Michaelis–Menten kinetics yielded a Vmax of 838.8 pmol/h/oocyte and a Km of 567.4 µm. Relative expression in various human tissues supports the distinct mutation-associated phenotypes of the two transporters. SLC6A8 was predominantly found in brain, heart and muscle, while SLC16A12 was more abundant in kidney and retina. In the lens, the two transcripts were found at comparable levels. We discuss the distinct, but possibly synergistic functions of the two creatine transporters. Our findings infer potential preventive power of creatine supplementation against the most prominent age-related vision impaired condition. PMID:23578822

  1. Strong Relation between Muscle Mass Determined by D3-creatine Dilution, Physical Performance and Incidence of Falls and Mobility Limitations in a Prospective Cohort of Older Men.

    Science.gov (United States)

    Cawthon, Peggy M; Orwoll, Eric S; Peters, Katherine E; Ensrud, Kristine E; Cauley, Jane A; Kado, Deborah M; Stefanick, Marcia L; Shikany, James M; Strotmeyer, Elsa S; Glynn, Nancy W; Caserotti, Paolo; Shankaran, Mahalakshmi; Hellerstein, Marc; Cummings, Steven R; Evans, William J

    2018-06-12

    Direct assessment of skeletal muscle mass in older adults is clinically challenging. Relationships between lean mass and late-life outcomes have been inconsistent. The D3-creatine dilution method provides a direct assessment of muscle mass. Muscle mass was assessed by D3-creatine (D3Cr) dilution in 1,382 men (mean age, 84.2 yrs). Participants completed the Short Physical Performance Battery (SPPB); usual walking speed (6 meters); and DXA lean mass. Men self-reported mobility limitations (difficulty walking 2-3 blocks or climbing 10 steps); recurrent falls (2+); and serious injurious falls in the subsequent year. Across quartiles of D3Cr muscle mass/body mass, multivariate linear models calculated means for SPPB and gait speed; multivariate logistic models calculated odds ratios for incident mobility limitations or falls. Compared to men in the highest quartile, those in the lowest quartile of D3Cr muscle mass/body mass had slower gait speed (Q1: 1.04 vs Q4: 1.17 m/s); lower SPPB (Q1: 8.4 vs Q4: 10.4 points); greater likelihood of incident serious injurious falls (OR Q1 vs Q4: 2.49, 95% CI: 1.37, 4.54); prevalent mobility limitation (OR Q1 vs Q4,: 6.1, 95%CI: 3.7, 10.3) and incident mobility limitation (OR Q1 vs Q4: 2.15 95% CI: 1.42, 3.26); p for trend strongly related to physical performance, mobility and incident injurious falls in older me.

  2. Creatine Use in Sports.

    Science.gov (United States)

    Butts, Jessica; Jacobs, Bret; Silvis, Matthew

    The use of creatine as a dietary supplement has become increasingly popular over the past several decades. Despite the popularity of creatine, questions remain with regard to dosing, effects on sports performance, and safety. PubMed was searched for articles published between 1980 and January 2017 using the terms creatine, creatine supplementation, sports performance, and dietary supplements. An additional Google search was performed to capture National Collegiate Athletic Association-specific creatine usage data and US dietary supplement and creatine sales. Clinical review. Level 4. Short-term use of creatine is considered safe and without significant adverse effects, although caution should be advised as the number of long-term studies is limited. Suggested dosing is variable, with many different regimens showing benefits. The safety of creatine supplementation has not been studied in children and adolescents. Currently, the scientific literature best supports creatine supplementation for increased performance in short-duration, maximal-intensity resistance training. While creatine appears to be safe and effective for particular settings, whether creatine supplementation leads to improved performance on the field of play remains unknown.

  3. Resistance Training and Co-supplementation with Creatine and Protein in Older Subjects with Frailty.

    Science.gov (United States)

    Collins, J; Longhurst, G; Roschel, H; Gualano, B

    2016-01-01

    Studies assessing the effects co-supplementation with creatine and protein, along with resistance training, in older individuals with frailty are lacking. This is an exploratory trial from the Pro-Elderly study ("Protein Intake and Resistance Training in Aging") aimed at gathering knowledge on the feasibility, safety, and efficacy of co-supplementation with creatine and protein supplementation, combined with resistance training, in older individuals with frailty. A 14-week, double-blind, randomized, parallel-group, placebo controlled exploratory trial. The subjects were randomly assigned to whey protein and creatine co-supplementation (WHEY+CR) or whey protein supplementation (WHEY) group. All subjects undertook a supervised exercise training program and were assessed at baseline and after 14 weeks. Muscle function, body composition, blood parameters, and self-reported adverse events were assessed. No interaction effects (between-group differences) were observed for any dependent variables (p > 0.05 for all). However, there were main time-effects in handgrip (WHEY+CR = 26.65 ± 31.29; WHEY = 13.84 ± 14.93 Kg; p = 0.0005), timed-up-and-go (WHEY+CR = -11.20 ± 9.37; WHEY = -17.76 ± 21.74 sec; p = 0.006), and timed-stands test (WHEY+CR = 47.50 ± 35.54; WHEY = 46.87 ± 24.23 reps; p = 0.0001), suggesting that WHEY+CR and WHEY were similarly effective in improving muscle function. All of the subjects showed improvements in at least two of the three functional tests, regardless of their treatments. Body composition and blood parameters were not changed (p > 0.05). No severe adverse effects were observed. Co-supplementation with creatine and whey protein was well-tolerable and free of adverse events in older subjects with frailty undertaking resistance training. Creatine supplementation did not augment the adaptive effects of resistance training along with whey protein on body composition or muscle function in this population. Clinicaltrials.gov: NCT01890382.

  4. N-Acetylcysteine Supplementation Controls Total Antioxidant Capacity, Creatine Kinase, Lactate, and Tumor Necrotic Factor-Alpha against Oxidative Stress Induced by Graded Exercise in Sedentary Men

    Directory of Open Access Journals (Sweden)

    Donrawee Leelarungrayub

    2011-01-01

    Full Text Available Aim of this study was to evaluate the effects of short-term (7 days N-acetylcysteine (NAC at 1,200 mg daily supplementation on muscle fatigue, maximal oxygen uptake (VO2max, total antioxidant capacity (TAC, lactate, creatine kinase (CK, and tumor necrotic factor-alpha (TNF-α. Twenty-nine sedentary men (13 controls; 16 in the supplement group from a randomized control were included. At before and after supplementation, fatigue index (FI was evaluated in the quadriceps muscle, and performed a graded exercise treadmill test to induce oxidative stress, and as a measure of VO2max. Blood samples were taken before exercise and 20 minutes after it at before and after supplementation, to determine TAC, CK, lactate, and TNF-α levels. Results showed that FI and VO2max increased significantly in the supplement group. After exercise decreased the levels of TAC and increased lactate, CK, and TNF-α of both groups at before supplementation. After supplementation, lactate, CK, and TNF-α levels significantly increased and TAC decreased after exercise in the control group. Whereas the TAC and lactate levels did not change significantly, but CK and TNF-α increased significantly in the supplement group. Therefore, this results showed that NAC improved the muscle fatigue, VO2max, maintained TAC, controlled lactate production, but had no influence on CK and TNF-α.

  5. Creatine and the Liver: Metabolism and Possible Interactions.

    Science.gov (United States)

    Barcelos, R P; Stefanello, S T; Mauriz, J L; Gonzalez-Gallego, J; Soares, F A A

    2016-01-01

    The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis. Creatine administration is known to decrease the consumption of Sadenosyl methionine and also reduce the homocysteine production in liver, diminishing fat accumulation and resulting in beneficial effects in fatty liver and non-alcoholic liver disease. Different studies have shown that creatine supplementation could supply brain energy, presenting neuroprotective effects against the encephalopathy induced by hyperammonemia in acute liver failure. Creatine is also taken by many athletes for its ergogenic properties. However, little is known about the adverse effects of creatine supplementation, which are barely described in the literature, with reports of mainly hypothetical effects arising from a small number of scientific publications. Antioxidant effects have been found in several studies, although one of the theories regarding the potential for toxicity from creatine supplementation is that it can increase oxidative stress and potentially form carcinogenic compounds.

  6. Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice.

    Science.gov (United States)

    Ellery, Stacey J; LaRosa, Domenic A; Kett, Michelle M; Della Gatta, Paul A; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-08-01

    Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia.

  7. The use of creatine supplements in the military.

    Science.gov (United States)

    Havenetidis, Konstantinos

    2016-08-01

    Creatine is considered an effective nutritional ergogenic aid to enhance exercise performance. In spite of the publication of several reviews in the last decade on the topic of exercise performance/sports and creatine there is a need for an update related to the military given the lack of information in this area. The aim of this study was to critically assess original research addressing the use of creatine supplements in the military. A search of the electronic databases PubMed and SPORTDiscus, for the following key words: military personnel, trainees, recruit, soldier, physical fitness, physical conditioning, creatine supplementation, creatine ingestion, nutritional supplements to identify surveys and randomised clinical trials from journal articles and technical reports investigating the effect of creatine supplementation on military populations. Thirty-three out of 90 articles examined the use of creatine as a dietary supplement in military personnel. Twenty-one studies were finally selected on the basis of stated inclusion criteria for military surveys and randomised clinical trials. Most of the surveys (15/17) in the military indicate a high popularity of creatine (average 27%) among supplement users. In contrast, in most of the exercise protocols used (6/9) during randomised clinical trials creatine has produced a non-significant performance-enhancing effect. Creatine is one of the most widely used supplemental compounds in the military. It is not considered a doping infraction or related to any adverse health effects but its long-term usage needs further investigation. Experimental research suggests that creatine supplementation does not enhance physical performance in the military. However, limitations in creatine dosage, military fitness testing and sample group selection might have underestimated the ergogenic properties of creatine. Recent studies also indicate positive effects on various aspects of total force fitness such as cognitive

  8. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    Directory of Open Access Journals (Sweden)

    Barros Marcelo P

    2012-06-01

    Full Text Available Abstract Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %, but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP, leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent and inherent antioxidant activity of creatine.

  9. Upregulation of the Creatine Transporter Slc6A8 by Klotho

    Directory of Open Access Journals (Sweden)

    Ahmad Almilaji

    2014-11-01

    Full Text Available Background/Aims: The transmembrane Klotho protein contributes to inhibition of 1,25(OH2D3 formation. The extracellular domain of Klotho protein could function as an enzyme with e.g. β-glucuronidase activity, be cleaved off and be released into blood and cerebrospinal fluid. Klotho regulates several cellular transporters. Klotho protein deficiency accelerates the appearance of age related disorders including neurodegeneration and muscle wasting and eventually leads to premature death. The main site of Klotho protein expression is the kidney. Klotho protein is also appreciably expressed in other tissues including chorioid plexus. The present study explored the effect of Klotho protein on the creatine transporter CreaT (Slc6A8, which participates in the maintenance of neuronal function and survival. Methods: To this end cRNA encoding Slc6A8 was injected into Xenopus oocytes with and without additional injection of cRNA encoding Klotho protein. Creatine transporter CreaT (Slc6A8 activity was estimated from creatine induced current determined by two-electrode voltage-clamp. Results: Coexpression of Klotho protein significantly increased creatine-induced current in Slc6A8 expressing Xenopus oocytes. Coexpression of Klotho protein delayed the decline of creatine induced current following inhibition of carrier insertion into the cell membrane by brefeldin A (5 µM. The increase of creatine induced current by coexpression of Klotho protein in Slc6A8 expressing Xenopus oocytes was reversed by β-glucuronidase inhibitor (DSAL. Similarly, treatment of Slc6A8 expressing Xenopus oocytes with recombinant human alpha Klotho protein significantly increased creatine induced current. Conclusion: Klotho protein up-regulates the activity of creatine transporter CreaT (Slc6A8 by stabilizing the carrier protein in the cell membrane, an effect requiring β-glucuronidase activity of Klotho protein.

  10. Exercise hyperthermia as a factor limiting physical performance - Temperature effect on muscle metabolism

    Science.gov (United States)

    Kozlowski, S.; Brzezinska, Z.; Kruk, B.; Kaciuba-Uscilko, H.; Greenleaf, J. E.

    1985-01-01

    The effect of trunk cooling on the muscle contents of ATP, ADP, AMP, creatine phosphate (CrP), and creatine, as well as of glycogen, some glycolytic intermediates, pyruvate, and lactate were assessed in 11 fasted dogs exercised at 20 C on treadmill to exhaustion. Without cooling, dogs were able to run 57 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 and 43.0 C, respectively. Cooling with ice packs prolonged the ability to run by 45 percent, and resulted in lower Tre (by 1.1 C) and Tm (by 1.2 C). Depletion of muscle content of total high-energy phosphates (ATP + CrP) and glycogen, and increases in contents of AMP, pyruvate, and lactate were lower in cooled dogs than in non-cooled dogs. The muscle content of lactiate correlated positively with TM. These results indicate that hypothermia accelerates glycolysis, and shifts the equilibrium between high- and low-energy phosphates in favor of the latter. The adverse effect of hypothermia on muscle metabolism may be relevant to the limitation of endurance.

  11. A review of creatine supplementation in age-related diseases: more than a supplement for athletes [v1; ref status: indexed, http://f1000r.es/4ak

    Directory of Open Access Journals (Sweden)

    Rachel N. Smith

    2014-09-01

    Full Text Available Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement’s usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer’s disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.

  12. Creatine-creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity

    DEFF Research Database (Denmark)

    Fedosov, Sergey

    1994-01-01

    In order to characterize ADP-ATP and creatine-creatine phosphate (Cr-CrP) shuttles a minimal mathematical model with two compartments and cyclic turnover of matter was designed. The 'mitochondrial' compartment contained 'ATP-synthase' and 'mitochondrial ereatine kinase' (mitCK). The 'cytoplasmic......' compartment consisted of 'ATPase', 'cytoplasmic creatine kinase' (cytCK) and an 'ADP-binding structure'. The exchange of metabolites between these compartments was limited. Different levels of cytCK and mitCK expression as welt as different exchange rate constants between the compartments were assigned...

  13. Making muscles "stronger": exercise, nutrition, drugs.

    Science.gov (United States)

    Aagaard, P

    2004-06-01

    As described in this review, maximal muscle strength is strongly influenced by resistive-types of exercise, which induce adaptive changes in both neuromuscular function and muscle morphology. Further, timed intake of protein in conjunction with resistance training elicit greater strength and muscle size gains than resistance training alone. Creatine supplementation amplifies the hypertrophic response to resistance training, although some individuals may not respond positively. Locally produced muscle growth factors are upregulated during creatine supplementation, which contributes to increase the responsiveness of muscle cells to intensive training stimuli. Usage of anabolic steroids boosts muscle hypertrophy beyond inherent genetical limits, not only by increasing the DNA transcription rate for myofibrillar proteins but also by increasing the nucleus-to-cytoplasm ratio due to accelerated activation of myogenic satellite cells. However, severe tissue damaging effects exist with anabolic steroids, some of which are irreversible.

  14. Automated urinalysis technique determines concentration of creatine and creatinine by colorimetry

    Science.gov (United States)

    Rho, J. H.

    1967-01-01

    Continuous urinalysis technique is useful in the study of muscle wastage in primates. Creatinine concentration in urine is determined in an aliquot mixture by a color reaction. Creatine is determined in a second aliquot by converting it to creatinine and measuring the difference in color intensity between the two aliquots.

  15. Absolute Oral Bioavailability of Creatine Monohydrate in Rats: Debunking a Myth.

    Science.gov (United States)

    Alraddadi, Eman A; Lillico, Ryan; Vennerstrom, Jonathan L; Lakowski, Ted M; Miller, Donald W

    2018-03-08

    Creatine is an ergogenic compound used by athletes to enhance performance. Supplementation with creatine monohydrate (CM) has been suggested for musculoskeletal and neurological disorders. Until now, little is known about its pharmacokinetic profile. Our objective was to determine the oral bioavailability of CM and the influence of dose on oral absorption. Rats were dosed orally with low dose (10 mg/kg) or high dose (70 mg/kg) 13 C-labeled CM. Blood samples were removed at various time points. Muscle and brain tissue were collected at the conclusion of the study. Plasma and tissue levels of 13 C-labeled creatine were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Physiologically based pharmacokinetic (PBPK) models of CM were built using GastroPlus™. These models were used to predict the plasma concentration-time profiles of creatine hydrochloride (CHCL), which has improved aqueous solubility compared to CM. Absolute oral bioavailability for low dose CM was 53% while high dose CM was only 16%. The simulated C max of 70 mg/kg CHCL was around 35 μg/mL compared to 14 μg/mL for CM with a predicted oral bioavailability of 66% with CHCL compared to 17% with CM. Our results suggest that the oral bioavailability of CM is less than complete and subject to dose and that further examination of improved dosage formulations of creatine is warranted.

  16. THE EFFECT OF CREATINE SUPPLEMENTATION ON ATHLETE ISOKINETIC PERFORMANCE

    OpenAIRE

    Erkan Faruk ŞİRİN; Suzan YALÇIN

    2009-01-01

    The purpose of this study is to find the effects of Creatin Monohydrate (CrH2O) on athlete performance (isokinetic power measured as a total workout) used as an ergojenic aid in long-term (6 weeks) supplementation. There are 38 participants willing to join to the study. Their ages are between 20 and 27. All of them are choosed from active athletes. From the findings of this study; all the participants’ in the creatin group have increased the total workout production in all cycles of isokineti...

  17. Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats

    Science.gov (United States)

    Allen, Patricia J.; D'Anci, Kristen E.; Kanarek, Robin B.; Renshaw, Perry F.

    2013-01-01

    The potential role of metabolic impairments in the pathophysiology of depression is motivating researchers to evaluate the treatment efficacy of creatine, a naturally occurring energetic and neuroprotective compound found in brain and muscle tissues. Growing evidence is demonstrating the benefit of oral creatine supplements for reducing depressive symptoms in humans and animals. A novel question is whether dietary creatine, when combined with antidepressant drug therapy, would be more effective than either compound alone. To answer this question, four studies were conducted to investigate the behavioral effects of combined creatine and low-dose fluoxetine treatment using the forced swim test in male and female rats. Sprague-Dawley rats were fed powdered rodent chow supplemented with 0%, 2% or 4% w/w creatine monohydrate for 5 weeks. Rats were injected with fluoxetine (5.0 or 10.0 mg/kg) or saline according to a sub-acute dosing schedule. Female rats maintained on a 4% creatine diet displayed antidepressant-like effects compared to non-supplemented females prior to fluoxetine treatment. In contrast, creatine did not alter behavior reliably in males. Following drug treatment and a second forced swim trial, the antidepressant-like profile of creatine remained significant only in females co-administered 5.0 mg/kg fluoxetine. Moreover, in females only, supplementation with 4% creatine produced a more robust antidepressant-like behavioral profile compared to either dose of fluoxetine alone. Estrous cycle data indicated that ovarian hormones influenced the antidepressant-like effects of creatine. Addressing the issue of sex differences in response to treatment may affect our understanding of creatine, its relationship with depressive behavior, and may lead to sex-specific therapeutic strategies. PMID:22429992

  18. Does brain creatine content rely on exogenous creatine in healthy youth? A proof-of-principle study.

    Science.gov (United States)

    Merege-Filho, Carlos Alberto Abujabra; Otaduy, Maria Concepción Garcia; de Sá-Pinto, Ana Lúcia; de Oliveira, Maira Okada; de Souza Gonçalves, Lívia; Hayashi, Ana Paula Tanaka; Roschel, Hamilton; Pereira, Rosa Maria Rodrigues; Silva, Clovis Artur; Brucki, Sonia Maria Dozzi; da Costa Leite, Claudia; Gualano, Bruno

    2017-02-01

    It has been hypothesized that dietary creatine could influence cognitive performance by increasing brain creatine in developing individuals. This double-blind, randomized, placebo-controlled, proof-of-principle study aimed to investigate the effects of creatine supplementation on cognitive function and brain creatine content in healthy youth. The sample comprised 67 healthy participants aged 10 to 12 years. The participants were given creatine or placebo supplementation for 7 days. At baseline and after the intervention, participants undertook a battery of cognitive tests. In a random subsample of participants, brain creatine content was also assessed in the regions of left dorsolateral prefrontal cortex, left hippocampus, and occipital lobe by proton magnetic resonance spectroscopy (1H-MRS) technique. The scores obtained from verbal learning and executive functions tests did not significantly differ between groups at baseline or after the intervention (all p > 0.05). Creatine content was not significantly different between groups in left dorsolateral prefrontal cortex, left hippocampus, and occipital lobe (all p > 0.05). In conclusion, a 7-day creatine supplementation protocol did not elicit improvements in brain creatine content or cognitive performance in healthy youth, suggesting that this population mainly relies on brain creatine synthesis rather than exogenous creatine intake to maintain brain creatine homeostasis.

  19. In vitro and in vivo studies of creatine monohydrate supplementation to Duroc and Landrace pigs

    DEFF Research Database (Denmark)

    Young, Jette F.; Bertram, Hanne Christine; Theil, Peter Kappel

    2007-01-01

    Duroc and Landrace pigs as well as primary myotubes from these breeds were used to investigate mechanisms behind differences in their response to creatine monohydrate (CMH). Pigs were supplemented with 0, 12.5, 25 or 50g CMH/d for 5 days (n=10 per treatment and breed). Plasma levels of creatine...... increased dose-dependently in both breeds, while muscle-creatine phosphate content increased only in the Duroc pigs. (1)H NMR metabolic profiling showed a tendency towards clustering according to CMH supplementation only among Duroc pigs, revealing a stronger response compared to Landrace pigs....... The abundance of insulin-like growth factor I and myostatin mRNA was decreased by CMH supplementation while that of type 1 IGF-receptor and creatine transporter was unaffected. Protein synthesis, increased in the myotubes from both breeds, indicating protein accretion, but no effect was observed on the m...

  20. Histochemical demonstration of creatine kinase activity using polyvinyl alcohol and auxiliary enzymes

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; van Noorden, C. J.

    1987-01-01

    Creatine kinase activity (EC 2.7.3.2.) has been demonstrated in myocardium and skeletal muscle from rats by a method based on the incubation of cryostat sections with a polyvinyl alcohol-containing medium and the use of auxiliary enzymes. Hexokinase and glucose-6-phosphate dehydrogenase were spread

  1. CREATINE SUPPLEMENTATION AND EXERCISE PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Stephen P. Bird

    2003-12-01

    Full Text Available During the past decade, the nutritional supplement creatine monohydrate has been gaining popularity exponentially. Introduced to the general public in the early 1990s, shortly after the Barcelona Olympic Games, creatine (Cr has become one of the most widely used nutritional supplements or ergogenic aids, with loading doses as high as 20-30 g·day-1 for 5-7 days typical among athletes. This paper reviews the available research that has examined the potential ergogenic value of creatine supplementation (CrS on exercise performance and training adaptations. Short-term CrS has been reported to improve maximal power/strength, work performed during sets of maximal effort muscle contractions, single-effort sprint performance, and work performed during repetitive sprint performance. During training CrS has been reported to promote significantly greater gains in strength, fat free mass, and exercise performance primarily of high intensity tasks. However, not all studies demonstrate a beneficial effect on exercise performance, as CrS does not appear to be effective in improving running and swimming performance. CrS appears to pose no serious health risks when taken at doses described in the literature and may enhance exercise performance in individuals that require maximal single effort and/or repetitive sprint bouts

  2. Creatine phosphokinase test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003503.htm Creatine phosphokinase test To use the sharing features on this page, please enable JavaScript. Creatine phosphokinase (CPK) is an enzyme in the body. ...

  3. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  4. Plasma Creatine Kinetics After Ingestion of Microencapsulated Creatine Monohydrate with Enhanced Stability in Aqueous Solutions.

    Science.gov (United States)

    Hone, Michelle; Kent, Robert M; Scotto di Palumbo, Alessandro; Bleiel, Sinead B; De Vito, Giuseppe; Egan, Brendan

    2017-07-04

    Creatine monohydrate represents one of the largest sports supplement markets. Enhancing creatine (CRE) stability in aqueous solutions, such as with microencapsulation, represents innovation potential. Ten physically active male volunteers were randomly assigned in a double-blind design to either placebo (PLA) (3-g maltodextrin; n = 5) or microencapsulated CRE (3-g creatine monohydrate; n = 5) conditions. Experimental conditions involved ingestion of the samples in a 70-mL ready-to-drink format. CRE was delivered in a novel microencapsulation matrix material consisting entirely of hydrolyzed milk protein. Three hours after ingestion, plasma creatine concentrations were unchanged during PLA, and averaged ∼45 μM. During CRE, plasma creatine concentration peaked after 30 min at 101.6 ± 14.9 μM (p creatine concentration gradually trended downwards but remained significantly elevated (∼50% above resting levels) 3 hr after ingestion. These results demonstrate that the microencapsulated form of creatine monohydrate reported herein remains bioavailable when delivered in aqueous conditions, and has potential utility in ready-to-drink formulations for creatine supplementation.

  5. Effects of creatine supplementation on high-intensity intermittent exercise: discrepancies and methodological appraisals

    Directory of Open Access Journals (Sweden)

    Bruno Gualano

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n2p189 After a brief review of the literature on the effects of creatine supplementation on high-intensity intermittent exercise performance, the main aim of this study was to discuss methodological differences between studies which could explain the discrepancies observed in the literature. The effects of creatine supplementation on high-intensity intermittent exercise performance have been investigated in depth. Although the results of much research demonstrates the effi cacy of this supplement, there is just as much evidence that does not support this ergogenic effect. The explanation for this divergence appears to be multifactorial, although it is always linked to methodological characteristics. Study design (crossover or parallel groups, individual variability of muscular creatine content, chronic high meat intake, sample size, exercise protocol characteristics (body weight dependence and time between series, and gender and age all differ between studies and are potentially the variables responsible, to differing extents, for the discrepancies observed in the literature. Studies involving young males, with parallel group design, adequate statistical power, control of the incorporation of creatine into muscles, food intake assessment and intermittent exercise protocols in which performance is independent of body weight and with rest-recovery intervals of 1 to 6 minutes, usually produce positive results. The many methodological factors which can contribute to divergence on the ergogenic effects of creatine should be considered in futures studies, as well as when prescribing creatine supplementation.

  6. Creatine kinase in the serum of patients with acute infections of the central nervous system

    DEFF Research Database (Denmark)

    Peterslund, N A; Heinsvig, E M; Christensen, K D

    1985-01-01

    Serum creatine kinase was assessed in 94 consecutive patients without convulsions admitted to hospital due to suspicion of infection of the central nervous system. No reliable discrimination between patients with aseptic and those with bacterial meningitis was obtained. Patients with bacterial...... of bacterial meningitis. The highest serum CK value found in patients with encephalitis was 725 U/l. Reference values for control patients with meningism were 16-269 U/1. In a subset of 9 patients creatine kinase isoenzyme analysis was performed. In all cases only muscle type (MM) isoenzyme was found...

  7. Meta-Analysis of Creatine for Neuroprotection Against Parkinson's Disease.

    Science.gov (United States)

    Attia; Ahmed, Hussien; Gadelkarim, Mohamed; Morsi, Mahmoud; Awad, Kamal; Elnenny, Mohamed; Ghanem, Esraa; El-Jaafary, Shaimaa; Negida, Ahmed

    2017-01-01

    Creatine is an antioxidant agent that showed neuroprotective effects in animal models of Parkinson's disease (PD). Creatine was selected by the National Institute of Neurological Disorders and Stroke as a possible disease modifying agent for Parkinson's disease. Therefore, many clinical trials evaluated the efficacy of creatine for patients with PD. The aim of this systematic review and meta-analysis is to synthesize evidence from published randomized controlled trials (RCTs) about the efficacy of Creatine for patients with PD. We followed PRISMA statement guidelines during the preparation of this systematic review and meta-analysis. A computer literature search for PubMed, EBSCO, web of science and Ovid Midline was carried out. We included RCTs comparing creatine with placebo in terms of motor functions and quality of life. Outcomes of total Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS I, UPDRS II, and UPDRS III were pooled as mean difference (MD) between two groups from baseline to the endpoint. Statistical heterogeneity was assessed by visual inspection of the forest plot and measured by chi-square and I square tests. Three RCTs (n=1935) were included in this study. The overall effect did not favor either of the two groups in terms of: UPDRS total score (MD 1.07, 95% CI [3.38 to 1.25], UPDRS III (MD 0.62, 95% CI [2.27 to 1.02]), UPDRS II (MD 0.03, 95% CI [0.81 to 0.86], or UPDRS I (MD 0.03, 95% CI [0.33 to 0.28]). Current evidence does not support the use of creatine for neuroprotection against PD. Future well-designed, randomized controlled trials are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The Influence of Creatine Monohydrate on Strength and Endurance After Doing Physical Exercise With Maximum Intensity

    Directory of Open Access Journals (Sweden)

    Asrofi Shicas Nabawi

    2017-11-01

    Full Text Available The purpose of this study was: (1 to analyze the effect of creatine monohydrate to give strength after doing physical exercise with maximum intensity, towards endurance after doing physical exercise with maximum intensity, (2 to analyze the effect of non creatine monohydrate to give strength after doing physical exercise with maximum intensity, towards endurance after doing physical exercise with maximum intensity, (3 to analyze the results of the difference by administering creatine and non creatine on strength and endurance after exercise with maximum intensity. This type of research used in this research was quantitative with quasi experimental research methods. The design of this study was using pretest and posttest control group design, and data analysis was using a paired sample t-test. The process of data collection was done with the test leg muscle strength using a strength test with back and leg dynamometer, sit ups test with 1 minute sit ups, push ups test with push ups and 30 seconds with a VO2max test cosmed quart CPET during the pretest and posttest. Furthermore, the data were analyzed using SPSS 22.0 series. The results showed: (1 There was the influence of creatine administration against the strength after doing exercise with maximum intensity; (2 There was the influence of creatine administration against the group endurance after doing exercise with maximum intensity; (3 There was the influence of non creatine against the force after exercise maximum intensity; (4 There was the influence of non creatine against the group after endurance exercise maximum intensity; (5 The significant difference with the provision of non creatine and creatine from creatine group difference delta at higher against the increased strength and endurance after exercise maximum intensity. Based on the above analysis, it can be concluded that the increased strength and durability for each of the groups after being given a workout.

  9. Structural changes of creatine kinase upon substrate binding.

    Science.gov (United States)

    Forstner, M; Kriechbaum, M; Laggner, P; Wallimann, T

    1998-08-01

    Small-angle x-ray scattering was used to investigate structural changes upon binding of individual substrates or a transition state analog complex (TSAC; Mg-ADP, creatine, and KNO3) to creatine kinase (CK) isoenzymes (dimeric muscle-type (M)-CK and octameric mitochondrial (Mi)-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-nucleotide or TSAC. The radius of gyration of Mi-CK was reduced from 55.6 A (free enzyme) to 48.9 A (enzyme plus Mg-ATP) and to 48.2 A (enzyme plus TSAC). M-CK showed similar changes from 28.0 A (free enzyme) to 25.6 A (enzyme plus Mg-ATP) and to 25.5 A (enzyme plus TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK also showed a change of the radius of gyration from 21.5 A (free enzyme) to 19.7 A (enzyme plus Mg-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a Mg-nucleotide-induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In CK, however, additional movements have to be involved.

  10. Whole body creatine and protein kinetics in healthy men and women: effects of creatine and amino acid supplementation.

    Science.gov (United States)

    Kalhan, Satish C; Gruca, Lourdes; Marczewski, Susan; Bennett, Carole; Kummitha, China

    2016-03-01

    Creatine kinetics were measured in young healthy subjects, eight males and seven females, age 20-30 years, after an overnight fast on creatine-free diet. Whole body turnover of glycine and its appearance in creatine was quantified using [1-(13)C] glycine and the rate of protein turnover was quantified using L-ring [(2)H5] phenylalanine. The creatine pool size was estimated by the dilution of a bolus [C(2)H3] creatine. Studies were repeated following a five days supplement creatine 21 g.day(-1) and following supplement amino acids 14.3 g day(-1). Creatine caused a ten-fold increase in the plasma concentration of creatine and a 50 % decrease in the concentration of guanidinoacetic acid. Plasma amino acids profile showed a significant decrease in glycine, glutamine, and taurine and a significant increase in citrulline, valine, lysine, and cysteine. There was a significant decrease in the rate of appearance of glycine, suggesting a decrease in de-novo synthesis (p = 0.006). The fractional and absolute rate of synthesis of creatine was significantly decreased by supplemental creatine. Amino acid supplement had no impact on any of the parameters. This is the first detailed analysis of creatine kinetics and the effects of creatine supplement in healthy young men and women. These methods can be applied for the analysis of creatine kinetics in different physiological states.

  11. Ibuprofen ingestion does not affect markers of post-exercise muscle inflammation.

    Directory of Open Access Journals (Sweden)

    Luke eVella

    2016-03-01

    Full Text Available Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise. Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200 mg d-1 or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 h and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO and macrophages (CD68. Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.

  12. INTEGRATED ASSESSMENT OF STATIN-ASSOCIATED MUSCLE DAMAGE PREDICTORS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    OpenAIRE

    V. I. Petrov; O. N. Smuseva; Yu. V. Solovkina

    2013-01-01

    Aim. To assess the risk factors of statin-associated muscle damage in patient with ischemic heart disease.Material and methods. 258 patients with ischemic heart disease treated with statin were included into the study. Total plasma creatine kinase levels were measured and SLCO1B1*5 genotyping was performed. Relationship between statin therapy and adverse events was evaluated by Naranjo algorithm.Results. Patients with muscle symptoms received statins significantly longer (48.8 vs 11.9 months,...

  13. The relationship of muscle perfusion and metabolism with cardiovascular variables before and after detomidine injection during propofol-ketamine anaesthesia in horses.

    Science.gov (United States)

    Edner, Anna; Nyman, Görel; Essén-Gustavsson, Birgitta

    2002-10-01

    To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol-ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol-ketamine infusion on respiratory function. Prospective experimental study. Seven standardbred trotters, 5-12 years old, 416-581 kg. Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg -1 ) and maintained with a continuous IV infusion of propofol (0.15 mg kg -1 minute -1 ) and ketamine (0.05 mg kg -1 minute -1 ) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg -1 ) was administered IV and 40-50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O 2 and CO 2 ) and muscle temperature were measured at pre-determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation and HCO 3 . Mixed venous blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation, HCO 3 , cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Circulatory function was preserved during propofol-ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre-injection levels, although

  14. Creatine co-ingestion with carbohydrate or cinnamon extract provides no added benefit to anaerobic performance.

    Science.gov (United States)

    Islam, Hashim; Yorgason, Nick J; Hazell, Tom J

    2016-09-01

    The insulin response following carbohydrate ingestion enhances creatine transport into muscle. Cinnamon extract is promoted to have insulin-like effects, therefore this study examined if creatine co-ingestion with carbohydrates or cinnamon extract improved anaerobic capacity, muscular strength, and muscular endurance. Active young males (n = 25; 23.7 ± 2.5 y) were stratified into 3 groups: (1) creatine only (CRE); (2) creatine+ 70 g carbohydrate (CHO); or (3) creatine+ 500 mg cinnamon extract (CIN), based on anaerobic capacity (peak power·kg(-1)) and muscular strength at baseline. Three weeks of supplementation consisted of a 5 d loading phase (20 g/d) and a 16 d maintenance phase (5 g/d). Pre- and post-supplementation measures included a 30-s Wingate and a 30-s maximal running test (on a self-propelled treadmill) for anaerobic capacity. Muscular strength was measured as the one-repetition maximum 1-RM for chest, back, quadriceps, hamstrings, and leg press. Additional sets of the number of repetitions performed at 60% 1-RM until fatigue measured muscular endurance. All three groups significantly improved Wingate relative peak power (CRE: 15.4% P = .004; CHO: 14.6% P = .004; CIN: 15.7%, P = .003), and muscular strength for chest (CRE: 6.6% P creatine ingestion lead to similar changes in anaerobic power, strength, and endurance.

  15. Creatine and creatinine contents in different diet types for dogs - effects of source and processing.

    Science.gov (United States)

    Dobenecker, B; Braun, U

    2015-12-01

    The concentrations of creatine and its degradation product creatinine were determined in a variety of unprocessed as well as processed feedstuffs suitable for dogs. Unprocessed feedstuffs were categorised as single feedstuffs, bone and raw food diets (BARF), and small vertebrates, for example prey animals. Processed feedstuffs were categorised as meat/meat and bone meals, complete wet diets and complete dry diets. The feedstuffs were chosen to cover a broad range of each of the three defined processed and unprocessed feed categories available on the market without further subclustering. The creatine content of the samples was compared on a dry matter, protein and energy basis. The relation of creatine to crude protein permitted a rating of the meat quality in terms of muscle tissue. We found no difference in creatine concentrations between the three categories of unprocessed feedstuffs (raw single feedstuffs, prey and BARF diets), neither on a dry matter basis nor when expressed relative to crude protein and metabolisable energy respectively. Significantly lower levels were determined in meat/meat and bone meal and commercial dry diets (e.g. 303 mg creatine/MJ ME in unprocessed vs. 6 mg/MJ ME in processed feedstuffs; p creatine which is a natural compound of the diet of this carnivorous and omnivorous species. © 2015 The Authors. Journal of Animal Physiology and Animal Nutrition Published by Blackwell Verlag GmbH.

  16. Scintigraphic evaluation of muscle damage following extreme exercise: concise communication

    International Nuclear Information System (INIS)

    Matin, P.; Lang, G.; Carretta, R.; Simon, G.

    1983-01-01

    Total body Tc-99m pyrophosphate scintigraphy was performed on 11 ''ultramarathon'' runners to assess the ability of nuclear medicine techniques to evaluate skeletal-muscle injury due to exercise. We found increased muscle radionuclide concentration in 90% of the runners. The pattern of muscle uptake correlated with the regions of maximum pain. The detection of exercise-induced rhabdomyolysis appeared to be best when scintigraphy was performed within 48 hr after the race, and to be almost undetectable after about a week. It was possible to differentiate muscle injury from joint and osseous abnormalities such as bone infarct or stress fracture. Although 77% of the runners had elevated serum creatine kinase MB activity, cardiac scintigraphy showed no evidence of myocardial injury

  17. Effects of Light-Emitting Diode Therapy on Muscle Hypertrophy, Gene Expression, Performance, Damage, and Delayed-Onset Muscle Soreness: Case-control Study with a Pair of Identical Twins.

    Science.gov (United States)

    Ferraresi, Cleber; Bertucci, Danilo; Schiavinato, Josiane; Reiff, Rodrigo; Araújo, Amélia; Panepucci, Rodrigo; Matheucci, Euclides; Cunha, Anderson Ferreira; Arakelian, Vivian Maria; Hamblin, Michael R; Parizotto, Nivaldo; Bagnato, Vanderlei

    2016-10-01

    The aim of this study was to verify how a pair of monozygotic twins would respond to light-emitting diode therapy (LEDT) or placebo combined with a strength-training program during 12 weeks. This case-control study enrolled a pair of male monozygotic twins, allocated randomly to LEDT or placebo therapies. Light-emitting diode therapy or placebo was applied from a flexible light-emitting diode array (λ = 850 nm, total energy = 75 J, t = 15 seconds) to both quadriceps femoris muscles of each twin immediately after each strength training session (3 times/wk for 12 weeks) consisting of leg press and leg extension exercises with load of 80% and 50% of the 1-repetition maximum test, respectively. Muscle biopsies, magnetic resonance imaging, maximal load, and fatigue resistance tests were conducted before and after the training program to assess gene expression, muscle hypertrophy and performance, respectively. Creatine kinase levels in blood and visual analog scale assessed muscle damage and delayed-onset muscle soreness, respectively, during the training program. Compared with placebo, LEDT increased the maximal load in exercise and reduced fatigue, creatine kinase, and visual analog scale. Gene expression analyses showed decreases in markers of inflammation (interleukin 1β) and muscle atrophy (myostatin) with LEDT. Protein synthesis (mammalian target of rapamycin) and oxidative stress defense (SOD2 [mitochondrial superoxide dismutase]) were up-regulated with LEDT, together with increases in thigh muscle hypertrophy. Light-emitting diode therapy can be useful to reduce muscle damage, pain, and atrophy, as well as to increase muscle mass, recovery, and athletic performance in rehabilitation programs and sports medicine.

  18. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  19. Augmentation of Creatine in the Heart.

    Science.gov (United States)

    Zervou, Sevasti; Whittington, Hannah J; Russell, Angela J; Lygate, Craig A

    2016-01-01

    Creatine is a principle component of the creatine kinase (CK) phosphagen system common to all vertebrates. It is found in excitable cells, such as cardiomyocytes, where it plays an important role in the buffering and transport of chemical energy to ensure that supply meets the dynamic demands of the heart. Multiple components of the CK system, including intracellular creatine levels, are reduced in heart failure, while ischaemia and hypoxia represent acute crises of energy provision. Elevation of myocardial creatine levels has therefore been suggested as potentially beneficial, however, achieving this goal is not trivial. This mini-review outlines the evidence in support of creatine elevation and critically examines the pharmacological approaches that are currently available. In particular, dietary creatine-supplementation does not sufficiently elevate creatine levels in the heart due to subsequent down-regulation of the plasma membrane creatine transporter (CrT). Attempts to increase passive diffusion and bypass the CrT, e.g. via creatine esters, have yet to be tested in the heart. However, studies in mice with genetic overexpression of the CrT demonstrate proof-of-principle that elevated creatine protects the heart from ischaemia-reperfusion injury. This suggests activation of the CrT as a major unmet pharmacological target. However, translation of this finding to the clinic will require a greater understanding of CrT regulation in health and disease and the development of small molecule activators.

  20. Effects of Combined Creatine Plus Fenugreek Extract vs. Creatine Plus Carbohydrate Supplementation on Resistance Training Adaptations

    Science.gov (United States)

    Taylor, Lem; Poole, Chris; Pena, Earnest; Lewing, Morgan; Kreider, Richard; Foster, Cliffa; Wilborn, Colin

    2011-01-01

    The purpose of this study was to evaluate the effects of combined creatine and fenugreek extract supplementation on strength and body composition. Forty- seven resistance trained men were matched according to body weight to ingest either 70 g of a dextrose placebo (PL), 5 g creatine/70 g of dextrose (CRD) or 3.5 g creatine/900 mg fenugreek extract (CRF) and participate in a 4-d/wk periodized resistance-training program for 8-weeks. At 0, 4, and 8-weeks, subjects were tested on body composition, muscular strength and endurance, and anaerobic capacity. Statistical analyses utilized a separate 3X3 (condition [PL vs. CRD vs. CRF] x time [T1 vs. T2 vs. T3]) ANOVAs with repeated measures for all criterion variables (p ≤ 0.05). No group x time interaction effects or main effects (p > 0.05) were observed for any measures of body composition. CRF group showed significant increases in lean mass at T2 (p = 0.001) and T3 (p = 0.001). Bench press 1RM increased in PL group (p = 0.050) from T1-T3 and in CRD from T1-T2 (p = 0. 001) while remaining significant at T3 (p 0.05). In conclusion, creatine plus fenugreek extract supplementation had a significant impact on upper body strength and body composition as effectively as the combination of 5g of creatine with 70g of dextrose. Thus, the use of fenugreek with creatine supplementation may be an effective means for enhancing creatine uptake while eliminating the need for excessive amounts of simple carbohydrates. Key points Fenugreek plus creatine supplementation may be a new means of increasing creatine uptake. Creatine plus fenugreek seems to be just as effective as the classic creatine plus carbohydrate ingestion in terms of stimulating training adaptations. This is the first study to our knowledge that has combined fenugreek with creatine supplementation in conjunction with a resistance training program. PMID:24149869

  1. Interleukin-6, Creatine Kinase, and Antioxidant Enzyme Activities following Platelet-Rich Plasma Treatment on Muscle Injury: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lingling Lai

    2016-06-01

    Full Text Available The aim of this study was to investigate the effect of autologous platelet-rich plasma (PRP treatment alongside rehabilitation compared with rehabilitation alone on inflammatory cytokine (interleukin-6, IL-6, creatine kinase muscle type (CKM, and antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT following hamstring injury. This study was a randomised control trial. Participants diagnosed with grade-2 acute hamstring injury (n=16 were divided into 2 groups of PRP treatment with rehabilitation program (PRP-T and rehabilitation program (CON. Blood samples were collected at baseline, and 2 fortnightly for the various biochemical assessments. Participants were certified to have recovered upon fulfilling return to play (RTP criteria. Level of IL-6 and the activities of CKM, SOD, and CAT were measured. PRP-T group benefited from earlier time to RTP with significantly lower IL-6 level and CAT activity compared to CON group. There was no significant difference in CKM and SOD activities between the groups, though a trend of lower values in all variables was observed at week 4 compared to week 0. PRP treatment potentially improves muscle healing process by altering both the inflammatory and oxidative responses, hence hastens time to RTP. KEY WORDS:  Autologous, blood injection, rehabilitation, sports injury, hamstring injury

  2. Exercise responses in patients with chronically high creatine kinase levels.

    Science.gov (United States)

    Cooper, Christopher B; Dolezal, Brett A; Neufeld, Eric V; Shieh, Perry; Jenner, John R; Riley, Marshall

    2017-08-01

    Elevated serum creatine kinase (CK) is often taken to reflect muscle disease, but many individuals have elevated CK without a specific diagnosis. How elevated CK reflects muscle metabolism during exercise is not known. Participants (46 men, 48 women) underwent incremental exercise testing to assess aerobic performance, cardiovascular response, and ventilatory response. Serum lactate, ammonia, and CK were measured at rest, 4 minutes into exercise, and 2 minutes into recovery. High-CK and control subjects demonstrated similar aerobic capacities and cardiovascular responses to incremental exercise. Those with CK ≥ 300 U/L exhibited significantly higher lactate and ammonia levels after maximal exercise, together with increased ventilatory responses, whereas those with CK ≥200 U/L but ≤ 300 U/L did not. We recommend measurement of lactate and ammonia profiles during a maximal incremental exercise protocol to help identify patients who warrant muscle biopsy to rule out myopathy. Muscle Nerve 56: 264-270, 2017. © 2016 Wiley Periodicals, Inc.

  3. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction

    Science.gov (United States)

    Lygate, Craig A.; Bohl, Steffen; ten Hove, Michiel; Faller, Kiterie M.E.; Ostrowski, Philip J.; Zervou, Sevasti; Medway, Debra J.; Aksentijevic, Dunja; Sebag-Montefiore, Liam; Wallis, Julie; Clarke, Kieran; Watkins, Hugh; Schneider, Jürgen E.; Neubauer, Stefan

    2012-01-01

    Aims Increasing energy storage capacity by elevating creatine and phosphocreatine (PCr) levels to increase ATP availability is an attractive concept for protecting against ischaemia and heart failure. However, testing this hypothesis has not been possible since oral creatine supplementation is ineffectual at elevating myocardial creatine levels. We therefore used mice overexpressing creatine transporter in the heart (CrT-OE) to test for the first time whether elevated creatine is beneficial in clinically relevant disease models of heart failure and ischaemia/reperfusion (I/R) injury. Methods and results CrT-OE mice were selected for left ventricular (LV) creatine 20–100% above wild-type values and subjected to acute and chronic coronary artery ligation. Increasing myocardial creatine up to 100% was not detrimental even in ageing CrT-OE. In chronic heart failure, creatine elevation was neither beneficial nor detrimental, with no effect on survival, LV remodelling or dysfunction. However, CrT-OE hearts were protected against I/R injury in vivo in a dose-dependent manner (average 27% less myocardial necrosis) and exhibited greatly improved functional recovery following ex vivo I/R (59% of baseline vs. 29%). Mechanisms contributing to ischaemic protection in CrT-OE hearts include elevated PCr and glycogen levels and improved energy reserve. Furthermore, creatine loading in HL-1 cells did not alter antioxidant defences, but delayed mitochondrial permeability transition pore opening in response to oxidative stress, suggesting an additional mechanism to prevent reperfusion injury. Conclusion Elevation of myocardial creatine by 20–100% reduced myocardial stunning and I/R injury via pleiotropic mechanisms, suggesting CrT activation as a novel, potentially translatable target for cardiac protection from ischaemia. PMID:22915766

  4. Normal results of post-race thallium-201 myocardial perfusion imaging in marathon runners with elevated serum MB creatine kinase levels

    International Nuclear Information System (INIS)

    Siegel, A.J.; Silverman, L.M.; Holman, B.L.

