WorldWideScience

Sample records for muscle protein analysis

  1. Molecular analysis of the muscle protein projectin in Lepidoptera.

    Science.gov (United States)

    Ayme-Southgate, A J; Turner, L; Southgate, R J

    2013-01-01

    Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed.

  2. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  3. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    Science.gov (United States)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  4. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  5. [Ontogenetic and phylogenetic analysis of myosin light chain proteins from skeletal muscles of loach Misgurnus fossilis].

    Science.gov (United States)

    Miuge, N S; Tikhonov, A V; Ozerniuk, N D

    2005-01-01

    mRNAs of all three types of myosin light chain proteins are expressed in skeletal muscles of both larval and adult stages of loach Misgurnus fossilis (Cobitidae) and these proteins are encoded by different genes (mlc1, mlc2, and mlc3). No difference was revealed between transcripts from larval stage and adult fish for all three mlc proteins. Our approach (RT-PCR with fish-specific mlc1, mlc2, and mlc3 primers) failed to reveal the larval form of myosin light chain protein found previously by protein electrophoresis of loach fry muscle extract. Comparative analysis of the protein structure shows high homology of MLC1 and MLC3 proteins sharing a large EF-hand calcium-binding domain. Phylogenetic analysis of MLC1 from skeletal muscles of fish and other vertebrate species is concordant with the traditional phylogeny of the group. Within the Teleostei, loach MLC1 had the highest homology with other Cyprinidae, and least with Salmonidae fishes.

  6. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue.

    Science.gov (United States)

    Koob, A O; Bruns, L; Prassler, C; Masliah, E; Klopstock, T; Bender, A

    2012-06-15

    Comparing protein levels from single cells in tissue has not been achieved through Western blot. Laser capture microdissection allows for the ability to excise single cells from sectioned tissue and compile an aggregate of cells in lysis buffer. In this study we analyzed proteins from cells excised individually from brain and muscle tissue through Western blot. After we excised individual neurons from the substantia nigra of the brain, the accumulated surface area of the individual cells was 120,000, 24,000, 360,000, 480,000, 600,000 μm2. We used an optimized Western blot protocol to probe for tyrosine hydroxylase in this cell pool. We also took 360,000 μm2 of astrocytes (1700 cells) and analyzed the specificity of the method. In muscle we were able to analyze the proteins of the five complexes of the electron transport chain through Western blot from 200 human cells. With this method, we demonstrate the ability to compare cell-specific protein levels in the brain and muscle and describe for the first time how to visualize proteins through Western blot from cells captured individually. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Identification of an FHL1 protein complex containing gamma-actin and non-muscle myosin IIB by analysis of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lili Wang

    Full Text Available FHL1 is multifunctional and serves as a modular protein binding interface to mediate protein-protein interactions. In skeletal muscle, FHL1 is involved in sarcomere assembly, differentiation, growth, and biomechanical stress. Muscle abnormalities may play a major role in congenital clubfoot (CCF deformity during fetal development. Thus, identifying the interactions of FHL1 could provide important new insights into its functional role in both skeletal muscle development and CCF pathogenesis. Using proteins derived from rat L6GNR4 myoblastocytes, we detected FHL1 interacting proteins by immunoprecipitation. Samples were analyzed by liquid chromatography mass spectrometry (LC-MS. Dynamic gene expression of FHL1 was studied. Additionally, the expression of the possible interacting proteins gamma-actin and non-muscle myosin IIB, which were isolated from the lower limbs of E14, E15, E17, E18, E20 rat embryos or from adult skeletal muscle was analyzed. Potential interacting proteins isolated from E17 lower limbs were verified by immunoprecipitation, and co-localization in adult gastrocnemius muscle was visualized by fluorescence microscopy. FHL1 expression was associated with skeletal muscle differentiation. E17 was found to be the critical time-point for skeletal muscle differentiation in the lower limbs of rat embryos. We also identified gamma-actin and non-muscle myosin IIB as potential binding partners of FHL1, and both were expressed in adult skeletal muscle. We then demonstrated that FHL1 exists as part of a complex, which binds gamma-actin and non-muscle myosin IIB.

  8. Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading.

    Science.gov (United States)

    Basco, Davide; Nicchia, Grazia Paola; Desaphy, Jean-François; Camerino, Diana Conte; Frigeri, Antonio; Svelto, Maria

    2010-12-01

    Muscle atrophy occurring in several pathophysiological conditions determines decreases in muscle protein synthesis, increases in the rate of proteolysis and changes in muscle fiber composition. To determine the effect of muscle atrophy induced by hindlimb unloading (HU) on membrane proteins from rat soleus, a proteomic approach based on two-dimensional Blue Native/SDS-PAGE was performed. Proteomic analysis of normal and HU soleus muscle demonstrates statistically significant changes in the relative level of 36 proteins. Among the proteins identified by mass spectrometry, most are involved in pathways associated with muscle fuel utilization, indicating a shift in metabolism from oxidative to glycolytic. Moreover, immunoblotting analysis revealed an increase in aquaporin-4 (AQP4) water channel and an alteration of proteins belonging to the dystrophin-glycoprotein complex (DGC). AQP4 and DGC are regulated in soleus muscle subjected to simulated microgravity in response to compensatory mechanisms induced by muscle atrophy, and they parallel the slow-to-fast twitch conversion that occurs in soleus fibers during HU. In conclusion, the alterations of soleus muscle membrane proteome may play a pivotal role in the mechanisms involved in disuse-induced muscle atrophy.

  9. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis

    NARCIS (Netherlands)

    Cermak, N.M.; Res, P.T.; Groot, de C.P.G.M.; Saris, W.H.M.; Loon, van L.J.C.

    2012-01-01

    Background: Protein ingestion after a single bout of resistance-type exercise stimulates net muscle protein accretion during acute postexercise recovery. Consequently, it is generally accepted that protein supplementation is required to maximize the adaptive response of the skeletal muscle to prolon

  10. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis

    NARCIS (Netherlands)

    Cermak, N.M.; Res, P.T.; Groot, de C.P.G.M.; Saris, W.H.M.; Loon, van L.J.C.

    2012-01-01

    Background: Protein ingestion after a single bout of resistance-type exercise stimulates net muscle protein accretion during acute postexercise recovery. Consequently, it is generally accepted that protein supplementation is required to maximize the adaptive response of the skeletal muscle to

  11. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... muscle protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting....... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  12. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Leon, Ileana R; Bak, Steffen

    2011-01-01

    Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skel......Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes....... In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomic study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins...... for protein kinase A, protein kinase C, casein kinase II and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria...

  13. Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Zhe-rong Xu

    Full Text Available A major reason for the loss of mobility in elderly people is the gradual loss of lean body mass known as sarcopenia. Sarcopenia is associated with a lower quality of life and higher healthcare costs. The benefit of strategies that include nutritional intervention, timing of intervention, and physical exercise to improve muscle loss unclear as finding from studies investigating this issue have been inconsistent. We have performed a systematic review and meta-analysis to assess the ability of protein or amino acid supplementation to augment lean body mass or strength of leg muscles in elderly patients.Nine studies met the inclusion criteria of being a prospective comparative study or randomized controlled trial (RCT that compared the efficacy of an amino acid or protein supplement intervention with that of a placebo in elderly people (≥ 65 years for the improvement of lean body mass (LBM, leg muscle strength or reduction associated with sarcopenia.The overall difference in mean change from baseline to the end of study in LBM between the treatment and placebo groups was 0.34 kg which was not significant (P = 0.386. The overall differences in mean change from baseline in double leg press and leg extension were 2.14 kg (P = 0.748 and 2.28 kg (P = 0.265, respectively, between the treatment group and the placebo group.These results indicate that amino acid/protein supplements did not increase lean body mass gain and muscle strength significantly more than placebo in a diverse elderly population.

  14. Molecular and functional analysis of Popeye genes: A novel family of transmembrane proteins preferentially expressed in heart and skeletal muscle.

    Science.gov (United States)

    Andrée, Birgit; Fleige, Anne; Hillemann, Tina; Arnold, Hans-Henning; Kessler-Icekson, Gania; Brand, Thomas

    2002-01-01

    Popeye (Pop) genes encode novel transmembrane proteins, of which three family members are present in vertebrates, while in Drosophila a single gene is found. By northern blot analysis a restricted expression pattern is observed; Pop genes are predominantly expressed in the heart, skeletal and smooth muscle. Using homologous recombination, a null mutation was generated in the case of Pop1. The homozygous mutants are viable and do not display any obvious phenotype. They display an impaired ability to regenerate skeletal muscle while the hypertropic response of the heart after isoproterenol infusion revealed no difference between genotypes. Recently a function for Pop1 as a prototype of a novel class of cell adhesion molecules was proposed. Further work is required to substantiate these findings and to extend it to other members of the family.

  15. Structure of giant muscle proteins

    Directory of Open Access Journals (Sweden)

    Nathan Thompson Wright

    2013-12-01

    Full Text Available Giant muscle proteins (e.g. titin, nebulin, and obscurin play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion ranging from 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level.

  16. Protein turnover in atrophying muscle: from nutritional intervention to microarray expression analysis

    Science.gov (United States)

    Stein, T. Peter; Wade, Charles E.

    2003-01-01

    PURPOSE OF REVIEW: In response to decreased usage, skeletal muscle undergoes adaptive reductive remodeling due to the decrease in tension on the weight bearing components of the musculo-skeletal system. This response occurs with uncomplicated disuse (e.g. bed rest, space flight), as a secondary consequence of several widely prevalent chronic diseases for which activity is reduced (e.g. chronic obstructive pulmonary disease and chronic heart failure) and is part of the aging process. The problem is therefore one of considerable clinical importance. RECENT FINDINGS: The impaired function and exercise intolerance is related more to the associated muscle wasting rather than to the specific organ system primarily impacted by the disease. Progress has continued in describing the use of anabolic drugs and dietary manipulation. The major advance in the field has been: (i) the discovery of the atrogin-1 gene and (ii) the application of microarray expression analysis and proteomics with the objectives of obtaining comprehensive understanding of the pathways changed with disuse atrophy. SUMMARY: Disuse atrophy is a common clinical problem. There is a need for therapeutic interventions that do not involve exercise. A better understanding of the changes, particularly at the molecular level, could indicate hitherto unsuspected sites for nutritional and pharmacological intervention.

  17. Quantitative proteomic analysis reveals metabolic alterations, calcium dysregulation, and increased expression of extracellular matrix proteins in laminin α2 chain-deficient muscle.

    Science.gov (United States)

    de Oliveira, Bruno Menezes; Matsumura, Cintia Y; Fontes-Oliveira, Cibely C; Gawlik, Kinga I; Acosta, Helena; Wernhoff, Patrik; Durbeej, Madeleine

    2014-11-01

    Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).

  18. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes.

    Science.gov (United States)

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi; Tan, Wen

    2015-09-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an "overlap score," (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 "overlap factors," (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells.

  19. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC‐MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes

    Science.gov (United States)

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi

    2015-01-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel‐cutting, and quantitative LC‐MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an “overlap score,” (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 “overlap factors,” (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells. PMID:26031785

  20. Non-muscle contractile proteins in the organ of corti

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, I.; Giometti, C.S.; Thalmann, R. (Washington Univ., St. Louis, MO (USA))

    1985-01-01

    Evidence indicates that an active contractile process exists in the outer hair cells of the mammalian cochlea. Proteins ordinarily associated with muscle contraction have been identified in the outer hair cells by immunohistologic techniques. On this basis a muscle-like mechanism of contraction/relaxation has been postulated by several investigators. The possibility must be considered, however, that the contractile proteins identified thus far in inner ear structures may be nonmuscle rather than muscle forms. In skeletal muscle, actin and myosin are responsible for the physical movement of the muscle fibers, and tropomyosin and troponin are involved in regulating this movement; these four proteins, as well as a variety of proteins involved with the normal cell maintenance functions are all of a muscle-specific type. Non-muscle-like motion also depends upon the interaction of actin with myosin; however, not only are these proteins structurally different from those specific to skeletal muscle but their proportions are also different. We have used two-dimensional polyacrylamide gel electrophoresis to study the proteins in freeze dried preparations of whole organ of Corti from the guinea pig. The identified proteins include non-muscle actin, three forms of non-muscle tropomyosin, alpha- and beta-tubulin, alpha-actinin, and lactate dehydrogenase (LDH B). Myosin heavy and light chains were not detected in the organ of Corti preparation, but the levels of those proteins might be too low to be detected with the protein load used of those proteins might be too low to be detected with the protein load used for this analysis. Although troponin could not be detected, calmodulin was present. All of these findings tend to indicate that the contraction/relaxation processes that have been associated with the organ of Corti by others are of the non-muscle variety.

  1. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    Science.gov (United States)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  2. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...

  3. Cytokines: muscle protein and amino acid metabolism

    DEFF Research Database (Denmark)

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... protein synthesis and breakdown, that is, reduced turnover with a minor increase in net muscle degradation. Very similar observations have been made in models of acute inflammation, induced by high-dose endotoxin injection. However, these changes were suggested not to be attributed to a direct effect...... of IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However...

  4. Molecular Cloning, Structural Analysis and Tissue Expression of Protein Phosphatase 3 Catalytic Subunit Alpha Isoform (PPP3CA Gene in Tianfu Goat Muscle

    Directory of Open Access Journals (Sweden)

    Lu Wan

    2014-02-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, plays a critical role in controlling skeletal muscle fiber type. However, little information is available concerning the expression of calcineurin in goat. Therefore, protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA gene, also called calcineurin Aα, was cloned and its expression characterized in Tianfu goat muscle. Real time quantitative polymerase chain reaction (RT-qPCR analyses revealed that Tianfu goat PPP3CA was detected in cardiac muscle, biceps femoris muscle, abdominal muscle, longissimus dors muscle, and soleus muscle. High expression levels were found in biceps femoris muscle, longissimus muscle and abdominal muscle (p < 0.01, and low expression levels were seen in cardiac muscle and soleus muscle (p > 0.05. In addition, the spatial-temporal mRNA expression levels showed different variation trends in different muscles with the age of the goats. Western blotting further revealed that PPP3CA protein was expressed in the above-mentioned tissues, with the highest level in biceps femoris muscle, and the lowest level in soleus muscle. In this study, we isolated the full-length coding sequence of Tianfu goat PPP3CA gene, analyzed its structure, and investigated its expression in different muscle tissues from different age stages. These results provide a foundation for understanding the function of the PPP3CA gene in goats.

  5. Molecular cloning, structural analysis and tissue expression of protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene in Tianfu goat muscle.

    Science.gov (United States)

    Wan, Lu; Ma, Jisi; Xu, Gangyi; Wang, Daihua; Wang, Nianlu

    2014-02-07

    Calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase, plays a critical role in controlling skeletal muscle fiber type. However, little information is available concerning the expression of calcineurin in goat. Therefore, protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene, also called calcineurin Aα, was cloned and its expression characterized in Tianfu goat muscle. Real time quantitative polymerase chain reaction (RT-qPCR) analyses revealed that Tianfu goat PPP3CA was detected in cardiac muscle, biceps femoris muscle, abdominal muscle, longissimus dors muscle, and soleus muscle. High expression levels were found in biceps femoris muscle, longissimus muscle and abdominal muscle (p muscle and soleus muscle (p > 0.05). In addition, the spatial-temporal mRNA expression levels showed different variation trends in different muscles with the age of the goats. Western blotting further revealed that PPP3CA protein was expressed in the above-mentioned tissues, with the highest level in biceps femoris muscle, and the lowest level in soleus muscle. In this study, we isolated the full-length coding sequence of Tianfu goat PPP3CA gene, analyzed its structure, and investigated its expression in different muscle tissues from different age stages. These results provide a foundation for understanding the function of the PPP3CA gene in goats.

  6. Chemical modification of muscle protein in diabetes.

    Science.gov (United States)

    Alt, Nadja; Carson, James A; Alderson, Nathan L; Wang, Yuping; Nagai, Ryoji; Henle, Thomas; Thorpe, Suzanne R; Baynes, John W

    2004-05-15

    Levels of glycation (fructose-lysine, FL) and advanced glycoxidation and lipoxidation end-products (AGE/ALEs) were measured in total skeletal (gastrocnemius) muscle and myofibril protein and compared to levels of the same compounds in insoluble skin collagen of control and diabetic rats. Levels of FL in total muscle and myofibril protein were 3-5% the level of FL in skin collagen. The AGE/ALEs, N(epsilon)-(carboxymethyl)lysine (CML) and N(epsilon)-(carboxyethyl)lysine, were also significantly lower in total muscle and myofibril protein, approximately 25% of levels in skin collagen. The newly described sulfhydryl AGE/ALE, S-(carboxymethyl)cysteine (CMC), was also measured in muscle; levels of CMC were comparable to those of CML and increased similarly in response to diabetes. Although FL and AGE/ALEs increased in muscle protein in diabetes, the relative increase was less than that seen in skin collagen. These data indicate that muscle protein is partially protected against the increase in both glycation and AGE/ALE formation in diabetes.

  7. Liver and muscle protein metabolism in cachexia

    NARCIS (Netherlands)

    Peters, J.A.C.

    2009-01-01

    Up to 50% of cancer patients suffer from progressive weight loss (cachexia). Cachexia is induced by proinflammatory mediators (cytokines), induced by the tumor’s presence. These cytokines induce so-called acute phase protein synthesis by the liver, followed by skeletal muscle protein breakdown. Skel

  8. Protein oxidation in muscle foods: A review

    DEFF Research Database (Denmark)

    Lund, Marianne; Heinonen, Marina; Baron, Caroline P.

    2011-01-01

    insight into the reactions involved in the oxidative modifications undergone by muscle proteins. Moreover, a variety of products derived from oxidized muscle proteins, including cross-links and carbonyls, have been identified. The impact of oxidation on protein functionality and on specific meat quality...... in this topic has led to highlight the influence that Pox may have on meat quality and human nutrition. Recent studies have contributed to solid scientific knowledge regarding basic oxidation mechanisms, and in advanced methodologies to accurately assess Pox in food systems. Some of these studies have provided...... traits has also been addressed. Some other recent studies have shed light on the complex interaction mechanisms between myofibrillar proteins and certain redox-active compounds such as tocopherols and phenolic compounds. This paper is devoted to review the most relevant findings on the occurrence...

  9. 高蛋白食物摄入对肌肉运动力量的影响%Analysis of Muscle Movement Strength Under High Protein Food Intake

    Institute of Scientific and Technical Information of China (English)

    陈利文

    2014-01-01

    Objective: to analyse the high-protein food intake with the relationship between the motor power. Methods:choose one sports college sports power project boys 90 athletes, randomly divided into three groups, divided into high protein food intake group 30 people, low protein food intake group of 30 people, the control group 30 people, set different nutrition intervention program for each student, for each student to carry on the shoulder muscles, then respectively for the determination of three groups of students isokinetic muscle strength of shoulder and shoulder muscles before and after the analysis of each student movement changes of the sports power. Results:high protein food intake group of students in front of the shoulder joint flexion Angle is higher than the low protein food intake group and the control group in front of the shoulder joint flexion Angle, with the increasing protein food intake, the student movement after shoulder muscle stretching Angle increases obviously. Control group before and after the student movement shoulder flexor show the tendency of lower overall power capability, low protein food intake group of students before and after exercise the shoulder stretch, flexor maximum power, average power, the overall power capability indexes showed a trend of decrease, such as group of students before and after exercise the shoulder and high protein food intake, flexor maximum power, average power, and the overall work ability index showed a trend of increased significantly. Conclusion: the increase of protein food intake, making muscles movement forces appear obvious enhancement.%目的:分析高蛋白食物摄入同肌肉运动力量间的关系。方法:选择某体育大学体育力量项目运动员男生90名,随机分为3组,分为高蛋白食物摄入组30人,低蛋白质食物摄入组30人,对照组30人,为各组学生设置不同的营养干预方案,对各组学生进行肩部肌肉训练,再分别对3组学生进

  10. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    Science.gov (United States)

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  11. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review.

    Science.gov (United States)

    Pasiakos, Stefan M; Lieberman, Harris R; McLellan, Tom M

    2014-05-01

    Protein supplements are frequently consumed by athletes and recreationally-active individuals, although the decision to purchase and consume protein supplements is often based on marketing claims rather than evidence-based research. To provide a systematic and comprehensive analysis of literature examining the hypothesis that protein supplements enhance recovery of muscle function and physical performance by attenuating muscle damage and soreness following a previous bout of exercise. English language articles were searched with PubMed and Google Scholar using protein and supplements together with performance, exercise, competition and muscle, alone or in combination as keywords. Inclusion criteria required studies to recruit healthy adults less than 50 years of age and to evaluate the effects of protein supplements alone or in combination with carbohydrate on performance metrics including time-to-exhaustion, time-trial or isometric or isokinetic muscle strength and markers of muscle damage and soreness. Twenty-seven articles were identified of which 18 dealt exclusively with ingestion of protein supplements to reduce muscle damage and soreness and improve recovery of muscle function following exercise, whereas the remaining 9 articles assessed muscle damage as well as performance metrics during single or repeat bouts of exercise. Papers were evaluated based on experimental design and examined for confounders that explain discrepancies between studies such as dietary control, training state of participants, sample size, direct or surrogate measures of muscle damage, and sensitivity of the performance metric. High quality and consistent data demonstrated there is no apparent relationship between recovery of muscle function and ratings of muscle soreness and surrogate markers of muscle damage when protein supplements are consumed prior to, during or after a bout of endurance or resistance exercise. There also appears to be insufficient experimental data

  12. Proteasome dysfunction induces muscle growth defects and protein aggregation.

    Science.gov (United States)

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-12-15

    The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions.

  13. Proteasome dysfunction induces muscle growth defects and protein aggregation

    Science.gov (United States)

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  14. Fish Muscle Proteins: Extraction, Quantitation, and Electrophoresis

    Science.gov (United States)

    Smith, Denise

    Electrophoresis can be used to separate and visualize proteins. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), proteins are separated based on size. When protein samples are applied to such gels, it is usually necessary to know the protein content of the sample. This makes it possible to apply a volume of sample to the gel such that samples have a comparable amount of total protein. While it is possible to use an official method of protein analysis (e.g., Kjeldahl, N combustion) for such an application, it often is convenient to use a rapid spectroscopic protein analysis that requires only a small amount of sample. The bicinchoninic acid (BCA) assay method will be used for this purpose.

  15. Developmental changes in the protein profiles of human cardiac and skeletal muscle.

    Science.gov (United States)

    Tipler, T D; Edwards, Y H; Hopkinson, D A

    1978-05-01

    1. The use of SDS electrophoresis as a tool for the analysis of development processes in man has been evaluated. 2. The protein profiles of cardiac and skeletal muscle from foetal (10--24 weeks gestation) infant and adult specimens have been analysed and striking developmental changes were found which involved all the major proteins. 3. Before 20 weeks gestation the soluble protein profile of skeletal muscle appears to consist largely of extracellular proteins. 4. Myoglobin was found in foetal cardiac muscle from 20 weeks gestation but was not demonstrable in foetal (greater than 24 weeks) skeletal muscle. Foetal and adult myoglobin were indistinguishable. 5. A limited survey of the protein patterns of brain, liver and kidney was carried out. In general these tissues show less developmental change than skeletal or cardiac muscle.

  16. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  17. Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Muscle in Growing Pigs

    Directory of Open Access Journals (Sweden)

    X. M. Men

    2016-04-01

    Full Text Available The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM during postnatal growth of pigs. Five DLY (Duroc×Landrace×Yorkshire crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA, to quantity myosin heavy-chains (MyHCs mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (% of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01, and MyHC I mRNA proportion was positively correlated with creatine kinase (CK, succinate dehydrogenase (SDH, malate dehydrogenase (MDH activities (p<0.05. These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics.

  18. Changes in protein abundance between tender and tough meat from bovine Longissimus thoracis muscle assessed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis analysis

    DEFF Research Database (Denmark)

    Bjarnadóttir, S G; Hollung, K; Høy, M

    2012-01-01

    -DE analysis (P flux through the tricarboxylate cycle [2......The aim of this study was to find potential biomarkers for meat tenderness in bovine Longissimus thoracis muscle and to compare results from isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis (2-DE) analysis. The experiment included 4 tender and 4......-oxoglutarate dehydrogenase complex component E2 (OGDC-E2)], apoptosis (galectin-1) and regulatory role in the release of Ca2+ from intracellular stores (annexin A6). Even though the overlap in significantly changing proteins was relatively low between iTRAQ and 2-DE analysis, certain proteins predicted to have...

  19. Predictors of muscle protein synthesis after severe pediatric burns

    Science.gov (United States)

    Objectives: Following a major burn, muscle protein synthesis rate increases but in most patients, this response is not sufficient to compensate the also elevated protein breakdown. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that skeletal muscle prot...

  20. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  1. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle.

    Science.gov (United States)

    Egan, Brendan; O'Connor, Paul L; Zierath, Juleen R; O'Gorman, Donal J

    2013-01-01

    Repeated bouts of episodic myofibrillar contraction associated with exercise training are potent stimuli for physiological adaptation. However, the time course of adaptation and the continuity between alterations in mRNA expression and protein content are not well described in human skeletal muscle. Eight healthy, sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak) each day for fourteen consecutive days, resulting in an increase in VO2peak of 17.5±3.8%. Skeletal muscle biopsies were taken at baseline, and on the morning following (+16 h after exercise) the first, third, seventh, tenth and fourteenth training sessions. Markers of mitochondrial adaptation (Cyt c and COXIV expression, and citrate synthase activity) were increased within the first week of training, but the mtDNA/nDNA ratio was unchanged by two weeks of training. Accumulation of PGC-1α and ERRα protein during training suggests a regulatory role for these factors in adaptations of mitochondrial and metabolic gene expression. A subset of genes were transiently increased after one training session, but returned to baseline levels thereafter, which is supportive of the concept of transcriptional capacity being particularly sensitive to the onset of a new level of contractile activity. Thus, gene-specific temporal patterns of induction of mRNA expression and protein content are described. Our results illustrate the phenomenology of skeletal muscle plasticity and support the notion that transcript level adjustments, coupled to accumulation of encoded protein, underlie the modulation of skeletal muscle metabolism and phenotype by regular exercise.

  2. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Brendan Egan

    Full Text Available Repeated bouts of episodic myofibrillar contraction associated with exercise training are potent stimuli for physiological adaptation. However, the time course of adaptation and the continuity between alterations in mRNA expression and protein content are not well described in human skeletal muscle. Eight healthy, sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak each day for fourteen consecutive days, resulting in an increase in VO2peak of 17.5±3.8%. Skeletal muscle biopsies were taken at baseline, and on the morning following (+16 h after exercise the first, third, seventh, tenth and fourteenth training sessions. Markers of mitochondrial adaptation (Cyt c and COXIV expression, and citrate synthase activity were increased within the first week of training, but the mtDNA/nDNA ratio was unchanged by two weeks of training. Accumulation of PGC-1α and ERRα protein during training suggests a regulatory role for these factors in adaptations of mitochondrial and metabolic gene expression. A subset of genes were transiently increased after one training session, but returned to baseline levels thereafter, which is supportive of the concept of transcriptional capacity being particularly sensitive to the onset of a new level of contractile activity. Thus, gene-specific temporal patterns of induction of mRNA expression and protein content are described. Our results illustrate the phenomenology of skeletal muscle plasticity and support the notion that transcript level adjustments, coupled to accumulation of encoded protein, underlie the modulation of skeletal muscle metabolism and phenotype by regular exercise.

  3. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wrzesinski, Krzysztof; Larsen, Peter Mose

    2003-01-01

    Insulin resistance in skeletal muscle is a hallmark feature of type 2 diabetes. An increasing number of enzymes and metabolic pathways have been implicated in the development of insulin resistance. However, the primary cellular cause of insulin resistance remains uncertain. Proteome analysis can ...

  4. Constitutive expression of Yes-associated protein (Yap in adult skeletal muscle fibres induces muscle atrophy and myopathy.

    Directory of Open Access Journals (Sweden)

    Robert N Judson

    Full Text Available The aim of this study was to investigate the function of the Hippo pathway member Yes-associated protein (Yap, gene name Yap1 in skeletal muscle fibres in vivo. Specifically we bred an inducible, skeletal muscle fibre-specific knock-in mouse model (MCK-tTA-hYAP1 S127A to test whether the over expression of constitutively active Yap (hYAP1 S127A is sufficient to drive muscle hypertrophy or stimulate changes in fibre type composition. Unexpectedly, after 5-7 weeks of constitutive hYAP1 S127A over expression, mice suddenly and rapidly lost 20-25% body weight and suffered from gait impairments and kyphosis. Skeletal muscles atrophied by 34-40% and the muscle fibre cross sectional area decreased by ≈40% when compared to control mice. Histological analysis revealed evidence of skeletal muscle degeneration and regeneration, necrotic fibres and a NADH-TR staining resembling centronuclear myopathy. In agreement with the histology, mRNA expression of markers of regenerative myogenesis (embryonic myosin heavy chain, Myf5, myogenin, Pax7 and muscle protein degradation (atrogin-1, MuRF1 were significantly elevated in muscles from transgenic mice versus control. No significant changes in fibre type composition were detected using ATPase staining. The phenotype was largely reversible, as a cessation of hYAP1 S127A expression rescued body and muscle weight, restored muscle morphology and prevented further pathological progression. To conclude, high Yap activity in muscle fibres does not induce fibre hypertrophy nor fibre type changes but instead results in a reversible atrophy and deterioration.

  5. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise

    DEFF Research Database (Denmark)

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette

    2005-01-01

    We hypothesized that an acute bout of strenuous, non-damaging exercise would increase rates of protein synthesis of collagen in tendon and skeletal muscle but these would be less than those of muscle myofibrillar and sarcoplasmic proteins. Two groups (n = 8 and 6) of healthy young men were studied...... collagen (0.077% h(-1)), muscle collagen (0.054% h(-1)), myofibrillar protein (0.121% h(-1)), and sarcoplasmic protein (0.134% h(-1))). The rates decreased toward basal values by 72 h although rates of tendon collagen and myofibrillar protein synthesis remained elevated. There was no tissue damage...... of muscle visible on histological evaluation. Neither tissue microdialysate nor serum concentrations of IGF-I and IGF binding proteins (IGFBP-3 and IGFBP-4) or procollagen type I N-terminal propeptide changed from resting values. Thus, there is a rapid increase in collagen synthesis after strenuous exercise...

  6. Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients after endurance exercise

    DEFF Research Database (Denmark)

    Andersen, Grete; Ørngreen, Mette C; Preisler, Nicolai

    2015-01-01

    In healthy individuals, postexercise protein supplementation increases muscle protein anabolism. In patients with muscular dystrophies, aerobic exercise improves muscle function, but the effect of exercise on muscle protein balance is unknown. Therefore, we investigated 1) muscle protein balance...... before, during, and after exercise and 2) the effect of postexercise protein-carbohydrate supplementation on muscle protein balance in patients with muscular dystrophies. In 17 patients [7 women and 10 men, aged 33 ± 11 yr (18-52), body mass index: 22 ± 3 kg/m(2) (16-26)] and 8 healthy matched controls...... [3 women and 5 men, age 33 ± 13 years (19-54), body mass index: 23 ± 3 kg/m(2) (19-27)], muscle protein synthesis, breakdown, and fractional synthesis rates (FSR) were measured across the leg using tracer dilution methodology on two occasions, with and without oral postexercise protein...

  7. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  8. Time-dependent changes in protein expression in rainbow trout muscle following hypoxia

    DEFF Research Database (Denmark)

    Wulff, Tune; Jokumsen, Alfred; Højrup, Peter

    2012-01-01

    and 24h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one......-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one...... time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different...

  9. Polylysine modification of adenoviral fiber protein enhances muscle cell transduction.

    Science.gov (United States)

    Bouri, K; Feero, W G; Myerburg, M M; Wickham, T J; Kovesdi, I; Hoffman, E P; Clemens, P R

    1999-07-01

    Adenoviral vectors (ADVs) are used widely for gene delivery to different tissues including muscle. One particularly promising use for ADVs is in the transfer of the dystrophin gene to the muscle of patients with Duchenne muscular dystrophy (DMD). However, studies in different animal models of DMD suggest that ADVs inefficiently transduce mature skeletal muscle. In this article we test whether AdZ.F(pK7), a genetically modified ADV that expresses a polylysine moiety on the end of the fiber protein, could enhance transduction of muscle cells and circumvent the maturation-dependent loss of muscle infectivity by ADVs. The efficiency of transduction was tested at different levels of muscle maturation. In vitro, AdZ.F(pK7) showed a higher level of transduction at all stages of differentiation including myoblasts, myotubes, and single muscle fibers. In vivo, mature skeletal muscle was transduced fourfold better by AdZ.F(pK7) than by the unmodifled vector (AdZ.F). Together, these observations demonstrate improved ADV transduction of skeletal muscle by modifying ADV tropism, and provide a proof-of-principle that modification of ADVs to target muscle-specific molecules could result in tissue-specific transfer of skeletal muscle tissue as well.

  10. Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Kanski, Jaroslaw; Hong, Sung J; Schöneich, Christian

    2005-06-24

    The nitration of protein tyrosine residues represents an important post-translational modification during development, oxidative stress, and biological aging. To rationalize any physiological changes with such modifications, the actual protein targets of nitration must be identified by proteomic methods. While several studies have used proteomics to screen for 3-nitrotyrosine-containing proteins in vivo, most of these studies have failed to prove nitration unambiguously through the actual localization of 3-nitrotyrosine to specific sequences by mass spectrometry. In this paper we have applied sequential solution isoelectric focusing and SDS-PAGE for the proteomic characterization of specific 3-nitrotyrosine-containing sequences of nitrated target proteins in vivo using nanoelectrospray ionization-tandem mass spectrometry. Specifically, we analyzed proteins from the skeletal muscle of 34-month-old Fisher 344/Brown Norway F1 hybrid rats, a well accepted animal model for biological aging. We identified the 3-nitrotyrosine-containing sequences of 11 proteins, including cytosolic creatine kinase, tropomyosin 1, glyceraldehyde-3-phosphate dehydrogenase, myosin light chain, aldolase A, pyruvate kinase, glycogen phosphorylase, actinin, gamma-actin, ryanodine receptor 3, and neurogenic locus notch homolog. For creatine kinase and neurogenic locus notch homolog, two 3-nitrotyrosine-containing sequences were identified, i.e. at positions 14 and 20 for creatine kinase and at positions 1175 and 1205 for the neurogenic locus notch homolog. The selectivity of the in vivo nitration of creatine kinase at Tyr14 and Tyr20 does not correspond to the product selectivity in vitro, where exclusively Tyr82 was nitrated when creatine kinase was exposed to peroxynitrite. The latter experiments demonstrate that the in vitro exposure of an isolated protein to peroxynitrite may not always be a good model to mimic protein nitration in vivo.

  11. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy

    Science.gov (United States)

    Gomes, M. D.; Lecker, S. H.; Jagoe, R. T.; Navon, A.; Goldberg, A. L.

    2001-01-01

    Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.

  12. Patients with polymyositis show changes in muscle protein charges

    DEFF Research Database (Denmark)

    Bartels, E M; Jacobsen, Søren; Rasmussen, L

    1989-01-01

    Polymyositis (PM) appears with indolent proximal muscle weakness and is an inflammatory disease with breakdown of muscle cells. In our study the protein charge concentrations of the contractile proteins in the A and I bands were determined, applying a microelectrode technique. Patients with PM show...... a lower protein charge concentration than healthy control subjects which may be caused by the breakdown and removal of the proteins in the contractile filaments. A tool to judge the state of the disease as well as an aid in diagnosis may have been found in this method....

  13. Castration alters protein balance after high-frequency muscle contraction.

    Science.gov (United States)

    Steiner, Jennifer L; Fukuda, David H; Rossetti, Michael L; Hoffman, Jay R; Gordon, Bradley S

    2017-02-01

    Resistance exercise increases muscle mass by shifting protein balance in favor of protein accretion. Androgens independently alter protein balance, but it is unknown whether androgens alter this measure after resistance exercise. To answer this, male mice were subjected to sham or castration surgery 7-8 wk before undergoing a bout of unilateral, high-frequency, electrically induced muscle contractions in the fasted or refed state. Puromycin was injected 30 min before euthanasia to measure protein synthesis. The tibialis anterior was analyzed 4 h postcontraction. In fasted mice, neither basal nor stimulated rates of protein synthesis were affected by castration despite lower phosphorylation of mechanistic target of rapamycin in complex 1 (mTORC1) substrates [p70S6K1 (Thr389) and 4E-BP1 (Ser65)]. Markers of autophagy (LC3 II/I ratio and p62 protein content) were elevated by castration, and these measures remained elevated above sham values after contractions. Furthermore, in fasted mice, the protein content of Regulated in Development and DNA Damage 1 (REDD1) was correlated with LC3 II/I in noncontracted muscle, whereas phosphorylation of uncoordinated like kinase 1 (ULK1) (Ser757) was correlated with LC3 II/I in the contracted muscle. When mice were refed before contractions, protein synthesis and mTORC1 signaling were not affected by castration in either the noncontracted or contracted muscle. Conversely, markers of autophagy remained elevated in the muscles of refed, castrated mice even after contractions. These data suggest the castration-mediated elevation in baseline autophagy reduces the absolute positive shift in protein balance after muscle contractions in the refed or fasted states.

  14. Androgen-mediated regulation of skeletal muscle protein balance.

    Science.gov (United States)

    Rossetti, Michael L; Steiner, Jennifer L; Gordon, Bradley S

    2017-02-22

    Androgens significantly alter muscle mass in part by shifting protein balance in favor of net protein accretion. During various atrophic conditions, the clinical impact of decreased production or bioavailability of androgens (termed hypogonadism) is important as a loss of muscle mass is intimately linked with survival outcome. While androgen replacement therapy increases muscle mass in part by restoring protein balance, this is not a comprehensive treatment option due to potential side effects. Therefore, an understanding of the mechanisms by which androgens alter protein balance is needed for the development of androgen-independent therapies. While the data in humans suggest androgens alter protein balance (both synthesis and breakdown) in the fasted metabolic state, a predominant molecular mechanism(s) behind this observation is still lacking. This failure is likely due in part to inconsistent experimental design between studies including failure to control nutrient/feeding status, the method of altering androgens, and the model systems utilized.

  15. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    Directory of Open Access Journals (Sweden)

    Davide Basco

    Full Text Available Aquaporin-4 (AQP4 is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE, protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/- compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase, as well as in Ca(2+ handling (i.e. parvalbumin, SERCA1. Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  16. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    Science.gov (United States)

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-04-28

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/-) compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca(2+) handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  17. Decrease of 25 kD protein component in the muscle of myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    Hui-Min Ren; Zhi-Gang; Zhou Xiang-Jun; Chen Jun Huang; Chuan-Zhcn Lu

    2000-01-01

    Objective To explore whether the protein components have difference between normal and myasthenia gravis (MG) skeletal muscles and the differential components of protein was associated with muscle contraction components. Methods Proteins were extracted from 10 cases of normal muscles and 17 cases of MG skeletal muscles with PBS and Gubstraub solution, respectively. The components of protein were analyzed by SDS-PAGE in common and micro methods in double blind. Composition of the differential protein band was discovered by two-dimensional electrophoresis. Results SDS-PAGE patterns showed that concentration of the protein band with mass of about 25 kD in the MG muscles were much lower than that in the normal muscles. The density of the protein band in the PBS extraction, in the common method, was 4.20±2.31 and 1.40±0.47 in the normal and MG muscles, respectively (p<0.01), in the micro method, it was 4.62±1.94 and 1.66±0.56 in the normal and MG muscles. respectively (p<0.001). The value of density for 25 kD protein band in the Gubstraub solution extraction, in the common analysis was 4.14 ± 1.33 and 2.02 ±1.08 in the normal and MG muscles, respectively (p<0.001), and it in the micro analysis was 4.26±2.58 and l.34±0.79 in the normal and MG muscles, respectively (p<0.001).The pattern of two-dimensional electrophoresis demonstrated that the differential 25 kD protein band consisted of two components at least with adjacent isoelectric point on the alkaline side in the gel, and they were proved to be irrelated to the components of myosin light chains. Conclusion It was suggested that 25 kD protein from skcletal muscle could be associated with the pathogeny or developing of MG.

  18. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    OpenAIRE

    Mitchell, Cameron J.; Robin A McGregor; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Sally D. Poppitt; David Cameron-Smith

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biops...

  19. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically......-MS/MS) and GC-tandem MS (GC-MS/MS) have made these techniques an option for human muscle FSR measurements. Human muscle biopsies were freeze dried, cleaned, and hydrolyzed, and the amino acids derivatized using either N-acetyl-n-propyl, phenylisothiocyanate, or N.......89 ± 0.01, P muscle FSR, (2) LC-MS/MS comes quite close and is a good alternative when tissue quantities are too small for GC-C-IRMS, and (3) If GC-MS/MS is to be used, then the HFBA derivative should be used instead...

  20. Protein intake does not increase vastus lateralis muscle protein synthesis during cycling

    DEFF Research Database (Denmark)

    Hulston, CJ; Wolsk, Emil; Grøndahl, Thomas Sahl

    2011-01-01

    by 51% ± 22% (0.070%·h(-1), ± 0.003%·h(-1), and 0.105%·h(-1), ± 0.013%·h(-1), in CHO and CHO+P, respectively; P protein net balance was negative during recovery with CHO intake, whereas positive leg protein net balance was achieved with CHO+P intake. CONCLUSIONS: We conclude...... that consuming protein during prolonged bicycle exercise does not increase protein synthesis within highly active leg muscles. However, protein intake may have stimulated protein synthesis within less active leg muscles and/or other nonmuscle leg tissue. Finally, protein supplementation, during exercise......PURPOSE: This study aimed to investigate the effect of protein ingestion on leg protein turnover and vastus lateralis muscle protein synthesis during bicycle exercise and recovery. METHODS: Eight healthy males participated in two experiments in which they ingested either a carbohydrate solution...

  1. Quantitative phosphoproteomic analysis of postmortem muscle development

    DEFF Research Database (Denmark)

    Huang, Honggang

    Meat quality development is highly dependent on postmortem (PM) metabolism and rigor mortis development in PM muscle. PM glycometabolism and rigor mortis fundamentally determine most of the important qualities of raw meat, such as ultimate pH, tenderness, color and water-holding capacity. Protein...

  2. Mathematical analysis of a muscle architecture model.

    Science.gov (United States)

    Navallas, Javier; Malanda, Armando; Gila, Luis; Rodríguez, Javier; Rodríguez, Ignacio

    2009-01-01

    Modeling of muscle architecture, which aims to recreate mathematically the physiological structure of the muscle fibers and motor units, is a powerful tool for understanding and modeling the mechanical and electrical behavior of the muscle. Most of the published models are presented in the form of algorithms, without mathematical analysis of mechanisms or outcomes of the model. Through the study of the muscle architecture model proposed by Stashuk, we present the analytical tools needed to better understand these models. We provide a statistical description for the spatial relations between motor units and muscle fibers. We are particularly concerned with two physiological quantities: the motor unit fiber number, which we expect to be proportional to the motor unit territory area; and the motor unit fiber density, which we expect to be constant for all motor units. Our results indicate that the Stashuk model is in good agreement with the physiological evidence in terms of the expectations outlined above. However, the resulting variance is very high. In addition, a considerable 'edge effect' is present in the outer zone of the muscle cross-section, making the properties of the motor units dependent on their location. This effect is relevant when motor unit territories and muscle cross-section are of similar size.

  3. Analysis of Nutritional Components of Protein Isolates from Tilapia Muscle%罗非鱼肉分离蛋白的营养成分分析

    Institute of Scientific and Technical Information of China (English)

    刘诗长; 周春霞; 洪鹏志; 唐小丹

    2011-01-01

    以罗非鱼鱼肉为原料,采用pH值调节法(pH-shifting),制备鱼分离蛋白,主要探讨提取条件和沉淀条件对提取蛋白得率及其应用特性的影响.结果表明:在极端酸性(pH10)条件下,鱼肉蛋白的溶解性较好,而在pH值5-6时溶解性较差,由此选择pH值2、3、11和12条件下溶解,pH值5.5条件下沉淀,提取蛋白得率为56.06~64.95%.冷冻干燥得到的罗非鱼肉分离蛋白粉,其干基蛋白含量在95%以上,脂肪含量在1%左右,灰分含量低于2.03%;必须氨基酸含量占氨基酸总量的49%左右.从AAS分值分析,分离蛋白完全符合成人的氨基酸需求;对于婴儿水平模式,第一限制性氨基酸为色氨酸,第二限制性氨基酸为组氨酸,但赖氨酸评分较高,产品可用作蛋白食品添加剂.%Fish protein isolates was prepared from Tilapia muscles by pH-shifting in this study. Effect of extraction and precipitation conditions on protein yield and application features of protein isolates was determined. The results showed that the solubility was better at extreme acidic condition (pH<3) and alkaline condition (pH>1 0), but the solubility was very poor at pH 5.5. Consequently, protein was extracted at pH 2, 3,12 and 13, and then was precipitated at pH 5.5. Under this conditions, the protein yield was 56.06%~64.95%. Protein isolates powder was obtained by freeze-drying, with the crude protein content in dry basis, fat content and ash content being more than 95%, 1% and < 2.03%, respectively. And the total essential amino acids were about 49 percent of total amino acids. According to AAS, protein isolates completely accords with adult amino acids demand. For baby level mode, the first and the second restrictive amino acids were tryptophan and lysine, respectively. And high histidine score was found for the protein isolates. All results showed these fish protein isolates could be used as protein food additive.

  4. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial

    NARCIS (Netherlands)

    Gorissen, S.H.; Horstman, Astrid; Franssen, Rinske; Kouw, I.W.; Wall, B.T.; Burd, N.A.; Groot, de C.P.G.M.; Loon, van L.J.C.

    2017-01-01

    Background: Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high

  5. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard;

    2013-01-01

    of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...

