WorldWideScience

Sample records for muscle nociceptive substances

  1. Preferential distribution of nociceptive input to motoneurons with muscle units in the cranial portion of the upper trapezius muscle.

    Science.gov (United States)

    Dideriksen, Jakob L; Holobar, Ales; Falla, Deborah

    2016-08-01

    Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. Copyright © 2016 the American Physiological Society.

  2. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture

    OpenAIRE

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Sun, Yuan; Wei, Tzuping; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glia activation and central sensitization. At 4 weeks after tibia fracture and casting ...

  3. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    Science.gov (United States)

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  4. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats.

    Directory of Open Access Journals (Sweden)

    Nicholas S Gregory

    Full Text Available Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X and acid sensing ion channels (ASICs on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive or more than the sum of individual effects (synergistic is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm, lactate (10mM, and acidic pH (pH 6.0 produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol, on the other hand, showed no enhanced effects when combined with lactate (10mM or acidic pH (pH 6.0, i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.

  5. Responses of algesic and metabolic substances to 8h of repetitive manual work in myalgic human trapezius muscle

    DEFF Research Database (Denmark)

    Larsson, B.; Rosendal, L.; Kristiansen, J.

    2008-01-01

    The trapezius muscle often develops pain as the result of repetitive and stressful work tasks although it is unclear to what extent this pain is due to alterations in muscle concentrations of algesic/nociceptive substances. Twenty women with chronic neck- and shoulder pain (TM) whose work required...... highly repetitive work tasks and 20 pain-free female colleagues (CON) were studied during and after a full 8-hour workday. We collected microdialysates from their dominant/most painful trapezius muscle; concentrations of serotonin, glutamate, lactate, pyruvate, potassium, bradykinin, and cytokines...... muscles. TM had higher concentrations of glutamate (71+/-42 vs. 36+/-15mumoll(-1)) and pyruvate (187+/-89 vs. 125+/-63mumoll(-1)) than CON. Interstitial serotonin was higher in TM (before work: 10.6+/-10.8 vs. 2.2+/-1.2nM; after work: 9.2+/-8.3 vs. 1.5+/-2.9nM). The trapezius blood flow during the working...

  6. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances.

    Science.gov (United States)

    Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan

    2013-12-01

    The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.

  7. [THE CHANGES OF NOCICEPTIVE THRESHOLD AND ACTIVITY OF THE ADENYLYL CYCLASE SYSTEM IN THE SKELETAL MUSCLES OF RATS WITH ACUTE AND MILD TYPE 1 DIABETES MELLITUS ].

    Science.gov (United States)

    Shipilov, V N; Trost, A M; Chistyakova, O V; Derkach, K V; Shpakov, A O

    2016-02-01

    Diabetic peripheral neuropathy (DPN) is one of the most common complications of the type 1 diabetes mellitus (DM1). The aim of the work was to study the dynamics of a painful DPN and functional state of the hormone-sensitive ACSS in the skeletal muscles of rats with the models of acute and mild DM1, as well as the study of impact on them of insulin therapy with different ways of hormone delivery - intranasal and peripheral. In both models of DM1, the level of nociceptive threshold in rats decreased and the stimulatory effects of guanine nucleotides (GppNHp) and adrenergic agonists (isoproterenol, BRL-37344) on adenylyl cyclase (AC) activity were attenuated. The AC stimulating effect of relaxin decreased in animals with acute DM1, but in mild DM1, the decrease was insignificant. Peripheral administration of insulin in rats with acute DM1 increased the nociceptive threshold and partially restored the AC effect of ß 3-agonist BRL-37344. Intranasal administration of insulin in rats with DM1 also increased the nociceptive threshold and partially restored the basal and BRL-37344-stimulated AC activity in the skeletal muscles of diabetic animals. Thus, in the skeletal muscles of rats with acute and mild DM1 the nociceptive sensitivity and the functions of ACSS were disturbed, and they were partially restored by the treatment with peripheral (acute DM1) or intranasal (mild DM1) insulin.

  8. [Experimental occlusal interference induces the expression of protein gene products and substance P in masseter muscles of rats].

    Science.gov (United States)

    Cao, Ye; Li, Kai; Fu, Kai-yuan; Xie, Qiu-fei

    2010-02-18

    To investigate the peripheral mechanism by studying the histological changes of masseter muscles using HE stains and substance P (SP) and protein gene product 9.5 (PGP9.5) immunohistochemical stains. Fifteen male Sprague-Dawley were randomly assigned into occlusal interference group (n=12) and control group (n=3). In occlusal interference group, 0.4 mm thick crowns were bonded to the rats' first molar of the maxillary. In the control group, rats were anesthetized and mouths were forced open for about 5 min but restorations were not applied. 1, 5, 10, and 21 d after 0.4 mm occlusal alteration treatment, mechanical pain thresholds of bilateral masseter muscles were quantitatively measured by modified electronic anesthesiometer in control group and occlusal interference group. The rats were euthanized by transcardiac perfusion after deep anesthetization at different time points. The paraffin sections of masseter muscles were made and processed for HE, SP, and PGP9.5 immunohistochemical staining. Decreased head withdrawal threshold to mechanical pressure was detected in masseter muscles on both sides following occlusal interference. Histological stains of masseter muscles presented intact following occlusal interference, and no inflammatory cells were observed in both sides. Intensely stained PGP9.5 was observed at 1 d in occlusal interference groups and maintained until the end of the experiment. SP expression was the most obviously increased at 5 d in both sides and gradually decreased to the level of control. Experimental occlusal interference-induced masticatory muscle pain is associated with peripheral sensitization of nociceptive neurons rather than muscle damage and inflammation.

  9. Pressure pain threshold changes after repeated mechano-nociceptive stimulation of the trapezius muscle: possible influence of previous pain experience

    DEFF Research Database (Denmark)

    Sjölund, Bengt H; Persson, Ann L

    2007-01-01

    or an increase. Normalized data, transformed into mean unidirectional PPT differences, showed statistically highly significant changes after intervention. The relative risk of reacting with lowered PPTs on noxious stimulation was 3.7 times higher for subjects who had not given birth to children than for subjects...... over 1 trapezius muscle (skin anaesthetized) in 27 healthy women before and after the intervention. With a mean stimulation rate of 0.40 Hz and a mean nociceptive stimulation intensity of 1.78 x Threshold, subjects were found to systematically react with a change in PPT, either a decrease...... who had given birth to 1 or several children (Pstimulation of the trapezius muscle in healthy females evokes moderate and temporary...

  10. Jumping in aquatic environment after sciatic nerve compression: nociceptive evaluation and morphological characteristics of the soleus muscle of Wistar rats.

    Science.gov (United States)

    Malanotte, Jéssica Aline; Kakihata, Camila Mayumi Martin; Karvat, Jhenifer; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Bertolini, Gladson Ricardo Flor

    2017-01-01

    To evaluate the effect of jumping in aquatic environment on nociception and in the soleus muscle of trained and not trained Wistar rats, in the treatment of compressive neuropathy of the sciatic nerve. Twenty-five Wistar rats were distributed into five groups: Control, Lesion, Trained + Lesion, Lesion + Exercise, and Trained + Lesion + Exercise. The training was jumping exercise in water environment for 20 days prior to injury, and treatment after the injury. Nociception was evaluated in two occasions, before injury and seven after injury. On the last day of the experiment, the right soleus muscles were collected, processed and analyzed as to morphology and morphometry. In the assessment of nociception in the injury site, the Control Group had higher average than the rest, and the Lesion Group was larger than the Trained + Lesion and Lesion + Exercise Groups. The Control Group showed higher nociceptive threshold in paw, compared to the others. In the morphometric analysis, in relation to Control Group, all the injured groups showed decreased muscle fiber area, and in the Lesion Group was lower than in the Lesion + Exercise Group and Trained + Lesion Group. Considering the diameter of the muscle fiber, the Control Group had a higher average than the Trained + Lesion Group and the Trained + Lesion + Exercise Group; and the Lesion Group showed an average lower than the Trained + Lesion and Lesion + Exercise Groups. Resistance exercise produced increased nociception. When performed prior or after nerve damage, it proved effective in avoiding hypotrophy. The combination of the two protocols led to decrease in diameter and area of the muscle fiber. Avaliar os efeitos do salto em meio aquático, na nocicepção e no músculo sóleo, em ratos Wistar treinados e não treinados, no tratamento de neuropatia compressiva do nervo isquiático. Foram distribuídos em cinco grupos 25 ratos Wistar: Controle, Lesão, Treinado + Lesão, Lesão + Exercício e Treinado + Lesão + Exerc

  11. Occlusal splint versus modified nociceptive trigeminal inhibition splint in bruxism therapy: a randomized, controlled trial using surface electromyography.

    Science.gov (United States)

    Dalewski, B; Chruściel-Nogalska, M; Frączak, B

    2015-12-01

    An occlusal splint and a modified nociceptive trigeminal inhibition splint (AMPS, anterior deprogrammer, Kois deprogrammer, Lucia jig, etc.) are commonly and quite frequently used in the treatment of masticatory muscle disorders, although their sustainable and long-lasting effect on these muscles' function is still not very well known. Results of scant surface electromyography studies in patients with temporomandibular disorders have been contradictory. The aim of this study was to evaluate both devices in bruxism therapy; EMG activity levels during postural activity and maximum voluntary contraction of the superficial temporal and masseter muscles were compared before and after 30 days of treatment. Surface electromyography of the examined muscles was performed in two groups of bruxers (15 patients each). Patients in the first group used occlusal splints, while those in the second used modified nociceptive trigeminal inhibition splints. The trial was randomized, controlled and semi-blind. Neither device affected the asymmetry index or postural activity/maximum voluntary contraction ratio after 1 month of treatment. Neither the occlusal nor the nociceptive trigeminal inhibition splint showed any significant influence on the examined muscles. Different scientific methods should be considered in clinical applications that require either direct influence on the muscles' bioelectrical activity or a quantitative measurement of the treatment quality. © 2015 Australian Dental Association.

  12. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    Science.gov (United States)

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  13. Nociception at the diabetic foot, an uncharted territory

    Science.gov (United States)

    Chantelau, Ernst A

    2015-01-01

    The diabetic foot is characterised by painless foot ulceration and/or arthropathy; it is a typical complication of painless diabetic neuropathy. Neuropathy depletes the foot skin of intraepidermal nerve fibre endings of the afferent A-delta and C-fibres, which are mostly nociceptors and excitable by noxious stimuli only. However, some of them are cold or warm receptors whose functions in diabetic neuropathy have frequently been reported. Hence, it is well established by quantitative sensory testing that thermal detection thresholds at the foot skin increase during the course of painless diabetic neuropathy. Pain perception (nociception), by contrast, has rarely been studied. Recent pilot studies of pinprick pain at plantar digital skinfolds showed that the perception threshold was always above the upper limit of measurement of 512 mN (equivalent to 51.2 g) at the diabetic foot. However, deep pressure pain perception threshold at musculus abductor hallucis was beyond 1400 kPa (equivalent to 14 kg; limit of measurement) only in every fifth case. These discrepancies of pain perception between forefoot and hindfoot, and between skin and muscle, demand further study. Measuring nociception at the feet in diabetes opens promising clinical perspectives. A critical nociception threshold may be quantified (probably corresponding to a critical number of intraepidermal nerve fibre endings), beyond which the individual risk of a diabetic foot rises appreciably. Staging of diabetic neuropathy according to nociception thresholds at the feet is highly desirable as guidance to an individualised injury prevention strategy. PMID:25897350

  14. Impact of behavioral control on the processing of nociceptive stimulation

    Directory of Open Access Journals (Sweden)

    James W Grau

    2012-08-01

    Full Text Available How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation, it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation. These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: Controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit. Uncontrollable stimulation also enhances mechanical reactivity (allodynia. We review evidence that training with controllable stimulation engages a BDNF-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin. A model is proposed that assumes nociceptive input is gated at an early stage, within the dorsal horn. his gate is sensitive to current environmental relations (between proprioceptive and nociceptive input, allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain.

  15. Impact of Behavioral Control on the Processing of Nociceptive Stimulation

    Science.gov (United States)

    Grau, James W.; Huie, J. Russell; Garraway, Sandra M.; Hook, Michelle A.; Crown, Eric D.; Baumbauer, Kyle M.; Lee, Kuan H.; Hoy, Kevin C.; Ferguson, Adam R.

    2012-01-01

    How nociceptive signals are processed within the spinal cord, and whether these signals lead to behavioral signs of neuropathic pain, depends upon their relation to other events and behavior. Our work shows that these relations can have a lasting effect on spinal plasticity, inducing a form of learning that alters the effect of subsequent nociceptive stimuli. The capacity of lower spinal systems to adapt, in the absence of brain input, is examined in spinally transected rats that receive a nociceptive shock to the tibialis anterior muscle of one hind leg. If shock is delivered whenever the leg is extended (controllable stimulation), it induces an increase in flexion duration that minimizes net shock exposure. This learning is not observed in subjects that receive the same amount of shock independent of leg position (uncontrollable stimulation). These two forms of stimulation have a lasting, and divergent, effect on subsequent learning: controllable stimulation enables learning whereas uncontrollable stimulation disables it (learning deficit). Uncontrollable stimulation also enhances mechanical reactivity. We review evidence that training with controllable stimulation engages a brain-derived neurotrophic factor (BDNF)-dependent process that can both prevent and reverse the consequences of uncontrollable shock. We relate these effects to changes in BDNF protein and TrkB signaling. Controllable stimulation is also shown to counter the effects of peripheral inflammation (from intradermal capsaicin). A model is proposed that assumes nociceptive input is gated at an early sensory stage. This gate is sensitive to current environmental relations (between proprioceptive and nociceptive input), allowing stimulation to be classified as controllable or uncontrollable. We further propose that the status of this gate is affected by past experience and that a history of uncontrollable stimulation will promote the development of neuropathic pain. PMID:22934018

  16. Nociception contributes to the formation of myogenic contracture in the early phase of adjuvant-induced arthritis in a rat knee.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Moriyama, Hideki; Yamaoka, Kaoru

    2017-07-01

    It is unknown how joint contracture is generated in inflamed joints. This study aimed to clarify the role of nociception on the formation of joint contracture secondary to arthritis. Monoarthritis was induced by intra-articular injections of complete Freund's adjuvant (CFA) into rat knees. On day 5 after CFA injection, the passive extension range of motion (ROM) of knee joints were measured, both before and after myotomy of knee flexors, to evaluate the extent of muscular contribution to CFA-induced joint contracture. The steroidal anti-inflammatory drug dexamethasone could prevent ROM restrictions completely, both before and after myotomy. On the other hand, the opioid analgesic drug morphine did not prevent the development of restricted ROM observed after myotomy, while it did before myotomy. This indicates that nociception contributes to joint contracture through alterations in muscular structure (myogenic factors). Next, we tested the hypothesis that nociception-induced reflexive flexor muscle contractions cause myogenic contracture in arthritic joints. To do this, chemical denervation was performed by Botulinum toxin type A (BTX-A) injections into knee flexor muscles, simultaneously with CFA injections into the knee. As expected, BTX-A could alleviate ROM restrictions observed before myotomy. These findings suggest that nociceptive-related muscle contractions play an essential role in the formation of joint contracture. Thus, our study indicates that analgesic management during an early stage of joint arthritis is an essential mean to prevent the formation of joint contracture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1404-1413, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity.

    Science.gov (United States)

    Kadow, Brian T; Lyon, Timothy D; Zhang, Zhaocun; Lamm, Vladimir; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-07-01

    This study investigated the role of the hypogastric nerve and β-adrenergic mechanisms in the inhibition of nociceptive and non-nociceptive reflex bladder activity induced by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats, non-nociceptive reflex bladder activity was induced by slowly infusing saline into the bladder, whereas nociceptive reflex bladder activity was induced by replacing saline with 0.25% acetic acid (AA) to irritate the bladder. PNS was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. During saline infusion, PNS at 2T and 4T significantly (P reflex bladder activity. In addition to this peripheral mechanism, a central nervous system mechanism involving metabotropic glutamate 5 receptors also has a role in PNS inhibition. Copyright © 2016 the American Physiological Society.

  18. Organization of sensory input to the nociceptive-specific cutaneous trunk muscle reflex in rat, an effective experimental system for examining nociception and plasticity

    Science.gov (United States)

    Petruska, Jeffrey C.; Barker, Darrell F.; Garraway, Sandra M.; Trainer, Robert; Fransen, James W.; Seidman, Peggy A.; Soto, Roy G.; Mendell, Lorne M.; Johnson, Richard D.

    2013-01-01

    Detailed characterization of neural circuitries furthers our understanding of how nervous systems perform specific functions and enables the use of those systems to test hypotheses. We have characterized the sensory input to the cutaneous trunk muscle (CTM; also cutaneus trunci (rat) or cutaneus maximus (mouse)) reflex (CTMR), which manifests as a puckering of the dorsal thoracolumbar skin and is selectively driven by noxious stimuli. CTM electromyography (EMG) and neurogram recordings in naïve rats revealed that CTMR responses were elicited by natural stimuli and electrical stimulation of all segments from C4 to L6, a much greater extent of segmental drive to the CTMR than previously described. Stimulation of some subcutaneous paraspinal tissue can also elicit this reflex. Using a selective neurotoxin, we also demonstrate differential drive of the CTMR by trkA-expressing and non-expressing small diameter afferents. These observations highlight aspects of the organization of the CTMR system which make it attractive for studies of nociception and anesthesiology and plasticity of primary afferents, motoneurons, and the propriospinal system. We use the CTMR system to qualitatively and quantitatively demonstrate that experimental pharmacological treatments can be compared to controls applied either to the contralateral side or to another segment, with the remaining segments providing controls for systemic or other treatment effects. These data indicate the potential for using the CTMR system as both an invasive and non-invasive quantitative assessment tool providing improved statistical power and reduced animal use. PMID:23983104

  19. Nociceptor-Enriched Genes Required for Normal Thermal Nociception

    Directory of Open Access Journals (Sweden)

    Ken Honjo

    2016-07-01

    Full Text Available Here, we describe a targeted reverse genetic screen for thermal nociception genes in Drosophila larvae. Using laser capture microdissection and microarray analyses of nociceptive and non-nociceptive neurons, we identified 275 nociceptor-enriched genes. We then tested the function of the enriched genes with nociceptor-specific RNAi and thermal nociception assays. Tissue-specific RNAi targeted against 14 genes caused insensitive thermal nociception while targeting of 22 genes caused hypersensitive thermal nociception. Previously uncategorized genes were named for heat resistance (i.e., boilerman, fire dancer, oven mitt, trivet, thawb, and bunker gear or heat sensitivity (firelighter, black match, eucalyptus, primacord, jet fuel, detonator, gasoline, smoke alarm, and jetboil. Insensitive nociception phenotypes were often associated with severely reduced branching of nociceptor neurites and hyperbranched dendrites were seen in two of the hypersensitive cases. Many genes that we identified are conserved in mammals.

  20. Local anesthetic effect of docosahexaenoic acid on the nociceptive jaw-opening reflex in rats.

    Science.gov (United States)

    Mitome, Kazuki; Takehana, Shiori; Oshima, Katsuo; Shimazu, Yoshihito; Takeda, Mamoru

    2018-02-23

    Although docosahexaenoic acid (DHA) administration suppresses sodium channels in primary afferent sensory neurons, the acute local effect of DHA on the trigeminal nociceptive reflex remains to be elucidated, in vivo. Therefore, the aim of the present study was to investigate whether local administration of DHA attenuates the nociceptive jaw-opening reflex (JOR) in vivo in the rat. The JOR evoked by electrical stimulation of the tongue was recorded by a digastric muscle electromyogram (dEMG) in pentobarbital-anesthetized rats. The amplitude of the dEMG response was significantly increased in proportion to the electrical stimulation intensity (1-5 x threshold). At 3 x threshold, local administration of DHA (0.1, 10 and 25 mM) dose-dependently inhibited the dEMG response, and lasted 40 min. Maximum inhibition of the dEMG signal amplitude was seen within approximately 10 min. The mean magnitude of inhibition of the dEMG signal amplitude by DHA (25 mM) was almost equal to the local anesthetic, 1% lidocaine (37 mM), a sodium channel blocker. These findings suggest that DHA attenuates the nociceptive JOR via possibly blocking sodium channels, and strongly support the idea that DHA is a potential therapeutic agent and complementary alternative medicine for the prevention of acute trigeminal nociception. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  1. Shielding cognition from nociception with working memory.