    1985-01-01

    Elevated cardiac enzyme values in asymptomatic marathon runners after competition can arise from skeletal muscle through exertional rhabdomyolysis, silent injury to the myocardium, or a combined tissue source. Peak post-race levels of the MB isoenzyme of creatine kinase are similar to values in patients with acute myocardial infarction. Previously reported normal results of infarct-avid myocardial scintigraphy with technetium 99m pyrophosphate in runners after competition suggest a non-cardiac source but cannot exclude silent injury to the myocardium. Therefore, thallium 201 myocardial perfusion imaging was performed in runners immediately after competition together with determination of sequential cardiac enzyme levels. Among 15 runners tested, the average peak in serum MB creatine kinase 24 hours after the race was 128 IU/liter with a cumulative MB creatine kinase release of 117 IU/liter; these values are comparable to those in patients with acute transmural myocardial infarction. Thallium 201 myocardial scintigraphic results were normal in five runners randomly selected from those who volunteered for determination of sequential blood levels. It is concluded that elevations of serum MB creatine kinase in marathon runners arise from a skeletal muscle source and that thallium 201 myocardial scintigraphy is useful to assess runners for myocardial injury when clinical questions arise

  5. Radioimmunoassay of inactive creatine kinase B protein in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Burnam, M H; Shell, W E [California Univ., Los Angeles (USA). School of Medicine

    1981-08-27

    The authors describe a rapid, sensitive radioimmunoassay for enzymatically inactive creatine kinase B protein (CK-Bi) in plasma. /sup 125/I-CK-Bi of high specific activity and good stability was prepared by oxidant-based iodination. A 12-minute first antibody incubation was used. Bound and free antigen were separated by a second antibody system. Large excesses of purified CK-MM from human skeletal muscle did not react in the assay. Cross reactivity to CK-MB purified from the plasma of patients with acute myocardial infarction was negligible. The 95th percentile of plasma CK-Bi in 150 adults was 145 ..mu..g equivalents/ml. Within-assay and between-assay precision ranged from 5% to 9% and 6% to 10%, respectively. Evidence is presented indicating that the assay measures inactive creatine kinase B protein, a protein not measured by current assay systems dependent on biological activity.

  6. Radioimmunoassay of inactive creatine kinase B protein in human plasma

    International Nuclear Information System (INIS)

    Burnam, M.H.; Shell, W.E.

    1981-01-01

    The authors describe a rapid, sensitive radioimmunoassay for enzymatically inactive creatine kinase B protein (CK-Bi) in plasma. 125 I-CK-Bi of high specific activity and good stability was prepared by oxidant-based iodination. A 12-minute first antibody incubation was used. Bound and free antigen were separated by a second antibody system. Large excesses of purified CK-MM from human skeletal muscle did not react in the assay. Cross reactivity to CK-MB purified from the plasma of patients with acute myocardial infarction was negligible. The 95th percentile of plasma CK-Bi in 150 adults was 145 μg equivalents/ml. Within-assay and between-assay precision ranged from 5% to 9% and 6% to 10%, respectively. Evidence is presented indicating that the assay measures inactive creatine kinase B protein, a protein not measured by current assay systems dependent on biological activity. (Auth.)

  7. Thermal stability and aggregation of creatine kinase from rabbit skeletal muscle. Effect of 2-hydroxypropyl-beta-cyclodextrin.

    Science.gov (United States)

    Maloletkina, Olga I; Markossian, Kira A; Belousova, Lyubov V; Kleimenov, Sergey Yu; Orlov, Victor N; Makeeva, Valentina F; Kurganov, Boris I

    2010-05-01

    Effect of 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) on thermal aggregation of creatine kinase from rabbit skeletal muscle (RMCK) at 48 degrees C has been studied using dynamic light scattering. An increase in the duration of the lag period on the kinetic curves of aggregation, registered as an increment of the light scattering intensity in time, has been observed in the presence of HP-beta-CD. It has been shown that the initial parts of the dependences of the hydrodynamic radius (R(h)) of the protein aggregates on time follow the exponential law. The reciprocal value of parameter t(2R) (t(2R) is the time interval over which the R(h) value is doubled) was used to characterize the rate of aggregation. A 10-fold decrease in the 1/t(2R) value was observed in the presence of 76mM HP-beta-CD. Judging from the data on the kinetics of RMCK inactivation and the data on differential scanning calorimetry of RMCK, HP-beta-CD does not affect the rate of RMCK unfolding.

  8. The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10

    Directory of Open Access Journals (Sweden)

    Michele Guescini

    2017-01-01

    Full Text Available Sarcopenia represents an increasing public health risk due to the rapid aging of the world’s population. It is characterized by both low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence, disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has lagged. Increased reactive oxygen species (ROS production and decreased antioxidant (AO defences seem to be important factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible explanation might be that not all the agents included in the general heading of “AOs” could fulfill the requisites to counteract the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of sarcopenia is discussed.

  9. Effects of Isotretinoin on Serum Creatine Phosphokinase Levels in Patients with Acne Vulgaris

    Directory of Open Access Journals (Sweden)

    Müge Güler Özden

    2008-07-01

    Full Text Available Background and Design: It has been known that isotretinoin may cause rabdomyolysis besides its many side affects. The purpose of our study was to evaluate the effect of isotretinoin therapy with a cumulative dose of 120 mg/kg on serum creatine phosphokinase levels and muscle physiology in patients with acne vulgaris.MATERIAL-METHOD: A total of 66 patients with severe acne vulgaris were enrolled in the study and treated with isotretinoin twice daily at the dose of 0.6-0.8 mg/kg/day and for approximately 6.1±0.54 (3-7 months. Thirty-seven female (71.2% and 15 male (28.8% patients completed the study. The change in serum creatine kinase levels was measured before and monthly during the treatment course. Electromyography was performed in patients with a high serum CPK level and myalgia for the exclusion myopathy. All patients were evaluated with their laboratory findings and they were questioned for exercise habits and intramuscular injections.RESULTS: The mean age and body weight was 24.6±6.1 years and 62.3±11.9 kg respectively. We have detected 7 patients having elevated (13.5% serum CPK levels. Three of them had associating myalgia and muscle tenderness. The evaluation of these patients with EMG revealed no myopathy sign. (CPK values =1000, 880,726 respectively Only one patient with an elevated serum CPK was performing exercise. There was no history of intramuscular injection history in any of these patients. CONCLUSION: The use of standard isotretinoin therapy appears to have a relation with marked hyperCKemia with or without muscle-related complaints. Isotretinoin could have a potentializing effect on other myotoxicity inducers (drugs, infection, fever, muscular exertion. Although this phenomenon in isotretinoin-treated patients with acne appears to be validated as benign in nature, the clinicians must keep this side affect in mind and should monitorize serum CPK levels since there are some patients who had severe or persistent signs.

  10. Role of quaternary structure in muscle creatine kinase stability: tryptophan 210 is important for dimer cohesion.

    Science.gov (United States)

    Perraut, C; Clottes, E; Leydier, C; Vial, C; Marcillat, O

    1998-07-01

    A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions.

  11. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials.

    Science.gov (United States)

    Avgerinos, Konstantinos I; Spyrou, Nikolaos; Bougioukas, Konstantinos I; Kapogiannis, Dimitrios

    2018-07-15

    Creatine is a supplement used by sportsmen to increase athletic performance by improving energy supply to muscle tissues. It is also an essential brain compound and some hypothesize that it aids cognition by improving energy supply and neuroprotection. The aim of this systematic review is to investigate the effects of oral creatine administration on cognitive function in healthy individuals. A search of multiple electronic databases was performed for the identification of randomized clinical trials (RCTs) examining the cognitive effects of oral creatine supplementation in healthy individuals. Six studies (281 individuals) met our inclusion criteria. Generally, there was evidence that short term memory and intelligence/reasoning may be improved by creatine administration. Regarding other cognitive domains, such as long-term memory, spatial memory, memory scanning, attention, executive function, response inhibition, word fluency, reaction time and mental fatigue, the results were conflicting. Performance on cognitive tasks stayed unchanged in young individuals. Vegetarians responded better than meat-eaters in memory tasks but for other cognitive domains no differences were observed. Oral creatine administration may improve short-term memory and intelligence/reasoning of healthy individuals but its effect on other cognitive domains remains unclear. Findings suggest potential benefit for aging and stressed individuals. Since creatine is safe, future studies should include larger sample sizes. It is imperative that creatine should be tested on patients with dementias or cognitive impairment. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Creatine supplementation: effects on blood creatine kinase activity responses to resistance exercise and creatine kinase activity measurement

    Directory of Open Access Journals (Sweden)

    Marco Machado

    2009-12-01

    Full Text Available The purpose of this study was to determine the effects of creatine supplementation and exercise on the integrity of muscle fiber, as well as the effect of the supplementation on the creatine kinase (CK assay measurement. Forty-nine sedentary individuals participated in a double-blind study and were divided into two groups: C (n=26 received 4x5-day packages of 0.6 g.kg-1 of body weight contained 50% of creatine + 50% of dextrose, and P (n=23 received packages containing only dextrose. On the first day the groups performed a 1RM test for bench press, seated row, leg extension, leg curl and leg press. On D7 they received the supplements. On the fourteenth day, they performed a training session of five exercises, each in three sets of ten repetitions at 75% of 1RM. Blood was collected before (D14 and after the exercise session (D15. Differing levels of blood creatine were tested to determine the influence on the assay measurements of CK. ANOVA and Tukey's post-hoc tests were used to compare groups and different times of study protocol (PO objetivo do presente estudo foi determinar o efeito da suplementação de creatina e do exercício na integridade das fibras musculares e, também, o efeito da suplementação na técnica de mensuração da atividade da creatina kinase (CK. Quarenta e nove sedentários participaram de um estudo duplo-cego e foram divididos em dois grupos: C (n=26 que receberam 4x5 dias embalagens com 0,6 g.kg-1 de massa corporal com 50% de creatina + 50% de dextrose, e P (n=23 que receberam embalagens contendo apenas dextrose. No primeiro dia, eles realizaram o teste de 1RM para os exercícios supino reto, remada sentada, cadeira extensora, mesa flexora, e leg press. No D7 receberam os suplementos. No décimo quarto dia eles realizaram uma sessão de treinos com os cinco exercícios, cada um com 3x10 repetições a 75% de 1RM. Sangue foi coletado antes (D14 e depois da sessão de exercícios (D15. Diferentes concentrações de

  13. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system.

    Science.gov (United States)

    Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich

    2016-08-01

    Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Electrophysiologic and clinico-pathologic characteristics of statin-induced muscle injury

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulrazaq

    2015-08-01

    Conclusion: Atorvastatin increased average creatine kinase, suggesting, statins produce mild muscle injury even in asymptomatic subjects. Diabetic statin users were more prone to develop muscle injury than others. Muscle fiber conduction velocity evaluation is recommended as a simple and reliable test to diagnose statin-induced myopathy instead of invasive muscle biopsy.

  15. 21 CFR 862.1210 - Creatine test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Creatine test system. 862.1210 Section 862.1210....1210 Creatine test system. (a) Identification. A creatine test system is a device intended to measure creatine (a substance synthesized in the liver and pancreas and found in biological fluids) in plasma...

  16. Abnormalities in Human Brain Creatine Metabolism in Gulf War Illness Probed with MRS

    Science.gov (United States)

    2014-12-01

    TYPE Final 3. DATES COVERED 30 Sep 2012 - 29 Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Abnormalities in Human Brain Creatine Metabolism in...levels of total creatine (tCr) in veterans with Gulf War Illness have been observed in prior studies. The goal of this research is to estimate amounts and

  17. Effects of exercise intensity and creatine loading on post-resistance exercise hypotension

    Directory of Open Access Journals (Sweden)

    Moreno Rodrigues Moreno

    2009-09-01

    Full Text Available Postexercise hypotension plays an important role in the non-pharmacological treat-ment of hypertension and is characterized by a decrease in blood pressure after a single exercise bout in relation to pre-exercise levels. This study investigated the effects of exercise intensity and creatine monohydrate supplementation on postexercise hypotension, as well as the possible role of blood lactate in this response. Ten normotensive subjects underwent resistance exercise sessions before (BC and after (AC creatine supplementation: 1 muscle endurance (ME consisting of 30 repetitions at 30% of one-repetition maximum; 2 hypertrophy (HP consisting of 8 repetitions at 75% of one-repetition maximum. Blood pressure was measured before and after the exercise bout. Blood lactate was measured after the exercise bout. The HP and ME sessions promoted a decrease in systolic blood pressure (∆ -19 ± 1.0 mmHg; ∆ -15 ± 0.9 mmHg, respectively, P 0.05. In conclusion, resistance exercise intensity did not influence postexercise hypotension. Creatine supplementation attenuated the decrease in blood pressure after resistance exercise. The results suggest the involvement of blood lactate in post-resistance exercise hypotension.

  18. Effects of exercise intensity and creatine loading on post-resistance exercise hypotension

    Directory of Open Access Journals (Sweden)

    Moreno Rodrigues Moreno

    2009-01-01

    Postexercise hypotension plays an important role in the non-pharmacological treat-ment of hypertension and is characterized by a decrease in blood pressure after a single exercise bout in relation to pre-exercise levels. This study investigated the effects of exercise intensity and creatine monohydrate supplementation on postexercise hypotension, as well as the possible role of blood lactate in this response. Ten normotensive subjects underwent resistance exercise sessions before (BC and after (AC creatine supplementation: 1 muscle endurance (ME consisting of 30 repetitions at 30% of one-repetition maximum; 2 hypertrophy (HP consisting of 8 repetitions at 75% of one-repetition maximum. Blood pressure was measured before and after the exercise bout. Blood lactate was measured after the exercise bout. The HP and ME sessions promoted a decrease in systolic blood pressure (∆ -19 ± 1.0 mmHg; ∆ -15 ± 0.9 mmHg, respectively, P 0.05. In conclusion, resistance exercise intensity did not influence postexercise hypotension. Creatine supplementation attenuated the decrease in blood pressure after resistance exercise. The results suggest the involvement of blood lactate in post-resistance exercise hypotension.

  19. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models?

    Science.gov (United States)

    Hanna-El-Daher, Layane; Braissant, Olivier

    2016-08-01

    While it has long been thought that most of cerebral creatine is of peripheral origin, the last 20 years has provided evidence that the creatine synthetic pathway (AGAT and GAMT enzymes) is expressed in the brain together with the creatine transporter (SLC6A8). It has also been shown that SLC6A8 is expressed by microcapillary endothelial cells at the blood-brain barrier, but is absent from surrounding astrocytes, raising the concept that the blood-brain barrier has a limited permeability for peripheral creatine. The first creatine deficiency syndrome in humans was also discovered 20 years ago (GAMT deficiency), followed later by AGAT and SLC6A8 deficiencies, all three diseases being characterized by creatine deficiency in the CNS and essentially affecting the brain. By reviewing the numerous and latest experimental studies addressing creatine transport and synthesis in the CNS, as well as the clinical and biochemical characteristics of creatine-deficient patients, our aim was to delineate a clearer view of the roles of the blood-brain and blood-cerebrospinal fluid barriers in the transport of creatine and guanidinoacetate between periphery and CNS, and on the intracerebral synthesis and transport of creatine. This review also addresses the question of guanidinoacetate toxicity for brain cells, as probably found under GAMT deficiency.

  20. Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes.

    Science.gov (United States)

    Ndika, Joseph D T; Lusink, Vera; Beaubrun, Claudine; Kanhai, Warsha; Martinez-Munoz, Cristina; Jakobs, Cornelis; Salomons, Gajja S

    2014-01-10

    Interconversion between phosphocreatine and creatine, catalyzed by creatine kinase is crucial in the supply of ATP to tissues with high energy demand. Creatine's importance has been established by its use as an ergogenic aid in sport, as well as the development of intellectual disability in patients with congenital creatine deficiency. Creatine biosynthesis is complemented by dietary creatine uptake. Intracellular transport of creatine is carried out by a creatine transporter protein (CT1/CRT/CRTR) encoded by the SLC6A8 gene. Most tissues express this gene, with highest levels detected in skeletal muscle and kidney. There are lower levels of the gene detected in colon, brain, heart, testis and prostate. The mechanism(s) by which this regulation occurs is still poorly understood. A duplicated unprocessed pseudogene of SLC6A8-SLC6A10P has been mapped to chromosome 16p11.2 (contains the entire SLC6A8 gene, plus 2293 bp of 5'flanking sequence and its entire 3'UTR). Expression of SLC6A10P has so far only been shown in human testis and brain. It is still unclear as to what is the function of SLC6A10P. In a patient with autism, a chromosomal breakpoint that intersects the 5'flanking region of SLC6A10P was identified; suggesting that SLC6A10P is a non-coding RNA involved in autism. Our aim was to investigate the presence of cis-acting factor(s) that regulate expression of the creatine transporter, as well as to determine if these factors are functionally conserved upstream of the creatine transporter pseudogene. Via gene-specific PCR, cloning and functional luciferase assays we identified a 1104 bp sequence proximal to the mRNA start site of the SLC6A8 gene with promoter activity in five cell types. The corresponding 5'flanking sequence (1050 bp) on the pseudogene also had promoter activity in all 5 cell lines. Surprisingly the pseudogene promoter was stronger than that of its parent gene in 4 of the cell lines tested. To the best of our knowledge, this is the first

  1. Boehringer immunoinhibition procedure for creatine kinase-MB evaluated and compared with column ion-exchange chromatography

    NARCIS (Netherlands)

    ter Welle, H. F.; Baartscheer, T.; Fiolet, J. W.

    1983-01-01

    In determination of creatine kinase isoenzyme MB (CK-MB), the Boehringer immunoinhibition method gives a high and variable blank activity as compared with column-chromatography. Thus a correction must be applied. Furthermore, a second correction of 1% of total creatine kinase activity is necessary

  2. The B isozyme creatine kinase is active as a fusion protein in Escherichia coli

    International Nuclear Information System (INIS)

    Koretsky, A.P.; Traxler, B.A.

    1989-01-01

    A cDNA encoding the B isozyme of creatine kinase CK B has been expressed in Escherichia coli from a fusion with lacZ carried by λgtll. Western blots indicate that a stable polypeptide with the appropriate mobility for the Β-galactosidase-creatine kinase Β-gal-CK B ) fusion protein cross-reacts with both Β-gal and CK B antiserum. No significant CK activity is detected in control E. coli; however, extracts from cells containing the λgtll-CK B construct have a CK activity of 1.54j0.07 μmol/min per mg protein. The fusion protein appears to provide this activity bacause immunoprecipitation of protein with Β-gal antiserum leads to a loss of CK activity from extracts. That the enzyme is active in vivo was demonstrated by detection of a phosphocreatine (PCr) peak in the 31 P NMR spectrum from E. coli grown on medium supplemented with creatine. As in mammalian brain and muscle, the PCr peak detected was sensitive to the energy status of the E. coli. (author). 17 refs.; 3 figs.; 1 tab

  3. Genetics Home Reference: X-linked creatine deficiency

    Science.gov (United States)

    ... Health Conditions X-linked creatine deficiency X-linked creatine deficiency Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description X-linked creatine deficiency is an inherited disorder that primarily affects ...

  4. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting?

    Science.gov (United States)

    Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf

    2007-08-01

    Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer-related muscle wasting was not associated with increases in plasma MG or CK in this study.

  5. Genetics of muscle and meat quality in chicken

    OpenAIRE

    Zahoor, Imran

    2013-01-01

    Skeletal muscles in broilers are generally characterised by pathological muscle damage, indicated by greater plasma creatine kinase (CK) activity, higher incidence of haemorrhages, lighter and less coloured breast muscles, compared with layers and traditional breeds of chicken. Muscle damage is further exacerbated by exposure to stressful conditions such as high ambient temperatures which results in a further decrease in the quality of broiler meat and leads to the production o...

  6. X-linked creatine transporter deficiency: clinical aspects and pathophysiology

    NARCIS (Netherlands)

    van de Kamp, J.M.; Mancini, G.M.; Salomons, G.S.

    2014-01-01

    Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter

  7. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics

    Directory of Open Access Journals (Sweden)

    Nielsen Niels

    2010-02-01

    Full Text Available Abstract Background Creatine is a key intermediate in energy metabolism and supplementation of creatine has been used for increasing muscle mass, strength and endurance. Creatine supplementation has also been reported to trigger the skeletal muscle expression of insulin like growth factor I, to increase the fat-free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating the explorative techniques, proteomics and NMR metabonomics, in a systems biology approach. Methods Differentiated mouse myotube cultures (C2C12 were exposed to 5 mM creatine monohydrate (CMH for 24 hours. For proteomics studies, lysed myotubes were analyzed in single 2-DGE gels where the first dimension of protein separation was pI 5-8 and second dimension was a 12.5% Criterion gel. Differentially expressed protein spots of significance were excised from the gel, desalted and identified by peptide mass fingerprinting using MALDI-TOF MS. For NMR metabonomic studies, chloroform/methanol extractions of the myotubes were subjected to one-dimensional 1H NMR spectroscopy and the intracellular oxidative status of myotubes was assessed by intracellular DCFH2 oxidation after 24 h pre-incubation with CMH. Results The identified differentially expressed proteins included vimentin, malate dehydrogenase, peroxiredoxin, thioredoxin dependent peroxide reductase, and 75 kDa and 78 kDa glucose regulated protein precursors. After CMH exposure, up-regulated proteomic spots correlated positively with the NMR signals from creatine, while down-regulated proteomic spots were negatively correlated with these NMR signals. The identified differentially regulated proteins were related to energy metabolism, glucose regulated stress, cellular structure and the

  8. Changes in Serum Free Amino Acids and Muscle Fatigue Experienced during a Half-Ironman Triathlon.

    Directory of Open Access Journals (Sweden)

    Francisco Areces

    Full Text Available The aim of this study was to investigate the relationship between changes in serum free amino acids, muscle fatigue and exercise-induced muscle damage during a half-ironman triathlon. Twenty-six experienced triathletes (age = 37.0 ± 6.8 yr; experience = 7.4 ± 3.0 yr competed in a real half-ironman triathlon in which sector times and total race time were measured by means of chip timing. Before and after the race, a countermovement jump and a maximal isometric force test were performed, and blood samples were withdrawn to measure serum free amino acids concentrations, and serum creatine kinase levels as a blood marker of muscle damage. Total race time was 320 ± 37 min and jump height (-16.3 ± 15.2%, P 20%. However, neither the changes in serum free amino acids nor the tryptophan/BCAA ratio were related muscle fatigue or muscle damage during the race.

  9. Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome.

    OpenAIRE

    Preedy, V R; Smith, D G; Salisbury, J R; Peters, T J

    1993-01-01

    AIMS--To investigate in detail various biochemical and pathophysiological indices of muscle pathology in acute onset post-viral fatigue syndrome (PVFS). METHODS--Twenty three patients with PVFS (of mean duration 4.6 years) were subjected to needle biopsy for histomorphometry and total RNA contents. Plasma analysis included serology and creatine kinase activities. Indices of whole body mass were also measured--namely, whole body potassium content and plasma carnosinase activities. RESULTS--Abo...

  10. Creatine supplementation and swim performance: a brief review.

    Science.gov (United States)

    Hopwood, Melissa J; Graham, Kenneth; Rooney, Kieron B

    2006-03-01

    Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle. Key PointsCreatine supplementation does not improve single sprint

  11. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation.

    Science.gov (United States)

    Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O

    2017-08-01

    Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    Using chromatin immunoprecipitation assays, we demonstrated that expression of cyclin D3 in undifferentiated myoblasts altered histone epigenetic marks at promoters of muscle-specific genes like MyoD, Pax7, myogenin and muscle creatine kinase but not non-muscle genes. Cyclin D3 expression also reduced the mRNA ...

  13. Muscle response to leg lengthening during distraction osteogenesis.

    Science.gov (United States)

    Thorey, Fritz; Bruenger, Jens; Windhagen, Henning; Witte, Frank

    2009-04-01

    Continuous lengthening of intact muscles during distraction osteogenesis leads to an increase of sarcomeres and enhances the regeneration of tendons and blood vessels. A high distraction rate leads to an excessive leg and muscle lengthening and might cause damages of muscle fibers with fibrosis, necrosis, and muscle weakness. Complications like muscle contractures or atrophy after postoperative immobilization emphazize the importance of muscles and their function in the clinical outcome. In an animal model of distraction osteogenesis, 18 sheep were operated with an external fixator followed by 4 days latency, 21 days distraction (1.25 mm per day) and 51 days consolidation. The anatomical location (gastrocnemius, peroneus tertius, and first flexor digitorum longus muscle), dimension and occurrence of muscular defects were characterized histologically. The callus formation and leg axis was monitored by weekly X-rays. Additionally, serum creatine kinase was analyzed during a distraction and consolidation period. Significant signs of muscle lesions in all three observed muscles can be found postoperatively, whereas normal callus formation and regular leg axis was observed radiologically. The peroneus tertius and first flexor digitorum longus muscles were found to have significantly more signs of fibrosis, inflammatory, and necrosis. Creatine kinase showed two peaks: 4 and 39 days postoperative as an indication of muscle damage and regeneration. The study implicates that muscle damages should be considered when a long-distance distraction osteogenesis is planned. The surgeon should consider these muscle responses and individually discuss a two-stage treatment or additional muscle tendon releases to minimize the risk of muscle damages.

  14. A Pilot Study of Creatine as a Novel Treatment for Depression in Methamphetamine Using Females

    Science.gov (United States)

    Hellem, Tracy L.; Sung, Young-Hoon; Shi, Xian-Feng; Pett, Marjorie A.; Latendresse, Gwen; Morgan, Jubel; Huber, Rebekah S.; Kuykendall, Danielle; Lundberg, Kelly J.; Renshaw, Perry F.

    2015-01-01

    screens of greater than 50% was observed by week 6. Finally, creatine was well tolerated and adverse events that were related to gastrointestinal symptoms and muscle cramping were determined as possibly related to creatine. Conclusions The current study suggests that creatine treatment may be a promising therapeutic approach for females with depression and comorbid methamphetamine dependence. Clinical Trial Registration This study is registered on clinicaltrials.gov (NCT01514630). PMID:26457568

  15. The CREST-E study of creatine for Huntington disease: A randomized controlled trial.

    Science.gov (United States)

    Hersch, Steven M; Schifitto, Giovanni; Oakes, David; Bredlau, Amy-Lee; Meyers, Catherine M; Nahin, Richard; Rosas, Herminia Diana

    2017-08-08

    To investigate whether creatine administration could slow progressive functional decline in adults with early symptoms of Huntington disease. We conducted a multicenter, randomized, double-blind, placebo-controlled study of up to 40 g daily of creatine monohydrate in participants with stage I and II HD treated for up to 48 months. The primary outcome measure was the rate of change in total functional capacity (TFC) between baseline and end of follow-up. Secondary outcome measures included changes in additional clinical scores, tolerability, and quality of life. Safety was assessed by adverse events and laboratory studies. At 46 sites in North America, Australia, and New Zealand, 553 participants were randomized to creatine (275) or placebo (278). The trial was designed to enroll 650 patients, but was halted for futility after the first interim analysis. The estimated rates of decline in the primary outcome measure (TFC) were 0.82 points per year for participants on creatine, 0.70 points per year for participants on placebo, favoring placebo (nominal 95% confidence limits -0.11 to 0.35). Adverse events, mainly gastrointestinal, were significantly more common in participants on creatine. Serious adverse events, including deaths, were more frequent in the placebo group. Subgroup analysis suggested that men and women may respond differently to creatine treatment. Our data do not support the use of creatine treatment for delaying functional decline in early manifest HD. NCT00712426. This study provides Class II evidence that for patients with early symptomatic HD, creatine monohydrate is not beneficial for slowing functional decline. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  16. A creatina como suplemento ergogênico para atletas Creatine as an ergogenic supplement for athletes

    Directory of Open Access Journals (Sweden)

    José PERALTA

    2002-01-01

    Full Text Available A creatina vem sendo muito pesquisada devido ao seu potencial efeito no rendimento físico de atletas envolvidos em exercícios de alta intensidade e curta duração, intermitentes e com curtos períodos de recuperação. A creatina fosforilada é uma reserva de energia nas células musculares. Durante um exercício intenso, a sua quebra libera energia é usada para regenerar o trifosfato de adenosina. Aproximadamente 95% do pool de creatina encontra-se na musculatura esquelética e sua regeneração após o exercício é um processo dependente de oxigênio. Estudos mostram que a suplementação com este composto pode aumentar o pool orgânico em 10 a 20%, e este percentual é maior em atletas vegetarianos (até 60%. Ainda existe controvérsia com relação aos benefícios e riscos da suplementação com esta substância. Este estudo revisa alguns dos aspectos relacionados com o metabolismo da creatina e seu uso como substância ergogênica na prática desportiva.Several researches on creatine have been done due to its potential effects on the physical performance of athletes involved in high intensity, short duration and intermittent exercises with short periods of recovery. Phosphorylated creatine is an energy reserve in the muscle cells. During an intense exercise, its breakdown liberates energy used to regenerate adenosine triphosphate. Approximately 95% of the creatine pool is found in the skeletal muscle, and the regenerating process after exercise is oxygen dependent. Studies show that supplementation with this compound may procedure an increase of 10% to 20% in the organic pool, and this percentage is higher in vegetarian athletes (up to 60%. There is still controversy regarding the benefits and risks of supplementation with this substance. This paper reviews some aspects related to the creatine metabolism and its use as an ergogenic substance in sports practice.

  17. Does maternal-fetal transfer of creatine occur in pregnant sheep?

    Science.gov (United States)

    Baharom, Syed; De Matteo, Robert; Ellery, Stacey; Della Gatta, Paul; Bruce, Clinton R; Kowalski, Greg M; Hale, Nadia; Dickinson, Hayley; Harding, Richard; Walker, David; Snow, Rodney J

    2017-07-01

    Our aim was to determine the disposition of creatine in ovine pregnancy and whether creatine is transferred across the placenta from mother to fetus. Pregnant ewes received either 1 ) a continuous intravenous infusion of creatine monohydrate or saline from 122 to 131 days gestation, with maternal and fetal arterial blood and amniotic fluid samples collected daily for creatine analysis and fetal tissues collected at necropsy at 133 days for analysis of creatine content, or 2 ) a single systemic bolus injection of [ 13 C]creatine monohydrate at 130 days of gestation, with maternal and fetal arterial blood, uterine vein blood, and amniotic fluid samples collected before and for 4 h after injection and analyzed for creatine, creatine isotopic enrichment, and guanidinoacetic acid (GAA; precursor of creatine) concentrations. Presence of the creatine transporter-1 (SLC6A8) and l-arginine:glycine amidinotransferase (AGAT; the enzyme synthesizing GAA) proteins were determined by Western blots of placental cotyledons. The 10-day creatine infusion increased maternal plasma creatine concentration three- to fourfold ( P creatine content. Maternal arterial 13 C enrichment was increased ( P creatine injection without change of fetal arterial 13 C enrichment. SLC6A8 and AGAT proteins were identified in placental cotyledons, and GAA concentration was significantly higher in uterine vein than maternal artery plasma. Despite the presence of SLC6A8 protein in cotyledons, these results suggest that creatine is not transferred from mother to fetus in near-term sheep and that the ovine utero-placental unit releases GAA into the maternal circulation. Copyright © 2017 the American Physiological Society.

  18. Creatine metabolism: detection of creatine and guanidinoacetate in saliva of healthy subjects.

    Science.gov (United States)

    Martínez, Lidia D; Bezard, Miriam; Brunotto, Mabel; Dodelson de Kremer, Raquel

    2016-04-01

    Creatine (Cr) plays an important role in storage and transmission of phosphate-bound energy. Cerebral creatine deficiency syndromes comprise three inherited defects in Cr biosynthesis and transport. The aim of this study was to investigate whether Cr and Guanidinoacetate (GAA) can be detected in saliva of healthy subjects and to establish the relationship between salivary and plasma levels of these molecules. An adapted gas chromatography (GC) method is described for the quantification of Cr and GAA biomarkers in saliva. Reference values were established for GAA and Cr in saliva. These values were age dependent (p= 0.001). No difference between genders was observed. We detected a difference between GAA and Cr concentrations in saliva and in plasma. The GC method for simultaneous determination of GAA and Cr in human saliva is fast, reliable, sensitive, non-invasive and precise to use as a biochemical approach in early detection of cerebral creatine deficiency syndromes. Sociedad Argentina de Investigación Odontológica.

  19. CREATINE SUPPLEMENTATION AND SWIM PERFORMANCE: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Melissa J. Hopwood

    2006-03-01

    Full Text Available Nutritional supplements are popular among athletes participating in a wide variety of sports. Creatine is one of the most commonly used dietary supplements, as it has been shown to be beneficial in improving performance during repeated bouts of high-intensity anaerobic activity. This review examines the specific effects of creatine supplementation on swimming performance, and considers the effects of creatine supplementation on various measures of power development in this population. Research performed on the effect of creatine supplementation on swimming performance indicates that whilst creatine supplementation is ineffective in improving performance during a single sprint swim, dietary creatine supplementation may benefit repeated interval swim set performance. Considering the relationship between sprint swimming performance and measurements of power, the effect of creatine supplementation on power development in swimmers has also been examined. When measured on a swim bench ergometer, power development does show some improvement following a creatine supplementation regime. How this improvement in power output transfers to performance in the pool is uncertain. Although some evidence exists to suggest a gender effect on the performance improvements seen in swimmers following creatine supplementation, the majority of research indicates that male and female swimmers respond equally to supplementation. A major limitation to previous research is the lack of consideration given to the possible stroke dependant effect of creatine supplementation on swimming performance. The majority of the research conducted to date has involved examination of the freestyle swimming stroke only. The potential for performance improvements in the breaststroke and butterfly swimming strokes is discussed, with regards to the biomechanical differences and differences in efficiency between these strokes and freestyle

  20. Creatine kinase and creatine kinase subunit-B in coronary sinus blood in pacing-induced angina pectoris

    DEFF Research Database (Denmark)

    Bagger, J P; Ingerslev, J; Heinsvig, E M

    1982-01-01

    In nine out of 10 patients with angiographic documented coronary artery disease, pacing-induced angina pectoris provoked myocardial production of lactate, whereas no significant release of either creatine kinase or creatine kinase subunit-B to coronary sinus and peripheral venous blood could...

  1. X-Linked Creatine Transporter Deficiency Presenting as a Mitochondrial Disorder

    NARCIS (Netherlands)

    Hathaway, S.C.; Friez, M.; Limbo, K.; Parker, C.; Salomons, G.S.; Vockley, J.; Wood, T.; Abdul-Rahman, O.A.

    2010-01-01

    X-linked creatine transporter defect is caused by mutations in SLC6A8 at Xq28, which encodes the sodium-dependent creatine transporter. Reduction in creatine uptake results in elevated urine creatine and CSF creatine deficiency, which can be detected on magnetic resonance spectroscopy. We report a

  2. the Effect of six weeks of high intensity interval training and zinc ‎supplement on serum ‎creatine kinase and uric acid levels in ‎futsal players ‎

    Directory of Open Access Journals (Sweden)

    Malihe Saeedy

    2017-01-01

    Full Text Available Background: strenuous training‎-induced reactive oxygen species is associated with several ‎chronic diseases‎ by damaging cell proteins and membrane lipids; it seems uric acid as a major ‎intracellular antioxidant could lower membranous lipid peroxidation and muscle damage. The aim ‎of this study was to examine the effect of six weeks of high-intensity interval training with and ‎‎without zinc ‎on serum Creatine Kinase and uric acid in female futsal players.‎ Methods: Thirty-two female futsal players were randomly divided into four groups: placebo, ‎Zinc, ‎HIT ‎and Zinc+HIT. All subjects had to attend futsal-specific training three sessions per ‎week. Zinc and ‎Placebo groups took ‎30 mg ‎day−1 of zinc gluconate or dextrose, respectively; ‎HIT groups accomplished high-intensity interval training contained 6 to 10 repetitions of a 30-‎second ‎running at 100% of VO2peak with a 4-minutes rest between efforts, during six weeks.‎ Results: After six weeks, Creatine Kinase ‎levels augmented insignificantly from 83.98 to 120.19‎ ‎‎(P=0.101 in ‎placebo, from 99.58 to 150.1(P=0.167 in HIT and from 81.07 to 107.90‎ ‎‎(P=0.152 ‎in HIT+Zinc group; while Creatine Kinase ‎levels increased significantly from 66.86 to ‎‎‎124.81(P=0.004 only in Zinc group. Uric acid levels increased in all groups (Placebo (P=1, Zinc ‎‎(P=‎0.317‎, HIT (P=‎0.157‎, ‎Zinc+HIT (P=1 insignificantly Conclusions: The findings indicated that ‎after six weeks, serum Creatine Kinase and uric acid ‎levels increased insignificantly in all groups; Creatine Kinase ‎levels augmented significantly, only ‎in Zinc group. Zinc as an antioxidant supplement could not decrease the muscle damage, and even ‎increased the serum Creatine Kinase as a marker of muscle damage, significantly

  3. Differences in muscle pain and plasma creatine kinase activity after ...

    African Journals Online (AJOL)

    encephalopathy,18 and the decrement in muscle power associated with muscle damage.6 ... A high degree of intra-individual variability in plasma. CK activity was ..... 21. Komi PV. Stretch-shortening cycle exercise: a powerful model to study.

  4. Markers of muscle damage and performance recovery after exercise in the heat.

    Science.gov (United States)

    Nybo, Lars; Girard, Olivier; Mohr, Magni; Knez, Wade; Voss, Sven; Racinais, Sebastien

    2013-05-01

    This study aimed to determine whether competitive intermittent exercise in the heat affects recovery, aggravates markers of muscle fiber damage, and delays the recovery of performance and muscle glycogen stores. Plasma creatine kinase, serum myoglobin, muscle glycogen, and performance parameters (sprint, endurance, and neuromuscular testing) were evaluated in 17 semiprofessional soccer players before, immediately after, and during 48 h of recovery from a match played in 43°C (HOT) and compared with a control match (21°C with similar turf and setup). Muscle temperature was ∼1°C higher (P recovery. Creatine kinase was significantly elevated both immediately and 24 h after the matches, but the response after HOT was reduced compared with control. Muscle glycogen responses were similar across trials and remained depressed for more than 48 h after both matches. Sprint performance and voluntary muscle activation were impaired to a similar extent after the matches (sprint by ∼2% and voluntary activation by ∼1.5%; P heat stress does not aggravate the recovery response from competitive intermittent exercise associated with elevated muscle temperatures and markers of muscle damage, delayed resynthesis of muscle glycogen, and impaired postmatch performance.

  5. No effect of short-term amino acid supplementation on variables related to skeletal muscle damage in 100 km ultra-runners - a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Rosemann Thomas

    2011-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the effect of short-term supplementation of amino acids before and during a 100 km ultra-marathon on variables of skeletal muscle damage and muscle soreness. We hypothesized that the supplementation of amino acids before and during an ultra-marathon would lead to a reduction in the variables of skeletal muscle damage, a decrease in muscle soreness and an improved performance. Methods Twenty-eight experienced male ultra-runners were divided into two groups, one with amino acid supplementation and the other as a control group. The amino acid group was supplemented a total of 52.5 g of an amino acid concentrate before and during the 100 km ultra-marathon. Pre- and post-race, creatine kinase, urea and myoglobin were determined. At the same time, the athletes were asked for subjective feelings of muscle soreness. Results Race time was not different between the groups when controlled for personal best time in a 100 km ultra-marathon. The increases in creatine kinase, urea and myoglobin were not different in both groups. Subjective feelings of skeletal muscle soreness were not different between the groups. Conclusions We concluded that short-term supplementation of amino acids before and during a 100 km ultra-marathon had no effect on variables of skeletal muscle damage and muscle soreness.

  6. Association of expression levels in skeletal muscle and a SNP in the ...

    Indian Academy of Sciences (India)

    dicted breeding value for rib eye area in two experiments using 100 sires (P ... In the real-time PCR-based analysis, we used skeletal muscle tissues of eight JB .... mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem.

  7. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  8. Human skeletal muscle contains no detectable guanidinoacetic acid

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena

    2018-01-01

    We analyzed data from previously completed trials to determine the effects of supplemental guanidinoacetic acid (GAA) on markers of muscle bioenergetics in healthy men using 1.5 T magnetic resonance spectroscopy. No detectable GAA (<0.1 μmol/L) was found in the vastus medialis muscle at baseline ...... nor at follow-up. This implies deficient GAA availability in the human skeletal muscle, suggesting absent or negligible potential for creatine synthesis from GAA inside this tissue, even after GAA loading....

  9. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    Science.gov (United States)

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  10. Total and regional blood flows in vascularized skeletal muscle grafts in rabbits

    International Nuclear Information System (INIS)

    Burton, H.W.; Stevenson, T.R.; Dysko, R.C.; Gallagher, K.P.; Faulkner, J.A.

    1988-01-01

    The transplantation of whole skeletal muscles is a common clinical procedure. Although atypical blood flows have been reported in small free muscle grafts, the blood flow of large neurovascular-intact (NVI) and neurovascular-anastomosed (NVA) grafts have not been measured. Because the maximum specific force (N/cm 2 ) of NVI and NVA grafts is 65% that of control muscles, we hypothesized that total and regional blood flows of NVI and NVA grafts at rest and during twitch contractions are significantly lower than lower flows of control muscles. In rabbits, blood flows of control rectus femoris (RFM) muscles and NVI and NVA grafts of RFM muscles were measured by the radioactive-microsphere technique. Total blood flows in grafts were not different from the control RFM muscle values, except for a higher resting flow in NVA grafts and a lower flow at 3 Hz in NVI grafts. Minor variations in regional flows were observed. We conclude that the operative procedures of grating and repair of blood vessels affect the vascular bed of muscles minimally, and the deficits observed in grafts do not arise from inadequate perfusion

  11. Creatine biosynthesis and transport by the term human placenta.

    Science.gov (United States)

    Ellery, Stacey J; Della Gatta, Paul A; Bruce, Clinton R; Kowalski, Greg M; Davies-Tuck, Miranda; Mockler, Joanne C; Murthi, Padma; Walker, David W; Snow, Rod J; Dickinson, Hayley

    2017-04-01

    Creatine is an amino acid derivative that is involved in preserving ATP homeostasis. Previous studies suggest an important role for the creatine kinase circuit for placental ATP turnover. Creatine is obtained from both the diet and endogenous synthesis, usually along the renal-hepatic axis. However, some tissues with a high-energy demand have an inherent capacity to synthesise creatine. In this study, we determined if the term human placenta has the enzymatic machinary to synthesise creatine. Eleven placentae were collected following elective term caesarean section. Samples from the 4 quadrants of each placenta were either fixed in formalin or frozen. qPCR was used to determine the mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (SLC6A8). Protein expression of AGAT and GAMT was quantified by Western blot, and observations of cell localisation of AGAT, GAMT and SLC6A8 made with immunohistochemistry. Synthesis of guanidinoacetate (GAA; creatine precursor) and creatine in placental homogenates was determined via GC-MS and HPLC, respectively. AGAT, GAMT and SLC6A8 mRNA and protein were detected in the human placenta. AGAT staining was identified in stromal and endothelial cells of the fetal capillaries. GAMT and SLC6A8 staining was localised to the syncytiotrophoblast of the fetal villi. Ex vivo, tissue homogenates produce both GAA (4.6 nmol mg protein -1 h -1 ) and creatine (52.8 nmol mg protein -1 h -1 ). The term human placenta has the capacity to synthesise creatine. These data present a new understanding of placental energy metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game

    DEFF Research Database (Denmark)

    Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G

    2018-01-01

    soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement (p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip...... decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery...... (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing...

  13. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    OpenAIRE

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-01-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for c...

  14. Response of plasma and urinary uric acid, creatine and creatinine to dietary protein deficiency and/or whole body gamma-irradiation in desert rodent and albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Roushdy, H M; El-Husseini, M; Saleh, F [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1985-01-01

    The effect of whole body gamma-irradiation on the levels of plasma and urinary uric acid, creatine and creatinine was studied in the desert rodent, Psammomys obesus and albino rats subjected to dietary protein deficiency. In albino rats, the levels of uric acid in plasma and urine were higher in the animals kept on high protein diets than in those maintained on non-protein ones. Radiation exposure caused a significant increase in uric acid concentration both in plasma and urine of albino rats, whereas in Psammomys obesus obesus, it exerted a significant drop in uric acid concentration in blood paralleling a marked rise in the daily uric acid excretion in the urine, especially with the high radiation level of 1170 r. Creatinine concentrations in plasma and urine of albino rats were higher than the corresponding values in Psammomys obesus obesus. Radiation exposure in general caused an increase in the creatinine concentration in blood and a decrease in its concentration in urine. Plasma creatine was shown to increase due to the effect of radiation exposure. This runs in parallel with the increase in the excretion of creatine in urine. Creatinuria observed in whole body irradiation is obviously caused by a defect in the ability of skeletal muscle to take up creatine from blood. Such abnormality could be the result of direct damage to the muscle caused by incident radiation.

  15. Response of plasma and urinary uric acid, creatine and creatinine to dietary protein deficiency and/or whole body gamma-irradiation in desert rodent and albino rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; El-Husseini, M.; Saleh, F.

    1985-01-01

    The effect of whole body gamma-irradiation on the levels of plasma and urinary uric acid, creatine and creatinine was studied in the desert rodent, Psammomys obesus and albino rats subjected to dietary protein deficiency. In albino rats, the levels of uric acid in plasma and urine were higher in the animals kept on high protein diets than in those maintained on non-protein ones. Radiation exposure caused a significant increase in uric acid concentration both in plasma and urine of albino rats, whereas in Psammomys obesus obesus, it exerted a significant drop in uric acid concentration in blood paralleling a marked rise in the daily uric acid excretion in the urine, especially with the high radiation level of 1170 r. Creatinine concentrations in plasma and urine of albino rats were higher than the corresponding values in Psammomys obesus obesus. Radiation exposure in general caused an increase in the creatinine concentration in blood and a decrease in its concentration in urine. Plasma creatine was shown to increase due to the effect of radiation exposure. This runs in parallel with the increase in the excretion of creatine in urine. Creatinuria observed in whole body irradiation is obviously caused by a defect in the ability of skeletal muscle to take up creatine from blood. Such abnormality could be the result of direct damage to the muscle caused by incident radiation

  16. Association between statin-associated myopathy and skeletal muscle damage.

    Science.gov (United States)

    Mohaupt, Markus G; Karas, Richard H; Babiychuk, Eduard B; Sanchez-Freire, Verónica; Monastyrskaya, Katia; Iyer, Lakshmanan; Hoppeler, Hans; Breil, Fabio; Draeger, Annette

    2009-07-07

    Many patients taking statins often complain of muscle pain and weakness. The extent to which muscle pain reflects muscle injury is unknown. We obtained biopsy samples from the vastus lateralis muscle of 83 patients. Of the 44 patients with clinically diagnosed statin-associated myopathy, 29 were currently taking a statin, and 15 had discontinued statin therapy before the biopsy (minimal duration of discontinuation 3 weeks). We also included 19 patients who were taking statins and had no myopathy, and 20 patients who had never taken statins and had no myopathy. We classified the muscles as injured if 2% or more of the muscle fibres in a biopsy sample showed damage. Using reverse transcriptase polymerase chain reaction, we evaluated the expression levels of candidate genes potentially related to myocyte injury. Muscle injury was observed in 25 (of 44) patients with myopathy and in 1 patient without myopathy. Only 1 patient with structural injury had a circulating level of creatine phosphokinase that was elevated more than 1950 U/L (10x the upper limit of normal). Expression of ryanodine receptor 3 was significantly upregulated in patients with biopsy evidence of structural damage (1.7, standard error of the mean 0.3). Persistent myopathy in patients taking statins reflects structural muscle damage. A lack of elevated levels of circulating creatine phosphokinase does not rule out structural muscle injury. Upregulation of the expression of ryanodine receptor 3 is suggestive of an intracellular calcium leak.