  6. Secreted Frizzled-Related Protein 2 and Inflammation-Induced Skeletal Muscle Atrophy.

    Science.gov (United States)

    Zhu, Xiaoxi; Kny, Melanie; Schmidt, Franziska; Hahn, Alexander; Wollersheim, Tobias; Kleber, Christian; Weber-Carstens, Steffen; Fielitz, Jens

    2017-02-01

    In sepsis, the disease course of critically ill patients is often complicated by muscle failure leading to ICU-acquired weakness. The myokine transforming growth factor-β1 increases during inflammation and mediates muscle atrophy in vivo. We observed that the transforming growth factor-β1 inhibitor, secreted frizzled-related protein 2, was down-regulated in skeletal muscle of ICU-acquired weakness patients. We hypothesized that secreted frizzled-related protein 2 reduction enhances transforming growth factor-β1-mediated effects and investigated the interrelationship between transforming growth factor-β1 and secreted frizzled-related protein 2 in inflammation-induced atrophy. Observational study and prospective animal trial. Two ICUs and research laboratory. Twenty-six critically ill patients with Sequential Organ Failure Assessment scores greater than or equal to 8 underwent a skeletal muscle biopsy from the vastus lateralis at median day 5 in ICU. Four patients undergoing elective orthopedic surgery served as controls. To search for signaling pathways enriched in muscle of ICU-acquired weakness patients, a gene set enrichment analysis of our recently published gene expression profiles was performed. Quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry were used to analyze secreted frizzled-related protein 2 expression and protein content. A mouse model of inflammation-induced skeletal muscle atrophy due to polymicrobial sepsis and cultured myocytes were used for mechanistic analyses. None. Gene set enrichment analysis uncovered transforming growth factor-β1 signaling activation in vastus lateralis from ICU-acquired weakness patients. Muscular secreted frizzled-related protein 2 expression was reduced after 5 days in ICU. Likewise, muscular secreted frizzled-related protein 2 expression was decreased early and continuously in mice with inflammation-induced atrophy. In muscle, secreted frizzled-related protein 2

  7. Analysis of muscle fatigue in helicopter pilots.

    Science.gov (United States)

    Balasubramanian, Venkatesh; Dutt, Ashwani; Rai, Shobhit

    2011-11-01

    Helicopter pilots espouse ergonomically unfavourable postures and endure vibration which result in low back pain. The objective of this study was to investigate the effects of a helicopter flight on pilots back and shoulder muscles using surface Electromyography (sEMG) analysis. This study also correlates low back pain symptoms from Rehabilitation Bioengineering Group Pain Scale (RBGPS) questionnaire with muscle fatigue rates obtained. RBGPS was administered on 20 Coast Guard helicopter pilots. sEMG was acquired before and after flight from erector spinae and trapezius muscles in 8 of these 20 pilots. Statistical analysis of time and frequency domain parameters indicated significant fatigue in right trapezius muscle due to flying. Muscle fatigue correlated with average duration of flight (r² = 0.913), total service as pilot (r² = 0.825), pain (r² = 0.463) and total flying hours (r² = 0.507). However, muscle fatigue weakly correlated with Body Mass Index (BMI) (r² = 0.000144) and age (r² = 0.033).

  8. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    Science.gov (United States)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  9. Work Done by Titin Protein Folding Assists Muscle Contraction.

    Science.gov (United States)

    Rivas-Pardo, Jaime Andrés; Eckels, Edward C; Popa, Ionel; Kosuri, Pallav; Linke, Wolfgang A; Fernández, Julio M

    2016-02-16

    Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin immunoglobulin (Ig) domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6-8 pN. We use single-molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but as yet unrecognized, contributor to the force generated by a contracting muscle.

  10. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... stress (obesity, obese non-insulin-dependent diabetes mellitus), hypertrophy (training), de- and reinnervation (amyotrophic lateral sclerosis) or regeneration (polymyositis). We used an immunohistochemical approach to detect and localise GLUT3. GLUT3 immunoreactivity was not detectable in adult skeletal...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...

  11. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  12. Global cooling: cold acclimation and the expression of soluble proteins in carp skeletal muscle.

    Science.gov (United States)

    McLean, Lynn; Young, Iain S; Doherty, Mary K; Robertson, Duncan H L; Cossins, Andrew R; Gracey, Andrew Y; Beynon, Robert J; Whitfield, Phillip D

    2007-08-01

    The common carp (Cyprinus carpio) has a well-developed capacity to modify muscle properties in response to changes in temperature. Understanding the mechanisms underpinning this phenotypic response at the protein level may provide fundamental insights into the molecular basis of adaptive processes in skeletal muscle. In this study, common carp were subjected to a cooling regimen and soluble extracts of muscle homogenates were separated by 1-D SDS-PAGE and 2-DE. Proteins were identified using MALDI-TOF-MS and de novo peptide sequencing using LC-MS/MS. The 2-D gel was populated with numerous protein spots that were fragments of all three muscle isoforms (M1, M2 and M3) of carp creatine kinase (CK). The accumulation of the CK fragments was enhanced when the carp were cooled to 10 degrees C. The protein changes observed in the skeletal muscle of carp subjected to cold acclimation were compared to changes described in a previous transcript analysis study. Genes encoding CK isoforms were downregulated and the genes encoding key proteins of the ubiquitin-proteasome pathway were upregulated. These findings are consistent with a specific cold-induced enhancement of proteolysis of CK.

  13. Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and sarcopenia.

    Science.gov (United States)

    Beltran Valls, Maria R; Wilkinson, Daniel J; Narici, Marco V; Smith, Kenneth; Phillips, Bethan E; Caporossi, Daniela; Atherton, Philip J

    2015-02-01

    Aging is associated with a gradual loss of muscle mass termed sarcopenia, which has significant impact on quality-of-life. Because oxidative stress is proposed to negatively impact upon musculoskeletal aging, we investigated links between human aging and markers of oxidative stress, and relationships to muscle mass and strength in young and old nonsarcopenic and sarcopenic adults. Sixteen young and 16 old males (further subdivided into "old" and "old sarcopenic") were studied. The abundance of protein carbonyl adducts within skeletal muscle sarcoplasmic, myofibrillar, and mitochondrial protein subfractions from musculus vastus lateralis biopsies were determined using Oxyblot immunoblotting techniques. In addition, concentrations of recognized cytoprotective proteins (eg, heat shock proteins [HSP], αβ-crystallin) were also assayed. Aging was associated with increased mitochondrial (but not myofibrillar or sarcoplasmic) protein carbonyl adducts, independently of (stage-I) sarcopenia. Correlation analyses of all subjects revealed that mitochondrial protein carbonyl abundance negatively correlated with muscle strength ([1-repetition maximum], p = .02, r (2) = -.16), but not muscle mass (p = .13, r (2) = -.08). Abundance of cytoprotective proteins, including various HSPs (HSP 27 and 70), were unaffected by aging/sarcopenia. To conclude, these data reveal that mitochondrial protein carbonylation increases moderately with age, and that this increase may impact upon skeletal muscle function, but is not a hallmark of (stage-I) sarcopenia, per se. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

  14. REGULATION OF MUSCLE GLYCOGEN REPLETION, MUSCLE PROTEIN SYNTHESIS AND REPAIR FOLLOWING EXERCISE

    Directory of Open Access Journals (Sweden)

    John L. Ivy

    2004-09-01

    Full Text Available Recovery from prolonged strenuous exercise requires that depleted fuel stores be replenished, that damaged tissue be repaired and that training adaptations be initiated. Critical to these processes are the type, amount and timing of nutrient intake. Muscle glycogen is an essential fuel for intense exercise, whether the exercise is of an aerobic or anaerobic nature. Glycogen synthesis is a relatively slow process, and therefore the restoration of muscle glycogen requires special considerations when there is limited time between training sessions or competition. To maximize the rate of muscle glycogen synthesis it is important to consume a carbohydrate supplement immediately post exercise, to continue to supplement at frequent intervals and to consume approximately 1.2 g carbohydrate·kg-1 body wt·h-1. Maximizing glycogen synthesis with less frequent supplementation and less carbohydrate can be achieved with the addition of protein to the carbohydrate supplement. This will also promote protein synthesis and reduce protein degradation, thus having the added benefit of stimulating muscle tissue repair and adaptation. Moreover, recent research suggests that consuming a carbohydrate/protein supplement post exercise will have a more positive influence on subsequent exercise performance than a carbohydrate supplement.

  15. In Vivo Imaging of Far-red Fluorescent Proteins after DNA Electrotransfer to Muscle Tissue

    DEFF Research Database (Denmark)

    Hojman, Pernille; Eriksen, Jens; Gehl, Julie

    2009-01-01

    DNA electrotransfer to muscle tissue yields long-term, high levels of gene expression; showing great promise for future gene therapy. We want to characterize the novel far-red fluorescent protein Katushka as a marker for gene expression using time domain fluorescence in vivo imaging. Highly...... weeks. Depth and 3D analysis proved that the expression was located in the target muscle. In vivo bio-imaging using the novel Katushka fluorescent protein enables excellent evaluation of the transfection efficacy, and spatial distribution, but lacks long-term stability....

  16. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    Science.gov (United States)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  17. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls.......Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors...

  18. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls.......Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors...

  19. Transcriptional regulation of muscle fatty acid-binding protein.

    Science.gov (United States)

    Carey, J O; Neufer, P D; Farrar, R P; Veerkamp, J H; Dohm, G L

    1994-03-15

    Heart fatty acid-binding protein (H-FABP) is present in a wide variety of tissues but is found in the highest concentration in cardiac and red skeletal muscle. It has been proposed that the expression of H-FABP correlates directly with the fatty acid-oxidative capacity of the tissue. In the present study, the expression of H-FABP was measured in red and white skeletal muscle under two conditions in which fatty acid utilization is known to be increased: streptozotocin-induced diabetes and fasting. Protein concentration, mRNA concentration and transcription rate were measured under both conditions. The level of both protein and mRNA increased approximately 2-fold under each condition. The transcription rate was higher in red skeletal muscle than in white muscle, was increased 2-fold during fasting, but was unchanged by streptozotocin-induced diabetes. In addition to supporting the hypothesis that H-FABP is induced during conditions of increased fatty acid utilization, these findings demonstrate that the regulation of H-FABP expression may or may not be at the level of transcription depending on the stimulus.

  20. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    Science.gov (United States)

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  1. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth.

    Science.gov (United States)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon; Vendelbo, Mikkel Holm; Paoli, Frank de; Vissing, Kristian

    2014-10-15

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P eccentric resistance training while type II fiber hypertrophy was accentuated when combining concentric resistance training with whey protein supplementation.

  2. Forkhead box O1 and muscle RING finger 1 protein expression in atrophic and hypertrophic denervated mouse skeletal muscle

    Science.gov (United States)

    2014-01-01

    Background Forkhead box O (FoxO) transcription factors and E3 ubiquitin ligases such as Muscle RING finger 1 (MuRF1) are believed to participate in the regulation of skeletal muscle mass. The function of FoxO transcription factors is regulated by post-translational modifications such as phosphorylation and acetylation. In the present study FoxO1 protein expression, phosphorylation and acetylation as well as MuRF1 protein expression, were examined in atrophic and hypertrophic denervated skeletal muscle. Methods Protein expression, phosphorylation and acetylation were studied semi-quantitatively using Western blots. Muscles studied were 6-days denervated mouse hind-limb muscles (anterior tibial as well as pooled gastrocnemius and soleus muscles, all atrophic), 6-days denervated mouse hemidiaphragm muscles (hypertrophic) and innervated control muscles. Total muscle homogenates were used as well as separated nuclear and cytosolic fractions of innervated and 6-days denervated anterior tibial and hemidiaphragm muscles. Results Expression of FoxO1 and MuRF1 proteins increased 0.3-3.7-fold in all 6-days denervated muscles studied, atrophic as well as hypertrophic. Phosphorylation of FoxO1 at S256 increased about 0.8-1-fold after denervation in pooled gastrocnemius and soleus muscles and in hemidiaphragm but not in unfractionated anterior tibial muscle. A small (0.2-fold) but statistically significant increase in FoxO1 phosphorylation was, however, observed in cytosolic fractions of denervated anterior tibial muscle. A statistically significant increase in FoxO1 acetylation (0.8-fold) was observed only in denervated anterior tibial muscle. Increases in total FoxO1 and in phosphorylated FoxO1 were only seen in cytosolic fractions of denervated atrophic anterior tibial muscle whereas in denervated hypertrophic hemidiaphragm both total FoxO1 and phosphorylated FoxO1 increased in cytosolic as well as in nuclear fractions. MuRF1 protein expression increased in cytosolic as well

  3. Muscle-specific deletion of BDK amplifies loss of myofibrillar protein during protein undernutrition

    Science.gov (United States)

    Ishikawa, Takuya; Kitaura, Yasuyuki; Kadota, Yoshihiro; Morishita, Yukako; Ota, Miki; Yamanaka, Fumiya; Xu, Minjun; Ikawa, Masahito; Inoue, Naokazu; Kawano, Fuminori; Nakai, Naoya; Murakami, Taro; Miura, Shinji; Hatazawa, Yukino; Kamei, Yasutomi; Shimomura, Yoshiharu

    2017-01-01

    Branched-chain amino acids (BCAAs) are essential amino acids for mammals and play key roles in the regulation of protein metabolism. However, the effect of BCAA deficiency on protein metabolism in skeletal muscle in vivo remains unclear. Here we generated mice with lower BCAA concentrations by specifically accelerating BCAA catabolism in skeletal muscle and heart (BDK-mKO mice). The mice appeared to be healthy without any obvious defects when fed a protein-rich diet; however, bolus ingestion of BCAAs showed that mTORC1 sensitivity in skeletal muscle was enhanced in BDK-mKO mice compared to the corresponding control mice. When these mice were fed a low protein diet, the concentration of myofibrillar protein was significantly decreased (but not soluble protein) and mTORC1 activity was reduced without significant change in autophagy. BCAA supplementation in drinking water attenuated the decreases in myofibrillar protein levels and mTORC1 activity. These results suggest that BCAAs are essential for maintaining myofibrillar proteins during protein undernutrition by keeping mTORC1 activity rather than by inhibiting autophagy and translation. This is the first report to reveal the importance of BCAAs for protein metabolism of skeletal muscle in vivo. PMID:28051178

  4. Effect of pH and postmortem aging on protein extraction from broiler breast muscle.

    Science.gov (United States)

    Eady, M; Samuel, D; Bowker, B

    2014-07-01

    This study determined the effects of extraction buffer pH and postmortem aging on the extraction of salt-soluble and water-soluble proteins from broiler pectoralis muscle. Deboned broiler breast fillets were collected at 4 h postmortem, packaged, and then stored at 4°C until 1, 5, or 8 d postmortem. After the designated aging period, salt-soluble and water-soluble protein extractions were performed using buffers at 7 different pH levels (pH 5.4, 6.4, 6.9, 7.2, 7.5, 8.0, 9.0). Protein concentrations of the extracts were measured and SDS-PAGE analysis was performed. Salt-soluble protein concentration increased (P protein concentration increased (P extraction buffer pH by aging treatment interaction for the total protein concentration of either the salt-soluble or water-soluble protein extracts. The protein concentrations of salt-soluble extracts were similar at both 1 and 8 d postmortem but lower (P protein concentrations of water-soluble extracts were similar at both 1 and 5 d postmortem, but higher (P extraction buffer pH and postmortem aging influenced the SDS-PAGE protein profiles of salt-soluble and water-soluble protein extracts from breast muscles. Data demonstrate that postmortem aging and extraction buffer pH influence both the total amount and the composition of the myofibrillar and sarcoplasmic proteins that can be extracted from broiler breast fillets.

  5. The presence of disease-associated prion protein in skeletal muscle of cattle infected with classical bovine spongiform encephalopathy.

    Science.gov (United States)

    Okada, Hiroyuki; Miyazawa, Kohtaro; Fukuda, Shigeo; Iwamaru, Yoshifumi; Imamura, Morikazu; Masujin, Kentaro; Matsuura, Yuichi; Fujii, Takashi; Fujii, Kei; Kageyama, Soichi; Yoshioka, Miyako; Murayama, Yuichi; Yokoyama, Takashi

    2014-01-01

    The aim of this study was to investigate the presence of disease-associated prion protein (PrP(Sc)) in the skeletal muscle of cattle infected with classical bovine spongiform encephalopathy (C-BSE). The study was carried out systematically in 12 different muscle samples from 43 (3 field and 40 experimental) cases of C-BSE; however, muscle spindles were not available in many of these cases. Therefore, analysis became restricted to a total of 31 muscles in 23 cattle. Even after this restriction, low levels of PrP(Sc) were detected in the muscle spindles of the masseter, intercostal, triceps brachii, psoas major, quadriceps femoris and semitendinosus muscles from 3 field and 6 experimental clinical-stage cases. The present data indicate that small amounts of PrP(Sc) are detectable by immunohistochemistry in the skeletal muscles of animals terminally affected with C-BSE.

  6. Proteomic analysis of SETD6 interacting proteins.

    Science.gov (United States)

    Cohn, Ofir; Chen, Ayelet; Feldman, Michal; Levy, Dan

    2016-03-01

    SETD6 (SET-domain-containing protein 6) is a mono-methyltransferase that has been shown to methylate RelA and H2AZ. Using a proteomic approach we recently identified several new SETD6 substrates. To identify novel SETD6 interacting proteins, SETD6 was immunoprecipitated (IP) from Human erythromyeloblastoid leukemia K562 cells. SETD6 binding proteins were subjected to mass-spectrometry analysis resulting in 115 new SETD6 binding candidates. STRING database was used to map the SETD6 interactome network. Network enrichment analysis of biological processes with Gene Ontology (GO) database, identified three major groups; metabolic processes, muscle contraction and protein folding.

  7. Amylin evokes protein p20 phosphorylation and insulin resistance in rat skeletal muscle extensor digitorum longus

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the present study, we investigate effect of amylin on the insulin sensitivity of rat skeletal muscle extensor digitorum longus (EDL) using in vitro intact muscle incubation in combination with metabolic radioactive labeling. The molecular basis of the amylin action was further examined using proteomic analysis. In particular, proteins of interest were characterized using an integrated microcharacterization procedure that involved in-gel trypsin digestion, organic solvent extraction, high performance liquid chromatography separation, microsequencing and microsequence analysis. We found that amylin significantly decreased the insulin-stimulated glucose incorporation into glycogen (p < 0.01) and produced a protein spot of approximately 20 ku in size. This amylin responsive protein (hereby designated as amylin responsive protein 1, APR1) was identified to be protein p20. Moreover, ARP1 spots on gels were found to consistently produce a corresponding radioactive spot on X-ray films in 32Pi but not in 35S-methionine labeling experiments. In conclusion, our results showed that in vitro amylin concomitantly evoked the production of ARP1 and caused insulin resistance in EDL muscle. It is suggested that protein p20 may be involved in amylin signal transduction and the appearance of ARP1 may be a step in a molecular pathway leading to the development of insulin resistance. ARP1 might therefore be a useful molecular marker for amylin action, insulin resistance and Type 2 diabetes.

  8. Protein Intake and Muscle Health in Old Age: From Biological Plausibility to Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Francesco Landi

    2016-05-01

    Full Text Available The provision of sufficient amounts of dietary proteins is central to muscle health as it ensures the supply of essential amino acids and stimulates protein synthesis. Older persons, in particular, are at high risk of insufficient protein ingestion. Furthermore, the current recommended dietary allowance for protein (0.8 g/kg/day might be inadequate for maintaining muscle health in older adults, probably as a consequence of “anabolic resistance” in aged muscle. Older individuals therefore need to ingest a greater quantity of protein to maintain muscle function. The quality of protein ingested is also essential to promoting muscle health. Given the role of leucine as the master dietary regulator of muscle protein turnover, the ingestion of protein sources enriched with this essential amino acid, or its metabolite β-hydroxy β-methylbutyrate, is thought to offer the greatest benefit in terms of preservation of muscle mass and function in old age.

  9. Leucine-enriched essential amino acids attenuate muscle soreness and improve muscle protein synthesis after eccentric contractions in rats.

    Science.gov (United States)

    Kato, Hiroyuki; Suzuki, Hiromi; Mimura, Masako; Inoue, Yoshiko; Sugita, Mayu; Suzuki, Katsuya; Kobayashi, Hisamine

    2015-06-01

    Eccentric exercise results in prolonged muscle weakness and muscle soreness, which are typical symptoms of muscle damage. Recovery from muscle damage is related to mammalian target of rapamycin (mTOR) activity. Leucine-enriched essential amino acids (LEAAs) stimulate muscle protein synthesis via activation of the mTOR pathway. Therefore, we investigated the effect of LEAAs on muscle protein synthesis and muscle soreness after eccentric contractions (EC). Male Sprague-Dawley rats (9-11 weeks old) were administered an LEAA solution (AminoL40; containing 40 % leucine and 60 % other essential amino acids) at 1 g/kg body weight or distilled water (control) 30 min before and 10 min after EC. Tibialis anterior (TA) muscle was exposed to 500 EC by electrical stimulation under anesthesia. The fractional synthesis rate (FSR; %/h) in the TA muscle was measured by incorporating L-[ring-(2)H5] phenylalanine into skeletal muscle protein. Muscle soreness was evaluated by the paw withdrawal threshold using the Randal-Selitto test with some modifications from 1 to 3 days after EC. The FSR in the EC-control group (0.147 ± 0.016 %/h) was significantly lower than in the sedentary group (0.188 ± 0.016 %/h, p < 0.05). AminoL40 administration significantly mitigated the EC-induced impairment of the FSR (0.172 ± 0.018 %/h). EC decreased the paw withdrawal threshold at 1 and 2 days after EC, which indicated that EC induced muscle soreness. Furthermore, AminoL40 administration alleviated the decreased paw withdrawal threshold. These findings suggest that LEAA supplementation improves the rate of muscle protein synthesis and ameliorates muscle soreness after eccentric exercise.

  10. Post-transcriptional regulation of ITGB6 protein levels in damaged skeletal muscle

    OpenAIRE

    Ducceschi, Melissa; Clifton, Lisa G.; Stimpson, Stephen A.; Billin, Andrew N.

    2014-01-01

    We have identified integrin beta 6 (Itgb6) as a transcript highly enriched in skeletal muscle. This finding is unexpected because Itgb6 is typically associated with epithelial expression domains in normal tissue. Further we find that ITGB6 protein expression in muscle is post-transcriptionally regulated. Uninjured muscle expresses Itgb6 RNA but no ITGB6 protein is detectable. Muscle injury induces ITGB6 protein accumulation rapidly post-injury in myofibers adjacent to the site of injury. As r...

  11. Supplemental protein in support of muscle mass and health: advantage whey.

    Science.gov (United States)

    Devries, Michaela C; Phillips, Stuart M

    2015-03-01

    Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging.

  12. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength

    DEFF Research Database (Denmark)

    Andersen, Lars L; Tufekovic, Goran; Zebis, Mette K

    2005-01-01

    of resistance training combined with timed ingestion of isoenergetic protein vs carbohydrate supplementation on muscle fiber hypertrophy and mechanical muscle performance. Supplementation was administered before and immediately after each training bout and, in addition, in the morning on nontraining days......) concentric and eccentric contractions of the knee extensor muscle was measured in an isokinetic dynamometer. After 14 weeks of resistance training, the protein group showed hypertrophy of type I (18% +/- 5%; P muscle fibers, whereas no change above baseline occurred......Acute muscle protein metabolism is modulated not only by resistance exercise but also by amino acids. However, less is known about the long-term hypertrophic effect of protein supplementation in combination with resistance training. The present study was designed to compare the effect of 14 weeks...

  13. Electromyographic analysis: shoulder muscle activity revisited.

    Science.gov (United States)

    Heuberer, Philipp; Kranzl, Andreas; Laky, Brenda; Anderl, Werner; Wurnig, Christian

    2015-04-01

    Restoring optimal strength and biomechanics of a pathologic shoulder knowledge of activity patterns of healthy glenohumeral muscles is mandatory. Yet, data on normal shoulder muscle activity are not always conclusive. The study was undertaken (a) to evaluate muscle activity patterns in the healthy shoulder using surface and fine-wire electromyography (EMG), and (b) to assess method's suitability in the clinical setting especially regarding painfulness and practicability. Surface and fine-wire EMG was performed on 11 healthy subjects (2f/9 m, Ø age 28 years) to assess 14 muscles including rotator cuff muscles during 8 planar standardised shoulder movements (abduction, forward flexion, internal and external rotation in neutral, 45° and 90° abduction). Pain was assessed using the visual analogue scale before testing, after inserting the fine-wire electrodes, after maximal voluntary contraction, before and after exercises, and after electrode removal. The most important finding regarding EMG activity patterns in the healthy shoulder was that the subscapularis activity was found to play a major role in abduction and forward flexion. Furthermore, this study was able to show that EMG measurements, especially fine-wire EMG, is prone to high failure rates (up to 32%); however, pain was not a limiting factor. The present study (1) revealed a new insight, especially finding the subscapularis activity playing a major role in abduction and forward flexion of the healthy shoulder; and (2) motion analysis system and the use of fine-wire electrodes were prone to failure; however, pain was not a limiting factor. Basic Science, Electrodiagnostic Study.

  14. Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy.

    Science.gov (United States)

    Pertille, Adriana; de Carvalho, Candida Luiza Tonizza; Matsumura, Cintia Yuri; Neto, Humberto Santo; Marques, Maria Julia

    2010-02-01

    Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.

  15. Work Done by Titin Protein Folding Assists Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Jaime Andrés Rivas-Pardo

    2016-02-01

    Full Text Available Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin immunoglobulin (Ig domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6–8 pN. We use single-molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but as yet unrecognized, contributor to the force generated by a contracting muscle.

  16. Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle.

    Science.gov (United States)

    Lehmann, Susann; Bass, Joseph J; Barratt, Thomas F; Ali, Mohammed Z; Szewczyk, Nathaniel J

    2017-08-01

    human orthologues, 57 of which are known to be expressed in human skeletal muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent increased autophagy. A significant portion of both the kinome and phosphatome are required for establishing and maintaining C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential regulators of human skeletal muscle for further analysis. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  17. Effect of testosterone on differential muscle growth and on protein and nucleic acid concentrations in muscles of growing lambs.

    Science.gov (United States)

    Arnold, A M; Peralta, J M; Thonney, M L

    1997-06-01

    Growth, nucleic acid, and protein concentrations were measured in three muscles of 20 rams, 20 wethers, and 20 wethers implanted with testosterone. Two lambs from each group were slaughtered at 14-d intervals from 49 to 133 d, and then at 28-d intervals until 217 d, for a total of 10 slaughter ages. Immediately after slaughter, the semitendinosus, splenius, and triceps brachii muscles were removed, trimmed of adhering fat, and weighed. The DNA, RNA, and protein concentrations of these muscles were determined. Testosterone increased combined weight of the three muscles. The splenius muscles of rams and wethers implanted with testosterone were heavier and had a biphasic growth pattern as the combined muscle weight increased, whereas the splenius muscle of wethers had a single growth phase. Rams and implanted wethers had greater splenius muscle DNA and RNA concentrations than wethers as muscle weight increased. This model could be used to study the gene regulation of testosterone-induced muscle growth with the possibility of invoking similar effects in more economically important muscles.

  18. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

    Science.gov (United States)

    Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M

    2016-08-19

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training.

    Science.gov (United States)

    Trommelen, Jorn; van Loon, Luc J C

    2016-11-28

    Protein ingestion following resistance-type exercise stimulates muscle protein synthesis rates, and enhances the skeletal muscle adaptive response to prolonged resistance-type exercise training. As the adaptive response to a single bout of resistance exercise extends well beyond the first couple of hours of post-exercise recovery, recent studies have begun to investigate the impact of the timing and distribution of protein ingestion during more prolonged recovery periods. Recent work has shown that overnight muscle protein synthesis rates are restricted by the level of amino acid availability. Protein ingested prior to sleep is effectively digested and absorbed, and thereby stimulates muscle protein synthesis rates during overnight recovery. When applied during a prolonged period of resistance-type exercise training, protein supplementation prior to sleep can further augment gains in muscle mass and strength. Recent studies investigating the impact of pre-sleep protein ingestion suggest that at least 40 g of protein is required to display a robust increase in muscle protein synthesis rates throughout overnight sleep. Furthermore, prior exercise allows more of the pre-sleep protein-derived amino acids to be utilized for de novo muscle protein synthesis during sleep. In short, pre-sleep protein ingestion represents an effective dietary strategy to improve overnight muscle protein synthesis, thereby improving the skeletal muscle adaptive response to exercise training.

  20. Skeletal muscle responses to negative energy balance: effects of dietary protein.

    Science.gov (United States)

    Carbone, John W; McClung, James P; Pasiakos, Stefan M

    2012-03-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the underlying physiological mechanisms contributing to the loss of skeletal muscle during energy deprivation are not well described. Recent studies have demonstrated that consuming dietary protein at levels above the current recommended dietary allowance (0.8 g · kg(-1) · d(-1)) may attenuate the loss of skeletal muscle mass by affecting the intracellular regulation of muscle anabolism and proteolysis. However, the specific mechanism by which increased dietary protein spares skeletal muscle through enhanced molecular control of muscle protein metabolism has not been elucidated. This article reviews the available literature related to the effects of negative energy balance on skeletal muscle mass, highlighting investigations that assessed the influence of varying levels of dietary protein on skeletal muscle protein metabolism. Further, the molecular mechanisms that may contribute to the regulation of skeletal muscle mass in response to negative energy balance and alterations in dietary protein level are described.

  1. Involvement of skeletal muscle protein, glycogen, and fat metabolism in the adaptation on early lactation of dairy cows.

    Science.gov (United States)

    Kuhla, Björn; Nürnberg, Gerd; Albrecht, Dirk; Görs, Solvig; Hammon, Harald M; Metges, Cornelia C

    2011-09-02

    During early lactation, high-yielding dairy cows cannot consume enough feed to meet nutrient requirements. As a consequence, animals drop into negative energy balance and mobilize body reserves including muscle protein and glycogen for milk production, direct oxidation, and hepatic gluconeogenesis. To examine which muscle metabolic processes contribute to the adaptation during early lactation, six German Holstein cows were blood sampled and muscle biopsied throughout the periparturient period. From pregnancy to lactation, the free plasma amino acid pattern imbalanced and plasma glucose decreased. Several muscle amino acids, as well as total muscle protein, fat, and glycogen, and the expression of glucose transporter-4 were reduced within the first 4 weeks of lactation. The 2-DE and MALDI-TOF-MS analysis identified 43 differentially expressed muscle protein spots throughout the periparturient period. In early lactation, expression of cytoskeletal proteins and enzymes involved in glycogen synthesis and in the TCA cycle was decreased, whereas proteins related to glycolysis, fatty acid degradation, lactate, and ATP production were increased. On the basis of these results, we propose a model in which the muscle breakdown in early lactation provides substrates for milk production by a decoupled Cori cycle favoring hepatic gluconeogenesis and by interfering with feed intake signaling.

  2. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy.

    Science.gov (United States)

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-06-03

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy*

    Science.gov (United States)

    Tando, Toshimi; Hirayama, Akiyoshi; Furukawa, Mitsuru; Sato, Yuiko; Kobayashi, Tami; Funayama, Atsushi; Kanaji, Arihiko; Hao, Wu; Watanabe, Ryuichi; Morita, Mayu; Oike, Takatsugu; Miyamoto, Kana; Soga, Tomoyoshi; Nomura, Masatoshi; Yoshimura, Akihiko; Tomita, Masaru; Matsumoto, Morio; Nakamura, Masaya; Toyama, Yoshiaki; Miyamoto, Takeshi

    2016-01-01

    Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes. PMID:27129272

  4. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  5. Female hormones: do they influence muscle and tendon protein metabolism?

    DEFF Research Database (Denmark)

    Hansen, Mette

    2017-01-01

    (or lack of female hormones) on skeletal muscle protein turnover at rest and in response to exercise. This review is primarily based on data from human trials. Many elderly post-menopausal women experience physical disabilities and loss of independence related to sarcopenia, which reduces life quality......Due to increased longevity, women can expect to live more than one-third of their lives in a post-menopausal state, which is characterised by low circulating levels of oestrogen and progesterone. The aim of this review is to provide insights into current knowledge of the effect of female hormones...... and is associated with substantial financial costs. Resistance training and dietary optimisation can counteract or at least decelerate the degenerative ageing process, but lack of oestrogen in post-menopausal women may reduce their sensitivity to these anabolic stimuli and accelerate muscle loss. Tendons...

  6. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3.

    Science.gov (United States)

    Aguer, Céline; Piccolo, Brian D; Fiehn, Oliver; Adams, Sean H; Harper, Mary-Ellen

    2017-02-01

    Uncoupling protein 3 (UCP3) is highly selectively expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole-body metabolism have not been extensively studied. We utilized untargeted metabolomics to identify novel metabolites that distinguish mice overexpressing UCP3 in muscle, both at rest and after exercise regimens that challenged muscle metabolism, to potentially unmask subtle phenotypes. Male wild-type (WT) and muscle-specific UCP3-overexpressing transgenic (UCP3 Tg) C57BL/6J mice were compared with or without a 5 wk endurance training protocol at rest or after an acute exercise bout (EB). Skeletal muscle, liver, and plasma samples were analyzed by gas chromatography time-of-flight mass spectrometry. Discriminant metabolites were considered if within the top 99th percentile of variable importance measurements obtained from partial least-squares discriminant analysis models. A total of 80 metabolites accurately discriminated UCP3 Tg mice from WT when modeled within a specific exercise condition (i.e., untrained/rested, endurance trained/rested, untrained/EB, and endurance trained/EB). Results revealed that several amino acids and amino acid derivatives in skeletal muscle and plasma of UCP3 Tg mice (e.g., Asp, Glu, Lys, Tyr, Ser, Met) were significantly reduced after an EB; that metabolites associated with skeletal muscle glutathione/Met/Cys metabolism (2-hydroxybutanoic acid, oxoproline, Gly, and Glu) were altered in UCP3 Tg mice across all training and exercise conditions; and that muscle metabolite indices of dehydrogenase activity were increased in UCP3 Tg mice, suggestive of a shift in tissue NADH/NAD(+) ratio. The results indicate that mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, regulating biochemical pathways associated with amino acid metabolism and redox status. That select

  7. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  8. Protein hydrolysates and recovery of muscle damage following eccentric exercise

    Directory of Open Access Journals (Sweden)

    Dale M.J.

    2015-01-01

    Full Text Available Background: A whey protein hydrolysate (NatraBoost XR; WPHNB has been shown to speed repair muscle damage. We sought to determine whether this benefit is specific to this hydrolysate to evaluate a marker for quality control. Methods: Three hydrolysates of the same whey protein isolate (WPI were prepared (WPHNB, WPH1 and WPH2. Isometric knee extensor strength was measured in 39 sedentary male participants before and after 100 maximal eccentric contractions of the knee extensors to induce muscle damage. Participants were then randomised to consume 250 ml of flavoured water (FW, n=9, or 250 ml of FW containing 25 g of either NatraBoost XR (n=3, WPH1 (n=9, WPH2 (n=9 or WPI (n=9. Strength was reassessed over the next seven days while the supplements were consumed daily. Fibroblasts were cultured for 48 hr in the presence of the different hydrolysates, WPI, saline or fetal bovine serum to ascertain effects on cell proliferation. Results: Strength was reduced in all treatment groups after eccentric exercise (P<0.001. Strength recovered steadily over 7 days in the FW, WPI, WPH1 and WPH2 treatment groups (P<0.001, with no difference between treatments (P=0.87. WPHNB promoted faster strength recovery compared with the other treatments (P<0.001. Fibroblast proliferation was greater with WPHNB compared with saline, WPI or the other hydrolysates (P<0.001. Conclusions: Promoting recovery from muscle damage seems unique to WPHNB. In vitro fibroblast proliferation may be a useful marker for quality control. It is not clear whether effects on fibroblast proliferation contribute to the in vivo effect of WPHNB on muscle damage.

  9. Phylogenetic analysis of otospiralin protein

    Science.gov (United States)

    Torktaz, Ibrahim; Behjati, Mohaddeseh; Rostami, Amin

    2016-01-01

    Background: Fibrocyte-specific protein, otospiralin, is a small protein, widely expressed in the central nervous system as neuronal cell bodies and glia. The increased expression of otospiralin in reactive astrocytes implicates its role in signaling pathways and reparative mechanisms subsequent to injury. Indeed, otospiralin is considered to be essential for the survival of fibrocytes of the mesenchymal nonsensory regions of the cochlea. It seems that other functions of this protein are not yet completely understood. Materials and Methods: Amino acid sequences of otospiralin from 12 vertebrates were derived from National Center for Biotechnology Information database. Phylogenetic analysis and phylogeny estimation were performed using MEGA 5.0.5 program, and neighbor-joining tree was constructed by this software. Results: In this computational study, the phylogenetic tree of otospiralin has been investigated. Therefore, dendrograms of otospiralin were depicted. Alignment performed in MUSCLE method by UPGMB algorithm. Also, entropy plot determined for a better illustration of amino acid variations in this protein. Conclusion: In the present study, we used otospiralin sequence of 12 different species and by constructing phylogenetic tree, we suggested out group for some related species. PMID:27099854

  10. LRT, a tendon-specific leucine-rich repeat protein, promotes muscle-tendon targeting through its interaction with Robo.

    Science.gov (United States)

    Wayburn, Bess; Volk, Talila

    2009-11-01

    Correct muscle migration towards tendon cells, and the adhesion of these two cell types, form the basis for contractile tissue assembly in the Drosophila embryo. While molecules promoting the attraction of muscles towards tendon cells have been described, signals involved in the arrest of muscle migration following the arrival of myotubes at their corresponding tendon cells have yet to be elucidated. Here, we describe a novel tendon-specific transmembrane protein, which we named LRT due to the presence of a leucine-rich repeat domain (LRR) in its extracellular region. Our analysis suggests that LRT acts non-autonomously to better target the muscle and/or arrest its migration upon arrival at its corresponding tendon cell. Muscles in embryos lacking LRT exhibited continuous formation of membrane extensions despite arrival at their corresponding tendon cells, and a partial failure of muscles to target their correct tendon cells. In addition, overexpression of LRT in tendon cells often stalled muscles located close to the tendon cells. LRT formed a protein complex with Robo, and we detected a functional genetic interaction between Robo and LRT at the level of muscle migration behavior. Taken together, our data suggest a novel mechanism by which muscles are targeted towards tendon cells as a result of LRT-Robo interactions. This mechanism may apply to the Robo-dependent migration of a wide variety of cell types.

  11. Contractile proteins of endothelial cells, platelets and smooth muscle.

    Science.gov (United States)

    Becker, C G; Nachman, R L

    1973-04-01

    In experiments described herein it was observed, by direct and indirect immunofluorescence technics, that rabbit antisera to human platelet actomyosin (thrombosthenin) stained mature megakaryocytes, blood platelets, endothelial cells and smooth muscle cells of arteries and veins, endothelial cells of liver sinusoids and certain capillaries, uterine smooth muscle cells, myoepithelial cells, perineurial cells of peripheral nerves and "fibroblastic" cells of granulation tissue. The specificity of immunohistologic staining was confirmed by appropriate absorption and blocking studies and immunodiffusional analysis in agarose gel. It was also observed by immunodiffusional analysis in agarose gel, electrophoresis of actomyosin fragments in polyacrylamide gels, immune inhibition of actomyosin ATPase activity and immune aggregation of platelets that uterine and platelet actomyosin are partially, but not completely, identical.

  12. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Palmisano, Giuseppe

    2014-01-01

    changes at the phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat quality development through the regulation of proteins involved in glucose metabolism and muscle contraction, thereby affecting glycolysis...... proteins underwent significant changes at phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat development through the regulation of proteins involved in metabolism and muscle contraction, thereby affecting......UNLABELLED: Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved...

  13. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  14. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    Science.gov (United States)

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  15. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  16. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis.

    Science.gov (United States)

    Carbone, John W; Margolis, Lee M; McClung, James P; Cao, Jay J; Murphy, Nancy E; Sauter, Edward R; Combs, Gerald F; Young, Andrew J; Pasiakos, Stefan M

    2013-12-01

    This study was undertaken to characterize the ubiquitin proteasome system (UPS) response to varied dietary protein intake, energy deficit (ED), and consumption of a mixed meal. A randomized, controlled trial of 39 adults consuming protein at 0.8 (recommended dietary allowance [RDA]), 1.6 (2×-RDA), or 2.4 (3×-RDA) g · kg(-1) · d(-1) for 31 d. A 10-d weight maintenance (WM) period was followed by 21 d of 40% ED. Ubiquitin (Ub)-mediated proteolysis and associated gene expression were assessed in the postabsorptive (fasted) and postprandial (fed; 480 kcal, 20 g protein) states after WM and ED by using muscle biopsies, fluorescence-based assays, immunoblot analysis, and real-time qRT-PCR. In the assessment of UPS responses to varied protein intakes, ED, and feeding, the RDA, WM, and fasted measures served as appropriate controls. ED resulted in the up-regulation of UPS-associated gene expression, as mRNA expression of the atrogenes muscle RING finger-1 (MuRF1) and atrogin-1 were 1.2- and 1.3-fold higher (P<0.05) for ED than for WM. However, mixed-meal consumption attenuated UPS-mediated proteolysis, independent of energy status or dietary protein, as the activities of the 26S proteasome subunits β1, β2, and β5 were lower (P<0.05) for fed than for fasted. Muscle protein ubiquitylation was also 45% lower (P<0.05) for fed than for fasted, regardless of dietary protein and energy manipulations. Independent of habitual protein intake and despite increased MuRF1 and atrogin-1 mRNA expression during ED, consuming a protein-containing mixed meal attenuates Ub-mediated proteolysis.

  17. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Karlsson, Anders H

    2011-01-01

    Meat quality development is highly influenced by the pH decline caused by the postmortem (PM) glycolysis. Protein phosphorylation is an important mechanism in regulating the activity of glycometabolic enzymes. Here, a gel-based phosphoproteomic study was performed to analyze the protein...... phosphorylation in sarcoplasmic proteins from three groups of pigs with different pH decline rates from PM 1 to 24¿h. Globally, the fast pH decline group had the highest phosphorylation level at PM 1¿h, but lowest at 24¿h, whereas the slow pH decline group showed the reverse case. The same pattern was also...... observed in most individual bands in 1-DE. The protein phosphorylation levels of 12 bands were significantly affected by the synergy effects of pH and time (p...

  18. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    INTRODUCTION: Patients with Ehlers Danlos Syndrome are known to have genetically impaired connective tissue and skeletal muscle symptoms in form of pain, fatigue and cramps, however earlier studies have not been able to link these symptoms to morphological muscle changes. METHODS: We obtained...... skeletal muscle biopsies in patients with classic EDS (cEDS, n=5 (Denmark)+ 8 (The Netherlands)) and vascular EDS (vEDS, n=3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable...... isotope technique). RESULTS: The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared to c...

  19. C. elegans PAT-9 is a nuclear zinc finger protein critical for the assembly of muscle attachments

    Directory of Open Access Journals (Sweden)

    Liu Qian

    2012-05-01

    Full Text Available Abstract Background Caenorhabditis elegans sarcomeres have been studied extensively utilizing both forward and reverse genetic techniques to provide insight into muscle development and the mechanisms behind muscle contraction. A previous genetic screen investigating early muscle development produced 13 independent mutant genes exhibiting a Pat (paralyzed and arrested elongation at the two-fold length of embryonic development muscle phenotype. This study reports the identification and characterization of one of those genes, pat-9. Results Positional cloning, reverse genetics, and plasmid rescue experiments were used to identify the predicted C. elegans gene T27B1.2 (recently named ztf-19 as the pat-9 gene. Analysis of pat-9 showed it is expressed early in development and within body wall muscle lineages, consistent with a role in muscle development and producing a Pat phenotype. However, unlike most of the other known Pat gene family members, which encode structural components of muscle attachment sites, PAT-9 is an exclusively nuclear protein. Analysis of the predicted PAT-9 amino acid sequence identified one putative nuclear localization domain and three C2H2 zinc finger domains. Both immunocytochemistry and PAT-9::GFP fusion expression confirm that PAT-9 is primarily a nuclear protein and chromatin immunoprecipitation (ChIP experiments showed that PAT-9 is present on certain gene promoters. Conclusions We have shown that the T27B1.2 gene is pat-9. Considering the Pat-9 mutant phenotype shows severely disrupted muscle attachment sites despite PAT-9 being a nuclear zinc finger protein and not a structural component of muscle attachment sites, we propose that PAT-9 likely functions in the regulation of gene expression for some necessary structural or regulatory component(s of the muscle attachment sites.

  20. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats.

    Science.gov (United States)

    Gianelo, M C S; Polizzelo, J C; Chesca, D; Mattiello-Sverzut, A C

    2016-02-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (Pstretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.

  1. In Vivo Imaging of Far-red Fluorescent Proteins after DNA Electrotransfer to Muscle Tissue

    Directory of Open Access Journals (Sweden)

    Hojman Pernille

    2009-04-01

    Full Text Available Abstract DNA electrotransfer to muscle tissue yields long-term, high levels of gene expression; showing great promise for future gene therapy. We want to characterize the novel far-red fluorescent protein Katushka as a marker for gene expression using time domain fluorescence in vivo imaging. Highly efficient transgenic expression was observed after DNA electrotransfer with 100-fold increase in fluorescent intensity. The fluorescent signal peaked 1 week after transfection and returned to background level within 4 weeks. Katushka expression was not as stable as GFP expression, which was detectable for 8 weeks. Depth and 3D analysis proved that the expression was located in the target muscle. In vivo bio-imaging using the novel Katushka fluorescent protein enables excellent evaluation of the transfection efficacy, and spatial distribution, but lacks long-term stability.