    Science.gov (United States)

    Legrain, Valéry; Crombez, Geert; Plaghki, Léon; Mouraux, André

    2013-01-01

    Because pain often signals the occurrence of potential tissue damage, nociceptive stimuli have the capacity to capture attention and interfere with ongoing cognitive activities. Working memory is known to guide the orientation of attention by maintaining goal priorities active during the achievement of a task. This study investigated whether the cortical processing of nociceptive stimuli and their ability to capture attention are under the control of working memory. Event-related brain potentials (ERPs) were recorded while participants performed primary tasks on visual targets that required or did not require rehearsal in working memory (1-back vs 0-back conditions). The visual targets were shortly preceded by task-irrelevant tactile stimuli. Occasionally, in order to distract the participants, the tactile stimuli were replaced by novel nociceptive stimuli. In the 0-back conditions, task performance was disrupted by the occurrence of the nociceptive distracters, as reflected by the increased reaction times in trials with novel nociceptive distracters as compared to trials with standard tactile distracters. In the 1-back conditions, such a difference disappeared suggesting that attentional capture and task disruption induced by nociceptive distracters were suppressed by working memory, regardless of task demands. Most importantly, in the conditions involving working memory, the magnitude of nociceptive ERPs, including ERP components at early latency, were significantly reduced. This indicates that working memory is able to modulate the cortical processing of nociceptive input already at its earliest stages, and could explain why working memory reduces consequently ability of nociceptive stimuli to capture attention and disrupt performance of the primary task. It is concluded that protecting cognitive processing against pain interference is best guaranteed by keeping out of working memory pain-related information. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Controlling attention to nociceptive stimuli with working memory.

    Directory of Open Access Journals (Sweden)

    Valéry Legrain

    Full Text Available BACKGROUND: Because pain often signals the occurrence of potential tissue damage, a nociceptive stimulus has the capacity to involuntarily capture attention and take priority over other sensory inputs. Whether distraction by nociception actually occurs may depend upon the cognitive characteristics of the ongoing activities. The present study tested the role of working memory in controlling the attentional capture by nociception. METHODOLOGY AND PRINCIPAL FINDINGS: Participants performed visual discrimination and matching tasks in which visual targets were shortly preceded by a tactile distracter. The two tasks were chosen because of the different effects the involvement of working memory produces on performance, in order to dissociate the specific role of working memory in the control of attention from the effect of general resource demands. Occasionally (i.e. 17% of the trials, tactile distracters were replaced by a novel nociceptive stimulus in order to distract participants from the visual tasks. Indeed, in the control conditions (no working memory, reaction times to visual targets were increased when the target was preceded by a novel nociceptive distracter as compared to the target preceded by a frequent tactile distracter, suggesting attentional capture by the novel nociceptive stimulus. However, when the task required an active rehearsal of the visual target in working memory, the novel nociceptive stimulus no longer induced a lengthening of reaction times to visual targets, indicating a reduction of the distraction produced by the novel nociceptive stimulus. This effect was independent of the overall task demands. CONCLUSION AND SIGNIFICANCE: Loading working memory with pain-unrelated information may reduce the ability of nociceptive input to involuntarily capture attention, and shields cognitive processing from nociceptive distraction. An efficient control of attention over pain is best guaranteed by the ability to maintain active goal

  3. Role of NHE1 in Nociception

    Directory of Open Access Journals (Sweden)

    Jorge Elías Torres-López

    2013-01-01

    Full Text Available Intracellular pH is a fundamental parameter to cell function that requires tight homeostasis. In the absence of any regulation, excessive acidification of the cytosol would have the tendency to produce cellular damage. Mammalian Na+/H+ exchangers (NHEs are electroneutral Na+-dependent proteins that exchange extracellular Na+ for intracellular H+. To date, there are 9 identified NHE isoforms where NHE1 is the most ubiquitous member, known as the housekeeping exchanger. NHE1 seems to have a protective role in the ischemia-reperfusion injury and other inflammatory diseases. In nociception, NHE1 is found in neurons along nociceptive pathways, and its pharmacological inhibition increases nociceptive behavior in acute pain models at peripheral and central levels. Electrophysiological studies also show that NHE modulates electrical activity of primary nociceptive terminals. However, its role in neuropathic pain still remains controversial. In humans, NHE1 may be responsible for inflammatory bowel diseases since its expression is reduced in Crohn’s disease and ulcerative colitis. The purpose of this work is to provide a review of the evidence about participation of NHE1 in the nociceptive processing.

  4. Influence of chronic stress and oclusal interference on masseter muscle pain in rat.

    Science.gov (United States)

    Simonić-Kocijan, Suncana; Uhac, Ivone; Braut, Vedrana; Kovac, Zoran; Pavicić, Daniela Kovacević; Fugosić, Vesna; Urek, Miranda Muhvić

    2009-09-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant difference of nociceptive behavioral response in chronicaly stressed rats and in the animals with occlusal interference in comparation to the control group were not obtained (p > 0.05). In contrast, nociceptive behavioral response was significantly increased in rats submitted to both of experimental procedures (p occlusal interference and chronic stress influence masseter muscle pain.

  5. Expression of nociceptive ligands in canine osteosarcoma.

    Science.gov (United States)

    Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  6. Influence of glutamate-evoked pain and sustained elevated muscle activity on blood oxygenation in the human masseter muscle.

    Science.gov (United States)

    Suzuki, Shunichi; Arima, Taro; Kitagawa, Yoshimasa; Svensson, Peter; Castrillon, Eduardo

    2017-12-01

    This study aimed to investigate the effect of glutamate-evoked masseter muscle pain on intramuscular oxygenation during rest and sustained elevated muscle activity (SEMA). Seventeen healthy individuals participated in two sessions in which they were injected with glutamate and saline in random order. Each session was divided into three, 10-min periods. During the first (period 1) and the last (period 3) 10-min periods, participants performed five intercalated 1-min bouts of masseter SEMA with 1-min periods of 'rest'. At onset of the second 10-min period, glutamate (0.5 ml, 1 M; Ajinomoto, Tokyo, Japan) or isotonic saline (0.5 ml; 0.9%) was injected into the masseter muscle and the participants kept the muscle relaxed in a resting position for 10 min (period 2). The hemodynamic characteristics of the masseter muscle were recorded simultaneously during the experiment by a laser blood-oxygenation monitor. The results demonstrated that glutamate injections caused significant levels of self-reported pain in the masseter muscle; however, this nociceptive input did not have robust effects on intramuscular oxygenation during rest or SEMA tasks. Interestingly, these findings suggest an uncoupling between acute nociceptive activity and hemodynamic parameters in both resting and low-level active jaw muscles. Further studies are needed to explore the pathophysiological significance of blood-flow changes for persistent jaw-muscle pain conditions. © 2017 Eur J Oral Sci.

  7. Patterns of experimentally induced pain in pericranial muscles

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Peter Thede; Svensson, Peter; Jensen, Troels Staehelin

    2006-01-01

    into the masseter muscle (anova: P pain areas (anova: P cervically innervated muscles had significantly different patterns of spread and referral of pain according to trigeminally vs....... cervically innervated dermatomes (P pain patterns and pain sensitivity in different craniofacial muscles in healthy volunteers, which may be of importance for further research on different craniofacial pain conditions.......Nociceptive mechanisms in the craniofacial muscle tissue are poorly understood. The pain pattern in individual pericranial muscles has not been described before. Experimental muscle pain was induced by standardized infusions of 0.2 ml 1 m hypertonic saline into six craniofacial muscles (masseter...

  8. Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli.

    Directory of Open Access Journals (Sweden)

    Michael Schütz

    Full Text Available BACKGROUND: TRPA1 ion channels are involved in nociception and are also excited by pungent odorous substances. Based on reported associations of TRPA1 genetics with increased sensitivity to thermal pain stimuli, we therefore hypothesized that this association also exists for increased olfactory sensitivity. METHODS: Olfactory function and nociception was compared between carriers (n = 38 and non-carriers (n = 43 of TRPA1 variant rs11988795 G>A, a variant known to enhance cold pain perception. Olfactory function was quantified by assessing the odor threshold, odor discrimination and odor identification, and by applying 200-ms pulses of H2S intranasal. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (blunt pressure, electrical stimuli, cold and heat stimuli, and 200-ms intranasal pulses of CO2. RESULTS: Among the 11 subjects with moderate hyposmia, carriers of the minor A allele (n = 2 were underrepresented (34 carriers among the 70 normosmic subjects; p = 0.049. Moreover, carriers of the A allele discriminated odors significantly better than non-carriers (13.1±1.5 versus 12.3±1.6 correct discriminations and indicated a higher intensity of the H2S stimuli (29.2±13.2 versus 21±12.8 mm VAS, p = 0.006, which, however, could not be excluded to have involved a trigeminal component during stimulation. Finally, the increased sensitivity to thermal pain could be reproduced. CONCLUSIONS: The findings are in line with a previous association of a human TRPA1 variant with nociceptive parameters and extend the association to the perception of odorants. However, this addresses mainly those stimulants that involve a trigeminal component whereas a pure olfactory effect may remain disputable. Nevertheless, findings suggest that future TRPA1 modulating drugs may modify the perception of odorants.

  9. Impact of carprofen administration on stress and nociception responses of calves to cautery dehorning.

    Science.gov (United States)

    Stock, M L; Barth, L A; Van Engen, N K; Millman, S T; Gehring, R; Wang, C; Voris, E A; Wulf, L W; Labeur, Léa; Hsu, W H; Coetzee, J F

    2016-02-01

    The objective of this study was to investigate the effects of carprofen administered immediately before cautery dehorning on nociception and stress. Forty Holstein calves aged approximately 6 to 8 wk old were either placebo treated and sham dehorned ( = 10) or cautery dehorned following administration of carprofen (1.4 mg/kg) subcutaneously ( = 10) or orally ( = 10) or a subcutaneous and oral placebo ( = 10) in a randomized, controlled trial. All animals were given a cornual nerve block using lidocaine before dehorning. Response variables including mechanical nociception threshold, ocular temperature, heart rate, and respiratory rate were measured before and following cautery dehorning for 96 h. Blood samples were also collected over 96 h following dehorning and analyzed for plasma cortisol and substance P concentrations by RIA. Plasma carprofen concentration and ex vivo PGE concentrations were also determined for this time period. Average daily gain was calculated for 7 d after dehorning. Data were analyzed using a linear mixed effects model with repeated measures, controlling for baseline values by their inclusion as a covariate in addition to planned contrasts. Dehorning was associated with decreased nociception thresholds throughout the study and a stress response immediately after dehorning, following the loss of local anesthesia, and 48 h after dehorning compared with sham-dehorned calves. Carprofen was well absorbed after administration and reached concentrations that inhibited ex vivo PGE concentrations for 72 h (subcutaneous) and 96 h (oral) compared with placebo-treated calves ( Carprofen-treated calves tended to be less sensitive ( = 0.097) to nociceptive threshold tests. Overall, at the dosing regimen studied, the effect of carprofen on sensitivity and stress following cautery dehorning was minimal. Consideration of route of administration and dose determination studies may be warranted.

  10. [Muscle Dysmorphia and Use of Ergogenics Substances. A Systematic Review].

    Science.gov (United States)

    García-Rodríguez, Jaime; Alvarez-Rayón, Georgina; Camacho-Ruíz, Jaime; Amaya-Hernández, Adriana; Mancilla-Díaz, Juan Manuel

    The use of ergogenic substances (UES) is not restricted to achieving a better athletic performance, but also it is a behavior for body changing through muscle development; however, little is known about the relationship between muscle dysmorphia (MD) and UES. Therefore, it was conducted a systematic review of those empirical papers that have studied this relationship over the last decade (2004-2014). First it is highlighted that of the 22 articles analyzed, only 13 explicitly aimed this interest. Besides, although the documented data outlined some relevant aspects such as the existence of a high co-occurrence (60-90%) between MD and UES. In general, the evidence is still incipient and uncertain, mainly because of the large disparity between the methodologies of the studies, particularly in terms of indicators, parameters and measures utilized to assess UES within the context of MD. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. Nociceptive Response to L-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats.

    Science.gov (United States)

    Nascimento, G C; Bariotto-Dos-Santos, K; Leite-Panissi, C R A; Del-Bel, E A; Bortolanza, M

    2018-04-02

    Non-motor symptoms are increasingly identified to present clinical and diagnostic importance for Parkinson's disease (PD). The multifactorial origin of pain in PD makes this symptom of great complexity. The dopamine precursor, L-DOPA (L-3,4-dihydroxyphenylalanine), the classic therapy for PD, seems to be effective in pain threshold; however, there are no studies correlating L-DOPA-induced dyskinesia (LID) and nociception development in experimental Parkinsonism. Here, we first investigated nociceptive responses in a 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease to a hind paw-induced persistent inflammation. Further, the effect of L-DOPA on nociception behavior at different times of treatment was investigated. Pain threshold was determined using von Frey and Hot Plate/Tail Flick tests. Dyskinesia was measured by abnormal involuntary movements (AIMs) induced by L-DOPA administration. This data is consistent to show that 6-OHDA-lesioned rats had reduced nociceptive thresholds compared to non-lesioned rats. Additionally, when these rats were exposed to a persistent inflammatory challenge, we observed increased hypernociceptive responses, namely hyperalgesia. L-DOPA treatment alleviated pain responses on days 1 and 7 of treatment, but not on day 15. During that period, we observed an inverse relationship between LID and nociception threshold in these rats, with a high LID rate corresponding to a reduced nociception threshold. Interestingly, pain responses resulting from CFA-induced inflammation were significantly enhanced during established dyskinesia. These data suggest a pro-algesic effect of L-DOPA-induced dyskinesia, which is confirmed by the correlation founded here between AIMs and nociceptive indexes. In conclusion, our results are consistent with the notion that central dopaminergic mechanism is directly involved in nociceptive responses in Parkinsonism condition.

  12. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission

    Science.gov (United States)

    Du, Xiaona; Hao, Han; Gigout, Sylvain; Huang, Dongyang; Yang, Yuehui; Li, Li; Wang, Caixue; Sundt, Danielle; Jaffe, David B.; Zhang, Hailin; Gamper, Nikita

    2014-01-01

    Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neurons can influence peripheral sensory transmission. Control of resting membrane potential (Erest) is an important mechanism regulating excitability, but surprisingly little is known about how Erest is regulated in sensory neuron somata or how changes in somatic/perisomatic Erest affect peripheral sensory transmission. We first evaluated the influence of several major ion channels on Erest in cultured small-diameter, mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest and most prevalent effect on Erest was achieved by modulating M channels, K2P and 4-aminopiridine-sensitive KV channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na+, and T-type Ca2+ channels to a lesser extent also contributed to Erest. Second, we investigated how varying somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or KATP channel enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo significantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computational modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering properties of the t-junction within the DRG, can interfere with action potential propagation. Our study deciphers a complement of ion channels that sets the somatic Erest of nociceptive neurons and provides strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral nociceptive neuron. PMID:25168672

  13. The role of muscles in tension-type headache

    DEFF Research Database (Denmark)

    Bendtsen, Lars; Fernández-de-la-Peñas, César

    2011-01-01

    to prolonged nociceptive stimuli from pericranial myofascial tissues seem to be responsible for the conversion of episodic to chronic TTH. Treatment directed toward muscular factors include electromyography biofeedback, which has a documented effect in patients with TTH, as well as physiotherapy and muscle...

  14. Comparative biology of pain: What invertebrates can tell us about how nociception works.

    Science.gov (United States)

    Burrell, Brian D

    2017-04-01

    The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented. Copyright © 2017 the American Physiological Society.

  15. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  16. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  17. p-Cymene reduces orofacial nociceptive response in mice

    Directory of Open Access Journals (Sweden)

    Michele F. Santana

    2011-12-01

    Full Text Available This study investigated the possible antinociceptive effect of p-cymene in different tests of orofacial nociception. The animals (mice were pretreated (i.p. with p-cymene (25, 50, 100 mg/kg, morphine (5 mg/kg, or vehicle (0.2% Tween 80+saline, and were then subsequently administered, subcutaneously into their upper lip: formalin, capsaicin, and glutamate. The nociceptive behavior response was characterized by the time in s that the mice remained rubbing the orofacial region, for a period of 40 min in the formalin test (first phase, 0-6 min; and second phase, 21-40 min, and for 42 and 15 min in the capsaicin and glutamate tests, respectively. To verify the possible opioid involvement in the antinociceptive effects, naloxone (i.p. was administered into the mice 15 min prior to the pretreatment with p-cymene (100 mg/kg. Finally, whether or not the p-cymene evoked any change in motor performance in the Rota-rod test was evaluated. The results showed that the treatment with p-cymene, at all doses, reduced (p<0.001 the nociceptive behavior in all nociception tests. The antinociceptive effect of p-cymene was antagonized by naloxone (1.5 mg/kg. Additionally, mice treated with p-cymene did not show any change in motor performance. In conclusion, p-cymene attenuated orofacial nociception, suggesting an involvement of the opioid system in this effect. Thus, p-cymene might represent an important biomolecule for management and/or treatment of orofacial pain.

  18. Drosophila Nociceptive Sensitization Requires BMP Signaling via the Canonical SMAD Pathway.

    Science.gov (United States)

    Follansbee, Taylor L; Gjelsvik, Kayla J; Brann, Courtney L; McParland, Aidan L; Longhurst, Colin A; Galko, Michael J; Ganter, Geoffrey K

    2017-08-30

    Nociceptive sensitization is a common feature in chronic pain, but its basic cellular mechanisms are only partially understood. The present study used the Drosophila melanogaster model system and a candidate gene approach to identify novel components required for modulation of an injury-induced nociceptive sensitization pathway presumably downstream of Hedgehog. This study demonstrates that RNAi silencing of a member of the Bone Morphogenetic Protein (BMP) signaling pathway, Decapentaplegic (Dpp), specifically in the Class IV multidendritic nociceptive neuron, significantly attenuated ultraviolet injury-induced sensitization. Furthermore, overexpression of Dpp in Class IV neurons was sufficient to induce thermal hypersensitivity in the absence of injury. The requirement of various BMP receptors and members of the SMAD signal transduction pathway in nociceptive sensitization was also demonstrated. The effects of BMP signaling were shown to be largely specific to the sensitization pathway and not associated with changes in nociception in the absence of injury or with changes in dendritic morphology. Thus, the results demonstrate that Dpp and its pathway play a crucial and novel role in nociceptive sensitization. Because the BMP family is so strongly conserved between vertebrates and invertebrates, it seems likely that the components analyzed in this study represent potential therapeutic targets for the treatment of chronic pain in humans. SIGNIFICANCE STATEMENT This report provides a genetic analysis of primary nociceptive neuron mechanisms that promote sensitization in response to injury. Drosophila melanogaster larvae whose primary nociceptive neurons were reduced in levels of specific components of the BMP signaling pathway, were injured and then tested for nocifensive responses to a normally subnoxious stimulus. Results suggest that nociceptive neurons use the BMP2/4 ligand, along with identified receptors and intracellular transducers to transition to a

  19. Repeated Muscle Injury as a Presumptive Trigger for Chronic Masticatory Muscle Pain

    Directory of Open Access Journals (Sweden)

    Dean Dessem

    2011-01-01

    Full Text Available skeletal muscles sustain a significant loss of maximal contractile force after injury, but terminally damaged fibers can eventually be replaced by the growth of new muscle (regeneration, with full restoration of contractile force over time. After a second injury, limb muscles exhibit a smaller reduction in maximal force and reduced inflammation compared with that after the initial injury (i.e., repeated bout effect. In contrast, masticatory muscles exhibit diminished regeneration and persistent fibrosis, after a single injury; following a second injury, plasma extravasation is greater than after a single injury and maximal force is decreased more than after the initial injury. Thus, masticatory muscles do not exhibit a repeated bout effect and are instead increasingly damaged by repeated injury. We propose that the impaired ability of masticatory muscles to regenerate contributes to chronic muscle pain by leading to an accumulation of tissue damage, fibrosis, and a persistent elevation and prolonged membrane translocation of nociceptive channels such as P2X3 as well as enhanced expression of neuropeptides including CGRP within primary afferent neurons. These transformations prime primary afferent neurons for enhanced responsiveness upon subsequent injury thus triggering and/or exacerbating chronic muscle pain.

  20. Effect of a nitric oxide donor (glyceryl trinitrate) on nociceptive thresholds in man

    DEFF Research Database (Denmark)

    Thomsen, L L; Brennum, J; Iversen, Helle Klingenberg

    1996-01-01

    Several animal studies suggest that nitric oxide (NO) plays a role in central and peripheral modulation of nociception. Glyceryl trinitrate (GTN) exerts its physiological actions via donation of NO. The purpose of the present study was to examine the effect of this NO donor on nociceptive...... central facilitation of nociception by NO. However, we regard convergence of nociceptive input from pericranial myofascial tissue and from cephalic blood vessels dilated by NO as a more likely explanation of our findings....