  17. Two-site immunoradiometric assay for the MB isoenzyme of creatine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Willson, V J.C.; Jones, H M; Thompson, R J [Cambridge Univ. (UK). Clinical School

    1981-06-18

    A two-site immunoradiometric assay for myocardial creatine kinase MB isoenzyme is described. The method utilizes immobilized anti-human creatine kinase BB antibodies and /sup 125/I-labelled anti-human creatine kinase MM antibodies and can specifically detect creatine kinase MB in the presence of approximately 1000-fold excess of creatine kinase MM or BB. Native kinase MB prepared from human heart and creatine kinase MB prepared by hybridisation of purified human creatine kinase MM and creatine kinase BB appeared to react identically in the assay. Serum estimations on patients with suspected myocardial infarction correlated with the presence of MB band on electrophoresis but preliminary results suggest that the two-site immunoradiometric assay may be more sensitive.

  18. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    , and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P ... eccentric exercise bout (P muscle Ca2+-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P

  19. The Effect of Smoking on Muscle Adaptation to Exercise Stress

    Science.gov (United States)

    2011-12-01

    needle muscle biopsy technique in the 1860s as a means to characterize muscular dystrophy (2). It was not until 1962 that Bergström modified this...leg (unless cleared by a physician) or have a skeletal, muscular or neuromuscular dysfunction? Has subject participated in a muscle soreness trial... muscle damage, creatine kinase, strength loss APPENDIX E: Manuscript submitted $" " Paragraph 1 Introduction: Duchenne first developed the

  20. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Muscle Dysmorphia among College Men: An Emerging Gender-Related Counseling Concern

    Science.gov (United States)

    Davey, Carla M.; Bishop, John B.

    2006-01-01

    Recent literature suggests that, like midrange eating disorders among college women, male muscle dysmorphia is emerging as a physical as well as a health concern among college men. The authors define the disorder, review diagnostic and etiological considerations, and discuss the added complication of creatine use to self-manage muscle dysmorphic…

  2. Muscle enzyme activities in a deep-sea squaloid shark, Centroscyllium fabricii, compared with its shallow-living relative, Squalus acanthias.

    Science.gov (United States)

    Treberg, Jason R; Martin, R Aidan; Driedzic, William R

    2003-12-01

    The activities of several enzymes of energy metabolism were measured in the heart, red muscle, and white muscle of a deep and a shallow living squaloid shark, Centroscyllium fabricii and Squalus acanthias, respectively. The phylogenetic closeness of these species, combined with their active predatory nature, similar body form, and size makes them well matched for comparison. This is the first time such a comparison has been made involving a deep-sea elasmobranch. Enzyme activities were similar in the heart, but generally lower in the red muscle of C. fabricii. Paralleling the trend seen in deep-sea teleosts, the white muscle of C. fabricii had substantially lower activities of key glycolytic enzymes, pyruvate kinase and lactate dehydrogenase, relative to S. acanthias or other shallow living elasmobranchs. Unexpectedly, between the squaloid sharks examined, creatine phosphokinase activity was higher in all tissues of the deep living C. fabricii. Low white muscle glycolytic enzyme activities in the deep-sea species coupled with high creatine phosphokinase activity suggests that the capacity for short burst swimming is likely limited once creatine phosphate supplies have been exhausted. Copyright 2003 Wiley-Liss, Inc.

  3. Effects of creatine supplementation on cardiac autonomic functions in bodybuilders.

    Science.gov (United States)

    Mert, Kadir Uğur; Ilgüy, Serdar; Dural, Muhammet; Mert, Gurbet Özge; Özakin, Engin

    2017-06-01

    Bodybuilder-type workouts may affect heart rate variability (HRV), which has considerable potential to assess the role of autonomic nervous system (ANS). A scientifically designed approach is necessary for bodybuilders to achieve better results while protecting their health. In this study, we aimed to investigate HRV parameters in bodybuilders compared to healthy control subjects and effects of creatine supplementation. A total of 48 male participants (16 controls, 16 supplement (-), 16 supplement (+)) were evaluated in our study. Bodybuilders who were taking creatine supplementation were enrolled in supplement (+) group. HRV parameters were measured from 24-hour Holter recordings of all participants. When mean heart rates were compared with control group (71.5 ± 12.6 beats/min), statistically significant difference was revealed in supplement (-) group (61.8 ± 6.8 beats/min; P = 0.022) unlike supplement (+) group (69.63 ± 14.1 beats/min; P = 0.650). HRV analyses revealed significant parasympathetic shift in supplement (-) group. No significant difference was demonstrated on HRV parameters, except high frequency (P = 0.029) in supplement (+) group. Conclusively, elevated parasympathetic modulation, which is favorable cardiovascular outcome of exercise, was demonstrated in bodybuilders. However, our study also revealed that creatine supplementation attenuates this favorable effect in ANS by limiting elevation of parasympathetic modulation. Although the sympathetic slight shift is attributed to creatine supplementation, it cannot be discriminated from the effects of over training. © 2017 Wiley Periodicals, Inc.

  4. IL-6, Antioxidant Capacity and Muscle Damage Markers Following High-Intensity Interval Training Protocols

    OpenAIRE

    Cipryan, Lukas

    2017-01-01

    Abstract The aim of this study was to investigate changes of interleukin-6 (IL-6), total antioxidant capacity (TAC) and muscle damage markers (creatine kinase (CK), myoglobin and lactate dehydrogenase (LDH)) in response to three different high-intensity interval training (HIIT) protocols of identical external work. Twelve moderately-trained males participated in the three HIIT trials which consisted of a warm-up, followed by 12 min of 15 s, 30 s or 60 s HIIT sequences with the work/rest ratio...

  5. Creatine and guanidinoacetate reference values in a French population

    NARCIS (Netherlands)

    Joncquel-Cheval Curt, M.; Cheillan, D.; Briand, G.; Salomons, G.S.; Mention-Mulliez, K.; Dobbelaere, D.; Cuisset, J.M.; Lion-Francois, L.; Portes, V.D.; Chabli, A.; Valayannopoulos, V.; Benoist, J.F.; Pinard, J.M.; Simard, G.; Douay, O.; Deiva, K.; Tardieu, M.; Afenjar, A.; Heron, D.; Rivier, F.; Chabrol, B.; Prieur, F.; Cartault, F.; Pitelet, G.; Goldenberg, A.; Bekri, S.; Gerard, M.; Delorme, R.; Porchet, N.; Vianey-Saban, C.; Vamecq, J.

    2013-01-01

    Creatine and guanidinoacetate are biomarkers of creatine metabolism. Their assays in body fluids may be used for detecting patients with primary creatine deficiency disorders (PCDD), a class of inherited diseases. Their laboratory values in blood and urine may vary with age, requiring that reference

  6. Muscle damage induced by stretch-shortening cycle exercise.

    Science.gov (United States)

    Kyröläinen, H; Takala, T E; Komi, P V

    1998-03-01

    Strenuous stretch-shortening cycle exercise was used as a model to study the leakage of proteins from skeletal muscle. The analysis included serum levels of creatine kinase (S-CK), myoglobin (S-Mb), and carbonic anhydrase (S-CA III). Blood samples from power- (N=11) and endurance-trained (N=10) athletes were collected before, 0, and 2 h after the exercise, which consisted of a total of 400 jumps. The levels of all determined myocellular proteins increased immediately after the exercise (P exercise, and the ratio of S-CA III and S-Mb decreased (P recruitment order of motor units, and/or differences in training background.

  7. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myfibrils from rainbow trout and freshwater turtle

    DEFF Research Database (Denmark)

    Haagensen, L.; Jensen, D.H.; Gesser, Hans

    2008-01-01

    The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the pyr......The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP...... by the pyruvate kinase reaction alone or together with the amount of creatine formed, when myofibrillar bound creatine kinase was activated with phosphocreatine. The steady-state concentration of ADP in the solution was varied through the activity of pyruvate kinase added to the solution. For rainbow trout...... myofibrils at a high pyruvate kinase activity, creatine kinase competed for ADP but did not influence the total ATPase activity. When the ADP concentration was elevated within the physiological range by lowering the pyruvate kinase activity, creatine kinase competed efficiently and increased the ATPase...

  8. Creatine supplementation and glycemic control: a systematic review.

    Science.gov (United States)

    Pinto, Camila Lemos; Botelho, Patrícia Borges; Pimentel, Gustavo Duarte; Campos-Ferraz, Patrícia Lopes; Mota, João Felipe

    2016-09-01

    The focus of this review is the effects of creatine supplementation with or without exercise on glucose metabolism. A comprehensive examination of the past 16 years of study within the field provided a distillation of key data. Both in animal and human studies, creatine supplementation together with exercise training demonstrated greater beneficial effects on glucose metabolism; creatine supplementation itself demonstrated positive results in only a few of the studies. In the animal studies, the effects of creatine supplementation on glucose metabolism were even more distinct, and caution is needed in extrapolating these data to different species, especially to humans. Regarding human studies, considering the samples characteristics, the findings cannot be extrapolated to patients who have poorer glycemic control, are older, are on a different pharmacological treatment (e.g., exogenous insulin therapy) or are physically inactive. Thus, creatine supplementation is a possible nutritional therapy adjuvant with hypoglycemic effects, particularly when used in conjunction with exercise.

  9. Can creatine supplementation form carcinogenic heterocyclic amines in humans?

    Science.gov (United States)

    Pereira, Renato Tavares dos Santos; Dörr, Felipe Augusto; Pinto, Ernani; Solis, Marina Yazigi; Artioli, Guilherme Giannini; Fernandes, Alan Lins; Murai, Igor Hisashi; Dantas, Wagner Silva; Seguro, Antônio Carlos; Santinho, Mirela Aparecida Rodrigues; Roschel, Hamilton; Carpentier, Alain; Poortmans, Jacques Remi; Gualano, Bruno

    2015-01-01

    Abstract Creatine supplementation has been associated with increased cancer risk. In fact, there is evidence indicating that creatine and/or creatinine are important precursors of carcinogenic heterocyclic amines (HCAs). The present study aimed to investigate the acute and chronic effects of low- and high-dose creatine supplementation on the production of HCAs in healthy humans (i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx),  2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine (IFP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)). This was a non-counterbalanced single-blind crossover study divided into two phases, in which low- and high-dose creatine protocols were tested. After acute (1 day) and chronic supplementation (30 days), the HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx were assessed through a newly developed HPLC–MS/MS method. Dietary HCA intake and blood and urinary creatinine were also evaluated. Out of 576 assessments performed (from 149 urine samples), only nine (3 from creatine and 6 from placebo) showed quantifiable levels of HCAs (8-MeIQx: n = 3; 4,8-DiMeIQx: n = 2; PhIP: n = 4). Individual analyses revealed that diet rather than creatine supplementation was the main responsible factor for HCA formation in these cases. This study provides compelling evidence that both low and high doses of creatine supplementation, given either acutely or chronically, did not cause increases in the carcinogenic HCAs PhIP, 8-MeIQx, IFP and 4,8-DiMeIQx in healthy subjects. These findings challenge the long-existing notion that creatine supplementation could potentially increase the risk of cancer by stimulating the formation of these mutagens. Key points There is a long-standing concern that creatine supplementation could be associated with cancer, possibly by facilitating the formation of carcinogenic heterocyclic amines (HCAs). This study provides compelling evidence

  10. Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect

    NARCIS (Netherlands)

    Valayannopoulos, V.; Boddaert, N.; Chabli, A.; Barbier, V.; Desguerre, I.; Philippe, A.; Afenjar, A.; Mazzuca, M.; Cheillan, D.; Munnich, A.; de Keyzer, Y.; Jakobs, C.A.J.M.; Salomons, G.S.; de Lonlay, P.

    2012-01-01

    Background X-linked cerebral creatine deficiency is caused by the deficiency of the creatine transporter (CTP) encoded by the SLC6A8 gene. Patients and Methods We report here a series of six patients with severe CTP deficiency, four males and two females; clinical presentations include mild to

  11. Creatine level and lipide analysis in radiosensitive organs of mice after total body irradiation - a contribution to further development of biologic radiodosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Breiter, N; Ungemach, F R; Hegner, D; Beck, G; Mayr, A

    1986-02-01

    The authors intended to test the suitability of creatine level and/or certain criteria of lipide analysis in radiosensitive organs for an individual (i.e. considering biologic variations of radiosensitivity), qualitative and quantitative demonstration of an irradiation damage. It was found that creatine determination and several criteria of lipide peroxydation are not suitable for a biologic radiation dosimetry due to the absence of organ dependent, radiation dose dependent, and time dependent changes. The reasons are discussed.

  12. Creatine level and lipide analysis in radiosensitive organs of mice after total body irradiation - a contribution to further development of biologic radiodosimetry

    International Nuclear Information System (INIS)

    Breiter, N.; Ungemach, F.R.; Hegner, D.; Beck, G.; Mayr, A.

    1986-01-01

    The authors intended to test the suitability of creatine level and/or certain criteria of lipide analysis in radiosensitive organs for an individual (i.e. considering biologic variations of radiosensitivity), qualitative and quantitative demonstration of an irradiation damage. It was found that creatine determination and several criteria of lipide peroxydation are not suitable for a biologic radiation dosimetry due to the absence of organ dependent, radiation dose dependent, and time dependent changes. The reasons are discussed. (orig.) [de

  13. A two-site immunoradiometric assay for the MB isoenzyme of creatine kinase

    International Nuclear Information System (INIS)

    Willson, V.J.C.; Jones, H.M.; Thompson, R.J.

    1981-01-01

    A two-site immunoradiometric assay for myocardial creatine kinase MB isoenzyme is described. The method utilizes immobilized anti-human creatine kinase BB antibodies and 125 I-labelled anti-human creatine kinase MM antibodies and can specifically detect creatine kinase MB in the presence of approximately 1000-fold excess of creatine kinase MM or BB. Native kinase MB prepared from human heart and creatine kinase MB prepared by hybridisation of purified human creatine kinase MM and creatine kinase BB appeared to react identically in the assay. Serum estimations on patients with suspected myocardial infarction correlated with the presence of MB band on electrophoresis but preliminary results suggest that the two-site immunoradiometric assay may be more sensitive. (Auth.)

  14. Creatine pretreatment protects cortical axons from energy depletion in vitro

    Science.gov (United States)

    Shen, Hua; Goldberg, Mark P.

    2012-01-01

    Creatine is a natural nitrogenous guanidino compound involved in bioenergy metabolism. Although creatine has been shown to protect neurons of the central nervous system (CNS) from experimental hypoxia/ischemia, it remains unclear if creatine may also protect CNS axons, and if the potential axonal protection depends on glial cells. To evaluate the direct impact of creatine on CNS axons, cortical axons were cultured in a separate compartment from their somas and proximal neurites using a modified two-compartment culture device. Axons in the axon compartment were subjected to acute energy depletion, an in vitro model of white matter ischemia, by exposure to 6 mM sodium azide for 30 min in the absence of glucose and pyruvate. Energy depletion reduced axonal ATP by 65%, depolarized axonal resting potential, and damaged 75% of axons. Application of creatine (10 mM) to both compartments of the culture at 24 h prior to energy depletion significantly reduced axonal damage by 50%. In line with the role of creatine in the bioenergy metabolism, this application also alleviated the axonal ATP loss and depolarization. Inhibition of axonal depolarization by blocking sodium influx with tetrodotoxin also effectively reduced the axonal damage caused by energy depletion. Further study revealed that the creatine effect was independent of glial cells, as axonal protection was sustained even when creatine was applied only to the axon compartment (free from somas and glial cells) for as little as 2 h. In contrast, application of creatine after energy depletion did not protect axons. The data provide the first evidence that creatine pretreatment may directly protect CNS axons from energy deficiency. PMID:22521466

  15. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury.

    Science.gov (United States)

    Chamberlain, Kelly A; Chapey, Kristen S; Nanescu, Sonia E; Huang, Jeffrey K

    2017-02-08

    Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase ( Gamt ) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt -deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination. SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by

  16. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    International Nuclear Information System (INIS)

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-01-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for α-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with 32 P cDNA probes for α-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D α-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized α-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and α-actin mRNAs are decreased. Insulin treatment reverses these changes

  17. Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography.

    Science.gov (United States)

    Hunter, Angus M; Galloway, Stuart D R; Smith, Iain J; Tallent, Jamie; Ditroilo, Massimiliano; Fairweather, Malcolm M; Howatson, Glyn

    2012-06-01

    Exercise induced muscle damage (EIMD) impairs maximal torque production which can cause a decline in athletic performance and/or mobility. EIMD is commonly assessed by using maximal voluntary contraction (MVC), creatine kinase (CK) and muscle soreness. We propose as an additional technique, tensiomyography (TMG), recently introduced to measure mechanical and muscle contractile characteristics. The purpose of this study was to determine the validity of TMG in detecting changes in maximal torque following EIMD. Nineteen participants performed eccentric elbow flexions to achieve EIMD on the non- dominant arm and used the dominant elbow flexor as a control. TMG parameters, MVC and rate of torque development (RTD) were measured prior to EIMD and repeated for another six consecutive days. Creatine kinase, muscle soreness and limb girth were also measured during this period. Twenty four hours after inducing EIMD, MVC torque, RTD and TMG maximal displacement had significantly (pTMG recovered to 12%, 24% and 17% of respective pre-EIMD values. In conclusion, as hypothesised TMG maximal displacement significantly followed other standard EIMD responses. This could therefore be useful in detecting muscle damage from impaired muscle function and its recovery following EIMD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Science.gov (United States)

    Deane, Colleen S; Wilkinson, Daniel J; Phillips, Bethan E; Smith, Kenneth; Etheridge, Timothy; Atherton, Philip J

    2017-04-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1 ) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2 ) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. Copyright © 2017 the American Physiological Society.

  19. Creatine kinase activity is associated with blood pressure

    NARCIS (Netherlands)

    Brewster, Lizzy M.; Mairuhu, Gideon; Bindraban, Navin R.; Koopmans, Richard P.; Clark, Joseph F.; van Montfrans, Gert A.

    2006-01-01

    BACKGROUND: We previously hypothesized that high activity of creatine kinase, the central regulatory enzyme of energy metabolism, facilitates the development of high blood pressure. Creatine kinase rapidly provides adenosine triphosphate to highly energy-demanding processes, including cardiovascular

  20. Bioreactor perfusion system for the long-term maintenance of tissue-engineered skeletal muscle organoids

    Science.gov (United States)

    Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.

    1998-01-01

    Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.

  1. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    Science.gov (United States)

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  2. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    Science.gov (United States)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  3. Muscle pain and serum creatine kinase are not associated with low serum 25(OH) vitamin D levels in patients receiving statins.

    Science.gov (United States)

    Kurnik, Daniel; Hochman, Israel; Vesterman-Landes, Janet; Kenig, Tali; Katzir, Itzhak; Lomnicky, Yosef; Halkin, Hillel; Loebstein, Ronen

    2012-07-01

    Vitamin D deficiency has been associated in some studies with nonspecific musculoskeletal pain and, more specifically, with statin-induced myalgia, which was ameliorated by high-dose vitamin D supplements. Our objective was to explore the association between vitamin D status and statin-induced myalgia and elevation of serum creatine kinase (CK). Retrospective cohort study, based on the electronic database of a health maintenance organization. Six thousand eight hundred and eight patients (71·5% women) to whom statins were dispensed during 2008 and who had ≥1 CK and 25-hydroxy vitamin D (25OHD) levels measured during statin exposure. Of these, 376 patients (5·5%) had switched from a first-line statin to atorvastatin because of muscle pain (n = 220) or other reasons (n = 156). Measurements; In the entire cohort, we compared serum CK levels among serum 25OHD quartiles. In addition, we compared CK and 25OHD levels among patients with myalgia, other switchers and nonswitchers. The median 25OHD level in the entire cohort was 21·8 ng/ml [interquartile range (IQR), 16·3-27·4]. CK levels were marginally lower in patients in the lowest 25OHD quartile [median CK (IQR) in 25OHD quartiles 1-4, 87 (61-130), 90 (65-131), 91 (65-132) and 91 (67-131) IU/ml, respectively; P = 0·007]. 25OHD levels in statin switchers were similar to those in nonswitchers; moreover, there were no differences in 25OHD among switchers with muscle pain and other switchers. Our findings do not support an association between low 25OHD levels and statin-induced myalgia or CK elevation. © 2011 Blackwell Publishing Ltd.

  4. Muscular dystrophy in a family of Labrador Retrievers with no muscle dystrophin and a mild phenotype.

    Science.gov (United States)

    Vieira, Natassia M; Guo, Ling T; Estrela, Elicia; Kunkel, Louis M; Zatz, Mayana; Shelton, G Diane

    2015-05-01

    Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Frequency-domain lifetime fluorometry of double-labeled creatine kinase.

    Science.gov (United States)

    Gregor, M; Kubala, M; Amler, E; Mejsnar, J

    2003-01-01

    Myofibril-bound creatine kinase EC 2.7.3.2 (CK), a key enzyme of muscle energy metabolism, has been selected for studies of conformational changes that underlie the cellular control of enzyme activity. For fluorescence spectroscopy measurements, the CK molecule was double-labeled with IAF (5-iodoacetamidofluorescein) and ErITC (erythrosin 5'-isothiocyanate). Measurement of fluorescence resonance energy transfer (FRET) from fluorescein to erythrosin was used to obtain information about the donor-acceptor pair distance. Frequency-domain lifetime measurements evaluate the donor-acceptor distance in the native CK molecule as 7.8 nm. The Förster radius equals 5.3 nm with the resolution range from 0.2 to 1.0 nm. Erythrosin-fluorescein labeling (EFL) was tested for artificial conformational changes of the CK molecule with high-salt concentration treatment. The transition distance, defined by His-97 and Cys-283 and derived from a 3D model equals 0.766 nm for the open (inactive) form and 0.277 nm for the closed (reactive) form of the CK molecule. In this way, the resolution range of the used spectroscopy method is significant, concerning the difference of 0.489 nm. Nevertheless, the CK enzyme activity, assessed by the hexokinase-coupled assay, was diminished down to 1 % of the activity of the native enzyme. EFL is suitable for description of conformational behavior implied from the regulation of creatine kinase. However, the observed inhibition restricts EFL to studies of conformational changes during natural catalytic activity.

  6. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin

    OpenAIRE

    McFarlin, Brian K.; Venable, Adam S.; Henning, Andrea L.; Sampson, Jill N. Best; Pennel, Kathryn; Vingren, Jakob L.; Hill, David W.

    2016-01-01

    Background Exercise-Induced Muscle Damage (EIMD) and delayed onset muscle soreness (DOMS) impact subsequent training sessions and activities of daily living (ADL) even in active individuals. In sedentary or diseased individuals, EIMD and DOMS may be even more pronounced and present even in the absence of structured exercise. Methods The purpose of this study was to determine the effects of oral curcumin supplementation (Longvida? 400?mg/days) on muscle & ADL soreness, creatine kinase (CK), an...

  7. Prevalence of Creatine Deficiency Syndromes in Children With Nonsyndromic Autism.

    Science.gov (United States)

    Schulze, Andreas; Bauman, Margaret; Tsai, Anne Chun-Hui; Reynolds, Ann; Roberts, Wendy; Anagnostou, Evdokia; Cameron, Jessie; Nozzolillo, Alixandra A; Chen, Shiyi; Kyriakopoulou, Lianna; Scherer, Stephen W; Loh, Alvin

    2016-01-01

    Creatine deficiency may play a role in the neurobiology of autism and may represent a treatable cause of autism. The goal of the study was to ascertain the prevalence of creatine deficiency syndromes (CDSs) in children with autism spectrum disorder (ASD). In a prospective multicenter study, 443 children were investigated after a confirmed diagnosis of ASD. Random spot urine screening for creatine metabolites (creatine, guanidinoacetate, creatinine, and arginine) with liquid chromatography-tandem mass spectrometry and second-tier testing with high-performance liquid chromatography methodology was followed by recall testing in 24-hour urines and confirmatory testing by Sanger-based DNA sequencing of GAMT, GATM, and SLC6A8 genes. Additional diagnostic tests included plasma creatine metabolites and in vivo brain proton magnetic resonance spectroscopy. The creatine metabolites in spot urine in the autism group were compared with 128 healthy controls controlled for age. In 443 subjects with ASD investigated for CDS, we had 0 events (event: 0, 95% confidence interval 0-0.0068), therefore with 95% confidence the prevalence of CDS is creatine metabolites (P > .0125) in urine. Our study revealed a very low prevalence of CDS in children with nonsyndromic ASD and no obvious association between creatine metabolites and autism. Unlike our study population, we expect more frequent CDS among children with severe developmental delay, speech impairment, seizures, and movement disorders in addition to impairments in social communication, restricted interests, and repetitive behaviors. Copyright © 2016 by the American Academy of Pediatrics.

  8. Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction.

    Science.gov (United States)

    Arnardottir, Snjolaug; Alexanderson, Helene; Lundberg, Ingrid E; Borg, Kristian

    2003-01-01

    To evaluate the safety and effect of a home training program on muscle function in 7 patients with sporadic inclusion body myositis. The patients performed exercise 5 days a week over a 12-week period. Safety was assessed by clinical examination, repeated muscle biopsies and serum levels of creatine kinase. Muscle strength was evaluated by clinical examination, dynamic dynamometer and by a functional index in myositis. Strength was not significantly improved after the exercise, however none of the patients deteriorated concerning muscle function. The histopathology was unchanged and there were no signs of increased muscle inflammation or of expression of cytokines and adhesion molecules in the muscle biopsies. Creatine kinase levels were unchanged. A significant decrease was found in the areas that were positively stained for EN-4 (a marker for endothelial cells) in the muscle biopsies after training. The home exercise program was considered as not harmful to the muscles regarding muscle inflammation and function. Exercise may prevent loss of muscle strength due to disease and/or inactivity.

  9. “Nutraceuticals” in relation to human skeletal muscle and exercise

    Science.gov (United States)

    Deane, Colleen S.; Wilkinson, Daniel J.; Phillips, Bethan E.; Smith, Kenneth; Etheridge, Timothy

    2017-01-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and “nutraceutical” compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. PMID:28143855

  10. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    Science.gov (United States)

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Creatine Supplementation Does Not Prevent the Development of Alcoholic Steatosis.

    Science.gov (United States)

    Ganesan, Murali; Feng, Dan; Barton, Ryan W; Thomes, Paul G; McVicker, Benita L; Tuma, Dean J; Osna, Natalia A; Kharbanda, Kusum K

    2016-11-01

    Alcohol-induced reduction in the hepatocellular S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio impairs the activities of many SAM-dependent methyltransferases. These impairments ultimately lead to the generation of several hallmark features of alcoholic liver injury including steatosis. Guanidinoacetate methyltransferase (GAMT) is an important enzyme that catalyzes the final reaction in the creatine biosynthetic process. The liver is a major site for creatine synthesis which places a substantial methylation burden on this organ as GAMT-mediated reactions consume as much as 40% of all the SAM-derived methyl groups. We hypothesized that dietary creatine supplementation could potentially spare SAM, preserve the hepatocellular SAM:SAH ratio, and thereby prevent the development of alcoholic steatosis and other consequences of impaired methylation reactions. For these studies, male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol (EtOH) diet with or without 1% creatine supplementation. At the end of 4 to 5 weeks of feeding, relevant biochemical and histological analyses were performed. We observed that creatine supplementation neither prevented alcoholic steatosis nor attenuated the alcohol-induced impairments in proteasome activity. The lower hepatocellular SAM:SAH ratio seen in the EtOH-fed rats was also not normalized or SAM levels spared when these rats were fed the creatine-supplemented EtOH diet. However, a >10-fold increased level of creatine was observed in the liver, serum, and hearts of rats fed the creatine-supplemented diets. Overall, dietary creatine supplementation did not prevent alcoholic liver injury despite its known efficacy in preventing high-fat-diet-induced steatosis. Betaine, a promethylating agent that maintains the hepatocellular SAM:SAH, still remains our best option for treating alcoholic steatosis. Copyright © 2016 by the Research Society on Alcoholism.

  12. Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration

    Science.gov (United States)

    Genius, Just; Geiger, Johanna; Bender, Andreas; Möller, Hans-Jürgen; Klopstock, Thomas; Rujescu, Dan

    2012-01-01

    Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity. PMID:22347384

  13. Hydrogen peroxide (H2O2) irreversibly inactivates creatine kinase from Pelodiscus sinensis by targeting the active site cysteine.

    Science.gov (United States)

    Wang, Wei; Lee, Jinhyuk; Hao, Hao; Park, Yong-Doo; Qian, Guo-Ying

    2017-12-01

    Creatine kinase (EC 2.7.3.2, CK) plays an important role in cellular energy metabolism and homeostasis by catalysing the transfer of phosphate between ATP and creatine phosphate. In this study, we investigated the effects of H 2 O 2 on PSCKM (muscle type creatine kinase from Pelodiscus sinensis) by the integrating method between enzyme kinetics and docking simulations. We found that H 2 O 2 strongly inactivated PSCKM (IC 50 =0.25mM) in a first-order kinetic process, and targeted the active site cysteine directly. A conformational study showed that H 2 O 2 did not induce the tertiary structural changes in PSCKM with no extensive exposure of hydrophobic surfaces. Sequential docking simulations between PSCKM and H 2 O 2 indicated that H 2 O 2 interacts with the ADP binding region of the active site, consistent with experimental results that demonstrated H 2 O 2 -induced inactivation. Our study demonstrates the effect of H 2 O 2 on PSCKM enzymatic function and unfolding, and provides important insight into the changes undergone by this central metabolic enzyme in ectothermic animals in response to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Creatine Kinase Activity in Patients with Diabetes Mellitus Type I and Type II

    Directory of Open Access Journals (Sweden)

    Adlija Jevrić-Čaušević

    2006-08-01

    Full Text Available Diabetes mellitus can be looked upon as an array of diseases, all of which exhibit common symptoms. While pathogenesis of IDDM (insulin dependant diabetes mellitus is well understood, the same is not true for diabetes mellitus type II. In the latter case, relative contribution of the two factors (insulin resistance or decreased insulin secretion varies individually, being highly increased in peripheral tissues and strictly dependant on insulin for glucose uptake. Moreover, in patients with diabetes mellitus type II, disbalance at the level of regulation of glucose metabolism as well as lipid metabolism has been noted in skeletal muscles. It is normal to assume that in this type of diabetes, these changes are reflected at the level of total activity of enzyme creatine kinase. This experimental work was performed on a group of 80 regular patients of Sarajevo General Hospital. Forty of those patients were classified as patients with diabetes type I and forty as patients with diabetes type II. Each group of patients was carefully chosen and constituted of equal number of males and females. The same was applied for adequate controls. Concentration of glucose was determined for each patient with GOD method, while activity of creatine kinase was determined with CK-NAC activated kit. Statistical analysis of the results was performed with SPSS software for Windows. Obtained results point out highly expressed differences in enzyme activity between two populations examined. Changes in enzyme activity are more expressed in patients with diabetes type II. Positive correlation between concentration of glucose and serum activity of the enzyme is seen in both categories of diabetic patients which is not the case for the patients in control group. At the same time, correlation between age and type of diabetes does exist . This is not followed at the level of enzyme activity or concentration of glucose.

  15. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P ... at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation....

  16. Cerebral proton magnetic resonance spectroscopy demonstrates reversibility of N-acetylaspartate/creatine in gray matter after delayed encephalopathy due to carbon monoxide intoxication

    DEFF Research Database (Denmark)

    Hansen, Marco Bo; Kondziella, Daniel; Danielsen, Else Rubæk

    2014-01-01

    with cerebral proton magnetic resonance spectroscopy showed a dramatically decrease in N-acetylaspartate to total creatine ratios and elevated lactate levels in the gray matter. Subsequently, our patient received six additional sessions of hyperbaric oxygen therapy with only minimal recovery. At six...... reversal of N-acetylaspartate to total creatine ratios in gray matter has, to our knowledge, never been described before and shows that severe, initial measurements may not predict poor long-term patient outcome....

  17. Effects of Creatine and Sodium Bicarbonate Coingestion on Multiple Indices of Mechanical Power Output During Repeated Wingate Tests in Trained Men.

    Science.gov (United States)

    Griffen, Corbin; Rogerson, David; Ranchordas, Mayur; Ruddock, Alan

    2015-06-01

    This study investigated the effects of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints. Nine well-trained men (age = 21.6 ± 0.9 yr, stature = 1.82 ± 0.05 m, body mass = 80.1 ±12.8 kg) participated in a double-blind, placebo-controlled, counterbalanced, crossover study using six 10-s repeated Wingate tests. Participants ingested either a placebo (0.5 g·kg(-1) of maltodextrin), 20 g·d(-1) of creatine monohydrate + placebo, 0.3 g·kg(-1) of sodium bicarbonate + placebo, or coingestion + placebo for 7 days, with a 7-day washout between conditions. Participants were randomized into two groups with a differential counterbalanced order. Creatine conditions were ordered first and last. Indices of mechanical power output (W), total work (J) and fatigue index (W·s(-1)) were measured during each test and analyzed using the magnitude of differences between groups in relation to the smallest worthwhile change in performance. Compared with placebo, both creatine (effect size (ES) = 0.37-0.83) and sodium bicarbonate (ES = 0.22-0.46) reported meaningful improvements on indices of mechanical power output. Coingestion provided small meaningful improvements on indices of mechanical power output (W) compared with sodium bicarbonate (ES = 0.28-0.41), but not when compared with creatine (ES = -0.21-0.14). Coingestion provided a small meaningful improvement in total work (J; ES = 0.24) compared with creatine. Fatigue index (W·s(-1)) was impaired in all conditions compared with placebo. In conclusion, there was no meaningful additive effect of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints.

  18. Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function

    OpenAIRE

    Robinson, T.; Sewell, D.; Casey, A.; Steenge, G.; Greenhaff, P.

    2000-01-01

    Background—The use of creatine (Cr) as a nutritional supplement to aid athletic performance has gained widespread popularity among athletes. However, concerns have recently been expressed over potentially harmful effects of short and long term Cr supplementation on health.

  19. Creatine Transporter Deficiency in Two Brothers with Autism Spectrum Disorder.

    Science.gov (United States)

    Aydin, Halil Ibrahim

    2018-01-15

    Creatine transporter deficiency (CTD) is a treatable, X-linked, inborn error of metabolism. Two brothers with autism spectrum disorder were diagnosed with CTD at the ages of 17 and 12 years. Both were found to have a previously reported hemizygous p.408delF (c.1216_1218delTTC) deletion mutation. Both patients were given creatine monohydrate, L-arginine, L-glycine and S-adenosylmethionine, which partially improved the behavioral problems. Serum creatinine levels, creatine peak at brain MR spectroscopy or creatine/creatinine ratio in urine should be evaluated to identify CTD in children with autistic behavior and language disorders.

  20. Complete inhibition of creatine kinase in isolated perfused rat hearts

    International Nuclear Information System (INIS)

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. 31 P-NMR of the heart was carried out

  1. Creatine kinase isozyme expression in embryonic chicken heart

    NARCIS (Netherlands)

    Lamers, W. H.; Geerts, W. J.; Moorman, A. F.; Dottin, R. P.

    1989-01-01

    The distribution pattern of creatine kinase (EC 2.7.3.2) isozymes in developing chicken heart was studied by immunohistochemistry. Creatine kinase M, which is absent from adult heart, is transiently expressed between 4 and 11 days of incubation. During that period, numerous muscular cells in the

  2. Markers of muscle damage and performance recovery following exercise in the heat

    DEFF Research Database (Denmark)

    Nybo, Lars; Girard, Olivier; Mohr, Magni

    2013-01-01

    PURPOSE: To determine whether competitive intermittent exercise in the heat affects recovery, aggravates markers of muscle fiber damage, and delay the recovery of performance and muscle glycogen stores. METHODS: Plasma creatine kinase, serum myoglobin, muscle glycogen and performance parameters...... (sprint, endurance and neuromuscular testing) were evaluated in 17 semiprofessional soccer players before, immediately after and during 48 h of recovery from a match played in 43°C (HOT) and compared to a control match (21°C with similar turf and set-up). RESULTS: Muscle temperature was ~ 1°C higher (P...

  3. Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users.

    Science.gov (United States)

    Hermann, Derik; Sartorius, Alexander; Welzel, Helga; Walter, Sigrid; Skopp, Gisela; Ende, Gabriele; Mann, Karl

    2007-06-01

    Cannabinoids present neurotoxic and neuroprotective properties in in vitro studies, inconsistent alterations in human neuroimaging studies, neuropsychological deficits, and an increased risk for psychotic episodes. Proton magnetic resonance spectroscopy ((1)H-MRS), neuropsychological testing, and hair analysis for cannabinoids was performed in 13 male nontreatment-seeking recreational cannabis users and 13 male control subjects. A significantly diminished N-acetylaspartate/total creatine (NAA/tCr) ratio in the dorsolateral prefrontal cortex (DLPFC) was observed in cannabis users (p = .0003). The NAA/tCr in the putamen/globus pallidum region correlated significantly with cannabidiol (R(2) = .66, p = .004). Results of the Wisconsin Card Sorting test, Trail making Test, and D2 test for attention were influenced by cannabinoids. Chronic recreational cannabis use is associated with an indication of diminished neuronal and axonal integrity in the DLPFC in this study. As chronic cannabis use is a risk factor for psychosis, these results are interesting because diminished NAA/tCr ratios in the DLPFC and neuropsychological deficits were also reported in schizophrenia. The strong positive correlation of NAA/tCr and cannabidiol in the putamen/globus pallidum is in line with neuroprotective properties of cannabidiol, which were also observed in in vitro model studies of Parkinson's disease.

  4. Transitioning to the direct anterior approach in total hip arthroplasty. Is it a true muscle sparing approach when performed by a low volume hip replacement surgeon?

    Science.gov (United States)

    Nistor, Dan-Viorel; Caterev, Sergiu; Bolboacă, Sorana-Daniela; Cosma, Dan; Lucaciu, Dan Osvald Gheorghe; Todor, Adrian

    2017-11-01

    We conducted this study to establish if the transition from a lateral approach (LA) to the direct anterior approach (DAA) for a low volume hip arthroplasty surgeon during the steep learning curve can be performed maintaining the muscle sparing approach of the DAA without increasing the complication rates. In this controlled, prospective, randomized clinical study we investigated 70 patients (35 DAA, 35 LA) with similar demographics that underwent a total hip arthroplasty. Assessment of the two approaches consisted of determining the invasiveness through serum markers for muscle damage (i.e. myoglobin, creatine kinase and lactate dehydrogenase), the operative parameters such as post-operative pain and rescue medication consumption, the component positioning and complication rates. Post-operative myoglobin levels were higher (p < 0.001) in the LA group (326.42 ± 84.91 ng/mL) as compared to the DAA group (242.80 ± 71.03 ng/mL), but with no differences regarding other biomarkers for muscle damage. Pain levels were overall lower in the DAA group, with a statistical and clinical difference during surgery day (p < 0.001) associated with lower (p < 0.001) rescue medication consumption (median 1 (1; 3) mg morphine vs. 3 (2; 4) mg morphine). Most patients in the LA group reported chronic post-operative pain throughout all three evaluated months, while the majority of patients in the DAA group reported no pain after week six. Component positioning did not differ significantly between groups and neither did complication rates. The DAA can be transitioned from the LA safely, without higher complication rates while maintaining its muscle spearing advantages when performed by a low volume hip arthroplasty surgeon.

  5. A double-blind, placebo-controlled randomized trial of creatine for the cancer anorexia/weight loss syndrome (N02C4): an Alliance trial.

    Science.gov (United States)

    Jatoi, A; Steen, P D; Atherton, P J; Moore, D F; Rowland, K M; Le-Lindqwister, N A; Adonizio, C S; Jaslowski, A J; Sloan, J; Loprinzi, C

    2017-08-01

    Multiple pilot studies, including one in colorectal cancer patients, suggest that creatine, an amino acid derivative, augments muscle, improves strength, and thereby could palliate the cancer anorexia/weight loss syndrome. In this randomized, double-blind, placebo-controlled trial, incurable patients with this syndrome were assigned creatine (20 g/day load×5 days followed by 2 g/day orally) versus identical placebo. Patients were weighed once a week for 1 month and then monthly. Patients were also assessed over 1 month for appetite and quality of life (validated questionnaires), fist grip strength, body composition (bioelectrical impedance), and adverse events. The primary endpoint was 10% or greater weight gain from baseline during the first month. Within this combined cohort of 263 evaluable patients (134 received creatine and 129 placebo), only 3 gained ≥10% of their baseline weight by 1 month: two creatine-treated and the other placebo-exposed (P = 1.00). Questionnaire data on appetite, quality of life, and activities of daily living showed no statistically significant differences between groups. Similarly, no statistically significant differences between groups were observed for fist-grip strength or body composition. Rates and severity of adverse events were comparable between groups. Finally, a median survival of 230 and 239 days were observed in the creatine and placebo groups, respectively (P = 0.70). Creatine, as prescribed in this trial, had no effect on the cancer anorexia/weight loss syndrome. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat.

    Science.gov (United States)

    Kazak, Lawrence; Chouchani, Edward T; Jedrychowski, Mark P; Erickson, Brian K; Shinoda, Kosaku; Cohen, Paul; Vetrivelan, Ramalingam; Lu, Gina Z; Laznik-Bogoslavski, Dina; Hasenfuss, Sebastian C; Kajimura, Shingo; Gygi, Steve P; Spiegelman, Bruce M

    2015-10-22

    Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respiration in beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a β3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatine metabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PAPERCLIP. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat

    Science.gov (United States)

    Kazak, Lawrence; Chouchani, Edward T.; Jedrychowski, Mark P.; Erickson, Brian K.; Shinoda, Kosaku; Cohen, Paul; Vetrivelan, Ramalingam; Lu, Gina Z.; Laznik-Bogoslavski, Dina; Hasenfuss, Sebastian C.; Kajimura, Shingo; Gygi, Steve P.; Spiegelman, Bruce M.

    2015-01-01

    SUMMARY Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respiration in beige fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial Creatine Kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole body energy expenditure after administration of a β3-agonist and reduces the adipose metabolic rate. Genes of creatine metabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PMID:26496606

  8. Low-Dose Creatine Supplementation Lowers Plasma Guanidinoacetate, but Not Plasma Homocysteine, in a Double-Blind, Randomized, Placebo-Controlled Trial.

    Science.gov (United States)

    Peters, Brandilyn A; Hall, Megan N; Liu, Xinhua; Parvez, Faruque; Siddique, Abu B; Shahriar, Hasan; Uddin, Mohammad Nasir; Islam, Tariqul; Ilievski, Vesna; Graziano, Joseph H; Gamble, Mary V

    2015-10-01

    Creatine synthesis from guanidinoacetate consumes ~50% of s-adenosylmethionine (SAM)-derived methyl groups, accounting for an equivalent proportion of s-adenosylhomocysteine (SAH) and total homocysteine (tHcys) synthesis. Dietary creatine inhibits the synthesis of guanidinoacetate, thereby lowering plasma tHcys in rats. We tested the hypotheses that creatine supplementation lowers plasma guanidinoacetate, increases blood SAM, lowers blood SAH, and lowers plasma tHcys. Bangladeshi adults were randomly assigned to receive 1 of 4 treatments for 12 wk: placebo (n = 101), 3 g/d creatine (Cr; n = 101), 400 μg/d folic acid (FA; n = 153), or 3 g/d creatine plus 400 μg/d folic acid (Cr+FA; n = 103). The outcomes of plasma guanidinoacetate and tHcys, as well as whole blood SAM and SAH, were analyzed at baseline and week 12 by HPLC. Treatment effects of creatine supplementation were examined with the use of the group comparisons of Cr vs. placebo and Cr+FA vs. FA. Plasma guanidinoacetate declined by 10.6% (95% CI: 4.9, 15.9) in the Cr group while increasing nonsignificantly in the placebo group (3.7%; 95% CI: -0.8, 8.5) (Pgroup difference = 0.0002). Similarly, plasma guanidinoacetate declined by 9.0% (95% CI: 3.4, 14.2) in the Cr+FA group while increasing in the FA group (7.0%; 95% CI: 2.0, 12.2) (Pgroup difference creatine supplementation downregulates endogenous creatine synthesis, this may not on average lower plasma tHcys in humans. However, tHcys did decrease in those participants who experienced a decline in plasma guanidinoacetate while receiving creatine plus folic acid supplementation. This trial was registered at clinicaltrials.gov as NCT01050556. © 2015 American Society for Nutrition.

  9. Partial Cutting of Sternothyroid Muscle during Total Thyroidectomy: Impact on Postoperative Vocal Outcomes

    Directory of Open Access Journals (Sweden)

    Hyoung Shin Lee

    2013-01-01

    Full Text Available Background. Cutting the sternothyroid (ST muscle is a useful technique to expose the superior pole of thyroid gland during thyroidectomy. In this study, we evaluated the impact of partial cutting of the ST muscle on postoperative vocal outcomes after total thyroidectomy. Methods. A retrospective review of 57 patients who underwent total thyroidectomy with central neck dissection for micropapillary thyroid carcinoma was conducted. Group A (n=26 included those without cutting the ST muscle, while group B (n=31 included patients whose muscle was partially cut at the superior pole. All patients underwent voice analysis before the operation and 2 weeks and 1 month after the surgery, and the outcomes were compared between the two groups. Results. There were no differences between the two groups regarding the outcomes at each time of voice analysis. Group A showed a decrease of maximum frequency 2 weeks after surgery but showed no difference after 1 month. Group B showed a mild decrease in maximum frequency 2 weeks after surgery, but the difference was not significant. Conclusion. Partial cutting of ST muscle during thyroidectomy is useful to expose the superior pole without significant negative impact on postoperative outcomes of vocal analysis.

  10. Prior exercise and antioxidant supplementation: effect on oxidative stress and muscle injury

    Directory of Open Access Journals (Sweden)

    Schilling Brian K

    2007-10-01

    Full Text Available Abstract Background Both acute bouts of prior exercise (preconditioning and antioxidant nutrients have been used in an attempt to attenuate muscle injury or oxidative stress in response to resistance exercise. However, most studies have focused on untrained participants rather than on athletes. The purpose of this work was to determine the independent and combined effects of antioxidant supplementation (vitamin C + mixed tocopherols/tocotrienols and prior eccentric exercise in attenuating markers of skeletal muscle injury and oxidative stress in resistance trained men. Methods Thirty-six men were randomly assigned to: no prior exercise + placebo; no prior exercise + antioxidant; prior exercise + placebo; prior exercise + antioxidant. Markers of muscle/cell injury (muscle performance, muscle soreness, C-reactive protein, and creatine kinase activity, as well as oxidative stress (blood protein carbonyls and peroxides, were measured before and through 48 hours of exercise recovery. Results No group by time interactions were noted for any variable (P > 0.05. Time main effects were noted for creatine kinase activity, muscle soreness, maximal isometric force and peak velocity (P Conclusion There appears to be no independent or combined effect of a prior bout of eccentric exercise or antioxidant supplementation as used here on markers of muscle injury in resistance trained men. Moreover, eccentric exercise as used in the present study results in minimal blood oxidative stress in resistance trained men. Hence, antioxidant supplementation for the purpose of minimizing blood oxidative stress in relation to eccentric exercise appears unnecessary in this population.