  2. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  3. Post-exercise skeletal muscle glycogen related to plasma cytokines and muscle IL-6 protein content, but not muscle cytokine mRNA expression

    Directory of Open Access Journals (Sweden)

    David Christopher Nieman

    2015-09-01

    Full Text Available Objectives: The purpose of this study was to correlate post-exercise muscle glycogen levels with changes in plasma cytokine, and muscle mRNA cytokine expression and protein content. Methods: Twenty-four male runners (age 36.5±1.8 y, VO2max 60.0±1.5 ml.kg.-1min-1 ran twice (separated by 4 weeks on treadmills to exhaustion at 70% VO2max (average time and distance of 2.24±0.09 h and 24.9±1.1 km. Muscle biopsies from the vastus lateralis and blood samples were collected before and after each run, with IL-6, IL-8, and MCP-1 measured in muscle (mRNA and protein and plasma. Data from the two runs were averaged. Results: Participants experienced a 35.3±4.2% decrease (P<0.001 in skeletal muscle glycogen content (67.5±2.8 to 44.3 ±3.7 mmol/kg wet weight. Muscle mRNA expression for IL-6, IL-8, and MCP-1 increased 7.34±0.90-, 13.9±2.3-, and 4.10±0.60- fold, respectively (all, P<0.001. Skeletal muscle IL-6, IL-8, and MCP-1 protein content increased 35.8±10.6%, 80.6±12.1%, and 105±17.9%, respectively (all P≤0.005. Plasma IL-6, IL-8, and MCP-1 increased 47.1±10.0-, 2.6±0.3-, and 1.6±0.1-fold, respectively (all, P<0.001. Post-exercise muscle glycogen concentrations were negatively correlated with run time to exhaustion (r=-0.70, P<0.001, and changes in muscle IL-6 protein content (r=-0.44, P=0.049, plasma IL-6 (r=-0.72, P<0.001, IL-8 (r=-0.60, P=0.002, and MCP-1 (r=-0.589, P=0.002, but not with changes in muscle IL-8 and MCP-1 protein content, or muscle mRNA expression for IL-6, IL-8, and MCP-1. Conclusions: Prolonged and intensive running increased muscle mRNA expression, muscle protein content, and plasma levels for IL-6, IL-8, and MCP-1, and post-run muscle glycogen levels were most strongly related to plasma cytokine levels.

  4. "Importin" signaling roles for import proteins: the function of Drosophila importin-7 (DIM-7) in muscle-tendon signaling.

    Science.gov (United States)

    Liu, Ze Cindy; Geisbrecht, Erika R

    2012-01-01

    The formation of a mature myotendinous junction (MTJ) between a muscle and its site of attachment is a highly regulated process that involves myofiber migration, cell-cell signaling, and culminates with the stable adhesion between the adjacent muscle-tendon cells. Improper establishment or maintenance of muscle-tendon attachment sites results in a decrease in force generation during muscle contraction and progressive muscular dystrophies in vertebrate models. Many studies have demonstrated the important role of the integrins and integrin-associated proteins in the formation and maintenance of the MTJ. We recently demonstrated that moleskin (msk), the gene that encodes for Drosophila importin-7 (DIM-7), is required for the proper formation of muscle-tendon adhesion sites in the developing embryo. Further studies demonstrated an enrichment of DIM-7 to the ends of muscles where the muscles attach to their target tendon cells. Genetic analysis supports a model whereby msk is required in the muscle and signals via the secreted epidermal growth factor receptor (Egfr) ligand Vein to regulate tendon cell maturation. These data demonstrate a novel role for the canonical nuclear import protein DIM-7 in establishment of the MTJ.

  5. Injection of duck recombinant follistatin fusion protein into duck muscle tissues stimulates satellite cell proliferation and muscle fiber hypertrophy.

    Science.gov (United States)

    Liu, He-he; Wang, Ji-wen; Yu, Hai-yue; Zhang, Rong-ping; Chen, Xi; Jin, Hai-bo; Dai, Fei; Li, Liang; Xu, Feng

    2012-06-01

    Follistatin (FST) can inhibit the expression of myostatin, which is a predominant inhibitor of muscle development. The potential application of myostatin-based technology has been prompted in different ways in agriculture. We previously constructed an expression vector of duck FST and isolated the FST fusion protein. After the protein was purified and refolded, it was added to the medium of duck myoblasts cultured in vitro. The results show that the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide value of the myoblasts in the duck FST treatment group is higher than that in the control group, which indicates that the duck FST fusion protein exhibits the biological activities that can accelerate myoblast proliferation. To further investigate the roles of duck FST on muscle development, we injected the protein into the duck muscle tissues in vivo. The results show that both the duck muscle fiber cross-sectional area and the satellite cell activation frequency are influenced more in the FST treatment group than they are in the control group. In addition to these phenomena, expression of MyoD and Myf5 were increased, and the expression of myostatin was decreased. Together, these results suggest the potential for using duck FST fusion protein to inhibit myostatin activity and subsequently to enhance muscle growth in vivo. The mechanism by which FST regulates muscle development in the duck is similar to that in mammals and fishes.

  6. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    Science.gov (United States)

    Mitchell, Cameron J.; McGregor, Robin A.; D’Souza, Randall F.; Thorstensen, Eric B.; Markworth, James F.; Fanning, Aaron C.; Poppitt, Sally D.; Cameron-Smith, David

    2015-01-01

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001) to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein. PMID:26506377

  7. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men.

    Science.gov (United States)

    Mitchell, Cameron J; McGregor, Robin A; D'Souza, Randall F; Thorstensen, Eric B; Markworth, James F; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2015-10-21

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring (13)C₆ phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h(-1) in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p milk and whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein.

  8. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men

    Directory of Open Access Journals (Sweden)

    Cameron J. Mitchell

    2015-10-01

    Full Text Available The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8 or whey protein (n = 8 while undergoing a primed constant infusion of ring 13C6 phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR were 0.019% ± 0.009% and 0.021% ± 0.018% h−1 in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p < 0.001 to 0.057% ± 0.018% and 0.052% ± 0.024% h−1 in the milk and whey groups respectively with no difference between groups (p = 0.810. FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein.

  9. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages.

    Science.gov (United States)

    van Eldik, Willemijn; Beqqali, Abdelaziz; Monshouwer-Kloots, Jantine; Mummery, Christine; Passier, Robert

    2011-01-01

    We recently identified a new Z-disc protein, CHAP (Cytoskeletal Heart-enriched Actin-associated Protein), which is expressed in striated muscle and plays an important role during embryonic muscle development in mouse and zebrafish. Here, we confirm and further extend these findings by (i) the identification and characterization of the CHAP orthologue in chick and (ii) providing a detailed analysis of CHAP expression in mouse during embryonic and adult stages. Chick CHAP contains a PDZ domain and a nuclear localization signal, resembling the human and mouse CHAPa. CHAP is expressed in the developing heart and somites, as well as muscle precursors of the limb buds in mouse and chick embryos. CHAP expression in heart and skeletal muscle is maintained in adult mice, both in slow and fast muscle fibers. Moreover, besides expression in striated muscle, we demonstrate that CHAP is expressed in smooth muscle cells of aorta, carotid and coronary arteries in adult mice, but not during embryonic development.

  10. Smooth muscle archvillin is an ERK scaffolding protein.

    Science.gov (United States)

    Gangopadhyay, Samudra S; Kengni, Edouard; Appel, Sarah; Gallant, Cynthia; Kim, Hak Rim; Leavis, Paul; DeGnore, Jon; Morgan, Kathleen G

    2009-06-26

    ERK influences a number of pathways in all cells, but how ERK activities are segregated between different pathways has not been entirely clear. Using immunoprecipitation and pulldown experiments with domain-specific recombinant fragments, we show that smooth muscle archvillin (SmAV) binds ERK and members of the ERK signaling cascade in a domain-specific, stimulus-dependent, and pathway-specific manner. MEK binds specifically to the first 445 residues of SmAV. B-Raf, an upstream regulator of MEK, constitutively interacts with residues 1-445 and 446-1250. Both ERK and 14-3-3 bind to both fragments, but in a stimulus-specific manner. Phosphorylated ERK is associated only with residues 1-445. An ERK phosphorylation site was determined by mass spectrometry to reside at Ser132. A phospho-antibody raised to this site shows that the site is phosphorylated during alpha-agonist-mediated ERK activation in smooth muscle tissue. Phosphorylation of SmAV by ERK decreases the association of phospho-ERK with SmAV. These results, combined with previous observations, indicate that SmAV serves as a new ERK scaffolding protein and provide a mechanism for regulation of ERK binding, activation, and release from the signaling complex.

  11. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    Directory of Open Access Journals (Sweden)

    Francesca Magherini

    Full Text Available Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  12. Determining the Sub-Cellular Localization of Proteins within Caenorhabditis elegans Body Wall Muscle

    Science.gov (United States)

    Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G.

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive “localizome” for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function. PMID:21611156

  13. Morphological analysis and muscle-associated gene expression during different muscle growth phases of Megalobrama amblycephala.

    Science.gov (United States)

    Zhu, K C; Yu, D H; Zhao, J K; Wang, W M; Wang, H L

    2015-09-28

    Skeletal muscle growth is regulated by both positive and negative factors, such as myogenic regulatory factors (MRFs) and myostatin (MSTN), and involves both hyperplasia and hypertrophy. In the present study, morphological changes during muscle development in Megalobrama amblycephala were characterized and gene expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in juvenile [60, 90, 120, and 180 days post-hatching (dph)] and adult fish. Our results show that during muscle development, the frequency of muscle fibers with a diameter muscles, with a concomitant increase in the frequency of >30 μm fibers in red muscle and >50 μm fibers in white muscle. At 90-120 dph, the ratio of hyperplastic to hypertrophic areas in red and white muscles increased, but later decreased at 120-180 dph. The effect of hypertrophy was significantly larger than hyperplasia during these phases. qRT-PCR indicated MRF and MSTN (MSTNa and MSTNb) genes had similar expression patterns that peaked at 120 dph, with the exception of MSTNa. This new information on the molecular regulation of muscle growth and rapid growth phases will be of value to the cultivation of M. amblycephala.

  14. May Sonic Hedgehog proteins be markers for malignancy in uterine smooth muscle tumors?

    Science.gov (United States)

    Garcia, Natalia; Bozzini, Nilo; Baiocchi, Glauco; da Cunha, Isabela Werneck; Maciel, Gustavo Arantes; Soares Junior, José Maria; Soares, Fernando Augusto; Baracat, Edmund Chada; Carvalho, Katia Candido

    2016-04-01

    Several studies have demonstrated that the Sonic Hedgehog signaling pathway (SHH) plays an important role in tumorigenesis and cellular differentiation. We analyzed the protein expression of SHH pathway components and evaluated whether their profile could be useful for the diagnosis, prognosis, or prediction of the risk of malignancy for uterine smooth muscle tumors (USMTs). A total of 176 samples (20 myometrium, 119 variants of leiomyoma, and 37 leiomyosarcoma) were evaluated for the protein expression of the SHH signaling components, HHIP1 (SHH inhibitor), and BMP4 (SHH target) by immunohistochemistry. Western blot analysis was performed to verify the specificity of the antibodies. We grouped leiomyoma samples into conventional leiomyomas and unusual leiomyomas that comprise atypical, cellular, mitotically active leiomyomas and uterine smooth muscle tumors of uncertain malignant potential. Immunohistochemical analysis showed that SMO, SUFU, GLI1, GLI3, and BMP4 expression gradually increased depending on to the histologic tissue type. The protein expression of SMO, SUFU, and GLI1 was increased in unusual leiomyoma and leiomyosarcoma samples compared to normal myometrium. The inhibitor HHIP1 showed higher expression in myometrium, whereas only negative or basal expression of SMO, SUFU, GLI1, and GLI3 was detected in these samples. Strong expression of SHH was associated with poorer overall survival. Our data suggest that the expression of SHH proteins can be useful for evaluating the potential risk of malignancy for USMTs. Moreover, GLI1 and SMO may serve as future therapeutic targets for women with USMTs.

  15. The declined phosphorylation of Heat shock protein 27 in rat cardiac muscle after hindlimb unloading

    Science.gov (United States)

    Yuan, Ming; Jiang, Shizhong; Li, Zhili; Yuan, Min; Ting, Li; Ying, Zhang; Wang, Desheng

    2009-07-01

    Hindlimb unloading can induce the cardiac atrophy and diminished cardiac function, however, the mechanisms responsible for which remain elusive. The chronic volume unloading of heart, which decreases the local mechanical stress, may lead to cardiac atrophy after hindlimb unloading. Many studies showed that integrin signaling, p38 MAPK, Heat shock protein 27 and cytoskeleton involved in the hypertrophic growth induced by mechanical stress. However, the mechanisms responsible for cardiac atrophy after hindlimb unloading are still unclear. In this study, we used the tail-suspended, hindlimb unloading rat model to simulate the effects of microgravity. Western blot analysis was used to detect the protein expression of Heat shock protein 27, focal adhesion kinase, p38 MAPK and their phosphorylation levels in rat cardiac muscle after 14d hindlimb unloading. The results showed that the phosphorylation levels of both Heat shock protein 27 and p38 MAPK were decreased significantly in rat cardiac muscle after hindlimb unloading. However, the phosphorylation level of focal adhesion kinase was not decreased significantly. The results suggested that Heat shock protein 27, the downstream of p38 MAPK, might play a critical role in the cardiac atrophy in response to simulated microgravity induced by hindlimb unloading.

  16. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy.

    Science.gov (United States)

    Damas, Felipe; Phillips, Stuart; Vechin, Felipe Cassaro; Ugrinowitsch, Carlos

    2015-06-01

    Muscle protein synthesis (MPS) is stimulated by resistance exercise (RE) and is further stimulated by protein ingestion. The summation of periods of RE-induced increases in MPS can induce hypertrophy chronically. As such, studying the response of MPS with resistance training (RT) is informative, as adaptations in this process can modulate muscle mass gain. Previous studies have shown that the amplitude and duration of increases in MPS after an acute bout of RE are modulated by an individual's training status. Nevertheless, it has been shown that the initial responses of MPS to RE and nutrition are not correlated with subsequent hypertrophy. Thus, early acute responses of MPS in the hours after RE, in an untrained state, do not capture how MPS can affect RE-induced muscle hypertrophy. The purpose of this review is provide an in-depth understanding of the dynamic process of muscle hypertrophy throughout RT by examining all of the available data on MPS after RE and in different phases of an RT programme. Analysis of the time course and the overall response of MPS is critical to determine the potential protein accretion after an RE bout. Exercise-induced increases in MPS are shorter lived and peak earlier in the trained state than in the untrained state, resulting in a smaller overall muscle protein synthetic response in the trained state. Thus, RT induces a dampening of the MPS response, potentially limiting protein accretion, but when this occurs remains unknown.

  17. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  18. Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle.

    Science.gov (United States)

    Alm, Petter S; de Castro Barbosa, Thais; Barrès, Romain; Krook, Anna; Zierath, Juleen R

    2017-07-01

    Parental nutrition and lifestyle impact the metabolic phenotype of the offspring. We have reported that grandpaternal chronic high-fat diet (HFD) transgenerationally impairs glucose metabolism in subsequent generations. Here we determined whether grandpaternal diet transgenerationally impacts the transcriptome and lipidome in skeletal muscle. Our aim was to identify tissue-specific pathways involved in transgenerational inheritance of environmental-induced phenotypes. F0 male Sprague-Dawley rats were fed a HFD or chow for 12 weeks before breeding with chow-fed females to generate the F1 generation. F2 offspring were generated by mating F1 males fed a chow diet with an independent line of chow-fed females. F1 and F2 offspring were fed chow or HFD for 12 weeks. Transcriptomic and LC-MS lipidomic analyses were performed in extensor digitorum longus muscle from F2-females rats. Gene set enrichment analysis (GSEA) was performed to determine pathways reprogrammed by grandpaternal diet. GSEA revealed an enrichment of the unfolded protein response pathway in skeletal muscle of grand-offspring from HFD-fed grandfathers compared to grand-offspring of chow-fed males. Activation of the stress sensor (ATF6α), may be a pivotal point whereby this pathway is activated. Interestingly, skeletal muscle from F1-offspring was not affected in a similar manner. No major changes were observed in the skeletal muscle lipidome profile due to grandpaternal diet. Grandpaternal HFD-induced obesity transgenerationally affected the skeletal muscle transcriptome. This finding further highlights the impact of parental exposure to environmental factors on offspring's development and health.

  19. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    to a substantial increase in net muscle protein degradation, and that a lowering of the starting muscle glycogen content leads to a further increase. The carbon atoms of the branched-chain amino acids (BCAA), glutamate, aspartate and asparagine, liberated by protein degradation, and the BCAA and glutamate...

  20. Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review

    NARCIS (Netherlands)

    Trommelen, J.; Groen, B.; Hamer, H.M.; Groot, de C.P.G.M.; Loon, van L.J.C.

    2015-01-01

    Background Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. Objective To ass

  1. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  2. Analysis and Modelling of Muscles Motion during Whole Body Vibration

    Directory of Open Access Journals (Sweden)

    La Gatta A

    2010-01-01

    Full Text Available The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60 Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation.

  3. Protein dynamics in skeletal muscle after trauma: local and systemic effects.

    Science.gov (United States)

    Downey, R S; Monafo, W W; Karl, I E; Matthews, D E; Bier, D M

    1986-03-01

    Injury is attended by accelerated skeletal muscle proteolysis. Accurate definition of this hypercatabolic response and its mediation is requisite for specific therapy. We measured protein dynamics in the incubated and intact epitrochlearis and soleus muscles excised from both forelimbs and both hindlimbs of rats 4 days after injury by either a single hind limb scald (90 degrees C water for 3 seconds; metabolic rate (MR) + 15%, urinary urea nitrogen (UUN) + 10%) or a 5% excision (dorsal skin removed to fascia; MR + 40%, UUN + 90%). Protein synthesis (3H phenylalanine incorporation) increased only in the injured soleus from the scalded hind limb (+100%). Actin and myosin breakdown (3-methylhistidine release) increased in all muscles tested and was consistently larger in epitrochlearis than in soleus muscles. Breakdown of the mixed protein pool (tyrosine release) increased but less so than 3-methylhistidine and did not reach significance in the uninjured soleus muscle of scalded rats. With respect to fiber type, white fiber epitrochlearis muscle demonstrated a more pronounced elevation of both measures of breakdown but at a lower metabolic rate than did red fiber soleus muscle. Increasing MR was associated with a linear increase in soleus proteolysis but no further change in epitrochlearis breakdown. We conclude that protein breakdown is increased in skeletal muscle distant from injury; however, even when metabolic stress is severe, synthesis is unchanged. Muscles of different fiber composition are not equally labile. Furthermore, myofibrillar protein is more labile than the mixed protein pool.

  4. Phosphorylation of anchoring protein by calmodulin protein kinase associated to the sarcoplasmic reticulum of rabbit fast-twitch muscle.

    Science.gov (United States)

    Damiani, E; Sacchetto, R; Margreth, A

    2000-12-09

    Regulatory phosphorylation of phospholamban and of SR Ca(2+)-ATPase SERCA2a isoform by endogenous CaM-K II in slow-twitch skeletal and cardiac sarcoplasmic reticulum (SR) is well documented, but much less is known of the exact functional role of CaM K II in fast-twitch muscle SR. Recently, it was shown that RNA splicing of brain-specific alpha CaM K II, gives rise to a truncated protein (alpha KAP), consisting mainly of the association domain, serving to anchor CaM K II to SR membrane in rat skeletal muscle [Bayer, K.-U., et al. (1998) EMBO J. 19, 5598-5605]. In the present study, we searched for the presence of alpha KAP in sucrose-density purified SR membrane fractions from representative fast-twitch and slow-twitch limb muscles, both of the rabbit and the rat, using immunoblot techniques and antibody directed against the association domain of alpha CaM K II. Putative alpha KAP was immunodetected as a 23-kDa electrophoretic component on SDS-PAGE of the isolated SR from fast-twitch but not from slow-twitch muscle, and was further identified as a specific substrate of endogenous CaM K II, in the rabbit. Immunodetected, (32)P-labeled, non-calmodulin binding protein, behaved as a single 23-kDa protein species under several electrophoretic conditions. The 23-kDa protein, with defined properties, was isolated as a complex with 60-kDa delta CaM K II isoform, by sucrose-density sedimentation analysis. Moreover, we show here that putative alphaKAP, in spite of its inability to bind CaM in ligand blot overlay, co-eluted with delta CaM K II from CaM-affinity columns. That raises the question of whether CaM K II-mediated phosphorylation of alpha KAP and triadin together might be involved in a molecular signaling pathway important for SR Ca(2+)-release in fast-twitch muscle SR.

  5. Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle.

    Science.gov (United States)

    Mobley, C Brooks; Hornberger, Troy A; Fox, Carlton D; Healy, James C; Ferguson, Brian S; Lowery, Ryan P; McNally, Rachel M; Lockwood, Christopher M; Stout, Jeffrey R; Kavazis, Andreas N; Wilson, Jacob M; Roberts, Michael D

    2015-01-01

    Phosphatidic acid (PA) is a diacyl-glycerophospholipid that acts as a signaling molecule in numerous cellular processes. Recently, PA has been proposed to stimulate skeletal muscle protein accretion, but mechanistic studies are lacking. Furthermore, it is unknown whether co-ingesting PA with other leucine-containing ingredients can enhance intramuscular anabolic signaling mechanisms. Thus, the purpose of this study was to examine if oral PA feeding acutely increases anabolic signaling markers and muscle protein synthesis (MPS) in gastrocnemius with and without whey protein concentrate (WPC). Overnight fasted male Wistar rats (~250 g) were randomly assigned to four groups: control (CON, n = 6-13), PA (29 mg; n = 8), WPC (197 mg; n = 8), or PA + WPC (n = 8). Three hours post-feeding, gastrocnemius muscle was removed for markers of Akt-mTOR signaling, gene expression patterns related to skeletal muscle mass regulation and metabolism, and MPS analysis via the SUnSET method. Compared to CON rats, PA, WPC and PA + WPC resulted in a significant elevation in the phosphorylation of mTOR (Ser2481) and rps6 (Ser235/236) (p < 0.05) in the gastrocnemius though there were no differences between the supplemented groups. MPS levels in the gastrocnemius were significantly (p < 0.05) elevated in WPC versus CON rats, and tended to be elevated in PA versus CON rats (p = 0.08), though MPS was less in PA + WPC versus WPC rats (p < 0.05) in spite of robust increases in mTOR pathway activity markers in the former group. C2C12 myoblast data agreed with the in vivo data herein showing that PA increased MPS levels 51% (p < 0.001) phosphorylated p70s6k (Thr389) levels 67% (p < 0.001). Our results are the first in vivo evidence to demonstrate that PA tends to increases MPS 3 h post-feeding, though PA may delay WPC-mediated MPS kinetics within a 3 h post-feeding window.

  6. Noninvasive analysis of human neck muscle function

    Science.gov (United States)

    Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.

    1995-01-01

    STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few

  7. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy.

    Science.gov (United States)

    Rahbek, Stine Klejs; Farup, Jean; Møller, Andreas Buch; Vendelbo, Mikkel Holm; Holm, Lars; Jessen, Niels; Vissing, Kristian

    2014-10-01

    Greater force produced with eccentric (ECC) compared to concentric (CONC) contractions, may comprise a stronger driver of muscle growth, which may be further augmented by protein supplementation. We investigated the effect of differentiated contraction mode with either whey protein hydrolysate and carbohydrate (WPH + CHO) or isocaloric carbohydrate (CHO) supplementation on regulation of anabolic signalling, muscle protein synthesis (MPS) and muscle hypertrophy. Twenty-four human participants performed unilateral isolated maximal ECC versus CONC contractions during exercise habituation, single-bout exercise and 12 weeks of training combined with WPH + CHO or CHO supplements. In the exercise-habituated state, p-mTOR, p-p70S6K, p-rpS6 increased by approximately 42, 206 and 213 %, respectively, at 1 h post-exercise, with resistance exercise per se; whereas, the phosphorylation was exclusively maintained with ECC at 3 and 5 h post-exercise. This acute anabolic signalling response did not differ between the isocaloric supplement types, neither did protein fractional synthesis rate differ between interventions. Twelve weeks of ECC as well as CONC resistance training augmented hypertrophy with WPH + CHO group compared to the CHO group (7.3 ± 1.0 versus 3.4 ± 0.8 %), independently of exercise contraction type. Training did not produce major changes in basal levels of Akt-mTOR pathway components. In conclusion, maximal ECC contraction mode may constitute a superior driver of acute anabolic signalling that may not be mirrored in the muscle protein synthesis rate. Furthermore, with prolonged high-volume resistance training, contraction mode seems less influential on the magnitude of muscle hypertrophy, whereas protein and carbohydrate supplementation augments muscle hypertrophy as compared to isocaloric carbohydrate supplementation .

  8. Large GLUT4 vesicles are stationary while locally and reversibly depleted during transient insulin stimulation of skeletal muscle of living mice: imaging analysis of GLUT4-enhanced green fluorescent protein vesicle dynamics

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Galbo, Henrik; Brandauer, Josef

    2007-01-01

    OBJECTIVE: Insulin stimulates glucose transport in skeletal muscle by GLUT4 translocation from intracellular compartments to sarcolemma and t-tubules. We studied in living animals the recruitment of GLUT4 vesicles in more detail than previously done and, for the first time, analyzed the steady......-state recycling and subsequent re-internalization of GLUT4 on an insulin bolus. RESEARCH DESIGN AND METHODS: A confocal imaging technique was used in GLUT4-enhanced green fluorescent protein-transfected superficial muscle fibers in living mice. RESULTS: During the first 30 min of insulin stimulation, very few...... superficially or deeply located GLUT4 storage vesicles (>1 microm) moved in toto. Rather, big vesicles were stationary in their original position at sarcolemma or t-tubules and were locally depleted of GLUT4 by budding off of smaller vesicles. Photobleaching experiments revealed that during initial...

  9. Whole body and skeletal muscle protein turnover in recovery from burns.

    Science.gov (United States)

    Porter, Craig; Hurren, Nicholas M; Herndon, David N; Børsheim, Elisabet

    2013-01-01

    Trauma and critical illness are associated with a stress response that results in increased skeletal muscle protein catabolism, which is thought to facilitate the synthesis of acute phase proteins in the liver as well as proteins involved in immune function. What makes burn injury a unique form of trauma is the existence of vast skin lesions, where the majority of afflicted tissue is often surgically excised post injury. Thereafter, recovery is dependent on the formation of a significant quantity of new skin, meaning that the burned patient requires a large and sustained supply of amino acids to facilitate wound healing. Skeletal muscle has the capacity to store surplus glucose and fatty acids within glycogen and triacylglycerol depots respectively, where glycogen and fatty acids can be mobilized during prolonged periods of caloric restriction or heightened metabolic demand (e.g., exercise), to be catabolized in order to maintain cellular ATP availability. Amino acids, on the other hand, are not generally considered to be stored in such a manner within skeletal muscle, i.e., in a temporary pool independent of structural proteins and cellular organelles etc. Subsequently, in response to severe thermal trauma, skeletal muscle assumes the role of an amino acid reserve where muscle protein breakdown and amino acid release from skeletal muscle serves to buffer plasma amino acid concentrations. Interestingly, it seems like aggressive feeding of the severely burned patient may not necessarily supply amino acids in sufficient abundance to normalize skeletal muscle protein metabolism, suggesting that skeletal muscle becomes an essential store of protein in patients suffering from severe burn trauma. In this article, the effects of burn injury on whole body and skeletal muscle protein metabolism will be discussed in an attempt to distill the current understanding of the impact of this debilitating injury on the redistribution of skeletal muscle protein stores.

  10. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    Science.gov (United States)

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P contraction times compared with BEH+/+ mice, but only EDL displayed lower (P muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  11. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  12. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults

    Directory of Open Access Journals (Sweden)

    Jamie I. Baum

    2015-07-01

    Full Text Available Skeletal muscle mass and function are progressively lost with age, a condition referred to as sarcopenia. By the age of 60, many older adults begin to be affected by muscle loss. There is a link between decreased muscle mass and strength and adverse health outcomes such as obesity, diabetes and cardiovascular disease. Data suggest that increasing dietary protein intake at meals may counterbalance muscle loss in older individuals due to the increased availability of amino acids, which stimulate muscle protein synthesis by activating the mammalian target of rapamycin (mTORC1. Increased muscle protein synthesis can lead to increased muscle mass, strength and function over time. This review aims to address the current recommended dietary allowance (RDA for protein and whether or not this value meets the needs for older adults based upon current scientific evidence. The current RDA for protein is 0.8 g/kg body weight/day. However, literature suggests that consuming protein in amounts greater than the RDA can improve muscle mass, strength and function in older adults.

  13. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna

    2015-01-01

    expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compare to tissue. This revealed unexpectedly...... complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms.......Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging due to highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art mass...

  14. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    Science.gov (United States)

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1-(13)C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1-(13)C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1-(13)C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older men after a day of bed rest, the application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis by 18% compared with presleep protein feeding only. Copyright © 2017 the American Physiological Society.

  15. Soy germ protein concentrate diet decreased body fat weight and increased hindlimb muscle weight in rats.

    Science.gov (United States)

    Kataoka, Hisashi; Saito, Sanshiro; Itoh, Atsushi; Matsuo, Tatsuhiro

    2012-01-01

    The purpose of this study was to investigate the effects of soy germ protein intake on body composition. Wistar rats were fed experimental diets for 16 weeks. These consisted of soy germ protein, soy protein, or casein. Abdominal adipose tissue weights significantly lower and hindlimb muscle weights were significantly higher in the soy germ protein group than in the casein group.

  16. The effect of surgical trauma on muscle protein turnover in rats. A serious methodological misunderstanding.

    Science.gov (United States)

    Millward, D J

    1979-01-01

    The reported rates of protein degradation in a recent paper on the effect of surgical trauma on muscle protein turnover [Hoover-Plow & Clifford (1978) Biochem. J. 176, 137--142] have no real meaning because of a serious methodological misunderstanding by the authors. In addition, there are problems involved in the determination of synthesis rates, so that the reported effects of trauma on muscle protein turnover can be discounted. PMID:486118

  17. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  18. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  19. Time-lapse analysis and mathematical characterization elucidate novel mechanisms underlying muscle morphogenesis.

    Directory of Open Access Journals (Sweden)

    Chelsi J Snow

    2008-10-01

    Full Text Available Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ. In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininbeta1 or laminingamma1 contrast with later dystrophic phenotypes in lamininalpha2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length.

  20. Effect of soy isolate protein and resistance exercises on muscle performance and bone health of osteopenic/osteoporotic post-menopausal women.

    Science.gov (United States)

    Shenoy, Shweta; Bedi, Reecha; Sandhu, Jaspal S

    2013-01-01

    There are contradictory reports regarding the effect of soy protein isolate on bone health in menopause. The main objective of this study was to assess the influence of soy isolate protein intake and resistance exercises on isokinetic muscle strength, endurance, power, and bone health parameters in osteopenic/osteoporotic postmenopausal women. Sixty osteoporotic sedentary women (mean age 54.55 years) were randomly assigned to three groups: soy isolate protein (Group A), soy + exercise group (Group B), and control group (Group C). Group B performed supervised progressive resistance exercises 4 times/week for 12 weeks. Muscle performance was measured by isokinetic dynamometry, and bone health was measured by ultrasound densitometry. Analysis of variance showed significant bone and muscle strength gains (p < .05) both in Group A and B, with the improvements more pronounced in Group B. Significant muscle performance changes, after intervention, were evident and bone strength increases may parallel changes in muscle strength.

  1. Contraction-associated translocation of protein kinase C in rat skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Cleland, P J; Rattigan, S

    1987-01-01

    Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short t...... tetanic contractions of the gastrocnemius-plantaris-soleus muscle group and coincided with the loss of activity from the cytosol. Translocation of protein kinase C may imply a role for this kinase in contraction-initiated changes in muscle metabolism.......Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short...

  2. Differential expression of smooth muscle regulatory proteins in the uterosacral ligaments of women with uterine prolapse.

    Science.gov (United States)

    Takacs, Peter; Gualtieri, Marc; Nassiri, Mehdi; Candiotti, Keith; Fornoni, Alessia; Medina, Carlos A

    2010-06-01

    To compare smooth muscle regulatory protein expression in the uterosacral ligament (USL) of women with and without uterine prolapse. USLs ligament were sampled in women with (n = 9) or without (n = 9) uterine prolapse. Caldesmon, smooth muscle actin (SMA), myosin heavy chain, and zinc finger protein messenger RNA expression was assessed by quantitative real-time polymerase chain reaction. Immunohistochemistry and digital image analysis were used to determine protein expression. Caldesmon messenger RNA expression and the ratio of caldesmon-SMA messenger RNA expression was significantly increased in the USL from women with uterine prolapse compared with women without prolapse (caldesmon mean +/- standard deviation messenger RNA, 0.81 +/- 0.46 vs 0.39 +/- 0.16; P = .01 and caldesmon-SMA messenger RNA ratio, mean +/- standard deviation, 0.11 +/- 0.04 vs 0.07 +/- 0.02; P = .01). In addition, the ratio of caldesmon-SMA staining was significantly increased in women with uterine prolapse compared with women without prolapse (mean +/- standard deviation, 0.44 +/- 0.28 vs 0.28 +/- 0.16; P = .03). Uterine prolapse is associated with an increased ratio of caldesmon-SMA actin expression. Copyright 2010 Mosby, Inc. All rights reserved.

  3. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    Science.gov (United States)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P muscle protein also decreased by 46% (P muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  4. Muscle contraction phenotypic analysis enabled by optogenetics reveals functional relationships of sarcomere components in Caenorhabditis elegans

    Science.gov (United States)

    Hwang, Hyundoo; Barnes, Dawn E.; Matsunaga, Yohei; Benian, Guy M.; Ono, Shoichiro; Lu, Hang

    2016-01-01

    The sarcomere, the fundamental unit of muscle contraction, is a highly-ordered complex of hundreds of proteins. Despite decades of genetics work, the functional relationships and the roles of those sarcomeric proteins in animal behaviors remain unclear. In this paper, we demonstrate that optogenetic activation of the motor neurons that induce muscle contraction can facilitate quantitative studies of muscle kinetics in C. elegans. To increase the throughput of the study, we trapped multiple worms in parallel in a microfluidic device and illuminated for photoactivation of channelrhodopsin-2 to induce contractions in body wall muscles. Using image processing, the change in body size was quantified over time. A total of five parameters including rate constants for contraction and relaxation were extracted from the optogenetic assay as descriptors of sarcomere functions. To potentially relate the genes encoding the sarcomeric proteins functionally, a hierarchical clustering analysis was conducted on the basis of those parameters. Because it assesses physiological output different from conventional assays, this method provides a complement to the phenotypic analysis of C. elegans muscle mutants currently performed in many labs; the clusters may provide new insights and drive new hypotheses for functional relationships among the many sarcomere components.

  5. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    Science.gov (United States)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P protein synthesis (PS; P protein also decreased by 46% (P protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  6. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria

    NARCIS (Netherlands)

    Bosma, M.; Minnaard, R.; Sparks, L.M.; Schaart, G.; Losen, M.; Baets, de M.H.; Duimel, H.; Kersten, A.H.; Bickel, P.E.; Schrauwen, P.; Hesselink, M.K.C.

    2012-01-01

    Perilipin 5 (PLIN5/OXPAT) is a lipid droplet (LD) coat protein mainly present in tissues with a high fat-oxidative capacity, suggesting a role for PLIN5 in facilitating fatty acid oxidation. Here, we investigated the role of PLIN5 in fat oxidation in skeletal muscle. In human skeletal muscle, we obs

  7. DEVELOPMENTAL REGULATION OF PROTEIN KINASE B ACTIVATION IS ISOFORM SPECIFIC IN SKELETAL MUSCLE OF NEONATAL PIGS

    Science.gov (United States)

    The postprandial activation of the insulin signaling pathway that leads to translation initiation is enhanced in skeletal muscle of the neonate and decreases with development in parallel with the developmental decline in muscle protein synthesis. Our previous study showed that the activity of protei...

  8. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2014-01-01

    Full Text Available We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL and soleus (SOL muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS and subjected to fibre typing and measures for costameric (FAK and FRNK, mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1, and MHCI protein and RNA content. Mean cross-sectional area (MCSA of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05≤P<0.10. FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P=0.029. SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012. Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  9. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3

    Science.gov (United States)

    Uncoupling protein 3 (UCP3) is highly expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole body metabolism has not been extensively studied. We utilized unt...

  10. Emerging Roles of ER Stress and Unfolded Protein Response Pathways in Skeletal Muscle Health and Disease.

    Science.gov (United States)

    Bohnert, Kyle R; McMillan, Joseph D; Kumar, Ashok

    2017-02-08

    Skeletal muscle is the most abundant tissue in the human body and can adapt its mass as a consequence of physical activity, metabolism, growth factors, and disease conditions. Skeletal muscle contains an extensive network of endoplasmic reticulum (ER), called sarcoplasmic reticulum, which plays an important role in the regulation of proteostasis and calcium homeostasis. In many cell types, environmental and genetic factors that disrupt ER function cause an accumulation of misfolded and unfolded proteins in the ER lumen that ultimately leads to ER stress. To alleviate the stress and restore homeostasis, the ER activates a signaling network called the unfolded protein response (UPR). The UPR has three arms, which regulate protein synthesis and expression of many ER chaperone and regulatory proteins. However, the role of individual UPR pathways in skeletal muscle has just begun to be investigated. Recent studies suggest that UPR pathways play pivotal roles in muscle stem cell homeostasis, myogenic differentiation, and regeneration of injured skeletal muscle. Moreover, markers of ER stress and the UPR are activated in skeletal muscle in diverse conditions such as exercise, denervation, starvation, high fat diet, cancer cachexia, and aging. Accumulating evidence also suggests that ER stress may have important roles in the pathogenesis of inflammatory myopathies and genetic muscle disorders. The purpose of this review article is to discuss the role and potential mechanisms by which ER stress and the individual arms of the UPR regulate skeletal muscle formation, plasticity, and function in various physiological and pathophysiological conditions. This article is protected by copyright. All rights reserved.

  11. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria

    NARCIS (Netherlands)

    Bosma, M.; Minnaard, R.; Sparks, L.M.; Schaart, G.; Losen, M.; Baets, de M.H.; Duimel, H.; Kersten, A.H.; Bickel, P.E.; Schrauwen, P.; Hesselink, M.K.C.

    2012-01-01

    Perilipin 5 (PLIN5/OXPAT) is a lipid droplet (LD) coat protein mainly present in tissues with a high fat-oxidative capacity, suggesting a role for PLIN5 in facilitating fatty acid oxidation. Here, we investigated the role of PLIN5 in fat oxidation in skeletal muscle. In human skeletal muscle, we

  12. Fatiguing stimulation of one skeletal muscle triggers heat shock protein activation in several rat organs: the role of muscle innervation.

    Science.gov (United States)

    Jammes, Yves; Steinberg, Jean Guillaume; By, Youlet; Brerro-Saby, Christelle; Condo, Jocelyne; Olivier, Marine; Guieu, Regis; Delliaux, Stephane

    2012-11-15

    We hypothesised that activation of muscle afferents by fatigue triggers a widespread activation of heat shock proteins (HSPs) in resting muscles and different organs. In anaesthetised rats, HSP25 and HSP70 levels were determined in both tibialis anterior (TA) and extensor digitorum longus (EDL) muscles and in the diaphragm, kidney and brain by ELISA, which mostly identifies phosphorylated HSP, and western blotting. One TA muscle was electrically stimulated and tissues were sampled 10 or 60 min after the stimulation had ended. The nerve supply to the stimulated TA or its counterpart in the contralateral limb was left intact or suppressed. In control rats, no muscle stimulation was performed and tissues were sampled at the same time points (10 or 60 min). After TA stimulation, ELISA showed an increased HSP25 content in the contralateral TA, EDL and diaphragm at 10 min but not at 60 min, and HSP70 increased in all sampled tissues at 60 min. Western blotting did not show any changes in HSP25 and HSP70 at 10 min, while at 60 min HSP25 increased in all sampled tissues except the brain and HSP70 was elevated in all tissues. Denervation of the contralateral non-stimulated limb suppressed HSP changes in TA and after denervation of the stimulated TA the widespread activation of HSPs in other organs was absent. Our data suggest that fatigue-induced activation of skeletal muscle afferents triggers an early increase in phosphorylated HSP25 in muscles and a delayed elevation of non-phosphorylated HSP25 and HSP70 in skeletal and respiratory muscles, kidney and brain.

  13. Amino acid absorption and subsequent muscle protein accretion following graded intakes of whey protein in elderly men.

    Science.gov (United States)

    Pennings, Bart; Groen, Bart; de Lange, Anneke; Gijsen, Annemie P; Zorenc, Antoine H; Senden, Joan M G; van Loon, Luc J C

    2012-04-15

    Whey protein ingestion has been shown to effectively stimulate postprandial muscle protein accretion in older adults. However, the impact of the amount of whey protein ingested on protein digestion and absorption kinetics, whole body protein balance, and postprandial muscle protein accretion remains to be established. We aimed to fill this gap by including 33 healthy, older men (73 ± 2 yr) who were randomly assigned to ingest 10, 20, or 35 g of intrinsically l-[1-¹³C]phenylalanine-labeled whey protein (n = 11/treatment). Ingestion of labeled whey protein was combined with continuous intravenous l-[ring-²H₅]phenylalanine and l-[ring-²H₂]tyrosine infusion to assess the metabolic fate of whey protein-derived amino acids. Dietary protein digestion and absorption rapidly increased following ingestion of 10, 20, and 35 g whey protein, with the lowest and highest (peak) values observed following 10 and 35 g, respectively (P whey protein results in greater amino acid absorption and subsequent stimulation of de novo muscle protein synthesis compared with the ingestion of 10 or 20 g whey protein in healthy, older men.

  14. Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis.

    Science.gov (United States)

    Puah, Wee Choo; Wasser, Martin

    2016-03-01

    Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future.

  15. Postmortem muscle protein degradation in humans as a tool for PMI delimitation.

    Science.gov (United States)

    Pittner, Stefan; Ehrenfellner, Bianca; Monticelli, Fabio C; Zissler, Angela; Sänger, Alexandra M; Stoiber, Walter; Steinbacher, Peter

    2016-11-01

    Forensic estimation of time since death relies on diverse approaches, including measurement and comparison of environmental and body core temperature and analysis of insect colonization on a dead body. However, most of the applied methods have practical limitations or provide insufficient results under certain circumstances. Thus, new methods that can easily be implemented into forensic routine work are required to deliver more and discrete information about the postmortem interval (PMI). Following a previous work on skeletal muscle degradation in the porcine model, we analyzed human postmortem skeletal muscle samples of 40 forensic cases by Western blotting and casein zymography. Our results demonstrate predictable protein degradation processes in human muscle that are distinctly associated with temperature and the PMI. We provide information on promising degradation markers for certain periods of time postmortem, which can be useful tools for time since death delimitation. In addition, we discuss external influencing factors such as age, body mass index, sex, and cause of death that need to be considered in future routine application of the method in humans.

  16. Erythropoietin Does Not Enhance Skeletal Muscle Protein Synthesis Following Exercise in Young and Older Adults

    Science.gov (United States)

    Lamon, Séverine; Zacharewicz, Evelyn; Arentson-Lantz, Emily; Gatta, Paul A. Della; Ghobrial, Lobna; Gerlinger-Romero, Frederico; Garnham, Andrew; Paddon-Jones, Douglas; Russell, Aaron P.

    2016-01-01

    Purpose: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway. Methods: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C6] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis. Results: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects. Conclusions: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways. PMID:27458387

  17. Studies on the possible role of thyroid hormone in altered muscle protein turnover during sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Hasselgren, P.O.; Chen, I.W.; James, J.H.; Sperling, M.; Warner, B.W.; Fischer, J.E.

    1987-07-01

    Five days after thyroidectomy (Tx) or sham-Tx in young male Sprague-Dawley rats, sepsis was induced by cecal ligation and puncture (CLP). Control animals underwent laparotomy and manipulation of the cecum without ligation or puncture. Sixteen hours after CLP or laparotomy, protein synthesis and degradation were measured in incubated extensor digitorum longus (EDL) and soleus (SOL) muscles by determining rate of /sup 14/C-phenylalanine incorporation into protein and tyrosine release into incubation medium, respectively. Triiodothyronine (T3) was measured in serum and muscle tissue. Protein synthesis was reduced by 39% and 22% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx rats. The response to sepsis of protein synthesis was abolished in Tx rats. Protein breakdown was increased by 113% and 68% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx animals. The increase in muscle proteolysis during sepsis was blunted in hypothyroid animals and was 42% and 49% in EDL and SOL, respectively. T3 in serum was reduced by sepsis, both in Tx and sham-Tx rats. T3 in muscle, however, was maintained or increased during sepsis. Abolished or blunted response of muscle protein turnover after CLP in hypothyroid animals may reflect a role of thyroid hormones in altered muscle protein metabolism during sepsis. Reduced serum levels of T3, but maintained or increased muscle concentrations of the hormone, suggests that increased T3 uptake by muscle may be one mechanism of low T3 syndrome in sepsis, further supporting the concept of a role for thyroid hormone in metabolic alterations in muscle during sepsis.

  18. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    Science.gov (United States)

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. GLUT3 protein and mRNA in autopsy muscle specimens

    Science.gov (United States)

    Stuart, C. A.; Wen, G.; Jiang, J.

    1999-01-01

    GLUT3 is expressed in rat muscle, but this glucose transporter protein has not been identified previously in adult human skeletal muscle. We quantified the rapidity of disappearance of mRNA and protein from human skeletal muscle at room temperature and at 4 degrees C. Fifty percent of the immunologically detectable GLUT3 protein disappeared by 1 hour at 20 degrees C and by 2 hours at 4 degrees C. mRNA for GLUT3 was decreased 50% by 2.2 hours at 20 degrees C and by 24 hours at 4 degrees C. Half of the measurable mRNAs for GLUT4, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), alpha-actin, and beta-myosin disappeared by 0.8 to 2.1 hours at 20 degrees C and by 5.0 to 16.6 hours at 4 degrees C. Previous conclusions that GLUT3 is not expressed in human muscle were likely drawn because of artifacts related to degradation of GLUT3 protein in the specimens prior to study. Because of the rapid degradation of protein and mRNA, autopsy specimens of muscle must be obtained within 6 hours of death, and even then, protein and mRNA data will likely dramatically underestimate their expression in fresh muscle. Some previously published conclusions and recommendations regarding autopsy specimens are not stringent enough to consistently yield useful protein and mRNA.