  1. Nociceptive flexion reflexes during analgesic neurostimulation in man.

    Science.gov (United States)

    García-Larrea, L; Sindou, M; Mauguière, F

    1989-11-01

    Nociceptive flexion reflexes of the lower limbs (RIII responses) have been studied in 21 patients undergoing either epidural (DCS, n = 16) or transcutaneous (TENS, n = 5) analgesic neurostimulation (AN) for chronic intractable pain. Flexion reflex RIII was depressed or suppressed by AN in 11 patients (52.4%), while no modification was observed in 9 cases and a paradoxical increase during AN was evidenced in 1 case. In all but 2 patients, RIII changes were rapidly reversible after AN interruption. RIII depression was significantly associated with subjective pain relief, as assessed by conventional self-rating; moreover, in 2 patients it was possible to ameliorate the pain-suppressing effects of AN by selecting those stimulation parameters (intensity and frequency) that maximally depressed nociceptive reflex RIII. We recorded 2 cases of RIII attenuation after contralateral neurostimulation. AN appeared to affect nociceptive reflexes rather selectively, with no or very little effect on other cutaneous, non-nociceptive responses. Recording of RIII reflexes is relatively simple to implement as a routine paraclinical procedure. It facilitates the objective assessment of AN efficacy and may help to choose the most appropriate parameters of neurostimulation. In addition, RIII behavior in patients could be relevant to the understanding of some of the mechanisms involved in AN-induced pain relief.

  2. Effects of intraplantar botulinum toxin-B on carrageenan-induced changes in nociception and spinal phosphorylation of GluA1 and Akt.

    Science.gov (United States)

    Sikandar, Shafaq; Gustavsson, Ynette; Marino, Marc J; Dickenson, Anthony H; Yaksh, Tony L; Sorkin, Linda S; Ramachandran, Roshni

    2016-07-01

    Increasing evidence suggests that botulinum neurotoxins (BoNTs) delivered into the skin and muscle in certain human and animal pain states may exert antinociceptive efficacy though their uptake and transport to central afferent terminals. Cleavage of soluble N-methylaleimide-sensitive attachment protein receptor by BoNTs can impede vesicular mediated neurotransmitter release as well as transport/insertion of channel/receptor subunits into plasma membranes, an effect that can reduce activity-evoked facilitation. Here, we explored the effects of intraplantar botulinum toxin- B (BoNT-B) on peripheral inflammation and spinal nociceptive processing in an inflammatory model of pain. C57BL/6 mice (male) received unilateral intraplantar BoNT (1 U, 30 μL) or saline prior to intraplantar carrageenan (20 μL, 2%) or intrathecal N-methyl-D-aspartate (NMDA), substance P or saline (5 μL). Intraplantar carrageenan resulted in edema and mechanical allodynia in the injected paw and increased phosphorylation of a glutamate subunit (pGluA1ser845) and a serine/threonine-specific protein kinase (pAktser473) in spinal dorsal horn along with an increased incidence of spinal c-Fos positive cells. Pre-treatment with intraplantar BoNT-B reduced carrageenan evoked: (i) allodynia, but not edema; (ii) pGluA1 and pAkt and (iii) c-Fos expression. Further, intrathecal NMDA and substance P each increased dorsal horn levels of pGluA1 and pAkt. Intraplantar BoNT-B inhibited NMDA, but not substance P evoked phosphorylation of GluA1 and Akt. These results suggest that intraplantar toxin is transported centrally to block spinal activation and prevent phosphorylation of a glutamate receptor subunit and a kinase, which otherwise contribute to facilitated states. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    Science.gov (United States)

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  4. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  5. Anti-nociceptive and anti-hyperprolactinemia activities of Fructus Viticis and its effective fractions and chemical constituents.

    Science.gov (United States)

    Hu, Y; Xin, H-L; Zhang, Q-Y; Zheng, H-C; Rahman, K; Qin, L-P

    2007-10-01

    Vitex rotundifolia L. is widely distributed along the sea coast of China. The aim of this study was to investigate the anti-nociceptive and anti-hyperprolactinemia activities of substances isolated from Fructus Viticis (the fruit of Vitex rotundifolia), which may be effective in the treatment of pre-menstrual symptoms, using acetic-acid-induced writhing and metoclopramide-dihydrochloride-induced hyperprolactinemia in mice. The fractions effective in terms of anti-nociceptive and anti-hyperprolactinemia activities were obtained from Fructus Viticis by elution through macro-porous resin, and polyamide and silica gel column chromatography. The standardization of the fractions obtained from the separation procedures was carried out by means of high-performance liquid chromatography (HPLC)-fingerprint. In this study, the flavone-enriched fraction (Fraction 6) showed a higher inhibitory rate than indomethacin (69.4% vs. 56.4%) at a dose of 50 mg/kg body wt., and significantly reduced the prolactin level as compared to HPRL-treated mice (8.2 ng/ml vs. 25.5 ng/ml). Furthermore, this fraction showed anti-nociceptive activity in a dose-dependent manner (10-50 mg/kg body wt., i.g.). On further purification with silica gel, Casticin was isolated from this fraction and it decreased abnormal serum levels of prolactin by approximately 50% (p screening methods, our results indicate that the presence of flavonoids such as Casticin in this plant may be responsible for the activity effects. Casticin has potent analgesic and anti-hyperprolactinaemia properties, is likely to be one of the active components of Fructus Viticis, and may have a role in treating PMS (premenstrual syndrom).

  6. Citral reduces nociceptive and inflammatory response in rodents

    Directory of Open Access Journals (Sweden)

    Lucindo J. Quintans-Júnior

    2011-04-01

    Full Text Available Citral (CIT, which contains the chiral enantiomers, neral (cis and geranial (trans, is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT had significant protection (p<0.001 against acetic acid (0.8% induced nociceptive behavior and the effects were also similar to morphine while formalin induced nociception was significantly protected (p<0.05 only at higher dose (200 mg/kg of CIT in the first phase of the test. CIT significantly reduce (p<0.001 nociceptive behavior emanating from inflammation in second phase at all the doses.The pretreatment with CIT (100 and 200 mg/kg significantly reduced the paw edema induced by carrageenan. Moreover, systemic treatment with CIT (100 and 200 mg/kg significantly reduced (p<0.001 the leukocyte migration in the carrageenan-induced migration to the peritoneal cavity. Our investigation shows that CIT possess significant central and peripheral antinociceptive effects. It was also verified an anti-inflammatory activity. All together these results suggest that CIT might represent important tool for treatment of painful conditions.

  7. Citral reduces nociceptive and inflammatory response in rodents

    Directory of Open Access Journals (Sweden)

    Lucindo J. Quintans-Júnior

    2011-06-01

    Full Text Available Citral (CIT, which contains the chiral enantiomers, neral (cis and geranial (trans, is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT had significant protection (p<0.001 against acetic acid (0.8% induced nociceptive behavior and the effects were also similar to morphine while formalin induced nociception was significantly protected (p<0.05 only at higher dose (200 mg/kg of CIT in the first phase of the test. CIT significantly reduce (p<0.001 nociceptive behavior emanating from inflammation in second phase at all the doses.The pretreatment with CIT (100 and 200 mg/kg significantly reduced the paw edema induced by carrageenan. Moreover, systemic treatment with CIT (100 and 200 mg/kg significantly reduced (p<0.001 the leukocyte migration in the carrageenan-induced migration to the peritoneal cavity. Our investigation shows that CIT possess significant central and peripheral antinociceptive effects. It was also verified an anti-inflammatory activity. All together these results suggest that CIT might represent important tool for treatment of painful conditions.

  8. Assessment of anti-nociceptive efficacy of costus speciosus rhizome in swiss albino mice.

    Science.gov (United States)

    Bhattacharya, Sanjib; Nagaich, Upendra

    2010-01-01

    Present study attempts to evaluate the anti-nociceptive activity of the aqueous and ethanol extracts of Costus speciosus rhizome (CPA and CPE) in Swiss albino mice. The maceration extracts were evaluated for anti-nociceptive activity by acetic acid-induced writhing and tail flick method in mice. The anti-nociceptive screening revealed significant peripheral anti-nociceptive actions of both extracts against acetic acid induced writhing in mice. Aqueous extract (CPA) significantly inhibited writhes at the dose of 75 and 150 mg/kg body weight, while ethanol extract (CPE) produced significant protection at the dose of 150 mg/kg body weight. However, in tail flick method only the ethanol extract (CPE) showed significant central analgesic action, while aqueous extract was totally ineffective. The present investigation demonstrates that the rhizome extracts of C. speciosus exhibited significant anti-nociceptive effects in Swiss albino mice.

  9. Assessment of anti-nociceptive efficacy of Costus Speciosus rhizome in swiss albino mice

    Directory of Open Access Journals (Sweden)

    Sanjib Bhattacharya

    2010-01-01

    Full Text Available Present study attempts to evaluate the anti-nociceptive activity of the aqueous and ethanol extracts of Costus speciosus rhizome (CPA and CPE in Swiss albino mice. The maceration extracts were evaluated for anti-nociceptive activity by acetic acid-induced writhing and tail flick method in mice. The anti-nociceptive screening revealed significant peripheral anti-nociceptive actions of both extracts against acetic acid induced writhing in mice. Aqueous extract (CPA significantly inhibited writhes at the dose of 75 and 150 mg/kg body weight, while ethanol extract (CPE produced significant protection at the dose of 150 mg/kg body weight. However, in tail flick method only the ethanol extract (CPE showed significant central analgesic action, while aqueous extract was totally ineffective. The present investigation demonstrates that the rhizome extracts of C. speciosus exhibited significant anti-nociceptive effects in Swiss albino mice.

  10. Intraplantar injection of tetrahydrobiopterin induces nociception in mice

    DEFF Research Database (Denmark)

    Nasser, Arafat; Ali, Sawsan; Wilsbech, Signe

    2015-01-01

    was tested. Morphine served as a positive control. Intraplantar pre-injection of morphine dose-dependently inhibited BH4-induced nociception, while none of the other compounds showed any statistical significant antinociception. These results suggest that BH4 exhibits nociceptive properties at peripheral......Tetrahydrobiopterin (BH4) is implicated in the development and maintenance of chronic pain. After injury/inflammation, the biosynthesis of BH4 is markedly increased in sensory neurons, and the pharmacological and genetic inhibition of BH4 shows analgesic effects in pre-clinical animal pain models...

  11. Anti-nociceptive activity of Pereskia bleo Kunth. (Cactaceae) leaves extracts.

    Science.gov (United States)

    Abdul-Wahab, Ikarastika Rahayu; Guilhon, Carolina Carvalho; Fernandes, Patricia Dias; Boylan, Fabio

    2012-12-18

    Local communities in Malaysia consume Pereskia bleo Kunth. (Cactaceae) leaves as raw vegetables or as a concoction and drink as a tea to treat diabetes, hypertension, rheumatism, cancer-related diseases, inflammation, gastric pain, ulcers, and for revitalizing the body. To evaluate anti-nociceptive activity of the extracts and vitexin, isolated for the first time in this species, in two analgesic models; formalin-induced licking and acetic acid-induced abdominal writhing. Three and a half kilos of P. bleo leaves were extracted using Soxhlet apparatus with ethanol for 72 h. The crude ethanol extract was treated with activated charcoal overnight and subjected to a liquid-liquid partition yielding hexane, dichloromethane, ethyl acetate and butanol extracts. All extracts, including the crude ethanol and vitexin isolated from the ethyl acetate partition were tested for peripheral anti-nociceptive activity using formalin test and acetic acid-induced abdominal writhing, besides having their acute toxicity assays performed. The phytochemical analyses resulted in the isolation of vitexin (1), β-sitosterol glucoside (2) and β-sitosterol (3) isolated from the ethyl acetate, dichloromethane and hexane extracts, respectively. This is the first time vitexin and β-sitosterol glucoside are isolated from this species. The anti-nociceptive activities for all extracts were only moderate. Vitexin, which was isolated from the ethyl acetate extract did not show any activity in all models tested when used alone at the same concentration as it appears in the extract. This study showed that all the extracts possess moderate anti-nociceptive activity. Vitexin is not the compound responsible for the anti-nociceptive effect in the ethyl acetate extract. Further investigations are needed to identify the compound(s) that might be responsible for the anti-nociceptive activity in this plant. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies

    Directory of Open Access Journals (Sweden)

    Aaron D. Mickle

    2016-11-01

    Full Text Available Specialized receptors belonging to the transient receptor potential (TRP family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.

  13. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  14. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain.

    Science.gov (United States)

    Shelukhina, Irina; Mikhailov, Nikita; Abushik, Polina; Nurullin, Leniz; Nikolsky, Evgeny E; Giniatullin, Rashid

    2017-01-01

    Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca 2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which

  15. Sida cordifolia leaf extract reduces the orofacial nociceptive response in mice.

    Science.gov (United States)

    Bonjardim, L R; Silva, A M; Oliveira, M G B; Guimarães, A G; Antoniolli, A R; Santana, M F; Serafini, M R; Santos, R C; Araújo, A A S; Estevam, C S; Santos, M R V; Lyra, A; Carvalho, R; Quintans-Júnior, L J; Azevedo, E G; Botelho, M A

    2011-08-01

    In this study, we describe the antinociceptive activity of the ethanol extract (EE), chloroform (CF) and methanol (MF) fractions obtained from Sida cordifolia, popularly known in Brazil as "malva branca" or "malva branca sedosa". Leaves of S. cordifolia were used to produce the crude ethanol extract and after CF and MF. Experiments were conducted on Swiss mice using the glutamate and formalin-induced orofacial nociception. In the formalin test, all doses of EE, CF and MF significantly reduced the orofacial nociception in the first (p < 0.001) and second phase (p < 0.001), which was also naloxone-sensitive. In the glutamate-induced nociception test, only CF and MF significantly reduced the orofacial nociceptive behavior with inhibition percentage values of 48.1% (100 mg/kg, CF), 56.1% (200 mg/kg, CF), 66.4% (400 mg/kg, CF), 48.2 (200 mg/kg, MF) and 60.1 (400 mg/kg, MF). Furthermore, treatment of the animals with EE, CF and MF was not able to promote motor activity changes. These data demonstrate that S. cordifolia has a pronounced antinociceptive activity on orofacial nociception. However, pharmacological and chemical studies are necessary in order to characterize the responsible mechanisms for this antinociceptive action and also to identify other bioactive compounds present in S. cordifolia. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Nociceptive sensations evoked from 'spots' in the skin by mild cooling and heating.

    Science.gov (United States)

    Green, Barry G; Roman, Carolyn; Schoen, Kate; Collins, Hannah

    2008-03-01

    It was recently found that nociceptive sensations (stinging, pricking, or burning) can be evoked by cooling or heating the skin to innocuous temperatures (e.g., 29 and 37 degrees C). Here, we show that this low-threshold thermal nociception (LTN) can be traced to sensitive 'spots' in the skin equivalent to classically defined warm spots and cold spots. Because earlier work had shown that LTN is inhibited by simply touching a thermode to the skin, a spatial search procedure was devised that minimized tactile stimulation by sliding small thermodes (16 and 1mm(2)) set to 28 or 36 degrees C slowly across the lubricated skin of the forearm. The procedure uncovered three types of temperature-sensitive sites (thermal, bimodal, and nociceptive) that contained one or more thermal, nociceptive, or (rarely) bimodal spots. Repeated testing indicated that bimodal and nociceptive sites were less stable over time than thermal sites, and that mechanical contact differentially inhibited nociceptive sensations. Intensity ratings collected over a range of temperatures showed that LTN increased monotonically on heat-sensitive sites but not on cold-sensitive sites. These results provide psychophysical evidence that stimulation from primary afferent fibers with thresholds in the range of warm fibers and cold fibers is relayed to the pain pathway. However, the labile nature of LTN implies that these low-threshold nociceptive inputs are subject to inhibitory controls. The implications of these findings for the roles of putative temperature receptors and nociceptors in innocuous thermoreception and thermal pain are discussed.

  17. Melittin, the Major Pain-Producing Substance of Bee Venom.

    Science.gov (United States)

    Chen, Jun; Guan, Su-Min; Sun, Wei; Fu, Han

    2016-06-01

    Melittin is a basic 26-amino-acid polypeptide that constitutes 40-60% of dry honeybee (Apis mellifera) venom. Although much is known about its strong surface activity on lipid membranes, less is known about its pain-producing effects in the nervous system. In this review, we provide lines of accumulating evidence to support the hypothesis that melittin is the major pain-producing substance of bee venom. At the psychophysical and behavioral levels, subcutaneous injection of melittin causes tonic pain sensation and pain-related behaviors in both humans and animals. At the cellular level, melittin activates primary nociceptor cells through direct and indirect effects. On one hand, melittin can selectively open thermal nociceptor transient receptor potential vanilloid receptor channels via phospholipase A2-lipoxygenase/cyclooxygenase metabolites, leading to depolarization of primary nociceptor cells. On the other hand, algogens and inflammatory/pro-inflammatory mediators released from the tissue matrix by melittin's pore-forming effects can activate primary nociceptor cells through both ligand-gated receptor channels and the G-protein-coupled receptor-mediated opening of transient receptor potential canonical channels. Moreover, subcutaneous melittin up-regulates Nav1.8 and Nav1.9 subunits, resulting in the enhancement of tetrodotoxin-resistant Na(+) currents and the generation of long-term action potential firing. These nociceptive responses in the periphery finally activate and sensitize the spinal dorsal horn pain-signaling neurons, resulting in spontaneous nociceptive paw flinches and pain hypersensitivity to thermal and mechanical stimuli. Taken together, it is concluded that melittin is the major pain-producing substance of bee venom, by which peripheral persistent pain and hyperalgesia (or allodynia), primary nociceptive neuronal sensitization, and CNS synaptic plasticity (or metaplasticity) can be readily induced and the molecular and cellular mechanisms

  18. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol

    Directory of Open Access Journals (Sweden)

    Mamoru Takeda

    2016-10-01

    Full Text Available Changes to somatic sensory pathways caused by peripheral tissue, inflammation or injury can result in behavioral hypersensitivity and pathological pain, such as hyperalgesia. Resveratrol, a plant polyphenol found in red wine and various food products, is known to have several beneficial biological actions. Recent reports indicate that resveratrol can modulate neuronal excitability, including nociceptive sensory transmission. As such, it is possible that this dietary constituent could be a complementary alternative medicine (CAM candidate, specifically a therapeutic agent. The focus of this review is on the mechanisms underlying the modulatory effects of resveratrol on nociceptive neuronal activity associated with pain relief. In addition, we discuss the contribution of resveratrol to the relief of nociceptive and/or pathological pain and its potential role as a functional food and a CAM.

  19. Learned control over spinal nociception in patients with chronic back pain.

    Science.gov (United States)

    Krafft, S; Göhmann, H-D; Sommer, J; Straube, A; Ruscheweyh, R

    2017-10-01

    Descending pain inhibition suppresses spinal nociception, reducing nociceptive input to the brain. It is modulated by cognitive and emotional processes. In subjects with chronic pain, it is impaired, possibly contributing to pain persistence. A previously developed feedback method trains subjects to activate their descending inhibition. Participants are trained to use cognitive-emotional strategies to reduce their spinal nociception, as quantified by the nociceptive flexor reflex (RIII reflex), under visual feedback about their RIII reflex size. The aim of the present study was to test whether also subjects with chronic back pain can achieve a modulation of their descending pain inhibition under RIII feedback. In total, 33 subjects with chronic back pain received either true (n = 18) or sham RIII feedback (n = 15), 15 healthy control subjects received true RIII feedback. All three groups achieved significant RIII suppression, largest in controls (to 76 ± 26% of baseline), intermediate in chronic back pain subjects receiving true feedback (to 82 ± 13%) and smallest in chronic back pain subjects receiving sham feedback (to 89 ± 14%, all p chronic pain subjects receiving true feedback significantly improved their descending inhibition over the feedback training, quantified by the conditioned pain modulation effect (test pain reduction of baseline before training: to 98 ± 26%, after: to 80 ± 21%, p chronic back pain can achieve a reduction of their spinal nociception and improve their descending pain inhibition under RIII feedback training. Subjects with chronic back pain can learn to control their spinal nociception, quantified by the RIII reflex, when they receive feedback about the RIII reflex. © 2017 European Pain Federation - EFIC®.

  20. Changes in thermal nociceptive responses in dairy cows following experimentally induced Esherichia coli mastitis

    DEFF Research Database (Denmark)

    Rasmussen, Ditte B.; Fogsgaard, Katrine; Røntved, Christine Maria

    2011-01-01

    Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS......) in dairy cows with experimentally induced Escherichia coli mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables....

  1. CORTICAL RESPONSES TO SALIENT NOCICEPTIVE AND NOT NOCICEPTIVE STIMULI IN VEGETATIVE AND MINIMAL CONSCIOUS STATE

    Directory of Open Access Journals (Sweden)

    MARINA eDE TOMMASO

    2015-01-01

    Full Text Available Aims Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient multimodal visual, acoustic, somatosensory electric non nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation.Methods: Five Vegetative State (VS, 4 Minimally Conscious State (MCS patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 sec. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2 vertex complex in the 500 msec post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R and Coma Recovery Scale (CRS-R for clinical evaluation of pain perception and consciousness impairment.Results: The laser evoked potentials (LEPs were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the

  2. (-)-α-Bisabolol reduces orofacial nociceptive behavior in rodents.