  11. Cytogenetical Effect of Creatine Monohydrate in Vicia faba Root Tips

    International Nuclear Information System (INIS)

    Ali, A.A.M.; El-zahrani, N.H.; El-shamrani, S.M.

    2010-01-01

    The present study has been conducted to evaluate the creatine effect on the cellular behavior at mitosis of Vicia faba using four concentrations (1.50, 2, 2.50 and 3 g/ 100 ml) with three exposure times (6, 12, 24 hour). Marked reduction of mitotic index was recorded at all creatine treatments and this trait was affected by creatine concentration and exposure time. Unbalanced mitotic stages percentages were observed after all treatments whereas, prophase % was decreased in all treatments but the opposite was true for metaphase %. While, (ana-telo) phases % were either increased or decreased after creatine treatments. Alteration of DNA or RNA contents, were obtained at different treatments. On the other hand, abnormalities were shown at all treatments with an increase percentage by increasing creatine concentration and exposure time. The most common of these abnormalities were: stickiness, disturbed and C metaphase. In addition, laggards, multipolor, and bridges were observed in some treatments but with low percentage

  12. Preferential type II muscle fiber damage from plyometric exercise.

    Science.gov (United States)

    Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H

    2012-01-01

    Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.

  13. The effects of a repeated bout of eccentric exercise on indices of muscle damage and delayed onset muscle soreness.

    Science.gov (United States)

    Paddon-Jones, D; Muthalib, M; Jenkins, D

    2000-03-01

    This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.

  14. RAPID KNEE-EXTENSIONS TO INCREASE QUADRICEPS MUSCLE ACTIVITY IN PATIENTS WITH TOTAL KNEE ARTHROPLASTY

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  15. Rapid knee-extensions to increase quadriceps muscle activity in patients with total knee arthroplasty

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  16. Quantitative determination of creatine kinase release from herring (Clupea harengus) spermatozoa induced by tributyltin.

    Science.gov (United States)

    Grzyb, Katarzyna; Rychłowski, Michał; Biegniewska, Anna; Skorkowski, Edward F

    2003-02-01

    Creatine kinase (CK, ATP creatine phosphotransferase, EC 2.7.3.2) is an enzyme participating in ATP regeneration, which is the primary source of energy in living organisms. We demonstrated that CK from herring spermatozoa has high activity ( approximately 452 micromol/min/g of fresh semen) and has a different electrophoretic mobility from isoenzymes present in skeletal muscle. In our study, we investigated toxic effect of tributyltin (TBT) on herring spermatozoa using a specific sperm viability kit to observe live and dead sperm cells with a confocal microscope. Treatment of herring spermatozoa with TBT caused a time-dependent decrease of viability: 35% nonviable cells with 5 microM TBT and more than 90% nonviable cells with 10 microM TBT after 6 h exposure. We also monitored CK release from damaged spermatozoa into surrounding medium containing different concentrations of TBT. The higher concentration of TBT was used the more CK release from spermatozoa was observed. We suggest that CK could be a good biomarker of sperm cell membranes degradation in the case when lactate dehydrogenase release from permeabilized cells is not possible for rapid determination of the effect of TBT.

  17. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance.

    Science.gov (United States)

    Galvan, Elfego; Walker, Dillon K; Simbo, Sunday Y; Dalton, Ryan; Levers, Kyle; O'Connor, Abigail; Goodenough, Chelsea; Barringer, Nicholas D; Greenwood, Mike; Rasmussen, Christopher; Smith, Stephen B; Riechman, Steven E; Fluckey, James D; Murano, Peter S; Earnest, Conrad P; Kreider, Richard B

    2016-01-01

    Creatine monohydrate (CrM) and nitrate are popular supplements for improving exercise performance; yet have not been investigated in combination. We performed two studies to determine the safety and exercise performance-characteristics of creatine nitrate (CrN) supplementation. Study 1 participants (N = 13) ingested 1.5 g CrN (CrN-Low), 3 g CrN (CrN-High), 5 g CrM or a placebo in a randomized, crossover study (7d washout) to determine supplement safety (hepatorenal and muscle enzymes, heart rate, blood pressure and side effects) measured at time-0 (unsupplemented), 30-min, and then hourly for 5-h post-ingestion. Study 2 participants (N = 48) received the same CrN treatments vs. 3 g CrM in a randomized, double-blind, 28d trial inclusive of a 7-d interim testing period and loading sequence (4 servings/d). Day-7 and d-28 measured Tendo™ bench press performance, Wingate testing and a 6x6-s bicycle ergometer sprint. Data were analyzed using a GLM and results are reported as mean ± SD or mean change ± 95 % CI. In both studies we observed several significant, yet stochastic changes in blood markers that were not indicative of potential harm or consistent for any treatment group. Equally, all treatment groups reported a similar number of minimal side effects. In Study 2, there was a significant increase in plasma nitrates for both CrN groups by d-7, subsequently abating by d-28. Muscle creatine increased significantly by d-7 in the CrM and CrN-High groups, but then decreased by d-28 for CrN-High. By d-28, there were significant increases in bench press lifting volume (kg) for all groups (PLA, 126.6, 95 % CI 26.3, 226.8; CrM, 194.1, 95 % CI 89.0, 299.2; CrN-Low, 118.3, 95 % CI 26.1, 210.5; CrN-High, 267.2, 95 % CI 175.0, 359.4, kg). Only the CrN-High group was significantly greater than PLA (p power (PLA, 59.0, 95 % CI 4.5, 113.4; CrM, 68.6, 95 % CI 11.4, 125.8; CrN-Low, 40.9, 95 % CI -9.2, 91.0; CrN-High, 60.9, 95 % CI 10.8, 111.1, W) and

  18. Longitudinal study of the effects of chronic hypothyroidism on skeletal muscle in dogs.

    Science.gov (United States)

    Rossmeisl, John H; Duncan, Robert B; Inzana, Karen D; Panciera, David L; Shelton, G Diane

    2009-07-01

    To study the effects of experimentally induced hypothyroidism on skeletal muscle and characterize any observed myopathic abnormalities in dogs. 9 female, adult mixed-breed dogs; 6 with hypothyroidism induced with irradiation with 131 iodine and 3 untreated control dogs. Clinical examinations were performed monthly. Electromyographic examinations; measurement of plasma creatine kinase, alanine aminotransferase, aspartate aminotransferase, lactate, and lactate dehydrogenase isoenzyme activities; and skeletal muscle morphologic-morphometric examinations were performed prior to and every 6 months for 18 months after induction of hypothyroidism. Baseline, 6-month, and 18-month assessments of plasma, urine, and skeletal muscle carnitine concentrations were also performed. Hypothyroid dogs developed electromyographic and morphologic evidence of myopathy by 6 months after treatment, which persisted throughout the study, although these changes were subclinical at all times. Hypothyroid myopathy was associated with significant increases in plasma creatine kinase, aspartate aminotransferase, and lactate dehydrogenase 5 isoenzyme activities and was characterized by nemaline rod inclusions, substantial and progressive predominance of type I myofibers, decrease in mean type II fiber area, subsarcolemmal accumulations of abnormal mitochondria, and myofiber degeneration. Chronic hypothyroidism was associated with substantial depletion in skeletal muscle free carnitine. Chronic, experimentally induced hypothyroidism resulted in substantial but subclinical phenotypic myopathic changes indicative of altered muscle energy metabolism and depletion of skeletal muscle carnitine. These abnormalities may contribute to nonspecific clinical signs, such as lethargy and exercise intolerance, often reported in hypothyroid dogs.

  19. Exclusion of acute myocardial infarction. The value of measuring creatine kinase slope

    NARCIS (Netherlands)

    Bakker, A. J.; Koelemay, M. J.; van Vlies, B.; Gorgels, J. P.; Smits, R.; Tijssen, J. G.; Haagen, F. D.

    1995-01-01

    For the exclusion (and diagnosis) of acute myocardial infarction, we studied timed sequential (slope) measurements of creatine kinase and creatine kinase-MB catalytic activity concentration, creatine kinase-MB mass concentration, troponin T and myoglobin, using data from 242 patients consecutively

  20. Effects on Energy Metabolism of Two Guanidine Molecules, (Boc)2 -Creatine and Metformin.

    Science.gov (United States)

    Garbati, Patrizia; Ravera, Silvia; Scarfì, Sonia; Salis, Annalisa; Rosano, Camillo; Poggi, Alessandro; Damonte, Gianluca; Millo, Enrico; Balestrino, Maurizio

    2017-09-01

    Several enzymes are involved in the energy production, becoming a possible target for new anti-cancer drugs. In this paper, we used biochemical and in silico studies to evaluate the effects of two guanidine molecules, (Boc) 2 -creatine and metformin, on creatine kinase, an enzyme involved in the regulation of intracellular energy levels. Our results show that both drugs inhibit creatine kinase activity; however, (Boc) 2 -creatine displays a competitive inhibition, while metformin acts with a non-competitive mechanism. Moreover, (Boc) 2 -creatine is able to inhibit the activity of hexokinase with a non-competitive mechanism. Considering that creatine kinase and hexokinase are involved in energy metabolism, we evaluated the effects of (Boc) 2 -creatine and metformin on the ATP/AMP ratio and on cellular proliferation in healthy fibroblasts, human breast cancer cells (MDA-MB-468), a human neuroblastoma cell line (SH-SY5Y), a human Hodgkin lymphoma cell line (KMH2). We found that healthy fibroblasts were only partially affected by (Boc) 2 -creatine, while both ATP/AMP ratio and viability of the three cancer cell lines were significantly decreased. By inhibiting both creatine kinase and hexokinase, (Boc) 2 -creatine appears as a promising new agent in anticancer treatment. Further research is needed to understand what types of cancer cells are most suitable to treatment by this new compound. J. Cell. Biochem. 118: 2700-2711, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Creatine Deficiency Syndrome could be Missed Easily: A Case Report of Guanidinoacetate Methyltransferase Deficiency Presented with Neurodevelopmental Delay, Seizures, and Behavioral Changes, but Normal Structural MRI.

    Science.gov (United States)

    Pacheva, Iliyana; Ivanov, Ivan; Penkov, Marin; Kancheva, Daliya; Jordanova, Albena; Ivanova, Mariya

    2016-09-01

    A case with GAMT deficiency (homozygous c.64dupG mutation) presented with neurodevelopmental delay, rare seizures, behavioral disturbances, and mild hypotonia, posing diagnostic challenges. Metabolic investigations showed low creatinine in plasma and urine (guanidinoacetate couldn't be investigated) and slightly elevated lactate. MRI was normal. Correct diagnosis was possible only after MR spectroscopy was performed at age 5½ years. A homozygous c.64dupG mutation of the GAMT gene was identified in the proband. In conclusion, every case with neurodevelopmental delay or arrest, especially when accompanied by seizures, behavioral impairment, muscle hypotonia or extrapyramidal symptoms should undergo MRI with MR spectroscopy. Normal structural MRI doesn't exclude a creatine deficiency syndrome. Biochemical investigations of guanidinoacetate, creatine, and creatinine in body fluid should be done to diagnose cerebral creatine deficiency syndromes and to specify the deficient enzyme. Thus, a treatable disease will not be missed. © 2016 by the Association of Clinical Scientists, Inc.

  2. Low-Dose Creatine Supplementation Lowers Plasma Guanidinoacetate, but Not Plasma Homocysteine, in a Double-Blind, Randomized, Placebo-Controlled Trial123

    Science.gov (United States)

    Peters, Brandilyn A; Hall, Megan N; Liu, Xinhua; Parvez, Faruque; Siddique, Abu B; Shahriar, Hasan; Uddin, Mohammad Nasir; Islam, Tariqul; Ilievski, Vesna; Graziano, Joseph H; Gamble, Mary V

    2015-01-01

    Background: Creatine synthesis from guanidinoacetate consumes ∼50% of s-adenosylmethionine (SAM)–derived methyl groups, accounting for an equivalent proportion of s-adenosylhomocysteine (SAH) and total homocysteine (tHcys) synthesis. Dietary creatine inhibits the synthesis of guanidinoacetate, thereby lowering plasma tHcys in rats. Objective: We tested the hypotheses that creatine supplementation lowers plasma guanidinoacetate, increases blood SAM, lowers blood SAH, and lowers plasma tHcys. Methods: Bangladeshi adults were randomly assigned to receive 1 of 4 treatments for 12 wk: placebo (n = 101), 3 g/d creatine (Cr; n = 101), 400 μg/d folic acid (FA; n = 153), or 3 g/d creatine plus 400 μg/d folic acid (Cr+FA; n = 103). The outcomes of plasma guanidinoacetate and tHcys, as well as whole blood SAM and SAH, were analyzed at baseline and week 12 by HPLC. Treatment effects of creatine supplementation were examined with the use of the group comparisons of Cr vs. placebo and Cr+FA vs. FA. Results: Plasma guanidinoacetate declined by 10.6% (95% CI: 4.9, 15.9) in the Cr group while increasing nonsignificantly in the placebo group (3.7%; 95% CI: −0.8, 8.5) (Pgroup difference = 0.0002). Similarly, plasma guanidinoacetate declined by 9.0% (95% CI: 3.4, 14.2) in the Cr+FA group while increasing in the FA group (7.0%; 95% CI: 2.0, 12.2) (Pgroup difference creatine supplementation downregulates endogenous creatine synthesis, this may not on average lower plasma tHcys in humans. However, tHcys did decrease in those participants who experienced a decline in plasma guanidinoacetate while receiving creatine plus folic acid supplementation. This trial was registered at clinicaltrials.gov as NCT01050556. PMID:26311810

  3. Creatina: auxílio ergogênico com potencial antioxidante? Creatine: ergogenic aid with antioxidant potential?

    Directory of Open Access Journals (Sweden)

    Tácito Pessoa de Souza Junior

    2008-06-01

    Full Text Available A creatina é largamente utilizada como auxilio ergogênico, com algumas evidências quanto ao seu efeito positivo na massa magra, força/potência e resistência muscular. Entretanto, esses estudos não conseguiram identificar potenciais mecanismos bioquímicos que pudessem explicar seu efeito na fadiga ou turnover de proteína muscular, existindo a possibilidade de que alguns indivíduos não sejam responsivos a esse suplemento. Outro possível efeito da creatina, que vem sendo recentemente investigado, é a sua ação antioxidante. Mesmo com poucos trabalhos disponíveis, duas possibilidades existem para explicar esse efeito: 1 Ação indireta como tampão energético, devido ao aumento na concentração tecidual de fosfocreatina, que favoreceria a menor produção de metabólitos do ciclo de degradação de purinas (ciclo de Lowenstein, resultando em queda na formação de hipoxantina, xantina e ácido úrico, assim como em espécies reativas de oxigênio (superóxido, peróxido de hidrogênio e radical hidroxil; 2 Por ação direta, apesar de essa propriedade ser inferior à dos antioxidantes já bem conhecidos, como a glutationa reduzida. Mesmo assim, poderia atuar conjuntamente com estes. O objetivo desta comunicação é relatar dados disponíveis sobre esses dois itens.Creatine is largely used as an ergogenic aid with some evidence regarding its positive effect on lean body mass, strength/power and muscle endurance. However, most studies were not capable of identifying biochemical mechanisms that could explain its effect on fatigue or muscle protein turnover. There is also the possibility that some individuals are non-responsive to this supplement. Another possible effect of creatine that has been recently investigated is its antioxidant action, but few studies explored this subject. Nonetheless, it can be emphasized that the antioxidant effect of creatine works in the organism in the following way: 1 Indirect action as an energy buffer

  4. MR imaging of sports-related muscle pain

    International Nuclear Information System (INIS)

    Fleckenstein, J.L.; Weatherall, P.T.; Parkey, R.W.; Peshock, R.M.

    1988-01-01

    Muscle pain following exercise occurs acutely or after a significant delay. MR imaging of the lower extremities was performed in acute strains (N=3); runners after a 30-km marathon (N=10); and sedentary subjects, 3-5 days after brief ankle plantarflexion (N=5). Serum creatine kinase (CK) levels were determined in groups 2 and 3. Abnormal signal intensity was evident in all groups. The increase in CK level was associated in time with onset of signal increase in group 3. MR imaging is useful in defining the distribution, extent, and natural history of exercise-induced muscle injury

  5. Comparison of the eight weeks of supplementation Creatine and Glutamine consumption along with resistance exercise on the level of ALP in female mice

    Directory of Open Access Journals (Sweden)

    A eskandari

    2015-11-01

    Full Text Available Background and purpose: in recent years, in order to improve power, speed, the increase in the volume of the musculature, preventing sports injuries and maintain the muscle performance athletes use from different resistance exercises and food supplements. In this regard, present study has been conducted with the aim of comparison the influence of an 8 week period consumption of creatine (2 gr.kg-1.day-1 in 1st week and 0.48 gr.kg-1.day-1during 2nd to 8th weeks and glutamine (1 gr.kg-1.day-1 from first to eighth weeks along with resistance exercise on level of ALP of female mice. Materials and methods: This experimental study was done on 80 Small adult female mice of Surrey species (28 ± 5 gram. The animals were randomly divided into 8 groups of: resistance exercise, resistance exercise + creatine, resistance exercise + glutamine, resistance exercise + glutamine + creatine, creatine, glutamine, creatine + glutamine and control groups (N= 10. Resistance exercise (5 days a week was including: climbing (4 sets, 5 times repetition with two minutes rest between the sets from a ladder (with the height of one meter and including 26 steps and bearing 30 percent of the weight of the Mouse body (hanging from tail in the first week and the increasing it up to 200 percent of body weight till the last week of the experiment. During 48 hours after the last practice session of resistance exercise, the blood sample was taken and the the level of ALP has been measured. Findings:The results showed that the level of ALP enzyme in creatine + glutamine + resistance exercise groug had been increased in comparison with the control group (144.3 ± 15.86 in comparison with 234.7 ± 25.69 U.L-1 P < 0.05. Conclusion: The results of this research indicate Creatine and Glutamine supplementation consumption along with resistance exercise increases in the level of ALP enzyme in the liver of mice.

  6. Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions

    DEFF Research Database (Denmark)

    Macdonald, W A; Ørtenblad, N; Nielsen, Ole Bækgaard

    2007-01-01

    High-frequency stimulation of skeletal muscle has long been associated with ionic perturbations, resulting in the loss of membrane excitability, which may prevent action potential propagation and result in skeletal muscle fatigue. Associated with intense skeletal muscle contractions are large...... with control muscles, the resting metabolites ATP, phosphocreatine, creatine, and lactate, as well as the resting muscle excitability as measured by M-waves, were unaffected by treatment with BTS plus dantrolene. Following 20 or 30 s of continuous 60-Hz stimulation, BTS-plus-dantrolene-treated muscles showed...... changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is not clear. The metabolic state of isolated rat extensor digitorum longus muscles at 30 degrees C was manipulated by decreasing energy expenditure and thereby allowed investigation of the effects of energy...

  7. Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jessie M. Cameron

    2017-07-01

    Full Text Available Creatine deficiency syndrome (CDS comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase (GATM gene, glycine amidinotransferase, guanidinoacetate methyltransferase (GAMT gene, and creatine transporter deficiency (SLC6A8 gene, solute carrier family 6 member 8. CDS presents with developmental delays/regression, intellectual disability, speech and language impairment, autistic behaviour, epileptic seizures, treatment-refractory epilepsy, and extrapyramidal movement disorders; symptoms that are also evident in children with autism. The objective of the study was to test the hypothesis that genetic variability in creatine metabolism genes is associated with autism. We sequenced GATM, GAMT and SLC6A8 genes in 166 patients with autism (coding sequence, introns and adjacent untranslated regions. A total of 29, 16 and 25 variants were identified in each gene, respectively. Four variants were novel in GATM, and 5 in SLC6A8 (not present in the 1000 Genomes, Exome Sequencing Project (ESP or Exome Aggregation Consortium (ExAC databases. A single variant in each gene was identified as non-synonymous, and computationally predicted to be potentially damaging. Nine variants in GATM were shown to have a lower minor allele frequency (MAF in the autism population than in the 1000 Genomes database, specifically in the East Asian population (Fisher’s exact test. Two variants also had lower MAFs in the European population. In summary, there were no apparent associations of variants in GAMT and SLC6A8 genes with autism. The data implying there could be a lower association of some specific GATM gene variants with autism is an observation that would need to be corroborated in a larger group of autism patients, and with sub-populations of Asian ethnicities. Overall, our findings suggest that the genetic variability of creatine synthesis/transport is unlikely to play a part in the pathogenesis of autism

  8. Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Cameron, Jessie M; Levandovskiy, Valeriy; Roberts, Wendy; Anagnostou, Evdokia; Scherer, Stephen; Loh, Alvin; Schulze, Andreas

    2017-07-31

    Creatine deficiency syndrome (CDS) comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase ( GATM gene, glycine amidinotransferase), guanidinoacetate methyltransferase ( GAMT gene), and creatine transporter deficiency ( SLC6A8 gene, solute carrier family 6 member 8). CDS presents with developmental delays/regression, intellectual disability, speech and language impairment, autistic behaviour, epileptic seizures, treatment-refractory epilepsy, and extrapyramidal movement disorders; symptoms that are also evident in children with autism. The objective of the study was to test the hypothesis that genetic variability in creatine metabolism genes is associated with autism. We sequenced GATM , GAMT and SLC6A8 genes in 166 patients with autism (coding sequence, introns and adjacent untranslated regions). A total of 29, 16 and 25 variants were identified in each gene, respectively. Four variants were novel in GATM , and 5 in SLC6A8 (not present in the 1000 Genomes, Exome Sequencing Project (ESP) or Exome Aggregation Consortium (ExAC) databases). A single variant in each gene was identified as non-synonymous, and computationally predicted to be potentially damaging. Nine variants in GATM were shown to have a lower minor allele frequency (MAF) in the autism population than in the 1000 Genomes database, specifically in the East Asian population (Fisher's exact test). Two variants also had lower MAFs in the European population. In summary, there were no apparent associations of variants in GAMT and SLC6A8 genes with autism. The data implying there could be a lower association of some specific GATM gene variants with autism is an observation that would need to be corroborated in a larger group of autism patients, and with sub-populations of Asian ethnicities. Overall, our findings suggest that the genetic variability of creatine synthesis/transport is unlikely to play a part in the pathogenesis of autism spectrum

  9. CHANGES IN MAXIMAL STRENGTH AND BODY COMPOSITION AFTER DIFFERENT METHODS OF DEVELOPING MUSCLE STRENGTH AND SUPPLEMENTATION WITH CREATINE, L-CARNITINE AND HMB

    Directory of Open Access Journals (Sweden)

    M Kruszewski

    2011-06-01

    Full Text Available The aim of the present study was to assess the effects of bodybuilding training combined with administration of L-carnitine, weightlifting training combined with administration of creatine, and isometric training combined with administration of β-hydroxy-β-methylbutyrate (HMB on maximal strength and body composition of athletes. The studies were conducted on groups of beginners practising bodybuilding training (n=63 and isometric training (n=69 as well as on a group of advanced powerlifters (n=50 practising weightlifting training. The obtained results indicate that the most desirable and beneficial supportive effect in strength sports was exhibited by HMB. No significant differences in body composition of subjects practising bodybuilding training were detected between those who were given L-carnitine and those who received placebo, an observation confirming controversies over the capacity of the former to reduce fat content. However, significant differences in maximal strength were demonstrated between the examined groups of athletes. Significant differences in the examined parameters were also detected within the group of advanced powerlifters practising weightlifting between those who were supplemented with creatine and those who were given placebo. Thus, the use of creatine in the development of physical capacity in advanced athletes may be advisable.

  10. Effects of air-pulsed cryotherapy on neuromuscular recovery subsequent to exercise-induced muscle damage.

    Science.gov (United States)

    Guilhem, Gaël; Hug, François; Couturier, Antoine; Regnault, Stéphanie; Bournat, Laure; Filliard, Jean-Robert; Dorel, Sylvain

    2013-08-01

    Localized cooling has been proposed as an effective strategy to limit the deleterious effects of exercise-induced muscle damage on neuromuscular function. However, the literature reports conflicting results. This randomized controlled trial aimed to determine the effects of a new treatment, localized air-pulsed cryotherapy (-30°C), on the recovery time-course of neuromuscular function following a strenuous eccentric exercise. Controlled laboratory study. A total of 24 participants were included in either a control group (CONT) or a cryotherapy group (CRYO). Immediately after 3 sets of 20 maximal isokinetic eccentric contractions of elbow flexors, and then 1, 2, and 3 days after exercise, the CRYO group received a cryotherapy treatment (3 × 4 minutes at -30°C separated by 1 minute). The day before and 1, 2, 3, 7, and 14 days after exercise, several parameters were quantified: maximal isometric torque and its associated maximal electromyographic activity recorded by a 64-channel electrode, delayed-onset muscle soreness (DOMS), biceps brachii transverse relaxation time (T2) measured using magnetic resonance imaging, creatine kinase activity, interleukin-6, and C-reactive protein. Maximal isometric torque decreased similarly for the CONT (-33% ± 4%) and CRYO groups (-31% ± 6%). No intergroup differences were found for DOMS, electromyographic activity, creatine kinase activity, and T2 level averaged across the whole biceps brachii. C-reactive protein significantly increased for CONT (+93% at 72 hours, P cryotherapy delayed the significant increase of T2 and the decrease of electromyographic activity level for CRYO compared with CONT (between day 1 and day 3) in the medio-distal part of the biceps brachii. Although some indicators of muscle damage after severe eccentric exercise were delayed (ie, local formation of edema and decrease of muscle activity) by repeated air-pulsed cryotherapy, we provide evidence that this cooling procedure failed to improve long

  11. The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise

    Directory of Open Access Journals (Sweden)

    Purpura Martin

    2008-02-01

    Full Text Available Abstract Background A double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr and creatine citrate (Cr-Cit supplementation on exercise performance in healthy young athletes. Methods Performance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest and after (posttest 28 days of Cr-Pyr (5 g/d, n = 16, Cr-Cit (5 g/d, n = 16 or placebo (pla, 5 g/d, n = 17 intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods. Results Cr-Pyr (p Conclusion It is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism.

  12. Co-administration of creatine and guanidinoacetic acid for augmented tissue bioenergetics: A novel approach?

    Science.gov (United States)

    Ostojic, Sergej M

    2017-07-01

    A confined absorption of exogenous creatine through creatine transporter (CRT1) seems to hamper its optimal uptake in bioenergetical deficits. Co-administration of guanidinoacetic acid (GAA) along with creatine could target other transport channels besides CRT1, and supremely improve cellular levels of creatine. This innovative approach might tackle tissues difficult to reach with conventional creatine interventions, providing a potentially more effective and safe mixture in clinical pharmacology and therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    Science.gov (United States)

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  14. The Relationship Between Creatine and Whey Protein Supplements Consumption and Anesthesia in Rats.

    Science.gov (United States)

    Saberi, Kianoush; Gorji Mahlabani, Mohammad Amin; Tashayoie, Mohammad; Nasiri Nejad, Farinaz

    2016-02-01

    Because the trend of pharmacotherapy is toward controlling diet rather than administration of drugs, in our study we examined the probable relationship between Creatine (Cr) or Whey (Wh) consumption and anesthesia (analgesia effect of ketamine). Creatine and Wh are among the most favorable supplements in the market. Whey is a protein, which is extracted from milk and is a rich source of amino acids. Creatine is an amino acid derivative that can change to ATP in the body. Both of these supplements result in Nitric Oxide (NO) retention, which is believed to be effective in N-Methyl-D-aspartate (NMDA) receptor analgesia. The main question of this study was whether Wh and Cr are effective on analgesic and anesthetic characteristics of ketamine and whether this is related to NO retention or amino acids' features. We divided 30 male Wistar rats to three (n = 10) groups; including Cr, Wh and sham (water only) groups. Each group was administered (by gavage) the supplements for an intermediate dosage during 25 days. After this period, they became anesthetized using a Ketamine-Xylazine (KX) and their time to anesthesia and analgesia, and total sleep time were recorded. Data were analyzed twice using the SPSS 18 software with Analysis of Variance (ANOVA) and post hoc test; first time we expunged the rats that didn't become anesthetized and the second time we included all of the samples. There was a significant P-value (P < 0.05) for total anesthesia time in the second analysis. Bonferroni multiple comparison indicated that the difference was between Cr and Sham groups (P < 0.021). The data only indicated that there might be a significant relationship between Cr consumption and total sleep time. Further studies, with rats of different gender and different dosage of supplement and anesthetics are suggested.

  15. Statin-associated muscle symptoms: impact on statin therapy

    DEFF Research Database (Denmark)

    Stroes, Erik S; Thompson, Paul D; Corsini, Alberto

    2015-01-01

    degradation, thereby providing a potential link between statins and muscle symptoms; controlled mechanistic and genetic studies in humans are necessary to further understanding. The Panel proposes to identify SAMS by symptoms typical of statin myalgia (i.e. muscle pain or aching) and their temporal......Statin-associated muscle symptoms (SAMS) are one of the principal reasons for statin non-adherence and/or discontinuation, contributing to adverse cardiovascular outcomes. This European Atherosclerosis Society (EAS) Consensus Panel overviews current understanding of the pathophysiology of statin......-associated myopathy, and provides guidance for diagnosis and management of SAMS. Statin-associated myopathy, with significant elevation of serum creatine kinase (CK), is a rare but serious side effect of statins, affecting 1 per 1000 to 1 per 10 000 people on standard statin doses. Statin-associated muscle symptoms...

  16. Cellular location of rat muscle ferritins and their preferential loss during cell isolation.

    Science.gov (United States)

    Linder, M C; Roboz, M; McKown, M J; Pardridge, W M; Zak, R

    1984-04-10

    Heart and other muscles of the rat contain two forms of ferritin separable in polyacrylamide gel electrophoresis. The cellular location of the fast- and slow-migrating ferritins was investigated using primary cultures of hindlimb skeletal muscle, and isolated myocardial cell populations. Muscle and non-muscle cells were isolated in good yield from hearts of adult rats pretreated with large doses of iron to increase their ferritin content. In virtually all cases, the isolated muscle cells contained traces only of the fast-migrating species and the non-muscle cells contained small amounts of the slow-migrating ferritin. During cell isolation, 90-100% of both ferritins was lost and could be recovered in the perfusates and solutions employed, while one third of the total tissue protein, and a larger percentage of creatine phosphokinase, was recovered in the isolated cells. Primary cultures of thigh muscle from adult rats which had differentiated into multi-nucleated myotubes, were incubated for 1-3 days with chelated iron. These cells contained substantial amounts of the electrophoretically fast migrating ferritin, with its characteristic larger Stokes' radius (determined by quantitative polyacrylamide gel electrophoresis). None of the slow-migrating ferritin species was detected, although hindlimb muscle from iron-treated rats contained both forms. It is concluded that the fast-migrating ferritin of muscle, which is much larger and more asymmetric than other ferritins, is confined to the muscle cell population, while the other form is predominantly or exclusively in the non-muscle cells. Both ferritins are lost preferentially over other proteins during procedures which injure muscle tissue.

  17. Clinical and muscle biopsy findings in Norwegian paediatric patients with limb girdle muscular dystrophy 2I.

    Science.gov (United States)

    Rasmussen, Magnhild; Scheie, David; Breivik, Noralv; Mork, Marit; Lindal, Sigurd

    2014-05-01

    To describe patients diagnosed with limb girdle muscular dystrophy 2I (LGMD2I) in our paediatric departments between 2004 and 2012. The hospital charts of 17 patients presenting for evaluation at a mean age of 7.8 years (range 1-13 years) were retrospectively reviewed. With one exception, all patients were homozygous for the common mutation c.826C>A in the FKRP gene. Three patients experienced transient pronounced weakness as toddlers. Fatigue and muscle pain were most prominent, weakness less so, in children presenting at an older age. The degree of severity varied substantially. In certain cases, increased creatine kinase was an incidental finding. All walked independently by 18 months. When last evaluated at a mean age of 14.3 years (range 3.5-18 years), five patients were part-time wheelchair users. One patient was then treated for a cardiomyopathy. Creatine kinase was consistently increased, except presymptomatic in one patient. Muscle biopsies showed focal acute and chronic myopathic changes and pathological expression of α-dystroglycan. No consistent relationship between clinical function and the degree of morphological pathology was found. LGMD2I is a relevant differential diagnosis when creatine kinase is increased in children presenting with fatigue, muscle pain and sometimes weakness. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  18. Caffeine and Creatine Content of Dietary Supplements Consumed by Brazilian Soccer Players.

    Science.gov (United States)

    Inácio, Suelen Galante; de Oliveira, Gustavo Vieira; Alvares, Thiago Silveira

    2016-08-01

    Caffeine and creatine are ingredients in the most popular dietary supplements consumed by soccer players. However, some products may not contain the disclosed amounts of the ingredients listed on the label, compromising the safe usage and the effectiveness of these supplements. Therefore, the aim of this study was to evaluate the content of caffeine and creatine in dietary supplements consumed by Brazilian soccer players. The results obtained were compared with the caffeine content listed on the product label. Two batches of the supplement brands consumed by ≥ 50% of the players were considered for analysis. The quantification of caffeine and creatine in the supplements was determined by a high-performance liquid chromatography system with UV detector. Nine supplements of caffeine and 7 supplements of creatine met the inclusion criteria for analysis. Eight brands of caffeine and five brands of creatine showed significantly different values (p soccer players present inaccurate values listed on the label, although most presented no difference among batches. To ensure consumer safety and product efficacy, accurate information on caffeine and creatine content should be provided on all dietary supplement labels.

  19. Minimal changes in indirect markers of muscle damage after an ...

    African Journals Online (AJOL)

    Creatine kinase (CK) activity, Visual Analogue Scale (VAS) muscle pain ratings, hip, knee and ankle joint range of motion and maximal quadriceps and hamstring isometric strength were measured 24 hours before, one hour and 24 hours after bowling and analysed using a one way ANOVA. Significance was set at p≤0.05.

  20. Immunological measurements on the disappearance of creatine kinase MM from the circulation

    International Nuclear Information System (INIS)

    Wevers, R.A.; Landeghem, A.A.J. van; Mul-Steinbusch, M.W.F.J.; Bijdendijk, J.G.; Weerts, P.; Kloeg, P.; Soons, J.B.J.

    1983-01-01

    Both a two-site immunoradiometric assay and a two-site enzyme-linked immunosorbent assay for creatine kinase MM are described. Linearity, reproducibility and cross-reactivity of the assays are satisfactory. Creatine kinase MM incubated in a pH-controlled serum matrix loses its activity, but has its antigenic determinants affected as well. Of all the techniques used, only the immunoradiometric assay is capable of measuring part of the inactivated enzyme. Measurements with this assay on the sera of patients after a myocardial infarction show identical results for enzyme activity and creatine kinase protein quantity. The in vitro disappearance rate of creatine kinase activity is slow compared with the in vivo half-life of the enzyme. These two observations lead to the conclusion that creatine kinase is removed from the circulation long before it is inactivated in the blood stream. (Auth.)

  1. Dietary guanidinoacetic acid increases brain creatine levels in healthy men

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik

    2017-01-01

    OBJECTIVE: Guanidinoacetic acid (GAA) is an experimental dietary additive that might act as a creatine source in tissues with high-energy requirements. In this case study, we evaluated brain levels of creatine in white matter, gray matter, cerebellum, and thalamus during 8 wk oral GAA......, and 8 wk, the participants underwent brain magnetic resonance spectroscopy, clinical chemistry studies, and open-ended questionnaire for side-effect prevalence and severity. RESULTS: Brain creatine levels increased in similar fashion in cerebellum, and white and gray matter after GAA supplementation......, with an initial increase of 10.7% reported after 4 wk, and additional upsurge (7.7%) from the weeks 4 to 8 follow-up (P creatine levels decreased after 4 wk for 6.5% (P = 0.02), and increased nonsignificantly after 8 wk for 8% (P = 0.09). GAA induced an increase in N-acetylaspartate levels at 8...

  2. Reference values for the creatine kinase response to professional Australian football match-play.

    Science.gov (United States)

    Inman, Luke A G; Rennie, Michael J; Watsford, Mark L; Gibbs, Nathan J; Green, James; Spurrs, Robert W

    2018-08-01

    Due to the importance of monitoring markers of muscle damage in high-level sport from a medical and athlete recovery perspective, this study aimed to determine the upper limits of normal (ULN) for post-match plasma creatine kinase (CK) in professional Australian footballers. Raw CK values were considered, along with intra-individual deviations from the season-mean. Case series. CK was collected between 36-48h following professional Australian football match-play. A total of 1565 samples from 62 players were assessed over three consecutive seasons. The ULN were determined for raw scores and as a percentage of each player's season-mean response. The ULN for raw CK, as determined by the 97.5th, 95th and 90th percentiles were 1715 (90%CI: 1605-1890), 1380 (90%CI: 1325-1475) and 1110 (90%CI: 1050-1170) UL -1 respectively. The ULN intra-individual response (97.5th percentile) was defined as a player's score being greater than 94% (90%CI: 84-102%) above their season-mean. Professional Australian football elicits a profound effect on the CK response. The values provide a reference tool for athletes competing at this level of competition. The novel method of representing the CK response as a percentage difference from an individuals' season-mean enables a superior comparative ability between CK responses and reduces the high CK responder bias that occurs when using raw scores alone. The data will assist medical and conditioning staff in excluding medical emergencies and also aid in individualising the prescription of training loads and recovery to optimise athlete performance and minimise further muscle damage. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Caffeine, creatine, GRIN2A and Parkinson's disease progression.

    Science.gov (United States)

    Simon, David K; Wu, Cai; Tilley, Barbara C; Lohmann, Katja; Klein, Christine; Payami, Haydeh; Wills, Anne-Marie; Aminoff, Michael J; Bainbridge, Jacquelyn; Dewey, Richard; Hauser, Robert A; Schaake, Susen; Schneider, Jay S; Sharma, Saloni; Singer, Carlos; Tanner, Caroline M; Truong, Daniel; Wei, Peng; Wong, Pei Shieen; Yang, Tianzhong

    2017-04-15

    Caffeine is neuroprotective in animal models of Parkinson's disease (PD) and caffeine intake is inversely associated with the risk of PD. This association may be influenced by the genotype of GRIN2A, which encodes an NMDA-glutamate-receptor subunit. In two placebo-controlled studies, we detected no association of caffeine intake with the rate of clinical progression of PD, except among subjects taking creatine, for whom higher caffeine intake was associated with more rapid progression. We now have analyzed data from 420 subjects for whom DNA samples and caffeine intake data were available from a placebo-controlled study of creatine in PD. The GRIN2A genotype was not associated with the rate of clinical progression of PD in the placebo group. However, there was a 4-way interaction between GRIN2A genotype, caffeine, creatine and the time since baseline. Among subjects in the creatine group with high levels of caffeine intake, but not among those with low caffeine intake, the GRIN2A T allele was associated with more rapid progression (p=0.03). These data indicate that the deleterious interaction between caffeine and creatine with respect to rate of progression of PD is influenced by GRIN2A genotype. This example of a genetic factor interacting with environmental factors illustrates the complexity of gene-environment interactions in the progression of PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    Science.gov (United States)

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  6. The Effect of Taurine on the Recovery from Eccentric Exercise-Induced Muscle Damage in Males

    Directory of Open Access Journals (Sweden)

    Yanita McLeay

    2017-10-01

    Full Text Available Eccentric exercise is known to bring about microstructural damage to muscle, initiating an inflammatory cascade involving various reactive oxygen species. This, in turn, can significantly impair physical performance over subsequent days. Taurine, a powerful endogenous antioxidant, has previously been shown to have a beneficial effect on muscle damage markers and recovery when taken for a few days to several weeks prior to eccentric exercise. However, to date no studies have looked at the effects of supplementing over the days following eccentric exercise on performance recovery. Thus, this study aimed to determine whether supplementing with taurine over three days following eccentric exercise attenuated the rise in serum creatine kinase and improved performance recovery in males. In a blinded, randomized, crossover design, ten recreationally-fit male participants completed 60 eccentric contractions of the biceps brachii muscle at maximal effort. Following this, participants were supplemented with 0.1 g∙kg−1 body weight∙day−1 of either taurine or rice flour in capsules. Over the next three mornings participants underwent blood tests for the analysis of the muscle damage marker creatine kinase and carried out performance measures on the isokinetic dynamometer. They also continued to consume the capsules in the morning and evening. The entire protocol was repeated two weeks later on the alternate arm and supplement. Significant decreases were seen in all performance measures from pre- to 24-h post-eccentric exercise (p < 0.001 for both taurine and placebo, indicating the attainment of muscle damage. Significant treatment effects were observed only for peak eccentric torque (p < 0.05. No significant time × treatment effects were observed (all p > 0.05. Serum creatine kinase levels did not significantly differ over time for either treatments, nor between treatments (p > 0.05. These findings suggest that taurine supplementation taken twice

  7. Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Barthélémy Delecroix, Abd Elbasset Abaïdia, Cédric Leduc, Brian Dawson, Grégory Dupont

    2017-03-01

    Full Text Available The aim of this study was to analyze the effects of oral consumption of curcumin and piperine in combination on the recovery kinetics after exercise-induced muscle damage. Forty-eight hours before and following exercise-induced muscle damage, ten elite rugby players consumed curcumin and piperine (experimental condition or placebo. A randomized cross-over design was performed. Concentric and isometric peak torque for the knee extensors, one leg 6 seconds sprint performance on a non-motorized treadmill, counter movement jump performance, blood creatine kinase concentration and muscle soreness were assessed immediately after exercise, then at 24h, 48h and 72h post-exercise. There were moderate to large effects of the exercise on the concentric peak torque for the knee extensors (Effect size (ES = -1.12; Confidence interval at 90% (CI90%: -2.17 to -0.06, the one leg 6 seconds sprint performance (ES=-1.65; CI90% = -2.51to -0.80 and the counter movement jump performance (ES = -0.56; CI90% = -0.81 to -0.32 in the 48h following the exercise. There was also a large effect of the exercise on the creatine kinase level 72h after the exercise in the control group (ES = 3.61; CI90%: 0.24 to 6.98. This decrease in muscle function and this elevation in creatine kinase indicate that the exercise implemented was efficient to induce muscle damage. Twenty four hours post-exercise, the reduction (from baseline in sprint mean power output was moderately lower in the experimental condition (-1.77 ± 7.25%; 1277 ± 153W in comparison with the placebo condition (-13.6 ± 13.0%; 1130 ± 241W (Effect Size = -1.12; Confidence Interval 90%=-1.86 to -0.86. However, no other effect was found between the two conditions. Curcumin and piperine supplementation before and after exercise can attenuate some, but not all, aspects of muscle damage.

  8. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game.

    Science.gov (United States)

    Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G; Krustrup, Peter; Mohr, Magni

    2018-03-01

    We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12) participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement ( p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip abductors (6 ± 1%) demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery.

  9. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game

    Directory of Open Access Journals (Sweden)

    Fransson Dan

    2018-03-01

    Full Text Available We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12 participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement (p ≤ 0.05 at 0 h post-match with knee flexors (14 ± 3% and hip abductors (6 ± 1% demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05 for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin and 24 h into recovery (creatine kinase, respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02. In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery.

  10. Urinary excretion of creatine and creatinine in gamma irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S K; Srinivasan, M N; Chuttani, K; Bhatnagar, A; Ghose, A

    1985-06-01

    Dose response relationships of creatine, creatinine excretions and their ratio in 24 hr urine samples have been studied on each individual day upto 4 days after 1-7 Gy whole body gamma irradiation to rats. Creatine excretion reaches the peak on the 2nd day while creatinine excretion reaches the peak on the first day and a plateau is maintained up to the 4th day in each case. Good dose response correlationship is maintained for creatine or creatinine levels up to the 4th day and for creatine creatinine ratio up to the 3rd day. Seperate dose response curves are needed on each individual day for using these parameters for biological dosimetry purpose. Administration of the radioprotectors viz., combination of 5-hydroxytryptophan (HT) and 2-amino-ethylisothiuronium bromide hydrobromide (AET), HT alone and optimum radioprotecting dose of AET before 5 Gy whole body ..gamma..-irradiation have not been of help for reducing creatinineurea. (author).

  11. Urinary excretion of creatine and creatinine in gamma irradiated rats

    International Nuclear Information System (INIS)

    Basu, S.K.; Srinivasan, M.N.; Chuttani, K.; Bhatnagar, A.; Ghose, A.

    1985-01-01

    Dose response relationships of creatine, creatinie excretions and their ratio in 24 hr urine samples have been studied on each individual day upto 4 days after 1-7 Gy whole body gamma irradiation to rats. Creatine excretion reaches the peak on the 2nd day while creatinine excretion reaches the peak on the first day and a plateau is maintained upto the 4th day in each case. Good dose response correlationship is maintained for creatine or creatinine levels upto the 4th day and for creatine creatinine ratio upto the 3rd day. Seperate dose response curves are needed on each individual day for using these parameters for biological dosimetry purpose. Administration of the radioprotectors viz., combination of 5-hydroxytryptophan (HT) and 2-amino-ethylisothiuronium bromide hydrobromide (AET), HT alone and optimum radioprotecting dose of AET before 5 Gy whole body γ-irradiation have not been of help for reducing creatinineurea. (author)

  12. A study of muscle involvement in scrub typhus.

    Science.gov (United States)

    Kalita, Jayantee; Misra, Usha K; Mani, Vinita E; Mahadevan, Anita; Shankar, Susrala K

    2015-01-15

    Patients with scrub typhus often complain of myalgia, but a comprehensive study on muscle dysfunction is lacking. We therefore report the clinical, electromyographic and muscle biopsy findings in patients with scrub typhus. Consecutive patients with scrub typhus were included, and their clinical and laboratory findings were noted. The patients with myalgia or weakness and elevated serum creatine kinase (CK) were considered to have muscle involvement. Electromyography (EMG) and muscle biopsy were done in some patients. Patients were treated with doxycycline 200mg daily for 7 days, and their clinical and biochemical outcome on discharge and one month were evaluated. 13 out of 33 (39.4%) patients had muscle involvement and their CK levels ranged between 287 and 3166 (859 ± 829) U/L. EMG revealed short duration polyphasic potentials, and muscle histopathology revealed evidence of vasculitis. There were significant correlations between severity of weakness and CK levels (r = -0.6; p scrub typhus. Although muscle histopathology showed evidence of vasculitis, patients responded to doxycycline. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Creatine maintains intestinal homeostasis and protects against colitis.

    Science.gov (United States)

    Turer, Emre; McAlpine, William; Wang, Kuan-Wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R; Beutler, Bruce

    2017-02-14

    Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N -ethyl- N -nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted ( Gatm c/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatm c/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatm c/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.

  14. Evaluation of Muscle Damage Marker after Mixed Martial Arts Matches.

    Science.gov (United States)

    Wiechmann, Gerald Julius; Saygili, Erol; Zilkens, Christoph; Krauspe, Rüdiger; Behringer, Michael

    2016-03-21

    The aim of this paper is to identify predictors of serum muscle damage marker (MDM) response following mixed martial arts (MMA) matches. Creatine kinase activity (CK) and myoglobin concentration (Mb) were measured in ten male elite MMA fighters (aged 28±5.7 years) prior to, 2 h, 24 h, and 96 h following 9 different MMA matches. The number of performed upright punches and kicks (UKF) that failed the opponent, the number of obtained hits to the upper and lower body (LBH), as well as the total fight duration (TFD) were evaluated as potential predictors from video recordings. CK peaked 24 h (829±753 U/L(-1)) and Mb peaked 2 h (210±122 µg/L(-1)) post matches. Almost 80% of the peak CK variance could be explained by LBH and UKF, whereas 87% of the Mb variation was explained by TFD and LBH. MMA result in a significant skeletal muscle damage, which largely depends on LBH. Furthermore, eccentric contractions to decelerate kicks that missed the opponent and the TFD seem to contribute to the MDM response.