  20. Colour, lipid and protein stability of Rhea americana meat during air- and vacuum-packaged storage: influence of muscle on oxidative processes.

    Science.gov (United States)

    Filgueras, R S; Gatellier, P; Aubry, L; Thomas, A; Bauchart, D; Durand, D; Zambiazi, R C; Santé-Lhoutellier, V

    2010-11-01

    Physicochemical characteristics and oxidative stability during storage were determined in Gastrocnemius pars interna (GN) and Iliofiburalis (IF) muscles of Rhea americana. Glycolytic potential (GP) and pH decline of muscles were measured within the first 24 h post mortem. Colour, lipid and protein stability were determined during storage of meat, i.e. 5 days under air-packaging at 4°C, or 28 days under vacuum-packaging at 4°C. In parallel, anti-oxidant status of muscles was estimated by measuring α-tocopherol content and anti-oxidant enzyme activities (superoxide dismutase and catalase), while pro-oxidant status was evaluated by determining haeminic iron and long chain fatty acids (especially polyunsaturated fatty acids). The ultimate pH was similar in both muscles, but the GP value was significantly higher in IF than in GN muscle. Haeminic iron and alpha-tocopherol content differed between muscles, with 30% more haeminic iron (ppackaging, lipid and protein oxidation of rhea muscles increased up to 275% and 30%, respectively. This increase was more rapidly and marked in IF muscle. The IF also showed high level of metmyoglobin accumulation after 3 days of storage (47%) and was rejected by 1 consumer out of 2 in sensorial analysis. Under vacuum-packaging, both muscles showed a high stability of colour and no oxidation of lipids and proteins.

  1. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    OpenAIRE

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential a...

  2. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    Energy Technology Data Exchange (ETDEWEB)

    Culiat, Cymbeline T

    2014-11-04

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  3. Methods for promoting wound healing and muscle regeneration with the cell signaling protein Nell1

    Energy Technology Data Exchange (ETDEWEB)

    Culiat, Cymbeline T [Oak Ridge, TN

    2011-03-22

    The present invention provides methods for promoting wound healing and treating muscle atrophy in a mammal in need. The method comprises administering to the mammal a Nell1 protein or a Nell1 nucleic acid molecule.

  4. Effects of sex steroids on indices of protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle

    Science.gov (United States)

    Effects of 17-estradiol (E2), testosterone, and 5a-dihydrotestosterone (DHT) on protein turnover and proteolytic gene expression were determined in rainbow trout (Oncorhynchus mykiss) primary myocytes and white muscle tissue. E2 reduced rates of protein synthesis and increased rates of protein degr...

  5. Muscle functional MRI analysis of trunk muscle recruitment during extension exercises in asymptomatic individuals.

    Science.gov (United States)

    De Ridder, E M D; Van Oosterwijck, J O; Vleeming, A; Vanderstraeten, G G; Danneels, L A

    2015-04-01

    The present study examined the activity levels of the thoracic and lumbar extensor muscles during different extension exercise modalities in healthy individuals. Therefore, 14 subjects performed four different types of extension exercises in prone position: dynamic trunk extension, dynamic-static trunk extension, dynamic leg extension, and dynamic-static leg extension. Pre- and post-exercise muscle functional magnetic resonance imaging scans from the latissimus dorsi, the thoracic and lumbar parts of the longissimus, iliocostalis, and multifidus were performed. Differences in water relaxation values (T2-relaxation) before and after exercise were calculated (T2-shift) as a measure of muscle activity and compared between extension modalities. Linear mixed-model analysis revealed higher lumbar extensor activity during trunk extension compared with leg extension (T2-shift of 5.01 ms and 3.55 ms, respectively) and during the dynamic-static exercise performance compared with the dynamic exercise performance (T2-shift of 4.77 ms and 3.55 ms, respectively). No significant differences in the thoracic extensor activity between the exercises could be demonstrated. During all extension exercises, the latissimus dorsi was the least activated compared with the paraspinal muscles. While all extension exercises are equivalent effective to train the thoracic muscles, trunk extension exercises performed in a dynamic-static way are the most appropriate to enhance lumbar muscle strength.

  6. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons

    Science.gov (United States)

    Agarwal, Andrea B.; Feng, Cheng-Yuan; Altick, Amy L.; Quilici, David R.; Wen, Dan; Johnson, L. Alan; von Bartheld, Christopher S.

    2016-01-01

    Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered. PMID:27768799

  7. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy

    Science.gov (United States)

    Adams, G. R.; Haddad, F.

    1996-01-01

    Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

  8. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    Science.gov (United States)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  9. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial.

    Science.gov (United States)

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Kouw, Imre Wk; Wall, Benjamin T; Burd, Nicholas A; de Groot, Lisette Cpgm; van Loon, Luc Jc

    2017-02-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m(2)): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg(-1) · d(-1); n = 12) or a HIGH PRO diet (1.5 g · kg(-1) · d(-1); n = 12) for 14 d. On day 15, participants received primed continuous l-[ring-(2)H5]-phenylalanine and l-[1-(13)C]-leucine infusions and ingested 25 g intrinsically l-[1-(13)C]-phenylalanine- and l-[1-(13)C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT01986842. © 2017 American Society for Nutrition.

  10. A single session of neuromuscular electrical stimulation does not augment postprandial muscle protein accretion.

    Science.gov (United States)

    Dirks, Marlou L; Wall, Benjamin T; Kramer, Irene Fleur; Zorenc, Antoine H; Goessens, Joy P B; Gijsen, Annemie P; van Loon, Luc J C

    2016-07-01

    The loss of muscle mass and strength that occurs with aging, termed sarcopenia, has been (at least partly) attributed to an impaired muscle protein synthetic response to food intake. Previously, we showed that neuromuscular electrical stimulation (NMES) can stimulate fasting muscle protein synthesis rates and prevent muscle atrophy during disuse. We hypothesized that NMES prior to protein ingestion would increase postprandial muscle protein accretion. Eighteen healthy elderly (69 ± 1 yr) males participated in this study. After a 70-min unilateral NMES protocol was performed, subjects ingested 20 g of intrinsically l-[1-(13)C]phenylalanine-labeled casein. Plasma samples and muscle biopsies were collected to assess postprandial mixed muscle and myofibrillar protein accretion as well as associated myocellular signaling during a 4-h postprandial period in both the control (CON) and stimulated (NMES) leg. Protein ingestion resulted in rapid increases in both plasma phenylalanine concentrations and l-[1-(13)C]phenylalanine enrichments, which remained elevated during the entire 4-h postprandial period (P 0.05). In agreement, no differences were observed in the postprandial rise in myofibrillar protein bound l-[1-(13)C]phenylalanine enrichments between the CON and NMES legs (0.0115 ± 0.0014 vs. 0.0133 ± 0.0013 MPE, respectively, P > 0.05). Significant increases in mTOR and P70S6K phosphorylation status were observed in the NMES-stimulated leg only (P < 0.05). We conclude that a single session of NMES prior to food intake does not augment postprandial muscle protein accretion in healthy older men. Copyright © 2016 the American Physiological Society.

  11. Quantitative Computed Tomography and image analysis for advanced muscle assessment

    Directory of Open Access Journals (Sweden)

    Kyle Joseph Edmunds

    2016-06-01

    Full Text Available Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration.

  12. Phosphoproteomics analysis of postmortem porcine muscle with pH decline rate and time difference

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin R; Karlsson, Anders H

    2012-01-01

    The aim of this study was to characterize the protein phosphorylation in postmortem (PM) muscle and reveal the change during meat quality development. The gel-based phosphoproteomic analysis of PM porcine muscle was performed in three pig groups with different pH decline rates from PM 1h to 24 h...... the reverse case. The phosphorylation level of 12 bands in sarcoplasmic fraction and 3 bands in myofibrillar fraction were significantly affected by the synergy effects of pH and time (pproteins were identified. The phosphorylation patterns of pyruvate kinase, triosephosphate isomerase-1......, tropomyosin and myosin regulatory light chain 2 showed to be related to PM muscle pH decline rate and time. Our work sheds light on the potential role of protein phosphorylation on regulation of meat quality development....

  13. A pilot study of muscle plasma protein changes after exercise

    DEFF Research Database (Denmark)

    Dahlqvist, Julia R; Voss, Line G; Lauridsen, Thomas

    2014-01-01

    INTRODUCTION: Creatine kinase (CK) and myoglobin (Mb) do not possess all good qualities as biomarkers of skeletal muscle damage. We investigated the utility of troponin I (TnI) and telethonin (Tcap) as markers and examined their temporal profiles after skeletal muscle damage. METHODS: Plasma...... profiles were measured before and after exercise in 3 groups: subjects affected by either Becker muscular dystrophy or McArdle disease, and healthy subjects. RESULTS: Mb and TnI appeared early in the blood, and the increase of TnI was only observed in patients with muscle disease. The CK increase was more...... delayed in plasma. Tcap was not detectable at any time. CONCLUSIONS: Our results suggest that TnI is a marker of more severe damage signifying sarcomeric damage, and it could therefore be an important supplement to CK and Mb in clinical practice. Tcap is not useful as a marker for skeletal muscle damage....

  14. Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, R.A.; Thorpe, S.D.; Byers, F.M.; Schelling, G.T.; Gunn, J.M.

    Muscle cell culture (L/sub 6/) studies were conducted to determine whether anabolic agents have a direct effect on the muscle cell. The effect of zeranol, testosterone propionate, estradiol benzoate, progesterone, dexamethasone and anabolic agent-dexamethasone combinations on protein synthesis and degradation were measured. Myoblast and myotube cultures were pretreated with 1 ..mu..M compounds for 12, 24 and 48 h before a 6-h synthesis or degradation measuring period. Protein synthesis was determined as cpm of (/sup 3/H) leucine incorporated per mg cell protein. Protein degradation was measured by a pulse-chase procedure using (/sup 3/H) leucine and expressed as the percentage labeled protein degraded in 6 h. Progesterone slightly increased protein synthesis in myoblast cultures. Testosterone propionate had no effect on synthesis. Protein synthesis was decreased by estradiol benzoate in myotube cultures. Protein degradation was not altered appreciably by anabolic agents. Protein synthesis was initially inhibited in myotubes by dexamethasone, but increased in myoblasts and myotubes in the extended incubation time. Dexamethasone also consistently increased protein degradation, but this required several hours to be expressed. Anabolic agents did not interfere with dexamethasone-induced increases in protein synthesis and degradation. The magnitude of response and sensitivity were similar for both the myoblast and the more fully differentiated myotube for all compounds tested. These results indicate that anabolic agents at the 1 ..mu..M level do not have a direct anabolic effect on muscle or alter glucocorticoid-induced catabolic response in muscle.

  15. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akiyoshi Uezumi

    2016-08-01

    Full Text Available Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases.

  16. Quantitative PCR Analysis of Laryngeal Muscle Fiber Types

    Science.gov (United States)

    Van Daele, Douglas J.

    2010-01-01

    Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses…

  17. Quantitative PCR Analysis of Laryngeal Muscle Fiber Types

    Science.gov (United States)

    Van Daele, Douglas J.

    2010-01-01

    Voice and swallowing dysfunction as a result of recurrent laryngeal nerve paralysis can be improved with vocal fold injections or laryngeal framework surgery. However, denervation atrophy can cause late-term clinical failure. A major determinant of skeletal muscle physiology is myosin heavy chain (MyHC) expression, and previous protein analyses…

  18. Karakteristik Protein dan Nitrogen Non Protein Daging Ikan Cucut Lanyam (Charcharhinus limbatus (Characteristics of Protein and Non Protein Nitrogen in Lanyam Shark Muscle

    Directory of Open Access Journals (Sweden)

    Yuspihana Fitrial

    2017-02-01

    Based on protein solubility of Lanyam muscle at pH 1.5 to 12 obtained two points which is minimum solubility at pH 4.5 and pH 9. Based on the classification Osborn, Lanyam muscle contained albumin (28.64%, globulin (13:44%, prolamin (03.29%, glutelin (33.70%. Observation of non-protein nitrogen levels indicated that the washing process was very effective to reduce non-protein nitrogen levels up to 62.34% and urea levels up to 58% . Differential Scanning Calorimetry Study of Lanyam mince showed two types of protein that has a different stability to heat and after added 2.5% NaCl formed a peak which is a fusion of both these proteins

  19. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities.

    Science.gov (United States)

    Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M; Philip, Philip A; Azmi, Asfar S

    2016-02-01

    Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder.

  20. Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin.

    Science.gov (United States)

    Daul, C B; Slattery, M; Reese, G; Lehrer, S B

    1994-09-01

    Shrimp, a major seafood allergen, was investigated as a model food allergen. Extracts from both shrimp (Penaeus aztecus) meat and cooking fluid contain a substantial and similar amount of allergenic activity. A 36-kD allergen, demonstrated in both extracts by SDS-PAGE/Western blot analysis, reacted with 28/34 (82%) sera from shrimp-sensitive, skin test and RAST-positive, individuals. This allergen, named Pen a I, was isolated by SDS-PAGE; its amino acid composition was rich in aspartic and glutamic acids. A 21-residue peptide, obtained from endoproteinase Lys-C digested Pen a I by high-performance liquid chromatography, demonstrated significant homology (60-87%) with the muscle protein tropomyosin from various species and origins. The greatest homology (87%) was noted with tropomyosin of the fruit fly (Drosophila melanogaster) reflecting the phylogenic relationship between these two arthropods. These studies demonstrate that tropomyosin is the major shrimp allergen. Although the amino acid sequence of this shrimp muscle protein shares considerable homology with tropomyosins of other species including man, significant differences remain in allergenic activity.

  1. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans

    DEFF Research Database (Denmark)

    Esmarck, Birgitte; Olsen, Steen Schytte

    2001-01-01

    1. Age-associated loss of skeletal muscle mass and strength can partly be counteracted by resistance training, causing a net synthesis of muscular proteins. Protein synthesis is influenced synergistically by postexercise amino acid supplementation, but the importance of the timing of protein intake...... remains unresolved. 2. The study investigated the importance of immediate (P0) or delayed (P2) intake of an oral protein supplement upon muscle hypertrophy and strength over a period of resistance training in elderly males. 3. Thirteen men (age, 74 ± 1 years; body mass index (BMI), 25 ± 1 kg m−2 (means...... %, respectively (P important...

  2. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    Directory of Open Access Journals (Sweden)

    Stout Jeffrey R

    2010-06-01

    Full Text Available Abstract Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO or essential amino acids (EAA can increase muscle protein synthesis (MPS in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different protein sources is limited. A growing body of evidence does, however, suggest that dairy PRO, and whey in particular may: 1 stimulate the greatest rise in MPS, 2 result in greater muscle cross-sectional area when combined with chronic resistance training, and 3 at least in younger individuals, enhance exercise recovery. Therefore, this review will focus on whey protein supplementation and its effects on skeletal muscle mass when combined with heavy resistance training.

  3. Endocrine responses during overnight recovery from exercise: impact of nutrition and relationships with muscle protein synthesis.

    Science.gov (United States)

    Betts, James A; Beelen, Milou; Stokes, Keith A; Saris W, H M; van Loon L, J C

    2011-10-01

    Nocturnal endocrine responses to exercise performed in the evening and the potential role of nutrition are poorly understood. To gain novel insight, 10 healthy men ingested carbohydrate with (C+P) and without (C) protein in a randomized order and double-blind manner during 2 hr of interval cycling followed by resistance-type exercise and into early postexercise recovery. Blood samples were obtained hourly throughout 9 hr of postexercise overnight recovery for analysis of key hormones. Muscle samples were taken from the vastus lateralis before and after exercise and then again the next morning (7 a.m.) to calculate mixed-muscle protein fractional synthetic rate (FSR). Overnight plasma hormone concentrations were converted into overall responses (expressed as area under the concentration curve) and did not differ between treatments for either growth hormone (1,464 ± 257 vs. 1,432 ± 164 pg/ml · 540 min) or total testosterone (18.3 ± 1.2 vs. 17.9 ± 1.2 nmol/L · 540 min, C and C+P, respectively). In contrast, the overnight cortisol response was higher with C+P (102 ± 11 nmol/L · 540 min) than with C (81 ± 8 nmol/L · 540 min; p = .02). Mixed-muscle FSR did not differ between C and C+P during overnight recovery (0.062% ± 0.006% and 0.062% ± 0.009%/hr, respectively) and correlated significantly with the plasma total testosterone response (r = .7, p overnight recovery.

  4. Reduction of a 4q35-encoded nuclear envelope protein in muscle differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, Cecilia [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Guan, Tinglu [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Figlewicz, Denise A. [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Hays, Arthur P. [Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Worman, Howard J. [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Gerace, Larry [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Schirmer, Eric C., E-mail: e.schirmer@ed.ac.uk [Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037 (United States); Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR (United Kingdom)

    2009-11-13

    Muscular dystrophy and peripheral neuropathy have been linked to mutations in genes encoding nuclear envelope proteins; however, the molecular mechanisms underlying these disorders remain unresolved. Nuclear envelope protein p19A is a protein of unknown function encoded by a gene at chromosome 4q35. p19A levels are significantly reduced in human muscle as cells differentiate from myoblasts to myotubes; however, its levels are not similarly reduced in all differentiation systems tested. Because 4q35 has been linked to facioscapulohumeral muscular dystrophy (FSHD) and some adjacent genes are reportedly misregulated in the disorder, levels of p19A were analyzed in muscle samples from patients with FSHD. Although p19A was increased in most cases, an absolute correlation was not observed. Nonetheless, p19A downregulation in normal muscle differentiation suggests that in the cases where its gene is inappropriately re-activated it could affect muscle differentiation and contribute to disease pathology.

  5. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  6. Exercise-induced phospho-proteins in skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A S; Hawley, J A; Zierath, J R

    2008-01-01

    Efforts to identify exercise-induced signaling events in skeletal muscle have been influenced by ground-breaking discoveries in the insulin action field. Initial discoveries demonstrating that exercise enhances insulin sensitivity raised the possibility that contraction directly modulates insulin...... receptor signaling events. Although the acute effects of exercise on glucose metabolism are clearly insulin-independent, the canonical insulin signaling cascade has been used as a framework by investigators in an attempt to resolve the mechanisms by which muscle contraction governs glucose metabolism....... This review focuses on recent advances in our understanding of exercise-induced signaling pathways governing glucose metabolism in skeletal muscle. Particular emphasis will be placed on the characterization of AS160, a novel Akt substrate that plays a role in the regulation of glucose transport....

  7. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2.

    Science.gov (United States)

    Miranda, Diego A; Koves, Timothy R; Gross, David A; Chadt, Alexandra; Al-Hasani, Hadi; Cline, Gary W; Schwartz, Gary J; Muoio, Deborah M; Silver, David L

    2011-12-09

    Triacylglyceride stored in cytosolic lipid droplets (LDs) constitutes a major energy reservoir in most eukaryotes. The regulated turnover of triacylglyceride in LDs provides fatty acids for mitochondrial β-oxidation and ATP generation in physiological states of high demand for energy. The mechanisms for the formation of LDs in conditions of energy excess are not entirely understood. Fat storage-inducing transmembrane protein 2 (FIT2/FITM2) is the anciently conserved member of the fat storage-inducing transmembrane family of proteins implicated to be important in the formation of LDs, but its role in energy metabolism has not been tested. Here, we report that expression of FIT2 in mouse skeletal muscle had profound effects on muscle energy metabolism. Mice with skeletal muscle-specific overexpression of FIT2 (CKF2) had significantly increased intramyocellular triacylglyceride and complete protection from high fat diet-induced weight gain due to increased energy expenditure. Mass spectrometry-based metabolite profiling suggested that CKF2 skeletal muscle had increased oxidation of branched chain amino acids but decreased oxidation of fatty acids. Glucose was primarily utilized in CKF2 muscle for synthesis of the glycerol backbone of triacylglyceride and not for glycogen production. CKF2 muscle was ATP-deficient and had activated AMP kinase. Together, these studies indicate that FIT2 expression in skeletal muscle plays an unexpected function in regulating muscle energy metabolism and indicates an important role for lipid droplet formation in this process.

  8. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction.

    Science.gov (United States)

    Leavis, P C; Gergely, J

    1984-01-01

    Recent developments in the field of myofibrillar proteins will be reviewed. Consideration will be given to the proteins that participate in the contractile process itself as well as to those involved in Ca-dependent regulation of striated (skeletal and cardiac) and smooth muscle. The relation of protein structure to function will be emphasized and the relation of various physiologically and histochemically defined fiber types to the proteins found in them will be discussed.

  9. Kank Is an EB1 interacting protein that localises to muscle-tendon attachment sites in Drosophila.

    Directory of Open Access Journals (Sweden)

    Sara M R Clohisey

    Full Text Available Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells.

  10. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  11. Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs.

    Science.gov (United States)

    Fain, John N; Company, Joseph M; Booth, Frank W; Laughlin, M Harold; Padilla, Jaume; Jenkins, Nathan T; Bahouth, Suleiman W; Sacks, Harold S

    2013-10-01

    Exercise training elevates circulating irisin and induces the expression of the FNDC5 gene in skeletal muscles of mice. Our objective was to determine whether exercise training also increases FNDC5 protein or mRNA expression in the skeletal muscles of pigs as well as plasma irisin. Castrated male pigs of the Rapacz familial hypercholesterolemic (FHM) strain and normal (Yucatan miniature) pigs were sacrificed after 16-20 weeks of exercise training. Samples of cardiac muscle, deltoid and triceps brachii muscle, subcutaneous and epicardial fat were obtained and FNDC5 mRNA, along with that of 6 other genes, was measured in all tissues of FHM pigs by reverse transcription polymerase chain reaction. FNDC protein in deltoid and triceps brachii was determined by Western blotting in both FHM and normal pigs. Citrate synthase activity was measured in the muscle samples of all pigs as an index of exercise training. Irisin was measured by an ELISA assay. There was no statistically significant effect of exercise training on FNDC5 gene expression in epicardial or subcutaneous fat, deltoid muscle, triceps brachii muscle or heart muscle. Exercise-training elevated circulating levels of irisin in the FHM pigs and citrate synthase activity in deltoid and triceps brachii muscle. A similar increase in citrate synthase activity was seen in muscle extracts of exercise-trained normal pigs but there was no alteration in circulating irisin. Exercise training in pigs does not increase FNDC5 mRNA or protein in the deltoid or triceps brachii of FHM or normal pigs while increasing circulating irisin only in the FHM pigs. These data indicate that the response to exercise training in normal pigs is not comparable to that seen in mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets.

    Science.gov (United States)

    Temim, S; Chagneau, A M; Peresson, R; Tesseraud, S

    2000-04-01

    Heat-exposed chickens exhibit a lower growth rate and a depressed protein retention which may result from an alteration in protein metabolism. A high-protein diet seems to be beneficial under hot conditions because it tends to improve growth. Effects of high ambient temperature (32 vs. 22 degrees C) and dietary crude protein (25 vs. 20%) on muscle protein turnover were investigated in finishing broiler chickens. At 5-6 wk of age, protein synthesis was measured in vivo in the Pectoralis major, Sartorius and Gastrocnemius muscles (flooding dose of [(3)H]-phenylalanine). Protein breakdown was determined in the same muscles as the difference between protein synthesis and deposition. Chronic heat stress markedly reduced protein synthesis, irrespective of muscle type (P < 0.05). This was mainly related to the lower capacity for protein synthesis (muscle RNA/Protein) (P < 0.01). Chronic heat exposure also decreased protein breakdown in the P. major and Sartorius; this effect was not observed in the GASTROCNEMIUS: Protein synthesis was more affected than breakdown, leading to reduced protein deposition, at least in the P. major and Gastrocnemius muscles. Increasing dietary protein content had no significant impact on muscle protein turnover. Particularly at 32 degrees C, the high-protein diet did not significantly modify either protein synthesis, ribosomal capacity or translational efficiency. However, it favored muscle protein deposition, which was probably related to reduced proteolysis. In conclusion, we showed that chronic heat exposure decreased muscle protein deposition, mainly by reducing protein synthesis. Under these conditions, the impaired protein synthesis was not restored by a 5% higher protein intake.

  13. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  14. Cloning of a human insulin-stimulated protein kinase (ISPK-1) gene and analysis of coding regions and mRNA levels of the ISPK-1 and the protein phosphatase-1 genes in muscle from NIDDM patients

    DEFF Research Database (Denmark)

    Bjørbaek, C; Vik, T A; Echwald, S M

    1995-01-01

    with non-insulin-dependent diabetes mellitus (NIDDM). The human ISPK-1 cDNA was cloned from T-cell leukemia and placental cDNA libraries and mapped to the short arm of the human X chromosome. Single-strand conformation polymorphism (SSCP) analysis identified a total of six variations in the coding regions...... of the PP1 genes: two in PP1 alpha at codons 90 and 255; one in PP1 beta at codon 67; and three in PP1 gamma at codons 11,269, and 273, respectively. All were, however, silent single nucleotide substitutions. SSCP analysis of the ISPK-1 gene identified one silent polymorphism at codon 266 and one amino acid...

  15. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kato

    2016-06-01

    Full Text Available Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  16. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running.

    Science.gov (United States)

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-06-28

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  17. Regulation of muscle protein synthesis and the effects of catabolic states.

    Science.gov (United States)

    Gordon, Bradley S; Kelleher, Andrew R; Kimball, Scot R

    2013-10-01

    Protein synthesis and degradation are dynamically regulated processes that act in concert to control the accretion or loss of muscle mass. The present article focuses on the mechanisms involved in the impairment of protein synthesis that are associated with skeletal muscle atrophy. The vast majority of mechanisms known to regulate protein synthesis involve modulation of the initiation phase of mRNA translation, which comprises a series of reactions that result in the binding of initiator methionyl-tRNAi and mRNA to the 40S ribosomal subunit. The function of the proteins involved in both events has been shown to be repressed under atrophic conditions such as sepsis, cachexia, chronic kidney disease, sarcopenia, and disuse atrophy. The basis for the inhibition of protein synthesis under such conditions is likely to be multifactorial and includes insulin/insulin-like growth factor 1 resistance, pro-inflammatory cytokine expression, malnutrition, corticosteroids, and/or physical inactivity. The present article provides an overview of the existing literature regarding mechanisms and signaling pathways involved in the regulation of mRNA translation as they apply to skeletal muscle wasting, as well as the efficacy of potential clinical interventions such as nutrition and exercise in the maintenance of skeletal muscle protein synthesis under atrophic conditions. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.

  18. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals

    Directory of Open Access Journals (Sweden)

    Cribb Paul J

    2010-09-01

    Full Text Available Abstract Background We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Seventeen untrained male participants (23 ± 5 yr, 180 ± 6 cm, 80 ± 11 kg were randomly separated into two supplement groups: i whey protein isolate (WPH; n = 9; or ii carbohydrate (CHO; n = 8. Participants consumed 1.5 g/kg.bw/day supplement (~30 g consumed immediately, and then once with breakfast, lunch, in the afternoon and after the evening meal for a period of 14 days following a unilateral eccentric contraction-based resistance exercise session, consisting of 4 sets of 10 repetitions at 120% of maximum voluntary contraction on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase and lactate dehydrogenase (LDH levels were assessed as blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results Isometric knee extension strength was significantly higher following WPH supplementation 3 (P Conclusions The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.

  19. Postmortem Changes in Pork Muscle Protein Phosphorylation in Relation to the RN Genotype

    DEFF Research Database (Denmark)

    Lametsch, René; Larsen, Martin Røssel; Essén-Gustavsson, Birgitta

    2011-01-01

    Postmortem changes in pork muscle protein phosphorylation in relation to the RN(-) genotype were investigated using one-dimensional gel electrophoresis and a phosphor specific staining. The phosphorylation levels of several protein bands were found to be affected by the RN(-) genotype and to chan...

  20. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia

    DEFF Research Database (Denmark)

    Vigano, A.; Ripamonti, M.; Palma, S. De;

    2008-01-01

    High altitude hypoxia is a paraphysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. In man, skeletal muscle, after prolonged exposure to hypoxia, undergoes mass reduction and alterations at the cellul......, whereas the mammalian target of rapamycin (mTOR), a marker of protein synthesis, was reduced Udgivelsesdato: 2008/11...

  1. Sepsis and development impede muscle protein synthesis in neonatal pigs by different ribosomal mechanisms

    Science.gov (United States)

    In muscle, sepsis reduces protein synthesis (MPS) by restraining translation in neonates and adults. Even though protein accretion decreases with development as neonatal MPS rapidly declines by maturation, the changes imposed by development on the sepsis-associated decrease in MPS have not been desc...

  2. Leucine pulses enhance skeletal muscle protein synthesis during continuous feeding in neonatal pigs

    Science.gov (United States)

    Infants unable to maintain oral feeding can be nourished by orogastric tube. We have shown that orogastric continuous feeding restricts muscle protein synthesis compared with intermittent bolus feeding in neonatal pigs. To determine whether leucine leu infusion can be used to enhance protein synthes...

  3. Enteral B-hydroxy-B-methylbutyrate supplementation increases protein synthesis in skeletal muscle of neonatal pigs

    Science.gov (United States)

    Many low-birth weight infants are at risk for poor growth due to an inability to achieve adequate protein intake. Administration of the amino acid leucine stimulates protein synthesis in skeletal muscle of neonates. To determine the effects of enteral supplementation of the leucine metabolite B-hydr...

  4. Adipophilin protein expression in muscle - a possible protective role against insulin resistance

    NARCIS (Netherlands)

    Wilde, de J.; Smit, E.; Snepvangers, F.J.M.; Wit, de N.J.W.; Mohren, R.; Hulshof, M.F.M.; Mariman, E.C.M.

    2010-01-01

    Adipophilin is a 50 kDa protein that belongs to the PAT family (perilipin, adipophilin, TIP47, S3-12 and OXPAT), which comprises proteins involved in the coating of lipid droplets. Little is known about the functional role of adipophilin in muscle. Using the C2C12 cell line as a model, we

  5. Effect of regional muscle location but not adiposity on mitochondrial biogenesis-regulating proteins

    DEFF Research Database (Denmark)

    Ponce-González, Jesús Gustavo; Ara, Ignacio; Larsen, Steen;

    2016-01-01

    PURPOSE: The aim of this study was to determine if the expression of the mitochondrial biogenesis-regulating proteins SIRT1, SIRT3 and PGC-1alpha in human skeletal muscle is influenced by adiposity. METHOD: Twenty-nine male subjects were recruited into three groups: control (n = 10), obese (n = 10......) and post-obese (n = 9). Intentionally, groups were matched by age, aerobic capacity and in addition the control and post-obese groups also by BMI. Muscle biopsies were obtained from the m. deltoid and vastus lateralis. PGC-1alpha, SIRT1 and SIRT3 protein expression was analyzed by Western blot. RESULT: PGC......-1alpha, SIRT1 and SIRT3 protein expression was similar regardless of the level of adiposity. Only a main effect of group on SIRT1 protein showed a trend toward higher expression in post-obese than control and obese (P = 0.09). Despite similar muscle fiber-type composition (previously reported), PGC...

  6. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit.

    Directory of Open Access Journals (Sweden)

    Igor Ruvinsky

    Full Text Available BACKGROUND: Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable serine residues by alanines (rpS6(P-/-, are viable and fertile. However, phenotypic characterization of these mice and embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several cell types, as well as pancreatic beta-cell function and glucose homeostasis. A relatively passive behavior of these mice has raised the possibility that they suffer from muscle weakness, which has, indeed, been confirmed by a variety of physical performance tests. METHODOLOGY/PRINCIPAL FINDINGS: A large variety of experimental methodologies, including morphometric measurements of histological preparations, high throughput proteomic analysis, positron emission tomography (PET and numerous biochemical assays, were used in an attempt to establish the mechanism underlying the relative weakness of rpS6(P-/- muscles. Collectively, these experiments have demonstrated that the physical inferiority appears to result from two defects: a a decrease in total muscle mass that reflects impaired growth, rather than aberrant differentiation of myofibers, as well as a diminished abundance of contractile proteins; and b a reduced content of ATP and phosphocreatine, two readily available energy sources. The abundance of three mitochondrial proteins has been shown to diminish in the knockin mouse. However, the apparent energy deficiency in this genotype does not result from a lower mitochondrial mass or compromised activity of enzymes of the oxidative phosphorylation, nor does it reflect a decline in insulin-dependent glucose uptake, or diminution in storage of glycogen or triacylglycerol (TG in the muscle. CONCLUSIONS/SIGNIFICANCE: This study establishes rpS6 phosphorylation as a determinant of muscle strength through its role in regulation of myofiber growth and energy content. Interestingly, a similar

  7. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation

    Science.gov (United States)

    Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.

    1980-01-01

    Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.

  8. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically......, chronic activation of AMPK causes an increase in glycogen accumulation in skeletal and cardiac muscles, which in some cases is associated with cardiac dysfunction. The aim of this study was to elucidate the molecular mechanism by which AMPK activation promotes muscle glycogen accumulation. RESEARCH DESIGN...... AND METHODS We recently generated knock-in mice in which wild-type muscle GS was replaced by a mutant (Arg582Ala) that could not be activated by glucose-6-phosphate (G6P), but possessed full catalytic activity and could still be activated normally by dephosphorylation. Muscles from GS knock-in or transgenic...

  9. Location of and post-mortem changes in some cytoskeletal proteins in pork and cod muscle

    DEFF Research Database (Denmark)

    Morrison, E.H.; Bremner, Allan; Purslow, P.P.

    2000-01-01

    The cytoskeletal proteins actin, nebulin, spectrin, desmin, vinculin and talin were labelled immunohistochemically in sections of muscle from commercially available pigs and cod (Gadus morhua) taken pre-rigor and from samples stored for several days. Actin, nebulin and spectrin gave similar...... labelling in fish. Labelling for talin in pork muscle was intense at the sarcolemma but was not present in samples stored for 4 days. In contrast, the label for talin was concentrated at the myotendinous junction of the cod muscle throughout the storage period. These are the first reports of the detection...... and location of spectrin and vinculin in fish muscle and of the location of talin. The results are discussed in terms of muscle structure, function and post-mortem tenderisation. (C) 2000 Society of Chemical Industry....

  10. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  11. Coptidis Rhizoma Water Extract Stimulates 5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle%Coptidis Rhizoma Water Extract Stimulates5'-AMP-Activated Protein Kinase in Rat Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    Xiao Ma; Tatsuro Egawa; Rieko Oshima; Eriko Kurogi; Hiroko Tanabe; Satoshi Tsuda; Tatsuya Hayashi

    2011-01-01

    AIM: Coptidis Rhizoma (CR), the dried rhizomes of Asian herbs (including Coptis chinensis French), has been used to treat diabetes mellitus for thousands of years. We explored the possibility that CR acts directly on skeletal muscle, the major organ responsible for glucose homeostasis, and activates 5'-AMP-activated protein kinase (AMPK), a signaling intermediary leading to metabolic enhancement of skeletal muscle. METHODS: Isolated rat epitrochlearis and soleus muscles were incubated in a buffer containing a CR water extract (CE), and activation of AMPK and related events were examined. RESULTS: In response to CE treatment, phosphorylation of Thr172 at the catalytic α subunit of AMPK, an essential step for full kinase activation, increased in both muscles. Phosphorylation of Ser79 of acetyl CoA carboxylase (ACC), an endogenous substrate of AMPK, increased concotnitantly. Analysis of isoform-specific AMPK activity revealed that CE activated both the α1 and α2 isoforms of the catalytic subunit. Importantly, the maximal effect of CE on AMPK phosphorylation was significantly greater than that of berberine (BBR), indicating that the action of CE is not totally ascribed to BBR. CONCLUSION: We propose that CE is an acute activator of AMPK in both fast- and slow-twitch skeletal muscles.

  12. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype

    DEFF Research Database (Denmark)

    Davis, Erica; Jensen, Charlotte Harken; Farnir, Frédéric

    2004-01-01

    The callipyge (CLPG) phenotype is an inherited skeletal muscle hypertrophy described in sheep. It is characterized by an unusual mode of inheritance ("polar overdominance") in which only heterozygous individuals having received the CLPG mutation from their father (+(MAT)/CLPG(PAT)) express...... profile causes the callipyge muscular hypertrophy has remained unclear. Herein, we demonstrate that the callipyge phenotype is perfectly correlated with ectopic expression of DLK1 protein in hypertrophied muscle of +(MAT)/CLPG(PAT) sheep. We demonstrate the causality of this association by inducing...... a generalized muscular hypertrophy in transgenic mice that express DLK1 in skeletal muscle. The absence of DLK1 protein in skeletal muscle of CLPG/CLPG animals, despite the presence of DLK1 mRNA, supports a trans inhibition mediated by noncoding RNAs expressed from the maternal allele....

  13. Muscle synergy analysis in children with cerebral palsy

    Science.gov (United States)

    Tang, Lu; Li, Fei; Cao, Shuai; Zhang, Xu; Wu, De; Chen, Xiang

    2015-08-01

    Objective. To explore the mechanism of lower extremity dysfunction of cerebral palsy (CP) children through muscle synergy analysis. Approach. Twelve CP children were involved in this study, ten adults (AD) and eight typically developed (TD) children were recruited as a control group. Surface electromyographic (sEMG) signals were collected bilaterally from eight lower limb muscles of the subjects during forward walking at a comfortable speed. A nonnegative matrix factorization algorithm was used to extract muscle synergies. In view of muscle synergy differences in number, structure and symmetry, a model named synergy comprehensive assessment (SCA) was proposed to quantify the abnormality of muscle synergies. Main results. There existed larger variations between the muscle synergies of the CP group and the AD group in contrast with the TD group. Fewer mature synergies were recruited in the CP group, and many abnormal synergies specific to the CP group appeared. Specifically, CP children were found to recruit muscle synergies with a larger difference in structure and symmetry between two legs of one subject and different subjects. The proposed SCA scale demonstrated its great potential to quantitatively assess the lower-limb motor dysfunction of CP children. SCA scores of the CP group (57.00 ± 16.78) were found to be significantly less (p < 0.01) than that of the control group (AD group: 95.74 ± 2.04; TD group: 84.19 ± 11.76). Significance. The innovative quantitative results of this study can help us to better understand muscle synergy abnormality in CP children, which is related to their motor dysfunction and even the physiological change in their nervous system.

  14. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Reitelseder, Søren; Holm, Lars

    2013-01-01

    intake. Ingestion of excess protein exerts an unwanted load to the body and therefore, it is important to find the least amount of protein that provides the maximal hypertrophic stimulus. Hence, research has focused on revealing the relationship between protein intake (dose) and its resulting stimulation...... response dependent on the characteristics of the protein ingested. The effect of protein intake on muscle protein accretion can further be stimulated by prior exercise training. In the ageing population, physical training may counteract the development of "anabolic resistance" and restore the beneficial...

  15. The application of 2H2O to measure skeletal muscle protein synthesis

    Directory of Open Access Journals (Sweden)

    Fluckey James D

    2010-04-01

    Full Text Available Abstract Skeletal muscle protein synthesis has generally been determined by the precursor:product labeling approach using labeled amino acids (e.g., [13C]leucine or [13C]-, [15N]-, or [2H]phenylalanine as the tracers. Although reliable for determining rates of protein synthesis, this methodological approach requires experiments to be conducted in a controlled environment, and as a result, has limited our understanding of muscle protein renewal under free-living conditions over extended periods of time (i.e., integrative/cumulative assessments. An alternative tracer, 2H2O, has been successfully used to measure rates of muscle protein synthesis in mice, rats, fish and humans. Moreover, perturbations such as feeding and exercise have been included in these measurements without exclusion of common environmental and biological factors. In this review, we discuss the principle behind using 2H2O to measure muscle protein synthesis and highlight recent investigations that have examined the effects of feeding and exercise. The framework provided in this review should assist muscle biologists in designing experiments that advance our understanding of conditions in which anabolism is altered (e.g., exercise, feeding, growth, debilitating and metabolic pathologies.

  16. Muscle alkali-soluble protein, carnitine, water and electrolytes in patients with persistent post-operative infection.

    Science.gov (United States)

    Soop, M; Forsberg, E; Thörne, A; Cederblad, G; Bergström, J; Forsberg, A M; Hultman, E

    1989-10-01

    The muscle contents of water, electrolytes, creatine, alkali-soluble protein (ASP) and carnitine were determined using percutaneous muscle biopsy technique. Seven patients with prolonged catabolic states and subsequent respiratory failure were studied. Twelve age- and sex-matched healthy subjects were used for comparison. The muscle content of alkali-soluble protein in relation to the content of DNA was less than half of control values, indicating a loss of more than 50% of muscle protein content. The muscle carnitine content was 25.9 +/- 6.5 mumol/g alkali-soluble protein, suggesting a preserved muscle carnitine concentration. Total muscle water was increased by over 20%, mainly due to an increase in extracellular water. Muscle sodium and chloride contents were doubled. The content of magnesium was slightly reduced but muscle potassium was normal. The marked depletion of muscle protein may have contributed to the requirements for artificial ventilation and the difficulties in weaning off the ventilator. The increase in muscle water masks the loss of metabolically active muscle tissue yielding low values for energy expenditure when relating to body weight. The benefit of the use of the ASP/DNA ratio in nutritional assessment is emphasised.

  17. Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis.

    Science.gov (United States)

    Watford, Malcolm; Wu, Guoyao

    2005-04-01

    High intracellular glutamine levels have been implicated in promoting net protein synthesis and accretion in mammalian skeletal muscle. Little is known regarding glutamine metabolism in uricotelic species but chicken breast muscle exhibits high rates of protein accretion and would be predicted to maintain high glutamine levels. However, chicken breast muscle expresses high glutaminase activity and here we report that chicken breast muscle also expresses low glutamine synthetase activity (0.07+/-0.01 U/g) when compared to leg muscle (0.50+/-0.04 U/g). Free glutamine levels were 1.38+/-0.09 and 9.69+/-0.12 nmol/mg wet weight in breast and leg muscles of fed chickens, respectively. Glutamine levels were also lower in dove breast muscle (4.82+/-0.35 nmol/mg wet weight) when compared to leg muscle (16.2+/-1.0 nmol/mg wet weight) and much lower (1.80+/-0.46 nmol/mg wet weight) in lizard leg muscle. In fed chickens, rates of fractional protein synthesis were higher in leg than in breast muscle, and starvation (48 h) resulted in a decrease in both glutamine content and rate of protein synthesis in leg muscle. Thus, although tissue-specific glutamine metabolism in uricotelic species differs markedly from that in ureotelic animals, differences in rates of skeletal muscle protein synthesis are associated with corresponding differences in intramuscular glutamine content.

  18. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Rodnick, Kenneth J.; Mondon, Carl E.; James, David E.; Holloszy, John O.

    1991-01-01

    The study is intended to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). Results obtained indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. It is concluded that muscle activity is an important factor in the regulation of the GLUT-4 expression in skeletal muscle.

  19. Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Bülow, Jacob; Jensen, Jacob K

    2017-01-01

    INTRODUCTION: The present study investigated whether well-tolerated light-load resistance exercise (LL-RE) affects skeletal muscle fractional synthetic rate (FSR) and anabolic intracellular signaling as a way to counteract age-related loss of muscle mass. METHODS: Untrained healthy men (age: +65...... and 12g whey protein at 7 hours post-exercise; N=10) or placebo (4g maltodextrin/hour; N=10). Quadriceps muscle biopsies were taken at 0, 3, 7 and 10 hours post-exercise from both the resting and exercised leg. Myofibrillar-FSR and activity of select targets from the mTORC1-signalling cascade were...

  20. SIRT1 Protein, by Blocking the Activities of Transcription Factors FoxO1 and FoxO3, Inhibits Muscle Atrophy and Promotes Muscle Growth*

    Science.gov (United States)

    Lee, Donghoon; Goldberg, Alfred L.

    2013-01-01

    In several cell types, the protein deacetylase SIRT1 regulates the activities of FoxO transcription factors whose activation is critical in muscle atrophy. However, the possible effects of SIRT1 on the activity of FoxOs in skeletal muscle and on the regulation of muscle size have not been investigated. Here, we show that after food deprivation, SIRT1 levels fall dramatically in type II skeletal muscles (tibialis anterior), which show marked atrophy, unlike in the liver (where SIRT1 rises) or heart or the soleus, a type I muscle (where SIRT1 is unchanged). Maintenance of high SIRT1 levels by electroporation in mouse muscle inhibits markedly the muscle wasting induced by fasting as well as by denervation, and these protective effects require its deacetylase activity. SIRT1 overexpression reduces muscle wasting by blocking the activation of FoxO1 and 3. It thus prevents the induction of key atrogenes, including the muscle-specific ubiquitin ligases, atrogin1 and MuRF1, and multiple autophagy (Atg) genes and the increase in overall proteolysis. In normal muscle, SIRT1 overexpression by electroporation causes rapid fiber hypertrophy without, surprisingly, activation of the PI3K-AKT signaling pathway. Thus, SIRT1 activation favors postnatal muscle growth, and its fall appears to be critical for atrophy during fasting. Consequently, SIRT1 activation represents an attractive possible pharmacological approach to prevent muscle wasting and cachexia. PMID:24003218

  1. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  2. Meta-analysis of expression signatures of muscle atrophy: gene interaction networks in early and late stages

    Directory of Open Access Journals (Sweden)

    Lanfranchi Gerolamo

    2008-12-01

    Full Text Available Abstract Background Skeletal muscle mass can be markedly reduced through a process called atrophy, as a consequence of many diseases or critical physiological and environmental situations. Atrophy is characterised by loss of contractile proteins and reduction of fiber volume. Although in the last decade the molecular aspects underlying muscle atrophy have received increased attention, the fine mechanisms controlling muscle degeneration are still incomplete. In this study we applied meta-analysis on gene expression signatures pertaining to different types of muscle atrophy for the identification of novel key regulatory signals implicated in these degenerative processes. Results We found a general down-regulation of genes involved in energy production and carbohydrate metabolism and up-regulation of genes for protein degradation and catabolism. Six functional pathways occupy central positions in the molecular network obtained by the integration of atrophy transcriptome and molecular interaction data. They are TGF-β pathway, apoptosis, membrane trafficking/cytoskeleton organization, NFKB pathways, inflammation and reorganization of the extracellular matrix. Protein degradation pathway is evident only in the network specific for muscle short-term response to atrophy. TGF-β pathway plays a central role with proteins SMAD3/4, MYC, MAX and CDKN1A in the general network, and JUN, MYC, GNB2L1/RACK1 in the short-term muscle response network. Conclusion Our study offers a general overview of the molecular pathways and cellular processes regulating the establishment and maintenance of atrophic state in skeletal muscle, showing also how the different pathways are interconnected. This analysis identifies novel key factors that could be further investigated as potential targets for the development of therapeutic treatments. We suggest that the transcription factors SMAD3/4, GNB2L1/RACK1, MYC, MAX and JUN, whose functions have been extensively studied in

  3. Ablation of Protein Kinase CK2β in Skeletal Muscle Fibers Interferes with Their Oxidative Capacity

    Directory of Open Access Journals (Sweden)

    Nane Eiber

    2017-01-01

    Full Text Available The tetrameric protein kinase CK2 was identified playing a role at neuromuscular junctions by studying CK2β-deficient muscle fibers in mice, and in cultured immortalized C2C12 muscle cells after individual knockdown of CK2α and CK2β subunits. In muscle cells, CK2 activity appeared to be at least required for regular aggregation of nicotinic acetylcholine receptors, which serves as a hallmark for the presence of a postsynaptic apparatus. Here, we set out to determine whether any other feature accompanies CK2β-deficient muscle fibers. Hind limb muscles gastrocnemius, plantaris, and soleus of adult wildtype and CK2β-deficient mice were dissected, cross-sectioned, and stained histochemically by Gomori trichrome and for nicotinamide adenine dinucleotide (NADH dehydrogenase and succinate dehydrogenase (SDH enzymatic activities. A reduction of oxidative enzymatic activity was determined for CK2β-deficient muscle fibers in comparison with wildtype controls. Importantly, the CK2β-deficient fibers, muscle fibers that typically exhibit high NADH dehydrogenase and SDH activities, like slow-type fibers, showed a marked reduction in these activities. Altogether, our data indicate additional impairments in the absence of CK2β in skeletal muscle fibers, pointing to an eventual mitochondrial myopathy.