    Science.gov (United States)

    Melo, Luana Torres; Duailibe, Mariana Araújo Braz; Pessoa, Luciana Moura; da Costa, Flávio Nogueira; Vieira-Neto, Antonio Eufrásio; de Vasconcellos Abdon, Ana Paula; Campos, Adriana Rolim

    2017-02-01

    The purposes of this study were to evaluate the anti-nociceptive effect of oral and topical administration of (-)-α-bisabolol (BISA) in rodent models of formalin- or cinnamaldehyde-induced orofacial pain and to explore the inhibitory mechanisms involved. Orofacial pain was induced by injecting 1.5% formalin into the upper lip of mice (20 μL) or into the temporomandibular joint (TMJ) of rats (50 μL). In another experiment, orofacial pain was induced with cinnamaldehyde (13.2 μg/lip). Nociceptive behavior was proxied by time (s) spent rubbing the injected area and by the incidence of head flinching. BISA (100, 200, or 400 mg/kg p.o. or 50, 100, or 200 mg/mL topical) or vehicle was administered 60 min before pain induction. The two formulations (lotion and syrup) were compared with regard to efficacy. The effect of BISA remained after incorporation into the formulations, and nociceptive behavior decreased significantly in all tests. The high binding affinity observed for BISA and TRPA1 in the molecular docking study was supported by in vivo experiments in which HC-030031 (a TRPA1 receptor antagonist) attenuated pain in a manner qualitatively and quantitatively similar to that of BISA. Blockers of opioid receptors, NO synthesis, and K + ATP channels did not affect orofacial pain, nor inhibit the effect of BISA. In conclusion, BISA had a significant anti-nociceptive effect on orofacial pain. The effect may in part be due to TRPA1 antagonism. The fact that the effect of BISA remained after incorporation into oral and topical formulations suggests that the compound may be a useful adjuvant in the treatment of orofacial pain.

  3. A study of the reliability of the Nociception Coma Scale.

    Science.gov (United States)

    Riganello, F; Cortese, M D; Arcuri, F; Candelieri, A; Guglielmino, F; Dolce, G; Sannita, W G; Schnakers, C

    2015-04-01

    In this study, we investigated the reliability of the Nociception Coma Scale which has recently been developed to assess nociception in non-communicative, severely brain-injured patients. Prospective cross-sequential study. Semi-intensive care unit and long-term brain injury care. Forty-four patients diagnosed as being in a vegetative state (n=26) or in a minimally conscious state (n=18). Patients were assessed by two experts (rater A and rater B) on two consecutive weeks to measure inter-rater agreement and test-retest reliability. Total scores and subscores of the Nociception Coma Scale. We performed a total of 176 assessments. The inter-rater agreement was moderate for the total scores (k = 0.57) and fair to substantial for the subscores (0.33 ≤ k ≤ 0.62) on week 2. The test-retest reliability was substantial for the total scores (k = 0.66) and moderate to almost perfect for the subscores (0.53 ≤ k ≤ 0.96) for rater A. The inter-rater agreement was weaker on week 1, whereas the test-retest reliability was lower for the least experienced rater (rater B). This study provides further evidence of the psychometric qualities of the Nociception Coma Scale. Future studies should assess the impact of practical experience and background on administration and scoring of the scale. © The Author(s) 2014.

  4. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats.

    Directory of Open Access Journals (Sweden)

    Luiz Fabio Dimov

    Full Text Available Transcranial direct current stimulation (tDCS is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG and the dorsal horn of the spinal cord (DHSC in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1, which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.

  5. Measuring cutaneous thermal nociception in group-housed pigs using laser technique - effects of laser power output

    DEFF Research Database (Denmark)

    Herskin, Mette S.; Ladevig, Jan; Arendt-Nielsen, Lars

    2009-01-01

    Nociceptive testing is a valuable tool in the development of pharmaceutical products, for basic nociceptive research, and for studying changes in pain sensitivity is investigated after inflammatory states or nerve injury. However, in pigs only very limited knowledge about nociceptive processes...... nociceptive stimulation from a computer-controlled CO2-laser beam applied to either the caudal part of the metatarsus on the hind legs or the shoulder region of gilts. In Exp. 1, effects of laser power output (0, 0.5, 1, 1.5 and 2 W) on nociceptive responses toward stimulation on the caudal aspects...... of the metatarsus were examined using 15 gilts kept in one group and tested in individual feeding stalls after feeding. Increasing the power output led to gradually decreasing latency to respond (P 

  6. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state

    Science.gov (United States)

    de Tommaso, Marina; Navarro, Jorge; Lanzillotti, Crocifissa; Ricci, Katia; Buonocunto, Francesca; Livrea, Paolo; Lancioni, Giulio E.

    2015-01-01

    Aims: Questions regarding perception of pain in non-communicating patients and the management of pain continue to raise controversy both at a clinical and ethical level. The aim of this study was to examine the cortical response to salient visual, acoustic, somatosensory electric non-nociceptive and nociceptive laser stimuli and their correlation with the clinical evaluation. Methods: Five Vegetative State (VS), 4 Minimally Conscious State (MCS) patients and 11 age- and sex-matched controls were examined. Evoked responses were obtained by 64 scalp electrodes, while delivering auditory, visual, non-noxious electrical and noxious laser stimulation, which were randomly presented every 10 s. Laser, somatosensory, auditory and visual evoked responses were identified as a negative-positive (N2-P2) vertex complex in the 500 ms post-stimulus time. We used Nociception Coma Scale-Revised (NCS-R) and Coma Recovery Scale (CRS-R) for clinical evaluation of pain perception and consciousness impairment. Results: The laser evoked potentials (LEPs) were recognizable in all cases. Only one MCS patient showed a reliable cortical response to all the employed stimulus modalities. One VS patient did not present cortical responses to any other stimulus modality. In the remaining participants, auditory, visual and electrical related potentials were inconstantly present. Significant N2 and P2 latency prolongation occurred in both VS and MCS patients. The presence of a reliable cortical response to auditory, visual and electric stimuli was able to correctly classify VS and MCS patients with 90% accuracy. Laser P2 and N2 amplitudes were not correlated with the CRS-R and NCS-R scores, while auditory and electric related potentials amplitude were associated with the motor response to pain and consciousness recovery. Discussion: pain arousal may be a primary function also in vegetative state patients while the relevance of other stimulus modalities may indicate the degree of cognitive and motor

  7. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  8. CGRPα within the Trpv1-Cre population contributes to visceral nociception.

    Science.gov (United States)

    Spencer, Nick J; Magnúsdóttir, Elín I; Jakobsson, Jon E T; Kestell, Garreth; Chen, Bao Nan; Morris, David; Brookes, Simon J; Lagerström, Malin C

    2018-02-01

    The role of calcitonin gene-related peptide (CGRP) in visceral and somatic nociception is incompletely understood. CGRPα is highly expressed in sensory neurons of dorsal root ganglia and particularly in neurons that also express the transient receptor potential cation channel subfamily V member 1 (Trpv1). Therefore, we investigated changes in visceral and somatic nociception following deletion of CGRPα from the Trpv1-Cre population using the Cre/lox system. In control mice, acetic acid injection (0.6%, ip) caused significant immobility (time stationary), an established indicator of visceral pain. In CGRPα-mCherry lx/lx ;Trpv1-Cre mice, the duration of immobility was significantly less than controls, and the distance CGRPα-mCherry lx/lx ;Trpv1-Cre mice traveled over 20 min following acetic acid was significantly greater than controls. However, following acetic acid injection, there was no difference between genotypes in the writhing reflex, number of abdominal licks, or forepaw wipes of the cheek. CGRPα-mCherry lx/lx ;Trpv1-Cre mice developed more pronounced inflammation-induced heat hypersensitivity above baseline values compared with controls. However, analyses of noxious acute heat or cold transmission revealed no difference between genotypes. Also, odor avoidance test, odor preference test, and buried food test for olfaction revealed no differences between genotypes. Our findings suggest that CGRPα-mediated transmission within the Trpv1-Cre population plays a significant role in visceral nociceptive pathways underlying voluntary movement. Monitoring changes in movement over time is a sensitive parameter to identify differences in visceral nociception, compared with writhing reflexes, abdominal licks, or forepaw wipes of the cheek that were unaffected by deletion of CGRPα- from Trpv1-Cre population and likely utilize different mechanisms. NEW & NOTEWORTHY The neuropeptide calcitonin gene-related peptide (CGRP) is highly colocalized with transient receptor

  9. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  10. The role of muscles in tension-type headache

    DEFF Research Database (Denmark)

    Bendtsen, Lars; Fernández-de-la-Peñas, César

    2011-01-01

    The tenderness of pericranial myofascial tissues and number of myofascial trigger points are considerably increased in patients with tension-type headache (TTH). Mechanisms responsible for the increased myofascial pain sensitivity have been studied extensively. Peripheral activation...... to prolonged nociceptive stimuli from pericranial myofascial tissues seem to be responsible for the conversion of episodic to chronic TTH. Treatment directed toward muscular factors include electromyography biofeedback, which has a documented effect in patients with TTH, as well as physiotherapy and muscle...

  11. Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact.

    Science.gov (United States)

    Green, Barry G; Pope, Jennifer V

    2003-02-01

    In a previous study of the heat grill illusion, sensations of burning and stinging were sometimes reported when the skin was cooled by as little as 2 degrees C. Informal tests subsequently indicated that these nociceptive sensations were experienced if cooling occurred when the stimulating thermode rested on the skin, but not when the thermode was cooled and then touched to the skin. In experiment 1 subjects judged the intensity of thermal (cold/warm) and nociceptive (burning/stinging) sensations when the volar surface of the forearm was cooled to 25 degrees C (1) via a static thermode (Static condition), or (2) via a cold thermode touched to the skin (Dynamic condition). The total area of stimulation was varied from 2.6 to 10.4 cm(2) to determine if the occurrence of nociceptive sensations depended upon stimulus size. Burning/stinging was rated 10.3 times stronger in the Static condition than in the Dynamic condition, and this difference did not vary significantly with stimulus size. In experiment 2, thermal and nociceptive sensations were measured during cooling to just 31 degrees, 29 degrees or 27 degrees C, and data were obtained on the frequency at which different sensation qualities were experienced. Stinging was the most frequently reported nociceptive quality in the Static condition, and stinging and burning were both markedly reduced in the Dynamic condition. In experiment 3 we tested the possibility that dynamic contact might have inhibited burning and stinging not because of mechanical contact per se, but rather because dynamic contact caused higher rates of cooling. However, varying cooling rate over a tenfold range (-0.5 degrees to -5.0 degrees /s) had no appreciable effect on the frequency of stinging and burning. Overall, the data show that mild cooling can produce nociceptive sensations that are suppressed under conditions of dynamic mechanical contact. The latter observation suggests that cold is perceived differently during active contact with

  12. Regulation of body temperature and nociception induced by non-noxious stress in rat.

    Science.gov (United States)

    Vidal, C; Suaudeau, C; Jacob, J

    1984-04-09

    The effects of 3 different non-noxious stressors on body temperature (Tb) were investigated in the rat: (1) loose restraint in cylinders, (2) removal of the rats from cylinders, exposure to a novel environment and replacement in cylinders, a stressor called here 'novelty', and (3) gentle holding of the rats by the nape of the neck. Loose restraint and 'novelty' produced hyperthermia. On the contrary, holding induced hypothermia. Hypophysectomy (HX) reduced basal Tb, abolished restraint hyperthermia and reduced both 'novelty' hyperthermia and holding hypothermia. Dexamethasone ( DEXA ) had no effect upon either restraint or novelty hyperthermia but reduced the hypothermia. Naloxone (Nx) produced a slight fall in basal Tb accounting for its reduction of restraint and 'novelty' hyperthermias ; it did not affect holding hypothermia. The inhibitory effects of HX suggest a participation of the pituitary in the hyperthermias ; the neurointermediate lobe would be involved as the hyperthermias were not affected by DEXA , which is known to block the stress-induced release of pituitary secretions from the anterior lobe but not from the neurointermediate lobe. In contrast, substances from the anterior lobe might participate in hypothermia due to holding since it is reduced by HX and DEXA . As to the effects of Nx, endogenous opioids would not be significantly involved in the thermic effects of the stressors used in this study; they might play, if any, only a minor role in the regulation of basal Tb. These results are compared with those previously obtained on nociception using the same non-noxious stressors. It emerges that, depending on the stressor, different types of association between thermoregulation and nociception may occur, i.e. hyperthermia with analgesia, hyperthermia with hyperalgesia and hypothermia with hyperalgesia.

  13. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1

    Directory of Open Access Journals (Sweden)

    Yelena Nersesyan

    2017-11-01

    Full Text Available Oxytocin is a hormone with various actions. Oxytocin-containing parvocellular neurons project to the brainstem and spinal cord. Oxytocin release from these neurons suppresses nociception of inflammatory pain, the molecular mechanism of which remains unclear. Here, we report that the noxious stimulus receptor TRPV1 is an ionotropic oxytocin receptor. Oxytocin elicits TRPV1 activity in native and heterologous expression systems, regardless of the presence of the classical oxytocin receptor. In TRPV1 knockout mice, DRG neurons exhibit reduced oxytocin sensitivity relative to controls, and oxytocin injections significantly attenuate capsaicin-induced nociception in in vivo experiments. Furthermore, oxytocin potentiates TRPV1 in planar lipid bilayers, supporting a direct agonistic action. Molecular modeling and simulation experiments provide insight into oxytocin-TRPV1 interactions, which resemble DkTx. Together, our findings suggest the existence of endogenous regulatory pathways that modulate nociception via direct action of oxytocin on TRPV1, implying its analgesic effect via channel desensitization.

  14. Changes in thermal nociceptive responses in dairy cows following experimentally induced Escherichia coli mastitis

    Directory of Open Access Journals (Sweden)

    Klaas Ilka C

    2011-05-01

    Full Text Available Abstract Background Mastitis is a high incidence disease in dairy cows. The acute stage is considered painful and inflammation can lead to hyperalgesia and thereby contribute to decreased welfare. The aim of this study was to examine changes in nociceptive responses toward cutaneous nociceptive laser stimulation (NLS in dairy cows with experimentally induced Escherichia coli mastitis, and correlate behavioral changes in nociceptive responses to clinical and paraclinical variables. Methods Seven Danish Holstein-Friesian cows were kept in tie-stalls, where the E. coli associated mastitis was induced and laser stimulations were conducted. Measurements of rectal temperature, somatic cell counts, white blood cell counts and E. coli counts were conducted. Furthermore, scores were given for anorexia, local udder inflammation and milk appearance to quantify the local and systemic disease response. In order to quantify the nociceptive threshold, behavioral responses toward cutaneous NLS applied to six skin areas at the tarsus/metatarsus and udder hind quarters were registered at evening milking on day 0 (control and days 1, 2, 3, 6 and 10 after experimental induction of mastitis. Results All clinical and paraclinical variables were affected by the induced mastitis. All cows were clinically ill on days 1 and 2. The cows responded behaviorally toward the NLS. For hind leg stimulation, the proportion of cows responding by stepping was higher on day 0 than days 3 and 6, and the frequency of leg movements after laser stimulation tended to decrease on day 1 compared to the other days. After udder stimulation, the proportion of cows responding by stepping was higher on day 1 than on all other days of testing. Significant correlations between the clinical and paraclinical variables of disease and the behavioral responses toward nociceptive stimulation were found. Conclusions Changes in behavioral responses coincide with peaks in local and systemic signs of E

  15. Chronic intrathecal cannulation enhances nociceptive responses in rats

    Directory of Open Access Journals (Sweden)

    Almeida F.R.C.

    2000-01-01

    Full Text Available The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2 was significantly increased in cannulated (Cn rats, compared with naive (Nv or sham-operated (Sh rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%. The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.

  16. Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models.

    Science.gov (United States)

    Teodoro, Fernanda C; Tronco Júnior, Marcos F; Zampronio, Aleksander R; Martini, Alessandra C; Rae, Giles A; Chichorro, Juliana G

    2013-06-01

    There is accumulating evidence that substance P released from peripheral sensory neurons participates in inflammatory and neuropathic pain. In this study it was investigated the ability of substance P to induce orofacial nociception and thermal and mechanical hyperalgesia, as well as the role of NK1 receptors on models of orofacial inflammatory and neuropathic pain. Substance P injected into the upper lip at 1, 10 and 100 μg/50 μL failed to induce nociceptive behavior. Also, substance P (0.1-10 μg/50 μL) injected into the upper lip did not evoke orofacial cold hyperalgesia and when injected at 1 μg/50 μL did not induce mechanical hyperalgesia. However, substance P at this latter dose induced orofacial heat hyperalgesia, which was reduced by the pre-treatment of rats with a non-peptide NK1 receptor antagonist (SR140333B, 3mg/kg). Systemic treatment with SR140333B (3 mg/kg) also reduced carrageenan-induced heat hyperalgesia, but did not exert any influence on carrageenan-induced cold hyperalgesia. Blockade of NK1 receptors with SR140333B also reduced by about 50% both phases of the formalin response evaluated in the orofacial region. Moreover, heat, but not cold or mechanical, hyperalgesia induced by constriction of the infraorbital nerve, a model of trigeminal neuropathic pain, was abolished by pretreatment with SR140333B. Considering that substance P was peripherally injected (i.e. upper lip) and the NK1 antagonist used lacks the ability to cross the blood-brain-barrier, our results demonstrate that the peripheral SP/NK1 system participates in the heat hyperalgesia associated with inflammation or nerve injury and in the persistent pain evoked by formalin in the orofacial region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.

    Science.gov (United States)

    Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui

    2017-07-01

    Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Factors affecting mechanical (nociceptive) thresholds in piglets.

    Science.gov (United States)

    Janczak, Andrew M; Ranheim, Birgit; Fosse, Torunn K; Hild, Sophie; Nordgreen, Janicke; Moe, Randi O; Zanella, Adroaldo J

    2012-11-01

    To evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer. Descriptive, prospective cohort. Forty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age. Mechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data. Variance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and clinical settings. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  19. Muscle Thiobarbituric Acid Reactive Substance of the Atlantic Herring (Clupea harengus in Marinades Collected in the Market Network

    Directory of Open Access Journals (Sweden)

    Alena Halamíčková

    2010-01-01

    Full Text Available Fish fat belongs to highly specific nutritious elements especially due to its high content of polyunsaturated fatty acids. The aim of the present study was to determine the content of 2-thiobarbituric acid reactive substances in over-the-counter cold and warm marinades in which the base fish material consists of the Atlantic herring (Clupea harengus. Fifty six marinated fish products stored at refrigeration temperatures were analyzed before their expiration date. Their fat content was determined by means of the Soxhlet method and the TBARS validated fluorimetric micromethod. Lowest TBARS values were characteristic of warm baked marinades (1.17 ± 0.40 mg MDA/ kg muscle and in case of cold marinades for the rolled herring fillets with pepper (5.03 ± 0.54 mg MDA/kg muscle whereas the highest TBARS values were observed in warm cooked marinades (16.48 ± 4.22 mg MDA/kg muscle and in roll mops sold over the counter (7.61 ± 3.87 mg MDA/kg muscle. The results showed that fat content is not always critical for herring TBARS determination in marinades. For the consumer safety it is essential to pay attention to cold marinades in brine sold over the counter and baked marinades in aspic before their expiration date.

  20. Has central sensitization become independent of nociceptive input in chronic pancreatitis patients who fail thoracoscopic splanchnicectomy?

    NARCIS (Netherlands)

    Bouwense, S.A.W.; Buscher, H.C.J.L.; Goor, H. van; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND AND OBJECTIVES: : Central sensitization due to visceral pancreatic nociceptive input may be important in chronic pancreatitis pain. We investigated whether bilateral thoracoscopic splanchnicectomy (BTS) to reduce nociceptive input in chronic pancreatitis patients (CPP) with poor pain

  1. Cellular mechanisms of nociception in the frog

    Czech Academy of Sciences Publication Activity Database

    Kuffler, D. P.; Lyfenko, Alla; Vyklický st., Ladislav; Vlachová, Viktorie

    2002-01-01

    Roč. 88, č. 4 (2002), s. 1843-1850 ISSN 0022-3077 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Grant - others:NATO(XX) Grant 977062 Institutional research plan: CEZ:AV0Z5011922 Keywords : cellular mechanisms of nociception * frog Subject RIV: FH - Neurology Impact factor: 3.743, year: 2002

  2. Possible effects of mobilisation on acute post-operative pain and nociceptive function after total knee arthroplasty

    DEFF Research Database (Denmark)

    Lunn, T H; Kristensen, B B; Gaarn-Larsen, L

    2012-01-01

    anaesthesia and analgesia underwent an exercise (mobilisation) strategy on the first post-operative morning consisting of 25-m walking twice, with a 20-min interval. Pain was assessed at rest and during passive hip and knee flexion before, and 5 and 20 min after walk, as well as during walk. Nociceptive......BACKGROUND: Experimental studies in animals, healthy volunteers, and patients with chronic pain suggest exercise to provide analgesia in several types of pain conditions and after various nociceptive stimuli. To our knowledge, there is no data on the effects of exercise on pain and nociceptive...... function in surgical patients despite early mobilisation being an important factor to enhance recovery. We therefore investigated possible effects of mobilisation on post-operative pain and nociceptive function after total knee arthroplasty (TKA). METHODS: Thirty patients undergoing TKA under standardised...