  15. Fatigue and changes of ATP, creatine phosphate, and lactate during the 400-m sprint.

    Science.gov (United States)

    Hirvonen, J; Nummela, A; Rusko, H; Rehunen, S; Härkönen, M

    1992-06-01

    Fatigue during the 400-m sprint was studied by measuring muscle ATP, creatine phosphate (CP), lactate (M-La), and blood lactate (B-La) in six male runners before and after four experimental sprints (100, 200, 300, and 400 m). During the first 100 m, muscle CP decreased from 15.8 +/- 1.7 to 8.3 +/- 0.3 mmol/kg while M-La increased to 3.6 +/- 0.4 mmol/kg. After 200 m the CP had decreased to 6.5 +/- 0.5 mmol/kg and M-La had increased to 8.3 +/- 1.1 mmol/kg. At the end of the 400 meters, ATP and CP concentrations had decreased by 27% and 89%, respectively, and M-La had increased to 17.3 +/- 0.9 mmol/kg. It was concluded that after 200 m the speed of running decreased, although CP was not depleted and lactate concentration was not at maximum level. Complete fatigue occurred when CP stores were depleted and B-La and M-La attained an individual maximum.

  16. Massage Alleviates Delayed Onset Muscle Soreness after Strenuous Exercise: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Jianmin Guo

    2017-09-01

    Full Text Available Purpose: The purpose of this systematic review and meta-analysis was to evaluate the effects of massage on alleviating delayed onset of muscle soreness (DOMS and muscle performance after strenuous exercise.Method: Seven databases consisting of PubMed, Embase, EBSCO, Cochrane Library, Web of Science, CNKI and Wanfang were searched up to December 2016. Randomized controlled trials (RCTs were eligible and the outcomes of muscle soreness, performance (including muscle maximal isometric force (MIF and peak torque and creatine kinase (CK were used to assess the effectiveness of massage intervention on DOMS.Results: Eleven articles with a total of 23 data points (involving 504 participants satisfied the inclusion criteria and were pooled in the meta-analysis. The findings demonstrated that muscle soreness rating decreased significantly when the participants received massage intervention compared with no intervention at 24 h (SMD: –0.61, 95% CI: –1.17 to –0.05, P = 0.03, 48 h (SMD: –1.51, 95% CI: –2.24 to –0.77, P < 0.001, 72 h (SMD: –1.46, 95% CI: –2.59 to –0.33, P = 0.01 and in total (SMD: –1.16, 95% CI: –1.60 to –0.72, P < 0.001 after intense exercise. Additionally, massage therapy improved MIF (SMD: 0.56, 95% CI: 0.21–0.90, P = 0.002 and peak torque (SMD: 0.38, 95% CI: 0.04–0.71, P = 0.03 as total effects. Furthermore, the serum CK level was reduced when participants received massage intervention (SMD: –0.64, 95% CI: –1.04 to –0.25, P = 0.001.Conclusion: The current evidence suggests that massage therapy after strenuous exercise could be effective for alleviating DOMS and improving muscle performance.

  17. Serum Osteopontin as a Novel Biomarker for Muscle Regeneration in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Kuraoka, Mutsuki; Kimura, En; Nagata, Tetsuya; Okada, Takashi; Aoki, Yoshitsugu; Tachimori, Hisateru; Yonemoto, Naohiro; Imamura, Michihiro; Takeda, Shin'ichi

    2016-05-01

    Duchenne muscular dystrophy is a lethal X-linked muscle disorder. We have already reported that osteopontin (OPN), an inflammatory cytokine and myogenic factor, is expressed in the early dystrophic phase in canine X-linked muscular dystrophy in Japan, a dystrophic dog model. To further explore the possibility of OPN as a new biomarker for disease activity in Duchenne muscular dystrophy, we monitored serum OPN levels in dystrophic and wild-type dogs at different ages and compared the levels to other serum markers, such as serum creatine kinase, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinase-1. Serum OPN levels in the dystrophic dogs were significantly elevated compared with those in wild-type dogs before and 1 hour after a cesarean section birth and at the age of 3 months. The serum OPN level was significantly correlated with the phenotypic severity of dystrophic dogs at the period corresponding to the onset of muscle weakness, whereas other serum markers including creatine kinase were not. Immunohistologically, OPN was up-regulated in infiltrating macrophages and developmental myosin heavy chain-positive regenerating muscle fibers in the dystrophic dogs, whereas serum OPN was highly elevated. OPN expression was also observed during the synergic muscle regeneration process induced by cardiotoxin injection. In conclusion, OPN is a promising biomarker for muscle regeneration in dystrophic dogs and can be applicable to boys with Duchenne muscular dystrophy. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Efeitos da suplementação de creatina e do treinamento de potência sobre a performance e a massa corporal magra de ratos Effects of creatine supplementation and power training on performance and lean body mass of rats

    Directory of Open Access Journals (Sweden)

    Frederico S.C. Franco

    2007-10-01

    Full Text Available INTRODUÇÃO: A creatina é um dos suplementos mais usados por atletas para incrementar a síntese protéica e aumentar a massa e força muscular. OBJETIVO: Investigou-se os efeitos da suplementação de creatina associada a um programa de treinamento de potência (saltos verticais sobre a performance e a composição da massa corporal magra de ratos Wistar. MÉTODOS: Ratos Wistar adultos foram distribuídos em quatro grupos: SSC (sedentário sem creatina; SC (sedentário com creatina; ESC (exercício sem creatina e EC (exercício com creatina. Os animais receberam água e ração ad libitum. Os grupos SC e EC ingeriam dose de creatina diariamente, adotando o procedimento de carga (0,430g/kg p.c. por 7 dias e manutenção (0,070g/kg p.c. por 6 semanas. Os grupos EC e ESC foram submetidos a um regime progressivo de saltos verticais (5x10 saltos com 1 min de intervalo em tanque com água, 5 dias/semana, durante 7 semanas. A performance foi avaliada pelo tempo de execução das 5 séries de 10 saltos verticais e a composição da massa corporal magra (músculos e ossos foi avaliada pelas porções: água, proteína e gordura. RESULTADOS: A performance não foi afetada pela ingestão de creatina (p > 0,05. Os animais suplementados tiveram o percentual de proteína elevado e o de gordura reduzido (p 0,05. CONCLUSÃO: A suplementação de creatina não afetou a performance dos animais, mas alterou a massa corporal magra. A suplementação de creatina e o programa de treinamento de potência, de forma independente, elevaram o percentual de proteína dos músculos e ossos e reduziram o percentual de gordura, sem alterar o percentual de água.INTRODUCTION: Creatine is one of the supplements most used by athletes in order to increase protein synthesis and consequently muscle mass and strength. OBJECTIVE: This study investigated the effects of creatine intake on the performance and lean body mass of Wistar rats. METHODS: Male Wistar rats were allocated

  19. Energy demand and supply in human skeletal muscle.

    Science.gov (United States)

    Barclay, C J

    2017-04-01

    The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min -1 during isometric contractions of various intensity to as much as 400 mM min -1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min -1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min -1 . During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min -1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.

  20. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  1. Utilization of glutamate/creatine ratios for proton spectroscopic diagnosis of meningiomas

    International Nuclear Information System (INIS)

    Hazany, Saman; Hesselink, John R.; Healy, John F.; Imbesi, Steven G.

    2007-01-01

    Our purpose was to determine the potential of metabolites other than alanine to diagnose intracranial meningiomas on proton magnetic resonance spectroscopy (MRS). Using a 1.5-T MR system the lesions were initially identified on FLAIR, and T1- and T2-weighted images. Employing standard point-resolved spectroscopy (PRESS) for single voxel proton MRS (TR 1500 ms, TE 30 ms, 128 acquisitions, voxel size 2 x 2 x 2 cm, acquisition time 3.12 min), MR spectra were obtained from 5 patients with meningiomas, from 20 with other intracranial lesions, and from 4 normal controls. Peak heights of nine resonances, including lipid, lactate, alanine, NAA (N-acetylaspartate), β/γ-Glx (glutamate + glutamine), creatine, choline, myo-inositol, and α-Glx/glutathione, were measured in all spectra. The relative quantity of each metabolite was measured as the ratio of its peak height to the peak height of creatine. Relative quantities of α-Glx/glutathione, β/γ-Glx, and total Glx/glutathione were significantly elevated in meningiomas compared to the 20 other intracranial lesions and the normal control brains. Alanine was found in four of five meningiomas, but lactate partially masked the alanine in three meningiomas. None of the other lesions or control brains showed an alanine peak. The one meningioma with no alanine and the three others with lactate had elevated Glx. While alanine is a relatively unique marker for meningioma, our results support the hypothesis that the combination of glutamate/creatine ratios and alanine on proton MRS is more specific and reliable for the diagnosis of meningiomas than alanine alone. (orig.)

  2. Utilization of glutamate/creatine ratios for proton spectroscopic diagnosis of meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Hazany, Saman [University of California, School of Medicine, San Diego, CA (United States); Hesselink, John R.; Healy, John F.; Imbesi, Steven G. [UCSD Medical Center, Department of Radiology, San Diego, CA (United States)

    2007-02-15

    Our purpose was to determine the potential of metabolites other than alanine to diagnose intracranial meningiomas on proton magnetic resonance spectroscopy (MRS). Using a 1.5-T MR system the lesions were initially identified on FLAIR, and T1- and T2-weighted images. Employing standard point-resolved spectroscopy (PRESS) for single voxel proton MRS (TR 1500 ms, TE 30 ms, 128 acquisitions, voxel size 2 x 2 x 2 cm, acquisition time 3.12 min), MR spectra were obtained from 5 patients with meningiomas, from 20 with other intracranial lesions, and from 4 normal controls. Peak heights of nine resonances, including lipid, lactate, alanine, NAA (N-acetylaspartate), {beta}/{gamma}-Glx (glutamate + glutamine), creatine, choline, myo-inositol, and {alpha}-Glx/glutathione, were measured in all spectra. The relative quantity of each metabolite was measured as the ratio of its peak height to the peak height of creatine. Relative quantities of {alpha}-Glx/glutathione, {beta}/{gamma}-Glx, and total Glx/glutathione were significantly elevated in meningiomas compared to the 20 other intracranial lesions and the normal control brains. Alanine was found in four of five meningiomas, but lactate partially masked the alanine in three meningiomas. None of the other lesions or control brains showed an alanine peak. The one meningioma with no alanine and the three others with lactate had elevated Glx. While alanine is a relatively unique marker for meningioma, our results support the hypothesis that the combination of glutamate/creatine ratios and alanine on proton MRS is more specific and reliable for the diagnosis of meningiomas than alanine alone. (orig.)

  3. Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats.

    Science.gov (United States)

    Allen, Patricia J; DeBold, Joseph F; Rios, Maribel; Kanarek, Robin B

    2015-03-01

    Creatine is an antioxidant, neuromodulator and key regulator of energy metabolism shown to improve depressive symptoms in humans and animals, especially in females. To better understand the pharmacological effects of creatine, we examined its influence on depression-related hippocampal gene expression and behaviors in the presence and absence of sex steroids. Sham-operated and gonadectomized male and female rats were fed chow alone or chow blended with either 2% or 4% w/w creatine monohydrate for five weeks before forced swim, open field, and wire suspension tests, or seven weeks total. Before supplementation, males were chronically implanted with an empty or a testosterone-filled (T) capsule (10-mm surface release), and females were administered progesterone (P, 250 μg), estradiol benzoate (EB, 2.5 μg), EB+P, or sesame oil vehicle weekly. Relative to non-supplemented shams, all hippocampal plasticity-related mRNAs measured, including brain-derived neurotrophic factor (BDNF), tyrosine kinase B, doublecortin, calretinin, and calbindin, were downregulated in sham males given 4% creatine, and BDNF, doublecortin, and calbindin mRNAs were downregulated in sham females given 4% creatine. In contrast, combined 4% creatine+T in castrates prevented downregulation of BDNF, doublecortin, and calretinin mRNAs. Similarly, combined 4% creatine+EB+P in ovariectomized females attenuated downregulation of BDNF and calbindin mRNA levels. Moderate antidepressant and anxiolytic-like behaviors were observed in EB+P-treated ovariectomized females fed creatine, with similar trends in T-treated castrates fed creatine. Altogether, these data show that chronic, high-dose creatine has opposing effects on neuroplasticity-related genes and depressive behavior in intact and gonadectomized male and female rats. The dose and schedule of creatine used negatively impacted hippocampal neuronal integrity in otherwise healthy brains, possibly through negative compensatory changes in energy

  4. Creatine Supplementation During Resistance Training Does Not Lead to Greater Bone Mineral Density in Older Humans: A Brief Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Scott C. Forbes

    2018-04-01

    Full Text Available Creatine supplementation during resistance training has potential beneficial effects on properties of bone in aging adults. We systematically reviewed randomized controlled trials (RCTs investigating the effect of creatine supplementation combined with resistance training on bone mineral density (BMD in aging adults. We searched PubMed and SPORTDiscus databases and included RCTs of ≥3 months duration that examined the combined effect of creatine and resistance training on bone mineral in adults >50 years of age or postmenopausal. Meta-analyses were performed when applicable trials were available on whole body and clinically important bone sites. Five trials met inclusion criteria with a total of 193 participants. Two of the studies reported significant benefits of creatine supplementation and resistance training compared to resistance training alone on bone. Meta-analyses revealed no greater effect of creatine and resistance training compared to resistance training alone on whole body BMD (MD: 0.00, 95% CI −0.01 to 0.01, p = 0.50, hip BMD (MD −0.01, 95% CI −0.02 to 0.01, p = 0.26, femoral neck BMD (MD 0.00, 95% CI −0.01 to 0.01, p = 0.71, and lumbar spine BMD (MD 0.01, 95% CI −0.01 to 0.03, p = 0.32. In conclusion, there is a limited number of RCTs examining the effects of creatine supplementation and resistance training on BMD in older adults. Our meta-analyses revealed no significant effect on whole body, hip, femoral neck, or lumbar spine BMD when comparing creatine and resistance training to resistance training alone. Future longer term (>12 month trials with higher resistance training frequencies (≥3 times per week is warranted.

  5. Myocardial Creatine Levels Do Not Influence Response to Acute Oxidative Stress in Isolated Perfused Heart

    Science.gov (United States)

    Aksentijević, Dunja; Zervou, Sevasti; Faller, Kiterie M. E.; McAndrew, Debra J.; Schneider, Jurgen E.; Neubauer, Stefan; Lygate, Craig A.

    2014-01-01

    Background Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury. Objectives To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse. Methods and Results CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1H–MRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 µM (30 min), or the anti-neoplastic drug doxorubicin 15 µM (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCδ expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wild-type controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction. Conclusions Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity. PMID:25272153

  6. Biochemical background of the VO2 on-kinetics in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2006-02-01

    This review discusses the present knowledge on the oxygen uptake kinetics at the onset of exercise in skeletal muscle and the contribution of a previously developed computer model of oxidative phosphorylation in intact skeletal muscle to the understanding of the factors determining this kinetics on the biochemical level. It has been demonstrated recently that an increase in the total creatine pool [PCr + Cr] and in glycolytic ATP supply lengthen the half-transition time of the VO2 on-kinetics, while an increase in mitochondria content, in parallel activation of ATP supply and ATP usage, in muscle oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH, and in initial alkalization diminish this parameter. It has also been shown that the half-transition time is near-linearly proportional to the absolute difference between the phosphocreatine concentration during work and at rest (deltaPCr). The present review discusses whether the V/O2 on-kinetics on the muscle level is strictly or only approximately exponential. Finally, it is postulated that a short transition time of the VO2 on-kinetics in itself does not need be profitable for the skeletal muscle functioning during exercise, but usually a short transition time is correlated with factors that improve exercise capacity. The transition time is a phenomenological parameter resulting from the biochemical properties of the system and not a physical factor that can cause anything in the system.

  7. Low dose creatine supplementation enhances sprint phase of 400 meters swimming performance.

    Science.gov (United States)

    Anomasiri, Wilai; Sanguanrungsirikul, Sompol; Saichandee, Pisut

    2004-09-01

    This study demonstrated the effect of low dose creatine supplement (10 g. per day) on the sprinting time in the last 50 meters of 400 meters swimming competition, as well as the effect on exertion. Nineteen swimmers in the experimental group received creatine monohydrate 5 g with orange solution 15 g, twice per day for 7 days and nineteen swimmers in the control group received the same quantity of orange solution. The results showed that the swimmers who received creatine supplement lessened the sprinting time in the last 50 meters of 400 meters swimming competition than the control group. (p<0.05). The results of Wingate test (anaerobic power, anaerobic capacity and fatigue index) compared between pre and post supplementation. There was significant difference at p<0.05 in the control group from training effect whereas there was significant difference at p<0.000 from training effect and creatine supplement in the experiment group. Therefore, the creatine supplement in amateur swimmers in the present study enhanced the physical performance up to the maximum capacity.

  8. Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation.

    Science.gov (United States)

    Souza-Junior, Tácito P; Willardson, Jeffrey M; Bloomer, Richard; Leite, Richard D; Fleck, Steven J; Oliveira, Paulo R; Simão, Roberto

    2011-10-27

    The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI) and decreasing rest intervals (DI) between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR). Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm) or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm). Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets). Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA) of the right thigh and upper arm was measured using magnetic resonance imaging. Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≤ 0.0001); however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group. We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the CI group versus the DI group, yet strength gains were

  9. Strength and hypertrophy responses to constant and decreasing rest intervals in trained men using creatine supplementation

    Directory of Open Access Journals (Sweden)

    Fleck Steven J

    2011-10-01

    Full Text Available Abstract Background The purpose of the current study was to compare strength and hypertrophy responses to resistance training programs that instituted constant rest intervals (CI and decreasing rest intervals (DI between sets over the course of eight weeks by trained men who supplemented with creatine monohydrate (CR. Methods Twenty-two recreationally trained men were randomly assigned to a CI group (n = 11; 22.3 ± 1 years; 77.7 ± 5.4 kg; 180 ± 2.2 cm or a DI group (n = 11; 22 ± 2.5 years; 75.8 ± 4.9 kg; 178.8 ± 3.4 cm. Subjects in both groups supplemented with CR; the only difference between groups was the rest interval instituted between sets; the CI group used 2 minutes rest intervals between sets and exercises for the entire 8-weeks of training, while the DI group started with a 2 minute rest interval the first two weeks; after which the rest interval between sets was decreased 15 seconds per week (i.e. 2 minutes decreasing to 30 seconds between sets. Pre- and post-intervention maximal strength for the free weight back squat and bench press exercises and isokinetic peak torque were assessed for the knee extensors and flexors. Additionally, muscle cross-sectional area (CSA of the right thigh and upper arm was measured using magnetic resonance imaging. Results Both groups demonstrated significant increases in back squat and bench press maximal strength, knee extensor and flexor isokinetic peak torque, and upper arm and right thigh CSA from pre- to post-training (p ≤ 0.0001; however, there were no significant differences between groups for any of these variables. The total volume for the bench press and back squat were significantly greater for CI group versus the DI group. Conclusions We report that the combination of CR supplementation and resistance training can increase muscular strength, isokinetic peak torque, and muscle CSA, irrespective of the rest interval length between sets. Because the volume of training was greater for the

  10. Effects of creatine supplementation along with resistance training on urinary formaldehyde and serum enzymes in wrestlers.

    Science.gov (United States)

    Nasseri, Azadeh; Jafari, Afshar

    2016-04-01

    Formaldehyde is a cytotoxic agent produced from creatine through a metabolic pathway, and in this regard, it has been claimed that creatine supplementation could be cytotoxic. Even though the cytotoxic effects of creatine supplementation have been widely studied, yet little is known about how resistance training can alter these toxic effects. This study aimed to determine the effects of short-term creatine supplementation plus resistance training on the level of urinary formaldehyde and concentrations of serum enzymes in young male wrestlers. In a double-blind design twenty-one subjects were randomized into creatine supplementation (Cr), creatine supplementation plus resistance training (Cr + T) and placebo plus resistance training (Pl + T) groups. Participants ingested creatine (0.3 g/kg/day) or placebo for 7 days. The training protocol consisted of 3 sessions in one week, each session including three sets of 6-9 repetitions at 80-85% of one-repetition maximum for whole-body exercise. Urine and blood samples were collected at baseline and at the end of the supplementation. Creatine supplementation significantly increased the excretion rate of urinary formaldehyde in the Cr and Cr + T groups by 63.4% and 30.4%, respectively (P0.05). These findings indicate that resistance training may lower the increase of urinary formaldehyde excretion induced by creatine supplementation, suggesting that creatine consumption could be relatively less toxic when combined with resistance training.

  11. Diagnostic value of the evaluation of the glycogen content in muscle diseases by carbon 13 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Jehenson, P.; Syrota, A.; Labrune, P.; Odievre, M.; Fardeau, M.

    1995-01-01

    We have developed a method for the evaluation of the muscle glycogen content by natural abundance C13 NMR and we here evaluate its diagnostic value on a large number of muscle diseases (20 glycogenoses and 42 other myopathies) and 8 normal subjects. The results show high values of the glycogen/creatine ratio in muscle glycogenoses, with no overlap with other diseased or normal subjects. This evaluation of the muscle glycogen content, which is performed at rest and thus easily applicable, in particular for children, is thus very sensitive and specific for the diagnosis of muscle glycogenosis. (authors). 9 refs

  12. The Influence of Red Fruit Oil on Creatin Kinase Level at Maximum Physical Activity

    Science.gov (United States)

    Apollo Sinaga, Fajar; Hotliber Purba, Pangondian

    2018-03-01

    Heavy physical activities can cause the oxidative stress which resulting in muscle damage with an indicator of elevated levels of Creatin Kinase (CK) enzyme. The oxidative stress can be prevented or reduced by antioxidant supplementation. One of natural resources which contain antioxidant is Red Fruit (Pandanus conoideus) Oil (RFO). This study aims to see the effect of Red Fruit Oil on Creatin Kinase (CK) level at maximum physical activity. This study is an experimental research by using the design of randomized control group pretest-posttest. This study was using 24 male mice divided into four groups, the control group was given aquadest, the treatment groups P1, P2, and P3 were given the RFO orally of 0.15 ml/kgBW, 0.3 ml/kgBW, and 0.6 ml/kgBW, respectively, for a month. The level of CK was checked for all groups at the beginning of study and after the maximum physical activity. The obtained data were then tested statistically by using t-test and ANOVA. The result shows the RFO supplementation during exercise decreased the CK level in P1, P2, and P3 groups with p<0.05, and the higher RFO dosage resulted in decreased CK level at p<0.05. The conclusion of this study is the Red Fruit Oil could decrease the level of CK at maximum physical activity.

  13. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet.

    Science.gov (United States)

    da Silva, Robin P; Leonard, Kelly-Ann; Jacobs, René L

    2017-12-01

    Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Linear Analysis of Autonomic Activity and Its Correlation with Creatine Kinase-MB in Overt Thyroid Dysfunctions.

    Science.gov (United States)

    Mavai, Manisha; Singh, Yogendra Raj; Gupta, R C; Mathur, Sandeep K; Bhandari, Bharti

    2018-04-01

    Autonomic activity may be deranged in thyroid dysfunctions and may lead to cardiovascular morbidity and mortality. Myopathy is a common manifestation in thyroid disorders and may be associated with raised serum creatine kinase (CK). We hypothesized that cardiovascular abnormality in thyroid dysfunction may manifest as raised CK-MB. This study was designed to investigate the correlation of CK and its isoform CK-MB with thyroid profile and linear parameters of heart rate variability (HRV). The study was conducted on 35 hypothyroid and hyperthyroid patients each, and 25 age-matched healthy controls. Autonomic activity was assessed by simple short term 5-min HRV. Biochemical evaluation of serum thyroid profile, CK-NAC and CK-MB were estimated in all the subjects. Our results demonstrated low HRV in hypo- as well as hyperthyroid patients. We observed significantly higher serum CK levels in hypothyroid patients when compared to hyperthyroids and controls. However, no significant differences were observed in CK-MB levels in the three groups. Significant positive correlation of CK with TSH and negative correlation with some HRV parameters (LF power, HF power, total power, SDNN, RMSSD) was observed in hypothyroid patients. Whereas correlation of CK-MB with thyroid profile as well as HRV parameters was non-significant in all the groups. Based on the CK and CK-MB findings and their correlation, we conclude that the cardiovascular changes seen in thyroid dysfunctions may primarily be due to autonomic imbalance without apparent cardiac muscle involvement. Whereas, raised CK levels indicate predominantly skeletal muscle involvement in hypothyroid patients.

  15. Pigmented Creatine Deposits in Amyotrophic Lateral Sclerosis Central Nervous System Tissues Identified by Synchrotron Fourier Transform Infrared Microspectroscopy and X-ray Fluorescence Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kastyak, M.; Szczerbowska-Boruchowska, M; Adamek, D; Tomik, B; Lankosz, M; Gough, K

    2010-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an untreatable, neurodegenerative disease of motor neurons characterized by progressive muscle atrophy, limb paralysis, dysarthria, dysphagia, dyspnae and finally death. Large motor neurons in ventral horns of spinal cord and motor nuclei in brainstem, large pyramidal neurons of motor cortex and/or large myelinated axons of corticospinal tracts are affected. In recent synchrotron Fourier Transform Infrared microspectroscopy (sFTIR) studies of ALS CNS autopsy tissue, we discovered a small deposit of crystalline creatine, which has a crucial role in energy metabolism. We have now examined unfixed, snap frozen, post-autopsy tissue sections of motor cortex, brain stem, spinal cord, hippocampus and substantia nigra from six ALS and three non-degenerated cases with FTIR and micro-X-ray fluorescence (XRF). Heterogeneous pigmented deposits were discovered in spinal cord, brain stem and motor neuron cortex of two ALS cases. The FTIR signature of creatine has been identified in these deposits and in numerous large, non-pigmented deposits in four of the ALS cases. Comparable pigmentation and creatine deposits were not found in controls or in ALS hippocampus and substantia nigra. Ca, K, Fe, Cu and Zn, as determined by XRF, were not correlated with the pigmented deposits; however, there was a higher incidence of hot spots (Ca, Zn, Fe and Cu) in the ALS cases. The identity of the pigmented deposits remains unknown, although the absence of Fe argues against both erythrocytes and neuromelanin. We conclude that elevated creatine deposits may be indicators of dysfunctional oxidative processes in some ALS cases.

  16. The Effect of a Simulated Basketball Game on Players' Sprint and Jump Performance, Temperature and Muscle Damage.

    Science.gov (United States)

    Pliauga, Vytautas; Kamandulis, Sigitas; Dargevičiūtė, Gintarė; Jaszczanin, Jan; Klizienė, Irina; Stanislovaitienė, Jūratė; Stanislovaitis, Aleksas

    2015-06-27

    Despite extensive data regarding the demands of playing basketball, the relative importance of factors that cause fatigue and muscle potentiation has been explored only tentatively and remains unclear. The aim of this experimental field study was to assess changes in leg muscle power and relate these changes to body temperature modifications and indices of exercise-induced muscle damage in response to a simulated basketball game. College-level male basketball players (n=10) were divided into two teams to play a simulated basketball game. Ten-meter sprint and vertical counter-movement jump tests, core body temperature and creatine-kinase activity were measured within 48 h after the game. The participants' body temperatures increased after a warm-up (1.9%, pjump height (3.8%, pbasketball game. There was a significant increase in creatine-kinase at 24 h (>200%, p30%, pbasketball players' sprint and jump performance appear to be at least in part associated with body temperature changes, which might contribute to counteract fatigue during the larger part of a basketball game.

  17. The Effect of a Simulated Basketball Game on Players’ Sprint and Jump Performance, Temperature and Muscle Damage

    Science.gov (United States)

    Pliauga, Vytautas; Kamandulis, Sigitas; Dargevičiūtė, Gintarė; Jaszczanin, Jan; Klizienė, Irina; Stanislovaitienė, Jūratė; Stanislovaitis, Aleksas

    2015-01-01

    Despite extensive data regarding the demands of playing basketball, the relative importance of factors that cause fatigue and muscle potentiation has been explored only tentatively and remains unclear. The aim of this experimental field study was to assess changes in leg muscle power and relate these changes to body temperature modifications and indices of exercise-induced muscle damage in response to a simulated basketball game. College-level male basketball players (n=10) were divided into two teams to play a simulated basketball game. Ten-meter sprint and vertical counter-movement jump tests, core body temperature and creatine-kinase activity were measured within 48 h after the game. The participants’ body temperatures increased after a warm-up (1.9%, pjump height (3.8%, pbasketball game. There was a significant increase in creatine-kinase at 24 h (>200%, p30%, pbasketball players’ sprint and jump performance appear to be at least in part associated with body temperature changes, which might contribute to counteract fatigue during the larger part of a basketball game. PMID:26240660

  18. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity.

    Science.gov (United States)

    Kazak, Lawrence; Chouchani, Edward T; Lu, Gina Z; Jedrychowski, Mark P; Bare, Curtis J; Mina, Amir I; Kumari, Manju; Zhang, Song; Vuckovic, Ivan; Laznik-Bogoslavski, Dina; Dzeja, Petras; Banks, Alexander S; Rosen, Evan D; Spiegelman, Bruce M

    2017-10-03

    Diet-induced thermogenesis is an important homeostatic mechanism that limits weight gain in response to caloric excess and contributes to the relative stability of body weight in most individuals. We previously demonstrated that creatine enhances energy expenditure through stimulation of mitochondrial ATP turnover, but the physiological role and importance of creatine energetics in adipose tissue have not been explored. Here, we have inactivated the first and rate-limiting enzyme of creatine biosynthesis, glycine amidinotransferase (GATM), selectively in fat (Adipo-Gatm KO). Adipo-Gatm KO mice are prone to diet-induced obesity due to the suppression of elevated energy expenditure that occurs in response to high-calorie feeding. This is paralleled by a blunted capacity for β3-adrenergic activation of metabolic rate, which is rescued by dietary creatine supplementation. These results provide strong in vivo genetic support for a role of GATM and creatine metabolism in energy expenditure, diet-induced thermogenesis, and defense against diet-induced obesity. Published by Elsevier Inc.

  19. Absence of acute skeletal and cardiac muscle injuries in amateur triathletes

    Directory of Open Access Journals (Sweden)

    Luiz Carlos C. Jovita

    2009-01-01

    Full Text Available Creatine kinase (CK and creatine kinase muscle-brain fraction (CK-MB might be associated with damage to muscle and cardiac tissue, respectively, as a consequence of intense prolonged exercise. The objective of the present study was to determine whether acute changes in CK and CK-MB reflect some risk of damage to skeletal and cardiac muscles in amateur athletes after Ironman 70.3. The sample consisted of 10 male athlete volunteers (age: 34.0 ± 9.2 years. A venous blood sample (2 mL was collected before and after the competition. The volunteers completed the race in 5h20min to 6 h. CK and CK-MB were analyzed by an enzymatic method using Wiener labreagent in an automatic spectrophotometer (Targa bt 3000. The nonparametric Wilcoxon test showed significant differences (p < .05 in the variables studied before and after the competition. Mean CK was 112.23 ± 34.9 and 458.0 ± 204.9 U/L (Δ% = 418.2, and mean CK-MB was 7.4 ± 2.6 and 10.8 ± 3.9 U/L (Δ% = 153.3 before and after the event, respectively. The relative variation in CK-MB compared to CK before (6.9% and after (2.5% the competition showed that the former is not a factor of concern during intense prolonged exercise such as Ironman 70.3. In conclusion, the acute increase in CK after the end of intense prolonged exercise indicates skeletal muscle damage which, however, is considered to be normal for athletes. With respect to CK-MB, cardiac muscle injury was inexistent.

  20. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2015-05-15

    A computer model of a skeletal muscle bioenergetic system is used to study the background of the slow component of oxygen consumption V̇O2 on-kinetics in skeletal muscle. Two possible mechanisms are analyzed: inhibition of ATP production by anaerobic glycolysis by progressive cytosol acidification (together with a slow decrease in ATP supply by creatine kinase) and gradual increase of ATP usage during exercise of constant power output. It is demonstrated that the former novel mechanism is potent to generate the slow component. The latter mechanism further increases the size of the slow component; it also moderately decreases metabolite stability and has a small impact on muscle pH. An increase in anaerobic glycolysis intensity increases the slow component, elevates cytosol acidification during exercise, and decreases phosphocreatine and Pi stability, although slightly increases ADP stability. A decrease in the P/O ratio (ATP molecules/O2 molecules) during exercise cannot also be excluded as a relevant mechanism, although this issue requires further study. It is postulated that both the progressive inhibition of anaerobic glycolysis by accumulating protons (together with a slow decrease of the net creatine kinase reaction rate) and gradual increase of ATP usage during exercise, and perhaps a decrease in P/O, contribute to the generation of the slow component of the V̇O2 on-kinetics in skeletal muscle. Copyright © 2015 the American Physiological Society.

  1. ALTERATIONS IN BRAIN CREATINE CONCENTRATIONS UNDER LONG-TERM SOCIAL ISOLATION (EXPERIMENTAL STUDY).

    Science.gov (United States)

    Koshoridze, N; Kuchukashvili, Z; Menabde, K; Lekiashvili, Sh; Koshoridze, M

    2016-02-01

    Stress represents one of the main problems of modern humanity. This study was done for understanding more clearly alterations in creatine content of the brain under psycho-emotional stress induced by long-term social isolation. It was shown that under 30 days social isolation creatine amount in the brain was arisen, while decreasing concentrations of synthesizing enzymes (AGAT, GAMT) and creatine transporter protein (CrT). Another important point was that such changes were accompanied by down-regulation of creatine kinase (CK), therefore the enzyme's concentration was lowered. In addition, it was observed that content of phosphocreatine (PCr) and ATP were also reduced, thus indicating down-regulation of energy metabolism of brain that is really a crucial point for its normal functioning. To sum up the results it can be underlined that long-term social isolation has negative influence on energy metabolism of brain; and as a result reduce ATP content, while increase of free creatine concentration, supposedly maintaining maximal balance for ATP amount, but here must be also noted that up-regulated oxidative pathways might have impact on blood brain barrier, resulting on its permeability.

  2. Effects of creatine supplementation on high-intensity intermittent exercise: discrepancies and methodological appraisals

    Directory of Open Access Journals (Sweden)

    Patrícia Chackur Brum

    2008-04-01

    Full Text Available After a brief review of the literature on the effects of creatine supplementation on high-intensity intermittent exercise performance, the main aim of this study was to discuss methodological differences between studies which could explain the discrepancies observed in the literature. The effects of creatine supplementation on high-intensity intermittent exercise performance have been investigated in depth. Although the results of much research demonstrates the effi cacy of this supplement, there is just as much evidence that does not support this ergogenic effect. The explanation for this divergence appears to be multifactorial, although it is always linked to methodological characteristics. Study design (crossover or parallel groups, individual variability of muscular creatine content, chronic high meat intake, sample size, exercise protocol characteristics (body weight dependence and time between series, and gender and age all differ between studies and are potentially the variables responsible, to differing extents, for the discrepancies observed in the literature. Studies involving young males, with parallel group design, adequate statistical power, control of the incorporation of creatine into muscles, food intake assessment and intermittent exercise protocols in which performance is independent of body weight and with rest-recovery intervals of 1 to 6 minutes, usually produce positive results. The many methodological factors which can contribute to divergence on the ergogenic effects of creatine should be considered in futures studies, as well as when prescribing creatine supplementation. Resumo Após breve revisão da literatura existente acerca dos efeitos da suplementação de creatina no rendimento em atividades intermitentes de alta intensidade, o objetivo principal dessa revisão foi discutir diferenças metodológicas dos estudos que possam explicar a divergência encontrada na literatura. Os efeitos da suplementação de creatina

  3. Immunological measurements on the disappearance of creatine kinase MM from the circulation. [Immunoradiometric assay

    Energy Technology Data Exchange (ETDEWEB)

    Wevers, R A; van Landeghem, A A.J.; Mul-Steinbusch, M W.F.J.; Bijdendijk, J G; Weerts, P; Kloeg, P; Soons, J B.J. [Rijksuniversiteit Utrecht (Netherlands)

    1983-07-15

    Both a two-site immunoradiometric assay and a two-site enzyme-linked immunosorbent assay for creatine kinase MM are described. Linearity, reproducibility and cross-reactivity of the assays are satisfactory. Creatine kinase MM incubated in a pH-controlled serum matrix loses its activity, but has its antigenic determinants affected as well. Of all the techniques used, only the immunoradiometric assay is capable of measuring part of the inactivated enzyme. Measurements with this assay on the sera of patients after a myocardial infarction show identical results for enzyme activity and creatine kinase protein quantity. The in vitro disappearance rate of creatine kinase activity is slow compared with the in vivo half-life of the enzyme. These two observations lead to the conclusion that creatine kinase is removed from the circulation long before it is inactivated in the blood stream.

  4. The effects of creatine supplementation on selected factors of tennis specific training

    NARCIS (Netherlands)

    Pluim, B.M.; Ferrauti, A.; Broekhof, F.; Deutekom, M.; Gotzmann, A.; Kuipers, H.; Weber, K.

    2006-01-01

    BACKGROUND: Creatine supplementation is popular among tennis players but it is not clear whether it actually enhances tennis performance. OBJECTIVES: To examine the effects of creatine supplementation on tennis specific performance indices. METHODS: In a randomised, double blind design, 36

  5. Individual analysis of creatine kinase concentration in Brazilian elite soccer players

    Directory of Open Access Journals (Sweden)

    Adriano Lima Alves

    2015-04-01

    Full Text Available OBJECTIVE: to determine the individual profile of blood concentration of creatine kinase CK in elite soccer players as well as to analyze the CK concentrations in different periods during the Professional Brazilian Championship. METHODS: resting CK of 17 soccer players was evaluated before the competition pre-season and after the matches 36 and 46 hours after the games CKGame for the individual blood CK. The Chi-square test was used to analyze the individual CK during the season. The competitive season was divided into three periods: initial, intermediate and final. The one-way ANOVA with repeated measurements followed by post hoc Student-Newman-Keuls test was used to compare the individual CK of each soccer player in each competitive period. The significance level was set at p<0.05. RESULTS: the highest frequency of individual CK was found in the second quartile 71 observations and the lowest frequency in the first 26 observations and the fourth quartile 40 observations compared to the expected number of 45.8 x2=22.21. CK concentrations were lower in the intermediate mean=66.99% and final mean=60.21% periods than in the initial period mean=89.33%. CONCLUSION: soccer players did not show elevated muscle damage and probably a muscle adaptation occurred in the competition, due to the reduction of CK concentrations observed.

  6. Cloning and characterization of the promoter regions from the parent and paralogobs creatine transporter genes

    NARCIS (Netherlands)

    Ndika, J.D.T.; Lusink, V.; Beaubrun, C.; Kanhai, W.; Martinez-Munoz, C.; Jakobs, C.A.J.M.; Salomons, G.S.

    2014-01-01

    Interconversion between phosphocreatine and creatine, catalyzed by creatine kinase is crucial in the supply of ATP to tissues with high energy demand. Creatine's importance has been established by its use as an ergogenic aid in sport, as well as the development of intellectual disability in patients

  7. The Effects of Pre-Exercise Ginger Supplementation on Muscle Damage and Delayed Onset Muscle Soreness.

    Science.gov (United States)

    Matsumura, Melissa D; Zavorsky, Gerald S; Smoliga, James M

    2015-06-01

    Ginger possesses analgesic and pharmacological properties mimicking non-steroidal antiinflammatory drugs. We aimed to determine if ginger supplementation is efficacious for attenuating muscle damage and delayed onset muscle soreness (DOMS) following high-intensity resistance exercise. Following a 5-day supplementation period of placebo or 4 g ginger (randomized groups), 20 non-weight trained participants performed a high-intensity elbow flexor eccentric exercise protocol to induce muscle damage. Markers associated with muscle damage and DOMS were repeatedly measured before supplementation and for 4 days following the exercise protocol. Repeated measures analysis of variance revealed one repetition maximum lift decreased significantly 24 h post-exercise in both groups (p ginger group (p = 0.002), and improved at 72 (p = 0.021) and 96 h (p = 0.044) only in the placebo group. Blood creatine kinase significantly increased for both groups (p = 0.015) but continued to increase only in the ginger group 72 (p = 0.006) and 96 h (p = 0.027) post-exercise. Visual analog scale of pain was significantly elevated following eccentric exercise (p ginger. In conclusion, 4 g of ginger supplementation may be used to accelerate recovery of muscle strength following intense exercise but does not influence indicators of muscle damage or DOMS. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Serial Changes of Quadriceps and Hamstring Muscle Strength Following Total Knee Arthroplasty: A Meta-Analysis

    Science.gov (United States)

    Ahn, Hyeong-Sik; Lee, Dae-Hee

    2016-01-01

    This meta-analysis was performed to analyze serial changes in thigh muscles, including quadriceps and hamstring muscles, from before to one year after total knee arthroplasty (TKA). All studies sequentially comparing isokinetic quadriceps and hamstring muscle strengths between the TKA side and the contralateral uninjured limb were included in this meta-analysis. Five studies with 7 cohorts were included in this meta-analysis. The mean differences in the strengths of quadriceps and hamstring muscles between the TKA and uninjured sides were greatest three months after surgery (26.8 N∙m, 12.8 N∙m, Phamstring strengths relative to preoperative levels were 9.2 N∙m and 4.9 N∙m, respectively, three months postoperatively (P = 0.041), but were no longer significant after six months and one year. During the year after TKA, quadriceps and hamstring muscle strengths were lowest after 3 months, recovering to preoperative level after six months, but not reaching the muscle strength on the contralateral side. Relative to preoperative levels, the difference in muscle strength between the TKA and contralateral knees was only significant at three months. Because decrease of strength of the quadriceps was significantly greater than decrease in hamstring muscle strength at postoperative three months, early rehabilitation after TKA should focus on recovery of quadriceps muscle strength. PMID:26849808

  9. Abrupt onset of muscle dysfunction after treatment for Grave's disease: a case report.

    Science.gov (United States)

    Hernán Martínez, José; Sánchez, Alfredo; Torres, Oberto; Palermo, Coromoto; Santiago, Mónica; Figueroa, Carlos; Trinidad, Rafael; Mangual, Michelle; Gutierrez, Madeleine; González, Eva; Miranda, María de Lourdes

    2014-01-01

    Myopathy is a known complication of hypothyroidism, commonly characterized by an elevation in Creatine Kinase (CPK) due to increase capillary permeability proportional to the hypothyroid state. Thyroid hormone is important for the expression of fast myofibrillar proteins in the muscle. In hypothyroidism the expression of these proteins are deficient and there is an increase accumulation of slow myofibrillar proteins. A rapid or abrupt descend in thyroid hormones caused by radioiodine therapy after prolonged hyperthyroidism can lead to local hypothyroid state within the muscle tissue, resulting in CPK elevation and hypothyroid myopathy. Hormone replacement leads to resolution of symptoms and normalization of muscle enzymes serum levels.

  10. The effects of creatine supplementation on selected factors of tennis specific training

    NARCIS (Netherlands)

    Pluim, B. M.; Ferrauti, A.; Broekhof, F.; Deutekom, M.; Gotzmann, A.; Kuipers, H.; Weber, K.

    2006-01-01

    Creatine supplementation is popular among tennis players but it is not clear whether it actually enhances tennis performance. To examine the effects of creatine supplementation on tennis specific performance indices. In a randomised, double blind design, 36 competitive male tennis players (24

  11. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  12. Improved radioimmunoassay for creatine kinase isoenzymes in plasma

    International Nuclear Information System (INIS)

    Ritter, C.S.; Mumm, S.R.; Roberts, R.

    1981-01-01

    We describe convenient and relatively rapid procedures for purifying creatine kinase isoenzymes MM, BB, and MB, and their use in an improved radioimmunoassay for creatine kinase isoenzymes in plasma. The modifications include use of: (a) BB with a specific activity of 400 kU/G, which can be labeled with a specific radioactivity of 20 Ci/g; (b) albumin-free purified MB as inhibitor; (c) antiserum to MB creatine kinase; and (d) a second-antibody technique that necessitates only a 15-min incubation. The radioimmunoassay for MB has a sensitivity of 0.2 μg/L (80 mU/L) and a CV of <5%. Plasma MB average 22 (SD 12) μg/L in 200 normal subjects; 24 (SD 12) μg/L in 200 patients with chest pain without infarction; and 23 (SD 7) μg/L in 43 patients with renal disease, whether measured before or after dialysis. Peak values for plasma MB averaged 191 (SD 86) μg/L in 325 patients with documented myocardial infarction; BB was negligible. Extensive clinical experience indicates the radioimmunoassay to be suitably rapid, highly sensitive, and reliable as a diagnostic assay for MB on plasma

  13. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms

    NARCIS (Netherlands)

    Cheillan, D.; Curt, M.J.; Briand, G.; Salomons, G.S.; Mention-Mulliez, K.; Dobbelaere, D.; Cuisset, J.M.; Lion-Francois, L.; Portes, V.D.; Chabli, A.; Valayannopoulos, V.; Benoist, J.F.; Pinard, J.M.; Simard, G.; Douay, O.; Deiva, K.; Afenjar, A.; Heron, D.; Rivier, F.; Chabrol, B.; Prieur, F.; Cartault, F.; Pitelet, G.; Goldenberg, A.; Bekri, S.; Gerard, M.; Delorme, R.; Tardieu, M.; Porchet, N.; Vianey-Saban, C.; Vamecq, J.

    2012-01-01

    A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD

  14. Creatine as a booster for human brain function. How might it work?

    Science.gov (United States)

    Rae, Caroline D; Bröer, Stefan

    2015-10-01

    Creatine, a naturally occurring nitrogenous organic acid found in animal tissues, has been found to play key roles in the brain including buffering energy supply, improving mitochondrial efficiency, directly acting as an anti-oxidant and acting as a neuroprotectant. Much of the evidence for these roles has been established in vitro or in pre-clinical studies. Here, we examine the roles of creatine and explore the current status of translation of this research into use in humans and the clinic. Some further possibilities for use of creatine in humans are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino.

    Science.gov (United States)

    Wu, Bo; Lu, Peijuan; Cloer, Caryn; Shaban, Mona; Grewal, Snimar; Milazi, Stephanie; Shah, Sapana N; Moulton, Hong M; Lu, Qi Long

    2012-08-01

    Exon skipping is capable of correcting frameshift and nonsense mutations in Duchenne muscular dystrophy. Phase 2 clinical trials in the United Kingdom and the Netherlands have reported induction of dystrophin expression in muscle of Duchenne muscular dystrophy patients by systemic administration of both phosphorodiamidate morpholino oligomers (PMO) and 2'-O-methyl phosphorothioate. Peptide-conjugated phosphorodiamidate morpholino offers significantly higher efficiency than phosphorodiamidate morpholino, with the ability to induce near-normal levels of dystrophin, and restores function in both skeletal and cardiac muscle. We examined 1-year systemic efficacy of peptide-conjugated phosphorodiamidate morpholino targeting exon 23 in dystrophic mdx mice. The LD(50) of peptide-conjugated phosphorodiamidate morpholino was determined to be approximately 85 mg/kg. The half-life of dystrophin expression was approximately 2 months in skeletal muscle, but shorter in cardiac muscle. Biweekly injection of 6 mg/kg peptide-conjugated phosphorodiamidate morpholino produced >20% dystrophin expression in all skeletal muscles and ≤5% in cardiac muscle, with improvement in muscle function and pathology and reduction in levels of serum creatine kinase. Monthly injections of 30 mg/kg peptide-conjugated phosphorodiamidate morpholino restored dystrophin to >50% normal levels in skeletal muscle, and 15% in cardiac muscle. This was associated with greatly reduced serum creatine kinase levels, near-normal histology, and functional improvement of skeletal muscle. Our results demonstrate for the first time that regular 1-year administration of peptide-conjugated phosphorodiamidate morpholino can be safely applied to achieve significant therapeutic effects in an animal model. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Cardiac Troponin I, Creatine Phosphokinase and Myoglobine Levels in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Ahmet Kale

    2005-01-01

    Full Text Available To evaluate minor myocardial injury in preeclamptic pregnancies by serum markers of cardiac troponin-I, creatine phosphokinase and myoglobine. Group I consisted of 45 preeclamptic pregnancies, Group 2 consisted of uncomplicated pregnancies. The groups were compared for maternal age, parity, mean troponin–I, creatine phosphokinase and myoglobine values. Student-t test were used in statistical analyses. Significance was accepted as p<0.05. Cardiac troponin-I levels were statistically significantly higher in preeclamptic pregnancies (0,97 ± 0,11ng/ml than control groups (0,12 ± 0.09 ng/ml (p<0.001. No statistically significant difference was found with mean levels of creatine phosphokinase and myoglobin levels between two groups. Higher values of troponin-I’in preeclamptic patients is thought to be a result of myocardial injury and associated with pregnancy-induced hypertension.