  4. Protein profiles of Taenia solium cysts obtained from skeletal muscles and the central nervous system of pigs: Search for tissue-specific proteins.

    Science.gov (United States)

    Navarrete-Perea, José; Moguel, Bárbara; Bobes, Raúl José; Villalobos, Nelly; Carrero, Julio César; Sciutto, Edda; Soberón, Xavier; Laclette, Juan Pedro

    2017-01-01

    Taeniasis/cysticercosis caused by the tapeworm Taenia solium is a parasite disease transmitted among humans and pigs, the main intermediate host. The larvae/cysts can lodge in several tissues of the pig, i.e. skeletal muscles and different locations of the central nervous system. The molecular mechanisms associated to tissue preferences of the cysts remain poorly understood. The major public health concern about this zoonosis is due to the human infections by the larval form in the central nervous system, causing a highly pleomorphic and debilitating disease known as neurocysticercosis. This study was aimed to explore the 2DE protein maps of T. solium cysts obtained from skeletal muscles and central nervous system of naturally infected pigs. The gel images were analyzed through a combination of PDQuest™ and multivariate analysis. Results showed that differences in the protein patterns of cysts obtained from both tissues were remarkably discrete. Only 7 protein spots were found specifically associated to the skeletal muscle localization of the cysts; none was found significantly associated to the central nervous system. The use of distinct protein fractions of cysts allowed preliminary identification of several tissue-specific antigenic bands. The implications of these findings are discussed, as well as several strategies directed to achieve the complete characterization of this parasite's proteome, in order to extend our understanding of the molecular mechanisms underlying tissue localization of the cysts and to open avenues for the development of immunological tissue-specific diagnosis of the disease.

  5. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Adriana C Lambertucci

    Full Text Available In this study, we investigated the effect of glutamine (Gln supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1 and the degradation pathways (MuRF-1 and MAFbx were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1 control, non-supplemented with glutamine; 2 control, supplemented with glutamine; 3 diabetic, non-supplemented with glutamine; and 4 diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2; the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  6. Desmin: molecular interactions and putative functions of the muscle intermediate filament protein

    Directory of Open Access Journals (Sweden)

    M.L. Costa

    2004-12-01

    Full Text Available Desmin is the intermediate filament (IF protein occurring exclusively in muscle and endothelial cells. There are other IF proteins in muscle such as nestin, peripherin, and vimentin, besides the ubiquitous lamins, but they are not unique to muscle. Desmin was purified in 1977, the desmin gene was characterized in 1989, and knock-out animals were generated in 1996. Several isoforms have been described. Desmin IFs are present throughout smooth, cardiac and skeletal muscle cells, but can be more concentrated in some particular structures, such as dense bodies, around the nuclei, around the Z-line or in costameres. Desmin is up-regulated in muscle-derived cellular adaptations, including conductive fibers in the heart, electric organs, some myopathies, and experimental treatments with drugs that induce muscle degeneration, like phorbol esters. Many molecules have been reported to associate with desmin, such as other IF proteins (including members of the membrane dystroglycan complex, nebulin, the actin and tubulin binding protein plectin, the molecular motor dynein, the gene regulatory protein MyoD, DNA, the chaperone alphaB-crystallin, and proteases such as calpain and caspase. Desmin has an important medical role, since it is used as a marker of tumors' origin. More recently, several myopathies have been described, with accumulation of desmin deposits. Yet, after almost 30 years since its identification, the function of desmin is still unclear. Suggested functions include myofibrillogenesis, mechanical support for the muscle, mitochondrial localization, gene expression regulation, and intracellular signaling. This review focuses on the biochemical interactions of desmin, with a discussion of its putative functions.

  7. Mechanosensitive molecular networks involved in transducing resistance exercise-signals into muscle protein accretion

    Directory of Open Access Journals (Sweden)

    Emil Rindom

    2016-11-01

    Full Text Available Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS, may contribute to understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1, to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ-phosphatidic acid (PA axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK-Tuberous Sclerosis Complex 2TSC2-Ras homolog enriched in brain (Rheb axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA-striated muscle activator of Rho signaling (STARS axis or how it may implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP signaling through a small mother of decapentaplegic (Smad axis.

  8. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion

    Science.gov (United States)

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis. PMID:27909410

  9. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion.

    Science.gov (United States)

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis.

  10. Obesity appears to be associated with altered muscle protein synthetic and breakdown responses to increased nutrient delivery in older men, but not reduced muscle mass or contractile function.

    OpenAIRE

    Andrew J Murton; Marimuthu, Kanagaraj; Mallinson, Joanne E.; Selby, Anna L.; Smith, Kenneth; Rennie, Michael J; Greenhaff, Paul L.

    2015-01-01

    Obesity is increasing, yet despite the necessity to maintain muscle mass and function with age, the effect of obesity on muscle protein turnover in older adults remains unknown. Eleven obese (BMI 31.9 ±1.1) and 15 healthy weight (HW; BMI 23.4 ±0.3) older men (55-75 years old) participated in a study that determined muscle protein synthesis (MPS) and leg protein breakdown (LPB) under post-absorptive (hypoinsulinaemic euglycaemic clamp) and post-prandial (hyperinsulinemic hyperaminoacidaemic eu...

  11. Whole body and skeletal muscle protein turnover in recovery from burns

    OpenAIRE

    Porter, Craig; Nicholas M Hurren; Herndon, David N.; Børsheim, Elisabet

    2013-01-01

    Trauma and critical illness are associated with a stress response that results in increased skeletal muscle protein catabolism, which is thought to facilitate the synthesis of acute phase proteins in the liver as well as proteins involved in immune function. What makes burn injury a unique form of trauma is the existence of vast skin lesions, where the majority of afflicted tissue is often surgically excised post injury. Thereafter, recovery is dependent on the formation of a significant quan...

  12. The anabolis potential of dietary protein intake on skeletal muscle is prolonged by prior light-load exercise

    DEFF Research Database (Denmark)

    Bechshøft, Rasmus; Dideriksen, K J; Reitelseder, Søren

    2012-01-01

    -like exercise at 16% of 1 repetition maximum and received oral protein boluses every hour for a 10-h period. Their myoFSR was determined by [1-13C]-leucine incorporation. Muscle biopsies were obtained from the resting (REST) and exercised (EXC) muscles every 2.5-h in the protein-fed period.ResultsProtein......, light-load exercise prolonged the stimulatory effect of dietary protein on muscle biosynthesis providing perspectives for a muscle restorative effect in clinical settings where strenuous activity is intolerable....

  13. Comparative Label-Free Mass Spectrometric Analysis of Mildly versus Severely Affected mdx Mouse Skeletal Muscles Identifies Annexin, Lamin, and Vimentin as Universal Dystrophic Markers

    Directory of Open Access Journals (Sweden)

    Ashling Holland

    2015-06-01

    Full Text Available The primary deficiency in the membrane cytoskeletal protein dystrophin results in complex changes in dystrophic muscles. In order to compare the degree of secondary alterations in differently affected subtypes of skeletal muscles, we have conducted a global analysis of proteome-wide changes in various dystrophin-deficient muscles. In contrast to the highly degenerative mdx diaphragm muscle, which showed considerable alterations in 35 distinct proteins, the spectrum of mildly to moderately dystrophic skeletal muscles, including interosseus, flexor digitorum brevis, soleus, and extensor digitorum longus muscle, exhibited a smaller number of changed proteins. Compensatory mechanisms and/or cellular variances may be responsible for differing secondary changes in individual mdx muscles. Label-free mass spectrometry established altered expression levels for diaphragm proteins associated with contraction, energy metabolism, the cytoskeleton, the extracellular matrix and the cellular stress response. Comparative immunoblotting verified the differences in the degree of secondary changes in dystrophin-deficient muscles and showed that the up-regulation of molecular chaperones, the compensatory increase in proteins of the intermediate filaments, the fibrosis-related increase in collagen levels and the pathophysiological decrease in calcium binding proteins is more pronounced in mdx diaphragm as compared to the less severely affected mdx leg muscles. Annexin, lamin, and vimentin were identified as universal dystrophic markers.

  14. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup;

    2014-01-01

    There is increasing evidence that multiple proteins involved in key regulatory processes in mitochondria are phosphorylated in mammalian tissues. Insulin regulates glucose metabolism by phosphorylation-dependent signaling and has been shown to stimulate ATP synthesis in human skeletal muscle. Here...... the majority of novel sites. Phosphorylation sites detected more often or exclusively in insulin-stimulated samples include multiple sites in mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid metabolism, as well as several components of the newly defined......, we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...

  15. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans

    DEFF Research Database (Denmark)

    Esmarck, Birgitte; Olsen, Steen Schytte

    2001-01-01

    remains unresolved. 2. The study investigated the importance of immediate (P0) or delayed (P2) intake of an oral protein supplement upon muscle hypertrophy and strength over a period of resistance training in elderly males. 3. Thirteen men (age, 74 ± 1 years; body mass index (BMI), 25 ± 1 kg m−2 (means...... ± S.E.M.)) completed a 12 week resistance training programme (3 times per week) receiving oral protein in liquid form (10 g protein, 7 g carbohydrate, 3 g fat) immediately after (P0) or 2 h after (P2) each training session. Muscle hypertrophy was evaluated by magnetic resonance imaging (MRI) and from...... for the development of hypertrophy in skeletal muscle of elderly men in response to resistance training....

  16. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    Science.gov (United States)

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM.

  17. Effect of Diets with Different Energy and Protein Levels on Breast Muscle Characteristics at Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Adela Marcu

    2013-05-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this paper was studied the effect of dietary energy and protein levels on breast muscle characteristics at broiler chickens, which were sacrificed at 42 days old. The genetic material was represented by broiler chickens that belonged to the „Ross-308” hybrid, with three groups (LC-control group, L1 and L2 experimental groups. In the growth periods (starter, growing and finishing have received compound feed ad libitum, with different energy and protein levels (LC-was conforming to recommendations of Aviagen Company; L1-higher with 10%; L2-lower with 10%. After evisceration, from each group were sampled breasts from 10 carcasses (five per sex and were determined: muscle mass, meat:bones ratio, chemical composition of meat, pH value (after evisceration up to 24 h of refrigeration and the thickness of myocytes in the superficial pectoral muscle. For these characteristics, highest values were obtained at L1 group, and the lowest values were at L2 group. At the L1 group, high levels of dietary proteins and energy has significantly influenced: muscle mass, meat:bones ratio, chemical composition of meat (water, proteins and lipids, pH value and the thickness of myocytes in the superficial pectoral muscle, as compared with LC and L2.

  18. The sarcomeric protein nebulin: another multifunctional giant in charge of muscle strength optimization.

    Science.gov (United States)

    Ottenheijm, Coen A C; Granzier, Henk; Labeit, Siegfried

    2012-01-01

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been successful in explaining many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Whereas the role of titin rapidly progressed, nebulin's role in muscle structure and function remained long nebulous. An important feature of muscle structure and function that has remained relatively obscure concerns the mechanisms that are involved in regulating thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length, most likely by stabilizing F-actin assemblies. Another structural feature of skeletal muscle that has been incompletely understood concerns the mechanisms involved in maintaining Z-disk structure and the regular lateral alignment of adjacent sarcomeres during contraction. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. In addition to these structural roles in support of myofibrillar force generation, nebulin has been also shown to regulate directly muscle contraction at the level of individual crossbridges: cycling kinetics and the calcium sensitivity of force producing crossbridges is enhanced in the presence of nebulin. Thus, these recent data all point to nebulin being important for muscle force optimization. Consequently, muscle weakness as the lead symptom develops in the case of patients with nemaline myopathy that have mutations in the nebulin gene. Here, we discuss these important novel insights into the role of nebulin in skeletal muscle function.

  19. The sarcomeric protein nebulin: another multifunctional giant in charge of muscle strength optimization

    Directory of Open Access Journals (Sweden)

    Coen eOttenheijm

    2012-02-01

    Full Text Available The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been successful in explaining many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Whereas the role of titin rapidly progressed, nebulin’s role in muscle structure and function remained long nebulous. An important feature of muscle structure and function that has remained relatively obscure concerns the mechanisms that are involved in regulating thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length, most likely by stabilizing F-actin assemblies. Another structural feature of skeletal muscle that has been incompletely understood concerns the mechanisms involved in maintaining Z-disk structure and the regular lateral alignment of adjacent sarcomeres during contraction. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. In addition to these structural roles in support of myofibrillar force generation, nebulin has been also shown to regulate directly muscle contraction at the level of individual cross bridges: cycling kinetics and the calcium sensitivity of force producing cross-bridges is enhanced in the presence of nebulin. Thus, these recent data all point to nebulin being important for muscle force optimization. Consequently, muscle weakness as the lead symptom develops in the case of patients with nemaline myopathy that have mutations in the nebulin gene. Here, we discuss these important novel insights into the role of nebulin in skeletal muscle

  20. Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jih-Hua [Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan (China); Chang, Nen-Chung [Division of Cardiology, Department of Internal Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chen, Sy-Ping [Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China); Geraldine, Pitchairaj [Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India); Jayakumar, Thanasekaran, E-mail: tjaya_2002@yahoo.co.in [Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Fong, Tsorng-Harn, E-mail: thfong@tmu.edu.tw [Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2015-10-09

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been efficacious in elucidating many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Nebulin, a giant myofibrillar protein, acts as a protein ruler to maintain the lattice arrays of thin filaments and plays a role in signal transduction and contractile regulation. However, the change of nebulin and its effect on thin filaments in denervation-induced atrophic muscle remains unclear. The purpose of this study is to examine the content and pattern of nebulin, myosin heavy chain (MHC), actin, and titin in innervated and denervated tibialis anterior (TA) muscles of rats using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), densitometry and electron microscopic (EM) analyses. The results revealed that denervation induced muscle atrophy is accompanied by decreased nebulin content in a time-dependent manner. For instant, the levels of nebulin in denervated muscles were markedly (P < 0.05) decreased, about 24.6% and 40.2% in comparison with innervated muscle after denervation of 28 and 56 days, respectively. The nebulin/MHC, nebulin/actin, and nebulin/titin ratios were decreased, suggesting a concomitant reduction of nebulin in denervated muscle. Moreover, a western blotting assay proved that nebulin declined faster than titin on 28 and 56 days of denervated muscle. In addition, EM study revealed that the disturbed arrangements of myofilaments and a disorganized contractile apparatus were also observed in denervated muscle. Overall, the present study provides evidence that nebulin is more sensitive to the effect of denervation than MHC, actin, and titin. Nebulin decline indeed resulted in disintegrate of thin filaments and shortening of sarcomeres. - Highlights: • We successfully

  1. Muscle development in healthy children evaluated by bioelectrical impedance analysis.

    Science.gov (United States)

    Uchiyama, Tomoka; Nakayama, Takahiro; Kuru, Satoshi

    2017-02-01

    This study aimed to use bioelectrical impedance analysis (BIA) to generate a new muscle density index (MDI), the MDI_BIA, to evaluate muscle development, and to demonstrate the changes that occur in the BIA-based muscle cross-sectional area index (MCAI_BIA) that accompany growth. We also sought to determine the traceability of chronological changes in the MDI_BIA and MCAI_BIA. Healthy children (n=112) aged 8.68±3.16years (0.33-14.00years) underwent bioelectrical impedance (BI) measurements of their upper arms, thighs, and lower legs. The MDI_BIA and MCAI_BIA were calculated, and cross-sectional investigations were conducted into the changes in these indices that accompanied growth. Data collected after 1.10±0.08years from 45 participants determined the traceability of the chronological changes in the MDI_BIA and MCAI_BIA. The MDI_BIA and MCAI_BIA were significantly positively correlated with age and height at all locations (Pmuscles from different perspectives. Except for the upper arm MDI_BIA, both indices at all locations regardless of age, showed significant chronological increases after an average period of 1.10years. The MDI_BIA and MCAI_BIA were significantly correlated with age and height in healthy children, and they showed significant chronological increases. Hence, these indices could be used to represent muscle development and muscle mass increases. BIA is non-invasive, convenient, and economical and it may be useful in evaluating muscle development and muscle cross-sectional areas in children. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Preserved skeletal muscle protein anabolic response to acute exercise and protein intake in well-treated rheumatoid arthritis patients

    DEFF Research Database (Denmark)

    Mikkelsen, Ulla Ramer; Dideriksen, Kasper; Andersen, Mads Bisgaard

    2015-01-01

    (CRP), interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay (ELISA) in resting blood samples obtained on two separate days. Skeletal muscle myofibrillar and connective tissue protein fractional synthesis rate (FSR) was measured by incorporation...

  3. Blood flow restriction prevents muscle damage but not protein synthesis signaling following eccentric contractions.

    Science.gov (United States)

    Sudo, Mizuki; Ando, Soichi; Poole, David C; Kano, Yutaka

    2015-07-01

    There is a growing body of evidence to suggest that resistance training exercise combined with blood flow restriction (BFR) increases muscle size and strength in humans. Eccentric contraction (ECC) frequently induces severe muscle damage. However, it is not known whether and to what extent muscle damage occurs following ECC + BFR due to the difficulty of conducting definitive invasive studies. The purpose of this study was to examine muscle fiber damage following ECC + BFR at the cellular level. High-intensity ECC was purposefully selected to maximize the opportunity for muscle damage and hypertrophic signaling in our novel in vivo animal model. Male Wistar rats were assigned randomly to the following groups: ECC and ECC + BFR at varying levels of occlusion pressure (140, 160, and 200 Torr). In all conditions, electrical stimulation was applied to the dorsiflexor muscles simultaneously with electromotor-induced plantar flexion. We observed severe histochemical muscle fiber damage (area of damaged fibers/total fiber area analyzed) following ECC (26.4 ± 4.0%). Surprisingly, however, muscle damage was negligible following ECC + BFR140 (2.6 ± 1.2%), ECC+BFR160 (3.0 ± 0.5%), and ECC + BFR200 (0.2 ± 0.1%). Ribosomal S6 kinase 1 (S6K1) phosphorylation, a downstream target of rapamycin (mTOR)-phosphorylation kinase, increased following ECC + BFR200 as well as ECC. In contrast, S6K1 phosphorylation was not altered by BFR alone. The present findings suggest that ECC combined with BFR, even at high exercise intensities, may enhance muscle protein synthesis without appreciable muscle fiber damage.

  4. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation

    DEFF Research Database (Denmark)

    Reitelseder, Søren; Agergaard, Jakob; Doessing, Simon

    2014-01-01

    Purpose Resistance exercise and amino acid availability are positive regulators of muscle protein net balance (NB). However, anabolic responses to resistance exercise and protein supplementation deserve further elucidation. The purpose was to compare intakes of whey, caseinate (both: 0.30 g/kg le......RNA expressions indicate different regulatory mechanisms on the ubiquitin ligases MuRF1 and Atrogin1 in recovery from heavy resistance exercise....

  5. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction.

    Science.gov (United States)

    Hyzewicz, Janek; Tanihata, Jun; Kuraoka, Mutsuki; Ito, Naoki; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi

    2015-05-01

    High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein-protein interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the respiratory chain were downregulated. Of functional importance, ATP synthase was only partially assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase, and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are associated with lowered oxidative damage as revealed by carbonylation and higher expression of proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to design therapies for DMD based on exercise mimicking drugs.

  6. Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults

    Directory of Open Access Journals (Sweden)

    Oliver C. Witard

    2016-03-01

    Full Text Available Skeletal muscle is critical for human health. Protein feeding, alongside resistance exercise, is a potent stimulus for muscle protein synthesis (MPS and is a key factor that regulates skeletal muscle mass (SMM. The main purpose of this narrative review was to evaluate the latest evidence for optimising the amino acid or protein source, dose, timing, pattern and macronutrient coingestion for increasing or preserving SMM in healthy young and healthy older adults. We used a systematic search strategy of PubMed and Web of Science to retrieve all articles related to this review objective. In summary, our findings support the notion that protein guidelines for increasing or preserving SMM are more complex than simply recommending a total daily amount of protein. Instead, multifactorial interactions between protein source, dose, timing, pattern and macronutrient coingestion, alongside exercise, influence the stimulation of MPS, and thus should be considered in the context of protein recommendations for regulating SMM. To conclude, on the basis of currently available scientific literature, protein recommendations for optimising SMM should be tailored to the population or context of interest, with consideration given to age and resting/post resistance exercise conditions.

  7. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    Science.gov (United States)

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  8. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy

    Science.gov (United States)

    Adams, G. R.; Haddad, F.

    1996-01-01

    Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P Muscle IGF-1 peptide levels peaked at 3 (normal) and 7 (HX) days of overloading with maximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases in muscle IGF-1 preceded the hypertrophic response. Total DNA content of the overloaded Plant increased in both groups. There was a strong positive relationship between IGF-1 peptide and DNA content in the overloaded Plant from both groups. These results indicate that 1) the muscles from rats with both normal and severely depressed systemic levels of IGF-1 respond to functional overload with an increase in local IGF-1 expression and 2) this elevated IGF-1 may be contributing to the hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

  9. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy

    Science.gov (United States)

    Adams, G. R.; Haddad, F.

    1996-01-01

    Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P Muscle IGF-1 peptide levels peaked at 3 (normal) and 7 (HX) days of overloading with maximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases in muscle IGF-1 preceded the hypertrophic response. Total DNA content of the overloaded Plant increased in both groups. There was a strong positive relationship between IGF-1 peptide and DNA content in the overloaded Plant from both groups. These results indicate that 1) the muscles from rats with both normal and severely depressed systemic levels of IGF-1 respond to functional overload with an increase in local IGF-1 expression and 2) this elevated IGF-1 may be contributing to the hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

  10. No differential effects of divergent isocaloric supplements on signaling for muscle protein turnover during recovery from muscle-damaging eccentric exercise.

    Science.gov (United States)

    Rahbek, Stine Klejs; Farup, Jean; de Paoli, Frank; Vissing, Kristian

    2015-04-01

    Unaccustomed high-intensity eccentric exercise (ECC) can provoke muscle damage including several days of muscle force loss. Post-exercise dietary supplementation may provide a strategy to accelerate rate of force regain by affecting mechanisms related to muscle protein turnover. The aim of the current study was to investigate if protein signaling mechanisms involved in muscle protein turnover would be differentially affected by supplementation with either whey protein hydrolysate and carbohydrate (WPH+CHO) versus isocaloric carbohydrate (CHO) after muscle-damaging ECC. Twenty-four young healthy participants received either WPH+CHO (n = 12) or CHO supplements (n = 12) during post-exercise recovery from 150 maximal unilateral eccentric contractions. Prior to, at 3 h and at 24, 48, 96 and/or 168 h post-exercise, muscle strength, muscle soreness, and Akt-mTOR and FOXO signaling proteins, were measured in an ECC exercising leg and in the contralateral non-exercise control leg (CON). After ECC, muscle force decreased by 23-27 % at 24 h post-exercise, which was followed by gradual, although not full recovery at 168 h post-exercise, with no differences between supplement groups. Phosphorylation of mTOR, p70S6K and rpS6 increased and phosphorylation of FOXO1 and FOXO3 decreased in the ECC leg, with no differences between supplement groups. Phosphorylation changes were also observed for rpS6, FOXO1 and FOXO3a in the CON leg, suggesting occurrence of remote tissue effects. In conclusion, divergent dietary supplementation types did not produce differences in signaling for muscle turnover during recovery from muscle-damaging exercise.

  11. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group

    Science.gov (United States)

    Deutz, Nicolaas E. P.; Bauer, Jurgen M.; Barazzoni, Rocco; Biolo, Gianni; Boirie, Yves; Bosy-Westphal, Anja; Cederholm, Tommy; Cruz-Jentoft, Alfonso; Krznaric, Zeljko; Nair, K. Sreekumaran; Singer, Pierre; Teta, Daniel; Tipton, Kevin; Calder, Philip C.

    2014-01-01

    The aging process is associated with gradual and progressive loss of muscle mass along with lowered strength and physical endurance. This condition, sarcopenia, has been widely observed with aging in sedentary adults. Regular aerobic and resistance exercise programs have been shown to counteract most aspects of sarcopenia. In addition, good nutrition, especially adequate protein and energy intake, can help limit and treat age-related declines in muscle mass, strength, and functional abilities. Protein nutrition in combination with exercise is considered optimal for maintaining muscle function. With the goal of providing recommendations for health care professionals to help older adults sustain muscle strength and function into older age, the European Society for Clinical Nutrition and Metabolism (ESPEN) hosted a Workshop on Protein Requirements in the Elderly, held in Dubrovnik on November 24 and 25, 2013. Based on the evidence presented and discussed, the following recommendations are made: (1) for healthy older people, the diet should provide at least 1.0 to 1.2 g protein/kg body weight/day (2) for older people who are malnourished or at risk of malnutrition because they have acute or chronic illness, the diet should provide 1.2 to 1.5 g protein/kg body weight/day, with even higher intake for individuals with severe illness or injury, and (3) daily physical activity or exercise (resistance training, aerobic exercise) should be undertaken by all older people, for as long as possible. PMID:24814383

  12. Effect of carbohydrate-protein supplementation postexercise on rat muscle glycogen synthesis and phosphorylation of proteins controlling glucose storage.

    Science.gov (United States)

    Hara, Daisuke; Morrison, Paul J; Ding, Zhenping; Ivy, John L

    2011-10-01

    To examine whether addition of protein to a carbohydrate supplement enhances muscle glycogen synthesis, we compared the muscle glycogen concentrations of rats that had been depleted of their muscle glycogen stores with a 3-hour swim and immediately supplemented with a placebo (Con), carbohydrate (CHO), or carbohydrate plus protein supplement (C+P). Rats were given either 0.9 g carbohydrate per kilogram body mass for the CHO group or 0.9 g carbohydrate + 0.3 g protein per kilogram body mass for the C+P groups. Muscle samples of the red and white quadriceps were excised immediately, 30 minutes, or 90 minutes postexercise. Glycogen concentration of the C+P group was greater than that of the CHO group at 90 minutes postexercise in both red (C+P, 28.3 ± 2.6 µmol/g vs CHO, 22.4 ± 2.0 µmol/g; P Protein kinase B phosphorylation was greater in the C+P-30 group (the number following treatment group abbreviation refers to time [in minutes] of euthanasia following exercise) than the sedentary control and exercised control groups in red quadriceps at 30 minutes and in white quadriceps at 90 minutes postexercise. This difference was not observed in the CHO group. Phosphorylation of glycogen synthase was significantly reduced 30 minutes postexercise and returned to baseline levels by 90 minutes postexercise in both CHO- and C+P-supplemented groups, with no difference between supplements. These results demonstrated that the addition of protein to a carbohydrate supplement will enhance the rate of muscle glycogen restoration postexercise and may involve facilitation of the glucose transport process.

  13. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  14. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goena, M.; Santidrian, S.; Cuevillas, F.; Larralde, J.

    1986-03-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-//sup 14/C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesized protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects.

  15. Statistical Analysis of Protein Ensembles

    Science.gov (United States)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  16. Statistical Analysis of Protein Ensembles

    Directory of Open Access Journals (Sweden)

    Gabriell eMáté

    2014-04-01

    Full Text Available As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  17. Spatial Distribution of Transgenic Protein After Gene Electrotransfer to Porcine Muscle

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Corydon, Thomas; Hojman, Pernille

    2012-01-01

    Abstract Gene electrotransfer is an effective nonviral technique for delivery of plasmid DNA into tissues. From a clinical perspective, muscle is an attractive target tissue as long-term, high-level transgenic expression can be achieved. Spatial distribution of the transgenic protein following gene...... electrotransfer to muscle in a large animal model has not yet been investigated. In this study, 17 different doses of plasmid DNA (1-1500 μg firefly luciferase pCMV-Luc) were delivered in vivo to porcine gluteal muscle using electroporation. Forty-eight hours post treatment several biopsies were obtained from...... each transfection site in order to examine the spatial distribution of the transgenic product. We found a significantly higher luciferase activity in biopsies from the center of the transfection site compared to biopsies taken adjacent to the center, 1 and 2 cm along muscle fiber orientation (p...

  18. Expression profile and protein translation of TMEM16A in murine smooth muscle

    DEFF Research Database (Denmark)

    Davis, Alison J; Forrest, Abigail S; Jepps, Thomas Andrew

    2010-01-01

    Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl......(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipette solution containing 500 nM Ca(2+) in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific...... for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle...

  19. Secretome Analysis of Lipid-Induced Insulin Resistance in Skeletal Muscle Cells by a Combined Experimental and Bioinformatics Workflow.

    Science.gov (United States)

    Deshmukh, Atul S; Cox, Juergen; Jensen, Lars Juhl; Meissner, Felix; Mann, Matthias

    2015-11-01

    Skeletal muscle has emerged as an important secretory organ that produces so-called myokines, regulating energy metabolism via autocrine, paracrine, and endocrine actions; however, the nature and extent of the muscle secretome has not been fully elucidated. Mass spectrometry (MS)-based proteomics, in principle, allows an unbiased and comprehensive analysis of cellular secretomes; however, the distinction of bona fide secreted proteins from proteins released upon lysis of a small fraction of dying cells remains challenging. Here we applied highly sensitive MS and streamlined bioinformatics to analyze the secretome of lipid-induced insulin-resistant skeletal muscle cells. Our workflow identified 1073 putative secreted proteins including 32 growth factors, 25 cytokines, and 29 metalloproteinases. In addition to previously reported proteins, we report hundreds of novel ones. Intriguingly, ∼40% of the secreted proteins were regulated under insulin-resistant conditions, including a protein family with signal peptide and EGF-like domain structure that had not yet been associated with insulin resistance. Finally, we report that secretion of IGF and IGF-binding proteins was down-regulated under insulin-resistant conditions. Our study demonstrates an efficient combined experimental and bioinformatics workflow to identify putative secreted proteins from insulin-resistant skeletal muscle cells, which could easily be adapted to other cellular models.

  20. Cellular Prion Protein Promotes Regeneration of Adult Muscle Tissue ▿ †

    Science.gov (United States)

    Stella, Roberto; Massimino, Maria Lina; Sandri, Marco; Sorgato, M. Catia; Bertoli, Alessandro

    2010-01-01

    It is now well established that the conversion of the cellular prion protein, PrPC, into its anomalous conformer, PrPSc, is central to the onset of prion disease. However, both the mechanism of prion-related neurodegeneration and the physiologic role of PrPC are still unknown. The use of animal and cell models has suggested a number of putative functions for the protein, including cell signaling, adhesion, proliferation, and differentiation. Given that skeletal muscles express significant amounts of PrPC and have been related to PrPC pathophysiology, in the present study, we used skeletal muscles to analyze whether the protein plays a role in adult morphogenesis. We employed an in vivo paradigm that allowed us to compare the regeneration of acutely damaged hind-limb tibialis anterior muscles of mice expressing, or not expressing, PrPC. Using morphometric and biochemical parameters, we provide compelling evidence that the absence of PrPC significantly slows the regeneration process compared to wild-type muscles by attenuating the stress-activated p38 pathway, and the consequent exit from the cell cycle, of myogenic precursor cells. Demonstrating the specificity of this finding, restoring PrPC expression completely rescued the muscle phenotype evidenced in the absence of PrPC. PMID:20679477

  1. Serial Analysis of Gene Expression (SAGE in the Skeletal Muscle of Pig

    Directory of Open Access Journals (Sweden)

    Bruno Stefanon

    2010-01-01

    Full Text Available Skeletal muscle growth represents one of the main economic traits in pig production. To gain a better understanding of expressions profile in pig muscle, serial analysis of gene expression (SAGE was performed in Longissimus dorsi of two pigs at 3 and 9 months of age. A total of 53,120 long tags were obtained and sequenced from the four muscle SAGE libraries, representing 17,902 different tags, or putative transcripts, 0.64% (+0.09 of which had a relative expression level higher than 1‰. Overall, a total of 218 tags were highly expressed and 31 had a frequency higher than 3‰. Functional characterisation of the expression profiles was performed using Kyoto Encyclopedia of Genes and Genomes metabolic maps and 139 pathways were identified for swine skeletal muscle. Focal adhesion, Mitogen-Activated Protein Kinase signalling, oxidative phosphorylation, ribosomal proteins, regulation of actin cytoskeleton and insulin signalling pathways showed an abundance of genes greater than 1.5% of all the expressed transcripts. A comparison with human SAGE library indicated no statistical differences for the frequency of genes involved in these metabolic pathways.

  2. Protein needs in athletes and dietary-nutrition guidelines to gain muscle mass

    Directory of Open Access Journals (Sweden)

    Aritz Urdampilleta

    2014-05-01

    Full Text Available One of the most important effects of strength training is muscular hypertrophy. Athletes should optimize their nutritional management in order to compensate their own genetic limitations. The aim of this review is to analyze the scientific evidence concerning protein intake as a tool to achieve muscle hypertrophy. Depending on the expenditure and energy intake of athlete, a daily protein ranging between 10-15% of total dietary intake is needed. However in sports diets, it is preferable to estimate the amount of protein needed per kilogram of body weight in each individual. In this regard athletes should ingest an amount between 1.2 g and 1.8 g of proteins/kg of body mass/day to maintain their lean mass. In order to increase muscle mass (0.5 kg/week, athletes should take between 1.6 g and 1.8 g of protein/kg/day with an increase of 400-500 kcal in their daily diet. These needs will depend on the sport, muscular catabolic status, the athlete’s lean mass and glycogen stores. Protein needs will increase if muscle and liver glycogen stores are empty. Excess of protein intake (more than 2 g/kg/day, with full glycogen stores, does not benefit the athlete and could cause an increase in circulating ketones and urea, thereby producing an early dehydration.

  3. Inflammatory and protein metabolism signaling responses in human skeletal muscle after burn injury.

    Science.gov (United States)

    Merritt, Edward K; Cross, James M; Bamman, Marcas M

    2012-01-01

    Severe burn injuries lead to a prolonged hypercatabolic state resulting in dramatic loss of skeletal muscle mass. Postburn muscle loss is well documented but the molecular signaling cascade preceding atrophy is not. The purpose of this study is to determine the response to burn injury of signaling pathways driving muscle inflammation and protein metabolism. Muscle biopsies were collected in the early flow phase after burn injury from the vastus lateralis of a noninjured leg in patients with 20 to 60% TBSA burns and compared with uninjured, matched controls. Circulating levels of proinflammatory cytokines were also compared. Immunoblotting was performed to determine the protein levels of key signaling components for translation initiation, proteolysis, and tumor necrosis factor/nuclear factor kappa B (NFκB)and interleukin (IL)-6/STAT3 signaling. Burn subjects had significantly higher levels of circulating proinflammatory cytokines, with no difference in muscle STAT3 activity and lower NFκB activity. No differences were found in any translational signaling components. Regarding proteolytic signaling in burn, calpain-2 was 47% higher, calpastatin tended to be lower, and total ubiquitination was substantially higher. Surprisingly, a systemic proinflammatory response 3 to 10 days postburn did not lead to elevated muscle STAT3 or NFκB signaling. Signaling molecules governing translation initiation were unaffected, whereas indices of calcium-mediated proteolysis and ubiquitin-proteasome activity were upregulated. These novel findings are the first in humans to suggest that the net catabolic effect of burn injury in skeletal muscle (ie, atrophy) may be mediated, at least during the early flow phase, almost entirely by an increased proteolytic activity in the absence of suppressed protein synthesis signaling.

  4. Contribution of protein kinase C to passively sensitized human airway smooth muscle cells proliferation

    Institute of Scientific and Technical Information of China (English)

    许淑云; 徐永健; 张珍祥; 倪望; 陈士新

    2004-01-01

    Background Airway smooth muscle proliferation plays an important role in airway remodeling in asthma. But little is known about the intracellular signal pathway in the airway smooth muscle cell proliferation in asthma. The objective of this paper is to investigate the contribution of protein kinase C (PKC) and its alpha isoform to passively sensitized human airway smooth muscle cells (HASMCs) proliferation.Methods HASMCs in culture were passively sensitized with 10% serum from asthmatic patients, with non-asthmatic human serum treated HASMCs used as the control. The proliferation of HASMCs was examined by cell cycle analysis, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyltetrazoliumbromide (MTT) colorimetric assay and proliferating cell nuclear antigen (PCNA) immunofluorescence staining. The effect of PKC agonist phorbol 12-myristate 13-acetate (PMA) and PKC inhibitor Ro-31-8220 on the proliferation of HASMCs exposed to human asthmatic serum and non-asthmatic control serum was also examined by the same methods. The protein and mRNA expression of PKC-α in passively sensitized HASMCs were detected by immunofluorescence staining and reverse transcription-polymerase chain reaction.Results The percentage of S phase, absorbance (value A) and the positive percentage of PCNA protein expression in HASMCs passively sensitized with asthmatic serum were (16.30±2.68)%, 0.430±0.060 and (63.4±7.4)% respectively, which were significantly increased compared with HASMCs treated with control serum [(10.01±1.38)%, 0.328±0.034 and (37.2±4.8)%, respectively] (P<0.05). After HASMCs were passively sensitized with asthmatic serum, they were treated with PMA, the percentage of S phase, value A and the positive percentage of PCNA protein expression were (20.33±3.39)%, 0.542±0.065 and (76.0±8.7)% respectively, which were significantly increased compared with asthmatic serum sensitized HASMCs without PMA(P<0.05). After HASMCs passively sensitized with asthmatic serum were treated with

  5. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice....... In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals....

  6. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    Energy Technology Data Exchange (ETDEWEB)

    Benny Klimek, Margaret E.; Aydogdu, Tufan [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Link, Majik J.; Pons, Marianne [Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Koniaris, Leonidas G. [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States); Zimmers, Teresa A., E-mail: tzimmers@med.miami.edu [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States)

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  7. Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle

    DEFF Research Database (Denmark)

    Huang, Honggang; Larsen, Martin Røssel; Lametsch, Rene

    2012-01-01

    phosphorylated protein bands with the highest scores. The results indicate that the phosphorylation pattern of myofibrillar proteins in PM muscle is mainly changed with PM time, but only to a minor extent influenced by the rate of pH decline, suggesting that the phosphorylation of myofibrillar proteins may......A gel-based phosphoproteomic study was performed to investigate the postmortem (PM) changes in protein phosphorylation of the myofibrillar proteins in three groups of pigs with different pH decline rates, from PM 1 h to 24 h. The global phosphorylation level in the group with a fast pH decline rate...... was higher than that in the slow and intermediate groups at early PM time, but became the lowest at 24 h. The protein phosphorylation level of seven individual protein bands was only significantly (ptime, and two protein bands were subjected to a synergy effect between PM time and p...

  8. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.

    Science.gov (United States)

    Camera, Donny M; Burniston, Jatin G; Pogson, Mark A; Smiles, William J; Hawley, John A

    2017-08-30

    It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. © FASEB.

  9. Muscle glycogen resynthesis during recovery from cycle exercise: no effect of additional protein ingestion

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Shirreffs, S M; Calbet, J A

    2000-01-01

    In the present study, we have investigated the effect of carbohydrate and protein hydrolysate ingestion on muscle glycogen resynthesis during 4 h of recovery from intense cycle exercise. Five volunteers were studied during recovery while they ingested, immediately after exercise, a 600-ml bolus......, and 18 +/- 6 for the first 1.5 h of recovery and decreased to 30 +/- 6, 36 +/- 3, and 8 +/- 6 mmol. kg dry muscle(-1). h(-1) between 1.5 and 4 h for CHO/protein, CHO, and water ingestion, respectively. No differences could be observed between CHO/protein and CHO ingestion ingestion. It is concluded...... concentration compared with water ingestion during 4 h of recovery. With CHO ingestion, glucose concentration was 1-1.5 mmol/l higher during the first hour of recovery compared with CHO/protein ingestion. Leg glucose uptake was initially 0.7 mmol/min with water ingestion and decreased gradually...

  10. [Contractile properties of fibers and cytoskeletal proteins of gerbil's hindlimb muscles after space flight].

    Science.gov (United States)

    Lipets, E N; Ponomareva, E V; Ogneva, I V; Vikhliantsev, I M; Karaduleva, E V; Kratashkina, N L; Kuznetsov, S L; Podlubnaia, Z A; Shenkman, B S

    2009-01-01

    The work had the goal to compare the microgravity effects on gerbil's muscles-antagonists, m. soleus and m. tibialis anterior. The animals were exposed in 12-d space microgravity aboard Earth's artificial satellite "Foton-M3". Findings of the analysis of single skinned fibers contractility are 19.7% diminution of the diameter and 21.8% loss of the total contractive force of m. soleus fibers post flight. However, there was no significant difference in calcium sensitivity which agrees with the absence of changes in the relative content of several major cytoskeletal proteins (titin and nebulin ratios to heavy chains of myosin were identical in the flight and control groups) and a slight shifting of the myosin phenotype toward the "fast type" (9%, p < 0.05). These parameters were mostly unaffected by the space flight in m. tibialis anterior. To sum up, the decline of contractility and diminution of gerbil's myofibers after the space flight were less significant as compared with rats and did not impact the sytoskeletal protein ratios.

  11. Antioxidant effects of whey protein on muscle C2C12 cells.

    Science.gov (United States)

    Kerasioti, Efthalia; Stagos, Dimitrios; Priftis, Alexandros; Aivazidis, Stefanos; Tsatsakis, Aristidis M; Hayes, A Wallace; Kouretas, Demetrios

    2014-07-15

    In the present study, the in vitro scavenging activity of sheep whey protein against free radicals, as well as its reducing power were determined and compared with that of beef protein, soy protein and cow whey protein. Moreover, the possible protective effects of sheep whey protein from tert-butyl hydroperoxide (tBHP)-induced oxidative stress in muscle C2C12 cells were determined by assessing oxidative stress markers by flow cytometry and spectrophotometry. The results showed that sheep whey protein scavenged DPPH, ABTS(+) and OH radicals with IC50 values of 3.1, 4.1 and 1.8 mg of protein/ml. Moreover, the reducing power activity assessed with potassium ferricyanide of sheep whey protein was 1.3mg/ml. As regards to the antioxidant effects in muscle cell line, sheep whey protein at 0.78, 1.56, 3.12 and 6.24 mg of protein/ml increased GSH levels up to 138%, lowered TBARS levels up to 25% and decreased ROS levels up to 41.4%.

  12. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Underwood, P Anne; Au, Wendy; Poniris, Maree H; Tamm, Michael; Ge, Qi; Roth, Michael; Black, Judith L

    2004-01-01

    BACKGROUND: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular

  13. Uncoupling Protein 3 Content Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    Schrauwen, P.; Hesselink, M.K.C.; Blaak, E.E.; Borghouts, L.B.; Schaart, G.; Saris,; Keizer,

    2001-01-01

    Recently, a role for uncoupling protein-3 (UCP3) in carbohydrate metabolism and in type 2 diabetes has been suggested. Mice overexpressing UCP3 in skeletal muscle showed reduced fasting plasma glucose levels, improved glucose tolerance after an oral glucose load, and reduced fasting plasma insulin l

  14. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  15. Proteomic identification of age-dependent protein nitration in rat skeletal muscle.

    Science.gov (United States)

    Kanski, Jaroslaw; Alterman, Michail A; Schöneich, Christian

    2003-11-15

    Age-related protein nitration was studied in skeletal muscle of Fisher 344 and Fisher 344/Brown Norway (BN) F1 rats by a proteomic approach. Proteins from young (4 months) and old (24 months) Fisher 344 rats and young (6 months) and old (34 months) Fisher 344/BN F1 animals were separated by 2-D gel electrophoresis. Western blot showed an age-related increase in the nitration of a few specific proteins, which were identified by MALDI-TOF MS and ESI-MS/MS. We identified age-dependent apparent nitration of beta-enolase, alpha-fructose aldolase, and creatine kinase, which perform important functions in muscle energy metabolism, suggesting that the nitration of such key proteins can be, in part, responsible for the decline of muscle motor function of the muscle. Furthermore, we have identified the apparent nitration of succinate dehydrogenase, rab GDP dissociation inhibitor beta (GdI-2), triosephosphate isomerase, troponin I, alpha-crystallin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

  16. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  17. Muscle and liver glycogen, protein, and triglyceride in the rat. Effect of exercise and of the sympatho-adrenal system

    DEFF Research Database (Denmark)

    Richter, E A; Sonne, B; Mikines, K J;

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  18. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    . In conclusion, protein supplementation may accelerate SC proliferation as part of regeneration or remodeling processes after maximal eccentric exercise. Paper II. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of exercise contraction mode. The aim of paper II was to investigate...... the effect of contraction mode specific resistance training and protein supplementation on whole muscle and tendon hypertrophy. Quadriceps muscle and patellar tendon cross-sectional area (CSA) was quantified using magnetic resonance imaging pre and post 12 weeks of eccentric (Ecc) or concentric (Conc...... compared to Placebo. Exercise contraction mode did not influence muscle or tendon hypertrophy. In conclusion, hydrolysed whey protein may augment both muscle and tendon hypertrophy independently of exercise contraction mode during training. Paper III. Influence of exercise contraction mode and protein...