  3. Mechanisms of G Protein-Coupled Estrogen Receptor-Mediated Spinal Nociception

    DEFF Research Database (Denmark)

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.

    2012-01-01

    . Cytosolic calcium concentration elevates faster and with higher amplitude following G-1 intracellular microinjections compared to extracellular exposure, suggesting subcellular GPER functionality. Thus, GPER activation results in spinal nociception, and the downstream mechanisms involve cytosolic calcium......Human and animal studies suggest that estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pronociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER......) activation. Membrane depolarization and increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological, and fluorescent imaging studies, we evaluated GPER involvement...

  4. Central representation of muscle pain and mechanical hyperesthesia in the orofacial region: a positron emission tomography study

    DEFF Research Database (Denmark)

    Kupers, Rron; Svensson, Peter; Jensen, Troels Staehlin

    2004-01-01

    Functional neuroimaging studies of the human brain have revealed a network of brain regions involved in the processing of nociceptive information. However, little is known of the cerebral processing of pain originating from muscles. The aim of this study was to investigate the cerebral activation...... pattern evoked by experimental jaw-muscle pain and its interference by simultaneous mechanical stimuli, which has been shown to evoke hyperesthesia. Ten healthy subjects participated in a PET study and jaw-muscle pain was induced by bolus injections of 5% hypertonic saline into the right masseter muscle....... Repeated von Frey hair stimulation (0.5 Hz) of the skin above the masseter muscle was used as the mechanical stimulus. Hypertonic saline injections caused strong muscle pain spreading to adjacent areas. von Frey stimulation was rated as non-painful but produced hyperesthesia during jaw-muscle pain. Jaw...

  5. Effect of detomidine on visceral and somatic nociception and duodenal motility in conscious adult horses.

    Science.gov (United States)

    Elfenbein, Johanna R; Sanchez, L Chris; Robertson, Sheilah A; Cole, Cynthia A; Sams, Richard

    2009-03-01

    To evaluate the effects of detomidine on visceral and somatic nociception, heart and respiratory rates, sedation, and duodenal motility and to correlate these effects with serum detomidine concentrations. Nonrandomized, experimental trial. Five adult horses, each with a permanent gastric cannula weighing 534 +/- 46 kg. Visceral nociception was evaluated by colorectal (CRD) and duodenal distension (DD). The duodenal balloon was used to assess motility. Somatic nociception was assessed via thermal threshold (TT). Nose-to-ground (NTG) height was used as a measure of sedation. Serum was collected for pharmacokinetic analysis. Detomidine (10 or 20 microg kg(-1)) was administered intravenously. Data were analyzed by means of a three-factor anova with fixed factors of treatment and time and random factor of horse. When a significant time x treatment interaction was detected, differences were compared with a simple t-test or Bonferroni t-test. Significance was set at p Detomidine produced a significant, dose-dependent decrease in NTG height, heart rate, and skin temperature and a significant, nondose-dependent decrease in respiratory rate. Colorectal distension threshold was significantly increased with 10 microg kg(-1) for 15 minutes and for at least 165 minutes with 20 microg kg(-1). Duodenal distension threshold was significantly increased at 15 minutes for the 20 microg kg(-1) dose. A significant change in TT was not observed at either dose. A marked, immediate decrease in amplitude of duodenal contractions followed detomidine administration at both doses for 50 minutes. Detomidine caused a longer period of visceral anti-nociception as determined by CRD but a shorter period of anti-nociception as determined by DD than has been previously reported. The lack of somatic anti-nociception as determined by TT testing may be related to the marked decrease in skin temperature, likely caused by peripheral vasoconstriction and the low temperature cut-off of the testing device.

  6. Algogenic substances and metabolic status in work-related Trapezius Myalgia

    DEFF Research Database (Denmark)

    Gerdle, Björn; Kristiansen, Jesper; Larsson, Britt

    2014-01-01

    (LDH), substance P, and N-terminal propeptide of procollagen type I (PINP) in the trapezius muscle at rest and during repetitive/stressful work. These data were also used in multivariate analyses together with previously presented data (Eur J Appl Physiol 108:657-669, 2010): trapezius muscle blood flow......BACKGROUND: This study compares the levels of algesic substances between subjects with trapezius myalgia (TM) and healthy controls (CON) and explores the multivariate correlation pattern between these substances, pain, and metabolic status together with relative blood flow changes reported in our...

  7. Linkage between increased nociception and olfaction via a SCN9A haplotype.

    Directory of Open Access Journals (Sweden)

    Dirk Heimann

    Full Text Available BACKGROUND AND AIMS: Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. METHODS: SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14 or rs6746030C>T (R1150W; n = 21 were compared with non-carriers (n = 40. Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli. RESULTS: The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1, 1 allele: 10.6±2.6 (n = 34, 2 alleles: 9.5±2.1 (n = 40. The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m(2, 1 allele: 29.8±10.4 N/m(2, 2 alleles: 33.5±10.2 N/m(2. CONCLUSIONS: The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level.

  8. Comparison of voiding function and nociceptive behavior in two rat models of cystitis induced by cyclophosphamide or acetone

    Science.gov (United States)

    Saitoh, Chikashi; Yokoyama, Hitoshi; Chancellor, Michael B.; de Groat, William C.; Yoshimura, Naoki

    2009-01-01

    Aims Nociceptive behavior and its relationship with bladder dysfunction were investigated in two cystitis models, which were induced by intraperitoneal (ip) injection of cyclophosphamide (CYP) or intravesical instillation of acetone, using freely moving, non-catheterized conscious rats. Methods Female Sprague-Dawley rats were used. Cystitis was induced by ip injection of CYP (100 and 200mg/kg) or intravesical instillation of acetone (10, 30 and 50%) via a polyethylene catheter temporarily inserted into the bladder through the urethra. Then the incidence of nociceptive behavior (immobility with decreased breathing rates) was scored. Voided urine was collected simultaneously and continuously to measure bladder capacity. The plasma extravasation in the bladder was quantified by an evans blue (EB) dye leakage technique. Results CYP (100mg/kg, ip) induced nociceptive behavior without affecting bladder capacity or EB concentration in the bladder. A higher dose of CYP (200mg/kg, ip) decreased bladder capacity and increased EB levels as well as nociceptive behavior. In contrast, intravesical instillation of acetone (30%) decreased bladder capacity and increased EB levels, but evoked nociceptive behavior less frequently compared with CYP-treated animals. In capsaicin pretreated rats, nociceptive behavior induced by CYP or acetone was reduced; however, the overall effects of CYP or acetone on bladder capacity and bladder EB levels were unaffected. Conclusions These results suggest that there is a difference in the induction process of nociceptive behavior and small bladder capacity after two different types of bladder irritation and that C-fiber sensitization is more directly involved in pain sensation than reduced bladder capacity. PMID:19618450

  9. Nociceptive Effects of Locally Treated Metoprolol

    Directory of Open Access Journals (Sweden)

    Nursima Cukadar

    2015-06-01

    Results: Metoprolol, an antagonist, significantly decreased the thermal latency and mechanical thresholds with dose and time dependent manner. However, dobutamine, an agonist, enhanced the latency and thresholds dose and time dependent. Conclusions: This results suggest that in contrast to dobutamine, locally treated metoprolol may cause hyperalgesic and allodynic actions. In addition, our results can demonstrate that peripheral beta-adrenergic receptors can play important roles in nociceptive process. [Cukurova Med J 2015; 40(2.000: 258-266

  10. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture.

    Science.gov (United States)

    Schreier, Barbara; Schwerdt, Gerald; Heise, Christian; Bethmann, Daniel; Rabe, Sindy; Mildenberger, Sigrid; Gekle, Michael

    2016-07-01

    Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  12. Influence of Chronic Stress and Oclusal Interference on Masseter Muscle Pain in Rat

    OpenAIRE

    Simonić-Kocijan, Sunčana; Uhač, Ivone; Braut, Vedrana; Kovač, Zoran; Kovačević Pavičić, Daniela; Fugošić, Vesna; Muhvić Urek, Miranda

    2009-01-01

    This study aimed to investigate the individual effects of chronic stress and occlusal interference, as well as their combined influence on masseter muscle pain. Experiments were performed on 28 male Wistar rats. Animals were submitted to chronic stress procedure, exposed to occlusal interference, or exposed to both mantioned procedures. At the end of the procedure animals were submitted to orofacial formalin test, and nociceptive behavioral response was evaluated. Statisticaly significant dif...

  13. Antioxidant and orofacial anti-nociceptive activities of the stem bark aqueous extract of Anadenanthera colubrina (Velloso) Brenan (Fabaceae).

    Science.gov (United States)

    Damascena, N P; Souza, M T S; Almeida, A F; Cunha, R S; Damascena, N P; Curvello, R L; Lima, A C B; Almeida, E C V; Santos, C C S; Dias, A S; Paixão, M S; Souza, L M A; Quintans Júnior, L J; Estevam, C S; Araujo, B S

    2014-01-01

    The anti-nociceptive and antioxidant activities of the Anadenantheracolubrina stem bark aqueous extract (AEAC) were investigated. AEAC (30 μg/mL) reduced 94.8% of 2,2-diphenyl-1-picrylhydrazyl radical and prevented 64% (200 μg/mL) of lipid peroxidation caused by 2,2'-azobis(2-methylpropionamidine) dihydrochloride-induced peroxyl radicals. AEAC treatment (200 and 400 mg/kg) significantly (p < 0.001) reduced mice orofacial nociception in the first (61.4% and 62.6%, respectively) and second (48.9% and 61.9%, respectively) phases of the formalin test. Nociception caused by glutamate was significantly (p < 0.001) reduced by up to 79% at 400 mg/kg, while 56-60% of the nociceptive behaviour induced by capsaicin was significantly inhibited by AEAC (100-400 mg/kg). Mice treated with AEAC did not show changes in motor performance in the Rota-rod apparatus. It appears that AEAC is of pharmacological importance in treating pain due to its anti-nociceptive effects, which were shown to be mediated by central and peripheral mechanisms.

  14. Anti-inflammatory and anti-nociceptive activities of methanol extract from aerial part of Phlomis younghusbandii Mukerjee.

    Directory of Open Access Journals (Sweden)

    Qiu-Shi Wang

    Full Text Available This study was designed to investigate the anti-inflammatory and anti-nociceptive activity of the methanol extract from the aerial part of Phlomis younghusbandii (MEAP and to explore the possible related mechanisms. Anti-inflammatory effects of MEAP were evaluated by using the ear edema test induced by dimethylbenzene and vascular permeability test induced by acetic acid. Anti-nociceptive activities of MEAP were evaluated by the chemical nociception in models of acetic acid-induced writhing and formalin-induced hind paw licking, and by the thermal nociception in hot plate tests. Mechanisms of MEAP activities also were explored by evaluating expression levels of TNF-α, IL-6 and iNOS induced by LPS using real-time fluorogenic PCR and expression of COX-2 using Western blotting and an open-field test. The results indicated that the MEAP administered orally could significantly decrease ear edema induced by dimethylbenzene and increase vascular permeability induced by acetic acid. Additionally, the nociceptions induced by acetic acid and formalin were significantly inhibited. The anti-nociceptive effect could not be decreased by naloxone in the formalin test, and MEAP did not affect the normal autonomic activities of mice. Expression levels of pro-inflammatory cytokines (TNF-α, IL-6, iNOS induced by LPS were decreased obviously by treatment with MEAP. Furthermore, COX-2 expression in the spinal dorsal horns of the pain model mice induced by formalin was significantly down-regulated by MEAP. In conclusion, MEAP has significant anti-inflammatory and antinociceptive activities, and the mechanisms may be related to the down-regulated expression of TNF-α, IL-6, iNOS and COX-2.

  15. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    International Nuclear Information System (INIS)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-01-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125 I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells

  16. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis.

    Science.gov (United States)

    Schwartz, Erica S; Xie, Amy; La, Jun-Ho; Gebhart, G F

    2015-08-01

    Chronic nonbacterial prostatitis, characterized by genitourinary pain in the pelvic region in the absence of an identifiable cause, is common in adult males. Surprisingly, the sensory innervation of the prostate and mediators that sensitize its innervation have received little attention. We thus characterized a mouse model of chronic prostatitis, focusing on the prostate innervation and how organ inflammation affects gene expression of putative nociceptive markers in prostate afferent somata in dorsal root ganglia (DRG) and mediators in the prostate. Retrograde tracing (fast blue) from the prostate revealed that thoracolumbar and lumbosacral DRG are the principal sources of somata of prostate afferents. Nociceptive markers (eg, transient receptor potential, TREK, and P2X channels) were upregulated in fast blue-labeled thoracolumbar and lumbosacral somata for up to four weeks after inflaming the prostate (intraprostate injection of zymosan). Prostatic inflammation was evident histologically, by monocyte infiltration and a significant increase in mast cell tryptase activity 14, 21, and 28 days after zymosan injection. Interleukin 10 and NGF were also significantly upregulated in the prostate throughout the 4 weeks of inflammation. Open-field pain-related behaviors (eg, rearing) were unchanged in prostate-inflamed mice, suggesting the absence of ongoing nociception, but withdrawal thresholds to lower abdominal pressure were significantly reduced. The increases in IL-10, mast cell tryptase, and NGF in the inflamed prostate were cotemporaneous with reduced thresholds to probing of the abdomen and upregulation of nociceptive markers in DRG somata innervating the prostate. The results provide insight and direction for the study of mechanisms underlying pain in chronic prostatitis.

  17. Borneol, a Bicyclic Monoterpene Alcohol, Reduces Nociceptive Behavior and Inflammatory Response in Mice

    Directory of Open Access Journals (Sweden)

    Jackson Roberto Guedes da Silva Almeida

    2013-01-01

    Full Text Available Borneol, a bicyclic monoterpene, has been evaluated for antinociceptive and anti-inflammatory activities. Antinociceptive and anti-inflammatory activities were studied by measuring nociception by acetic acid, formalin, hot plate, and grip strength tests, while inflammation was prompted by carrageenan-induced peritonitis. The rotarod test was used to evaluate motor coordination. Borneol produced a significant (P<0.01 reduction of the nociceptive behavior at the early and late phases of paw licking and reduced the writhing reflex in mice (formalin and writhing tests, resp.. When the hot plate test was conducted, borneol (in higher dose produced an inhibition (P<0.05 of the nociceptive behavior. Such results were unlikely to be provoked by motor abnormality. Additionally, borneol-treated mice reduced the carrageenan-induced leukocytes migration to the peritoneal cavity. Together, our results suggest that borneol possess significant central and peripheral antinociceptive activity; it has also anti-inflammatory activity. In addition, borneol did not impair motor coordination.

  18. The nociceptive withdrawal reflex does not adapt to joint position change and short-term motor practice [v2; ref status: indexed, http://f1000r.es/2lr

    Directory of Open Access Journals (Sweden)

    Nathan Eckert

    2013-12-01

    Full Text Available The nociceptive withdrawal reflex is a protective mechanism to mediate interactions within a potentially dangerous environment. The reflex is formed by action-based sensory encoding during the early post-natal developmental period, and it is unknown if the protective motor function of the nociceptive withdrawal reflex in the human upper-limb is adaptable based on the configuration of the arm or if it can be modified by short-term practice of a similar or opposing motor action. In the present study, nociceptive withdrawal reflexes were evoked by a brief train of electrical stimuli applied to digit II, 1 in five different static arm positions and, 2 before and after motor practice that was opposite (EXT or similar (FLEX to the stereotyped withdrawal response, in 10 individuals. Withdrawal responses were quantified by the electromyography (EMG reflex response in several upper limb muscles, and by the forces and moments recorded at the wrist. EMG onset latencies and response amplitudes were not significantly different across the arm positions or between the EXT and FLEX practice conditions, and the general direction of the withdrawal response was similar across arm positions. In addition, the force vectors were not different after practice in either the practice condition or between EXT and FLEX conditions. We conclude the withdrawal response is insensitive to changes in elbow or shoulder joint angles as well as remaining resistant to short-term adaptations from the practice of motor actions, resulting in a generalized limb withdrawal in each case. It is further hypothesized that the multisensory feedback is weighted differently in each arm position, but integrated to achieve a similar withdrawal response to safeguard against erroneous motor responses that could cause further harm. The results remain consistent with the concept that nociceptive withdrawal reflexes are shaped through long-term and not short-term action based sensory encoding.

  19. Muscles and their role in episodic tension-type headache

    DEFF Research Database (Denmark)

    Bendtsen, L; Ashina, S; Moore, K A

    2016-01-01

    . Ibuprofen 400 mg and aspirin 1000 mg are recommended as drugs of first choice based on treatment effect, safety profile and costs. Non-pharmacological therapies include electromyographic biofeedback, physiotherapy and muscle relaxation therapy. Future studies should aim to identify the triggers...... of peripheral nociception and how to avoid peripheral and central sensitization. There is a need for more effective, faster acting drugs for acute TTH. CONCLUSION: Muscular factors play an important role in episodic TTH. Ibuprofen 400 mg and aspirin 1000 mg are recommended as drugs of first choice....

  20. Estradiol-induced antinociceptive responses on formalin-induced nociception are independent of COX and HPA activation.

    Science.gov (United States)

    Hunter, Deirtra A; Barr, Gordon A; Amador, Nicole; Shivers, Kai-Yvonne; Kemen, Lynne; Kreiter, Christopher M; Jenab, Shirzad; Inturrisi, Charles E; Quinones-Jenab, Vanya

    2011-07-01

    Estrogen modulates pain perception but how it does so is not fully understood. The aim of this study was to determine if estradiol reduces nociceptive responses in part via hypothalamic-pituitary-adrenal (HPA) axis regulation of cyclooxygenase (COX)-1/COX-2 activity. The first study examined the effects of estradiol (20%) or vehicle with concurrent injection nonsteroidal antiinflammatory drugs (NSAIDs) on formalin-induced nociceptive responding (flinching) in ovariectomized (OVX) rats. The drugs were ibuprofen (COX-1 and COX-2 inhibitor), SC560 (COX-1 inhibitor), or NS398 (COX-2 inhibitor). In a second study, estradiol's effects on formalin-induced nociception were tested in adrenalectomized (ADX), OVX, and ADX+OVX rats. Serum levels of prostaglandins (PG) PGE(2) and corticosterone were measured. Estradiol significantly decreased nociceptive responses in OVX rats with effects during both the first and the second phase of the formalin test. The nonsteroidal antiinflammatory drugs (NSAIDs) did not alter nociception at the doses used here. Adrenalectomy neither altered flinching responses in female rats nor reversed estradiol-induced antinociceptive responses. Estradiol alone had no effect on corticosterone (CORT) or prostaglandin levels after the formalin test, dissociating the effects of estradiol on behavior and these serum markers. Ibuprofen and NS398 significantly reduced PGE2 levels. CORT was not decreased by OVX surgery or by estradiol below that of ADX. Only IBU significantly increased corticosterone levels. Taken together, our results suggest that estradiol-induced antinociception in female rats is independent of COX activity and HPA axis activation. Copyright © 2010 Wiley-Liss, Inc.

  1. Trigeminal nociception-induced, cerebral Fos expression in the conscious rat

    NARCIS (Netherlands)

    Ter Horst, GJ; Meijler, WJ; Korf, J; Kemper, RHA

    2001-01-01

    Little is known about trigeminal nociception-induced cerebral activity and involvement of cerebral structures in pathogenesis of trigeminovascular headaches such as migraine. Neuroimaging has demonstrated cortical, hypothalamic and brainstem activation during the attack and after abolition with

  2. Application of a handheld Pressure Application Measurement device for the characterisation of mechanical nociceptive thresholds in intact pig tails

    DEFF Research Database (Denmark)

    Di Giminiani, Pierpaolo; Sandercock, Dale A.; Malcolm, Emma M.

    2016-01-01

    The assessment of nociceptive thresholds is employed in animals and humans to evaluate changes in sensitivity potentially arising from tissue damage. Its application on the intact pig tail might represent a suitable method to assess changes in nociceptive thresholds arising from tail injury...... to the body was observed (P knowledge, no other...... nociceptive threshold in pig tails. This methodological approach is possibly suitable for assessing changes in tail stump MNTs after tail injury caused by tail docking and biting....

  3. Usefulness of ultrasonographic examination of diagnosis of muscle hernia

    International Nuclear Information System (INIS)

    Choi, Jin Soo; Lee, Sung Moon

    2003-01-01

    To evaluate the usefulness of ultrasonography in diagnosis of muscle hernia. Ultrasonographic findings of seven patients with muscle hernia were retrospectively reviewed. The subjects consisted of 6 males and 1 female, age ranged from 17 to 66 years (mean=45 years). Ultrasonographic examination was performed using a high-frequency (7-15 MHz) linear probe during rest and stress states of the affected muscle, and both tranverse and longitudinal views were obtained. Six muscle herniations were located in the lower extremity in six cases while only one muscle herniation, in the upper extremity. Four cases showed a focal defect of the fascia with a localized bulging out of the muscle substance through the defect. Herniated muscle in stress state was larger and harder than in rest state. In 3 cases, defect of the fascia was not noted on ultrasonography. However, the affected muscle showed an abnormal contraction with a focal bulging out appearance during stress state. Ultrasonographically, the herniated muscle substance was less echogenic than the normal muscle without any evidence of muscle tear or associated mass in all cases. Ultrasonography is a simple and useful dynamic study of muscle hernia in diagnosis and differentiation of muscle hernia.