  17. Botulinum toxin type A injections for the management of muscle tightness following total hip arthroplasty: a case series

    Directory of Open Access Journals (Sweden)

    Delanois Ronald E

    2009-08-01

    Full Text Available Abstract Background Development of hip adductor, tensor fascia lata, and rectus femoris muscle contractures following total hip arthroplasties are quite common, with some patients failing to improve despite treatment with a variety of non-operative modalities. The purpose of the present study was to describe the use of and patient outcomes of botulinum toxin injections as an adjunctive treatment for muscle tightness following total hip arthroplasty. Methods Ten patients (14 hips who had hip adductor, abductor, and/or flexor muscle contractures following total arthroplasty and had been refractory to physical therapeutic efforts were treated with injection of botulinum toxin A. Eight limbs received injections into the adductor muscle, 8 limbs received injections into the tensor fascia lata muscle, and 2 limbs received injection into the rectus femoris muscle, followed by intensive physical therapy for 6 weeks. Results At a mean final follow-up of 20 months, all 14 hips had increased range in the affected arc of motion, with a mean improvement of 23 degrees (range, 10 to 45 degrees. Additionally all hips had an improvement in hip scores, with a significant increase in mean score from 74 points (range, 57 to 91 points prior to injection to a mean of 96 points (range, 93 to 98 at final follow-up. There were no serious treatment-related adverse events. Conclusion Botulinum toxin A injections combined with intensive physical therapy may be considered as a potential treatment modality, especially in difficult cases of muscle tightness that are refractory to standard therapy.

  18. Radioimmunoassay measurement of creatine kinase BB in the serum of schizophrenic patients

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, M H; Friedhoff, A J [New York Univ., NY (USA). Medical Center

    1980-10-23

    Brain type creatine kinase (BB) isoenzyme was measured using a highly sensitive and specific radioimmunoassay procedure (limit of detection, 1 ..mu..g/l of sample) in two schizophrenic populations, an acute non-medicated group consisting of 35 subjects and a chronic group of 15 subjects. Since the assay can also measure the B subunit of MB isoenzyme, patients were selected so as to exclude subjects with possible heart, kidney or other ailments which might result in an increased serum creatine kinase B subunit. Both the acute schizophrenics (3.0 +- 0.23) x S.E.M. and the chronic schizophrenics (2.9 +- 0.33) had serum levels of creatine kinase BB similar to those of controls (2.8 +- 0.21) and non-cardiac patients (3.5 +- 0.58). Patients having myocardial infarction or neurovascular surgery had elevated creatine kinase B subunit. Similar but much less sensitive quantitative results were obtained using agarose multizonal electrophoresis.

  19. Radioimmunoassay measurement of creatine kinase BB in the serum of schizophrenic patients

    International Nuclear Information System (INIS)

    Lerner, M.H.; Friedhoff, A.J.

    1980-01-01

    Brain type creatine kinase (BB) isoenzyme was measured using a highly sensitive and specific radioimmunoassay procedure (limit of detection, 1 μg/l of sample) in two schizophrenic populations, an acute non-medicated group consisting of 35 subjects and a chronic group of 15 subjects. Since the assay can also measure the B subunit of MB isoenzyme, patients were selected so as to exclude subjects with possible heart, kidney or other ailments which might result in an increased serum creatine kinase B subunit. Both the acute schizophrenics (3.0 +- 0.23) x S.E.M. and the chronic schizophrenics (2.9 +- 0.33) had serum levels of creatine kinase BB similar to those of controls (2.8 +- 0.21) and non-cardiac patients (3.5 +- 0.58). Patients having myocardial infarction or neurovascular surgery had elevated creatine kinase B subunit. Similar but much less sensitive quantitative results were obtained using agarose multizonal electrophoresis. (Auth.)

  20. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S

    2013-01-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies.......We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies....

  1. Exercise and nutritional interventions for improving aging muscle health.

    Science.gov (United States)

    Forbes, Scott C; Little, Jonathan P; Candow, Darren G

    2012-08-01

    Skeletal muscle mass declines with age (i.e., sarcopenia) resulting in muscle weakness and functional limitations. Sarcopenia has been associated with physiological changes in muscle morphology, protein and hormonal kinetics, insulin resistance, inflammation, and oxidative stress. The purpose of this review is to highlight how exercise and nutritional intervention strategies may benefit aging muscle. It is well known that resistance exercise training increases muscle strength and size and evidence also suggests that resistance training can increase mitochondrial content and decrease oxidative stress in older adults. Recent findings suggest that fast-velocity resistance exercise may be an effective intervention for older adults to enhance muscle power and functional capacity. Aerobic exercise training may also benefit aging skeletal muscle by enhancing mitochondrial bioenergetics, improving insulin sensitivity, and/or decreasing oxidative stress. In addition to exercise, creatine monohydrate, milk-based proteins, and essential fatty acids all have biological effects which could enhance some of the physiological adaptations from exercise training in older adults. Additional research is needed to determine whether skeletal muscle adaptations to increased activity in older adults are further enhanced with effective nutritional interventions and whether this is due to enhanced muscle protein synthesis, improved mitochondrial function, and/or a reduced inflammatory response.

  2. Radioimmunoassay of creatine kinase BB isoenzyme

    International Nuclear Information System (INIS)

    Geng Jianguo

    1988-01-01

    A radioimmunoassay of creatine kinase BB isoenzyme (CK-BB) was developed by using CK-BB purified from human brain. The CK-BB antiserum was raised by immunizing rabbite and 125 I-CK-BB iodinated with Bolton-Hunter reagent. The affinity constant was 3.0 x 10 9 mol/L. No cross reactions with creatine kinase MM isoenzyme and neuron-specific enolase were found. The measuring range was 3.5 x 10 -8 ∼ 1.2 x 10 -5 mmol/L, the average recovery rate 97.5%, with the inter and intrassay CV 3.1% and 12%, respectively. The average serum CK-BB concentration in 83 normal persons was 1.5 x 10 -7 +- 8.1 x 10 -8 mmol/L, quite different from the values of acute myocardial infarction (5.2 x 10 -6 +- 1.2 x 10 -4 mmol/L, n = 28) and cerebral vascular accident (8.4 x 10 -4 +- 5.0 x 10 -4 mmol/L, n = 10)

  3. Muscle damage and repeated bout effect induced by enhanced eccentric squats.

    Science.gov (United States)

    Coratella, Giuseppe; Chemello, Alessandro; Schena, Federico

    2016-12-01

    Muscle damage and repeated bout effect have been studied after pure eccentric-only exercise. The aim of this study was to evaluate muscle damage and repeated bout effect induced by enhanced eccentric squat exercise using flywheel device. Thirteen healthy males volunteered for this study. Creatine kinase blood activity (CK), quadriceps isometric peak torque and muscle soreness were used as markers of muscle damage. The dependent parameters were measured at baseline, immediately after and each day up to 96 hours after the exercise session. The intervention consisted of 100 repetitions of enhanced eccentric squat exercise using flywheel device. The same protocol was repeated after 4 weeks. After the first bout, CK and muscle soreness were significantly greater (P0.05), while isometric peak torque and muscle soreness returned to values similar to baseline after respectively 48 and 72 hours. All muscle damage markers were significantly lower after second compared to first bout. The enhanced eccentric exercise induced symptoms of muscle damage up to 96 hours. However, it provided muscle protection after the second bout, performed four weeks later. Although it was not eccentric-only exercise, the enhancement of eccentric phase provided muscle protection.

  4. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Directory of Open Access Journals (Sweden)

    da Luz Claudia R

    2011-12-01

    Full Text Available Abstract Branched-chain amino acids (BCAA supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE-derived biochemical markers of muscle soreness (creatine kinase (CK, aldolase, myoglobin, soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.

  5. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine.

    Science.gov (United States)

    Alessi Pissulin, Cristiane Neves; Henrique Fernandes, Ana Angélica; Sanchez Orellana, Alejandro Manuel; Rossi E Silva, Renata Calciolari; Michelin Matheus, Selma Maria

    2017-03-01

    Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Simultaneous Assay of Isotopic Enrichment and Concentration of Guanidinoacetate and Creatine by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    Kasumov, Takhar; Gruca, Lourdes L.; Dasarathy, Srinivasan; Kalhan, Satish C.

    2012-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous measurement of isotopic enrichment and concentration of guanidinoacetic acid and creatine in plasma sample for kinetic studies is reported. The method, based on preparation of the bis(trifluoromethyl)-pyrimidine methyl ester derivatives of guanidinoacetic acid and creatine, is robust and sensitive. The lowest measurable m1 and m3 enrichment for guanidinoacetic acid and creatine, respectively, was 0.3%. The calibration curves for measurements of concentration were linear over a range of 0.5-250 μM guanidinoacetic acid and 2-500 μM for creatine. The method was reliable for inter-assay and intra-assay precision, accuracy and linearity. The technique was applied in a healthy adult to determine in vivo fractional synthesis rate of creatine using primed- constant rate infusion of [1-13C]glycine. It was found that isotopic enrichment of guanidinoacetic acid reached plateau by 30 min of infusion of [1-13C]glycine, indicating either a small pool size or a rapid turnover rate or both, of guanidinoacetic acid. In contrast, tracer appearance in creatin was slow (slope: 0.00097), suggesting a large pool size and a slow rate of synthesis of creatine. This method can be used to estimate rate of synthesis of creatine in-vivo in human and animal studies. PMID:19646413

  7. Development of contractile and energetic capacity in anuran hindlimb muscle during metamorphosis.

    Science.gov (United States)

    Park, Jin Cheol; Kim, Han Suk; Yamashita, Masamichi; Choi, Inho

    2003-01-01

    Anuran larvae undergo water-to-land transition during late metamorphosis. We investigated the development of the iliofibularis muscle in bullfrog tadpoles (Rana catesbeiana) between Gosner's stage 37 and stage 46 (the last stage). The tadpoles began staying in shallow water at least as early as stage 37, kicking from stage 39, active hindlimb swimming from stage 41, and emerging onto shore from stage 42. For control tadpoles kept in water throughout metamorphosis, muscle mass and length increased two- to threefold between stages 37 and 46, with rapid increases at stage 40. Large, steady increases were found in femur mass, tetanic tension, contraction rate, and power between stages 37 and 46. Concentrations of ATP and creatine phosphate and rates of the phosphagen depletion and the activity of creatine kinase increased significantly, mainly after stage 43. Shortening velocity, tetanic rise time, and half-relaxation time varied little. Energy charge (the amount of metabolically available energy stored in the adenine nucleotide pool) remained unchanged until stage 43 but decreased at stage 46. Compared with the control, experimental tadpoles that were allowed access to both water and land exhibited 1.2- to 1.8-fold greater increases in femur mass, tetanic tension, power, phosphagen depletion rates, and creatine kinase activities at late metamorphic stages but no significant differences for other parameters measured. In sum, most hindlimb development proceeds on the basis of the increasingly active use of limbs for locomotion in water. The further increases in tension, mechanical power, and "chemical power" on emergence would be advantageous for terrestrial antigravity performance.

  8. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism

    International Nuclear Information System (INIS)

    Meyer, R.A.; Kushmerick, M.J.; Brown, T.R.

    1982-01-01

    This review presents the principles and limitations of phosphorus nuclear magnetic resonance ( 31 P-NMR) spectroscopy as applied to the study of striated muscle metabolism. Application of the techniques discussed include noninvasive measurement of high-energy phosphate, intracellular pH, intracellular free Mg 2+ , and metabolite compartmentation. In perfused cat biceps (fast-twitch) muscles, but not in soleus (slow-twitch), NMR spectra indicate a substantially lower (1 mM) free inorganic phosphate level than when measured chemically (6 mM). In addition, saturation and inversion spin-transfer methods that enable direct measurement of the unidirectional fluxes through creatine kinase are described. In perfused cat biceps muscle, results suggest that this enzyme and its substrates are in simple chemical equilibrium

  9. Development of Ratiometric Fluorescent Biosensors for the Determination of Creatine and Creatinine in Urine.

    Science.gov (United States)

    Duong, Hong Dinh; Rhee, Jong Il

    2017-11-08

    In this study, the oxazine 170 perchlorate (O17)-ethylcellulose (EC) membrane was successfully exploited for the fabrication of creatine- and creatinine-sensing membranes. The sensing membrane exhibited a double layer of O17-EC membrane and a layer of enzyme(s) entrapped in the EC and polyurethane hydrogel (PU) matrix. The sensing principle of the membranes was based on the hydrolytic catalysis of urea, creatine, and creatinine by the enzymes. The reaction end product, ammonia, reacted with O17-EC membrane, resulting in the change in fluorescence intensities at two emission wavelengths ( λ em = 565 and 625 nm). Data collected from the ratio of fluorescence intensities at λ em = 565 and 625 nm were proportional to the concentrations of creatine or creatinine. Creatine- and creatinine-sensing membranes were very sensitive to creatine and creatinine at the concentration range of 0.1-1.0 mM, with a limit of detection (LOD) of 0.015 and 0.0325 mM, respectively. Furthermore, these sensing membranes showed good features in terms of response time, reversibility, and long-term stability. The interference study demonstrated that some components such as amino acids and salts had some negative effects on the analytical performance of the membranes. Thus, the simple and sensitive ratiometric fluorescent sensors provide a simple and comprehensive method for the determination of creatine and creatinine concentrations in urine.

  10. Serum creatine phosphokinase as prognostic indicator in the management of electrical burn

    International Nuclear Information System (INIS)

    Memon, A.R.; Memon, F.M.; Shaikh, B.F.

    2008-01-01

    To determine the mean difference of serum creatine phosphokinase according to the extent of tissue damage and prognosis of the patients suffering from electrical burn injuries. During the study period, 38 patients with electrical burn injuries were enrolled. Victims of electrical burns with evidence of myocardial injury were excluded. Following admission, serum creatine phosphokinase was measured serially on 10 consecutive occasions. The data was later analyzed statistically using SPSS-10.0. Of the 38 patients, the mean age of the victims was 28 years, with males dominating the study population (82%). A statistically significant association was found between the level of serum creatine phosphokinase and likelihood of death (p=0.000). It was also found that serial monitoring of this enzyme can be used as prognostic indicator in the management of electrical burns injury. The level of creatine phosphokinase increased with the degree of tissue injuries in patients with electrical burns. This prognostic value is of great importance in the local setup, where sophisticated investigations to detect extent of injuries are not available. (author)

  11. Creatine and the Male Adolescent Athlete

    Science.gov (United States)

    Schumaker, Shauna; Eyers, Christina; Cappaert, Thomas

    2012-01-01

    As the level of competition in youth sports increases, so does athletes' vulnerability to experimenting with performance-enhancing aids (PEAs) at alarmingly young ages. One of the more commonly used PEAs is a supplement called creatine, which has the ability to generate muscular energy, allowing athletes to train at higher intensities for longer…

  12. Ammonium-induced impairment of axonal growth is prevented through glial creatine.

    OpenAIRE

    Braissant, O.; Henry, H.; Villard, A.M.; Zurich, M.G.; Loup, M.; Eilers, B.; Parlascino, G.; Matter, E.; Boulat, O.; Honegger, P.; Bachmann, C.

    2002-01-01

    Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cot...

  13. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine

    OpenAIRE

    Kreider, Richard B.; Kalman, Douglas S.; Antonio, Jose; Ziegenfuss, Tim N.; Wildman, Robert; Collins, Rick; Candow, Darren G.; Kleiner, Susan M.; Almada, Anthony L.; Lopez, Hector L.

    2017-01-01

    Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilit...

  14. The Effect of Statins on Skeletal Muscle Function

    Science.gov (United States)

    Parker, Beth A.; Capizzi, Jeffrey A.; Grimaldi, Adam S.; Clarkson, Priscilla M.; Cole, Stephanie M.; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S.; Simpson, Kathleen; White, C. Michael; Thompson, Paul D.

    2015-01-01

    Background Many clinicians believe that statins cause muscle pain, but this has not been observed in clinical trials and the effect of statins on muscle performance has not been carefully studied. Methods and Results The Effect of STatins On Skeletal Muscle Function and Performance (STOMP) study assessed symptoms and measured creatine kinase (CK), exercise capacity, and muscle strength before and after atorvastatin 80 mg or placebo were administered for 6 months to 420 healthy, statin-naive subjects. No individual CK value exceeded 10 times normal, but average CK increased 20.8 ± 141.1 U/L (pmuscle strength or exercise capacity with atorvastatin, but more atorvastatin than placebo subjects developed myalgia (19 vs 10; p = 0.05). Myalgic subjects on atorvastatin or placebo decreased muscle strength in 5 of 14 and 4 of 14 variables respectively (p = 0.69). Conclusions These results indicate that high-dose atorvastatin for 6 months does not decrease average muscle strength or exercise performance in healthy, previously untreated subjects. Nevertheless, this blinded, controlled trial confirms the undocumented impression that statins increase muscle complaints. Atorvastatin also increased average CK suggesting that statins produce mild muscle injury even among asymptomatic subjects. This increase in CK should prompt studies examining the effects of more prolonged, high-dose statin treatment on muscular performance. Clinical Trial Registration Information: www.clinicaltrials.gov; Identifier: NCT00609063. PMID:23183941

  15. CYP2D6*4 polymorphism is associated with statin-induced muscle effects.

    Science.gov (United States)

    Frudakis, Tony N; Thomas, Matthew J; Ginjupalli, Siva N; Handelin, Barbara; Gabriel, Richard; Gomez, Hector J

    2007-09-01

    Statin use is associated with a variety of overtly related muscle symptoms including muscle pain, myalgia, creatine kinase elevations without pain with myolysis and myositis (rhabdomyolysis), a potentially fatal side effect that led to the withdrawal of cerivastatin in 2001. Unintended drug response phenotypes have an impact on patient compliance and sometimes patient health and the assessment of risk on an individual basis could enhance therapeutic benefit. We therefore investigated whether common single nucleotide polymorphisms were associated with the expression of broadly grouped atorvastatin-induced muscle events in a case-control study (n=263 samples, n=388 SNPs). Of a number of associations identified in a discovery sample (51 atorvastatin-induced muscle and 55 normal) only those corresponding to the CYP2D6*4 allele were significantly associated in the sample (24 atorvastatin-induced muscle and 133 normal) (Discovery P=0.004, odds ratio=3.6; Validation P=0.036, odds ratio=2.7; total P=0.001, odds ratio=2.5). The frequency of the CYP2D6*4 allele was about 50% in atorvastatin-induced muscle patients but only 28% in controls, similar to that of other patient types (28.5%). The association was independent of various demographic variables and not explained by gross demographic, clinical or population-structure differences among cases and controls. Surprisingly, the CYP2D6*4 allele appeared similarly distributed among controls and patients expressing simvastatin-induced muscle events (n=169, frequency in case participants=49.2%, P=0.067, odds ratio=1.7). Our results suggest that the CYP2D6*4 allele is associated with broadly related muscle events caused by at least two structurally dissimilar HMG-CoA reductase inhibitors, and as such, may have implications for a better understanding of this statin-wide phenomena.

  16. Radioimmunoassay of creatine kinase BB isoenzyme

    Energy Technology Data Exchange (ETDEWEB)

    Jianguo, Geng [Shanghai Medical Univ. (China). Zhongshan Hospital; and others

    1988-11-01

    A radioimmunoassay of creatine kinase BB isoenzyme (CK-BB) was developed by using CK-BB purified from human brain. The CK-BB antiserum was raised by immunizing rabbite and {sup 125}I-CK-BB iodinated with Bolton-Hunter reagent. The affinity constant was 3.0 x 10{sup 9} mol/L. No cross reactions with creatine kinase MM isoenzyme and neuron-specific enolase were found. The measuring range was 3.5 x 10{sup -8} {approx} 1.2 x 10{sup -5} mmol/L, the average recovery rate 97.5%, with the inter and intrassay CV 3.1% and 12%, respectively. The average serum CK-BB concentration in 83 normal persons was 1.5 x 10{sup -7} +- 8.1 x 10{sup -8} mmol/L, quite different from the values of acute myocardial infarction (5.2 x 10{sup -6} +- 1.2 x 10{sup -4} mmol/L, n = 28) and cerebral vascular accident (8.4 x 10{sup -4} +- 5.0 x 10{sup -4} mmol/L, n = 10).

  17. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    Science.gov (United States)

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  18. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    Science.gov (United States)

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  19. High-Intensity Exercise Induced Oxidative Stress and Skeletal Muscle Damage in Postpubertal Boys and Girls: A Comparative Study.

    Science.gov (United States)

    Pal, Sangita; Chaki, Biswajit; Chattopadhyay, Sreya; Bandyopadhyay, Amit

    2018-04-01

    Pal, S, Chaki, B, Chattopadhyay, S, and Bandyopadhyay, A. High-intensity exercise induced oxidative stress and skeletal muscle damage in post-pubertal boys and girls: a comparative study. J Strength Cond Res 32(4): 1045-1052, 2018-The purpose of this study was to examine the sex variation in high-intensity exercise induced oxidative stress and muscle damage among 44 sedentary postpubertal boys and girls through estimation of postexercise release pattern of muscle damage markers like creatine kinase, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and oxidative stress markers like extent of lipid peroxidation (thiobarbituric acid-reactive substances) and catalase activity. Muscle damage markers like creatine kinase, LDH, ALT, and AST were measured before, immediately after, and 24 and 48 hours after high-intensity incremental treadmill running. Oxidative stress markers like thiobarbituric acid-reactive substances and catalase activity were estimated before and immediately after the exercise. Lipid peroxidation and serum catalase activity increased significantly in both groups after exercise (p exercise level at 24 and 48 hours after exercise in both the sexes, (p exercise, the pattern of postexercise release of these markers were found to be similar in both the groups. Accordingly, it has been concluded from the present investigation that high-intensity exercise induces significant oxidative stress and increases indices of skeletal muscle damage in both postpubertal girls and boys. However, postpubertal girls are relatively better protected from oxidative stress and muscle damage as compared to the boys of similar age and physical activity level. It is further evident that sex difference may not be apparent for all the biomarkers of muscle damage in this age group.

  20. Effects of taurine on markers of muscle damage, inflammatory response and physical performance in triathletes.

    Science.gov (United States)

    Martinez Galan, Bryan S; Giolo de Carvalho, Flavia; Carvalho Santos, Priscila; Bucken Gobbi, Ronaldo; Kalva-Filho, Carlos; Papoti, Marcelo; Sanchez Silva, Adelino; Freitas, Ellen C

    2017-07-25

    The practice of prolonged exercise with high intensity, as seen in triathlon training, can cause physiological imbalances that might result in muscle fatigue, muscle damage and changes in systemic inflammatory response, thus reduce the athletes physical performance, therefore, both adequate total caloric and macronutrient intake also the use of a specific ergogenic aid, as taurine supplementation would be an alternative to prevent inflammation and muscle damage. In order to verify the effects of 8 weeks of taurine and chocolate milk supplementation, markers of muscle damage, inflammation, and aerobic capacity were quantified in triathletes. A double-blind, crossover, randomized study was conducted with 9 male long distance triathletes, aged 25-35 years. Supplementation of 3 g of taurine (TAU) or placebo (PLA) associated with 400 ml low fat chocolate milk was performed during an 8-week period. In order to verify the effects of the supplementation protocol markers of muscle damage as lactate dehydrogenase (LDH) and creatine kinase (CK), and inflammatory markers tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were quantified, also triathletes performance was evaluated by exhaust test on a treadmill. It was observed a significant increase in taurine and CK plasma levels after TAU supplementation (p=0.02 and p=0.01, respectively). However, LDH concentrations did not differ significantly after the supplementations performed, and there were no changes in physical performance parameters; anaerobic threshold, perceived exertion, heart rate, and the concentrations of IL-6 and TNF-α. Taurine supplementation did not provide benefits on performance and muscle damage in triathletes.

  1. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI.

    Science.gov (United States)

    Haris, Mohammad; Nanga, Ravi Prakash Reddy; Singh, Anup; Cai, Kejia; Kogan, Feliks; Hariharan, Hari; Reddy, Ravinder

    2012-11-01

    Creatine (Cr), phosphocreatine (PCr) and adenosine-5-triphosphate (ATP) are major metabolites of the enzyme creatine kinase (CK). The exchange rate of amine protons of CK metabolites at physiological conditions has been limited. In the current study, the exchange rate and logarithmic dissociation constant (pKa) of amine protons of CK metabolites were calculated. Further, the chemical exchange saturation transfer effect (CEST) of amine protons of CK metabolites with bulk water was explored. At physiological temperature and pH, the exchange rate of amine protons in Cr was found to be 7-8 times higher than PCr and ATP. A higher exchange rate in Cr was associated with lower pKa value, suggesting faster dissociation of its amine protons compared to PCr and ATP. CEST MR imaging of these metabolites in vitro in phantoms displayed predominant CEST contrast from Cr and negligible contribution from PCr and ATP with the saturation pulse parameters used in the current study. These results provide a new method to perform high-resolution proton imaging of Cr without contamination from PCr. Potential applications of these finding are discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  2. [A clinical evaluation of the increased serum myoglobin: creatine phosphokinase and lactic dehydrogenase in patients with thyroid disorders (author's transl)].

    Science.gov (United States)

    Shimoda, S I; Kasai, K

    1980-08-20

    Since muscle dysfunction is frequently associated with a hypothyroid state, many clinical reports have indicated that serum enzyme activities derived from the muscle such as creatine phosphokinase (CPK), lactic dehydrogenase (LDH) and glutamic-oxaloacetic transamynase (GOT) are elevated. These enzyme activities in the serum of hyperthyroidism, euthyroidism and hypothyrodism have been known to have a good inverse correlation with protein-bound iodine (PBI). Therefore, as part of a study of the relationship between thyroid states and muscle tissue, values of serum myoblobin (Mb) were measured by RIA. The values of Mb in untreated hyperthyroidism were significantly lower (P<0.01) and, in untreated hypothyroidism, Mb values were significantly higher (p<0.001) than in normal subjects. There was a significant inverse correlation (p<0.01) between T4 or T3 concentration and Mb levels in these subjects. The relationship found between either Mb and LDH or Mb and CPK was also studied in the present study, and it was found that Mb significantly correlated to both LDH and CPK (P<0.001). Abnormalities of these enzyme levels in serum returned to the normal range rapidly after the correction of the abnormal thyroid states in each patient.

  3. Intradialytic creatine supplementation: A scientific rationale for improving the health and quality of life of dialysis patients.

    Science.gov (United States)

    Wallimann, Theo; Riek, Uwe; Möddel, Michael

    2017-02-01

    The CK/PCr-system, with creatine (Cr) as an energy precursor, plays a crucial role in cellular physiology. In the kidney, as in other organs and cells with high and fluctuating energy requirements, energy-charged phospho-creatine (PCr) acts as an immediate high-energy source and energy buffer, and as an intracellular energy transport vehicle. A maximally filled total Cr (Cr plus PCr) pool is a prerequisite for optimal functioning of the body and its organs, and health. Skeletal- and cardiac muscles of dialysis patients with chronic kidney disease (CKD) are depleted of Cr in parallel with the duration of dialysis. The accompanying accumulation of cellular damage seen in CKD patients lead to a deterioration of musculo-skeletal and neurological functioning and poor quality of life (QOL). Therefore, to counteract Cr depletion, it is proposed to supplement CKD patients with Cr. The anticipated benefits include previously documented improvements in the musculo-skeletal system, brain and peripheral nervous system, as well as improvements in the common comorbidities of CKD patients (see below). Thus, with a relatively simple, safe and inexpensive Cr supplementation marked improvements in quality of life (QOL) and life span are likely reached. To avoid Cr and fluid overload by oral Cr administration, we propose intradialytic Cr supplementation, whereby a relatively small amount of Cr is added to the large volume of dialysis solution to a final concentration of 1-10mM. From there, Cr enters the patient's circulation by back diffusion during dialysis. Because of the high affinity of the Cr transporter (CRT) for Cr affinity for Cr (Vmax of CRT for Cr=20-40μM Cr), Cr is actively transported from the blood stream into the target cells and organs, including skeletal and cardiac muscle, brain, proximal tubules of kidney epithelial cells, neurons, and leukocytes and erythrocytes, which all express CRT and depend on the CK/PCr system. By this intradialytic strategy, only as much Cr

  4. A stepwise procedure to test contractility and susceptibility to injury for the rodent quadriceps muscle

    Directory of Open Access Journals (Sweden)

    Stephen J.P. Pratt

    2014-07-01

    Full Text Available In patients with muscle injury or muscle disease, assessment of muscle damage is typically limited to clinical signs, such as tenderness, strength, range of motion, and more recently, imaging studies.  Biological markers can also be used in measuring muscle injury, such as increased creatine kinase levels in the blood, but these are not always correlated with loss in muscle function (i.e. loss of force production.  This is even true of histological findings from animals, which provide a “direct measure” of damage, but do not account for loss of function.  The most comprehensive measure of the overall health of the muscle is contractile force.  To date, animal models testing contractile force have been limited to the muscle groups moving the ankle.  Here we describe an in vivo animal model for the quadriceps, with abilities to measure torque, produce a reliable muscle injury, and follow muscle recovery within the same animal over time.  We also describe a second model used for direct measurement of force from an isolated quadriceps muscle in situ. 

  5. High-energy phosphate transfer in human muscle: diffusion of phosphocreatine

    OpenAIRE

    Gabr, Refaat E.; El-Sharkawy, AbdEl-Monem M.; Schär, Michael; Weiss, Robert G.; Bottomley, Paul A.

    2011-01-01

    The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (DPCr) is thus critical for modeling and understanding energy transport in the myocyte, but DPC...

  6. Measurement of the enzymes lactate dehydrogenase and creatine kinase using reflectance spectroscopy and reagent strips.

    OpenAIRE

    Stevens, J F; Tsang, W; Newall, R G

    1983-01-01

    Two new methods for the assay of total activities of lactate dehydrogenase and creatine kinase are described, in which the enzyme activities are measured from a solid-state reagent strip during a kinetic reaction, the reaction being monitored in the ultra-violet region of the spectrum by reflectance spectroscopy. The performances of these methods are evaluated, and compared to conventional "wet" chemistry methods. The solid-phase reagent methods demonstrated precision and accuracy acceptable ...

  7. Role of Creatine Supplementation on Exercise-Induced Cardiovascular Function and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Michael I. C. Kingsley

    2009-01-01

    Full Text Available Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabilities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2 separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr or a placebo (P for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise, at the end of exercise (postexercise, and the day following exercise (post24 h. Serum hypdroperoxide concentrations were elevated at postexercise by 17 ± 5% above preexercise values (p = 0.030. However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations, resistance of low density lipoprotein to oxidative stress (t1/2max LDL oxidation and plasma concentrations of non-enzymatic antioxidants (retinol, α-carotene, β-carotene, α-tocopherol, γ-tocopherol, lycopene and vitamin C. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.

  8. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2002-07-01

    Cytosolic pH in skeletal muscle may vary significantly because of proton production/consumption by creatine kinase and/or proton production by anaerobic glycolysis. A computer model of oxidative phosphorylation in intact skeletal muscle developed previously was used to study the kinetic effect of these variations on the oxidative phosphorylation system. Two kinds of influence were analysed: (i) via the change in pH across the inner mitochondrial membrane and (ii) via the shift in the equilibrium of the creatine kinase-catalysed reaction. Our simulations suggest that cytosolic pH has essentially no impact on the steady-state fluxes and most metabolite concentrations. On the other hand, rapid acidification/alkalization of cytosol causes a transient decrease/increase in the respiration rate. Furthermore, changes in pH seem to affect significantly the kinetic properties of transition between resting state and active state. An increase in pH brought about by proton consumption by creatine kinase at the onset of exercise lengthens the transition time. At intensive exercise levels this pH increase could lead to loss of the stability of the system, if not compensated by glycolytic H+ production. Thus our theoretical results stress the importance of processes/mechanisms that buffer/compensate for changes in cytosolic proton concentration. In particular, we suggest that the second main role of anaerobic glycolysis, apart from additional ATP supply, may be maintaining the stability of the system at intensive exercise.

  9. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-05-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for creatine and PCr for phosphocreatine) and in glycolytic ATP supply lengthen the half-transition time, whereas increase in mitochondrial content, in parallel activation of ATP supply and ATP usage, in oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH and in initial alkalization decrease this parameter. Theoretical studies show that a decrease in the activity of creatine kinase (CK) [displacement of this enzyme from equilibrium during on-transient (rest-to-work transition)] accelerates the first stage of the VO2 on-transient, but slows down the second stage of this transient. It is also demonstrated that a prior exercise terminated a few minutes before the principal exercise shortens the transition time. Finally, it is shown that at a given ATP demand, and under conditions where CK works near the thermodynamic equilibrium, the half-transition time of VO2 kinetics is determined by the amount of PCr that has to be transformed into Cr during rest-to-work transition; therefore any factor that diminishes the difference in [PCr] between rest and work at a given energy demand will accelerate the VO2 on-kinetics. Our conclusions agree with the general idea formulated originally by Easterby [(1981) Biochem. J. 199, 155-161] that changes in metabolite concentrations determine the transition times between different steady states in metabolic systems.

  10. Attenuation of muscle damage by preconditioning with muscle hyperthermia 1-day prior to eccentric exercise.

    Science.gov (United States)

    Nosaka, K; Muthalib, M; Lavender, A; Laursen, P B

    2007-01-01

    This study investigated the hypothesis that muscle damage would be attenuated in muscles subjected to passive hyperthermia 1 day prior to exercise. Fifteen male students performed 24 maximal eccentric actions of the elbow flexors with one arm; the opposite arm performed the same exercise 2-4 weeks later. The elbow flexors of one arm received a microwave diathermy treatment that increased muscle temperature to over 40 degrees C, 16-20 h prior to the exercise. The contralateral arm acted as an untreated control. Maximal voluntary isometric contraction strength (MVC), range of motion (ROM), upper arm circumference, muscle soreness, plasma creatine kinase activity and myoglobin concentration were measured 1 day prior to exercise, immediately before and after exercise, and daily for 4 days following exercise. Changes in the criterion measures were compared between conditions (treatment vs. control) using a two-way repeated measures ANOVA with a significance level of P < 0.05. All measures changed significantly following exercise, but the treatment arm showed a significantly faster recovery of MVC, a smaller change in ROM, and less muscle soreness compared with the control arm. However, the protective effect conferred by the diathermy treatment was significantly less effective compared with that seen in the second bout performed 4-6 weeks after the initial bout by a subgroup of the subjects (n = 11) using the control arm. These results suggest that passive hyperthermia treatment 1 day prior to eccentric exercise-induced muscle damage has a prophylactic effect, but the effect is not as strong as the repeated bout effect.

  11. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  12. Effects of Creatine Monohydrate Augmentation on Brain Metabolic and Network Outcome Measures in Women With Major Depressive Disorder.

    Science.gov (United States)

    Yoon, Sujung; Kim, Jieun E; Hwang, Jaeuk; Kim, Tae-Suk; Kang, Hee Jin; Namgung, Eun; Ban, Soonhyun; Oh, Subin; Yang, Jeongwon; Renshaw, Perry F; Lyoo, In Kyoon

    2016-09-15

    Creatine monohydrate (creatine) augmentation has the potential to accelerate the clinical responses to and enhance the overall efficacy of selective serotonin reuptake inhibitor treatment in women with major depressive disorder (MDD). Although it has been suggested that creatine augmentation may involve the restoration of brain energy metabolism, the mechanisms underlying its antidepressant efficacy are unknown. In a randomized, double-blind, placebo-controlled trial, 52 women with MDD were assigned to receive either creatine augmentation or placebo augmentation of escitalopram; 34 subjects participated in multimodal neuroimaging assessments at baseline and week 8. Age-matched healthy women (n = 39) were also assessed twice at the same intervals. Metabolic and network outcomes were measured for changes in prefrontal N-acetylaspartate and changes in rich club hub connections of the structural brain network using proton magnetic resonance spectroscopy and diffusion tensor imaging, respectively. We found MDD-related metabolic and network dysfunction at baseline. Improvement in depressive symptoms was greater in patients receiving creatine augmentation relative to placebo augmentation. After 8 weeks of treatment, prefrontal N-acetylaspartate levels increased significantly in the creatine augmentation group compared with the placebo augmentation group. Increment in rich club hub connections was also greater in the creatine augmentation group than in the placebo augmentation group. N-acetylaspartate levels and rich club connections increased after creatine augmentation of selective serotonin reuptake inhibitor treatment. Effects of creatine administration on brain energy metabolism and network organization may partly underlie its efficacy in treating women with MDD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine.

    Science.gov (United States)

    Kreider, Richard B; Kalman, Douglas S; Antonio, Jose; Ziegenfuss, Tim N; Wildman, Robert; Collins, Rick; Candow, Darren G; Kleiner, Susan M; Almada, Anthony L; Lopez, Hector L

    2017-01-01

    Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson's, Huntington's disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads. Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).

  14. Rhabdomyolysis-Associated Acute Kidney Injury With Normal Creatine Phosphokinase.

    Science.gov (United States)

    Kamal, Faisal; Snook, Lindsay; Saikumar, Jagannath H

    2018-01-01

    Rhabdomyolysis is a syndrome characterized by the breakdown of skeletal muscle and leakage of intracellular myocyte contents, such as creatine phosphokinase (CPK) and myoglobin, into the interstitial space and plasma resulting in acute kidney injury (AKI). Elevated CPK of at least 5 times the upper limit of normal is an important diagnostic marker of Rhabdomyolysis. We present a case of rhabdomyolysis with severe AKI with a normal CPK at presentation. A 32-year-old man presented with acute respiratory failure and AKI after an overdose of recreational drugs. Urinalysis at presentation showed trace amounts of blood, identified as rare red blood cells under microscopy. CPK was 156 U/L at presentation. Workup for glomerulonephritis and vasculitis was negative. He was initiated on renal replacement therapy, and a kidney biopsy showed severe acute tubular injury with positive myoglobin casts. Supportive management and renal replacement therapy was provided, and renal function spontaneously improved after a few weeks. This is an uncommon clinical presentation of severe rhabdomyolysis complicated by AKI. This suggests that CPK alone may not be a sensitive marker for rhabdomyolysis-induced AKI in some cases. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  15. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    Science.gov (United States)

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (pknee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  16. Rhabdomyolysis and acute kidney injury: creatine kinase as a prognostic marker and validation of the McMahon Score in a 10-year cohort: A retrospective observational evaluation.

    Science.gov (United States)

    Simpson, Joanna P; Taylor, Andrew; Sudhan, Nazneen; Menon, David K; Lavinio, Andrea

    2016-12-01

    High-volume fluid resuscitation and the administration of sodium bicarbonate and diuretics have a theoretical renoprotective role in patients at high risk of acute kidney injury (AKI) following rhabdomyolysis. Abnormally elevated creatine kinase has previously been used as a biological marker for the identification of patients at high risk of AKI following rhabdomyolysis. To assess the sensitivity and specificity of plasma creatine kinase (admission and peak values) for the prediction of AKI requiring renal replacement therapy (RRT) or of death in patients with confirmed rhabdomyolysis. To compare the diagnostic performance of creatine kinase with the McMahon score. Retrospective observational study. Data collection included McMahon and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores; daily creatine kinase; daily creatinine and electrolytes; ICU length of stay and mortality. Neurosciences and Trauma Critical Care Unit (Cambridge, UK). In total, 232 adults with confirmed rhabdomyolysis (creatine kinase > 1000 Ul) admitted to Neurosciences and Trauma Critical Care Unit between 2002 and 2012. AKI, RRT and mortality. Forty-five (19%) patients developed AKI and 29 (12.5%) patients required RRT. Mortality was significantly higher in patients who developed AKI (62 vs. 18%, P rhabdomyolysis. Although a PEAK creatine kinase of at least 5000 Ul has sensitivity acceptable for screening purposes, this is often a delayed finding. A McMahon score of at least 6 calculated on admission allows for a more sensitive, specific and timely identification of patients who may benefit from high-volume fluid resuscitation.

  17. The Effects of Acute Post Exercise Consumption of Two Cocoa-Based Beverages with Varying Flavanol Content on Indices of Muscle Recovery Following Downhill Treadmill Running

    Directory of Open Access Journals (Sweden)

    Katelyn Peschek

    2013-12-01

    Full Text Available Dietary flavanols have been associated with reduced oxidative stress, however their efficacy in promoting recovery after exercise induced muscle damage is unclear. This study examined the effectiveness of acute consumption of cocoa-flavanols on indices of muscle recovery including: subsequent exercise performance, creatine kinase, muscle tenderness, force, and self-perceived muscle soreness. Eight endurance-trained athletes (VO2max 64.4 ± 7.6 mL/kg/min completed a downhill running protocol to induce muscle soreness, and 48-h later completed a 5-K (kilometer time trial. Muscle recovery measurements were taken at PRE, 24 h-POST, 48 h-POST, and POST-5K. Participants consumed 1.0 g of carbohydrate per kilogram of body weight of a randomly assigned beverage (CHOC: 0 mg flavanols vs. CocoaCHOC: 350 mg flavanols per serving immediately after the downhill run and again 2 h later. The same protocol was repeated three weeks later with the other beverage. An ANOVA revealed no significant difference (p = 0.97 between trials for 5 K completion time (CHOC 1198.3 ± 160.6 s, CocoaCHOC 1195.5 ± 148.8 s. No significant difference was found for creatine kinase (CK levels (p = 0.31, or muscle soreness (p = 0.21 between groups over time. These findings suggest that the acute addition of cocoa flavanols to low-fat chocolate milk offer no additional recovery benefits.

  18. The Effects of Acute Post Exercise Consumption of Two Cocoa-Based Beverages with Varying Flavanol Content on Indices of Muscle Recovery Following Downhill Treadmill Running

    Science.gov (United States)

    Peschek, Katelyn; Pritchett, Robert; Bergman, Ethan; Pritchett, Kelly

    2013-01-01

    Dietary flavanols have been associated with reduced oxidative stress, however their efficacy in promoting recovery after exercise induced muscle damage is unclear. This study examined the effectiveness of acute consumption of cocoa-flavanols on indices of muscle recovery including: subsequent exercise performance, creatine kinase, muscle tenderness, force, and self-perceived muscle soreness. Eight endurance-trained athletes (VO2max 64.4 ± 7.6 mL/kg/min) completed a downhill running protocol to induce muscle soreness, and 48-h later completed a 5-K (kilometer) time trial. Muscle recovery measurements were taken at PRE, 24 h-POST, 48 h-POST, and POST-5K. Participants consumed 1.0 g of carbohydrate per kilogram of body weight of a randomly assigned beverage (CHOC: 0 mg flavanols vs. CocoaCHOC: 350 mg flavanols per serving) immediately after the downhill run and again 2 h later. The same protocol was repeated three weeks later with the other beverage. An ANOVA revealed no significant difference (p = 0.97) between trials for 5 K completion time (CHOC 1198.3 ± 160.6 s, CocoaCHOC 1195.5 ± 148.8 s). No significant difference was found for creatine kinase (CK) levels (p = 0.31), or muscle soreness (p = 0.21) between groups over time. These findings suggest that the acute addition of cocoa flavanols to low-fat chocolate milk offer no additional recovery benefits. PMID:24362706

  19. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer-induced cachexia progression in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Deminice, Rafael; Cella, Paola Sanches; Padilha, Camila S; Borges, Fernando H; da Silva, Lilian Eslaine Costa Mendes; Campos-Ferraz, Patrícia L; Jordao, Alceu Afonso; Robinson, Jason Lorne; Bertolo, Robert F; Cecchini, Rubens; Guarnier, Flávia Alessandra

    2016-08-01

    The purpose of this study was to investigate (1) the impact of tumor growth on homocysteine (Hcy) metabolism, liver oxidative stress and cancer cachexia and, (2) the potential benefits of creatine supplementation in Walker-256 tumor-bearing rats. Three experiments were conducted. First, rats were killed on days 5 (D5), 10 (D10) and 14 (D14) after tumor implantation. In experiment 2, rats were randomly assigned to three groups designated as control (C), tumor-bearing (T) and tumor-bearing supplemented with creatine (TCr). A life span experiment was conducted as the third experiment. Creatine was supplied in drinking water for 21 days (8 g/L) in all cases. Tumor implantation consisted of a suspension of Walker-256 cells (8.0 × 10(7) cells in 0.5 mL of PBS). The progressive increase (P creatine supplementation promoted a 28 % reduction of tumor weight (P Creatine supplementation was unable to decrease Hcy concentration and to increase SAM/SAH ratio in tumor tissue. These data suggest that creatine effects on hepatic impaired Hcy metabolism promoted by tumor cell inoculation are responsible to decrease plasma Hcy in tumor-bearing rats. In conclusion, Walker-256 tumor growth is associated with progressive hyperhomocysteinemia, body weight loss and liver oxidative stress in rats. Creatine supplementation, however, prevented these tumor-associated perturbations.

  20. Effect of elastic-band exercise on muscle damage and inflammatory responses in Taekwondo athletes

    Directory of Open Access Journals (Sweden)

    Keivan Gadruni

    2015-08-01

    Full Text Available INTRODUCTION: Elastic bands offer variable elastic resistance (ER throughout a range of motion and their incorporation with exercise movements has been used for variable strength training and rehabilitation purposes. Objective: Investigate the effect of acute bout of progressive elastic-band exercise on muscle damage and inflammatory response in Taekwondo athletes (TKD compared with untrained ones.METHODS: Fourteen (TKD, n = 7 and untrained, n = 7 men performed 3 sets of progressive resistance elastic exercise. Blood samples were taken pre-exercise and also immediately and 24h post exercise. Delayed onset muscle soreness (DOMS, creatine kinase (CK and lactate dehydrogenase (LDH activity, total leukocyte counts, interleukin-6 and C-reactive protein (CRP were analyzed.RESULTS: Only DOMS increased in untrained group, but elevation of DOMS was observed in both groups (TKD and untrained at 24h after exercise (p<0.05. CK and LDH activity increased in both groups significantly. Also TKD group only showed CK increasing 24h post exercise (p<0.05. Total circulating leukocyte counts increased immediately in post exercise experiments and decreased in 24h ones in both groups (p<0.05. Serum IL-6 immediately increased in both groups and 24h post exercises but there was no significant difference between immediate and 24h post exercise experiments in TKD group. Furthermore, CRP just increased 24h after exercise in both groups (p<0.05.CONCLUSION: Progressive resistance elastic exercise induced muscle damage and inflammation in TKD athletes, but also had smaller changes in comparison with untrained group and other forms of exercise.