  19. Enteral leucine and protein synthesis in skeletal and cardiac muscle

    Science.gov (United States)

    There are three members of the Branch Chain Amino Acids: leucine, isoleucine, and valine. As essential amino acids, these amino acids have important functions which include a primary role in protein structure and metabolism. It is intriguing that the requirement for BCAA in humans comprise about 40–...

  20. Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations

    Directory of Open Access Journals (Sweden)

    Yukari Kawano

    2012-10-01

    Full Text Available The aim of this study was to evaluate the effects of egg white protein compared to carbohydrate intake prior to exercise on fat free mass (FFM, one repetition maximum (1RM muscle strength and blood biochemistry in female athletes. Thirty healthy female collegiate athletes were recruited for this study and matched by sport type, body fat percentage and 1RM leg curl muscle strength. Participants were randomly divided into two groups: protein group (15.0 g egg white protein; 75 kcal and carbohydrate group (17.5 g maltodextrin, 78 kcal. Supplements were administered daily at the same time in a double-blind manner prior to training during an 8-week period. Measurements were performed before and after the 8-week regimen. The mean dietary energy intake did not change throughout the study period. FFM and 1RM assessments (i.e., leg curl, leg extension, squat, and bench press increased in both groups. Furthermore, serum urea and serum citrulline levels after the 8-week regimen increased significantly only in the protein group. Our findings indicated that compared to the carbohydrate supplement, the protein supplement was associated with some changes in protein metabolites but not with changes in body composition or muscle strength.

  1. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline...... and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...

  2. Specific proteins of the trapezius muscle correlate with pain intensity and sensitivity – an explorative multivariate proteomic study of the trapezius muscle in women with chronic widespread pain

    Directory of Open Access Journals (Sweden)

    Olausson P

    2016-06-01

    Full Text Available Patrik Olausson, Bijar Ghafouri, Nazdar Ghafouri, Björn Gerdle Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden Abstract: Chronic widespread pain (CWP including fibromyalgia syndrome (FMS has a high prevalence and is associated with prominent negative consequences. CWP/FMS exhibits morphological and functional alterations in the central nervous system. The importance of peripheral factors for maintaining the central alterations are under debate. In this study, the proteins from biopsies of the trapezius muscle from 18 female CWP/FMS patients and 19 healthy female controls were analyzed. Pain intensity and pressure pain thresholds (PPT over the trapezius muscles were registered. Twelve proteins representing five different groups of proteins were important regressors of pain intensity in CWP/FMS (R2=0.99; P<0.001. In the regression of PPT in CWP/FMS, it was found that 16 proteins representing six groups of proteins were significant regressors (R2=0.95, P<0.05. Many of the important proteins were stress and inflammation proteins, enzymes involved in metabolic pathways, and proteins associated with muscle damage, myopathies, and muscle recovery. The altered expression of these proteins may reflect both direct and indirect nociceptive/inflammatory processes as well as secondary changes. The relative importance of the identified proteins and central alterations in CWP need to be investigated in future research. Data from this and the previous study concerning the same cohorts give support to the suggestion that peripheral factors are of importance for maintaining pain aspects in CWP/FMS. Keywords: chronic widespread pain, proteomics, biomarkers, multivariate data analysis, pain threshold, numeric rating scale

  3. Evidence that muscle cells do not express the histidine-rich glycoprotein associated with AMP deaminase but can internalise the plasma protein

    Directory of Open Access Journals (Sweden)

    A.R.M. Sabbatini

    2011-02-01

    Full Text Available Histidine-rich glycoprotein (HRG is synthesized by liver and is present at relatively high concentration in the plasma of vertebrates. We have previously described the association of a HRG-like molecule to purified rabbit skeletal muscle AMP deaminase (AMPD. We also provided the first evidence for the presence of a HRG-like protein in human skeletal muscle where a positive correlation between HRG content and total determined AMPD activity has been shown. In the present paper we investigate the origin of skeletal muscle HRG. The screening of a human skeletal muscle cDNA expression library using an anti-HRG antibody failed to reveal any positive clone. The RT-PCR analysis, performed on human skeletal muscle RNA as well as on RNA from the rhabdomyosarcoma (RD cell line, failed to show any mRNA specific for the plasma HRG or for the putative muscle variant. When the RD cells were incubated with human plasma HRG, a time-dependent increase of the HRG immunoreactivity was detected both at the plasma membrane level and intracellularly. The internalisation of HRG was inhibited by the addition of heparin. The above data strongly suggest that skeletal muscle cells do not synthesize the muscle variant of HRG but instead can actively internalise it from plasma.

  4. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2015-09-01

    Full Text Available The data provides information in support of the research article, “Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging”, Journal of Proteome Research, 2014, 13 (11, 2008–21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys containing peptides was alkylated using N-ethylmalemide (d0-NEM. Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethylphosphine (TCEP and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM. Label-free analysis of the global proteome of adult (n=5 and old (n=4 gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0 NEM labeled and reversibly oxidized d(5–NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response.

  5. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS.

  6. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    KAUST Repository

    Conti, Antonio

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS\\'s pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V.

  7. Mercury distribution and lipid oxidation in fish muscle: Effects of washing and isoelectric protein precipitation

    Science.gov (United States)

    Gong, Y.; Krabbenhoft, D.P.; Ren, L.; Egelandsdal, B.; Richards, M.P.

    2011-01-01

    Nearly all the mercury (Hg) in whole muscle from whitefish (Coregonus clupeaformis) and walleye (Sander vitreus) was present as methyl mercury (MeHg). The Hg content in whole muscle from whitefish and walleye was 0.04-0.09 and 0.14-0.81 ppm, respectively. The myofibril fraction contained approximately three-fourths of the Hg in whitefish and walleye whole muscle. The sarcoplasmic protein fraction (e.g., press juice) was the next most abundant source of Hg. Isolated myosin, triacylglycerols, and cellular membranes contained the least Hg. Protein isolates prepared by pH shifting in the presence of citric acid did not decrease Hg levels. Addition of cysteine during washing decreased the Hg content in washed muscle probably through the interaction of the sulfhydryl group in cysteine with MeHg. Primary and secondary lipid oxidation products were lower during 2 ??C storage in isolates prepared by pH shifting compared to those of washed or unwashed mince from whole muscle. This was attributed to removing some of the cellular membranes by pH shifting. Washing the mince accelerated lipid peroxide formation but decreased secondary lipid oxidation products compared to that of the unwashed mince. This suggested that there was a lipid hydroperoxide generating system that was active upon dilution of aqueous antioxidants and pro-oxidants. ?? 2011 American Chemical Society.

  8. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance

    Science.gov (United States)

    Choi, Cheol Soo; Fillmore, Jonathan J.; Kim, Jason K.; Liu, Zhen-Xiang; Kim, Sheene; Collier, Emily F.; Kulkarni, Ameya; Distefano, Alberto; Hwang, Yu-Jin; Kahn, Mario; Chen, Yan; Yu, Chunli; Moore, Irene K.; Reznick, Richard M.; Higashimori, Takamasa; Shulman, Gerald I.

    2007-01-01

    Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and is strongly associated with obesity. Increased concentrations of intracellular fatty acid metabolites have been postulated to interfere with insulin signaling by activation of a serine kinase cascade involving PKCθ in skeletal muscle. Uncoupling protein 3 (UCP3) has been postulated to dissipate the mitochondrial proton gradient and cause metabolic inefficiency. We therefore hypothesized that overexpression of UCP3 in skeletal muscle might protect against fat-induced insulin resistance in muscle by conversion of intramyocellular fat into thermal energy. Wild-type mice fed a high-fat diet were markedly insulin resistant, a result of defects in insulin-stimulated glucose uptake in skeletal muscle and hepatic insulin resistance. Insulin resistance in these tissues was associated with reduced insulin-stimulated insulin receptor substrate 1– (IRS-1–) and IRS-2–associated PI3K activity in muscle and liver, respectively. In contrast, UCP3-overexpressing mice were completely protected against fat-induced defects in insulin signaling and action in these tissues. Furthermore, these changes were associated with a lower membrane-to-cytosolic ratio of diacylglycerol and reduced PKCθ activity in whole-body fat–matched UCP3 transgenic mice. These results suggest that increasing mitochondrial uncoupling in skeletal muscle may be an excellent therapeutic target for type 2 diabetes mellitus. PMID:17571165

  9. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed....... Furthermore, the effect of exercise duration and intensity on skeletal muscle CaMKII activity and phosphorylation of downstream targets was examined. Eight healthy men exercised at ~67% of peak pulmonary O2 uptake (VO2peak) with muscle samples taken at rest and after 1, 10, 30, 60 and 90 min of exercise. Ten...... other men exercised for three consecutive 10 min bouts at 35%, 60% and 85% VO2peak with muscle samples taken at rest, at the end of each interval and 30 min post-exercise. There was a rapid and transient increase in autonomous CaMKII activity and CaMKII phosphorylation at Thr287 in skeletal muscle...

  10. The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy

    Science.gov (United States)

    Adams, G. R.; Haddad, F.

    1996-01-01

    Insulin-like growth factor-1 (IGF-1) is known to have anabolic effects on skeletal muscle cells. This study examined the time course of muscle hypertrophy and associated IGF-1 peptide and mRNA expression. Data were collected at 3, 7, 14, and 28 days after surgical removal of synergistic muscles of both normal and hypophysectomized (HX) animals. Overloading increased the plantaris (Plant) mass, myofiber size, and protein-to-body weight ratio in both groups (normal and HX; P peptide levels peaked at 3 (normal) and 7 (HX) days of overloading with maximum 4.1-fold (normal) and 6.2-fold (HX) increases. Increases in muscle IGF-1 preceded the hypertrophic response. Total DNA content of the overloaded Plant increased in both groups. There was a strong positive relationship between IGF-1 peptide and DNA content in the overloaded Plant from both groups. These results indicate that 1) the muscles from rats with both normal and severely depressed systemic levels of IGF-1 respond to functional overload with an increase in local IGF-1 expression and 2) this elevated IGF-1 may be contributing to the hypertrophy response, possibly via the mobilization of satellite cells to provide increases in muscle DNA.

  11. Novel DNPH-based method for determination of protein carbonylation in muscle and meat.

    Science.gov (United States)

    Soglia, Francesca; Petracci, Massimiliano; Ertbjerg, Per

    2016-04-15

    Protein oxidation is considered an ongoing deteriorative process during storage of fresh and processed meat. Carbonyl compounds have traditionally been detected spectrophotometrically after derivatization with 2,4-dinitrophenylhydrazine (DNPH) to form protein-bound hydrazones with absorbance at 370 nm. Here we describe a novel DNPH-based method to quantify protein carbonylation in muscle and meat. The additional steps of the novel method aimed at increasing the protein solubility and inducing protein unfolding before labeling with DNPH. Compared to the traditional method, the new procedure reflected an increased protein carbonylation level measuring overall two to fourfold more carbonyls in muscles from different species as well as in soluble, salt-soluble and insoluble protein fractions. The study suggested that protein unfolding is a more important phenomenon than solubilization for increased DNPH labeling. The novel method resulted in three to fourfold larger carbonyl content determined in chicken, pork and beef (2.8, 3.6 and 3.1 nmol/mg of protein, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Proteinous amino acids in hearts' muscle cytosol of rats pretreated with digoxin, caffeine or isoproterenol.

    Science.gov (United States)

    Gabrys, Janusz; Konecki, Janusz; Głowacka, Maria; Durczok, Katarzyna; Nowak, Przemysław; Bielaczyc, Grzegorz; Brus, Ryszard; Shani, Jashovam

    2004-01-01

    Levels of the 19 proteinous amino acids and total free amino acids were assayed by gas-liquid chromatography in cytosols of rat atrial and ventricular muscle cardiomyocytes. The tissues were assayed after the rats had been exposed to the cardioactive drugs digoxin, caffeine, and isoproterenol, each having different mechanisms of action. We demonstrated that, in the atrial and ventricular cardiac muscle cytosol of control (untreated) rats, arginine, glutamine, and cysteine existed in their highest levels: 35.1% and 17.6%; 14.8% and 51.6%; 9.9% and 0.25% of the total free amino acids, respectively. The levels of the other amino acids in the atrial and ventricular cardiac muscle cytosols ranged between 0.1% and 10.0% of the total free amino acids. Digoxin, caffeine, and isoproterenol significantly reduced the total amount of cytosolic free amino acids in the atrial heart muscle cytosol to 7.6%, 9.0%, and 9.2% of the control value (100%), and in the ventricular heart muscle cytosol to 31.1%, 43.2%, and 28.3% of the control. The three drugs tested changed the cytosols' levels of arginine, cysteine, tryptophane, asparagine, and tyrosine in atrial and ventricular heart muscle cytosol, as compared to the control groups (calculated as a percent of the total free amino acids in the experimental groups). The role of proteinous amino acids in the function of the heart muscle and in the mechanism of action of these drugs on the mammalian heart is discussed.

  13. Analysis of Small Muscle Movement Effects on EEG Signals

    Science.gov (United States)

    2016-12-22

    Lieutenant, TuAF AFIT- ENG -MS-16-D-051 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air...AFIT- ENG -MS-16-D-051 ANALYSIS OF SMALL MUSCLE MOVEMENT EFFECTS ON EEG SIGNALS THESIS Presented to the Faculty Department of...First Lieutenant, TuAF December 2016 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT- ENG -MS-16-D-051

  14. Expression of a dominant negative CELF protein in vivo leads to altered muscle organization, fiber size, and subtype.

    Directory of Open Access Journals (Sweden)

    Dara S Berger

    Full Text Available BACKGROUND: CUG-BP and ETR-3-like factor (CELF proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected. CONCLUSIONS/SIGNIFICANCE: Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis.

  15. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.

    Science.gov (United States)

    Bohnert, Kyle R; Gallot, Yann S; Sato, Shuichi; Xiong, Guangyan; Hindi, Sajedah M; Kumar, Ashok

    2016-09-01

    Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and Apc(Min/+) mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin-proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.-Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.

  16. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle

    DEFF Research Database (Denmark)

    Holm, Lars; van Hall, Gerrit; Rose, Adam

    2010-01-01

    Exercise stimulates muscle protein fractional synthesis rate (FSR), but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intrasubject design......]leucine, and vastus lateralis biopsies were obtained bilaterally at rest as well as 0.5, 3, and 5.5 h after RE. Western blots were run on muscle lysates and phosphospecific antibodies used to detect phosphorylation status of targets involved in regulation of FSR. The intramuscular collagen FSR was evenly increased...... with the fasting condition. The Rp-s6k-4E-binding protein-1 (BP1) and the mitogen-activated protein kinase (MAPk) pathways were activated by the HL intensity and were suggested to be responsible for regulating myofibrillar FSR in response to adequate contractile activity. Feeding predominantly affected Rp-s6k...

  17. Exercise & NSAID: Effect on muscle protein synthesis in knee osteoarthritis patients?

    DEFF Research Database (Denmark)

    Petersen, S.G.; Miller, Ben F; Hansen, M

    2011-01-01

    a flooding dose of 13C/12C-proline.RESULTS:Circulating levels of prostaglandin F2α were lower in the NSAID group compared with the placebo group (P ...:In elderly patients with knee OA, an acute bout of moderate exercise significantly increases FSR of muscle myofibrillar and sarcoplasmic protein, but not tendon collagen, 24 h after exercise. NSAID administration in patients with knee OA reduced the level of circulating prostaglandin F2α but did not diminish...... the contralateral leg remained rested. Twenty-four hours after exercise, we determined circulating concentrations of inflammatory parameters and measured FSR of myofibrillar and sarcoplasmic protein fractions of vastus lateralis muscle and patellar tendon collagen protein by the direct incorporation method using...

  18. Protein nonenzymatic modifications and proteasome activity in skeletal muscle from the short-lived rat and long-lived pigeon.

    Science.gov (United States)

    Portero-Otín, Manel; Requena, Jesús R; Bellmunt, Maria Josep; Ayala, Victoria; Pamplona, Reinald

    2004-10-01

    What are the mechanisms determining the rate of animal aging? Of the two major classes of endothermic animals, bird species are strikingly long-lived compared to similar size mammalian counterparts. Since oxidative stress is causally related to the basic aging process, markers of different kinds of oxidative damage to proteins (glutamic semialdehyde, aminoadipic semialdehyde, N(epsilon)-(carboxyethyl)lysine; N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(malondialdehyde)lysine and dinitrophenylhydrazyne-reactive protein carbonyls, peptidase activities of the proteasome, and amino acid and membrane fatty acyl composition were identified and measured in skeletal muscle from the short-lived rat (maximum life span, 4 years) and compared with the long-lived pigeon (maximum life span, 35 years). Skeletal muscle from pigeon showed significantly higher levels of glutamic semialdehyde, protein carbonyls (by western blot), N(epsilon)-(carboxyethyl)lysine and N(epsilon)-(carboxymethyl)lysine. No differences were observed for aminoadipic semialdehyde, whereas the lipoxidation marker N(epsilon)-(malondialdehyde)lysine displayed a significant low steady-state level, probably related with their significantly lower membrane unsaturation. The amino acid compositional analysis revealed that arginine, serine, threonine and methionine showed significantly lower levels in pigeon. Finally, pigeon samples showed also significantly lower levels of the peptidase activities of the proteasome. These results reinforces the role of structural components such as membrane unsaturation and protein composition in determining the longer maximum life span showed by birds compared with mammals of similar body size.

  19. Feeding modality affects muscle protein deposition by influencing protein synthesis, but not degradation in muscle of neonatal pigs

    Science.gov (United States)

    Neonatal pigs can serve as dual-use models for nutrition research in animal agriculture and biomedical fields. To determine how feeding modality by either intermittent bolus or continuous schedule affects protein anabolism and catabolism, neonatal pigs (n = 6/group, 9-d-old) were overnight fasted (F...

  20. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  1. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  2. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia

    Directory of Open Access Journals (Sweden)

    Darren G. Candow

    2012-11-01

    Full Text Available The loss of muscle mass and strength with aging (i.e., sarcopenia has a negative effect on functional independence and overall quality of life. One main contributing factor to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response to habitual feeding, possibly due to a reduction in postprandial insulin release and an increase in insulin resistance. Branched-chain amino acids (BCAA, primarily leucine, increases the activation of pathways involved in muscle protein synthesis through insulin-dependent and independent mechanisms, which may help counteract the “anabolic resistance” to feeding in older adults. Leucine exhibits strong insulinotropic characteristics, which may increase amino acid availability for muscle protein synthesis, reduce muscle protein breakdown, and enhance glucose disposal to help maintain blood glucose homeostasis.

  3. Effects of chronic heat exposure and protein intake on growth performance, nitrogen retention and muscle development in broiler chickens.

    Science.gov (United States)

    Temim, S; Chagneau, A M; Guillaumin, S; Michel, J; Peresson, R; Geraert, P A; Tesseraud, S

    1999-01-01

    The respective effects of ambient temperature, dietary crude protein and feed intake were investigated in finishing chickens and the consequence of protein supplementation under high temperature conditions was analysed in particular. Heat-related reduction in growth was associated with decreased nitrogen retention (-30 or -35% according to the diet), which could not be explained by the observed lower feed intake alone. Tissue samples performed in 5- to 6-week-old chicks showed varying effects of heat according to the muscles studied: at 32 degrees C, the proportion of Pectoralis major muscle (in percentage of body weight) appeared slightly reduced (reduction lower than 10%), whereas the proportion of two leg muscles were increased (+10 to +15% for the Sartorius muscle; +5% for the gastrocnemius muscle). At 32 degrees C, providing a high protein diet significantly (P < 0.05) increased weight gain and feed efficiency, and slightly improved whole body protein deposition.

  4. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    DEFF Research Database (Denmark)

    Brandauer, Josef; Vienberg, Sara Gry; Andersen, Marianne Agerholm

    2013-01-01

    for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependant. One-legged knee-extensor exercise training in humans increased Nampt protein......-activated protein kinase (AMPK) increases sirtuin activity by elevating NAD levels. As NAM directly inhibits sirtuins, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary...

  5. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  6. Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs

    Institute of Scientific and Technical Information of China (English)

    Agus Suryawan; Teresa ADavis

    2014-01-01

    Background:The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1, 6-and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemic-hyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic-hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-like kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein S6 (rpS6) and eukaryotic initiation factor 4E (eIF4E) activation, components of translation initiation. Results:Abundance of atrogin-1, but not MuRF1, was greater in 26-than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-II/LC3-I ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of eIF4E, but not rpS6, was higher in 6-than 26-d-old-pigs but unaffected by treatment. Phosphorylation of eIF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the

  7. Functional and Genetic Analysis of Plectin in Skin and Muscle.

    Science.gov (United States)

    Rezniczek, Günther A; Winter, Lilli; Walko, Gernot; Wiche, Gerhard

    2016-01-01

    Plectin is a large cytoskeletal linker protein with a multitude of functions affecting various cellular processes. It is expressed as several different isoforms from a highly complex gene. Both, this transcript diversity (mainly caused by short 5'-sequences contained in alternative first exons) and the size (>500 kDa) of the resulting proteins, present considerable challenges to plectin researchers. In this chapter, we will consider these problems and offer advice on how to tackle them best. As plectin has been studied most extensively in skin and muscle, we will focus on these types of tissues and describe some selected methods in detail. Foremost, however, we aim to give the readers some good pointers to available tools and into the existing literature.

  8. Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy.

    Science.gov (United States)

    Miyabara, Elen H; Nascimento, Tabata L; Rodrigues, Débora C; Moriscot, Anselmo S; Davila, Wilmer F; AitMou, Younss; deTombe, Pieter P; Mestril, Ruben

    2012-04-01

    Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.

  9. Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib

    Directory of Open Access Journals (Sweden)

    Yusuke Ono

    2015-02-01

    Full Text Available Satellite cells are resident skeletal muscle stem cells that supply myonuclei for homeostasis, hypertrophy, and repair in adult muscle. Scrib is one of the major cell-polarity proteins, acting as a potent tumor suppressor in epithelial cells. Here, we show that Scrib also controls satellite-cell-fate decisions in adult mice. Scrib is undetectable in quiescent cells but becomes expressed during activation. Scrib is asymmetrically distributed in dividing daughter cells, with robust accumulation in cells committed to myogenic differentiation. Low Scrib expression is associated with the proliferative state and preventing self-renewal, whereas high Scrib levels reduce satellite cell proliferation. Satellite-cell-specific knockout of Scrib in mice causes a drastic and insurmountable defect in muscle regeneration. Thus, Scrib is a regulator of tissue stem cells, controlling population expansion and self-renewal with Scrib expression dynamics directing satellite cell fate.

  10. Sphingosine induces phospholipase D and mitogen activated protein kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Taher, M M; Abd-Elfattah, A S; Sholley, M M

    1998-12-01

    The enzymes phospholipase D and diacylglycerol kinase generate phosphatidic acid which is considered to be a mitogen. Here we report that sphingosine produced a significant amount of phosphatidic acid in vascular smooth muscle cells from the rat aorta. The diacylglycerol kinase inhibitor R59 949 partially depressed sphingosine induced phosphatidic acid formation, suggesting that activation of phospholipase C and diacylglycerol kinase can not account for the bulk of phosphatidic acid produced and that additional pathways such as phospholipase D may contribute to this. Further, we have shown that phosphatidylethanol was produced by sphingosine when vascular smooth muscle cells were stimulated in the presence of ethanol. Finally, as previously shown for other cell types, sphingosine stimulated mitogen-activated protein kinase in vascular smooth muscle cells.

  11. Muscle-Derived Proteins as Serum Biomarkers for Monitoring Disease Progression in Three Forms of Muscular Dystrophy

    Science.gov (United States)

    Burch, Peter M.; Pogoryelova, Oksana; Goldstein, Richard; Bennett, Donald; Guglieri, Michela; Straub, Volker; Bushby, Kate; Lochmüller, Hanns; Morris, Carl

    2015-01-01

    Abstract Background: Identifying translatable, non-invasive biomarkers of muscular dystrophy that better reflect the disease pathology than those currently available would aid the development of new therapies, the monitoring of disease progression and the response to therapy. Objective: The goal of this study was to evaluate a panel of serum protein biomarkers with the potential to specifically detect skeletal muscle injury. Method: Serum concentrations of skeletal troponin I (sTnI), myosin light chain 3 (Myl3), fatty acid binding protein 3 (FABP3) and muscle-type creatine kinase (CKM) proteins were measured in 74 Duchenne muscular dystrophy (DMD), 38 Becker muscular dystrophy (BMD) and 49 Limb-girdle muscular dystrophy type 2B (LGMD2B) patients and 32 healthy controls. Results: All four proteins were significantly elevated in the serum of these three muscular dystrophy patient populations when compared to healthy controls, but, interestingly, displayed different profiles depending on the type of muscular dystrophy. Additionally, the effects of patient age, ambulatory status, cardiac function and treatment status on the serum concentrations of the proteins were investigated. Statistical analysis revealed correlations between the serum concentrations and certain clinical endpoints including forced vital capacity in DMD patients and the time to walk ten meters in LGMD2B patients. Serum concentrations of these proteins were also elevated in two preclinical models of muscular dystrophy, the mdx mouse and the golden-retriever muscular dystrophy dog. Conclusions: These proteins, therefore, are potential muscular dystrophy biomarkers for monitoring disease progression and therapeutic response in both preclinical and clinical studies. PMID:26870665

  12. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+ mouse.

    Directory of Open Access Journals (Sweden)

    James P White

    Full Text Available Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+ mouse is not known. Cachexia progression was studied in Apc(Min/+ mice that were either weight stable (WS or had initial (≤5%, intermediate (6-19%, or extreme (≥20% body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172, AMPK activity, and raptor phosphorylation (Ser 792 were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.

  13. Angiotensin-I-Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysate from Muscle of Barbel (Barbus callensis)

    OpenAIRE

    Assaad Sila; Anissa Haddar; Oscar Martinez-Alvarez; Ali Bougatef

    2013-01-01

    The present study investigated angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities of barbel muscle protein hydrolysate prepared with Alcalase. The barbel muscle protein hydrolysate displayed a high ACE inhibitory activity (C I 50 = 0.92 mg/mL). The antioxidant activities of protein hydrolysate at different concentrations were evaluated using various in vitro antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method and reducing power assay. The...

  14. Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage.

    Science.gov (United States)

    Lee, Kihyuk; Ochi, Eisuke; Song, Hongsun; Nakazato, Koichi

    2015-10-23

    AMP-activated protein kinase (AMPK) has been shown to regulate protein metabolism in skeletal muscle. We previously found that levels of Forkhead box proteins, FoxO1 and FoxO3a, and myostatin in rat gastrocnemius increased after exercise-induced muscle damage (EIMD). Eccentric muscle contractions (ECs), defined as elongation of muscle under tension, were used for inducing EIMD. The objective of this study was to clarify whether AMPK participates in activation and expression of FoxO proteins and myostatin in rat gastrocnemius muscle after EIMD. Wistar rats were randomly assigned into the following three groups; CON (n = 6), 180ECs group (ankle angular velocity, 180°/s; n = 6), and 30ECs group (ankle angular velocity, 30°/s; n = 6). 20 ECs were conducted with percutaneous electrical stimulation of gastrocnemius and simultaneous forced dorsiflexion of ankle joint (from 0° to 45°). To evaluate activation of AMPK, we measured the phosphorylated states of AMPK and acetyl CoA carboxylase. For evaluation of the direct relationships of AMPK and other proteins, we also examined contents of FoxOs and myostatin with stimulation of L6 myotube with AMPK agonist, 5 -aminoimidazole -4 -carboxamide -1-β-d-ribofuranoside (AICAR) (0.1, 0.5, 1, 1.5, and 2 mM). Western blotting was employed for protein analysis. Significant torque deficit was only observed in the 180ECs, suggesting EIMD. We also observed that phosphorylated AMPKα was induced in response to 180ECs (p muscle treated with 180ECs. Therefore, we conclude that activation of AMPK plays a key role in increasing the level of FoxO1, FoxO3a, and myostatin in gastrocnemius after EIMD.

  15. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis.

    Science.gov (United States)

    Herrera, Cristina; Macêdo, Jéssica Kele A; Feoli, Andrés; Escalante, Teresa; Rucavado, Alexandra; Gutiérrez, José María; Fox, Jay W

    2016-04-01

    The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM) and other extracellular matrix (ECM) proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs) or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.

  16. Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis.

    Directory of Open Access Journals (Sweden)

    Cristina Herrera

    2016-04-01

    Full Text Available The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM and other extracellular matrix (ECM proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.

  17. Salting-in effect on muscle protein extracted from giant squid (Dosidicus gigas).

    Science.gov (United States)

    Zhang, Rui; Zhou, Ru; Pan, Weichun; Lin, Weiwei; Zhang, Xiuzhen; Li, Mengya; Li, Jianrong; Niu, Fuge; Li, Ang

    2017-01-15

    The salting-in effect on muscle protein is well-known in food science but hard to explain using conventional theories. Myofibrillar protein extracted from the giant squid (Dosidicus gigas) was selected as a model muscle protein to study this mechanism in KCl solutions. Changes in the secondary structures of myofibrillar protein molecules caused by concentrated salts, particularly in the paramyosin molecule conformation, have been reported. Zeta-potential determinations showed that these secondary structures have modified protein molecule surfaces. The zeta-potential of the myofibrillar protein molecules fell from -7.24±0.82 to -9.99±1.65mV with increasing salt concentration from 0.1 to 0.5M. The corresponding second virial coefficient increased from -85.43±3.8×10(-7) to -3.45±1.3×10(-7) molmLg(-2). The extended law of corresponding states suggests that reduced attractive interactions increase the protein solubility. Solubility measurements in alternating KCl concentrations showed that the conformational change was reversible.

  18. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.

    Science.gov (United States)

    Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo

    2006-03-20

    In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate

  19. Sodium nitrate co-ingestion with protein does not augment postprandial muscle protein synthesis rates in older, type 2 diabetes patients.

    Science.gov (United States)

    Kouw, Imre W K; Cermak, Naomi M; Burd, Nicholas A; Churchward-Venne, Tyler A; Senden, Joan M; Gijsen, Annemarie P; van Loon, Luc J C

    2016-08-01

    The age-related anabolic resistance to protein ingestion is suggested to be associated with impairments in insulin-mediated capillary recruitment and postprandial muscle tissue perfusion. The present study investigated whether dietary nitrate co-ingestion with protein improves muscle protein synthesis in older, type 2 diabetes patients. Twenty-four men with type 2 diabetes (72 ± 1 yr, 26.7 ± 1.4 m/kg(2) body mass index, 7.3 ± 0.4% HbA1C) received a primed continuous infusion of l-[ring-(2)H5]phenylalanine and l-[1-(13)C]leucine and ingested 20 g of intrinsically l-[1-(13)C]phenylalanine- and l-[1-(13)C]leucine-labeled protein with (PRONO3) or without (PRO) sodium nitrate (0.15 mmol/kg). Blood and muscle samples were collected to assess protein digestion and absorption kinetics and postprandial muscle protein synthesis rates. Upon protein ingestion, exogenous phenylalanine appearance rates increased in both groups (P ingestion with protein does not modulate protein digestion and absorption kinetics, nor does it further increase postprandial muscle protein synthesis rates or the incorporation of dietary protein-derived amino acids into de novo myofibrillar protein in older, type 2 diabetes patients. Copyright © 2016 the American Physiological Society.

  20. Muscle glycogen depletion following 75-km of cycling is not linked to increased muscle IL-6, IL-8, and MCP-1 mRNA expression and protein content

    Directory of Open Access Journals (Sweden)

    David Christopher Nieman

    2016-09-01

    Full Text Available The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N=20 participated in a 75-km cycling time trial (168±26.0 min, with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2±17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5±2.8-, 45.3±7.8-, and 8.25±1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5±14.1%, 347±68.1%, and 148±21.3%, respectively (all, P<0.001. Serum myoglobin and cortisol increased 32.1±3.3 to 242±48.3 mg/mL, and 295±27.6 to 784±63.5 nmol/L, respectively (both P<0.001. Plasma IL-6, IL-8, and MCP-1 increased 0.42±0.07 to 18.5±3.8, 4.07±0.37 to 17.0±1.8, and 96.5±3.7 to 240±21.6 pg/mL, respectively (all P<0.001. Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r=0.462, P=0.040, with change in myoglobin related to plasma IL-8 (r=0.582, P=0.007 and plasma MCP-1 (r=0.457, P=0.043, and muscle MCP-1 protein (r=0.588, P=0.017; cortisol was related to plasma IL-8 (r=0.613, P=0.004, muscle IL-8 protein (r=0.681, P=0.004, and plasma MCP-1 (r=0.442, P=0.050. In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1.

  1. Evidence for altered Ca2+ handling in Growth Associated Protein 43-knockout skeletal muscle

    Directory of Open Access Journals (Sweden)

    Giusy A. Caprara

    2016-10-01

    Full Text Available Neuronal growth-associated protein 43 (GAP43 has crucial roles in the nervous system, and during development, regeneration after injury, and learning and memory. GAP43 is expressed in mouse skeletal muscle fibers and satellite cells, with suggested its involvement in intracellular Ca2+ handling. However, the physiological role of GAP43 in muscle remains unknown. Using a GAP43-knockout (GAP43-/- mouse, we have defined the role of GAP43 in skeletal muscle. GAP43-/- mice showed low survival beyond weaning, reduced adult body weight, decreased muscle strength, and changed myofiber ultrastructure, with no significant differences in the expression of markers of satellite cell and myotube progression through the myogenic program. Thus GAP43 expression is involved in timing of muscle maturation in-vivo. Intracellular Ca2+ measurements in-vitro in myotubes revealed GAP43 involvement in Ca2+ handling. In the absence of GAP43 expression, the spontaneous Ca2+ variations had greater amplitudes and higher frequency. In GAP43-/- myotubes, also the intracellular Ca2+ variations induced by the activation of dihydropyridine and ryanodine Ca2+ channels, resulted modified. These evidences suggested dysregulation of Ca2+ homeostasis. The emerging hypothesis indicates that GAP43 interacts with calmodulin to indirectly modulate the activities of dihydropyridine and ryanodine Ca2+ channels. This thus influences intracellular Ca2+ dynamics and its related intracellular patterns, from functional excitation-contraction coupling, to cell metabolism, and gene expression.

  2. Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring.

    Science.gov (United States)

    Zheng, Shasha; Rollet, Michelle; Pan, Yuan-Xiang

    2012-09-01

    Maternal nutrition during pregnancy is an intrauterine factor that results in alteration of the offspring genome and associates with disease risk in the offspring. We investigated the impact of a maternal low-protein (LP) diet on the expression of glucose transporter 4 (GLUT4) in offspring skeletal muscle. GLUT4 is an insulin-regulated glucose transporter involved in insulin sensitivity and carbohydrate metabolism in muscle cells. We observed sex-dependent GLUT4 mRNA expression and increased GLUT4 protein content in female pup skeletal muscle with maternal LP. Analysis of transcriptional and epigenetic regulation of increased skeletal muscle GLUT4 expression in offspring rats revealed the regulatory mechanisms involved. The protein level of myocyte enhancer factor 2A (MEF2A), which has been known as an activator of GLUT4 transcription via the ability to carry out specific binding to the GLUT4 MEF2 binding sequence, increased in female pups whose mothers were fed a LP diet. Modifications of chromatin structure, including acetylated histone H3, acetylated histone H4 and di-methylated histone H3 at lysine 4, were detected at a significantly increased level at the GLUT4 promoter region in female pup muscle following a maternal LP diet. Glycogen content was also detected as up-regulated, accompanied by increased glycogen synthase in LP female offspring muscle. These results document that maternal protein restriction during pregnancy induces GLUT4 expression in female offspring skeletal muscle but not in males, which may indicate sex-dependent adaptation of glucose metabolism to a maternal LP diet.

  3. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  4. Theoretical analysis of oxygen supply to contracted skeletal muscle.

    Science.gov (United States)

    Groebe, K; Thews, G

    1986-01-01

    Honig and collaborators reported striking contradictions in current understanding of O2 supply to working skeletal muscle. Therefore we re-examined the problem by means of a new composite computer simulation. As inclusion of erythrocytic O2 desaturation and oxygen transport and consumption inside the muscle cell into a single model would entail immense numerical difficulties, we broke up the whole process into its several components: O2 desaturation of erythrocytes O2 transport and consumption in muscle fiber capillary transit time characterizing the period of contact between red cell and muscle fiber. "Erythrocyte model" as well as "muscle fiber model" both consist of a central core cylinder surrounded by a concentric diffusion layer representing the extracellular resistance to O2 diffusion (Fig. 1). Resistance layers in both models are to be conceived of as one and the same anatomical structure--even though in each model their shape is adapted to the respective geometry. By means of this overlap region a spatial connexion between both is given, whereas temporal coherence governing O2 fluxes and red cell spacing is derived from capillary transit time. Analysis of individual components is outlined as follows: Assuming axial symmetry of the problem a numerical algorithm was employed to solve the parabolic system of partial differential equations describing red cell O2 desaturation. Hb-O2 reaction kinetics, free and facilitated O2 diffusion in axial and radial directions, and red cell movement in capillary were considered. Resulting time courses of desaturation, which are considerably faster than the ones computed by Honig et al., are given in the following table (see also Fig. 3). (Formula: see text) Furthermore, we studied the respective importance of the several processes included in our model: Omission of longitudinal diffusion increased desaturation time by 15% to 23%, whereas effects of reaction kinetics and axial movement were 5% and 2% respectively. For time

  5. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    Science.gov (United States)

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2(fl/fl)) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2(fl/fl) mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2(fl/fl) mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation.

    Directory of Open Access Journals (Sweden)

    Eugénie Ansseau

    Full Text Available Hundreds of double homeobox (DUX genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD. In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain and DUX1 (which is limited to the double homeodomain. Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs. Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs

  7. Capsiate administration results in an uncoupling protein-3 downregulation, an enhanced muscle oxidative capacity and a decreased abdominal fat content in vivo.

    Science.gov (United States)

    Faraut, B; Giannesini, B; Matarazzo, V; Le Fur, Y; Rougon, G; Cozzone, P J; Bendahan, D

    2009-12-01

    The involvement of skeletal muscle mitochondrial uncoupling protein-3 (UCP3) in the control of energy expenditure in skeletal muscle and at the whole-body level is still a matter of debate. We previously reported that UCP3 downregulation is linked to an enhanced mitochondrial energy metabolism in rat skeletal muscle as a result of acute capsiate treatment. Here, we aimed at investigating noninvasively the effects of chronic capsiate ingestion on metabolic changes occurring in exercising gastrocnemius muscle and at the whole-body level. We used an original experimental setup allowing a complete noninvasive investigation of gastrocnemius muscle function in situ using 31-phosphorus magnetic resonance spectroscopy. Whole-body fat composition was determined using magnetic resonance imaging and UCP3 gene expression was measured by quantitative real-time RT-PCR analysis. We found that a 14-day daily administration of capsiate (100 mg kg(-1) body weight) reduced UCP3 gene expression and increased phosphocreatine level at baseline and during the stimulation period in gastrocnemius muscle. During muscle stimulation, pH(i) showed a larger alkalosis in the capsiate group suggesting a lower glycolysis and a compensatory higher aerobic contribution to ATP production. Although the capsiate-treated rats were hyperphagic as compared to control animals, they showed a lower weight gain coupled to a decreased abdominal fat content. Overall, our data indicated that capsiate administration contributes to the enhancement of aerobic ATP production and the reduction of body fat content coupled to a UCP3 gene downregulation.

  8. Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring's liver and skeletal muscle; protective effect of taurine

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Olsen, Hanne Lodberg; Frandsen, Lis

    2010-01-01

    We examined gene expression changes in liver and skeletal muscle of newborn mice subjected to a maternal low protein (LP) or normal protein (NP) diet during pregnancy, with or without taurine supplementation in the drinking water. LP offspring had a 40% lower birthweight than NP offspring, whereas...... it was reduced by only 20% with taurine supplementation. Microarray gene expression analysis revealed significant changes in 2012 genes in liver and 967 genes in skeletal muscle of LP offspring. By unknown mechanisms, taurine partially or fully prevented 30 and 46% of these expression changes, respectively....... Mitochondrial genes, in particular genes associated with oxidative phosphorylation, were more abundantly changed in LP offspring, with primarily up-regulation in liver but down-regulation in skeletal muscle. In both tissues, citrate synthase activity remained unchanged. Taurine preferentially rescued changes...

  9. Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields.

    Science.gov (United States)

    Zhang, D; Matsuoka, Y; Kong, W; Imtiaz, U; Bartolomeo, L; Cosentino, S; Zecca, M; Sessa, S; Ishii, H; Takanishi, A

    2014-01-01

    Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction.

  10. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle

    OpenAIRE

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-01-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we repo...

  11. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  12. Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content.

    Science.gov (United States)

    Kanda, Atsushi; Nakayama, Kyosuke; Fukasawa, Tomoyuki; Koga, Jinichiro; Kanegae, Minoru; Kawanaka, Kentaro; Higuchi, Mitsuru

    2013-09-28

    It is well known that ingestion of a protein source is effective in stimulating muscle protein synthesis after exercise. In addition, there are numerous reports on the impact of leucine and leucine-rich whey protein on muscle protein synthesis and mammalian target of rapamycin (mTOR) signalling. However, there is only limited information on the effects of whey protein hydrolysates (WPH) on muscle protein synthesis and mTOR signalling. The aim of the present study was to compare the effects of WPH and amino acids on muscle protein synthesis and the initiation of translation in skeletal muscle during the post-exercise phase. Male Sprague–Dawley rats swam for 2 h to depress muscle protein synthesis. Immediately after exercise, the animals were administered either carbohydrate (CHO), CHO plus an amino acid mixture (AA) or CHO plus WPH. At 1 h after exercise, the supplements containing whey-based protein (AA and WPH) caused a significant increase in the fractional rate of protein synthesis (FSR) compared with CHO. WPH also caused a significant increase in FSR compared with AA. Post-exercise ingestion of WPH caused a significant increase in the phosphorylation of mTOR levels compared with AA or CHO. In addition, WPH caused greater phosphorylation of ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1 than AA and CHO. In contrast, there was no difference in plasma amino acid levels following supplementation with either AA or WPH. These results indicate that WPH may include active components that are superior to amino acids for stimulating muscle protein synthesis and initiating translation.

  13. Biomechanical analysis of scoliosis and back muscles using CT evaluation and finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Saka, K.

    1987-03-01

    The CT observation of back muscles of an idiopathic scoliosis patient showed increased muscle volume and high CT value on the convex side. Following these muscles by digitizer showed that convex muscle volume increased as the vertebra shifted to convexity. These back muscles were suggested to be transversospinalis muscles. Biomechanical analysis using finite element method (FEM) was done to further investigate this increasing volume of back muscles. A Risser experiment using FEM revealed that initial lordosis configuration model only produces rotation to the convex side by unilateral loading. We, therefore, made the model adding posterior element, regarding contraction of M. transversospinalis. In a normal case, the upper vertebra is rotated over the lower towards the side opposite the muscle contraction. The scoliosis model, however, showed rotation towards the side of muscle contraction. M. transversospinalis can be considered as the agent of this rotation force. In a rib cage model, M. transversospinalis also affected the rib cage deformity.

  14. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  15. Characterization of proteins in the muscle of limanda yokohamae from the masan bay, Korea

    Science.gov (United States)

    Kim, Soo Woon; Kim, Sam Moon; Lee, Dong Kun; Moon, Hyo Bang; Choi, Hee Gu; Kang, Chang Keun; Choe, Eun Sang

    2007-06-01

    Increasing industrial development in the Masan Bay area of Korea over the past decades increased the risk for the survival of marine organisms in the bay area by the deterioration of the water quality. Since living organisms have the ability to adapt contamination-associated stimuli by the alteration of gene expression, changes in proteins can be used as an important criterion for assessing the levels of environmental conditions. In this study, therefore, alterations of the expression of proteins in the muscle of Limanda yokohamae from Dukdong and Dotsum in the bay area were surveyed and characterized as compared with Haegumgang, which served as a control site. The results demonstrated that the twenty spots detected from Dukdong and Dotsum were similar to each other. Fifteen proteins were found to be predicted or undefined proteins, while five proteins were identified as heavy polypeptide 11 of myosin, apolipoprotein A-I, fibroblast growth factor 17b precursor, G protein-coupled receptor kinase 1 b and bonnie and clyde. These data suggest that local fish in the bay area have dysfunction in muscle physiology including contraction, lipid metabolism, proliferation and differentiation and nervous system.

  16. Correlation of Utrophin Levels with the Dystrophin Protein Complex and Muscle Fibre Regeneration in Duchenne and Becker Muscular Dystrophy Muscle Biopsies.