  4. Cognitive aspects of nociception and pain: bridging neurophysiology with cognitive psychology.

    Science.gov (United States)

    Legrain, V; Mancini, F; Sambo, C F; Torta, D M; Ronga, I; Valentini, E

    2012-10-01

    The event-related brain potentials (ERPs) elicited by nociceptive stimuli are largely influenced by vigilance, emotion, alertness, and attention. Studies that specifically investigated the effects of cognition on nociceptive ERPs support the idea that most of these ERP components can be regarded as the neurophysiological indexes of the processes underlying detection and orientation of attention toward the eliciting stimulus. Such detection is determined both by the salience of the stimulus that makes it pop out from the environmental context (bottom-up capture of attention) and by its relevance according to the subject's goals and motivation (top-down attentional control). The fact that nociceptive ERPs are largely influenced by information from other sensory modalities such as vision and proprioception, as well as from motor preparation, suggests that these ERPs reflect a cortical system involved in the detection of potentially meaningful stimuli for the body, with the purpose to respond adequately to potential threats. In such a theoretical framework, pain is seen as an epiphenomenon of warning processes, encoded in multimodal and multiframe representations of the body, well suited to guide defensive actions. The findings here reviewed highlight that the ERPs elicited by selective activation of nociceptors may reflect an attentional gain apt to bridge a coherent perception of salient sensory events with action selection processes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Anti-nociceptive effect of total alkaloids isolated from the seeds of ...

    African Journals Online (AJOL)

    pretreatment of the animals with naloxone (2 mg/kg) was performed to investigate whether the anti- nociceptive effect .... detecting the absorbance at 618 nm. Arecoline ..... attenuates food allergic responses in ovalbumin- sensitized mice.

  6. Anti-nociceptive and anti-inflammatory properties of the ethanolic ...

    African Journals Online (AJOL)

    Anti-nociceptive and anti-inflammatory properties of the ethanolic extract of Lagenaria breviflora whole fruit in rat and mice. ... Its effect was comparable especially at 200mg/kg body weight to those of diclofenac, indomethacin and ibuprofen. It could be suggested from the findings of this experiment that the extract may be ...

  7. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    Science.gov (United States)

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  8. The role of Drosophila Piezo in mechanical nociception.

    Science.gov (United States)

    Kim, Sung Eun; Coste, Bertrand; Chadha, Abhishek; Cook, Boaz; Patapoutian, Ardem

    2012-02-19

    Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo

  9. Identifying brain nociceptive information transmission in patients with chronic somatic pain

    Directory of Open Access Journals (Sweden)

    Don A. Davis

    2016-10-01

    Conclusion:. Collectively, the results suggest that, across 2 types of chronic pain, nociceptive-specific information is relayed through the spinothalamic pathway to the lateral thalamus, potentiated by pronociceptive descending modulation, and interrupting cortical cognitive processes.

  10. Suppression of thermal and chemical nociception in rats by methanol extract and its sub-fraction from lantana camara

    International Nuclear Information System (INIS)

    Simjee, S.U.; Perveen, H.; Zehra, S.Q.

    2016-01-01

    The traditional use of Lantana camara (Verbenaceae) is reported to include anti-nociceptive, antimicrobial, and immunosuppressant activity. To our knowledge no systematic study has been carried out on the anti-nociceptive activity of L. camara. The present study was designed to delineate the analgesic activity of L. camara extract and its fractions to elucidate the traditional belief in the painkilling effects. Experimental models employed were thermal and chemical-induced nociception assays. After initial screening of the methanol extract and its fractions prepared from the aerial parts of the plant, the dose of 50,100 and 200 mg/kg were selected and route of administration was i.p. The test samples were tested against a reference drug indomethacine (i.p. 5 mg/kg). The observations were made at 15, 30, 60, and 120 seconds following the administration of the samples or reference drug. Experiments on naloxone antagonism were conducted to determine involvement of opioid receptors. Compared to concurrent controls, a significant anti-nociceptive activity was observed in methanol extract LC (ED50 50 mg/kg, P < 0.002) and its sub-fractions LCEA-AQ (ED50 50 mg/kg, P < 0.004), LCEA (ED50 100 mg/kg, P < 0.004) and LCEA-PEI (ED50 100 mg/kg, P < 0.005). No apparent acute toxicity was observed in any test groups. The anti-nociceptive activity was not precipitated by naloxone antagonism indicating that these fractions do not act through opioid receptors. The methanol extract and active fractions of Lantana camara possess anti-nociceptive activity. Further investigations are needed to elucidate the mechanism of its action. (author)

  11. Tachycardia in response to remote capsaicin injection as a model for nociception in the ball python (Python regius).

    Science.gov (United States)

    Williams, Catherine J A; James, Lauren E; Bertelsen, Mads F; Wang, Tobias

    2016-07-01

    To quantify the effect of subcutaneous (SC) capsaicin injection on heart rate (HR) in ball pythons (Python regius) and to assess the efficacy of two opioids (morphine and butorphanol) in modifying this response. Prospective, randomized, unmatched study. Eleven mixed-sex, captive-bred ball pythons. Snakes were randomly assigned to three groups (n = 6) by intramuscular premedication: 1) control: saline (0.9 mL); 2) morphine (10 mg kg(-1) ); and 3) butorphanol (10 mg kg(-1) ). Three snakes were tested twice and another two were tested three times in different treatments administered 1 month apart. Under isoflurane anaesthesia, snakes were instrumented with SC electrocardiogram (ECG) electrodes and an SC catheter for remote stimulus delivery. After recovery from anaesthesia, all snakes, in visual and audial isolation from the experimenter, received a sham stimulus of saline (0.4 mL) via the SC catheter. A nociceptive stimulus of SC capsaicin (3 mg in 0.2 mL saline with 7% Tween 80) was then applied by catheter at 7 hours after premedication. In a subset (n = 3), two sham injections (saline 0.2 mL) preceded the capsaicin treatment. HR was recorded via ECG, and changes in HR (ΔHR) from baseline were calculated for all stimulations. Capsaicin injection was associated with a significant increase in HR [peak ΔHR: saline group: 8.8 ± 7.1 beats minute(-1) ; capsaicin group: 21.1 ± 5.8 beats minute(-1) (p = 0.0055)] and integrated ΔHR as a function of time. The administration of morphine or butorphanol 7 hours prior to nociception failed to significantly reduce the peak and integrated ΔHR. Butorphanol caused marked, long-lasting sedation as assessed by muscle tone. The HR response to an SC capsaicin injection can serve as a nociceptive model in P. regius. Morphine and butorphanol administration did not reduce HR response to capsaicin stimulation but produced significantly different effects on pre-stimulation HR and sedation. © 2015 Association

  12. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions.

    Science.gov (United States)

    Yegutkin, Gennady G; Guerrero-Toro, Cindy; Kilinc, Erkan; Koroleva, Kseniya; Ishchenko, Yevheniia; Abushik, Polina; Giniatullina, Raisa; Fayuk, Dmitriy; Giniatullin, Rashid

    2016-09-01

    Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

  13. Citral reduces nociceptive and inflammatory response in rodents

    OpenAIRE

    Quintans-Júnior, Lucindo J.; Guimarães, Adriana G.; Santana, Marilia T. de; Araújo, Bruno E.S.; Moreira, Flávia V.; Bonjardim, Leonardo R.; Araújo, Adriano A. S.; Siqueira, Jullyana S.; Antoniolli, Ângelo R.; Botelho, Marco A.; Almeida, Jackson R. G. S.; Santos, Márcio R. V.

    2011-01-01

    Citral (CIT), which contains the chiral enantiomers, neral (cis) and geranial (trans), is the majority monoterpene from Lippia alba and Cymbopogon citratus. The present study aimed to evaluate CIT for antinociceptive and anti-inflammatory activities in rodents. Antinociceptive and anti-inflammatory effects were studied by measuring nociception through acetic acid and formalin tests, while inflammation was verified by inducing peritonitis and paw edema with carrageenan. All tested doses of CIT...

  14. The Role of PPK26 in Drosophila Larval Mechanical Nociception

    Directory of Open Access Journals (Sweden)

    Yanmeng Guo

    2014-11-01

    Full Text Available In Drosophila larvae, the class IV dendritic arborization (da neurons are polymodal nociceptors. Here, we show that ppk26 (CG8546 plays an important role in mechanical nociception in class IV da neurons. Our immunohistochemical and functional results demonstrate that ppk26 is specifically expressed in class IV da neurons. Larvae with mutant ppk26 showed severe behavioral defects in a mechanical nociception behavioral test but responded to noxious heat stimuli comparably to wild-type larvae. In addition, functional studies suggest that ppk26 and ppk (also called ppk1 function in the same pathway, whereas piezo functions in a parallel pathway. Consistent with these functional results, we found that PPK and PPK26 are interdependent on each other for their cell surface localization. Our work indicates that PPK26 and PPK might form heteromeric DEG/ENaC channels that are essential for mechanotransduction in class IV da neurons.

  15. /sup 67/Ga-binding substances in stomach, small intestine, pancreas, and muscle

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Atsushi; Ando, Itsuko; Hirake, Tatsunosuke; Hisada, Kinichi

    1985-11-01

    Normal male rats were injected with either gallium citrate /sup 67/Ga or sodium sulfate /sup 35/S. After 24 h, the stomach, small intestine, pancreas, and muscle were excised and homogenized. After the removal of the nuclear fraction, each of these homogenates was digested with protease. After digestion, the supernatants of the reaction mixtures were applied to a Sephadex-G-100 column. The radioactivity was eluted with buffer solution. The resultant eluates were analyzed for radioactivity and the levels of proteins, uronic acids, and sialic acids. In all four organs, sizable amounts of /sup 67/Ga were bound to sulfated acid mucopolysaccharides with molecular masses of about 10,000 daltons and to sulfated acid mucopolysaccharides, a species whose molecular masses exceed 40,000 daltons. In the stomach, large amounts of /sup 67/Ga were bound to sulfated acid mucopolysaccharides with molecular masses of about 10,000 daltons. From these results, it is obvious that the main /sup 67/Ga-binding substances in these four organs are sulfated acid mucopolysaccharides, and that these acid mucopolysaccharides play the most important role in the concentration of /sup 67/Ga in these organs.

  16. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.

    Science.gov (United States)

    Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-04-15

    This study examined the role of spinal metabotropic glutamate receptor 5 (mGluR5) in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in the inhibtion of this reflex by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats after spinal cord transection at the T9/T10 level, intravesical infusion of 0.25% acetic acid irritated the bladder, activated nociceptive C-fiber afferents, and induced spinal reflex bladder contractions of low amplitude (reflexes were responsible for a major component of the contractions. This study shows that spinal mGluR5 plays an important role in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in pudendal inhibition of this spinal reflex. Copyright © 2015 the American Physiological Society.

  17. Potent analgesic effects of anticonvulsants on peripheral thermal nociception in rats

    Science.gov (United States)

    Todorovic, Slobodan M; Rastogi, A J; Jevtovic-Todorovic, Vesna

    2003-01-01

    Anticonvulsant agents are commonly used to treat neuropathic pain conditions because of their effects on voltage- and ligand-gated channels in central pain pathways. However, their interaction with ion channels in peripheral pain pathways is poorly understood. Therefore, we studied the potential analgesic effects of commonly used anticonvulsant agents in peripheral nociception. We injected anticonvulsants intradermally into peripheral receptive fields of sensory neurons in the hindpaws of adult rats, and studied pain perception using the model of acute thermal nociception. Commonly used anticonvulsants such as voltage-gated Na+ channel blockers, phenytoin and carbamazepine, and voltage-gated Ca2+ channel blockers, gabapentin and ethosuximide, induced dose-dependent analgesia in the injected paw, with ED50 values of 0.30, 0.32 and 8, 410 μg per 100 μl, respectively. Thermal nociceptive responses were not affected in the contralateral, noninjected paws, indicating a lack of systemic effects with doses of anticonvulsants that elicited local analgesia. Hill slope coefficients for the tested anticonvulsants indicate that the dose–response curve was less steep for gabapentin than for phenytoin, carbamazepine and ethosuximide. Our data strongly suggest that cellular targets like voltage-gated Na+ and Ca2+ channels, similar to those that mediate the effects of anticonvulsant agents in the CNS, may exist in the peripheral nerve endings of rat sensory neurons. Thus, peripherally applied anticonvulsants that block voltage-gated Na+ and Ca2+ channels may be useful analgesics. PMID:12970103

  18. Effect of Gmelina arborea Roxb in experimentally induced inflammation and nociception

    Directory of Open Access Journals (Sweden)

    Yogesh A Kulkarni

    2013-01-01

    Full Text Available Background: Gmelina arborea Roxb (Verbenaceae, also known as "Gambhari", is an important medicinal plant in the Ayurveda. There are no meticulous scientific reports on effect of the plant on inflammation and pain. Objective: To study the anti-inflammatory and anti-nociceptive properties of aqueous extracts (AE and methanol extracts (ME of G. arborea. Materials and Methods: The AE and ME of stembark of G. arborea was prepared by cold maceration and Soxhlet extraction technique respectively. Anti-inflammatory activity was determined in Wistar albino rats in a model of acute plantar inflammation induced by carrageenan. The anti-nociceptive activity was evaluated by using hot plate test and writhing test in Swiss albino mice. Significant differences between the experimental groups were assessed by analysis of variance. Results: AE and ME at dose of 500 mg/kg showed maximum inhibition in carrageenan induced inflammation up to 30.15 and 31.21% respectively. In hot plate test, the AE and ME showed the maximum response of 8.8 ± 0.97 (P < 0.01 and 8.2 ± 1.24 (P < 0.01 respectively at dose of 500 mg/kg when compared with control. AE showed maximum inhibition of writhing response (84.3% as compared to ME (77.9% in writhing test at a dose of 500 mg/kg. Conclusion: The findings suggested that G. arborea possess significant anti-inflammatory and anti-nociceptive activities.

  19. Effects of magnetic field exposure on open field behaviour and nociceptive responses in mice.

    Science.gov (United States)

    Del Seppia, Cristina; Mezzasalma, Lorena; Choleris, Elena; Luschi, Paolo; Ghione, Sergio

    2003-09-15

    Results of previous studies have shown that nociceptive sensitivity in male C57 mice is enhanced by exposure to a regular 37 Hz or an irregularly varying (field. In order to test whether these fields affect more generally mouse behaviour, we placed Swiss CD-1 mice in a novel environment (open field test) and exposed them for 2 h to these two different magnetic field conditions. Hence, we analysed how duration and time course of various behavioural patterns (i.e. exploration, rear, edge chew, self-groom, sit, walk and sleep) and nociceptive sensitivity had been affected by such exposure. Nociceptive sensitivity was significantly greater in magnetically treated mice than in controls. The overall time spent in exploratory activities was significantly shorter in both magnetically treated groups (time), than in controls (42%). Conversely, the time spent in sleeping was markedly longer in the treated groups (both 27% of total time) than in controls (11%). These results suggest that exposure to altered magnetic fields induce a more rapid habituation to a novel environment.

  20. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper

    2011-01-01

    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  1. Neonatal morphine enhances nociception and decreases analgesia in young rats.

    Science.gov (United States)

    Zhang, Guo Hua; Sweitzer, Sarah M

    2008-03-14

    The recognition of the impact of neonatal pain experience on subsequent sensory processing has led to the increased advocacy for the use of opioids for pain relief in infants. However, following long-term opioid exposure in intensive care units more than 48% of infants exhibited behaviors indicative of opioid abstinence syndrome, a developmentally equivalent set of behaviors to opioid withdrawal as seen in adults. Little is known about the long-term influence of repeated neonatal morphine exposure on nociception and analgesia. To investigate this, we examined mechanical and thermal nociception on postnatal days 11, 13, 15, 19, 24, 29, 39 and 48 following subcutaneous administration of morphine (3 mg/kg) once daily on postnatal days 1-9. The cumulative morphine dose-response was assessed on postnatal days 20 and 49, and stress-induced analgesia was assessed on postnatal days 29 and 49. Both basal mechanical and thermal nociception in neonatal, morphine-exposed rats were significantly lower than those in saline-exposed, handled-control rats and naive rats until P29. A rightward-shift of cumulative dose-response curves for morphine analgesia upon chronic neonatal morphine was observed both on P20 and P49. The swim stress-induced analgesia was significantly decreased in neonatal morphine-exposed rats on P29, but not on P49. These data indicate that morphine exposure equivalent to the third trimester of gestation produced prolonged pain hypersensitivity, decreased morphine antinociception, and decreased stress-induced analgesia. The present study illustrates the need to examine the long-term influence of prenatal morphine exposure on pain and analgesia in the human pediatric population.

  2. Experimental occlusal interference induces long-term masticatory muscle hyperalgesia in rats.

    Science.gov (United States)

    Cao, Ye; Xie, Qiu-Fei; Li, Kai; Light, Alan R; Fu, Kai-Yuan

    2009-08-01

    Temporomandibular joint or related masticatory muscle pain represents the most common chronic orofacial pain condition. Patients frequently report this kind of pain after dental alterations in occlusion. However, lack of understanding of the mechanisms of occlusion-related temporomandibular joint and muscle pain prevents treating this problem successfully. To explore the relationship between improper occlusion (occlusal interference) and masticatory muscle pain, we created an occlusal interference animal model by directly bonding a crown to a maxillary molar to raise the masticating surface of the tooth in rats. We raised the occlusal surface to three different heights (0.2, 0.4, and 0.6mm), and for one month we quantitatively measured mechanical nociceptive thresholds of the temporal and masseter muscles on both sides. Results showed a stimulus-response relationship between the height of occlusal interference and muscle hyperalgesia. Removal of the crown 6 days after occlusal interference showed that the removal at this time could not terminate the 1 month duration of mechanical hyperalgesia in the masticatory muscles. Lastly, we systemically administered NMDA antagonist MK801 (0.2, 0.1, and 0.05 mg/kg) to the treated rats and found that MK801 dose dependently attenuated the occlusal interference-induced hyperalgesia. These findings suggest that occlusal interference is directly related to masticatory muscle pain, and that central sensitization mechanisms are involved in the maintenance of the occlusal interference-induced mechanical hyperalgesia.

  3. Validation of a thermal threshold nociceptive model in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Couture, Émilie L; Monteiro, Beatriz P; Aymen, Jessica; Troncy, Eric; Steagall, Paulo V

    2017-05-01

    To validate a thermal threshold (TT) nociceptive model in bearded dragons (Pogona vitticeps) and to document TT changes after administration of morphine. A two-part randomized, blinded, controlled, experimental study. Five adult bearded dragons (242-396 g). A TT device delivered a ramped nociceptive stimulus (0.6 °C second -1 ) to the medial thigh until a response (leg kick/escape behavior) was observed or maximum (cut-off) temperature of 62 °C was reached. In phase I, period 1, six TT readings were determined at 20 minute intervals for evaluation of repeatability. Two of these readings were randomly assigned to be sham to assess specificity of the behavioral response. The same experiment was repeated 2 weeks later (period 2) to test reproducibility. In phase II, animals were administered either intramuscular morphine (10 mg kg -1 ) or saline 0.9%. TTs (maximum 68 °C) were determined before and 2, 4, 8, 12 and 24 hours after treatment administration. Data were analyzed using one-way anova (temporal changes and repeatability) and paired t tests (reproducibility and treatment comparisons) using Bonferroni correction (p dragons. TT nociceptive testing detected morphine administration and may be suitable for studying opioid regimens in bearded dragons. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  4. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates.

    Science.gov (United States)

    Sessle, B J

    2000-01-01

    This paper reviews the recent advances in knowledge of brainstem mechanisms related to craniofacial pain. It also draws attention to their clinical implications, and concludes with a brief overview and suggestions for future research directions. It first describes the general organizational features of the trigeminal brainstem sensory nuclear complex (VBSNC), including its input and output properties and intrinsic characteristics that are commensurate with its strategic role as the major brainstem relay of many types of somatosensory information derived from the face and mouth. The VBSNC plays a crucial role in craniofacial nociceptive transmission, as evidenced by clinical, behavioral, morphological, and electrophysiological data that have been especially derived from studies of the relay of cutaneous nociceptive afferent inputs through the subnucleus caudalis of the VBSNC. The recent literature, however, indicates that some fundamental differences exist in the processing of cutaneous vs. other craniofacial nociceptive inputs to the VBSNC, and that rostral components of the VBSNC may also play important roles in some of these processes. Modulatory mechanisms are also highlighted, including the neurochemical substrate by which nociceptive transmission in the VBSNC can be modulated. In addition, the long-term consequences of peripheral injury and inflammation and, in particular, the neuroplastic changes that can be induced in the VBSNC are emphasized in view of the likely role that central sensitization, as well as peripheral sensitization, can play in acute and chronic pain. The recent findings also provide new insights into craniofacial pain behavior and are particularly relevant to many approaches currently in use for the management of pain and to the development of new diagnostic and therapeutic procedures aimed at manipulating peripheral inputs and central processes underlying nociceptive transmission and its control within the VBSNC.