  1. Solution thermodynamics of creatine monohydrate in binary (water + ethanol) solvent systems at T = (278.15 to 328.15) K

    International Nuclear Information System (INIS)

    Song, Liangcheng; Wei, Lihua; Si, Tao; Guo, Huai; Yang, Chunhui

    2016-01-01

    Highlights: • The solubilities of creatine monohydrate in (ethanol + water) mixtures were investigated. • The solubility data were well correlated by Jouyban–Acree model. • Solution thermodynamic properties were calculated. • The dissolving process of creatine monohydrate in was endothermic and entropy-driven. - Abstract: In order to optimize the crystallization process of creatine monohydrate, the solubility of creatine monohydrate in the binary (water + ethanol) mixture was measured at temperatures ranging from 278.15 K to 328.15 K using the laser monitoring technique. The solubility increased with both the temperature and the mole fraction of water in the solvent mixture. The experimental solubility was well correlated by the Jouyban–Acree model, which generated a sensitive solubility surface for creatine monohydrate. Furthermore, the thermodynamic parameters of this dissolution process were also estimated. The results showed that the dissolution process of creatine monohydrate in each solvent mixture was endothermic and entropy-driven, and that the dissolution of creatine monohydrate became much easier when the mole fraction of water in the solvent mixture increased.

  2. Four Weeks of Supplementation With Isolated Soy Protein Attenuates Exercise-Induced Muscle Damage and Enhances Muscle Recovery in Well Trained Athletes: A Randomized Trial.

    Science.gov (United States)

    Shenoy, Shweta; Dhawan, Mrinal; Singh Sandhu, Jaspal

    2016-09-01

    The effects of consumption of isolated soy protein (ISP) for a chronic period (4 weeks) on exercise induced muscle damage (EIMD) in athletic population have never been explored. To examine the effects of ISP on muscle damage indices elicited via a bout of damaging exercise. Forty males (20 boxers, 20 cyclists) aged 18 - 28 years were randomly assigned to two groups (ISP and Placebo) (n = 20). All participants who engaged themselves in specific, regular training of 30 hours a week during the competitive season were included in the study. Participants consumed the supplement and the placebo for 4 weeks. The damaging exercise consisted of 100 consecutive drop-jumps. Pre and post supplementation readings of the criterion variables, highly sensitive C reactive protein (hs-cRP), creatine Kinase (CK), myeloperoxidase (MPO), isometric muscle strength, maximum aerobic capacity (VO 2 max), heart rate (HR) and muscle soreness were obtained at baseline (Day 1), at 24 hours (Day 2) and at 48 hours (Day 3) following EIMD. Differences were observed in pre and post supplementation values (P athletic population.

  3. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement.

    Directory of Open Access Journals (Sweden)

    Robert Rasnick

    Full Text Available Total knee replacement (TKR is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05. No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups.

  4. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    subjects presenting with major VOC. Keywords: Serum creatine kinase activity, Serum inorganic phosphate concentration, Sickle cell disease,. Steady state, Vaso‑occlusive crisis. Original Article. Address for correspondence: Dr. John C Aneke,. Department of Hematology,. Nnamdi Azikiwe University Teaching. Hospital ...

  5. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    ... in thyroid function are common endocrine disorders affecting 5-10% of individuals over ... Key words: Hyperthyroidism, hypothyroidism, lactate dehydrogenase, serum creatine kinase ... individuals depends on age, race, lean body mass and physical activity. ... measured by radioimmunoassay on AXSYM System (Abbott.

  6. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    Background: Biochemical parameters vary in subjects with different hemoglobin phenotypes, compared with normal controls. Aim: The aim was to evaluate serum creatine kinase (CK) activity and inorganic phosphate concentrations in Nigerian adults with homozygous and heterozygous hemoglobin phenotypes. Subjects ...

  7. Effects of in ovo feeding of creatine pyruvate on the hatchability, growth performance and energy status in embryos and broiler chickens.

    Science.gov (United States)

    Zhao, M M; Gao, T; Zhang, L; Li, J L; Lv, P A; Yu, L L; Gao, F; Zhou, G H

    2017-10-01

    The effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the hatchability, growth performance and energy status of embryos and broilers (Arbor Acres) were investigated. Five treatments were arranged as non-injected treatment (Control), 0.6 ml physiological saline (0.75%) injected treatment (Saline), and IOF treatments injected with 0.6 ml physiological saline (0.75%) containing 3, 6 or 12 mg CrPyr (CrPyr3, CrPyr6 or CrPyr12) into the amnion per fertile egg on day 17.5 of incubation. After hatching, 80 male chicks from each treatment with similar weight close to the average BW of their pooled group were selected and randomly assigned into eight replicates of 10 chicks each. The results showed that the hatchability was not affected among groups, whereas the hatching weight of broilers in CrPyr12 was significantly higher than the control and saline groups (P0.05). Irrespective of dosage, the concentrations of creatine and phosphocreatine, and activities of creatine kinase in embryos were enhanced in CrPyr treatments at 19 E when compared with the control and saline groups (P<0.05). The activities of glucose-6-phosphatase in liver in CrPyr6 and CrPyr12 treatments were higher than the control and saline groups at 19 E (P<0.05). In conclusion, these results indicated that IOF of CrPyr, especially at the level of 12 mg/egg, could improve energy status of embryos and hatchlings, which was useful for enhancing hatching weight, BW and pectoral muscle weight until the end of the experiments at 21 days post-hatch in broilers.

  8. Feasibility of resistance training in adult McArdle patients: Clinical outcomes and muscle strength and mass benefits

    Directory of Open Access Journals (Sweden)

    Alfredo eSantalla

    2014-12-01

    Full Text Available We analyzed the effects of a 4-month resistance (weight lifting training program followed by a 2-month detraining period in 7 adult McArdle patients (5 female on: muscle mass (assessed by DXA, strength, serum creatine kinase (CK activity and clinical severity. Adherence to training was ≥ 84% in all patients and no major contraindication or side effect was noted during the training or strength assessment sessions. The training program had a significant impact on total and lower extremities’ lean mass (P0.05 was noted for baseline or post strength assessment values of serum CK activity, which remained essentially within the range reported in our laboratory for McArdle patients. All the patients changed to a lower severity class with training, such that none of them were in the highest disease severity class (3 after the intervention and, as such, they did not have fixed muscle weakness after training. Clinical improvements were retained, in all but one patient, after detraining, such that after detraining all patients were classed as class 1 for

  9. The rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation

    International Nuclear Information System (INIS)

    Bobodzhanov, P.Kh.; Yusupov, I.Kh.; Marupov, R.

    2001-01-01

    Present article is devoted to study of rotational mobility of spin labels in wool creatine depending on temperature, humidity and deformation. The experimental data of study of structure and molecular mobility of wool creatine modified by spin labels was considered.

  10. Umbrella sampling of proton transfer in a creatine-water system

    Science.gov (United States)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  11. Insulin Resistance and Increased Muscle Cytokine Levels in Patients With Mitochondrial Myopathy

    DEFF Research Database (Denmark)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-01-01

    CONTEXT: Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. OBJECTIVE: The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. DESIGN......: The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. MAIN OUTCOME MEASURES: Glucose infusion rate during 90-120 minutes of insulin infusion...... was measured. Cytokine concentrations in dialysate were also measured. RESULTS: Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P insulin, C-peptide, and glucagon were higher...

  12. Muscle damage produced during a simulated badminton match in competitive male players.

    Science.gov (United States)

    Abián, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidón; Muñoz, Victor; Lorenzo-Capella, Irma; Abián-Vicén, Javier

    2016-01-01

    The purpose of the study was to assess the occurrence of muscle damage after a simulated badminton match and its influence on physical and haematological parameters. Sixteen competitive male badminton players participated in the study. Before and just after a 45-min simulated badminton match, maximal isometric force and badminton-specific running/movement velocity were measured to assess muscle fatigue. Blood samples were also obtained before and after the match. The badminton match did not affect maximal isometric force or badminton-specific velocity. Blood volume and plasma volume were significantly reduced during the match and consequently haematite, leucocyte, and platelet counts significantly increased. Blood myoglobin and creatine kinase concentrations increased from 26.5 ± 11.6 to 197.3 ± 70.2 µg·L(-1) and from 258.6 ± 192.2 to 466.0 ± 296.5 U·L(-1), respectively. In conclusion, a simulated badminton match modified haematological parameters of whole blood and serum blood that indicate the occurrence of muscle fibre damage. However, the level of muscle damage did not produce decreased muscle performance.

  13. Cognitive effects of creatine monohydrate adjunctive therapy in patients with bipolar depression: Results from a randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Toniolo, Ricardo Alexandre; Fernandes, Francy de Brito Ferreira; Silva, Michelle; Dias, Rodrigo da Silva; Lafer, Beny

    2017-12-15

    Depressive episodes and cognitive impairment are major causes of morbidity and dysfunction in individuals suffering from bipolar disorder (BD). Novel treatment approaches that target clinical and cognitive aspects of bipolar depression are needed, and research on pathophysiology suggests that mitochondrial modulators such as the nutraceutical creatine monohydrate might have a therapeutic role for this condition. Eighteen (N=18) patients with bipolar depression according to DSM-IV criteria who were enrollled in a 6-week, randomized, double-blind, placebo-controlled trial of creatine monohydrate 6g daily as adjunctive therapy were submitted to neuropsychological assessments (Wisconsin Card Sorting Test, Digit Span subtest of the Wechsler Adult Intelligence Scale-Third Edition, Stroop Color-Word Test, Rey-Osterrieth complex figure test, FAS Verbal Fluency Test) at baseline and week 6. There was a statistically significant difference between the treatment groups of the change on the total scores after 6 weeks in the verbal fluency test, with improvement in the group receiving adjunctive treatment with creatine. We did not find significant differences between the groups of the changes on other neuropsychological tests. Small sample and lack of a control group of healthy subjects. Our trial, which was the first to investigate the cognitive effects of creatine monohydrate on bipolar depression, indicates that supplementation with this nutraceutical for 6 weeks is associated with improvement in verbal fluency tests in patients with this condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Amelioration of cadmium-induced changes in biochemical parameters of the muscle of Common Carp (Cyprinus carpio by Vitamin C and Chitosan

    Directory of Open Access Journals (Sweden)

    Mahdi Banaee

    2015-12-01

    Full Text Available The aim of this study was to investigate the effects of administering antioxidants, including vitamin C and chitosan on oxidative stress markers in muscle as edible tissues of Cyprinus carpio exposed to cadmium chloride. In this experiment, by exposing to 0.2 mg/L cadmium chloride for 21 days, fish were fed a normal diet, diet containing chitosan (1000 mg/kg diet, vitamin C (1000 mg/kg diet or both vitamin C and chitosan. Oxidative stress markers, including the activity of catalase, total antioxidant and malondialdehyde (MDA as well as biochemical parameters, including the activity of aspartate aminotransferase (AST, alanine aminotransferase (ALT, creatine phosphokinase (CPK, lactate dehydrogenase (LDH, and acetylcholinesterase (AChE were measured. Fish exposure to cadmium chloride significantly increased AST, LDH, CPK, catalase, and MDA activity, while it significantly decreased AST and AChE activity, and levels of total antioxidant in muscle cells. Administration of chitosan or vitamin C alone or in combination with each other to fish exposed to cadmium chloride was effective in regulating ALT, CPK, and catalase activity. Although administration of vitamin C and chitosan caused a significant decrease in MDA, AST and LDH, these enzymes were still significantly higher than those in the control group. Administration of vitamin C and chitosan had no significant effects on the activity of AChE and levels of total antioxidant. Although, chitosan alone could not prevent oxidative stress damages in muscle tissues of cadmium-treated fish, administration of vitamin C combined with chitosan may increase the efficiency of antioxidant defense system and improve the detoxification system in the muscles of fish exposed to cadmium chloride.

  15. The Effects of Creatine Monohydrate on Permeability of Coronary Artery Endothelium and Level of Blood Lipoprotein in Diabetic Rats.

    Science.gov (United States)

    Rahmani, Asghar; Asadollahi, Khairollah; Soleimannejad, Kourosh; Khalighi, Zahra; Mohsenzadeh, Yosouf; Hemati, Ruhollah; Moradkhani, Atefeh; Abangah, Ghobad

    2016-09-01

    Creatine monohydrate has beneficial effects on serum glucose. This study aimed to investigate the effects of creatine on serum biochemical markers and permeability of coronary arteries among diabetic rats. 32 Wistar rats, which weighed 150-200 grams were randomly divided into 4 groups including: group I, control; group II, creatine monohydrate; group III, diabetic rats; and group IV, diabetic rats + creatine. Creatine monohydrate was applied by 400 mg/kg/daily for 5 months. Animals' weights and blood samples were taken before and after the study. Endothelial permeability rate was measured by Evans Blue method. Data were analysed by SPSS 16. At the end of fifth month, rats' weights in diabetic group under treatment with creatine, compared to those without, increased significantly (pcreatine (pcreatine compared to untreated groups, closed to the intact group (pcreatine monohydrate caused an improvement of serum biochemical markers associated with diabetes and reduced the permeability rate of coronary arteries among diabetic rats. © 2016 by the Association of Clinical Scientists, Inc.

  16. Three-step preparation and purification of phosphorus-33-labeled creatine phosphate of high specific activity

    International Nuclear Information System (INIS)

    Savabi, F.; Geiger, P.J.; Bessman, S.P.

    1984-01-01

    Rabbit heart mitochondria were used as a source of enzymes for the synthesis of phosphorus-labeled creatine phosphate. This method is based on the coupled reaction between mitochondrial oxidative phosphorylation and mitochondrial-bound creatine kinase. It is possible to convert more than 90% of the inorganic phosphate (P/sub i/) to creatine phosphate. The method used only small amounts of adenine nucleotides which led to a product with only slight nucleotide contamination. This could be removed by activated charcoal extraction. For further purification, a method for the removal of residual P/sub i/ is described. 20 references

  17. The Role of Supplemented Creatine in Human Metabolism

    Czech Academy of Sciences Publication Activity Database

    Petr, M.; Navrátil, Tomáš; Heyrovský, Michael; Kohlíková, E.

    2011-01-01

    Roč. 15, č. 17 (2011), s. 3029-3042 ISSN 1385-2728 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : creatine * creatinine * folates Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.064, year: 2011

  18. NMR studies on 15N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    International Nuclear Information System (INIS)

    Kenyon, G.L.; Reddick, R.E.

    1986-01-01

    Recently, the authors have synthesized 15 N-2-Cr, 15 N-3-Crn, 15 N-2-Crn, 15 N-3-PCrn, 15 N-3-PCr, and 15 N-2-PCr. 1 H, 15 N, 31 P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the 31 P- 15 N one-bond coupling constant in 15 N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the 14 N/ 15 N positional isotope exchange of 3- 15 N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity

  19. Duchenne muscular dystrophy carriers. Proton spin-lattice relaxation times of skeletal muscles on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, K.; Nakano, I. (Shimoshizu National Hospital, Chiba (Japan). Dept. of Neurology); Fukuda, N.; Ikehira, H.; Tateno, Y. (National Inst. of Radiological Sciences, Chiba (Japan). Div. of Clinical Research); Aoki, Y. (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-11-01

    By means of magnetic resonance imaging (MRI), the proton spin-lattice relaxation times (T1 values) of the skeletal muscles were measured in Duchenne muscular dystrophy (DMD) carriers and normal controls. The bound water fraction (BWF) was calculated from the T1 values obtained, according to the fast proton diffusion model. In the DMD carriers, T1 values of the gluteus maximus and quadriceps femoris muscles were significantly higher, and BWFs of these muscles were significantly lower than in normal control. Degenerative muscular changes accompanied by interstitial edema were presumed responsible for this abnormality. No correlation was observed between the muscle T1 and serum creatine kinase values. The present study showed that MRI could be a useful method for studying the dynamic state of water in both normal and pathological skeletal muscles. Its possible utility for DMD carrier detection was discussed briefly. (orig.).

  20. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  1. Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Febbraio, Mark A; Steensberg, Adam; Walsh, Rory

    2002-01-01

    To test the hypothesis that a decrease in intramuscular glycogen availability may stimulate heat shock protein expression, seven men depleted one leg of muscle glycogen the day before performing 4-5 h of exhaustive, two-legged knee extensor exercise at 40 % of leg peak power output. Subjects...... and both femoral veins and blood was sampled from these catheters prior to exercise and at 1 h intervals during exercise and into recovery for the measurement of arterial-venous differences in serum HSP72. Plasma creatine kinase (CK) was also measured from arterial blood samples. Pre-exercise muscle...

  2. Neuroleptic malignant-like syndrome with a slight elevation of creatine-kinase levels and respiratory failure in a patient with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Wei L

    2014-02-01

    Full Text Available Li Wei,1,2 Yinghui Chen1,2 1Department of Neurology, Jinshan Hospital, 2Department of Neurology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China Abstract: Neuroleptic malignant-like syndrome (NMLS is a rare but catastrophic complication of drug treatment for Parkinson's disease (PD. Sudden withdrawal and abrupt reduction of antiparkinsonian drugs are major risk factors. Just as its name suggests, the clinical features of NMLS are similar to neuroleptic malignant syndrome, which is a dangerous adverse response to antipsychotic drugs. Both of these conditions can present with hyperthermia, marked muscle rigidity, altered consciousness, autonomic dysfunction, and elevated serum creatine-kinase (CK levels. However, we describe a special NMLS case with a slight elevation of CK levels and respiratory failure in the full course of her treatment. The patient, a 68-year-old woman with a 4-years history of Parkinson's disease, presented with hyperthermia and severe muscular rigidity. During the course of her treatment, her maximum temperature was extremely high (above 41°C. At the beginning, the diagnosis of NMLS secondary to dopamine decrease was difficult to make, because her initial blood examination revealed that her serum CK levels were mildly elevated and decreased to normal range rapidly. Although antiparkinsonian drugs and supportive treatment were applied, the patient developed an acute respiratory failure in the early course of treatment. This case report highlights that when confronted with Parkinson's patients with high body temperature and muscle rigidity, NMLS should be taken into consideration even if there is no CK elevation. Likewise, the need for supportive care is essential, because its complications are severe, even such as respiratory failure. Keywords: antiparkinsonian drugs, creatine kinase, parkinsonism–hyperpyrexia syndrome, respiratory failure

  3. Changes of creatine kinase structure upon ligand binding as seen by small-angle scattering

    Science.gov (United States)

    Forstner, Michael; Kriechbaum, Manfred; Laggner, Peter; Wallimann, Theo

    1996-09-01

    Small-angle X-ray and neutron scattering have been used to investigate structural changes upon binding of individual substrates or a transition state analogue complex (TSAC), consisting of Mg-ADP, creatine and KNO 3 to creatine kinase isoenzymes (dimeric M-CK and octameric Mi-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-ATP and TSAC, whereas creatine alone had only a small effect. In Mi-CK, the radius of gyration was reduced from 55.6 Å (free enzyme) to 48.9 Å (enzyme + Mg-ATP) and to 48.2 Å (enzyme + TSAC). The experiments performed with M-CK showed similar changes from 28.0 Å (free enzyme) to 25.6 Å (enzyme + Mg-ATP) and to 25.5 Å (enzyme + TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK showed the same behaviour: a change of the radius of gyration from 21.5 Å (free enzyme) to 19.7 Å (enzyme + MG-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a magnesium-nucleotide induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In creatine kinase, however, further movements must be involved in the large conformational change.

  4. Assessment of creatine kinase and lactate dehydrogenase activities ...

    African Journals Online (AJOL)

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  5. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes

    Directory of Open Access Journals (Sweden)

    Aoki Kosuke

    2012-07-01

    Full Text Available Abstract Background Muscle contraction during short intervals of intense exercise causes oxidative stress, which can play a role in the development of overtraining symptoms, including increased fatigue, resulting in muscle microinjury or inflammation. Recently it has been said that hydrogen can function as antioxidant, so we investigated the effect of hydrogen-rich water (HW on oxidative stress and muscle fatigue in response to acute exercise. Methods Ten male soccer players aged 20.9 ± 1.3 years old were subjected to exercise tests and blood sampling. Each subject was examined twice in a crossover double-blind manner; they were given either HW or placebo water (PW for one week intervals. Subjects were requested to use a cycle ergometer at a 75 % maximal oxygen uptake (VO2 for 30 min, followed by measurement of peak torque and muscle activity throughout 100 repetitions of maximal isokinetic knee extension. Oxidative stress markers and creatine kinase in the peripheral blood were sequentially measured. Results Although acute exercise resulted in an increase in blood lactate levels in the subjects given PW, oral intake of HW prevented an elevation of blood lactate during heavy exercise. Peak torque of PW significantly decreased during maximal isokinetic knee extension, suggesting muscle fatigue, but peak torque of HW didn’t decrease at early phase. There was no significant change in blood oxidative injury markers (d-ROMs and BAP or creatine kinease after exercise. Conclusion Adequate hydration with hydrogen-rich water pre-exercise reduced blood lactate levels and improved exercise-induced decline of muscle function. Although further studies to elucidate the exact mechanisms and the benefits are needed to be confirmed in larger series of studies, these preliminary results may suggest that HW may be suitable hydration for athletes.

  6. Photobiomodulation in human muscle tissue: an advantage in sports performance?

    Science.gov (United States)

    Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R

    2016-12-01

    Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to stimulate, heal, and regenerate damaged tissue. Both preconditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n = 1045 participants). Studies used single laser probes, cluster of laser diodes, LED clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Measurement of the enzymes lactate dehydrogenase and creatine kinase using reflectance spectroscopy and reagent strips.

    Science.gov (United States)

    Stevens, J F; Tsang, W; Newall, R G

    1983-01-01

    Two new methods for the assay of total activities of lactate dehydrogenase and creatine kinase are described, in which the enzyme activities are measured from a solid-state reagent strip during a kinetic reaction, the reaction being monitored in the ultra-violet region of the spectrum by reflectance spectroscopy. The performances of these methods are evaluated, and compared to conventional "wet" chemistry methods. The solid-phase reagent methods demonstrated precision and accuracy acceptable for diagnostic purposes, and were easy to use by trained operators. PMID:6655069

  8. Comparison of human myofibrillar protein catabolic rate derived from 3-methylhistidine excretion with synthetic rate from muscle biopsies during L-(. cap alpha. -/sup 15/N)lysine infusion

    Energy Technology Data Exchange (ETDEWEB)

    McKeran, R O; Halliday, D; Purkiss, P [Clinical Research Centre, Harrow (UK). Div. of Inherited Metabolic Diseases and Clinical Investigation

    1978-05-01

    Urine was collected in five healthy men over 10 to 14 days, with fasting blood samples on days 1, 5 and 10, whilst they consumed a standard creatine-free diet, which was quantitatively related to their body surface area. The urinary excretion of 3-methylhistidine fell to a plateau by day 5 in all subjects. Myofibrillar protein catabolic rate calculated from the mean value of 3-methylhistidine excretion from day 5 to day 10 averaged 1.21 g day/sup -1/ kg/sup -1/ body weight. The average turnover of muscle myofibrillar protein was calculated to be 2.16%/day. From a previous study using continuous intravenous infusion of L-(a-/sup 15/N)lysine with serial muscle biopsies on the same subjects, the mean myofibrillar protein synthetic rate was calculated to be 0.82 g day/sup -1/ kg/sup -1/ body weight, and the mean turnover rate was 1.47%/day of total muscle myofibrillar protein. The estimations of myofibrillar protein turnover rate derived from the two methods are compared and the differences discussed.

  9. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2016-01-01

    Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Surgery-induced changes and early recovery of hip-muscle strength, leg-press power, and functional performance after fast-track total hip arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Thorborg, Kristian; Husted, Henrik

    2013-01-01

    By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits.......By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits....

  11. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    Science.gov (United States)

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  12. Effects of lymphatic drainage and cryotherapy on indirect markers of muscle damage.

    Science.gov (United States)

    Behringer, Michael; Jedlicka, Diana; Mester, Joachim

    2018-06-01

    Muscle enzymes are cleared from the extracellular space by the lymphatic system, while smaller proteins enter the bloodstream directly. We investigated if manual lymphatic drainage (MLD), local cryotherapy (CRY), and rest (RST) differently affect the time course of creatine kinase (CK, 84 kDa) and heart-type fatty acid binding protein (h-FABP, 15 kDa) in the blood. Randomized controlled trial. After 4x20 unilateral, eccentric accentuated knee extensions (with one-third of the maximal isometric force) 30 sports students randomly received either a 30 min MLD, CRY or they rested (RST) for the same amount of time. CK, h-FABP, neutrophil granulocytes, and the perceived muscle soreness were assessed before, immediately after, and 1 hour, 4 hours, and 24 hours after the exercise. All measures increased significantly (Psports physicians and conditioning specialists who use biochemical muscle damage markers to adjust the training load and volume of athletes.

  13. Erythrocyte creatine as a marker of intravascular hemolysis due to left ventricular outflow tract obstruction in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Kubo, Toru; Okumiya, Toshika; Baba, Yuichi; Hirota, Takayoshi; Tanioka, Katsutoshi; Yamasaki, Naohito; Sugiura, Tetsuro; Doi, Yoshinori L; Kitaoka, Hiroaki

    2016-03-01

    Erythrocyte creatine, a marker of erythrocyte age that increases with shortening of erythrocyte survival, has been reported to be a quantitative and reliable marker for intravascular hemolysis. We hypothesized that hemolysis could also occur due to intraventricular obstruction in patients with hypertrophic cardiomyopathy (HCM). The purpose of this study was to examine the presence of subclinical hemolysis and the relation between intravascular hemolysis and intraventricular pressure gradient (IVPG). We measured erythrocyte creatine in 92 HCM patients. Twelve patients had left ventricular outflow tract obstruction (LVOTO), 4 had midventricular obstruction (MVO), and the remaining 76 were non-obstructive. Erythrocyte creatine levels ranged from 0.92 to 4.36μmol/g hemoglobin. Higher levels of erythrocyte creatine were associated with higher IVPG (r=0.437, pcreatine levels are high (≥1.8μmol/g hemoglobin), subclinical hemolysis is considered to be present. Half of LVOTO patients and no MVO patients showed high erythrocyte creatine levels. Although non-obstructive patients did not show significant intraventricular obstruction at rest, some showed high erythrocyte creatine levels. When LVOT-PG was measured during the strain phase of the Valsalva maneuver in 20 non-obstructive patients, 7 of those 20 patients showed LVOTO. In the 20 patients, there was no relation between erythrocyte creatine levels and LVOT-PG before the Valsalva maneuver (r=0.125, p=0.600), whereas there was a significant correlation between erythrocyte creatine and LVOT-PG provoked by the Valsalva maneuver (r=0.695, p=0.001). There is biochemical evidence of subclinical hemolysis in patients with HCM, and this hemolysis seems to be associated with LVOTO provoked by daily physical activities. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  14. How do deltoid muscle moment arms change after reverse total shoulder arthroplasty?

    Science.gov (United States)

    Walker, David R; Struk, Aimee M; Matsuki, Keisuke; Wright, Thomas W; Banks, Scott A

    2016-04-01

    Although many advantages of reverse total shoulder arthroplasty (RTSA) have been demonstrated, a variety of complications indicate there is much to learn about how RTSA modifies normal shoulder function. This study used a subject-specific computational model driven by in vivo kinematic data to assess how RTSA affects deltoid muscle moment arms after surgery. A subject-specific 12 degree-of-freedom musculoskeletal model was used to analyze the shoulders of 26 individuals (14 RTSA and 12 normal). The model was modified from the work of Holzbaur to directly input 6 degree-of-freedom humeral and scapular kinematics obtained using fluoroscopy. The moment arms of the anterior, lateral, and posterior aspects of the deltoid were significantly different when RTSA and normal cohorts were compared at different abduction angles. Anterior and lateral deltoid moment arms were significantly larger in the RTSA group at the initial elevation of the arm. The posterior deltoid was significantly larger at maximum elevation. There was large intersubject variability within the RTSA group. Placement of implant components during RTSA can directly affect the geometric relationship between the humerus and scapula and the muscle moment arms in the RTSA shoulder. RTSA shoulders maintain the same anterior and posterior deltoid muscle moment-arm patterns as healthy shoulders but show much greater intersubject variation and larger moment-arm magnitudes. These observations provide a basis for determining optimal implant configuration and surgical placement to maximize RTSA function in a patient-specific manner. Published by Elsevier Inc.

  15. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    Science.gov (United States)

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (Pplyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Antimalarials as a risk factor for elevated muscle enzymes in systemic lupus erythematosus.

    Science.gov (United States)

    Tselios, K; Gladman, D D; Su, Jiandong; Urowitz, M B

    2016-04-01

    To investigate the relationship between antimalarials (AM) and elevated muscle enzymes in systemic lupus erythematosus (SLE). 325 lupus patients with abnormal creatine phosphokinase (CPK) for at least two consecutive clinic visits were enrolled; 54 patients on statins/fibrates (n = 43) and/or active myositis (n = 14) were excluded. The control group consisted of 1453 lupus patients with no CPK elevation during follow-up. Descriptive statistics and Cox regression analyses were performed, p < 0.05 was considered significant. Cases and controls did not differ regarding age at SLE diagnosis, gender ratio, or disease duration. AM use was more frequent in cases, which had more prolonged AM use. Total frequency of elevated CPK in AM users was 216/1322 (16.3%). Chloroquine was associated with a 3.3-fold, and hydroxychloroquine with a 3.1-fold, increased risk for CPK elevation. Black race was associated with higher CPK (HR = 2.941), whereas female gender was protective (HR = 0.697). 203 patients were followed for 7.3 ± 5.6 years; 49.8% had persistent and 14.8% intermittent CPK elevation, while in 35.4% CPK was normalized. Clinical proximal muscle weakness developed in 5/203 patients. Chronic AM use is a potential risk factor for muscle enzyme elevation in SLE patients. CPK abnormalities persist in almost two thirds of the patients, but this remains mainly a biochemical finding, evolving to clinical myopathy in about 2.5%. © The Author(s) 2015.

  17. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    Background and Objectives: There is the recognition of a pattern of elevations of serum enzymes in hyperthyroid and hypothyroid patients. The aims of this study were to determine the activities of serum creatine kinase (CK) and lactate deydrogenase (LDH) in thyroid disorders, and to evaluate the relationship between CK, ...

  18. Analysis of human muscle extracts by proton NMR

    International Nuclear Information System (INIS)

    Venkatasubramanian, P.N.; Barany, M.; Arus, C.

    1986-01-01

    Perchloric acid extracts were prepared from pooled human muscle biopsies from patients diagnosed with scoliosis (SCOL) and cerebral palsy (CP). After neutralization with KOH and removal of perchlorate, the extracts were concentrated by freeze drying and dissolved in 2 H 2 O to contain 120 O.D. units at 280 nm per 0.5 ml. 1 H NMR spectroscopy was performed with the 5 mm probe of a Varian XL300 instrument. Creatine, lactate, carnosine, and choline were the major resonances in the one-dimensional spectra of both extracts. With creatine as reference, 2.5-fold more lactate was found in SCOL than in CP, and a much smaller difference was also found in their carnosine content. Two-dimensional COSY comparison revealed several differences between the two extracts. Taurine, N-acetyl glutamate, glycerophosphoryl choline (or phosphoryl choline) and an unidentified spot were present only in the extract from SCOL but not in that from CP. On the other hand, aspartate, hydroxy-proline, carnitine and glycerophosphoryl ethanolamine were only present in CP but absent in SCOL. Alanine, cysteine, lysine and arginine appeared in both extracts without an apparent intensity difference

  19. Predicted optimum ambient temperatures for broiler chickens to dissipate metabolic heat do not affect performance or improve breast muscle quality.

    Science.gov (United States)

    Zahoor, I; Mitchell, M A; Hall, S; Beard, P M; Gous, R M; De Koning, D J; Hocking, P M

    2016-01-01

    An experiment was conducted to test the hypothesis that muscle damage in fast-growing broiler chickens is associated with an ambient temperature that does not permit the birds to lose metabolic heat resulting in physiological heat stress and a reduction in meat quality. The experiment was performed in 4 climate chambers and was repeated in 2 trials using a total of 200 male broiler chickens. Two treatments compared the recommended temperature profile and a cool regimen. The cool regimen was defined by a theoretical model that determined the environmental temperature that would enable heat generated by the bird to be lost to the environment. There were no differences in growth rate or feed intake between the two treatments. Breast muscles from birds on the recommended temperature regimen were lighter, less red and more yellow than those from the cool temperature regimen. There were no differences in moisture loss or shear strength but stiffness was greater in breast muscle from birds housed in the cool compared to the recommended regimen. Histopathological changes in the breast muscle were similar in both treatments and were characterised by mild to severe myofibre degeneration and necrosis with regeneration, fibrosis and adipocyte infiltration. There was no difference in plasma creatine kinase activity, a measure of muscle cell damage, between the two treatments consistent with the absence of differences in muscle pathology. It was concluded that breast muscle damage in fast-growing broiler chickens was not the result of an inability to lose metabolic heat at recommended ambient temperatures. The results suggest that muscle cell damage and breast meat quality concerns in modern broiler chickens are related to genetic selection for muscle yields and that genetic selection to address breast muscle integrity in a balanced breeding programme is imperative.

  20. Acute rhabdomyolysis of the soleus muscle induced by a lightning strike: magnetic resonance and scintigraphic findings

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Naofumi; Inaoka, Tsutomu; Shuke, Noriyuki; Takahashi, Koji; Aburano, Tamio [Asahikawa Medical College, Department of Radiology, Asahikawa (Japan); Chisato, Naoyuki; Go, Kazutomo [Asahikawa Medical College, Department of Emergency Medicine, Asahikawa (Japan); Nochi, Hitoshi [Asahikawa Medical College, Department of Orthopaedic Surgery, Asahikawa (Japan)

    2007-07-15

    Among natural disasters, a lightning strike is a rare but potentially life-threatening phenomenon. If victims survive a cardiac arrest due to instantaneous passage of an exceptionally high voltage electric charge through the whole body, they may be afflicted with various complications such as muscle necrosis resulting in acute renal failure. In this article, we report a case of a 54-year-old man with acute rhabdomyolysis of the left soleus muscle associated with a lightning strike. T2-weighted and short-tau inversion recovery MR images showed a high signal intensity in the left soleus muscle. A whole-body bone scintigram showed abnormal uptakes in the left soleus muscle and the dorsal aspect of the left foot. MR and scintigraphic evaluations were very useful in depicting the site and extent of muscle damage. Since the patient showed a surprisingly high level of serum creatine kinase, the added information was very valuable for determining the patient's management. (orig.)

  1. Acute rhabdomyolysis of the soleus muscle induced by a lightning strike: magnetic resonance and scintigraphic findings

    International Nuclear Information System (INIS)

    Watanabe, Naofumi; Inaoka, Tsutomu; Shuke, Noriyuki; Takahashi, Koji; Aburano, Tamio; Chisato, Naoyuki; Go, Kazutomo; Nochi, Hitoshi

    2007-01-01

    Among natural disasters, a lightning strike is a rare but potentially life-threatening phenomenon. If victims survive a cardiac arrest due to instantaneous passage of an exceptionally high voltage electric charge through the whole body, they may be afflicted with various complications such as muscle necrosis resulting in acute renal failure. In this article, we report a case of a 54-year-old man with acute rhabdomyolysis of the left soleus muscle associated with a lightning strike. T2-weighted and short-tau inversion recovery MR images showed a high signal intensity in the left soleus muscle. A whole-body bone scintigram showed abnormal uptakes in the left soleus muscle and the dorsal aspect of the left foot. MR and scintigraphic evaluations were very useful in depicting the site and extent of muscle damage. Since the patient showed a surprisingly high level of serum creatine kinase, the added information was very valuable for determining the patient's management. (orig.)

  2. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy.

    Science.gov (United States)

    Mobley, Christopher Brooks; Fox, Carlton D; Ferguson, Brian S; Amin, Rajesh H; Dalbo, Vincent J; Baier, Shawn; Rathmacher, John A; Wilson, Jacob M; Roberts, Michael D

    2014-01-01

    The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty expression mechanistically relates to skeletal muscle hypertrophy in vivo.

  3. Protective effects of regular aerobic exercise on renal tissue injury following creatine monohydrate supplementation in rats

    Directory of Open Access Journals (Sweden)

    Davoud Rahimi

    2017-01-01

    Full Text Available Creatine is one of the most common supplements for improvement of athletic performance which is used by athletes. The most important debate about creatine consumption is its adverse effect on kidneys due to increased protein load. This study was performed to evaluate the protective effects of aerobic exercise on renal tissue injury following consumption of creatine monohydrate in the rat. For this purpose, 30 male Wistar rats were randomly divided into 3 groups of 10 animals each. Group 1, as control, received only standard food. Group 2 received 5 g/kg b.w. creatine monohydrate supplement daily for 8 weeks through gavage and group 3 received creatine monohydrate supplementation in the same manner30 minutes before aerobic exercise. Aerobic exercise was performed 5 times per week on treadmill at speed of 10-25m/min for 10-30 minutes with the slope of 5 degrees. At the end of 8 weeks, water intake and urinary excretion of rats were measured and blood samples were collected for measurement of serum renal function biomarkers including urea, uric acid and creatinine. Finally, the rats were euthanized for renal histopathology. In group 3, by doing regular aerobic exercise, water intake and urinary excretion rates were significantly (p

  4. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.

    Directory of Open Access Journals (Sweden)

    Neha Qasim

    Full Text Available Creatine (Cr is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane dihydrochloride (AAPH and hydrogen peroxide (H2O2 in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their

  5. Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics.

    Science.gov (United States)

    Muthalib, Makii; Lee, Hoseong; Millet, Guillaume Y; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb)=oxygenated-Hb+deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1-3 days following exercise. The torque integral during ECC was greater (P<0.05) than that during CON by approximately 30%, and the decrease in TOI was smaller (P<0.05) by approximately 50% during ECC than CON. Increases in tHb during the relaxation phases were smaller (P<0.05) by approximately 100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater (P<0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1-3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased (P<0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.

  6. Effects of Creatine and Resistance Training on Bone Health in Postmenopausal Women.

    Science.gov (United States)

    Chilibeck, Philip D; Candow, Darren G; Landeryou, Tim; Kaviani, Mojtaba; Paus-Jenssen, Lisa

    2015-08-01

    Our primary purpose was to determine the effect of 12 months of creatine (Cr) supplementation during a supervised resistance training program on properties of bone in postmenopausal women. Participants were randomized (double-blind) into two groups: resistance training (3 d·wk) and Cr supplementation (0.1 g·kg·d) or resistance training and placebo (Pl). Our primary outcome measures were lumbar spine and femoral neck bone mineral density (BMD). Secondary outcome measures were total hip and whole-body BMD, bone geometric properties at the hip, speed of sound at the distal radius and tibia, whole-body lean tissue mass, muscle thickness, and bench press and hack squat strength. Forty-seven women (57 (SD, 6) yr; Cr, n = 23; Pl, n = 24) were randomized, with 33 analyzed after 12 months (Cr, n = 15; Pl, n = 18). Cr attenuated the rate of femoral neck BMD loss (-1.2%; absolute change (95% confidence interval), -0.01 (-0.025 to 0.005) g·cm) compared with Pl (-3.9%; -0.03 (-0.044 to -0.017) g·cm; P < 0.05) and also increased femoral shaft subperiosteal width, a predictor of bone bending strength (Cr, 0.04 (-0.09 to 0.16) cm); Pl, -0.12 (-0.23 to -0.01) cm; P < 0.05). Cr increased relative bench press strength more than Pl (64% vs 34%; P < 0.05). There were no differences between groups for other outcome measures. There were no differences between groups for reports of serum liver enzyme abnormalities, and creatinine clearance was normal for Cr participants throughout the intervention. Twelve months of Cr supplementation during a resistance training program preserves femoral neck BMD and increases femoral shaft superiosteal width, a predictor of bone bending strength, in postmenopausal women.

  7. The effects of prior calcium channel blocker therapy on creatine kinase-MB levels after percutaneous coronary interventions

    OpenAIRE

    Gulmez, Oyku; Atar, Ilyas; Ozin, B?lent; Korkmaz, Mehmet Emin; Atar, Asli; Aydinalp, Alp; Yildirir, Aylin; Muderrisoglu, Haldun

    2008-01-01

    Background: Use of intracoronary calcium channel blockers (CCBs) during percutaneous coronary intervention (PCI) has been shown to have favorable effects on coronary blood flow. We aimed to investigate the effects of CCBs administrated perorally on creatine kinase-MB (CK-MB) levels in patients undergoing elective PCI. Methods: A total of 570 patients who underwent PCI were evaluated for CK-MB elevation. Patients who were on CCB therapy when admitted to the hospital constituted the CCB group. ...

  8. Clinical significance of magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults

    Energy Technology Data Exchange (ETDEWEB)

    Nishikai, Masahiko; Akiya, Kumiko [National Tokyo Medical Center (Japan)

    2000-12-01

    The purpose of this study was to evaluate the clinical significance of magnetic resonance imaging (MRI) of skeletal muscles in Japanese patients with idiopathic inflammatory myopathies (IIM). MRI was performed in 23 adult patients with IIM, including 10 with polymyositis, 12 with dermatomyositis, and 1 with focal myositis. Seven (73%) of 11 patients with active IIM and 2 (17%) of 12 patients with inactive IIM showed hyperintensity of T2-weighted images and normal intensity of T1-weighted images, indicating 'edema-like abnormalities' (MRI findings for active myositis). Muscle lipomatosis and fibrosis were demonstrated in four patients and 1 patient, respectively. Considerable selectivity of muscles in developing inflammatory disorders was found. In quadriceps muscles, for example, vastus muscles seemed to be more often affected in DM patients, whereas adductors were more often affected in PM patients. Serial examination of muscle MRIs was carried out in 4 patients and the findings paralleled the disease activities. The muscle MRI findings did not necessarily correlate with other findings, such as the presence of muscle weakness, elevated serum creatine kinase levels, myogenic electromyogram, or muscle biopsy findings. The muscle MRI was considered to be an additional useful tool for the diagnosis, evaluation of disease activity, and planning treatment of IIM. (author)

  9. Clinical significance of magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults

    International Nuclear Information System (INIS)

    Nishikai, Masahiko; Akiya, Kumiko

    2000-01-01

    The purpose of this study was to evaluate the clinical significance of magnetic resonance imaging (MRI) of skeletal muscles in Japanese patients with idiopathic inflammatory myopathies (IIM). MRI was performed in 23 adult patients with IIM, including 10 with polymyositis, 12 with dermatomyositis, and 1 with focal myositis. Seven (73%) of 11 patients with active IIM and 2 (17%) of 12 patients with inactive IIM showed hyperintensity of T2-weighted images and normal intensity of T1-weighted images, indicating 'edema-like abnormalities' (MRI findings for active myositis). Muscle lipomatosis and fibrosis were demonstrated in four patients and 1 patient, respectively. Considerable selectivity of muscles in developing inflammatory disorders was found. In quadriceps muscles, for example, vastus muscles seemed to be more often affected in DM patients, whereas adductors were more often affected in PM patients. Serial examination of muscle MRIs was carried out in 4 patients and the findings paralleled the disease activities. The muscle MRI findings did not necessarily correlate with other findings, such as the presence of muscle weakness, elevated serum creatine kinase levels, myogenic electromyogram, or muscle biopsy findings. The muscle MRI was considered to be an additional useful tool for the diagnosis, evaluation of disease activity, and planning treatment of IIM. (author)

  10. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    The purpose of this study was to investigate the effects of high-force eccentric muscle contractions on collagen remodeling and on circulating levels of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in humans. Nine volunteers [5 men and 4 women, mean age 23 (SD...... 4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P Collagen type IV staining intensity increased significantly on day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  11. Changes of lipidemia after one month of creatine supplementation

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Petr, M.; Kohlíková, E.

    2015-01-01

    Roč. 146, č. 5 (2015), s. 771-780 ISSN 0026-9247 R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : creatine * vitamin B12 * folates Subject RIV: CG - Electrochemistry Impact factor: 1.131, year: 2015

  12. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    Science.gov (United States)

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  13. Recovery in mechanical muscle strength following resurfacing vs standard total hip arthroplasty - a randomised clinical trial

    DEFF Research Database (Denmark)

    Jensen, Carsten; Aagaard, Per; Overgaard, S

    2011-01-01

    rather than implant design per se. Thus, the present data failed to support the hypothesis that R-THA would result in an enhanced strength rehabilitation compared to S-THA. Further, between-limb asymmetry remained present for hip flexors and adductors after 52 wks. Trial registration: NCT01229293....... randomised into (A) standard total hip arthroplasty (S-THA) and (B) resurfacing total hip arthroplasty (R-THA). Pre-surgery assessment and follow-up were conducted (8, 26 and 52 wks). Maximal isometric muscle strength (Nm) and between-limb asymmetry for the knee extensors/flexors, hip adductors....../abductors, hip extensors/flexors were analysed. RESULTS: Maximal knee extensor and hip abductor strength were higher in S-THA than R-THA at 52 wks post-surgery (P ≤ 0.05) and hip extensors tended to be higher in S-THA at 52 wks (P = 0.06). All muscle groups showed substantial between-limb strength asymmetry (7...

  14. The effect of combined supplementation of carbohydrates and creatine on anaerobic performance

    Directory of Open Access Journals (Sweden)

    AS Theodorou

    2017-02-01

    Full Text Available The purpose of the study was to examine the effect of creatine (Cr supplementation on anaerobic performance when ingesting creatine and carbohydrates (CHO together. Twenty male physical education students comprised the two experimental (CR and CRCHO and one control (CON groups of the study. All groups performed three 30 s anaerobic Wingate tests (AWTs interspersed with 6 minutes of recovery. The CR group (n = 7 ingested 5 g of Cr 5 times per day for 4 days. Subjects in the CRCHO group (n = 6 ingested the same quantity but additionally after each 5 g dose of Cr consumed 500 ml of a commercially available energy drink containing 100 g of simple sugars. Over all three AWTs average mean power improved significantly compared to baseline for the CR group (5.51% but not for the CRCHO group (3.06%. Mean power for the second AWT was improved following the acute loading for the CR group only (4.54% and for the third AWT for both CR (8.49% and CRCHO (5.75% groups. Over all three AWTs a significant change was recorded in average peak power following the acute loading for the CR group (8.26% but not for the CRCHO group (4.11%. Peak power was significantly improved following the loading only for the CR group during the third AWT (19.79%. No changes in AWT performance were recorded for the CON group after intervention. The findings of the present study suggest that ingesting creatine together with carbohydrates will not further improve performance compared to the ingestion of creatine only.

  15. Periodontal status and serum creatine kinase levels among young ...

    African Journals Online (AJOL)

    Objectives: It is hypothesized that soccer players with periodontal disease exhibit raised serum creatine kinase (CK) levels as compared to those without periodontal disease. We assessed the clinical gingival status and serum CK levels among young soccer players. Materials and Methods: Demographic data were ...

  16. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults?

    NARCIS (Netherlands)

    Wind, Anne E.; Takken, Tim; Helders, Paul J. M.; Engelbert, Raoul H. H.

    2010-01-01

    The primary purpose of this study was to examine whether grip strength is related to total muscle strength in children, adolescents, and young adults. The second purpose was to provide reference charts for grip strength, which could be used in the clinical and research setting. This cross-sectional

  17. Comparative quantification of dietary supplemented neural creatine concentrations with (1)H-MRS peak fitting and basis spectrum methods.