    Directory of Open Access Journals (Sweden)

    Narinder Janghra

    Full Text Available Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ -sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these

  17. Mechanic effect of pulsed focused ultrasound in tumor and muscle tissue evaluated by MRI, histology, and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Walter, E-mail: walter.hundt@web.de [Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305-5488 (United States); Department of Radiology, Philipps University Marburg (Germany); Yuh, Esther L. [Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305-5488 (United States); Steinbach, Silke [Department of Otolaryngology Head and Neck Surgery, Technical University of Dresden (Germany); Bednarski, Mark D.; Guccione, Samira [Lucas MRS Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305-5488 (United States)

    2010-11-15

    The purpose of this study was to investigate the effect of pulsed high-intensity focused ultrasound (HIFU) to tumor and muscle tissue. Pulsed HIFU was applied to tumor and muscle tissue in C3H/Km mice. Three hours after HIFU treatment pre- and post-contrast T1-wt, T2-wt images and a diffusion-wt STEAM-sequence were obtained. After MR imaging, the animals were euthenized and the treated tumor and muscle was taken out for histology and functional genomic analysis. In the tumor tissue a slight increase of the diffusion coefficient could be found. In the muscle tissue T2 images showed increased signal intensity and post-contrast T1 showed a decreased contrast uptake in the center and a severe contrast uptake in the surrounding muscle tissue. A significant increase of the diffusion coefficient was found. Gene expression analysis revealed profound changes in the expression levels of 29 genes being up-regulated and 3 genes being down-regulated in the muscle tissue and 31 genes being up-regulated and 15 genes being down-regulated in the SCCVII tumor tissue. Seven genes were up-regulated in both tissue types. The highest up-regulated gene in the tumor and muscle tissue encoded for Mouse histone H2A.1 gene (FC = 13.2 {+-} 20.6) and Apolipoprotein E (FC = 12.8 {+-} 27.4) respectively MHC class III (FC = 83.7 {+-} 67.4) and hsp70 (FC = 75.3 {+-} 85.0). Immunoblot confirmed the presence of HSP70 protein in the muscle tissue. Pulsed HIFU treatment on tumor and muscle tissue results in dramatic changes in gene expression, indicating that the effect of pulsed HIFU is in some regard dependent and also independent of the tissue type.

  18. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  19. Accurate Quantitation of Dystrophin Protein in Human Skeletal Muscle Using Mass Spectrometry

    OpenAIRE

    Brown, Kristy J; Marathi, Ramya; Fiorillo, Alyson A; Ciccimaro, Eugene F.; Sharma, Seema; Rowlands, David S.; Rayavarapu, Sree; Nagaraju, Kanneboyina; Eric P. Hoffman; Hathout, Yetrib

    2012-01-01

    Quantitation of human dystrophin protein in muscle biopsies is a clinically relevant endpoint for both diagnosis and response to dystrophin-replacement therapies for dystrophinopathies. A robust and accurate assay would enable the use of dystrophin as a surrogate biomarker, particularly in exploratory Phase 2 trials. Currently available methods to quantitate dystrophin rely on immunoblot or immunohistochemistry methods that are not considered robust. Here we present a mass spectrometry based ...

  20. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan.

    Science.gov (United States)

    Huang, Ru-Yi; Yang, Kuen-Cheh; Chang, Hao-Hsiang; Lee, Long-Teng; Lu, Chia-Wen; Huang, Kuo-Chin

    2016-06-17

    Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (protein density (protein density (p = 0.023) and vegetable protein density (p = 0.025). Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  1. Quantitative analysis of glycated proteins.

    Science.gov (United States)

    Priego-Capote, Feliciano; Ramírez-Boo, María; Finamore, Francesco; Gluck, Florent; Sanchez, Jean-Charles

    2014-02-07

    The proposed protocol presents a comprehensive approach for large-scale qualitative and quantitative analysis of glycated proteins (GP) in complex biological samples including biological fluids and cell lysates such as plasma and red blood cells. The method, named glycation isotopic labeling (GIL), is based on the differential labeling of proteins with isotopic [(13)C6]-glucose, which supports quantitation of the resulting glycated peptides after enzymatic digestion with endoproteinase Glu-C. The key principle of the GIL approach is the detection of doublet signals for each glycated peptide in MS precursor scanning (glycated peptide with in vivo [(12)C6]- and in vitro [(13)C6]-glucose). The mass shift of the doublet signals is +6, +3 or +2 Da depending on the peptide charge state and the number of glycation sites. The intensity ratio between doublet signals generates quantitative information of glycated proteins that can be related to the glycemic state of the studied samples. Tandem mass spectrometry with high-energy collisional dissociation (HCD-MS2) and data-dependent methods with collision-induced dissociation (CID-MS3 neutral loss scan) are used for qualitative analysis.

  2. Expression of human IAP-like protein in skeletal muscle: a possible explanation for the rare incidence of muscle fiber apoptosis in T-cell mediated inflammatory myopathies.

    Science.gov (United States)

    Li, M; Dalakas, M C

    2000-07-01

    In Polymyositis (PM) and sporadic Inclusion Body Myositis (s-IBM), the CD8(+) cytotoxic T cells invade the muscle membrane and release perforin and granzyme B to induce cell death. Although granzyme B is a direct activator of executioner caspases, there is no convincing evidence of apoptosis in the muscle fibers of these patients. To search for an explanation, we examined the muscle expression of the human IAP-Like Protein (hILP), an evolutionarily conserved cell death suppressor, that exerts major anti-apoptotic effects by inhibiting the executioner caspases. Muscle biopsy specimens from patients with inflammatory myopathies and controls were studied with: (a) immunocytochemistry using antibodies against hILP and caspase-3 in single and double-labeled confocal laser microscopy; (b) immunoblotting of muscle extracts immunoreacted with anti-hILP antibodies; and (c) subcellular fractionation of muscle lysates immunoreacted with antibodies against hILP. We found that hILP is expressed on the sarcolemmal region and co-localizes with dystrophin. Caspase-3 is undetectable. Subcellular fractionation of the muscle specimens confirmed that hILP is a membrane-associated protein. By immunoblotting, the 57 kD hILP was abundantly expressed in the normal as well as the diseased muscles. We conclude that in s-IBM and PM the expression of hILP, a major cell death suppressor, on the muscle membrane may prevent the induction of apoptosis by the autoinvasive cytotoxic T cells on the cell surface, by inhibiting the caspase activation.

  3. Increased intramuscular fat induced by reduced dietary protein in finishing pigs: effects on the longissimus lumborum muscle proteome.

    Science.gov (United States)

    Pires, V M R; Madeira, M S; Dowle, A A; Thomas, J; Almeida, A M; Prates, J A M

    2016-07-19

    Due to genetic selection towards reduced subcutaneous fat, the amount of intramuscular fat (IMF) in commercial pigs has been reduced (increase IMF in pigs. We have previously shown that increased IMF promoted by RPD is mediated by lysine restriction. However, the molecular mechanisms involved remain unclear. Here we performed a proteomics study to quantify differentially regulated proteins in the longissimus lumborum muscle of pigs (n = 4) fed a normal protein diet (NPD) (16.0% CP) or a reduced protein diet (RPD) (13.0% CP). Both isobaric tags for relative and absolute quantification (iTRAQ) and label-free methods were used. Glycolysis, Krebs cycle, mitochondrion, contractile proteins, respiratory chain, and calcium signalling were significantly enriched in muscle samples. Thirty five proteins shown to be differentially expressed and were classified using gene ontology (GO) terms and functional annotation clustering, highlighting main relevant biological networks and proteins associated with muscle physiology and meat quality. Members of GO categories "muscle contraction" and "structural constituents of cytoskeleton", were the most significantly up-regulated proteins in muscle from pigs fed RPD. Conversely, in animals fed NPD most up-regulated proteins were enzymes involved in the regulation of energy metabolism. Our data revealed that RPD affects the amounts of proteins related to fibre type and structure, and energy metabolism. It is suggested that the increased IMF promoted by dietary protein reduction in growing-finishing pigs is mediated by shifting the metabolic properties of fibres from glycolytic to oxidative.

  4. Muscle Specific Fragile X Related Protein 1 Isoforms are Sequestered in the Nucleus of Undifferentiated Myoblast

    Directory of Open Access Journals (Sweden)

    Khandjian Edouard W

    2000-12-01

    Full Text Available Abstract Background The family of Fragile X Mental Retardation Proteins is composed of three members: Fragile Mental Retardation 1, Fragile X Related 1 and X Related 2 proteins. These proteins are associated with mRNPs within translating ribosomes and have the capacity to shuttle between the nucleus and the cytoplasm. Great attention has been given to FMRP due to its implication in human hereditary mental retardation while FXR1P and FXR2P have only recently been studied. Results Using antibodies directed against several epitopes of FXR1P, we have detected protein isoforms generated by small peptides pocket inserts. Four isoforms of MW 70, 74, 78, 80 kDa are widely distributed in mouse organs, while in striated muscles these isoforms are replaced by proteins of 82 and 84 kDa containing an extra pocket of 27 aa. Expression of these muscle isoforms is an early event during in vitro differentiation of myoblasts into myotubes and correlates with the activation of muscle-specific genes. However, while FXR1P82,84 are associated with cytoplasmic mRNPs in myotubes, they are sequestered in the nuclei of undifferentiated myoblasts. These observations suggest that, in addition to a cytoplasmic function yet to be defined, FXR1P82,84 may play a nuclear role in pre-mRNA metabolism. Conclusions The pattern of subcellular partitioning of FXR1P isoforms during myogenesis is unique among the family of the FXR proteins. The model system described here should be considered as a powerful tool for ongoing attempts to unravel structure-function relationships of the different FMR family members since the potential role(s of FXR1P as a compensatory factor in Fragile X syndrome is still elusive.

  5. Evidence of decreased muscle protein turnover in gilts selected for low residual feed intake.

    Science.gov (United States)

    Cruzen, S M; Harris, A J; Hollinger, K; Punt, R M; Grubbs, J K; Selsby, J T; Dekkers, J C M; Gabler, N K; Lonergan, S M; Huff-Lonergan, E

    2013-08-01

    The objective of this study was to evaluate the contribution of muscle protein turnover (synthesis and degradation) to the biological basis for genetic differences in finisher pigs selected for residual feed intake (RFI). Residual feed intake is defined as the difference between expected feed intake (based on the achieved rate of BW gain and backfat depth of individual pigs) and the observed feed intake of the individual pig. We hypothesized that protein turnover would be reduced in pigs selected for low RFI. Twelve gilts from a line selected for 7 generations for low RFI and 12 from a contemporary line selected for 2 generations for high RFI were paired by age and BW and fed a standard corn-soybean diet for 6 wk. Pigs were euthanized, muscle and liver samples were collected, and insulin signaling, protein synthesis, and protein degradation proteins were analyzed for expression and activities. Muscle from low RFI pigs tended to have less μ- and m-calpain activities (P = 0.10 and 0.09, respectively) and had significantly greater calpastatin activity and a decreased μ-calpain:calpastatin activity ratio (P 0.05). Postmortem proteolysis was determined in the LM from the eighth generation of the low RFI pigs versus their high RFI counterparts (n = 9 per line). Autolysis of μ-calpain was decreased in the low RFI pigs and less troponin-T degradation product was observed at 3 d postmortem (P < 0.05), indicating slowed postmortem proteolysis during aging in the low RFI pigs. These data provide significant evidence that less protein degradation occurs in pigs selected for reduced RFI, and this may account for a significant portion of the increased efficiency observed in these animals.

  6. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity.

    Science.gov (United States)

    Malik, Zulezwan Ab; Cobley, James N; Morton, James P; Close, Graeme L; Edwards, Ben J; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2013-12-01

    Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p ion (551.21 m/z) of the doubly-charged peptide SLGVGFATR (454.19 m/z) of residues 23-31 of FABPH. SRM was conducted on technical replicates of each biological sample and exhibited a coefficient of variation of 20%. The abundance of FABPH measured by SRM was 2.84-fold greater (p = 0.0095) in HCR muscle. In addition, SRM of FABPH was performed in vastus lateralis samples of young and elderly humans with different habitual activity levels (collected during a previous study) finding FABPH abundance was 2.23-fold greater (p = 0.0396) in endurance-trained individuals regardless of differences in age. In summary, our findings in HCR/LCR rats provide protein-level confirmation for earlier

  7. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle.

    Science.gov (United States)

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-09-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we report that CAS-1, a cyclase-associated protein in Caenorhabditis elegans, promotes ADF/cofilin-dependent actin filament turnover in vitro and is required for sarcomeric actin organization in striated muscle. CAS-1 is predominantly expressed in striated muscle from embryos to adults. In vitro, CAS-1 binds to actin monomers and enhances exchange of actin-bound ATP/ADP even in the presence of UNC-60B, a muscle-specific ADF/cofilin that inhibits the nucleotide exchange. As a result, CAS-1 and UNC-60B cooperatively enhance actin filament turnover. The two proteins also cooperate to shorten actin filaments. A cas-1 mutation is homozygous lethal with defects in sarcomeric actin organization. cas-1-mutant embryos and worms have aggregates of actin in muscle cells, and UNC-60B is mislocalized to the aggregates. These results provide genetic and biochemical evidence that cyclase-associated protein is a critical regulator of sarcomeric actin organization in striated muscle.

  8. Rapamycin blocks leucine-induced protein synthesis by suppressing mTORC1 activation in skeletal muscle of neonatal pigs

    Science.gov (United States)

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine (Leu). To elucidate the molecular mechanism by which Leu stimulates protein synthesis in neonatal muscle, overnight fasted 7-day-old piglets were...

  9. Maternal bisphenol A exposure alters rat offspring hepatic and skeletal muscle insulin signaling protein abundance.

    Science.gov (United States)

    Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K

    2017-03-01

    The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in

  10. Role of 5'AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Wojtaszewski, Jørgen F. P.

    2008-01-01

    5'AMP-activated protein kinase (AMPK) is recognized as an important intracellular energy sensor, shutting down energy-consuming processes and turning on energy-generating processes. Discovery of target proteins of AMPK has dramatically increased in the past 10 years. Historically, AMPK was first...... shown to regulate fatty acid and cholesterol synthesis, but is now hypothesized to take part in the regulation of energy/fuel balance not only at the cellular level but also at the level of the whole organism. In this brief review we will discuss some of the roles of AMPK in skeletal muscle....

  11. Ck2-Dependent Phosphorylation Is Required to Maintain Pax7 Protein Levels in Proliferating Muscle Progenitors.

    Directory of Open Access Journals (Sweden)

    Natalia González

    Full Text Available Skeletal muscle regeneration and long term maintenance is directly link to the balance between self-renewal and differentiation of resident adult stem cells known as satellite cells. In turn, satellite cell fate is influenced by a functional interaction between the transcription factor Pax7 and members of the MyoD family of muscle regulatory factors. Thus, changes in the Pax7-to-MyoD protein ratio may act as a molecular rheostat fine-tuning acquisition of lineage identity while preventing precocious terminal differentiation. Pax7 is expressed in quiescent and proliferating satellite cells, while its levels decrease sharply in differentiating progenitors Pax7 is maintained in cells (reacquiring quiescence. While the mechanisms regulating Pax7 levels based on differentiation status are not well understood, we have recently described that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4, thus promoting proteasome-dependent Pax7 degradation in differentiating satellite cells. Here we show that Pax7 levels are maintained in proliferating muscle progenitors by a mechanism involving casein kinase 2-dependent Pax7 phosphorylation at S201. Point mutations preventing S201 phosphorylation or casein kinase 2 inhibition result in decreased Pax7 protein in proliferating muscle progenitors. Accordingly, this correlates directly with increased Pax7 ubiquitination. Finally, Pax7 down regulation induced by casein kinase 2 inhibition results in precocious myogenic induction, indicating early commitment to terminal differentiation. These observations highlight the critical role of post translational regulation of Pax7 as a molecular switch controlling muscle progenitor fate.

  12. Effect of various ratios of carbohydrate-protein supplementation on resistance exercise-induced muscle damage.

    Science.gov (United States)

    Samadi, A; Gaeini, A A; Kordi, M R; Rahimi, M; Rahnama, N; Bambaeichi, E

    2012-04-01

    Previous studies have indicated that exercise-induced muscle damage might be attenuated by coingestion of protein and carbohydrate supplement. The purpose of this study was to compare the effect of three various ratios of carbohydrate-protein (CHO+PRO) supplements on resistance exercise-induced muscle damage indices. Twenty-eight untrained male students voluntarily participated in this study and were randomly assigned to one of the four groups: 1) CHO+PRO 2:1 ratio, N.=7; 2) CHO+PRO 3:1 ratio, N.=8; 3) CHO+PRO 4:1 ratio, N.=7; 4) placebo group, N.=6. They performed a single bout of resistance exercise (whole body: 3 set×8-10 reps with 70-75% 1RM), with eccentric concentration. Every group consumed prepared CHO/PRO beverages (9% concentration, 10 mL/kg/bw-1 at different ratios) or the same amount of placebo beverage before and in 15 min intervals during exercise. Blood samples were taken before the exercise bout and also at 1 and 24 h post-exercise. In addition, muscle soreness scores were recorded before and 1, 24, and 48 h postexercise. Repeated measures ANOVA (between-within design) and Bonferroni post hoc test were used to analyze dependent measures (α=0.05). Serum creatine kinase (CK) and myoglobin (Mb) increased in all groups compared with pre-exercise but the significant difference among groups was observed in 24 h postexercise, in a way that both CK and Mb levels were higher in placebo group. Muscle soreness increased for all groups from pre to postexercise, but there was not any significant difference among groups at any time point. Findings of this study showed that CHO+PRO decreased serum CK and Mb at 24 h post exercise, but did not affect muscle soreness at any time points after exercise. Moreover, there were no significant differences between various ratios of CHO-PRO supplementation.

  13. Identification of proteins from interstitium of trapezius muscle in women with chronic myalgia using microdialysis in combination with proteomics.

    Directory of Open Access Journals (Sweden)

    Patrik Olausson

    Full Text Available BACKGROUND: Microdialysis (MD of the trapezius muscle has been an attractive technique to investigating small molecules and metabolites in chronic musculoskeletal pain in human. Large biomolecules such as proteins also cross the dialysis membrane of the catheters. In this study we have applied in vivo MD in combination with two dimensional gel electrophoresis (2-DE and mass spectrometry to identify proteins in the extracellular fluid of the trapezius muscle. MATERIALS AND METHODS: Dialysate from women with chronic trapezius myalgia (TM; n = 37, women with chronic wide spread pain (CWP; n = 18 and healthy controls (CON; n = 22 was collected from the trapezius muscle using a catheter with a cut-off point of 100 kDa. Proteins were separated by two-dimensional gel electrophoresis and visualized by silver staining. Detected proteins were identified by nano liquid chromatography in combination with tandem mass spectrometry. RESULTS: Ninety-seven protein spots were identified from the interstitial fluid of the trapezius muscle; 48 proteins in TM and 30 proteins in CWP had concentrations at least two-fold higher or lower than in CON. The identified proteins pertain to several functional classes, e.g., proteins involved in inflammatory responses. Several of the identified proteins are known to be involved in processes of pain such as: creatine kinase, nerve growth factor, carbonic anhydrase, myoglobin, fatty acid binding protein and actin aortic smooth muscle. CONCLUSIONS: In this study, by using in vivo microdialysis in combination with proteomics a large number of proteins in muscle interstitium have been identified. Several of the identified proteins were at least two-fold higher or lower in chronic pain patients. The applied techniques open up for the possibility of investigating protein changes associated with nociceptive processes of chronic myalgia.

  14. Proteomic analysis of the effect of iptakalim on human pulmonary arterial smooth muscle cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Mingxia YANG; Zhengxia LIU; Shu ZHANG; Yu JING; Shijiang ZHANG; Weiping XIE; Lei MA; Changliang ZHU; Hong WANG

    2009-01-01

    Aim:To investigate the anti-proliferative effect of iptakalim (Ipt),a newly selective KATP channel opener,in endothelin-1 (ET-1)-induced human pulmonary arterial smooth muscle cells (PASMCs) using proteomic analysis.Methods: Human PASMCs were incubated with ET-1 (10-8 mol/L) and ETA (10-8 mol/L) plus iptaklim (10-5 mol/L) for 24 h.Analysis via 2-DE gel electrophoresis and MALDI-TOF-MS was employed to display the different protein profiles of whole-cell protein from cultures of control,ET-1 treatment alone,and treatment with ET-1 and iptaklim combined.Real time RT-PCR and Western blot analysis were used to confirm the proteomic analysis.Results: When iptakalim inhibited the proliferative effect of ET-1 in human PASMCs by opening the KATP channels,the expression of different groups of cellular proteins was changed,including cytoskeleton-associated proteins,plasma mem-brane proteins and receptors,chaperone proteins,ion transport-associated proteins,and glycolytic and metabolism-associ-ated proteins.We found that iptakalim could inhibit the proliferation of human PASMCs partly by affecting the expression of Hsp60,vimentin,nucleoporin P54 (NUP54) and Bcl-XL by opening the KATP channel.Conclusion: The data suggest that a wide range of signaling pathways may be involved in abolishing ET-1-induced prolif-eration of human PASMCs following iptakalim treatment.

  15. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    Science.gov (United States)

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed.

  16. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    Energy Technology Data Exchange (ETDEWEB)

    Santidrian, S.; Cuevillas, F.; Goena, M.; Larralde, J.

    1986-03-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-//sup 14/C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showed that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism.

  17. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity

    Directory of Open Access Journals (Sweden)

    Zulezwan A. Malik

    2013-12-01

    Full Text Available Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC coupled to mass spectrometry (MS affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group bred as either high- or low-capacity runners (HCR and LCR, respectively that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001 in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897 and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5. Sixteen proteins were significantly (p < 0.05 more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH was 1

  18. Transmembrane Protein 184A Is a Receptor Required for Vascular Smooth Muscle Cell Responses to Heparin.

    Science.gov (United States)

    Pugh, Raymond J; Slee, Joshua B; Farwell, Sara Lynn N; Li, Yaqiu; Barthol, Trista; Patton, Walter A; Lowe-Krentz, Linda J

    2016-03-01

    Vascular cell responses to exogenous heparin have been documented to include decreased vascular smooth muscle cell proliferation following decreased ERK pathway signaling. However, the molecular mechanism(s) by which heparin interacts with cells to induce those responses has remained unclear. Previously characterized monoclonal antibodies that block heparin binding to vascular cells have been found to mimic heparin effects. In this study, those antibodies were employed to isolate a heparin binding protein. MALDI mass spectrometry data provide evidence that the protein isolated is transmembrane protein 184A (TMEM184A). Commercial antibodies against three separate regions of the TMEM184A human protein were used to identify the TMEM184A protein in vascular smooth muscle cells and endothelial cells. A GFP-TMEM184A construct was employed to determine colocalization with heparin after endocytosis. Knockdown of TMEM184A eliminated the physiological responses to heparin, including effects on ERK pathway activity and BrdU incorporation. Isolated GFP-TMEM184A binds heparin, and overexpression results in additional heparin uptake. Together, these data support the identification of TMEM184A as a heparin receptor in vascular cells.

  19. Women have higher protein content of beta-oxidation enzymes in skeletal muscle than men.

    Directory of Open Access Journals (Sweden)

    Amy C Maher

    Full Text Available It is well recognized that compared with men, women have better ultra-endurance capacity, oxidize more fat during endurance exercise, and are more resistant to fat oxidation defects i.e. diet-induced insulin resistance. Several groups have shown that the mRNA and protein transcribed and translated from genes related to transport of fatty acids into the muscle are greater in women than men; however, the mechanism(s for the observed sex differences in fat oxidation remains to be determined. Muscle biopsies from the vastus lateralis were obtained from moderately active men (N=12 and women (N=11 at rest to examine mRNA and protein content of genes involved in lipid oxidation. Our results show that women have significantly higher protein content for tri-functional protein alpha (TFPalpha, very long chain acyl-CoA dehydrogenase (VLCAD, and medium chain acyl-CoA dehydrogenase (MCAD (P<0.05. There was no significant sex difference in the expression of short-chain hydroxyacyl-CoA dehydrogenase (SCHAD, or peroxisome proliferator activated receptor alpha (PPARalpha, or PPARgamma, genes potentially involved in the transcriptional regulation of lipid metabolism. In conclusion, women have more protein content of the major enzymes involved in long and medium chain fatty acid oxidation which could account for the observed differences in fat oxidation during exercise.

  20. Muscles within muscles: a tensiomyographic and histochemical analysis of the normal human vastus medialis longus and vastus medialis obliquus muscles.

    Science.gov (United States)

    Travnik, Ludvik; Djordjevič, Srdjan; Rozman, Sergej; Hribernik, Marija; Dahmane, Raja

    2013-06-01

    The aim of this study was to show the connection between structure (anatomical and histochemical) and function (muscle contraction properties) of vastus medialis obliquus (VMO) and vastus medialis longus (VML). The non-invasive tensiomyography (TMG) method was used to determine the contractile properties (contraction time; T(c)) of VML and VMO muscle, as a reflection of the ratio between the slow and fast fibers in two groups of nine young men. VML and VMO significantly (P knee, and to the VMO, which maintains the stable position of the patella in the femoral groove. Our results obtained by TMG provided additional evidence that muscle fibers within the segments of VM muscle were not homogenous with regard to their contractile properties, thereby confirming the histochemical results. T(c) can be attributed to the higher percentage of slow-twitch fibers - type 1. The statistically shorter T(c) (P ≤ 0.001) of VMO (22.8 ± 4.0 ms) compared with VML (26.7 ± 4.0 ms) in our study is consistent with previously found differences in histochemical, morphological and electrophysiological data. In conclusion, the results of this study provide evidence that the VML and VMO muscles are not only anatomically and histochemically different muscles, but also functionally different biological structures.

  1. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian;

    2013-01-01

    The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...... healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism...

  2. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Schjerling, P.; Langberg, Henning

    2011-01-01

    models, and inhibit the exercise-induced satellite cell proliferation and protein synthesis in humans. However, the cellular mechanisms eliciting these responses remain unknown. Eight healthy male volunteers performed 200 maximal eccentric contractions with each leg. To block prostaglandin synthesis......Unaccustomed exercise leads to satellite cell proliferation and increased skeletal muscle protein turnover. Several growth factors and cytokines may be involved in the adaptive responses. Non-steroidal anti-inflammatory drugs (NSAIDs) negatively affect muscle regeneration and adaptation in animal...... locally in the skeletal muscle, indomethacin (NSAID) was infused for 7.5 h via microdialysis catheters into m. vastus lateralis of one leg. Protein synthesis was determined by the incorporation of 1,2-(13) C(2) leucine into muscle protein from 24 to 28 h post-exercise. Furthermore, mRNA expression...

  3. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    DEFF Research Database (Denmark)

    Doessing, Simon; Heinemeier, Katja; Holm, Lars;

    2010-01-01

    young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P ...RNA expression and muscle collagen protein synthesis increased by 2.3-fold and 5.8-fold, respectively (P protein synthesis was unaffected by elevation of GH and IGF-I. Moderate exercise did not enhance the effects of GH manipulation. Thus, increased GH availability stimulates...... matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue....

  4. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian

    2013-01-01

    healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism......The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...

  5. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    Science.gov (United States)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  6. Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus gallus domesticus) by corticosterone.

    Science.gov (United States)

    Dong, H; Lin, H; Jiao, H C; Song, Z G; Zhao, J P; Jiang, K J

    2007-05-01

    Two trials were conducted to investigate the effect of corticosterone (CORT) on protein metabolism and the amino acid composition in muscle tissues of broiler chickens (Gallus gallus domesticus). In Trial 1, two groups of 30 broiler chickens were subjected to control or CORT treatment (30 mg/kg diet) from 28 to 39 days of age. In Trial 2, three groups of chickens of 28 days of age were randomly subjected to one of the following treatments for 7 days: CORT (30 mg/kg diet), pair-fed (maintaining the same feed intake as CORT treatment) and control treatments. The body mass gain and feed efficiency was significantly decreased by CORT treatment, while the food intake was decreased. The breast and thigh masses (% body mass) were significantly suppressed by CORT treatment, while the abdominal fat and liver masses (%) were obviously increased. The plasma levels of glucose, urate and total amino acid were significantly elevated by CORT treatment. The capacity for protein synthesis, estimated by RNA:protein ratio, were significantly suppressed by CORT in M. pectoralis major and M. biceps femoris. The 3-methylhistidine concentrations were significantly increased in both M. pectoralis major and M. biceps femoris of CORT chickens, compared to control but not the pair-fed chickens. The amino acid composition of M. pectoralis major and M. biceps femoris was not significantly affected by CORT treatment. In conclusion, the arrested growth in skeletal muscles induced by CORT administration has tissue specificity. The CORT treatment retards the growth of skeletal muscle by suppressed protein synthesis and augmented protein catabolism.

  7. Expression of vesicle-associated membrane protein 2 (VAMP-2)/synaptobrevin II and cellubrevin in rat skeletal muscle and in a muscle cell line.

    Science.gov (United States)

    Volchuk, A; Mitsumoto, Y; He, L; Liu, Z; Habermann, E; Trimble, W; Klip, A

    1994-01-01

    Molecular studies have identified a family of synaptic vesicle-associated membrane proteins (VAMPs, also known as synaptobrevins) which have been implicated in synaptic vesicle docking and/or fusion with plasma membrane proteins. Here we demonstrate the expression of two members of this family, VAMP-2/synaptobrevin II and cellubrevin, in skeletal muscle, a tissue with both constitutive and regulated membrane traffic. The 18 kDa VAMP-2 polypeptide was detected in purified membrane fractions from adult skeletal muscle and from L6 myotubes in culture, demonstrating that the presence of this protein in the isolated muscle membrane fractions is not the result of contamination by ancillary tissues such as peripheral nerve. Furthermore, skeletal muscle and the muscle cell line also expressed cellubrevin, a VAMP-2 homologue of 17 kDa; which is much less abundant in brain cells. Both VAMP-2 and cellubrevin were preferentially isolated in membrane fractions rich in plasma membranes, and were less concentrated in light microsomes and other internal membrane fractions of mature muscle or muscle cells in culture. Interestingly, both VAMP-2 and cellubrevin were much more abundant in the differentiated L6 myotubes than in their precursor myoblasts, suggesting that they are required for functions of differentiated muscle cells. The identity of both polypeptides was further confirmed by their susceptibility to proteolysis by Clostridium tetanus toxin. Expression of these products was further established by the presence of mRNA transcripts of VAMP-2 and cellubrevin, but not of VAMP-1, in both skeletal muscle and L6 myotubes. In contrast, other synaptic vesicle and docking/fusion components were undetectable, such as VAMP-1, SNAP25 and syntaxin 1A/1B, as were synaptophysin and synapsin Ia/Ib, proteins which are believed to be involved in sensing the signal for neuronal exocytosis. It is concluded that VAMP-2 and cellubrevin are expressed in skeletal muscle cells and may each

  8. Resistance training and protein supplement:Improvement of elderly muscle protein metabolism%抗阻训练与蛋白质补充:改善老年人肌肉蛋白质代谢

    Institute of Scientific and Technical Information of China (English)

    文蔡雄

    2013-01-01

    supplement and resistance training combined with protein supplements on muscle protein metabolism and muscle function, and to explore possible ways to improve the elderly muscle function and inhibit muscle loss. METHODS: The CNKI database (2005-01/2012-12) and PubMed database (2010-01/2012-12) were retrieved by the computer for the literatures addressing muscle protein metabolism and the effect of protein supplements and resistance training on muscle protein metabolism in the elderly. The key words were “protein metabolism, muscle cel s, muscle loss, resistance training, protein supplement” in Chinese and “muscle cel , resistance training, sarcopenia, protein metabolism” in English. RESULTS AND CONCLUSION: A total of 81 literatures were screened out, 22 literatures that did not meet the standards were eliminated, and then final y 59 literatures were included for the analysis and review. The results show that the negative balance of elderly muscle protein metabolism is the direct reason to elderly muscle loss. Resistance training and leucine-rich protein supplement can effectively enhance the the elderly muscle protein anabolism level, and improve muscle function of the elderly. But the elderly muscle protein anabolic response capability against resistance training and protein supplements is much lower than young people.

  9. Life without double-headed non-muscle myosin II motor proteins

    Directory of Open Access Journals (Sweden)

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  10. Life without double-headed non-muscle myosin II motor proteins

    Science.gov (United States)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  11. Ecdysteroids Elicit a Rapid Ca2+ Flux Leading to Akt Activation and Increased Protein Synthesis in Skeletal Muscle Cells

    OpenAIRE

    Gorelick-Feldman, Jonathan; Cohick, Wendie; Raskin, Ilya

    2010-01-01

    Phytoecdysteroids, structurally similar to insect molting hormones, produce a range of effects in mammals, including increasing growth and physical performance. In skeletal muscle cells, phytoecdysteroids increase protein synthesis. In this study we show that in a mouse skeletal muscle cell line, C2C12, 20-hydroxyecdysone (20HE), a common phytoecdysteroid in both insects and plants, elicited a rapid elevation in intracellular calcium, followed by sustained Akt activation and increased protein...

  12. GLUT4 and UBC9 Protein Expression Is Reduced in Muscle from Type 2 Diabetic Patients with Severe Insulin Resistance

    OpenAIRE

    Ulla Kampmann; Britt Christensen; Thomas Svava Nielsen; Steen Bønløkke Pedersen; Lotte Ørskov; Sten Lund; Niels Møller; Niels Jessen

    2011-01-01

    AIMS: Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance. METHODS: Seven type 2 diabetic patients wi...

  13. Obesity Appears to Be Associated With Altered Muscle Protein Synthetic and Breakdown Responses to Increased Nutrient Delivery in Older Men, but Not Reduced Muscle Mass or Contractile Function.

    Science.gov (United States)

    Murton, Andrew J; Marimuthu, Kanagaraj; Mallinson, Joanne E; Selby, Anna L; Smith, Kenneth; Rennie, Michael J; Greenhaff, Paul L

    2015-09-01

    Obesity is increasing, yet despite the necessity of maintaining muscle mass and function with age, the effect of obesity on muscle protein turnover in older adults remains unknown. Eleven obese (BMI 31.9 ± 1.1 kg · m(-2)) and 15 healthy-weight (BMI 23.4 ± 0.3 kg · m(-2)) older men (55-75 years old) participated in a study that determined muscle protein synthesis (MPS) and leg protein breakdown (LPB) under postabsorptive (hypoinsulinemic-euglycemic clamp) and postprandial (hyperinsulinemic hyperaminoacidemic-euglycemic clamp) conditions. Obesity was associated with systemic inflammation, greater leg fat mass, and patterns of mRNA expression consistent with muscle deconditioning, whereas leg lean mass, strength, and work done during maximal exercise were no different. Under postabsorptive conditions, MPS and LPB were equivalent between groups, whereas insulin and amino acid administration increased MPS in only healthy-weight subjects and was associated with lower leg glucose disposal (LGD) (63%) in obese men. Blunting of MPS in the obese men was offset by an apparent decline in LPB, which was absent in healthy-weight subjects. Lower postprandial LGD in obese subjects and blunting of MPS responses to amino acids suggest that obesity in older adults is associated with diminished muscle metabolic quality. This does not, however, appear to be associated with lower leg lean mass or strength.

  14. Muscle-specific differences in the response of mitochondrial proteins to beta-GPA feeding: an evaluation of potential mechanisms.

    Science.gov (United States)

    Williams, Deon B; Sutherland, Lindsey N; Bomhof, Marc R; Basaraba, Susan A U; Thrush, A Brianne; Dyck, David J; Field, Catherine J; Wright, David C

    2009-06-01

    Beta-Guanadinopropionic acid (beta-GPA) feeding leads to reductions in skeletal muscle phosphagen concentrations and has been used as a tool with which to study the effects of energy charge on skeletal muscle metabolism. Supplementing standard rodent diets with beta-GPA leads to increases in mitochondrial enzyme content in fast but not slow-twitch muscles from male rats. Given this apparent discrepancy between muscle types we used beta-GPA feeding as a model to study signaling pathways involved in mitochondrial biogenesis. We hypothesized that beta-GPA feeding would result in a preferential activation of p38 MAPK and AMPK signaling and reductions in RIP140 protein content in triceps but not soleus muscle. Despite similar reductions in high-energy phosphate concentrations, 6 wk of beta-GPA feeding led to increases in mitochondrial proteins in triceps but not soleus muscles. Differences in the response of mitochondrial proteins to beta-GPA feeding did not seem to be related to a differential activation of p38 MAPK and AMPK signaling pathways or discrepancies in the induction of PPARgamma coactivator (PGC)-1alpha and -1beta. The protein content and expression of the nuclear corepressor RIP140 was reduced in triceps but not soleus muscle. Collectively our results indicate that chronic reductions in high-energy phosphates lead to the activation of p38 MAPK and AMPK signaling and increases in the expression of PGC-1alpha and -1beta in both soleus and triceps muscles. The lack of an effect of beta-GPA feeding on mitochondrial proteins in the soleus muscles could be related to a fiber type-specific effect of beta-GPA on RIP140 protein content.

  15. Molecular cloning and in silico analysis of the duck (Anas platyrhynchos MEF2A gene cDNA and its expression profile in muscle tissues during fetal development

    Directory of Open Access Journals (Sweden)

    Hehe Liu

    2012-01-01

    Full Text Available The role of myogenic enhancer transcription factor 2a (MEF2A in avian muscle during fetal development is unknown. In this work, we cloned the duck MEF2A cDNA sequence (GenBank accession no. HM460752 and examined its developmental expression profiles in cardiac muscle, non-vascular smooth muscle and skeletal muscle. Duck MEF2A cDNA comprised 1479 bp encoding 492 amino acid residues. In silico analysis showed that MEF2A contained MADS (MCM1, AGAMOUS, DEFICIENS and SRF -serum response factor, MEF2 and mitogen-activated protein kinase (MAPK transcription domains with high homology to related proteins in other species. Modified sites in these domains were conserved among species and several variants were found. Quantitative PCR showed that MEF2A was expressed in all three muscles at each developmental stage examined, with the expression in smooth muscle being higher than in the other muscles. These results indicate that the conserved domains of duck MEF2A, including the MADS and MEF2 domains, are important for MEF2A transcription factor function. The expression of MEF2A in duck smooth muscle and cardiac muscle suggests that MEF2A plays a role in these two tissues.

  16. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau;

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested...... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle from wild......-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P

  17. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis.

    Science.gov (United States)

    Deldicque, Louise; Cani, Patrice D; Philp, Andrew; Raymackers, Jean-Marc; Meakin, Paul J; Ashford, Michael L J; Delzenne, Nathalie M; Francaux, Marc; Baar, Keith

    2010-11-01

    High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and muscles and ATF4 in the tibialis anterior (P fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1α, and phospho-PERK protein and the expression of ATF4, CHOP, and both the spliced and unspliced forms of XBP1 in the plantar flexors (P muscle cells, tunicamycin, thapsigargin, and palmitic acid all increased UPR markers and decreased phosphorylation of S6K1 (P fat diet activates the UPR in mouse skeletal muscle in vivo. In addition, in vitro studies indicate that palmitic acid, and other well-known ER stress inducers, triggered the UPR in myogenic cells and led to a decrease in protein synthesis and mTORC1 activity.

  18. Effect of a short-term infusion of glutamine on muscle protein metabolism postoperatively.

    Science.gov (United States)

    Januszkiewicz, A; Essén, P; McNurlan, M A; Calder, G A; Andersson, K; Wernerman, J; Garlick, P J

    1996-10-01

    The acute effect of a short-term postoperative infusion of glucose supplemented with glutamine (0.285 g/kg body weight), on muscle protein metabolism, was studied by analyses of free amino acid concentrations and determinations of protein synthesis. A glutamine-glucose infusion was given for 5.5 h to 6 patients 2-3 days after elective surgery for colon cancer. The free glutamine concentration was 5.72 +/- 0.96 mmol/kg wet weight (ww) before and 6.14 +/- 1.10 mmol/kg ww 4 h after the glutamine infusion. The rate of protein synthesis was 1.26 +/- 0.15%/24 h before the infusion and 1.12 +/- 0.16%/24 h during its latter part. The percentage of polyribosomes was 42.2 +/- 3.4% before and 40.9 +/- 1.3% after the infusion. The results showed no difference in these biochemical parameters, indicating that a short-term infusion of glutamine given postoperatively is insufficient to affect protein metabolism in human skeletal muscle.

  19. Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears)

    Science.gov (United States)

    Obinata, Takashi; Ono, Kanako

    2011-01-01

    Tardigrades, also known as water bears, have somatic muscle fibers that are responsible for movement of their body and legs. These muscle fibers contain thin and thick filaments in a non-striated pattern. However, the regulatory mechanism of muscle contraction in tardigrades is unknown. In the absence of extensive molecular and genomic information, we detected a protein of 31 kDa in whole lysates of tardigrades that cross-reacted with the antibody raised against nematode troponin I (TnI). TnI is a component of the troponin complex that regulates actin-myosin interaction in a Ca2+-dependent and actin-linked manner. This TnI-like protein was co-extracted with actin in a buffer containing ATP and EGTA, which is known to induce relaxation of a troponin-regulated contractile system. The TnI-like protein was specifically expressed in the somatic muscle fibers in adult animals and partially co-localized with actin filaments in a non-striated manner. Interestingly, the pharyngeal muscle did not express this protein. These observations suggest that the non-striated somatic muscle of tardigrades has an actin-linked and troponin-regulated system for muscle contraction. PMID:21866271

  20. Analysis of Muscle Contraction on Pottery Manufacturing Process Using Electromyography (EMG)

    Science.gov (United States)

    Soewardi, Hartomo; Azka Rahmayani, Amalia

    2016-01-01

    One of the most common problems in pottery manufacturing process is musculoskeletal disorders on workers. This disorder was caused by uncomfortable posture where the workers sit on the floor with one leg was folded and another was twisted for long duration. Back, waist, buttock, and right knee frequently experience the disorders. The objective of this research is to investigate the muscle contraction at such body part of workers in manufacturing process of pottery. Electromyography is used to investigate the muscle contraction based on the median frequency signal. Focus measurements is conducted on four muscles types. They are lower interscapular muscle on the right and left side, dorsal lumbar muscle, and lateral hamstring muscle. Statistical analysis is conducted to test differences of muscle contraction between female and male. The result of this research showed that the muscle which reached the highest contraction is dorsal lumbar muscle with the average of median frequency is 51,84 Hz. Then followed by lower interscapular muscle on the left side with the average of median frequency is 31,30 hz, lower interscapular muscle on the right side average of median frequency is 31,24 Hz, and lateral hamstring muscle average of median frequency is 21,77 Hz. Based on the statistic analysis result, there were no differences between male and female on left and right lower interscapular muscle and dorsal lumbar muscle but there were differences on lateral hamstring muscle with the significance level is 5%. Besides that, there were differences for all combination muscle types with the level of significance is 5%.

  1. Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets.

    Science.gov (United States)

    Frank, Jason W; Escobar, Jeffery; Nguyen, Hanh V; Jobgen, Scott C; Jobgen, Wenjuan S; Davis, Teresa A; Wu, Guoyao

    2007-02-01

    This study investigated the potential mechanisms by which oral supplementation of N-carbamylglutamate (NCG), an analogue of endogenous N-acetylglutamate (an activator of arginine synthesis) increases growth rate in sow-reared piglets. Two piglets of equal body weight (BW) and of the same gender from each lactating sow were allotted to receive oral administration of 0 (control) or 50 mg of NCG/kg BW every 12 h for 7 d. Piglets (n=32; BW=3 kg) were studied in the food-deprived or fed state following the 7 d of treatment. Overnight food-deprived piglets were given NCG or water (control) at time 0 and 60 min. Piglets studied in the fed state were gavage-fed sow's milk with their respective NCG treatment at 0 and 60 min. At 60 min, the piglets were administered a flooding dose of [3H]phenylalanine and killed at 90 min to measure tissue protein synthesis. Piglets treated with NCG gained 28% more weight than control pigs (P<0.001) over the 7-d period. Fed pigs had greater rates of protein synthesis in longissimus dorsi and gastrocnemius muscles and duodenum compared with food-deprived pigs (P<0.001). Absolute protein synthesis rates in longissimus dorsi (P=0.050) and gastrocnemius (P=0.068) muscles were 30 and 21% greater, respectively, in NCG-treated compared with control pigs. Piglets supplemented with NCG also had greater plasma concentrations of arginine and somatotropin than control pigs (P<0.001). The results suggest that oral NCG supplementation increases plasma arginine and somatotropin levels, leading to an increase in growth rate and muscle protein synthesis in nursing piglets.

  2. Light-load resistance exercise increases muscle protein synthesis and hypertrophy signaling in elderly men.

    Science.gov (United States)

    Agergaard, Jakob; Bülow, Jacob; Jensen, Jacob K; Reitelseder, Søren; Drummond, Micah J; Schjerling, Peter; Scheike, Thomas; Serena, Anja; Holm, Lars

    2017-04-01

    The present study investigated whether well-tolerated light-load resistance exercise (LL-RE) affects skeletal muscle fractional synthetic rate (FSR) and anabolic intracellular signaling as a way to counteract age-related loss of muscle mass. Untrained healthy elderly (>65-yr-old) men were subjected to 13 h of supine rest. After 2.5 h of rest, unilateral LL-RE, consisting of leg extensions (10 sets, 36 repetitions) at 16% of 1 repetition maximum (RM), was conducted. Subsequently, the subjects were randomized to oral intake of 4 g of whey protein per hour (PULSE, n = 10), 28 g of whey protein at 0 h and 12 g of whey protein at 7 h postexercise (BOLUS, n = 10), or 4 g of maltodextrin per hour (placebo, n = 10). Quadriceps muscle biopsies were taken at 0, 3, 7, and 10 h postexercise from the resting and the exercised leg of each subject. Myofibrillar FSR and activity of select targets from the mechanistic target of rapamycin complex 1-signaling cascade were analyzed from the biopsies. LL-RE increased myofibrillar FSR compared with the resting leg throughout the 10-h postexercise period. Phosphorylated (T308) AKT expression increased in the exercised leg immediately after exercise. This increase persisted in the placebo group only. Levels of phosphorylated (T37/46) eukaryotic translation initiation factor 4E-binding protein 1 increased throughout the postexercise period in the exercised leg in the placebo and BOLUS groups and peaked at 7 h. In all three groups, phosphorylated (T56) eukaryotic elongation factor 2 decreased in response to LL-RE. We conclude that resistance exercise at only 16% of 1 RM increased myofibrillar FSR, irrespective of nutrient type and feeding pattern, which indicates an anabolic effect of LL-RE in elderly individuals. This finding was supported by increased signaling for translation initiation and translation elongation in response to LL-RE. Copyright © 2017 the American Physiological Society.