  5. Effect of butorphanol on thermal nociceptive threshold in healthy pony foals.

    Science.gov (United States)

    McGowan, K T; Elfenbein, J R; Robertson, S A; Sanchez, L C

    2013-07-01

    Pain management is an important component of foal nursing care, and no objective data currently exist regarding the analgesic efficacy of opioids in foals. To evaluate the somatic antinociceptive effects of 2 commonly used doses of intravenous (i.v.) butorphanol in healthy foals. Our hypothesis was that thermal nociceptive threshold would increase following i.v. butorphanol in a dose-dependent manner in both neonatal and older pony foals. Seven healthy neonatal pony foals (age 1-2 weeks), and 11 healthy older pony foals (age 4-8 weeks). Five foals were used during both age periods. Treatments, which included saline (0.5 ml), butorphanol (0.05 mg/kg bwt) and butorphanol (0.1 mg/kg bwt), were administered i.v. in a randomised crossover design with at least 2 days between treatments. Response variables included thermal nociceptive threshold, skin temperature and behaviour score. Data within each age period were analysed using a 2-way repeated measures ANOVA, followed by a Holm-Sidak multiple comparison procedure if warranted. There was a significant (P<0.05) increase in thermal threshold, relative to Time 0, following butorphanol (0.1 mg/kg bwt) administration in both age groups. No significant time or treatment effects were apparent for skin temperature. Significant time, but not treatment, effects were evident for behaviour score in both age groups. Butorphanol (0.1 mg/kg bwt, but not 0.05 mg/kg bwt) significantly increased thermal nociceptive threshold in neonatal and older foals without apparent adverse behavioural effects. Butorphanol shows analgesic potential in foals for management of somatic painful conditions. © 2012 EVJ Ltd.

  6. Pruritic and Nociceptive Sensations and Dysesthesias From a Spicule of Cowhage

    Science.gov (United States)

    LaMotte, R. H.; Shimada, S. G.; Green, B. G.; Zelterman, D.

    2009-01-01

    Although the trichomes (spicules) of a pod of cowhage (Mucuna pruriens) are known to evoke a histamine-independent itch that is mediated by a cysteine protease, little is known of the itch and accompanying nociceptive sensations evoked by a single spicule and the enhanced itch and pain that can occur in the surrounding skin. The tip of a single spicule applied to the forearm of 45 subjects typically evoked 1) itch accompanied by nociceptive sensations (NS) of pricking/stinging and, to a lesser extent, burning, and 2) one or more areas of cutaneous dysesthesia characterized by hyperknesis (enhanced itch to pricking) with or without alloknesis (itch to stroking) and/or hyperalgesia (enhanced pricking pain). Itch could occur in the absence of NS or one or more dysesthesias but very rarely the reverse. The peak magnitude of sensation was positively correlated for itch and NS and increased (exhibited spatial summation) as the number of spicules was increased within a spatial extent of 6 cm but not 1 cm. The areas of dysesthesia did not exhibit spatial summation. We conclude that itch evoked by a punctate chemical stimulus can co-exist with NS and cutaneous dysesthesias as may occur in clinical pruritus. However, cowhage itch was not always accompanied by NS or dysesthesia nor was a momentary change in itch necessarily accompanied by a similar change in NS or vice versa. Thus there may be separate neural coding mechanisms for itch, nociceptive sensations, and each type of dysesthesia. PMID:19144738

  7. Ovariectomy results in variable changes in nociception, mood and depression in adult female rats.

    Directory of Open Access Journals (Sweden)

    Li-Hong Li

    Full Text Available Decline in the ovarian hormones with menopause may influence somatosensory, cognitive, and affective processing. The present study investigated whether hormonal depletion alters the nociceptive, depressive-like and learning behaviors in experimental rats after ovariectomy (OVX, a common method to deplete animals of their gonadal hormones. OVX rats developed thermal hyperalgesia in proximal and distal tail that was established 2 weeks after OVX and lasted the 7 weeks of the experiment. A robust mechanical allodynia was also occurred at 5 weeks after OVX. In the 5th week after OVX, dilute formalin (5%-induced nociceptive responses (such as elevating and licking or biting during the second phase were significantly increased as compared to intact and sham-OVX females. However, chronic constriction injury (CCI of the sciatic nerve-induced mechanical allodynia did not differ as hormonal status (e.g. OVX and ovarian intact. Using formalin-induced conditioned place avoidance (F-CPA, which is believed to reflect the pain-related negative emotion, we further found that OVX significantly attenuated F-CPA scores but did not alter electric foot-shock-induced CPA (S-CPA. In the open field and forced swimming test, there was an increase in depressive-like behaviors in OVX rats. There was no detectable impairment of spatial performance by Morris water maze task in OVX rats up to 5 weeks after surgery. Estrogen replacement retrieved OVX-induced nociceptive hypersensitivity and depressive-like behaviors. This is the first study to investigate the impacts of ovarian removal on nociceptive perception, negative emotion, depressive-like behaviors and spatial learning in adult female rats in a uniform and standard way.

  8. Sex-dependent effects of restraint on nociception and pituitary-adrenal hormones in the rat.

    Science.gov (United States)

    Aloisi, A M; Steenbergen, H L; van de Poll, N E; Farabollini, F

    1994-05-01

    The sex-dependent effects of acute restraint (RT) on nociceptive and pituitary-adrenal responses were investigated in the rat. In a first experiment, the effect of 30 min RT on pain sensitivity was evaluated through repeated use of the tail withdrawal test during and after treatment. RT induced an increase in the nociceptive threshold, i.e., analgesia, in males and females, but the duration and time-course of this effect varied between sexes. The latencies returned to approximately control values in females in the second half of RT, but in males they remained higher for the whole period of RT and immediately afterwards. Twenty-four hours later, males displayed longer latencies than controls in response to simple reexposure to the environment. In a second experiment, ACTH and corticosterone plasma levels were measured immediately after 15 or 30 min of RT. ACTH and corticosterone were higher in restrained animals than in controls after both periods of treatment, and in both sexes; however, females showed higher basal and stress corticosterone levels than males. The role played by corticosteroids in the nociceptive responses of the two sexes is discussed.

  9. Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, Decapoda) CNS induced by a nociceptive stimulus.

    Science.gov (United States)

    Dyuizen, Inessa V; Kotsyuba, Elena P; Lamash, Nina E

    2012-08-01

    Using NADPH-diaphorase (NADPH-d) histochemistry, inducible nitric oxide synthase (iNOS)-immunohistochemistry and immunoblotting, we characterized the nitric oxide (NO)-producing neurons in the brain and thoracic ganglion of a shore crab subjected to a nociceptive chemical stimulus. Formalin injection into the cheliped evoked specific nociceptive behavior and neurochemical responses in the brain and thoracic ganglion of experimental animals. Within 5-10 min of injury, the NADPH-d activity increased mainly in the neuropils of the olfactory lobes and the lateral antenna I neuropil on the side of injury. Later, the noxious-induced expression of NADPH-d and iNOS was detected in neurons of the brain, as well as in segmental motoneurons and interneurons of the thoracic ganglion. Western blotting analysis showed that an iNOS antiserum recognized a band at 120 kDa, in agreement with the expected molecular mass of the protein. The increase in nitrergic activity induced by nociceptive stimulation suggests that the NO signaling system may modulate nociceptive behavior in crabs.

  10. Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone.

    Science.gov (United States)

    Huang, Y; Brodda-Jansen, G; Lundeberg, T; Yu, L C

    2000-08-04

    The present study investigated the role of calcitonin gene-related peptide (CGRP) on nociception in nucleus raphe magnus (NRM) and the interaction between CGRP and opioid peptides in NRM of rats. CGRP-like immunoreactivity was found at a concentration of 6.0+/-0. 77 pmol/g in NRM tissue of ten samples of rats, suggesting that it may contribute to physiological responses orchestrated by the NRM. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation increased significantly after intra-NRM administration of 0.5 or 1 nmol of CGRP in rats, but not 0.25 nmol. The anti-nociceptive effect induced by CGRP was antagonized by following intra-NRM injection of 1 nmol of the CGRP receptor antagonist CGRP8-37. Furthermore, the CGRP-induced anti-nociceptive effect was attenuated by following intra-NRM administration of 6 nmol of naloxone. The results indicate that CGRP and its receptors play an important role in anti-nociception, and there is a possible interaction between CGRP and opioid peptides in NRM of rats.

  11. Neonatal bee venom exposure induces sensory modality-specific enhancement of nociceptive response in adult rats.

    Science.gov (United States)

    Li, Mengmeng; Chen, Huisheng; Tang, Jiaguang; Chen, Jun

    2014-06-01

    Previous studies have shown that inflammatory pain at the neonatal stage can produce long-term structural and functional changes in nociceptive pathways, resulting in altered pain perception in adulthood. However, the exact pattern of altered nociceptive response and associated neurochemical changes in the spinal cord in this process is unclear. In this study, we used an experimental paradigm in which each rat first received intraplantar bee venom (BV) or saline injection on postnatal day 1, 4, 7, 14, 21, or 28. This was followed 2 months later by a second intraplantar bee venom injection in the same rats to examine the difference in nociceptive responses. We found that neonatal inflammatory pain induced by the first BV injection significantly reduced baseline paw withdrawal mechanical threshold, but not baseline paw withdrawal thermal latency, when rats were examined 2 months from the first BV injection. Neonatal inflammatory pain also exacerbated mechanical, but not thermal, hyperalgesia in response to the second BV injection in these same rats. Rats exposed to neonatal inflammation also showed up-regulation of spinal NGF, TrkA receptor, BDNF, TrkB receptor, IL-1β, and COX-2 expression following the second BV injection, especially with prior BV exposure on postnatal day 21 or 28. These results indicate that neonatal inflammation produces sensory modality-specific changes in nociceptive behavior and alters neurochemistry in the spinal cord of adult rats. These results also suggest that a prior history of inflammatory pain during the developmental period might have an impact on clinical pain in highly susceptible adult patients. Wiley Periodicals, Inc.

  12. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine

    Directory of Open Access Journals (Sweden)

    Jordan L. Hawkins

    2017-12-01

    Conclusion:. Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.

  13. New Insights in Trigeminal Anatomy: A Double Orofacial Tract for Nociceptive Input

    NARCIS (Netherlands)

    Henssen, D.J.H.A.; Kurt, E.; Kozicz, L.T.; Dongen, R.T.M. van; Bartels, R.H.M.A.; Cappellen van Walsum, A.M. van

    2016-01-01

    Orofacial pain in patients relies on the anatomical pathways that conduct nociceptive information, originating from the periphery towards the trigeminal sensory nucleus complex (TSNC) and finally, to the thalami and the somatosensorical cortical regions. The anatomy and function of the so-called

  14. The Inhibitory Effect of Somatostatin Receptor Activation on Bee Venom-Evoked Nociceptive Behavior and pCREB Expression in Rats

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The present study examined nociceptive behaviors and the expression of phosphorylated cAMP response element-binding protein (pCREB in the dorsal horn of the lumbar spinal cord and the dorsal root ganglion (DRG evoked by bee venom (BV. The effect of intraplantar preapplication of the somatostatin analog octreotide on nociceptive behaviors and pCREB expression was also examined. Subcutaneous injection of BV into the rat unilateral hindpaw pad induced significant spontaneous nociceptive behaviors, primary mechanical allodynia, primary thermal hyperalgesia, and mirror-thermal hyperalgesia, as well as an increase in pCREB expression in the lumbar spinal dorsal horn and DRG. Octreotide pretreatment significantly attenuated the BV-induced lifting/licking response and mechanical allodynia. Local injection of octreotide also significantly reduced pCREB expression in the lumbar spinal dorsal horn and DRG. Furthermore, pretreatment with cyclosomatostatin, a somatostatin receptor antagonist, reversed the octreotide-induced inhibition of the lifting/licking response, mechanical allodynia, and the expression of pCREB. These results suggest that BV can induce nociceptive responses and somatostatin receptors are involved in mediating the antinociception, which provides new evidence for peripheral analgesic action of somatostatin in an inflammatory pain state.

  15. Response characteristics of pruriceptive and nociceptive trigeminoparabrachial tract neurons in the rat

    NARCIS (Netherlands)

    N.A. Jansen (Nico A.); G.J. Giesler (Glenn J.)

    2015-01-01

    textabstractWe tested the possibility that the trigeminoparabrachial tract (VcPbT), a projection thought to be importantly involved in nociception, might also contribute to sensation of itch. In anesthetized rats, 47 antidromically identified VcPbT neurons with receptive fields involving the cheek

  16. Pain sensation and nociceptive reflex excitability in surgical patients and human volunteers

    DEFF Research Database (Denmark)

    Dahl, J B; Erichsen, C J; Fuglsang-Frederiksen, A

    1992-01-01

    Pain threshold, nociceptive flexion reflex (NFR) threshold and responses to suprathreshold stimulation were investigated in 15 female patients (mean age 32 yr (range 22-48 yr)) before and 68 (range 48-96) h after gynaecological laparotomy. Control measurements were performed in 17 healthy human v...

  17. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Directory of Open Access Journals (Sweden)

    Martin Parizek

    2013-01-01

    Full Text Available The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C, or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs, the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  18. ROS and myokines promote muscle adaptation to exercise

    DEFF Research Database (Denmark)

    Scheele, Camilla; Nielsen, Søren; Pedersen, Bente K

    2009-01-01

    in skeletal muscle. In fact, it seems that exercise-induced ROS are able to stimulate cytokine production from skeletal muscle. Despite the initial view that ROS were potentially cell damaging, it now seems possible that these substances have important roles in the regulation of cell signaling. Muscle......-derived cytokines, so-called 'myokines', are distinguished from inflammation and instead possess important anti-inflammatory and metabolic properties. In this opinion piece, we suggest that both ROS and myokines are important players in muscle adaptation to exercise....

  19. Calcitonin gene-related peptide modulates heat nociception in the human brain - An fMRI study in healthy volunteers

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Becerra, Lino; Larsson, Henrik B.W.

    2016-01-01

    Background: Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded...... cortex. Sumatriptan injection reversed these changes. Conclusion: The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli....

  20. Electrophysiological assessment of nociception in patients with Parkinson's disease : A multi-methods approach

    NARCIS (Netherlands)

    Priebe, Janosch A.; Kunz, Miriam; Morcinek, Christian; Rieckmann, Peter; Lautenbacher, Stefan

    2016-01-01

    Objective: Nociceptive abnormalities indicating increased pain sensitivity have been reported in patients with Parkinson's disease (PD). The disturbances are mostly responsive to dopaminergic (DA) treatment; yet, there are conflicting results. The objective of the present study was to investigate

  1. Hydro-ethanolic leaf extract of Ziziphus abyssinica Hochst Ex A. Rich (Rhamnaceae) exhibits anti-nociceptive effects in murine models.

    Science.gov (United States)

    Boakye-Gyasi, Eric; Henneh, Isaac Tabiri; Abotsi, Wonder Kofi Mensah; Ameyaw, Elvis Ofori; Woode, Eric

    2017-04-26

    Despite substantial advances in pain research and treatment, millions of people continue to suffer from pain and this has been attributed mainly to the unavailability of effective and safer analgesics. The use of plants as medicines is still widespread and plants constitute a large source of novel phytocompounds that might become leads for the discovery of newer, effective and safer alternatives. Various parts of Ziziphus abyssinica have been used in folk medicine in several African countries as painkillers. However, there is no report on the possible anti-nociceptive effects of this plant especially the leaves, hence the need for this current study. The possible anti-nociceptive activity of hydro-ethanolic leaf extract of Ziziphus abyssinica (EthE) was assessed in rodents using chemical (acetic acid, formalin and glutamate), thermal (tail-immersion test) and mechanical/inflammatory (carrageenan) models of nociception. EthE (30-300 mg/kg, p.o.) dose-dependently and significantly inhibited chemical-induced nociception with a maximum inhibition of 86.29 ± 2.27%, 76.34 ± 5.67%, 84.97 ± 5.35%, and 82.81 ± 5.97% respectively for acetic acid, formalin (phase 1), formalin (phase 2) and glutamate tests at its highest dose. EthE also dose-dependently and significantly increased reaction times in both tail-immersion and carrageenan-induced hypernociceptive tests. The activities of the extract in the various models were comparable with the effect of morphine hydrochloride and diclofenac sodium used as standard analgesic drugs. Oral administration of hydro-ethanolic leaf extract of Ziziphus abyssinica ameliorates nocifensive behaviours associated with chemical-, thermal- and mechanical/inflammatory - induced nociceptive pain.

  2. Bigorexia: bodybuilding and muscle dysmorphia.

    Science.gov (United States)

    Mosley, Philip E

    2009-05-01

    Muscle dysmorphia is an emerging condition that primarily affects male bodybuilders. Such individuals obsess about being inadequately muscular. Compulsions include spending hours in the gym, squandering excessive amounts of money on ineffectual sports supplements, abnormal eating patterns or even substance abuse. In this essay, I illustrate the features of muscle dysmorphia by employing the first-person account of a male bodybuilder afflicted by this condition. I briefly outline the history of bodybuilding and examine whether the growth of this sport is linked to a growing concern with body image amongst males. I suggest that muscle dysmorphia may be a new expression of a common pathology shared with the eating disorders.

  3. Differential inhibitory effect on human nociceptive skin senses induced by local stimulation of thin cutaneous fibers.

    Science.gov (United States)

    Nilsson, H J; Schouenborg, J

    1999-03-01

    It is known that stimulation of thin cutaneous nerve fibers can induce long lasting analgesia through both supraspinal and segmental mechanisms, the latter often exhibiting restricted receptive fields. On this basis, we recently developed a new method, termed cutaneous field stimulation (CFS), for localized stimulation of A delta and C fibers in the superficial part of the skin. In the present study, we have evaluated the effects of CFS on non-nociceptive and nociceptive skin senses. We compared the effects of CFS with those of conventional transcutaneous electrical nerve stimulation (TENS), known to preferentially activate coarse myelinated fibers. A battery of sensory tests were made on the right volar forearm of 20 healthy subjects. CFS (16 electrodes, 4 Hz per electrode, 1 ms, up to 0.8 mA) and TENS (100 Hz, 0.2 ms, up to 26 mA) applied either on the right volar forearm (homotopically), or on the lower right leg (heterotopically) were used as conditioning stimulation for 25 min. The tactile threshold was not affected by either homo- or heterotopical CFS or TENS. The mean thresholds for detecting warming or cooling of the skin were increased by 0.4-0.9 degrees C after homo- but not heterotopical CFS and TENS. Regarding nociceptive skin senses, homo- but not heterotopical CFS, markedly reduced CO2-laser evoked A delta- and C fiber mediated heat pain to 75 and 48% of control, respectively, and mechanically evoked pain to 73% of control. Fabric evoked prickle, was not affected by CFS. Neither homo- nor heterotopical TENS induced any marked analgesic effects. It is concluded that different qualities of nociception can be differentially controlled by CFS.

  4. Role of the thalamic parafascicular nucleus cholinergic system in the modulation of acute corneal nociception in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2011-11-01

    Full Text Available The present study investigated the effects of microinjections of acetylcholine (a cholinergic agonist, physostigmine (a cholinesterase inhibitor, atropine (an antagonist of muscarinic cholinergic receptors and hexamethonium (an antagonist of nicotinic cholinergic receptors into the parafascicular nucleus of thalamus on the acute corneal nociception in rats. Acute corneal nociception was induced by putting a drop of 5 M NaCl solution onto the corneal surface of the eye and the number of eye wipes was counted during the first 30s. Both acetylcholine and physostigmine at the same doses of 0.5, 1 and 2 μg significantly (P < 0.05 reduced the number of eye wipes. The intensity of corneal nociception was not changed when atropine and hexamethonium were used alone. Atropine (4 μg, but not hexamethonium (4 μg significantly (P < 0.05 prevented acetylcholine (2 μg- and physostigmine (2 μg-induced antinociceptive effects. The results indicated that at the level of the parafascicular nucleus of thalamus, the muscarinic cholinergic receptors might be involved in the antinociceptive effects of acetylcholine and physostigmine.