    Science.gov (United States)

    Turner, Clare E; Russell, Bruce R; Gant, Nicholas

    2015-11-01

    Magnetic resonance spectroscopy (MRS) is an analytical procedure that can be used to non-invasively measure the concentration of a range of neural metabolites. Creatine is an important neurometabolite with dietary supplementation offering therapeutic potential for neurological disorders with dysfunctional energetic processes. Neural creatine concentrations can be probed using proton MRS and quantified using a range of software packages based on different analytical methods. This experiment examines the differences in quantification performance of two commonly used analysis packages following a creatine supplementation strategy with potential therapeutic application. Human participants followed a seven day dietary supplementation regime in a placebo-controlled, cross-over design interspersed with a five week wash-out period. Spectroscopy data were acquired the day immediately following supplementation and analyzed with two commonly-used software packages which employ vastly different quantification methods. Results demonstrate that neural creatine concentration was augmented following creatine supplementation when analyzed using the peak fitting method of quantification (105.9%±10.1). In contrast, no change in neural creatine levels were detected with supplementation when analysis was conducted using the basis spectrum method of quantification (102.6%±8.6). Results suggest that software packages that employ the peak fitting procedure for spectral quantification are possibly more sensitive to subtle changes in neural creatine concentrations. The relative simplicity of the spectroscopy sequence and the data analysis procedure suggest that peak fitting procedures may be the most effective means of metabolite quantification when detection of subtle alterations in neural metabolites is necessary. The straightforward technique can be used on a clinical magnetic resonance imaging system. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Efeitos da suplementação oral com creatina sobre o metabolismo e a morfologia hepática em ratos Effects of creatine oral supplementation on the hepatic metabolism and morphology of rats

    Directory of Open Access Journals (Sweden)

    Rodolfo de Paula Vieira

    2008-02-01

    Full Text Available A creatina é uma amina nitrogenada e tem sido utilizada principalmente por atletas e praticantes de atividade física que desejam aumentar a massa muscular e o desempenho físico. Entretanto seu uso não está somente relacionado à prática esportiva, pois inúmeros trabalhos apresentam efeitos benéficos na prática médica. Alguns estudos demonstraram que a suplementação oral com creatina resulta em aumento da sua biodisponibilidade plasmática e também de seus estoques em inúmeros órgãos. Entretanto, estudos sobre possíveis efeitos tóxicos da suplementação com creatina são escassos. Portanto, o objetivo deste trabalho foi avaliar os possíveis efeitos tóxicos da suplementação oral com creatina sobre a função e morfologia hepáticas em ratos após 14 dias de suplementação oral com creatina na dose de 0.5 g/kg/dia. A função hepática foi avaliada através de testes bioquímicos e a estrutura hepática foi avaliada através da massa hepática relativa e da análise histológica. Os resultados demonstraram que 14 dias de suplementação com creatina não alteraram a função hepática quando comparado os grupos controle e suplementado: AST (39.5 x 44.4 U/L, ALT (18.6 x 30.8 U/L, ALP (38.5 x 31.4 U/L, GGT (134.8 x 143.8 U/L, proteínas totais (5.1 x 5.5 g/dl, triglicérides (141.0 x 141.0 mg/dl, colesterol total (130.1 x 126.2 mg/dl, colesterol LDL (36.1 x 36.1 mg/dl, colesterol HDL (65.6 x 62.4 mg/dl, colesterol VLDL (25.0 x 28.0 mg/dl, e também estrutura hepática, exceto nos níveis plasmáticos de albumina (3.0 x 3.5 mg/dl - pCreatine is a nitrogenated amine and it has been used mainly by athletes and physical activity practitioners who wish to increase muscle mass and performance. However its use is not just related to sports practice, once several studies have shown beneficial effects on medical practice. Some studies have demonstrated that oral creatine supplementation increases its plasmatic bioavailability and also

  19. MUSCLE DAMAGE AFTER A TENNIS MATCH IN YOUNG PLAYERS

    Directory of Open Access Journals (Sweden)

    R.V. Gomes

    2014-07-01

    Full Text Available The present study investigated changes in indirect markers of muscle damage following a simulated tennis match play using nationally ranked young (17.6 ± 1.4 years male tennis players. Ten young athletes played a 3-hour simulated match play on outdoor red clay courts following the International Tennis Federation rules. Muscle soreness, plasma creatine kinase activity (CK, serum myoglobin concentration (Mb, one repetition maximum (1RM squat strength, and squat jump (SJ and counter movement jump (CMJ heights were assessed before, immediately after, and 24 and 48 h after the simulated match play. All parameters were also evaluated in a non-exercised group (control group. A small increase in the indirect markers of muscle damage (muscle soreness, CK and Mb was detected at 24-48 hours post-match (p<0.05. A marked acute decrement in neuromuscular performance (1RM squat strength: -35.2 ± 10.4%, SJ: -7.0 ± 6.0%, CMJ: -10.0 ± 6.3% was observed immediately post-match (p<0.05. At 24 h post-match, the 1RM strength and jump heights were not significantly different from the baseline values. However, several players showed a decrease of these measures at 24 h after the match play. The simulated tennis match play induced mild muscle damage in young players. Coaches could monitor changes in the indirect markers of muscle damage to assess athletes’ recovery status during training and competition.

  20. Vitamin D2 Supplementation Amplifies Eccentric Exercise-Induced Muscle Damage in NASCAR Pit Crew Athletes

    Science.gov (United States)

    Nieman, David C.; Gillitt, Nicholas D.; Shanely, R. Andrew; Dew, Dustin; Meaney, Mary Pat; Luo, Beibei

    2013-01-01

    This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n = 13) and placebo (n = 15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (p creatine phosphokinase 24 h post-exercise, 169%, 32%, p athletes following eccentric exercise. PMID:24362707

  1. Supplementation with a Polyphenol-Rich Extract, TensLess® , Attenuates Delayed Onset Muscle Soreness and Improves Muscle Recovery from Damages After Eccentric Exercise.

    Science.gov (United States)

    Romain, Cindy; Freitas, Tomás T; Martínez-Noguera, Francisco J; Laurent, Caroline; Gaillet, Sylvie; Chung, Linda H; Alcaraz, Pedro E; Cases, Julien

    2017-11-01

    High-intensity exercises are known to provoke delayed onset muscle soreness (DOMS). Delayed onset muscle soreness typically occurs within the first 24 h, peaks between 24 and 72 h, and can last as long as 5-7 days post-exercise. Delayed onset muscle soreness is a multifactorial process involving both mechanical and biochemical components, associated with clinical features that may limit range of motion, and athletes seek for effective recovery strategies to optimize future training sessions. TensLess ® is a food supplement developed to help manage post-exercise recovery. The supplement has been investigated on 13 recreationally active athletes of both sex, during a randomized, double-blind, and crossover clinical investigation, including a 3-week washout period. The clinical investigation was based on the study of TensLess ® effects for DOMS management and on the reduction of associated muscle damages following an eccentric exercise protocol. Supplementation with TensLess ® induced significant decrease in DOMS perception (-33%; p = 0.008) as of the first 24 h; this was significantly correlated with a lowered release of muscle damage-associated biomarkers, namely myoglobin, creatinine, and creatine kinase, for the whole length of the recovery period. Taken together, these positive results clearly indicate that post-exercise supplementation with TensLess ® may preserve myocytes and reduce soreness following eccentric exercise-induced damages, and, accordingly, significantly shorten muscle recovery. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. The value of creatine kinase, estradiol and progesterone levels in early diagnosis of ectopic pregnancies: a prospective controlled study

    Directory of Open Access Journals (Sweden)

    Feride Mimaroğlu

    2010-06-01

    Full Text Available INTRODUCTION: To evaluate the role of serum creatine kinase, progesterone and estradiol as a biochemical marker in the early diagnosis of tubal pregnancy. MATERIAL-METHODS: A prospective controlled study was carried out on 44 women with first trimester pregnancy. First group (n=22 with tubal pregnancy formed the study group and second group (n=22 with normal intrauterine pregnancy was taken as controls. Serum beta hCG, creatine kinase, progesterone and estradiol levels in the two groups were compared. Surgical treatment had choosen as a treatment modality of ectopic pregnancy. RESULTS: The optimal cutoff value of creatine kinase to be used for the prediction of ectopic pregnancy was 45 IU/l, which resulted in a sensitivity of 86%, specificity of 31%, positive predictive value 55 % and negative predictive value 70 %. The same values for estradiol and progesterone were detected >225 pg/ml, 100 %, 68 %, 75%, 100 % and >13 ng/mL, 95 %, 81 %, % 84, % 97 in discriminating ectopic pregnancies. According to AUC levels there was a significant difference between estradiol-creatine kinase levels, progesterone-estradiol levels and progesterone–creatin kinase levels (p values 0.024, 0.0082, and 0.0001, respectively. CONCLUSION: Serum creatine kinase values appear to be a useful marker in the diagnosis of ectopic pregnancy.

  3. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    With sufficient research and clinical trials in future, this could prove to be successful in treatment or management of autism as a neurodevelopmental disorder recently related to PA neurotoxicity. Keywords: Propionic acid, creatine, SH-SY5Y, comet assay, DNA fragmentation assay, apoptosis, neuroprotection. African Journal ...

  4. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players.

    Science.gov (United States)

    Ramírez-Campillo, Rodrigo; González-Jurado, José Antonio; Martínez, Cristian; Nakamura, Fábio Yuzo; Peñailillo, Luis; Meylan, Cesar M P; Caniuqueo, Alexis; Cañas-Jamet, Rodrigo; Moran, Jason; Alonso-Martínez, Alicia M; Izquierdo, Mikel

    2016-08-01

    To investigate the effects of a six-week plyometric training and creatine supplementation intervention on maximal-intensity and endurance performance in female soccer players during in-season training. Randomized, double-blind, placebo-controlled trial. Young (age 22.9±2.5y) female players with similar training load and competitive background were assigned to a plyometric training group receiving placebo (PLACEBO, n=10), a plyometric training group receiving creatine supplementation (CREATINE, n=10) or a control group receiving placebo without following a plyometric program (CONTROL, n=10). Athletes were evaluated for jumping, maximal and repeated sprinting, endurance and change-of-direction speed performance before and after six weeks of training. After intervention the CONTROL group did not change, whereas both plyometric training groups improved jumps (ES=0.25-0.49), sprint (ES=0.35-0.41), repeated sprinting (ES=0.48-0.55), endurance (ES=0.32-0.34) and change-of-direction speed performance (ES=0.46-0.55). However, the CREATINE group improved more in the jumps and repeated sprinting performance tests than the CONTROL and the PLACEBO groups. Adaptations to plyometric training may be enhanced with creatine supplementation. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. The effects of four weeks of creatine supplementation and high-intensity interval training on cardiorespiratory fitness: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Cramer Joel T

    2009-11-01

    Full Text Available Abstract Background High-intensity interval training has been shown to be a time-efficient way to induce physiological adaptations similar to those of traditional endurance training. Creatine supplementation may enhance high-intensity interval training, leading to even greater physiological adaptations. The purpose of this study was to determine the effects of high-intensity interval training (HIIT and creatine supplementation on cardiorespiratory fitness and endurance performance (maximal oxygen consumption (VO2PEAK, time-to-exhaustion (VO2PEAKTTE, ventilatory threshold (VT, and total work done (TWD in college-aged men. Methods Forty-three recreationally active men completed a graded exercise test to determine VO2PEAK, VO2PEAKTTE, and VT. In addition, participants completed a time to exhaustion (TTE ride at 110% of the maximum workload reached during the graded exercise test to determine TWD (TTE (sec × W = J. Following testing, participants were randomly assigned to one of three groups: creatine (creatine citrate (Cr; n = 16, placebo (PL; n = 17, or control (n = 10 groups. The Cr and PL groups completed four weeks of HIIT prior to post-testing. Results Significant improvements in VO2PEAK and VO2PEAKTTE occurred in both training groups. Only the Cr group significantly improved VT (16% vs. 10% improvement in PL. No changes occurred in TWD in any group. Conclusion In conclusion, HIIT is an effective and time-efficient way to improve maximal endurance performance. The addition of Cr improved VT, but did not increase TWD. Therefore, 10 g of Cr per day for five days per week for four weeks does not seem to further augment maximal oxygen consumption, greater than HIIT alone; however, Cr supplementation may improve submaximal exercise performance.

  6. Imprinted polymer-modified hanging mercury drop electrode for differential pulse cathodic stripping voltammetric analysis of creatine.

    Science.gov (United States)

    Lakshmi, Dhana; Sharma, Piyush S; Prasad, Bhim B

    2007-06-15

    The molecularly imprinted polymer [poly(p-aminobenzoicacid-co-1,2-dichloroethane)] film casting was made on the surface of a hanging mercury drop electrode by drop-coating method for the selective and sensitive evaluation of creatine in water, blood serum and pharmaceutical samples. The molecular recognition of creatine by the imprinted polymer was found to be specific via non-covalent (electrostatic) imprinting. The creatine binding could easily be detected by differential pulse, cathodic stripping voltammetric signal at optimised operational conditions: accumulation potential -0.01 V (versus Ag/AgCl), polymer deposition time 15s, template accumulation time 60s, pH 7.1 (supporting electrolyte< or =5 x 10(-4)M NaOH), scan rate 10 mV s(-1), pulse amplitude 25 mV. The modified sensor in the present study was found to be highly reproducible and selective with detection limit 0.11 ng mL(-1) of creatine. Cross-reactivity studies revealed no response to the addition of urea, creatinine and phenylalanine; however, some insignificant magnitude of current was observed for tryptophan and histidine in the test samples.

  7. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of creatine supplementation on exercise performance and muscular strength in amyotrophic lateral sclerosis: preliminary results.

    Science.gov (United States)

    Mazzini, L; Balzarini, C; Colombo, R; Mora, G; Pastore, I; De Ambrogio, R; Caligari, M

    2001-10-15

    Creatine supplementation in humans has been reported to enhance power and strength both in normal subjects and in patients with various neuromuscular diseases. The purpose of this study was to examine the effects of supplementation on exercise performance and maximal voluntary isometric muscular contraction (MVIC) in Amyotrophic Lateral Sclerosis (ALS) patients. We report the results obtained in 28 patients with probable/definite ALS. In each patient we acquired the dynamometric measurement of MVIC in 10 muscle groups of upper and lower limbs and a measure of fatigue by means of an high-intensity intermittent protocol in elbow flexors and knee extensors muscles. All patients completed the protocols at the baseline and after supplementation of 20 g per day for 7 days and after supplementation of 3 g per day for 3 and 6 months. MVIC increased after 7 days of supplementation in 20 patients (70%) in knee extensors and in 15 (53%) of them also in elbow flexors. A statistically significant difference between pre and post-treatment mean values of MVIC was found both in elbow flexors (P<0.05) and knee extensors (p<0.04). The analysis of the slopes of fatigue test showed a statistically significant improvement after 7 days of supplementation in 11 patients (39%) in elbow flexors and in 9 patients (32%) also in knee extensors muscles. During the 6-month follow-up period all the examined parameters showed a linear progressive decline. In conclusion, our preliminary results have demonstrated that supplementation temporary increases maximal isometric power in ALS patients so it may be of potential benefit in situations such as high intensity activity and it can be proposed as a symptomatic treatment.

  9. Folic Acid and Creatine as Therapeutic Approaches to Lower Blood Arsenic: A Randomized Controlled Trial.

    Science.gov (United States)

    Peters, Brandilyn A; Hall, Megan N; Liu, Xinhua; Parvez, Faruque; Sanchez, Tiffany R; van Geen, Alexander; Mey, Jacob L; Siddique, Abu B; Shahriar, Hasan; Uddin, Mohammad Nasir; Islam, Tariqul; Balac, Olgica; Ilievski, Vesna; Factor-Litvak, Pam; Graziano, Joseph H; Gamble, Mary V

    2015-12-01

    The World Health Organization estimates that > 140 million people worldwide are exposed to arsenic (As)-contaminated drinking water. As undergoes biologic methylation, which facilitates renal As elimination. In folate-deficient individuals, this process is augmented by folic acid (FA) supplementation, thereby lowering blood As (bAs). Creatinine concentrations in urine are a robust predictor of As methylation patterns. Although the reasons for this are unclear, creatine synthesis is a major consumer of methyl donors, and this synthesis is down-regulated by dietary/supplemental creatine. Our aim was to determine whether 400 or 800 μg FA and/or creatine supplementation lowers bAs in an As-exposed Bangladeshi population. We conducted a clinical trial in which 622 participants were randomized to receive 400 μg FA, 800 μg FA, 3 g creatine, 3 g creatine+400 μg FA, or placebo daily. All participants received an As-removal filter on enrollment, and were followed for 24 weeks. After the 12th week, half of the two FA groups were switched to placebo to evaluate post-treatment bAs patterns. Linear models with repeated measures indicated that the decline in ln(bAs) from baseline in the 800-μg FA group exceeded that of the placebo group (weeks 1-12: β= -0.09, 95% CI: -0.18, -0.01; weeks 13-24: FA continued: β= -0.12, 95% CI: -0.24, -0.00; FA switched to placebo: β= -0.14, 95% CI: -0.26, -0.02). There was no rebound in bAs related to cessation of FA supplementation. Declines in bAs observed in the remaining treatment arms were not significantly different from those of the placebo group. In this mixed folate-deficient/replete study population, 12- and 24-week treatment with 800 μg (but not 400 μg) FA lowered bAs to a greater extent than placebo; this was sustained 12 weeks after FA cessation. In future studies, we will evaluate whether FA and/or creatine altered As methylation profiles.

  10. Characteristic MR image finding of squatting exercise-induced rhabdomyolysis of the thigh muscles.

    Science.gov (United States)

    Yeon, Eung K; Ryu, Kyung N; Kang, Hye J; Yoon, So H; Park, So Y; Park, Ji S; Jin, Wook

    2017-04-01

    To describe the characteristic MRI appearance of squatting-induced rhabdomyolysis involving the thigh muscles. This study consisted of 10 cases obtained at 3 institutions from 2005 to 2015. A retrospective review was performed to obtain clinical information and MR scans for rhabdomyolysis of the thigh muscles. MRI was analyzed according to the distribution and degree of muscle involvement; the degree was assessed and graded as normal, mild or prominent. The mean patient age was 20.2 years (range, 15-24 years), and 7 of the 10 patients were male. All patients had history of excessive squatting action, suffered clinically from bilateral thigh pain and were confirmed to have rhabdomyolysis through analysis of serum creatine kinase (CK) levels. All of the patients (10/10) exhibited diffuse mild to prominent degree involvement of the anterior thigh muscles according to fluid-sensitive MR sequences. Among the anterior thigh muscles, the rectus femoris was spared in 8 patients (8/10) and mild degree involved in 2 patients (2/10). Thus, no cases exhibited prominent degree involvement of the rectus femoris muscle. Preservation of the rectus femoris muscle on MRI in squatting-induced rhabdomyolysis may be useful for differentiating rhabdomyolysis from other aetiologies. Advances in knowledge: Preservation of rectus femoris on MRI is distinguishable finding in squatting-induced rhabdomyolysis and reflects the functional anatomy of anterior thigh muscles.

  11. Periodontal status and serum creatine kinase levels among young ...

    African Journals Online (AJOL)

    2015-12-02

    Dec 2, 2015 ... Key words: Periodontal disease, serum creatine kinase, soccer players ... has also been reported that poor oral health status influences the quality of life of an individual ..... A short‑term longitudinal randomized case‑control study. Clin Oral ... crevicular fluid from chronic periodontitis patients before and after.

  12. Gait analysis, bone and muscle density assessment for patients undergoing total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Benedikt Magnússon

    2012-12-01

    Full Text Available Total hip arthroplasty (THA is performed with or without the use of bone cement. Facing the lack of reliable clinical guidelines on decision making whether a patient should receive THA with or without bone cement, a joint clinical and engineering approach is proposed here with the objective to assess patient recovery developing monitoring techniques based on gait analysis, measurements of bone mineral density and structural and functional changes of quadriceps muscles. A clinical trial was conducted with 36 volunteer patients that were undergoing THA surgery for the first time: 18 receiving cemented implant and 18 receiving non-cemented implant. The patients are scanned with Computer Tomographic (CT modality prior-, immediately- and 12 months post-surgery. The CT data are further processed to segment muscles and bones for calculating bone mineral density (BMD. Quadriceps muscle density Hounsfield (HU based value is calculated from the segmented file on healthy and operated leg before and after THA surgery. Furthermore clinical assessment is performed using gait analysis technologies such as a sensing carpet, wireless electrodes and video. Patients undergo these measurements prior-, 6 weeks post - and 52 weeks post-surgery. The preliminary results indicate computational tools and methods that are able to quantitatively analyze patient’s condition pre and post-surgery: The spatial parameters such as step length and stride length increase 6 weeks post op in the patient group receiving cemented implant while the angle in the toe in/out parameter decrease in both patient groups.

  13. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility.

    NARCIS (Netherlands)

    Jost, C.R.; Zee, C.E.E.M. van der; Zandt, H.J.A. in t; Oerlemans, F.T.J.J.; Verheij, M.M.M.; Streijger, F.; Fransen, J.A.M.; Deursen, J.; Heerschap, A.; Cools, A.R.; Wieringa, B.

    2002-01-01

    Creatine kinases are important in maintaining cellular-energy homeostasis, and neuroprotective effects have been attributed to the administration of creatine and creatine-like compounds. Herein we examine whether ablation of the cytosolic brain-type creatine kinase (B-CK) in mice has detrimental

  14. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility

    NARCIS (Netherlands)

    Jost, C.R.; Zee, C.E.E.M. van der; Zandt, H.J.A. in t; Oerlemans, F.T.J.J.; Verheij, M.M.M.; Streijger, F.; Fransen, J.A.M.; Heerschap, A.; Cools, A.R.; Wieringa, B.

    2002-01-01

    Creatine kinases are important in maintaining cellular-energy homeostasis, and neuroprotective effects have been attributed to the administration of creatine and creatine-like compounds. Herein we examine whether ablation of the cytosolic brain-type creatine kinase (B-CK) in mice has detrimental

  15. Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy.

    Science.gov (United States)

    Hu, Jun; Kong, Min; Ye, Yuanzhen; Hong, Siqi; Cheng, Li; Jiang, Li

    2014-06-01

    Creatine kinase has been utilized as a diagnostic marker for Duchenne muscular dystrophy (DMD), but it correlates less well with the DMD pathological progression. In this study, we hypothesized that muscle-specific microRNAs (miR-1, -133, and -206) in serum may be useful for monitoring the DMD pathological progression, and explored the possibility of these miRNAs as potential non-invasive biomarkers for the disease. By using real-time quantitative reverse transcription-polymerase chain reaction in a randomized and controlled trial, we detected that miR-1, -133, and -206 were significantly over-expressed in the serum of 39 children with DMD (up to 3.20 ± 1.20, 2(-ΔΔCt) ): almost 2- to 4-fold enriched in comparison to samples from the healthy controls (less than 1.15 ± 0.34, 2(-ΔΔCt) ). To determine whether these miRNAs were related to the clinical features of children with DMD, we analyzed the associations compared to creatine kinase. There were very good inverse correlations between the levels of these miRNAs, especially miR-206, and functional performances: high levels corresponded to low muscle strength, muscle function, and quality of life. Moreover, by receiver operating characteristic curves analyses, we revealed that these miRNAs, especially miR-206, were able to discriminate DMD from controls. Thus, miR-206 and other muscle-specific miRNAs in serum are useful for monitoring the DMD pathological progression, and hence as potential non-invasive biomarkers for the disease. There has been a long-standing need for reliable, non-invasive biomarkers for Duchenne muscular dystrophy (DMD). We found that the levels of muscle-specific microRNAs, especially miR-206, in the serum of DMD were 2- to 4-fold higher than in the controls. High levels corresponded to low muscle strength, muscle function, and quality of life (QoL). These miRNAs were able to discriminate DMD from controls by receiver operating characteristic (ROC) curves analyses. Thus, miR-206 and other

  16. Neuroprotective effect of creatine against propionic acid toxicity in ...

    African Journals Online (AJOL)

    edoja

    2013-07-31

    Jul 31, 2013 ... Full Length Research Paper. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afaf El-Ansary*, Ghada Abu-Shmais and Abeer Al-Dbass. Biochemistry Department, College of Science, King Saud University, P.O. Box 22452, Zip code 11495, Riyadh, ...

  17. Efficacy of Rhus coriaria (sumac) juice in reducing muscle pain during aerobic exercise.

    Science.gov (United States)

    Alghadir, A H; Gabr, S A

    2016-06-01

    The main target of this study was to measure the influence of sumac juice drink on muscle indices and pain during an acute, intense exercise for 30 days. Forty healthy volunteers (15-25 years) were involved in aerobic exercise program for 4 weeks. Participants ingested sumac juice or placebo drink twice daily for 30 days. All participants were subjected for the evaluation of pain and estimation of serum: creatine kinase (CK), lactic acid dehydrogenase (LDH), troponin I, hydroxyproline (hyp), total antioxidant capacity (TAC), and in vitro antioxidant activity of sumac juice using pre-validated visual analog scale, colorimetric and immunoassays. The participants of both groups, placebo and sumac, showed an increment in pain scores both during exercise and post-exercise intervals. However, the sumac juice group showed a significant smaller increase in the pain scores compared to the placebo group. Participants in the sumac juice group were more willing to use the drink in the future. They achieved a higher satisfaction of sumac juice in ameliorating and the reduction of pain. Also, the sumac group showed a significant enhancement in the level of CK, LDH, troponin I, hyp, along with significant increase in serum (TAC) compared to the placebo group. The protective activity of muscle may relate to the antioxidant activity of phenolic component(s) in sumac juice as measured by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging (87.9%) and β-carotene-linoleic acid (68.7%) assays. These data suggest that oral administration of sumac juice may have a beneficial effect on muscle performance among athletes.

  18. Myositis, Ganglioneuritis, and Myocarditis with Distinct Perifascicular Muscle Atrophy in a 2-Year-Old Male Boxer

    Directory of Open Access Journals (Sweden)

    Paul M. Rossman

    2018-02-01

    Full Text Available A 2-year-old male, intact Boxer was referred for chronic diarrhea, hyporexia, labored breathing, weakness and elevated creatine kinase, and alanine aminotransferase activities. Initial examination and diagnostics revealed a peripheral nervous system neurolocalization, atrial premature complexes, and generalized megaesophagus. Progressive worsening of the dog’s condition was noted after 36 h; the dog developed aspiration pneumonia, was febrile and oxygen dependent. The owners elected humane euthanasia. Immediately postmortem biopsies of the left cranial tibial and triceps muscles and the left peroneal nerve were obtained. Postmortem histology revealed concurrent myositis, myocarditis, endocarditis, and ganglioneuritis. Mixed mononuclear cell infiltrations and a distinct perifascicular pattern of muscle fiber atrophy was present in both muscles. This is a novel case of diffuse inflammatory myopathy with a distinct perifascicular pattern of atrophy in addition to endocarditis, myocarditis, and epicarditis.

  19. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  20. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine

    Science.gov (United States)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  1. Effects of a High Protein and Omega-3-Enriched Diet with or Without Creatine Supplementation on Markers of Soreness and Inflammation During 5 Consecutive Days of High Volume Resistance Exercise in Females

    Directory of Open Access Journals (Sweden)

    Sara Hayward, Colin D. Wilborn, Lem W. Taylor, Stacie L. Urbina, Jordan J. Outlaw, Cliffa A. Foster, Michael D. Roberts

    2016-12-01

    Full Text Available We examined if two different dietary interventions affected markers of soreness and inflammation over a 5-day high-volume resistance training protocol in females that resistance-trained 8 weeks prior. Twenty-eight females (age: 20 ± 1 yr; body mass: 63.5 ± 1.6 kg, height: 1.67 ± 0.01 m completed 4 weeks of pre-training (weeks 1-4 followed by a subsequent 4-week training period along with a dietary intervention (weeks 5-8. Dietary interventions from weeks 5-8 included: a no intervention (CTL, n = 10 b a higher-protein diet supplemented with hydrolyzed whey protein (50 g/d and omega-3 fatty acids (900 mg/d (DI, n = 8, and c the DI condition as well as creatine monohydrate (5 g/d (DI+C, n = 10. During week 9, participants resistance-trained for five consecutive days whereby 8 sets of 10 target repetitions at 70% one repetition maximum (1RM were performed each day for bench press, back squat, deadlift, and hip-thrusters with the intent of eliciting muscle soreness and inflammation. Prior to and 24 h following each of the 5 bouts muscle soreness (DOMS was assessed via questionnaire, and fasting blood was obtained and analyzed for serum cortisol, interleukin-6 (IL-6 and C-reactive protein (CRP. No group*time (G*T or time effects were observed for training volume over the 5-d overreaching protocol. Furthermore, no group*time (G*T or time effects were observed for serum cortisol, IL-6 or CRP, and DOMS actually decreased in all groups 24 h following the fifth day training bout. This study demonstrates that, regardless of protein, omega-3 fatty acid and/or creatine supplementation, 5 days of consecutive resistance training does not alter perceived muscle soreness, training volume, and/or markers of inflammation in novice resistance-trained females.

  2. Insulin resistance and increased muscle cytokine levels in patients with mitochondrial myopathy.

    Science.gov (United States)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-10-01

    Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. This was an experimental, controlled study in outpatients. Eight overnight-fasted patients (P) with various inherited mitochondrial myopathies and eight healthy subjects (C) matched for sex, age, weight, height, and physical activity participated in the study. The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. Glucose infusion rate during 90-120 minutes of insulin infusion was measured. Cytokine concentrations in dialysate were also measured. Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P fatty acids and glycerol at 120 minutes were higher in P vs C (2P myopathies, insulin sensitivity of muscle, adipose tissue, and pancreatic A cells is reduced, supporting that mitochondrial function influences insulin action. Furthermore, a local, low-grade inflammation of potential clinical importance exists in the muscle of these patients.

  3. Radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer

    International Nuclear Information System (INIS)

    Quemeneur, E.; Eichenberger, D.; Goldschmidt, D.; Vial, C.; Beauregard, G.; Potier, M.

    1988-01-01

    Lyophilized suspensions of rabbit heart mitochondria have been irradiated with varying doses of gamma rays. Mitochondrial creatine kinase activity was inactivated exponentially with a radiation inactivation size of 352 or 377 kDa depending upon the initial medium. These values are in good agreement with the molecular mass previously deduced from by permeation experiments: 357 kDa. This is the first direct evidence showing that the native form of mitochondrial creatine kinase is associated to the inner membrane as an oligomer, very likely an octamer

  4. The Impact of Soccer Match Play on the Muscle Damage Response in Youth Female Athletes.

    Science.gov (United States)

    Hughes, Jonathan D; Denton, Katrina; S Lloyd, Rhodri; Oliver, Jon L; De Ste Croix, Mark

    2018-05-01

    Post-match assessment of creatine kinase (CK) activity and delayed-onset muscle soreness (DOMS) are common markers of exercise-induced muscle damage and recovery status in soccer players. These responses have not been examined in youth female players. This study examined the effect of competitive match play on CK activity and DOMS in elite youth players. Thirty-four elite female players, divided into three chronological age groups (U13, n=11; U15, n=10; U17 n=12). Players completed baseline testing for CK and DOMS that was repeated immediately (for DOMS), 80, 128 and 168 h post-competitive match play for CK. Significant time effects were reported for CK (P=0.006) and DOMS (Pathletes. Therefore, monitoring strategies to assess muscle damage between training and match play should be considered to track recovery and potentially reduce muscular injury risk. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Interpretation of acid α-glucosidase activity in creatine kinase elevation: A case of Becker muscular dystrophy.

    Science.gov (United States)

    Oitani, Yoshiki; Ishiyama, Akihiko; Kosuga, Motomichi; Iwasawa, Kentaro; Ogata, Ayako; Tanaka, Fumiko; Takeshita, Eri; Shimizu-Motohashi, Yuko; Komaki, Hirofumi; Nishino, Ichizo; Okuyama, Torayuki; Sasaki, Masayuki

    2018-05-16

    Diagnosis of Pompe disease is sometimes challenging because it exhibits clinical similarities to muscular dystrophy. We describe a case of Becker muscular dystrophy (BMD) with a remarkable reduction in activity of the acid α-glucosidase (GAA) enzyme, caused by a combination of pathogenic mutation and polymorphism variants resulting in pseudodeficiency in GAA. The three-year-old boy demonstrated asymptomatic creatine kinase elevation. Neither exon deletion nor duplication was detected on multiplex ligation-dependent probe amplification (MLPA) of DMD. GAA enzyme activity in both dried blood spots and lymphocytes was low, at 11.7% and 7.7% of normal, respectively. However, genetic analysis of GAA detected only heterozygosity for a nonsense mutation (c.118C > T, p.Arg40 ∗ ). Muscle pathology showed no glycogen deposits and no high acid phosphatase activity. Hematoxylin-eosin staining detected scattered regenerating fibers; the fibers were faint and patchy on immunochemistry staining of dystrophin. The amount of dystrophin protein was reduced to 11.8% of normal, on Western blotting analysis. Direct sequencing analysis of DMD revealed hemizygosity for a nonsense mutation (c.72G > A, p.Trp24 ∗ ). The boy was diagnosed with BMD, despite remarkable reduction in GAA activity; further, he demonstrated heterozygosity for [p.Gly576Ser; p.Glu689Lys] polymorphism variants that indicated pseudodeficiency on another allele in GAA. Pseudodeficiency alleles are detected in approximately 4% of the Asian population; these demonstrate low activity of acid α-glucosidase (GAA), similar to levels found in Pompe disease. Clinicians should be careful in their interpretations of pseudodeficiency alleles that complicate diagnosis in cases of elevated creatine kinase. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Serum measurement of muscle and oxidative damage in soccer players after a game

    Directory of Open Access Journals (Sweden)

    Cleber Aurino de Pinho

    2010-06-01

    Full Text Available Futsal is a sport that requires sudden acceleration and deceleration with abruptchanges in direction. The marked impacts experienced by futsal players lead to muscle andoxidative damage. The objective of this study was to evaluate the serum levels of markers ofmuscle and oxidative damage in futsal players after a game. Six players with a mean age of 21.2± 0.98 years, weight of 67.1 ± 5.5 kg and height of 171.0 ± 0.07 cm participated in this study.Measurements were obtained 30 minutes before game 1 (pre-game, immediately after game 1(post-game 1, and immediately after a second game (post-game 2, which was performed 24hours after game 1. Serum was collected for the evaluation of creatine kinase and of damageto proteins and lipids. Creatine kinase concentrations, lipid peroxidation (xylenol and proteincarbonylation were significantly higher after games 1 and 2 when compared to pre-game values.Sulfhydryl levels were lower after the end of games 1 and 2 compared to pre-game values. Nodifference in any of the parameters analyzed was observed between post-game 1 and post-game2. Taken together, the results demonstrate that a futsal match provokes muscle and oxidativedamage. Surprisingly, no increase in the parameters studied was observed after game 2. In viewof the limited knowledge about the time of recovery after a futsal match, this study may provideimportant information to professionals working with this sport.

  7. Effect of aqueous extract of saffron (crocus sativus L.) against gamma radiation-induced skeletal muscles damage in rats

    International Nuclear Information System (INIS)

    El-Tahawy, N.A; Said, U.Z

    2010-01-01

    Muscular strength is important in sport as well as in daily activities. Reactive oxygen species (ROS) and oxidative damage are the most important factors in radiation-induced acute damage to muscle tissue. Saffron, obtained from dried stigmas of Crocus sativus L. (Iridaceae), is a highly valued spice, commonly used in flavouring and food colouring in different parts of the world and is known to possess the richest source of carotenoids. The present study was designed to investigate the efficacy of an aqueous extract of saffron to protect against radiation-induced oxidative damage in rat's skeletal muscle. Saffron was supplemented orally, via gavages to rats at a dose of 80 mg/ kg body wt/ day for 2 week pre- and 1 week post-exposure to 5 Gy (one shot dose) of whole body gamma-irradiation. Animals were sacrificed 1, 2 and 3 weeks post radiation exposure. The results revealed that whole body gamma-irradiation of rats induce oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances associated with significant decreases in superoxide dismutase and catalase activities. Also, radiation-induces skeletal muscles damage evidenced by significant decreases in the level of pyruvic acid, creatine phosphokinase, glutamate dehydrogenase and glucose-6-phosphate dehydrogenase activities as well as significant increases in lactic acid, total iron, and copper and calcium levels. Saffron treated-irradiated rats showed significantly less severe damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that saffron by attenuating radiation-induced oxidative stress might play a role in maintaining skeletal muscle integrity.

  8. THE CHANGE OF TOTAL PROTEIN FRACTION OF MUSCLE TISSUE OF PORK WITH BIO- AND PHYSICO-CHEMICAL SPECIFIC IN THE PROCESS OF COOKING AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    O. Shalimova

    2012-03-01

    Full Text Available The character of changes in total protein fraction of muscle tissue of pork with PSE defects in the process of cooking at temperatures ranging from 40 to 72 g.C in steps of 2 g.C is investigated. Our studies have revealed differences in the change of state the total fraction of muscle proteins with defects PSE pork during cooking.

  9. Fast and slow myosins as markers of muscle injury.

    Science.gov (United States)

    Guerrero, M; Guiu-Comadevall, M; Cadefau, J A; Parra, J; Balius, R; Estruch, A; Rodas, G; Bedini, J L; Cussó, R

    2008-07-01

    The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making.

  10. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    Directory of Open Access Journals (Sweden)

    Mauricio Peña Cunha

    2014-10-01

    Full Text Available Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr. This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K, protein kinase B (Akt, and glycogen synthase kinase-3β (GSK3β was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473 and GSK3β (Serine9. Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons.

  11. Both Creatine and Its Product Phosphocreatine Reduce Oxidative Stress and Afford Neuroprotection in an In Vitro Parkinson’s Model

    Science.gov (United States)

    Martín-de-Saavedra, Maria D.; Romero, Alejandro; Egea, Javier; Ludka, Fabiana K.; Tasca, Carla I.; Farina, Marcelo; Rodrigues, Ana Lúcia S.; López, Manuela G.

    2014-01-01

    Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons. PMID:25424428

  12. Diagnostic value of creatine kinase activity in canine cerebrospinal fluid.

    Science.gov (United States)

    Ferreira, Alexandra

    2016-10-01

    This study aimed to determine whether creatine kinase (CK) activity in cerebrospinal fluid (CSF) has diagnostic value for various groups of neurological conditions or for different anatomical areas of the nervous system (NS). The age, breed, results of CSF analysis, and diagnosis of 578 canine patients presenting with various neurological conditions between January 2009 and February 2015 were retrospectively collected. The cases were divided according to anatomical areas of the nervous system, i.e., brain, spinal cord, and peripheral nervous system, and into groups according to the nature of the condition diagnosed: vascular, immune/inflammatory/infectious, traumatic, toxic, anomalous, metabolic, idiopathic, neoplastic, and degenerative. Statistical analysis showed that CSF-CK alone cannot be used as a diagnostic tool and that total proteins in the CSF and red blood cells (RBCs) do not have a significant relationship with the CSF-CK activity. CSF-CK did not have a diagnostic value for different disease groups or anatomical areas of the nervous system.

  13. Effects of combined creatine and sodium bicarbonate supplementation on repeated sprint performance in trained men.

    Science.gov (United States)

    Barber, James J; McDermott, Ann Y; McGaughey, Karen J; Olmstead, Jennifer D; Hagobian, Todd A

    2013-01-01

    Creatine and sodium bicarbonate supplementation independently increase exercise performance, but it remains unclear whether combining these 2 supplements is more beneficial on exercise performance. The purpose of this study was to evaluate the impact of combining creatine monohydrate and sodium bicarbonate supplementation on exercise performance. Thirteen healthy, trained men (21.1 ± 0.6 years, 23.5 ± 0.5 kg·m(-2), 66.7 ± 5.7 ml·(kg·m)(-1) completed 3 conditions in a double-blinded, crossover fashion: (a) Placebo (Pl; 20 g maltodextrin + 0.5 g·kg(-1) maltodextrin), (b) Creatine (Cr; 20 g + 0.5 g·kg(-1) maltodextrin), and (c) Creatine plus sodium bicarbonate (Cr + Sb; 20 g + 0.5 g·kg(-1) sodium bicarbonate). Each condition consisted of supplementation for 2 days followed by a 3-week washout. Peak power, mean power, relative peak power, and bicarbonate concentrations were assessed during six 10-second repeated Wingate sprint tests on a cycle ergometer with a 60-second rest period between each sprint. Compared with Pl, relative peak power was significantly higher in Cr (4%) and Cr + Sb (7%). Relative peak power was significantly lower in sprints 4-6, compared with that in sprint 1, in both Pl and Cr. However, in Cr + Sb, sprint 6 was the only sprint significantly lower compared with sprint 1. Pre-Wingate bicarbonate concentrations were significantly higher in Cr + Sb (10%), compared with in Pl and Cr, and mean concentrations remained higher after sprint 6, although not significantly. Combining creatine and sodium bicarbonate supplementation increased peak and mean power and had the greatest attenuation of decline in relative peak power over the 6 repeated sprints. These data suggest that combining these 2 supplements may be advantageous for athletes participating in high-intensity, intermittent exercise.

  14. Serum creatine kinase elevations in ultramarathon runners at high altitude.

    Science.gov (United States)

    Magrini, Danielle; Khodaee, Morteza; San-Millán, Iñigo; Hew-Butler, Tamara; Provance, Aaron J

    2017-05-01

    Creatine kinase (CK) is a sensitive enzyme marker for muscle damage in athletes. Elevated CK levels have been reported in many endurance physical activities. The consequence and possible long-term sequela of the CK elevation in athletes is unknown. There is a paucity of literature stating actual numerical values of CK associated with competing in an ultramarathon with extreme environmental conditions. Our hypothesis was that the serum CK levels increase significantly as a result of running a 161 km ultramarathon at high altitude. This was a prospective observational study of participants of the Leadville 100 ultramarathon race in Leadville, Colorado at high altitude (2800-3840 m) in August 2014. We collected blood samples from sixty-four volunteer runners before and eighty-three runners immediately after the race. Out of 669 athletes who started the race, 352 successfully completed the race in less than the 30-hour cut-off time (52%). The majority of runners were male (84%). We were able to collect both pre- and post-race blood samples from 36 runners. Out of these 36 runners, the mean pre-race CK was increased from 126 ± 64 U/L to 14,569 ± 14,729 U/L (p athletes' age, BMI, or finishing time. Significant elevation of CK level occurs as a result of running ultramarathons. The majority of athletes with significantly elevated CK levels were asymptomatic and required no major medical attention.

  15. The effects of beta alanine plus creatine administration on performance during repeated bouts of supramaximal exercise in sedentary men.

    Science.gov (United States)

    Okudan, N; Belviranli, M; Pepe, H; Gökbel, H

    2015-11-01

    The aim of this study was to investigate the effects of beta alanine and/or creatine supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. Forty-four untrained healthy men (aged 20-22 years, weight: 68-72 kg, height: 174-178 cm) participated in the present study. After performing the Wingate Test (WAnT) for three times in the baseline exercise session, the subjects were assigned to one of four treatment groups randomly: 1) placebo (P; 10 g maltodextrose); 2) creatine (Cr; 5 g creatine plus 5 g maltodextrose); 3) beta-alanine (β-ALA; 1,6 g beta alanine plus 8,4 g maltodextrose); and 4) beta-alanine plus creatine (β-ALA+Cr; 1,6 g beta alanine plus 5 g creatine plus 3,4 g maltodextrose). Participants were given the supplements orally twice a day for 22 consecutive days, then four times a day for the following 6 days. After 28 days, the second exercise session was applied during which peak power (PP) and mean power (MP) were measured and fatigue index (FI) was calculated. PP and MP decreased and FI increased in all groups during exercise before and after the treatment. During the postsupplementation session PP2 and PP3 increased in creatine supplemented group (from 642.7±148.6 to 825.1±205.2 in PP2 and from 522.9±117.5 to 683.0±148.0 in PP3, respectively). However, MP increased in β-ALA+Cr during the postsupplementation compared to presupplementation in all exercise sessions (from 586.2±55.4 to 620.6±49.6 in MP1, from 418.1±37.2 to 478.3±30.3 in MP2 and from 362.0±41.3 to 399.1±3 in MP3, respectively). FI did not change with beta alanine and beta alanine plus creatine supplementation during the postsupplementation exercise session. Beta-alanine and beta alanine plus creatine supplementations have strong performance enhancing effect by increasing mean power and delaying fatigue Index during the repeated WAnT.

  16. Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions with Muscle Activation During Side Impacts.

    Science.gov (United States)

    Iwamoto, Masami; Nakahira, Yuko

    2015-11-01

    Accurate prediction of occupant head kinematics is critical for better understanding of head/face injury mechanisms in side impacts, especially far-side occupants. In light of the fact that researchers have demonstrated that muscle activations, especially in neck muscles, can affect occupant head kinematics, a human body finite element (FE) model that considers muscle activation is useful for predicting occupant head kinematics in real-world automotive accidents. In this study, we developed a human body FE model called the THUMS (Total HUman Model for Safety) Version 5 that contains 262 one-dimensional (1D) Hill-type muscle models over the entire body. The THUMS was validated against 36 series of PMHS (Post Mortem Human Surrogate) and volunteer test data in this study, and 16 series of PMHS and volunteer test data on side impacts are presented. Validation results with force-time curves were also evaluated quantitatively using the CORA (CORrelation and Analysis) method. The validation results suggest that the THUMS has good biofidelity in the responses of the regional or full body for side impacts, but relatively poor biofidelity in its local level of responses such as brain displacements. Occupant kinematics predicted by the THUMS with a muscle controller using 22 PID (Proportional-Integral- Derivative) controllers were compared with those of volunteer test data on low-speed lateral impacts. The THUMS with muscle controller reproduced the head kinematics of the volunteer data more accurately than that without muscle activation, although further studies on validation of torso kinematics are needed for more accurate predictions of occupant head kinematics.

  17. Blood and muscle metabolic responses to draught work of varying intensity and duration in horses.

    Science.gov (United States)

    Gottlieb, M; Essén-Gustavsson, B; Skoglund-Wallberg, H

    1989-07-01

    Three standardbred trotters performed treadmill exercise at a velocity of 2 m s-1 with a draught load of both 34 kiloponds (kp) (test 1) and 80 kp (test 2), and also at 7 m s-1 with 34 kp (test 3). The heart rate increased to average values of 111 (+/- 5), 157 (+/- 10) and 197 (+/- 7) beats min-1 in tests 1, 2, and 3, respectively. Plasma free fatty acids increased only during tests 1 and 2. Blood lactate and muscle glucose-6-phosphate and lactate concentrations were low after tests 1 and 2, but high after test 3, where also muscle glycogen utilisation was greatest. Muscle creatine phosphate and adenosine triphosphate concentrations decreased after test 3 only. The study indicates that oxidative metabolism is most important for energy supply in muscles when exercise is performed with draught loads of both 34 and 80 kp at a low velocity. Glycogenolysis with lactate accumulation and phosphagen breakdown becomes much more important when, with a draught load of 34 kp, the velocity of exercise increases.

  18. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  19. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    Science.gov (United States)

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  20. Pulsed ultrasound therapy accelerates the recovery of skeletal muscle damage induced by Bothrops jararacussu venom

    Directory of Open Access Journals (Sweden)

    J. Saturnino-Oliveira

    2012-06-01

    Full Text Available We studied the effect of pulsed ultrasound therapy (UST and antibothropic polyvalent antivenom (PAV on the regeneration of mouse extensor digitorum longus muscle following damage by Bothrops jararacussu venom. Animals (Swiss male and female mice weighing 25.0 ± 5.0 g; 5 animals per group received a perimuscular injection of venom (1 mg/kg and treatment with UST was started 1 h later (1 min/day, 3 MHz, 0.3 W/cm², pulsed mode. Three and 28 days after injection, muscles were dissected and processed for light microscopy. The venom caused complete degeneration of muscle fibers. UST alone and combined with PAV (1.0 mL/kg partially protected these fibers, whereas muscles receiving no treatment showed disorganized fascicules and fibers with reduced diameter. Treatment with UST and PAV decreased the effects of the venom on creatine kinase content and motor activity (approximately 75 and 48%, respectively. Sonication of the venom solution immediately before application decreased the in vivo and ex vivo myotoxic activities (approximately 60 and 50%, respectively. The present data show that UST counteracts some effects of B. jararacussu venom, causing structural and functional improvement of the regenerated muscle after venom injury.