  3. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Directory of Open Access Journals (Sweden)

    Juan C Marini

    Full Text Available Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20 on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L, and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  4. Expression of heat shock protein 72 in atrophied rat skeletal muscles

    Science.gov (United States)

    Oishi, Y.; Ishihara, A.; Talmadge, R. J.; Ohira, Y.; Taniguchi, K.; Matsumoto, H.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Changes in the expression of heat shock protein 72 (HSP72) in response to atrophic-inducing perturbations of muscle involving chronic mechanical unloading and denervation were determined. Adult male Wistar rats were assigned randomly to a sedentary cage control (CON), hind limb unloading (HU, via tail suspension), HU plus tenotomy (HU + TEN), HU plus denervation (HU + DEN), or HU + TEN + DEN group. Tenotomy and DEN involved cutting the Achilles tendon and removing a segment of the sciatic nerve, respectively. After 5 days, HSP72 levels in the soleus of the HU + DEN and HU + TEN + DEN groups were 42 (P rat plantarflexor are responsive to a chronic decrease in the levels of loading and/or activation and suggest that the neuromuscular activity level and the presence of innervation of a muscle are important factors that induce HSP72 expression.

  5. Electromyographic analysis of the vertebral extensor muscles during the Biering-Sorensen Test

    Directory of Open Access Journals (Sweden)

    Ligia Moreira de Santana

    2014-03-01

    Full Text Available The purpose of the study was to analyze the electromyographic signal of the multifidus, longissimus thoracis and the lumbar iliocostalis muscles during the Biering-Sorensen test in subjects without lower back pain. Twenty volunteers performed the test on three separate occasions. An analysis of variance detected a difference between the three test times (p = 0.0026. For the frequency domain, it was observed that there were differences between the multifidus and the lumbar erectors muscles; longissimus and iliocostalis muscles. However, in the time domain analysis, no difference was observed. As the values of the slope coefficients of median frequencies were higher for the multifidus muscle, compared to the longissimus and lumbar iliocostalis muscles, this may indicate a higher tendency toward muscle fatigue. Therefore, considering the applied methodology, the study of electromyographic signals in the frequency domain should be considered as an instrument to assess fatigue of the spinal extensor muscles in clinical situations.

  6. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P;

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...... of either rhTNF-alpha (700 ng.m(-2).h(-1)) or 20% human albumin (Control) which was the vehicle of rhTNF-alpha. Systemic and skeletal muscle protein turnover were estimated by a combination of tracer dilution methodology (primed continuous infusion of L-[ring-(2)H5]phenylalanine and L-[(15)N...

  7. Physiological effects beyond the significant gain in muscle mass in sarcopenic elderly men: evidence from a randomized clinical trial using a protein-rich food

    Directory of Open Access Journals (Sweden)

    Alemán-Mateo H

    2012-07-01

    Full Text Available Heliodoro Alemán-Mateo,1 Liliana Macías,1 Julián Esparza-Romero,1 Humberto Astiazaran-García,1 Ana Luz Blancas21Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, AC, Hermosillo, Sonora, México; 2Dirección General de Servicios de Salud a la Persona, Hermosillo, Sonora, MéxicoBackground: Sarcopenia is strongly associated with an inadequate intake of dietary protein. Dietary protein supplementation boosts muscle-protein synthesis and increases muscle mass in the elderly. This study tested whether adding a protein-rich food, ricotta cheese, to the habitual diet increased total appendicular skeletal muscle mass and strength in elderly people.Methods: Participants (n = 40, were sarcopenic elderly men and women over 60 years of age. Two comparison groups were formed at random and followed for 3 months: the intervention group received 210 g/day of ricotta cheese plus the habitual diet, while the control group followed the habitual diet with no additional intervention. Total appendicular skeletal muscle (TASM was assessed by dual-energy X-ray absorptiometry, while strength was measured using a handheld dynamometer at baseline and after the intervention period. The primary outcomes were the percentage of relative change in TASM and strength.Results: The percentage of relative change in TASM was not significant between the groups after the intervention period. Muscle strength improved in the intervention group, but showed only a tendency towards significance (P = 0.06. Secondary analysis showed that the men in the intervention group gained 270 g in TASM compared to those in the control group, and improved their fasting insulin levels (P = 0.05, muscle strength, lean body mass in the arms, and body weight variables.Conclusion: The results of this study indicate that a nutritional intervention using a high-quality protein food, specifically ricotta cheese, in order to increase the amount of protein intake might not

  8. THE ROLE OF POST-EXERCISE NUTRIENT ADMINISTRATION ON MUSCLE PROTEIN SYNTHESIS AND GLYCOGEN SYNTHESIS

    Directory of Open Access Journals (Sweden)

    Chris Poole

    2010-09-01

    Full Text Available Nutrient administration following an exercise bout vastly affects anabolic processes within the human body, irrespective of exercise mode. Of particular importance are protein and carbohydrates whereby these two macronutrients portray distinct functions as anabolic agents. It has been confirmed that protein and/or amino acid ingestion following resistance training is required to reach a positive protein/nitrogen balance, and carbohydrate intake during recovery is the most important consideration to replenish glycogen stores from an exhaustive exercise bout. Several factors play significant roles in determining the effectiveness of protein and carbohydrate supplementation on post-exercise protein and glycogen synthesis. Improper application of these factors can limit the body's ability to reach an anabolic status. The provided evidence clearly denotes the importance these two macronutrients have in regards to post-exercise nutrition and anabolism. Therefore, the purpose of this review is to discuss the impact of dietary protein and carbohydrate intake during the recovery state on muscle protein synthesis and glycogen synthesis

  9. Mutational analysis of the coding regions of the genes encoding protein kinase B-alpha and -beta, phosphoinositide-dependent protein kinase-1, phosphatase targeting to glycogen, protein phosphatase inhibitor-1, and glycogenin

    DEFF Research Database (Denmark)

    Hansen, L; Fjordvang, H; Rasmussen, S K

    1999-01-01

    be caused by genetic variability in the genes encoding proteins shown by biochemical evidence to be involved in insulin-stimulated glycogen synthesis in skeletal muscle. In 70 insulin-resistant Danish NIDDM patients, mutational analysis by reverse transcription-polymerase chain reaction-single strand...... conformation polymorphism-heteroduplex analysis was performed on genomic DNA or skeletal muscle-derived cDNAs encoding glycogenin, protein phosphatase inhibitor-1, phophatase targeting to glycogen, protein kinase B-alpha and -beta, and the phosphoinositide-dependent protein kinase-1. Although a number...

  10. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  11. Transcriptome analysis of cattle muscle identifies potential markers for skeletal muscle growth rate and major cell types.

    Science.gov (United States)

    Guo, Bing; Greenwood, Paul L; Cafe, Linda M; Zhou, Guanghong; Zhang, Wangang; Dalrymple, Brian P

    2015-03-13

    This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types. The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for "cell cycle" and "ECM (extracellular matrix) organization" Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the "cell cycle" and "ECM" signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified. Gene sets and gene markers for the analysis of

  12. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Wojtaszewski, Jørgen; Richter, Erik

    2009-01-01

    . These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype.......In skeletal muscle, the contraction-activated heterotrimeric 5'-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved...

  13. Development-related expression patterns of protein-coding and miRNA genes involved in porcine muscle growth.

    Science.gov (United States)

    Wang, F J; Jin, L; Guo, Y Q; Liu, R; He, M N; Li, M Z; Li, X W

    2014-11-27

    Muscle growth and development is associated with remarkable changes in protein-coding and microRNA (miRNA) gene expression. To determine the expression patterns of genes and miRNAs related to muscle growth and development, we measured the expression levels of 25 protein-coding and 16 miRNA genes in skeletal and cardiac muscles throughout 5 developmental stages by quantitative reverse transcription-polymerase chain reaction. The Short Time-Series Expression Miner (STEM) software clustering results showed that growth-related genes were downregulated at all developmental stages in both the psoas major and longissimus dorsi muscles, indicating their involvement in early developmental stages. Furthermore, genes related to muscle atrophy, such as forkhead box 1 and muscle ring finger, showed unregulated expression with increasing age, suggesting a decrease in protein synthesis during the later stages of skeletal muscle development. We found that development of the cardiac muscle was a complex process in which growth-related genes were highly expressed during embryonic development, but they did not show uniform postnatal expression patterns. Moreover, the expression level of miR-499, which enhances the expression of the β-myosin heavy chain, was significantly different in the psoas major and longissimus dorsi muscles, suggesting the involvement of miR-499 in the determination of skeletal muscle fiber types. We also performed correlation analyses of messenger RNA and miRNA expression. We found negative relationships between miR-486 and forkhead box 1, and miR-133a and serum response factor at all developmental stages, suggesting that forkhead box 1 and serum response factor are potential targets of miR-486 and miR-133a, respectively.

  14. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode.

    Science.gov (United States)

    Farup, J; Rahbek, S K; Vendelbo, M H; Matzon, A; Hindhede, J; Bejder, A; Ringgard, S; Vissing, K

    2014-10-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohydrate group (PLA). Subjects completed 12 weeks maximal knee extensor training with one leg using eccentric contractions and the other using concentric contractions. Before and after training cross-sectional area (CSA) of m. quadriceps and patellar tendon CSA was quantified with magnetic resonance imaging and a isometric strength test was used to assess maximal voluntary contraction (MVC) and rate of force development (RFD). Quadriceps CSA increased by 7.3 ± 1.0% (P contraction mode. MVC and RFD increased by 15.6 ± 3.5% (P contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training - irrespective of contraction mode. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. BCAA intake affects protein metabolism in muscle after but not during exercise in humans.

    Science.gov (United States)

    Blomstrand, E; Saltin, B

    2001-08-01

    Branched-chain amino acids (BCAA) or a placebo was given to seven subjects during 1 h of ergometer cycle exercise and a 2-h recovery period. Intake of BCAA did not influence the rate of exchange of the aromatic amino acids, tyrosine and phenylalanine, in the legs during exercise or the increase in their concentration in muscle. The increase was approximately 30% in both conditions. On the other hand, in the recovery period after exercise, a faster decrease in the muscle concentration of aromatic amino acids was found in the BCAA experiment (46% compared with 25% in the placebo condition). There was also a tendency to a smaller release (an average of 32%) of these amino acids from the legs during the 2-h recovery. The results suggest that BCAA have a protein-sparing effect during the recovery after exercise, either that protein synthesis has been stimulated and/or protein degradation has decreased, but the data during exercise are too variable to make any conclusions about the effects during exercise. The effect in the recovery period does not seem to be mediated by insulin.

  16. Effect of MSTN propeptide protein on the growth and development of Altay lamb muscle.

    Science.gov (United States)

    Du, W; Zhang, Y; Yang, J Z; Li, H B; Xia, J; Li, N; Zhang, J S; Yan, X M; Zhou, Z Y

    2016-06-24

    Prokaryotic expression technology was used to express maltose-binding protein binding myostatin (MSTN) propeptide fusion protein. Six disease-free Altay lambs were used in this study. The right leg gastrocnemii were injected with MSTN recombinant propeptide protein. The left leg gastrocnemii (the control group) were injected with the same dose of phosphate based saline. The lambs were fed during four months under the same conditions and then slaughtered. Gastrocnemius samples were hematoxylin-eosin stained and the size of the muscle fibers was measured. A real-time polymerase chain reaction (RT-PCR) showed that single gastrocnemius cells in the experimental group had an average area of 1163.01 µm(2), while it was 845.09 µm(2) in the control group (P group, expression levels of MSTN, Smad3, and p21 were lower than the control group, while Myf5, MyoD, and Myogenin were higher compared to the control group. This indicates that, when expression of the MSTN gene was inhibited, muscle cell differentiation and growth can be promoted by Smad3 up-regulated expression of Myf5, MyoD, and Myogenin.

  17. Protein-protein interaction network analysis of cirrhosis liver disease.

    Science.gov (United States)

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease.

  18. Generation and Analysis of Expressed Sequence Tags (ESTs) from Muscle Full-Length cDNA Library of Wujin Pig

    Institute of Scientific and Technical Information of China (English)

    ZHAO Su-mei; LIU Yong-gang; PAN Hong-bing; ZHANG Xi; GE Chang-rong; JIA Jun-jing; GAO Shi-zheng

    2014-01-01

    Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle tissues. In addition, novel genes for further research could be identiifed in the library. In this study, we constructed a full-length cDNA library from porcine muscle tissue. The estimated average size of the cDNA inserts was 1076 bp, and the cDNA fullness ratio was 86.2%. A total of 1058 unique sequences with 342 contigs (32.3%) and 716 singleton (67.7%) expressed sequence tags (EST) were obtained by clustering and assembling. Meanwhile, 826 (78.1%) ESTs were categorized as known genes, and 232 (21.9%) ESTs were categorized as unknown genes. 65 novel porcine genes that exhibit no identity in the TIGR gene index ofSus scrofa and 124 full-length sequences with unknown functions were deposited in the dbEST division of GenBank (accession numbers: EU650784-EU650788, GE843306, GH228978-GH229100). The abundantly expressed genes in porcine muscle tissue were related to muscle ifber development, energy metabolism and protein synthesis. Gene ontology analysis showed that sequences expressed in porcine muscle tissue contained a high percentage of binding activity, catalytic activity, structural molecule activity and motor activity, which involved mainly in metabolic, cellular and developmental process, distributed mainly in intracellular region. The sequence data generated in this study would provide valuable information for identifying porcine genes expressed in muscle tissue and help to advance the study on the structure and function of genes in pigs.

  19. Dietary Magnesium Is Positively Associated With Skeletal Muscle Power and Indices of Muscle Mass and May Attenuate the Association Between Circulating C-Reactive Protein and Muscle Mass in Women.

    Science.gov (United States)

    Welch, Ailsa A; Kelaiditi, Eirini; Jennings, Amy; Steves, Claire J; Spector, Tim D; MacGregor, Alexander

    2016-02-01

    Age-related loss of skeletal muscle mass and strength are risk factors for sarcopenia, osteoporosis, falls, fractures, frailty, and mortality. Dietary magnesium (Mg) could play a role in prevention of age-related loss of skeletal muscle mass, power, and strength directly through physiological mechanisms or indirectly through an impact on chronic low-grade inflammation, itself a risk factor for loss of skeletal muscle mass and strength. In a cross-sectional study of 2570 women aged 18 to 79 years, we examined associations between intakes of Mg, estimated using a food-frequency questionnaire (FFQ), dual-energy X-ray absorptiometry (DXA)-derived measures of muscle mass (fat-free mass as a percentage of body weight [FFM%], fat-free mass index [FFMI, kg/m(2)]), leg explosive power (LEP), and grip strength (n = 949 only). We also examined associations between circulating hs-CRP (C-reactive protein) and muscle mass and LEP, and explored the potential attenuation of these relationships by Mg. We compared our findings with those of age and protein intake. Endpoints were calculated by quintile of Mg and adjusted for relevant confounders. Significant positive associations were found between a higher Mg and indices of skeletal muscle mass and LEP, and also with hs-CRP, after adjustment for covariates. Contrasting extreme quintiles of Mg intake showed differences of 2.6% for FFM% (p trend protein, these positive associations were 7 times greater for FFM% and 2.5 times greater for LEP. We also found that higher hs-CRP was negatively associated with skeletal muscle mass and, in statistical modeling, that a higher dietary Mg attenuated this negative relationship by 6.5%, with greater attenuation in women older than 50 years. No association was found between Mg and grip strength. Our results suggest that dietary magnesium may aid conservation of age-related loss of skeletal muscle mass and power in women of all ages.

  20. Signaling and regulation of G protein-coupled receptors in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Penn Raymond B

    2003-03-01

    Full Text Available Abstract Signaling through G protein-coupled receptors (GPCRs mediates numerous airway smooth muscle (ASM functions including contraction, growth, and "synthetic" functions that orchestrate airway inflammation and promote remodeling of airway architecture. In this review we provide a comprehensive overview of the GPCRs that have been identified in ASM cells, and discuss the extent to which signaling via these GPCRs has been characterized and linked to distinct ASM functions. In addition, we examine the role of GPCR signaling and its regulation in asthma and asthma treatment, and suggest an integrative model whereby an imbalance of GPCR-derived signals in ASM cells contributes to the asthmatic state.

  1. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Science.gov (United States)

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (Ppigs had generally higher (Ppigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (Ppigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K), and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (Ppig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (Ppigs, but repressed (Ppigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in Landrace pigs. These findings indicated that the dynamic consequences of AA profile and protein deposition in muscle tissues are the concerted effort of distinctive genotype, nutrient status, age, and

  2. Thioredoxin interacting protein mediates lipid-induced impairment of glucose uptake in skeletal muscle.

    Science.gov (United States)

    Mandala, Ashok; Das, Nabanita; Bhattacharjee, Sudarshan; Mukherjee, Bidisha; Mukhopadhyay, Satinath; Roy, Sib Sankar

    2016-10-28

    Insulin resistance (IR) is an important determinant of type-2 diabetes mellitus (T2DM). Free fatty acids (FFAs) induce IR by various mechanisms. A surfeit of circulating FFA leads to intra-myocellular lipid accumulation that induces mitochondrial ROS generation and worsens IR. However, the molecular mechanisms behind are unclear. We identified thioredoxin interacting protein (TxNIP), which is overexpressed in T2DM, to be a promoter of ROS-induced IR. We observed upregulation of TxNIP upon palmitate treatment in skeletal muscle cells that led to ROS generation and Glut-4 downregulation resulting in impaired glucose-uptake. FFA-induced overexpression of TxNIP gene was mediated through the activation of its bona-fide trans activator, ChREBP. Further, Palmitate-induced impairment in AMPK-SIRT-1 pathway resulted in overexpression of ChREBP. While Fenofibrate, abrogated PA-induced TxNIP expression and ROS generation in skeletal muscle cells, Saroglitazar, a dual PPARα/γ-agonist, not only inhibited PA-induced TXNIP expression but also led to greater improvement in glucose uptake. Taken together, TxNIP appears to be an important factor in FFA-induced ROS generation and IR in skeletal muscle cells, which can be modulated for the management of this complex disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Preclinical deposition of pathological prion protein in muscle of experimentally infected primates.

    Directory of Open Access Journals (Sweden)

    Susanne Krasemann

    Full Text Available Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and animals. A central step in disease progression is the accumulation of a misfolded form (PrP(Sc of the host encoded prion protein (PrP(C in neuronal and non-neuronal tissues. The involvement of peripheral tissues in preclinical states increases the risk of accidental transmission. On the other hand, detection of PrP(Sc in non-neuronal easy-accessible compartments such as muscle may offer a novel diagnostic tool. Primate models have proven invaluable to investigate prion diseases. We have studied the deposition of PrP(Sc in muscle and central nervous system of rhesus monkeys challenged with sporadic Creutzfeldt-Jakob disease (sCJD, variant CJD (vCJD and bovine spongiform encephalopathy (BSE in preclinical and clinical stage using biochemical and morphological methods. Here, we show the preclinical presence of PrP(Sc in muscle and central nervous system of rhesus monkeys experimentally infected with vCJD.

  4. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    Science.gov (United States)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  5. Effect of weight loss on the rate of muscle protein synthesis during fasted and fed conditions in obese older adults.

    Science.gov (United States)

    Villareal, Dennis T; Smith, Gordon I; Shah, Krupa; Mittendorfer, Bettina

    2012-09-01

    Although weight loss ameliorates many of the metabolic abnormalities associated with obesity, there has been reluctance to prescribe weight loss in obese, older individuals because of the fear that it will cause debilitating loss of muscle mass and impair physical function. To gain insight into the mechanisms responsible for the weight loss-induced changes in muscle mass, we measured the rate of muscle protein synthesis (by using stable isotope labeled tracer methodology) during basal, postabsorptive conditions and during mixed meal ingestion in eight obese, older adults: (i) before weight loss therapy, (ii) ~3 months after starting the weight loss intervention (i.e., during the active weight loss phase), when subjects had lost ~7% of their initial body weight, and (iii) after they had lost ~10% of their body weight and maintained this new body weight for ~6 months (~12 months after starting the weight loss intervention). The basal muscle protein fractional synthesis rate (FSR) was not affected by weight loss. Mixed meal ingestion stimulated the rate of muscle protein synthesis, and the anabolic response (i.e., increase in the protein synthesis rate above basal values) was greater (P weight loss at 3 months (0.033 ± 0.012%·per hour, mean ± s.e.m.) than during weight maintenance before and at 12 months of weight loss therapy (0.003 ± 0.003 and 0.008 ± 0.012%·per hour, respectively). We conclude that during dietary calorie restriction and weight loss in older adults, the rate of muscle protein synthesis is not impaired. Thus, the loss of muscle mass must be mediated predominately by adverse effects of dietary calorie restriction on muscle proteolysis.

  6. Protein Kinase N2 Regulates AMP-Kinase Signaling and Insulin Responsiveness of Glucose Metabolism in Skeletal Muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-07-18

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. As skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. While Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5' adenosine monophosphate-activated protein kinase (AMPK) signaling, while stimulating fatty acid oxidation and incorporation into triglycerides, and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC1α and SREBP1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017, American Journal of Physiology-Endocrinology and Metabolism.

  7. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction.

    Science.gov (United States)

    Steiner, Jennifer L; Lang, Charles H

    2014-11-15

    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr(421)/Ser(424) (20-52%), S6K1 Thr(389) (45-57%), and its substrate rpS6 Ser(240/244) (37-72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser(65) was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr(202)/Tyr(204) was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling.

  8. Sequence of the human glycogen-associated regulatory subunit of type 1 protein phosphatase and analysis of its coding region and mRNA level in muscle from patients with NIDDM

    DEFF Research Database (Denmark)

    Chen, Y H; Hansen, L; Chen, Min

    1994-01-01

    of protein phosphatase 1 (PP1 G-subunit) plays a key role in the insulin stimulation of glycogen synthesis and the activity of PP1 is decreased in insulin-resistant subjects, we have now cloned the human G-subunit cDNA to search for abnormalities in the corresponding gene (designated PPP1R3 in the human...

  9. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian;

    2005-01-01

    Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, gamma1, gamma2a, gamma2b and gamma3) AMPK isoforms were independent of T2DM, whereas the protein...

  10. Responsiveness of muscle protein synthesis to growth hormone administration in HIV-infected individuals declines with severity of disease.

    OpenAIRE

    McNurlan, M A; Garlick, P J; Steigbigel, R T; DeCristofaro, K A; Frost, R A; Lang, C H; Johnson, R. W.; Santasier, A M; Cabahug, C J; Fuhrer, J; Gelato, M C

    1997-01-01

    This study was undertaken to determine if human recombinant growth hormone (hrGH, 6 mg/d for 2 wk) would stimulate muscle protein synthesis in AIDS wasting. Healthy controls were compared with patients who were HIV+, had AIDS without weight loss, and had AIDS with > 10% weight loss. Before hrGH, rates of skeletal muscle protein synthesis, measured with l-[2H5]phenylalanine, were the same in controls and in all stages of disease. Rates of myofibrillar protein degradation, however, assessed fro...

  11. Regulatory mechanism on enhancing protein synthesis in skeletal muscles of cold exposed fresh water fish (Channa punctata)

    National Research Council Canada - National Science Library

    Md. Shahidul Haque; Md. Asraful Haque; Swapan Kumar Roy; M.M.H. Khan; Md. Mosharrof Hossain

    2014-01-01

    .... They were exposed to cold (4–8 °C) for 30 min, 1 h, 2 h and 4 h and the total protein contents in the liver were not significantly changed up to 4 h of cold exposure while a significantly increased protein level in the skeletal muscle...

  12. Contents of nucleic and amino acids and rate of protein synthesis in developing flight muscles of Locusta migratoria

    NARCIS (Netherlands)

    Marrewijk, W.J.A. van; Schrikker, A.E.M.; Beenakkers, A.M.Th.

    1980-01-01

    1. 1. Changes in the contents of DNA, RNA, free amino acids (FAA) and protein as well as in the rate of protein synthesis in vivo were measured in the developing flight muscles of Locustamigratoria. 2. 2. The DNA concentration rises temporarily at the end of the last larval instar, possibly in rela

  13. Partitioning of Organic Ions to Muscle Protein: Experimental Data, Modeling, and Implications for in Vivo Distribution of Organic Ions.

    Science.gov (United States)

    Henneberger, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2016-07-05

    The in vivo partitioning behavior of ionogenic organic chemicals (IOCs) is of paramount importance for their toxicokinetics and bioaccumulation. Among other proteins, structural proteins including muscle proteins could be an important sorption phase for IOCs, because of their high quantity in the human and other animals' body and their polar nature. Binding data for IOCs to structural proteins are, however, severely limited. Therefore, in this study muscle protein-water partition coefficients (KMP/w) of 51 systematically selected organic anions and cations were determined experimentally. A comparison of the measured KMP/w with bovine serum albumin (BSA)-water partition coefficients showed that anionic chemicals sorb more strongly to BSA than to muscle protein (by up to 3.5 orders of magnitude), while cations sorb similarly to both proteins. Sorption isotherms of selected IOCs to muscle protein are linear (i.e., KMP/w is concentration independent), and KMP/w is only marginally influenced by pH value and salt concentration. Using the obtained data set of KMP/w a polyparameter linear free energy relationship (PP-LFER) model was established. The derived equation fits the data well (R(2) = 0.89, RMSE = 0.29). Finally, it was demonstrated that the in vitro measured KMP/w values of this study have the potential to be used to evaluate tissue-plasma partitioning of IOCs in vivo.

  14. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.

    Science.gov (United States)

    Murton, A J; Greenhaff, P L

    2013-10-01

    Increasing muscle mass is important when attempting to maximize sports performance and achieve physique augmentation. However, the preservation of muscle mass is essential to maintaining mobility and quality of life with aging, and also impacts on our capacity to recover from illness. Nevertheless, our understanding of the processes that regulate muscle mass in humans during resistance exercise training, chronic disuse and rehabilitation training following atrophy remains very unclear. Here, we report on some of the recent developments in the study of those processes thought to be responsible for governing human muscle protein turnover in response to intense physical activity. Specifically, the effects of acute and chronic resistance exercise in healthy volunteers and also in response to rehabilitation resistance exercise training following muscle atrophy will be discussed, with discrepancies and gaps in our understanding highlighted. In particular, ubiquitin-proteasome mediated muscle proteolysis (Muscle Atrophy F-box/Atrogin-1 and Muscle RING Finger 1), translation initiation of muscle protein synthesis (mammalian target of rapamycin signaling), and satellite cell mediated myogenesis are highlighted as pathways of special relevance to muscle protein metabolism in response to acute resistance exercise. Furthermore, research focused on quantifying signaling and molecular events that modulate muscle protein synthesis and protein degradation under conditions of chronic resistance training is highlighted as being urgently needed to improve knowledge gaps. These studies need to include multiple time-point measurements over the course of any training intervention and must include dynamic measurements of muscle protein synthesis and degradation and sensitive measures of muscle mass. This article is part of a Directed Issue entitled Molecular basis of muscle wasting.

  15. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  16. Leucine supplementation of a chronically restricted protein and energy diet enhances mTOR pathway activation but not muscle protein synthesis in neonatal pigs.

    Science.gov (United States)

    Manjarín, Rodrigo; Columbus, Daniel A; Suryawan, Agus; Nguyen, Hanh V; Hernandez-García, Adriana D; Hoang, Nguyet-Minh; Fiorotto, Marta L; Davis, Teresa

    2016-01-01

    Suboptimal nutrient intake represents a limiting factor for growth and long-term survival of low-birth weight infants. The objective of this study was to determine if in neonates who can consume only 70 % of their protein and energy requirements for 8 days, enteral leucine supplementation will upregulate the mammalian target of rapamycin (mTOR) pathway in skeletal muscle, leading to an increase in protein synthesis and muscle anabolism. Nineteen 4-day-old piglets were fed by gastric tube 1 of 3 diets, containing (kg body weight(-1) · day(-1)) 16 g protein and 190 kcal (CON), 10.9 g protein and 132 kcal (R), or 10.8 g protein + 0.2 % leucine and 136 kcal (RL) at 4-h intervals for 8 days. On day 8, plasma AA and insulin levels were measured during 6 post-feeding intervals, and muscle protein synthesis rate and mTOR signaling proteins were determined at 120 min post-feeding. At 120 min, leucine was highest in RL (P protein synthesis, phosphorylation of S6 kinase (p-S6K1) and 4E-binding protein (p-4EBP1), and activation of eukaryotic initiation factor 4 complex (eIF4E · eIF4G). RL increased (P ≤ 0.01) p-S6K1, p-4EBP1 and eIF4E · eIF4G compared to R. In conclusion, when protein and energy intakes are restricted for 8 days, leucine supplementation increases muscle mTOR activation, but does not improve body weight gain or enhance skeletal muscle protein synthesis in neonatal pigs.

  17. Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes.

    Science.gov (United States)

    Régent, Alexis; Ly, Kim Heang; Lofek, Sébastien; Clary, Guilhem; Tamby, Mathieu; Tamas, Nicolas; Federici, Christian; Broussard, Cédric; Chafey, Philippe; Liaudet-Coopman, Emmanuelle; Humbert, Marc; Perros, Frédéric; Mouthon, Luc

    2016-10-01

    Vascular smooth muscle cells (VSMCs) are highly specialized cells that regulate vascular tone and participate in vessel remodeling in physiological and pathological conditions. It is unclear why certain vascular pathologies involve one type of vessel and spare others. Our objective was to compare the proteomes of normal human VSMC from aorta (human aortic smooth muscle cells, HAoSMC), umbilical artery (human umbilical artery smooth muscle cells, HUASMC), pulmonary artery (HPASMC), or pulmonary artery VSMC from patients with pulmonary arterial hypertension (PAH-SMC). Proteomes of VSMC were compared by 2D DIGE and MS. Only 19 proteins were differentially expressed between HAoSMC and HPASMC while 132 and 124 were differentially expressed between HUASMC and HAoSMC or HPASMC, respectively (fold change 1.5≤ or -1.5≥, p < 0.05). As much as 336 proteins were differentially expressed between HPASMC and PAH-SMC (fold change 1.5≤ or -1.5≥, p < 0.05). HUASMC expressed increased amount of α-smooth muscle actin compared to either HPASMC or HAoSMC (although not statistically significant). In addition, PAH-SMC expressed decreased amount of smooth muscle myosin heavy chain and proliferation rate was increased compared to HPASMC thus supporting that PAH-SMC have a more synthetic phenotype. Analysis with Ingenuity identified paxillin and (embryonic lethal, abnormal vision, drosophila) like 1 (ELAVL1) as molecules linked with a lot of proteins differentially expressed between HPASMC and PAH-SMC. There was a trend toward reduced proliferation of PAH-SMC with paxillin-si-RNA and increased proliferation with ELAVL1-siRNA. Thus, VSMCs have very diverse protein content depending on their origin and this is in link with phenotypic differentiation. Paxillin targeting may be a promising treatment of PAH. ELAVL1 also participate in the regulation of PAH-SMC proliferation.

  18. Analysis of correlations between protein complex and protein-protein interaction and mRNA expression

    Institute of Scientific and Technical Information of China (English)

    CAI Lun; XUE Hong; LU Hongchao; ZHAO Yi; ZHU Xiaopeng; BU Dongbo; LING Lunjiang; CHEN Runsheng

    2003-01-01

    Protein-protein interaction is a physical interaction of two proteins in living cells. In budding yeast Saccharomyces cerevisiae, large-scale protein-protein interaction data have been obtained through high-throughput yeast two-hybrid systems (Y2H) and protein complex purification techniques based on mass-spectrometry. Here, we collect 11855 interactions between total 2617 proteins. Through seriate genome-wide mRNA expression data, similarity between two genes could be measured. Protein complex data can also be obtained publicly and can be translated to pair relationship that any two proteins can only exist in the same complex or not. Analysis of protein complex data, protein-protein interaction data and mRNA expression data can elucidate correlations between them. The results show that proteins that have interactions or similar expression patterns have a higher possibility to be in the same protein complex than randomized selected proteins, and proteins which have interactions and similar expression patterns are even more possible to exist in the same protein complex. The work indicates that comprehensive integration and analysis of public large-scale bioinformatical data, such as protein complex data, protein-protein interaction data and mRNA expression data, may help to uncover their relationships and common biological information underlying these data. The strategies described here may help to integrate and analyze other functional genomic and proteomic data, such as gene expression profiling, protein-localization mapping and large-scale phenotypic data, both in yeast and in other organisms.

  19. Isokinetic evaluation of knee muscles in soccer players: discriminant analysis

    Directory of Open Access Journals (Sweden)

    Bruno Fles Mazuquin

    2015-10-01

    Full Text Available ABSTRACTIntroduction:Muscle activity in soccer players can be measured by isokinetic dynamometer, which is a reliable tool for assessing human performance.Objectives:To perform isokinetic analyses and to determine which variables differentiate the under-17 (U17 soccer category from the professional (PRO.Methods:Thirty four players were assessed (n=17 for each category. The isokinetic variables used for the knee extension-flexion analysis were: peak torque (Nm, total work (J, average power (W, angle of peak torque (deg., agonist/ antagonist ratio (%, measured for three velocities (60°/s, 120°/s and 300°/s, with each series containing five repetitions. Three Wilks' Lambda discriminant analyses were performed, to identify which variables were more significant for the definition of each of the categories.Results:The discriminative variables at 60°/s in the PRO category were: extension peak torque, flexion total work, extension average power and agonist/antagonist ratio; and for the U17s were: extension total work, flexion peak torque and flexion average power. At 120°/s for the PRO category the discriminant variables were: flexion peak torque and extension average power; for the U17s they were: extension total work and flexion average power. Finally at 300°/s, the variables found in the PRO and U17 categories respectively were: extension average power and extension total work.Conclusion:Isokinetic variables for flexion and extension knee muscles were able to significantly discriminate between PRO and U17 soccer players.

  20. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after......-legged knee extensor exercise performed before and after bed rest. Results: Maximal oxygen uptake decreased 5% and exercise endurance decreased non-significantly 25% by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ~45%, 3...... bed rest. Research Design and Methods: Twelve young, healthy, male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from 6 of the subjects prior to, immediately after and 3h after 45 min one...

  1. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats

    Directory of Open Access Journals (Sweden)

    Norton Layne E

    2012-07-01

    Full Text Available Abstract Background Leucine (Leu regulates muscle protein synthesis (MPS producing dose-dependent plasma Leu and MPS responses from free amino acid solutions. This study examined the role of Leu content from dietary proteins in regulation of MPS after complete meals. Methods Experiment 1 examined 4 protein sources (wheat, soy, egg, and whey with different Leu concentrations (6.8, 8.0, 8.8, and 10.9% (w/w, respectively on the potential to increase plasma Leu, activate translation factors, and stimulate MPS. Male rats (~250 g were trained for 14 day to eat 3 meals/day consisting of 16/54/30% of energy from protein, carbohydrates and fats. Rats were killed on d14 either before or 90 min after consuming a 4 g breakfast meal. Experiment 2 compared feeding wheat, whey, and wheat + Leu to determine if supplementing the Leu content of the wheat meal would yield similar anabolic responses as whey. Results In Experiment 1, only whey and egg groups increased post-prandial plasma Leu and stimulated MPS above food-deprived controls. Likewise, greater phosphorylation of p70 S6 kinase 1 (S6K1 and 4E binding protein-1 (4E-BP1 occurred in whey and egg groups versus wheat and soy groups. Experiment 2 demonstrated that supplementing wheat with Leu to equalize the Leu content of the meal also equalized the rates of MPS. Conclusion These findings demonstrate that Leu content is a critical factor for evaluating the quantity and quality of proteins necessary at a meal for stimulation of MPS.

  2. Enhancement of the gelation properties of hairtail (Trichiurus haumela) muscle protein with curdlan and transglutaminase.

    Science.gov (United States)

    Hu, Yaqin; Liu, Wenjuan; Yuan, Chunhong; Morioka, Katsuji; Chen, Shiguo; Liu, Donghong; Ye, Xingqian

    2015-06-01

    The effects of curdlan in combination with microbial transglutaminase on the gelling properties of hairtail muscle protein were investigated. When curdlan of 4g/100g paste was combined with transglutaminase at a concentration of 0.4units/g meat paste, the gel strength, water holding capacity and the whiteness of the heated gel were improved. Textural profiles, such as hardness, springiness, cohesiveness, guminess and chewiness, reached their peaks as well. The increased band intensity of cross-linked proteins, accompanied by weakened myosin heavy chain, was observed from the SDS-PAGE pattern, indicating that curdlan might activate the formation of more ε-(γ-glutamyl) lysine cross-links induced by transglutaminase, especially at the level of 0.4units/g paste, leading to a denser gel matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Inhibition of Rho protein stimulates iNOS expression in rat vascular smooth muscle cells.

    Science.gov (United States)

    Muniyappa, R; Xu, R; Ram, J L; Sowers, J R

    2000-06-01

    Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.

  4. HMGB1 and RAGE in skeletal muscle inflammation: Implications for protein accumulation in inclusion body myositis.

    Science.gov (United States)

    Muth, Ingrid E; Zschüntzsch, Jana; Kleinschnitz, Konstanze; Wrede, Arne; Gerhardt, Ellen; Balcarek, Peter; Schreiber-Katz, Olivia; Zierz, Stephan; Dalakas, Marinos C; Voll, Reinhard E; Schmidt, Jens

    2015-09-01

    Inflammation is associated with protein accumulation in IBM, but precise mechanisms are elusive. The "alarmin" HMGB1 is upregulated in muscle inflammation. Its receptor RAGE is crucial for β-amyloid-associated neurodegeneration. Relevant signaling via HMGB1/RAGE is expected in IBM pathology. By real-time-PCR, mRNA-expression levels of HMGB1 and RAGE were upregulated in muscle biopsies of patients with IBM and PM, but not in muscular dystrophy or non-myopathic controls. By immunohistochemistry, both molecules displayed the highest signal in IBM, where they distinctly co-localized to intra-fiber accumulations of β-amyloid and neurofilament/tau. In these fibers, identification of phosphorylated Erk suggested that relevant downstream activation is present upon HMGB1 signaling via RAGE. Protein expressions of HMGB1, RAGE, Erk and phosphorylated Erk were confirmed by Western blot. In a well established cell-culture model for pro-inflammatory cell-stress, exposure of human muscle-cells to IL-1β+IFN-γ induced cytoplasmic translocation of HMGB1 and subsequent release as evidenced by ELISA. Upregulation of RAGE on the cell surface was demonstrated by immunocytochemistry and flow-cytometry. Recombinant HMGB1 was equally potent as IL-1β+IFN-γ in causing amyloid-accumulation and cell-death, and both were abrogated by the HMGB1-blocker BoxA. The findings strengthen the concept of unique interactions between degenerative and inflammatory mechanisms and suggest that HMGB1/RAGE signaling is a critical pathway in IBM pathology.

  5. Training cessation does not alter GLUT-4 protein levels in human skeletal muscle.

    Science.gov (United States)

    Houmard, J A; Hortobágyi, T; Neufer, P D; Johns, R A; Fraser, D D; Israel, R G; Dohm, G L

    1993-02-01

    The purpose of this study was to determine whether short-term training cessation resulted in reduced GLUT-4 protein levels. Endurance- (n = 12, ET) and strength-trained (n = 12) individuals (ST) were examined before and after 14 days of training withdrawal. GLUT-4 content was determined from muscle biopsy samples of the gastrocnemius in ET and the vastus lateralis in ST. Insulin sensitivity (oral glucose tolerance test) was significantly (P 0.05) in both groups (92 and 100% of trained values for ET and ST, respectively). In ET, citrate synthase activity decreased significantly (P < 0.05) with training withdrawal (41.0 +/- 3.6 vs. 30.6 +/- 2.8 mumol.g-1.min-1); in ST no change was evident. The decrement in insulin sensitivity with the cessation of endurance- or resistance-oriented activity is therefore not associated with a reduction in GLUT-4 protein content. Muscle oxidative capacity and GLUT-4 content do not coincide with the removal of endurance training.

  6. Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals

    DEFF Research Database (Denmark)

    Dideriksen, K J; Reitelseder, S; Petersen, S G;

    2011-01-01

    before exercise (CasPre), caseinate intake immediately after exercise (CasPost), whey intake immediately after exercise (Whey), or intake of a non-caloric control drink (Control). Muscle myofibrillar and collagen fractional synthesis rates (FSR) were measured by a primed continuous infusion of L-[1...... protein synthesis (MPS) to intakes of whey and caseinate after heavy resistance exercise in healthy elderly individuals, and, furthermore, to compare the timing effect of caseinate intake. Twenty-four elderly men and women (mean ± SEM; 68 ± 1 years) were randomized to one of four groups: caseinate intake......-(13) C]leucine using labeled proteins during a 6-h recovery period. No differences were observed in muscle myofibrillar and collagen FSR with Whey (0.09 ± 0.01%/h) compared with CasPost (0.09 ± 0.003%/h), and it did not differ between CasPre (0.10 ± 0.01%/h) and CasPost. MPS does not differ with whey...

  7. Validity of 3-methylhistidine excretion as an indicator of skeletal muscle protein breakdown in humans.

    Science.gov (United States)

    Long, C L; Dillard, D R; Bodzin, J H; Geiger, J W; Blakemore, W S

    1988-09-01

    The urinary excretion of 3-methylhistidine (3MEH) in humans and animals has been used as a biologic marker for skeletal muscle protein breakdown. In rats, it has been recently suggested that there is a significant contribution of 3MEH in urine from the gastrointestinal tract due to the rapid turnover of protein in that tissue. To evaluate this point in humans, six patients with short bowel were evaluated. They were placed on three-day meat-free diets while 24-hour urine collections were obtained. The mean +/- SEM 3MEH in the short-bowel group was 3.27 +/- 0.34 mumol/kg/d and the mean +/- SEM molar ratio of 3MEH to creatinine was 0.0212 +/- 0.0012. These data were not significantly different from the control group at 95% confidence level. The results suggest that the contribution of the small intestine appears to be negligible, therefore urinary 3MEH should continue to be a valid index of skeletal muscle breakdown in man.

  8. Stimulation of muscle protein synthesis by whey and caseinate ingestion after resistance exercise in elderly individuals

    DEFF Research Database (Denmark)

    Dideriksen, Kasper; Reitelseder, Søren; Petersen, S.G.

    2011-01-01

    protein synthesis (MPS) to intakes of whey and caseinate after heavy resistance exercise in healthy elderly individuals, and, furthermore, to compare the timing effect of caseinate intake. Twenty-four elderly men and women (mean ± SEM; 68 ± 1 years) were randomized to one of four groups: caseinate intake...... before exercise (CasPre), caseinate intake immediately after exercise (CasPost), whey intake immediately after exercise (Whey), or intake of a non-caloric control drink (Control). Muscle myofibrillar and collagen fractional synthesis rates (FSR) were measured by a primed continuous infusion of L-[1......-(13) C]leucine using labeled proteins during a 6-h recovery period. No differences were observed in muscle myofibrillar and collagen FSR with Whey (0.09 ± 0.01%/h) compared with CasPost (0.09 ± 0.003%/h), and it did not differ between CasPre (0.10 ± 0.01%/h) and CasPost. MPS does not differ with whey...

  9. Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    Full Text Available Since the majority of protein-coding genes in vertebrates have intra-genomic homologues, it has been difficult to eliminate the potential of functional redundancy from analyses of mutant phenotypes, whether produced by genetic lesion or transient knockdown. Further complicating these analyses, not all gene products have activities that can be assayed in vitro, where the efficiency of the various family members can be compared against constant substrates. Two vertebrate UNC-45 homologues, unc45a and unc45b, affect distinct stages of muscle differentiation when knocked down in cell culture and are functionally redundant in vitro. UNC-45 proteins are members of the UCS (UNC-45/CRO1/She4p protein family that has been shown to regulate myosin-dependent functions from fungi to vertebrates through direct interaction with the myosin motor domain. To test whether the same functional relationship exists between these unc45 paralogs in vivo, we examined the developmental phenotypes of doubly homozygous unc45b(-/-; unc45a(-/- mutant zebrafish embryos. We focused specifically on the combined effects on morphology and gene expression resulting from the zygotic lack of both paralogs. We found that unc45b(-/- and unc45b(-/-; unc45a(-/- embryos were phenotypically indistinguishable with both mutants displaying identical cardiac, skeletal muscle, and jaw defects. We also found no evidence to support a role for zygotic Unc45a function in myoblast differentiation. In contrast to previous in vitro work, this rules out a model of functional redundancy between Unc45a and Unc45b in vivo. Instead, our phylogenetic and phenotypic analyses provide evidence for the role of functional divergence in the evolution of the UCS protein family.

  10. Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle.

    Science.gov (United States)

    Murphy, Robyn M; Xu, Hongyang; Latchman, Heidy; Larkins, Noni T; Gooley, Paul R; Stapleton, David I

    2012-12-01

    To understand how glycogen affects skeletal muscle physiology, we examined enzymes essential for muscle glycogen synthesis and degradation using single fibers from quiescent and stimulated rat skeletal muscle. Presenting a shift in paradigm, we show these proteins are differentially associated with glycogen granules. Protein diffusibility and/or abundance of glycogenin, glycogen branching enzyme (GBE), debranching enzyme (GDE), phosphorylase (GP), and synthase (GS) were examined in fibers isolated from rat fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscle. GDE and GP proteins were more abundant (~10- to 100-fold) in fibers from EDL compared with SOL muscle. GS and glycogenin proteins were similar between muscles while GBE had an approximately fourfold greater abundance in SOL muscle. Mechanically skinned fibers exposed to physiological buffer for 10 min showed ~70% total pools of GBE and GP were diffusible (nonbound), whereas GDE and GS were considerably less diffusible. Intense in vitro stimulation, sufficient to elicit a ~50% decrease in intracellular glycogen, increased diffusibility of GDE, GP, and GS (~15-60%) and decreased GBE diffusibility (~20%). Amylase treatment, which breaks α-1,4 linkages of glycogen, indicated differential diffusibilities and hence glycogen associations of GDE and GS. Membrane solubilization (1% Triton-X-100) allowed a small additional amount of GDE and GS to diffuse from fibers, suggesting the majority of nonglycogen-associated GDE/GS is associated with myofibrillar/contractile network of muscle rather than membranes. Given differences in enzymes required for glycogen metabolism, the current findings suggest glycogen particles have fiber-type-dependent structures. The greater catabolic potential of glycogen breakdown in fast-twitch fibers may account for different contraction induced rates of glycogen utilization.