  5. Nurses assessing pain with the Nociception Coma Scale: interrater reliability and validity

    NARCIS (Netherlands)

    Vink, Peter; Eskes, Anne Maria; Lindeboom, Robert; van den Munckhof, Pepijn; Vermeulen, Hester

    2014-01-01

    The Nociception Coma Scale (NCS) is a pain observation tool, developed for patients with disorders of consciousness (DOC) due to acquired brain injury (ABI). The aim of this study was to assess the interrater reliability of the NCS and NCS-R among nurses for the assessment of pain in ABI patients

  6. Evaluation of Postoperative Anti-nociceptive Efficacy of Intrathecal Dexketoprofen in Rats

    OpenAIRE

    Birol Muhammet Er; İsmail Serhat Kocamanoğlu; Ayhan Bozkurt; Sırrı Bilge; Erhan Çetin Çetinoğlu

    2016-01-01

    Background: Some studies have suggested that the intrathecal use of cyclooxygenase enzyme inhibitors provides an anti-nociceptive effect. Therefore, the occurrence of side effects seen in systemic usage can be eliminated. Aims: The primary objective of this experimental, randomized, controlled trial was to test the hypothesis asserting that intrathecal dexketoprofen trometamol would demonstrate an analgesic effect during postoperative period. Study Design: Animal experimentation. ...

  7. [Changes in ingestive behavior during growth affects the functional maturation of temporomandibular joint nociceptive neurons of rats].

    Science.gov (United States)

    Hiranuma, Maya

    2013-03-01

    Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons.

  8. Development of the Muscle Appearance Satisfaction Scale: a self-report measure for the assessment of muscle dysmorphia symptoms.

    Science.gov (United States)

    Mayville, Stephen B; Williamson, Donald A; White, Marney A; Netemeyer, Richard G; Drab, Danae L

    2002-12-01

    Muscle dysmorphia has recently been described as a variant of body dysmorphic disorder that involves an intense preoccupation with one's perceived lack of muscle size. Currently, no assessment measures specific to the cognitive, affective, and behavioral dimensions of the construct of muscle dysmorphia have been published. To address this need, the authors developed the Muscle Appearance Satisfaction Scale (MASS), a brief 19-item self-report measure for the assessment of muscle dysmorphia symptoms. Psychometric evaluation of the MASS across two samples of male weight lifting participants (total N = 372) revealed a stable five-factor structure. An evaluation of factor content resulted in the following factor labels: Bodybuilding Dependence, Muscle Checking, Substance Use, Injury, and Muscle Satisfaction. Internal consistency, test-retest reliability, and construct validity were established with the MASS total score and its subscales. The authors believe the MASS will be a useful measure for research and applied work relating to muscle dysmorphia.

  9. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    Science.gov (United States)

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration.

    Science.gov (United States)

    Popescu, L M; Manole, Emilia; Serboiu, Crenguţa S; Manole, C G; Suciu, Laura C; Gherghiceanu, Mihaela; Popescu, B O

    2011-06-01

    Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  11. Prediction of immediate postoperative pain using the analgesia/nociception index: a prospective observational study.

    Science.gov (United States)

    Boselli, E; Bouvet, L; Bégou, G; Dabouz, R; Davidson, J; Deloste, J-Y; Rahali, N; Zadam, A; Allaouchiche, B

    2014-04-01

    The analgesia/nociception index (ANI) is derived from heart rate variability, ranging from 0 (maximal nociception) to 100 (maximal analgesia), to reflect the analgesia/nociception balance during general anaesthesia. This should be correlated with immediate postoperative pain in the post-anaesthesia care unit (PACU). The aim of this study was to evaluate the performance of ANI measured at arousal from general anaesthesia to predict immediate postoperative pain on arrival in PACU. Two hundred patients undergoing ear, nose, and throat or lower limb orthopaedic surgery with general anaesthesia using an inhalational agent and remifentanil were included in this prospective observational study. The ANI was measured immediately before tracheal extubation and pain intensity was assessed within 10 min of arrival in PACU using a 0-10 numerical rating scale (NRS). The relationship between ANI and NRS was assessed using linear regression. A receiver-operating characteristic (ROC) curve was used to evaluate the performance of ANI to predict NRS>3. A negative linear relationship was observed between ANI immediately before extubation and NRS on arrival in PACU. Using a threshold of 3 were both 86% with 92% negative predictive value, corresponding to an area under the ROC curve of 0.89. The measurement of ANI immediately before extubation after inhalation-remifentanil anaesthesia was significantly associated with pain intensity on arrival in PACU. The performance of ANI for the prediction of immediate postoperative pain is good and may assist physicians in optimizing acute pain management. ClinicalTrials.gov NCT01796249.

  12. Molecular Basis of TRPA1 Regulation in Nociceptive Neurons. A Review

    Czech Academy of Sciences Publication Activity Database

    Kádková, Anna; Synytsya, Viktor; Krůšek, Jan; Zímová, Lucie; Vlachová, Viktorie

    2017-01-01

    Roč. 66, č. 3 (2017), s. 425-439 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA15-15839S; GA MZd(CZ) NV16-28784A Institutional support: RVO:67985823 Keywords : transient receptor potential ankyrin 1 * bradykinin * structure- function * nociception * post-translational modifications * signaling pathways Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 1.461, year: 2016

  13. Phytochemical Screening and Anti-nociceptive Properties of the Ethanolic Leaf Extract of Trema Cannabina Lour

    Directory of Open Access Journals (Sweden)

    Hira Arpona

    2013-02-01

    Full Text Available Purpose: The present study was designed to investigate the anti-nociceptive activity of ethanolic leaf extract of Trema cannabina Lour (family: Cannabaceae in experimental animal models. Methods: The anti-nociceptive action was carried out against two types of noxious stimuli, thermal (hot plate and tail immersion tests and chemical (acetic acid-induced writhing in mice. Results: Phytochemical analysis of crude extract indicated the presence of reducing sugar, tannins, steroid and alkaloid types of secondary metabolites. Crude extract of T. cannabina (500 mg/kg dose showed maximum time needed for the response against thermal stimuli (6.79±0.15 seconds which is comparable to diclofenac sodium (8.26±0.14 seconds in the hot plate test. Hot tail immersion test also showed similar results as in hot plate test. At the dose of 250 and 500 mg/kg body weight, the extract showed significantly and in a dose-dependent (p<0.001 reduction in acetic acid induced writhing in mice with a maximum effect of 47.56% reduction at 500 mg/kg dose comparable to that of diclofenac sodium (67.07% at 25 mg/kg. Conclusion: The obtained results tend to suggest the Anti-nociceptive activity of ethanolic leaf extract of Trema cannabina and thus provide the scientific basis for the traditional uses of this plant part as a remedy for pain.

  14. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  15. Analysis of fluorescently labeled substance P analogs: binding, imaging and receptor activation

    Directory of Open Access Journals (Sweden)

    Simmons Mark A

    2001-06-01

    Full Text Available Abstract Background Substance P (SP is a peptide neurotransmitter found in central and peripheral nerves. SP is involved in the control of smooth muscle, inflammation and nociception. The amino acid sequence of SP is Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2. Five different forms of fluorescently labeled SP have recently been synthesized, in which Alexa 488, BODIPY Fl, fluorescein, Oregon Green 488 or tetramethylrhodamine has been covalently linked to SP at Lys3. Here, these novel analogs are characterized as to their ligand binding, receptor activation and fluorescence labeling properties. Results Competition binding studies, using radiolabeled [125I] SP, revealed that all of the labeled forms of SP, except for Alexa 488-SP, effectively competed with radiolabeled SP for binding at the rat SP receptor. With the exception of Alexa 488-SP, all of the SP analogs produced Ca++ elevations and fluorescence labeling of the SP receptor expressed in Chinese hamster ovary cells. In SP-responsive neurons, BODIPY Fl-SP and Oregon Green 488-SP were as effective as unlabeled SP in producing a reduction of the M-type K+ current. Fluorescein-SP produced variable results, while tetramethylrhodamine-SP was less potent and Alexa 488-SP was less effective on intact neurons. Conclusions The above results show that fluorescent labeling of SP altered the biological activity and the binding properties of the parent peptide. Oregon Green 488 and BODIPY FL-SP are the most useful fluorophores for labeling SP without affecting its biological activity. Given these results, these probes can now be utilized in further investigations of the mechanisms of SPR function, including receptor localization, internalization and recycling.

  16. Recent studies of cutaneous nociception in atopic and non-atopic subjects.

    Science.gov (United States)

    Heyer, G R; Hornstein, O P

    1999-02-01

    Itching reflects a distinct quality of cutaneous nociception elicited by chemical or other stimuli to neuronal receptors at the superficial layers of the skin and muco-cutaneous orifices. Although recent experimental studies of the conduction and perception of itch have yielded deeper insight into the physiology of this sensory quality, little is known about the neuromechanisms involved in pruritus accompanying many inflammatory skin diseases, in particular, in atopic eczema. Previous case-control studies of our research group with patients suffering from atopic eczema (AE) revealed significantly diminished itch perception after iontophoretic application of different doses of histamine as well as substance P (i.c. injected). Further experiments using acetylcholine (ACh, i.c.) clearly demonstrated that ACh elicits pruritus instead of pain in patients with AE. The first part of the present review deals with the results of our most recent case-control studies on histamine-induced itch perception in atopics devoid of eczema as well as in patients with urticaria or psoriasis compared to atopics with or without manifest eczema. We demonstrated that both focal itch and perifocal alloknesis (i.e., itch elicited by a slight mechanical, otherwise non-itching stimulus) were significantly reduced in eczema-free atopics yet were normal in non-atopics suffering from urticaria or psoriasis. In further studies using ACh i.c. injected into the uninvolved skin of patients with AE, lichen ruber, psoriasis, type IV contact eczema, or non-specific nummular eczema (n = 10/each group), all the atopics and 6/10 psoriatics felt itch instead of burning pain, but none of the others did. Different doses of vasoactive intestinal peptide (VIP) i.c. applied to the controls and the atopics with or without eczema did not markedly increase the intensity of nociceptive sensations. However, ACh induced pain in the controls, pure pruritus in the atopics with acute eczema, and a 'mixture' of pain and

  17. Inhaled corticosteroids inhibit substance P receptor expression in asthmatic rat airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Li Miao

    2012-12-01

    Full Text Available Abstract Background Neurokinins (NKs participate in asthmatic airway inflammation, but the effects of NKs on airway smooth muscle cells (ASMCs and those of corticosteroids on NKs are unknown. Methods To investigate the effect of budesonide on substance P (NK-1 receptor (NK-1R expression in the lung and ASMCs, 45 Wistar rats were randomly divided into three groups: control, asthmatic, and budesonide treatment. Aerosolized ovalbumin was used to generate the asthmatic rat model, and budesonide was administered after ovalbumin inhalation. On day 21, bronchial responsiveness tests, bronchoalveolar lavage, and cell counting were conducted. NK-1R protein expression in the lung was investigated by immunohistochemistry and image analysis. Primary rat ASMC cultures were established, and purified ASMCs of the fourth passage were collected for mRNA and protein studies via real-time RT-PCR, immunocytochemistry, and image analysis. Results NK-1R mRNA and protein expression in the budesonide treatment group rat’s lung and ASMCs were less than that in the asthmatic group but greater than that in the control group. Conclusions NK-1R is involved in the pathogenesis of asthma and that budesonide may downregulate the expression of NK-1R in the ASMCs and airways of asthmatic rats, which may alleviate neurogenic airway inflammation.

  18. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior.

    Science.gov (United States)

    Evely, Katherine M; Pryce, Kerri D; Bausch, Anne E; Lukowski, Robert; Ruth, Peter; Haj-Dahmane, Samir; Bhattacharjee, Arin

    2017-01-01

    The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.

  19. Histological investigations on the effect of zytostatica, ionizing radiation and a radioprotective substance on spleen, lung, lymphatic nodes, bone marrow, skin and muscles on rats under drugs suitable for gynacological cancer therapy

    International Nuclear Information System (INIS)

    Maeueler, R.

    1980-01-01

    The effects of radiation, zytostatica and on radiation protective substance on the organs: spleen, lung, lymphatic nodes, skin and muscles of the rat were examined. High-voltage gamma radiation, zytostatica cyclophosphamide, podophyllinic acid ethyl hydrazide and VM26, as well as N-acetyl homocystein thiol actone were applied as radioprotective substance in several combinations. The doses were adapted to those commonly used in human medicine. The different combinations are compared regarding side effects, as well as advantages and disadvantages of different doses. Podophyllinic acid ethyl hydrazide is found to be well suited as zytostatic substance for combination therapy. The histologically detectable side effects on the organs examined by adding N-acetyl homocystein thiol actone were not greatly reduced compared to the sole or combined application of radiation and cytostatica therapy. (orig.) [de

  20. Reliability and validity of a brief method to assess nociceptive flexion reflex (NFR) threshold.

    Science.gov (United States)

    Rhudy, Jamie L; France, Christopher R

    2011-07-01

    The nociceptive flexion reflex (NFR) is a physiological tool to study spinal nociception. However, NFR assessment can take several minutes and expose participants to repeated suprathreshold stimulations. The 4 studies reported here assessed the reliability and validity of a brief method to assess NFR threshold that uses a single ascending series of stimulations (Peak 1 NFR), by comparing it to a well-validated method that uses 3 ascending/descending staircases of stimulations (Staircase NFR). Correlations between the NFR definitions were high, were on par with test-retest correlations of Staircase NFR, and were not affected by participant sex or chronic pain status. Results also indicated the test-retest reliabilities for the 2 definitions were similar. Using larger stimulus increments (4 mAs) to assess Peak 1 NFR tended to result in higher NFR threshold estimates than using the Staircase NFR definition, whereas smaller stimulus increments (2 mAs) tended to result in lower NFR threshold estimates than the Staircase NFR definition. Neither NFR definition was correlated with anxiety, pain catastrophizing, or anxiety sensitivity. In sum, a single ascending series of electrical stimulations results in a reliable and valid estimate of NFR threshold. However, caution may be warranted when comparing NFR thresholds across studies that differ in the ascending stimulus increments. This brief method to assess NFR threshold is reliable and valid; therefore, it should be useful to clinical pain researchers interested in quickly assessing inter- and intra-individual differences in spinal nociceptive processes. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Sensitization of the nociceptive system in patients with low back pain and sickness absence: Disc degeneration disease or pain syndrome

    DEFF Research Database (Denmark)

    Jensen, Ole Kudsk; Nielsen, Claus Vinther; Stengaard-Pedersen, Kristian

    SENSITIZATION OF THE NOCICEPTIVE SYSTEM IN PATIENTS WITH LOW BACK PAIN AND SICKNESS ABSENCE O.K. Jensen1, C.V. Nielsen2, K. Stengaard-Pedersen3 1The Spine Center, Department of Internal Medicine, Region Hospital Silkeborg, 2Department of Clinical Social Medicine, University of Aarhus, and 3...... characterized by sensitization of the nociceptive system. Purpose: To assess sensitization of the nociceptive system in low back pain (LBP) patients by means of TP examination and measure of Pressure Pain Threshold (PPT) on the thumb nails. To search for associations between the number of TPs and structural...... = 1.35, p = 0.017) and mental distress (anxiety) in men (OR = 1.39, p = 0.003). After adjustment for age and sex, a positive association between LBP score and DDS was found only in patients with less than six TPs (OR = 1.21 (1.0-1.47), p = 0.043). Low PPT on the thumb nails was associated with DDS...

  2. Sertraline inhibits formalin-induced nociception and cardiovascular responses

    Energy Technology Data Exchange (ETDEWEB)

    Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Futuro Neto, H.A. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil); Pires, J.G.P. [Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Gonçalves, W.L.S. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Tiradentes, R.V.; Gouvea, S.A.; Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2011-11-18

    The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8 per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg{sup −1}·day{sup −1}, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5% (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.

  3. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Science.gov (United States)

    Passmore, Gayle M.; Reilly, Joanne M.; Thakur, Matthew; Keasberry, Vanessa N.; Marsh, Stephen J.; Dickenson, Anthony H.; Brown, David A.

    2012-01-01

    M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 μM XE991 sensitized Aδ- but not C-fibers to noxious heat stimulation and induced spontaneous, ongoing activity at 32°C in many Aδ-fibers. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn (DH) neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Aδ-fiber peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Aδ-fiber responses and provide a rationale for the nocifensive behaviors that arise following intraplantar injection of the M-channel blocker XE991. PMID:22593734

  4. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Directory of Open Access Journals (Sweden)

    Gayle M. Passmore

    2012-05-01

    Full Text Available M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 µM XE991 sensitised Adelta- but not C-fibres to noxious heat stimulation and induced spontaneous, ongoing activity at 32ºC in many Adelta-fibres. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Adelta-fibre peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Adelta-fibre responses and provide a rationale for the nocifensive behaviours that arise following intraplantar injection of the M-channel blocker XE991.

  5. Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception.

    Directory of Open Access Journals (Sweden)

    G Gregory Neely

    Full Text Available The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species.

  6. Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception

    Science.gov (United States)

    Mair, Norbert; Racz, Ildiko; Milinkeviciute, Giedre; Meixner, Arabella; Nayanala, Swetha; Griffin, Robert S.; Belfer, Inna; Dai, Feng; Smith, Shad; Diatchenko, Luda; Marengo, Stefano; Haubner, Bernhard J.; Novatchkova, Maria; Gibson, Dustin; Maixner, William; Pospisilik, J. Andrew; Hirsch, Emilio; Whishaw, Ian Q.; Zimmer, Andreas; Gupta, Vaijayanti; Sasaki, Junko; Kanaho, Yasunori; Sasaki, Takehiko; Kress, Michaela; Woolf, Clifford J.; Penninger, Josef M.

    2012-01-01

    The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. PMID:23236288

  7. Cortical and spinal assessment - a comparative study using encephalography and the nociceptive withdrawal reflex

    DEFF Research Database (Denmark)

    Fischer, I W; Gram, M; Hansen, T M

    2017-01-01

    solution in randomized order. The electroencephalogram (EEG) was recorded during rest and during immersion of the hand into ice-water. Electrical stimulation of the sole of the foot was used to elicit the nociceptive withdrawal reflex and the reflex amplitude was recorded. RESULTS: Data from thirty...

  8. 17β-Estradiol Enhances ASIC Activity in Primary Sensory Neurons to Produce Sex Difference in Acidosis-Induced Nociception.

    Science.gov (United States)

    Qu, Zu-Wei; Liu, Ting-Ting; Ren, Cuixia; Gan, Xiong; Qiu, Chun-Yu; Ren, Ping; Rao, Zhiguo; Hu, Wang-Ping

    2015-12-01

    Sex differences have been reported in a number of pain conditions. Women are more sensitive to most types of painful stimuli than men, and estrogen plays a key role in the sex differences in pain perception. However, it is unclear whether there is a sex difference in acidosis-evoked pain. We report here that both male and female rats exhibit nociceptive behaviors in response to acetic acid, with females being more sensitive than males. Local application of exogenous 17β-estradiol (E2) exacerbated acidosis-evoked nociceptive response in male rats. E2 and estrogen receptor (ER)-α agonist 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole, but not ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile, replacement also reversed attenuation of the acetic acid-induced nociceptive response in ovariectomized females. Moreover, E2 can exert a rapid potentiating effect on the functional activity of acid-sensing ion channels (ASICs), which mediated the acidosis-induced events. E2 dose dependently increased the amplitude of ASIC currents with a 42.8 ± 1.6 nM of EC50. E2 shifted the concentration-response curve for proton upward with a 50.1% ± 6.2% increase of the maximal current response to proton. E2 potentiated ASIC currents via an ERα and ERK1/2 signaling pathway. E2 also altered acidosis-evoked membrane excitability of dorsal root ganglia neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acidic stimuli. E2 potentiation of the functional activity of ASICs revealed a peripheral mechanism underlying this sex difference in acetic acid-induced nociception.

  9. Activity of masticatory muscles in subjects with different orofacial pain conditions.

    Science.gov (United States)

    Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain

    2005-07-01

    The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.

  10. Effects of awareness and nociception on heart rate variability during general anaesthesia

    International Nuclear Information System (INIS)

    Huhle, R; Zaunseder, S; Malberg, H; Burghardt, M; Koch, T; Heller, A R; Wessel, N

    2012-01-01

    During anaesthesia awareness and nociception are serious complications that may further lead to haemodynamic instability. Specific monitoring of depth of hypnosis and depth of analgesia based on heart rate variability (HRV) analysis is eligible to improve patient safety and reduce efforts in post-operative care. Consequently, in this analysis we assess the applicability of HRV parameters during surgical interventions with standardized intravenous propofol-remifentanil-anaesthesia. Peri-operative electrocardiograms were recorded from cardiovascular stable patients (ASA Score I/II, N = 32, age: 36.4 ± 11.23 a, BMI: 25.2 ± 3.16) scheduled for trauma and dentofacial surgery. HRV time- and frequency-domain parameters, measures of complexity and nonlinear dynamics were compared by analysing longitudinally distributed 300 s intervals preceding/following induction of anaesthesia (BL–I1), intubation (I1–I2) and extubation (E1–E2). Mean value (meanNN) and standard deviation (sdNN) of the heart rate are influenced in BL–I1 (p < 0.001), I1–I2 (p < 0.05) and E1–E2 (p < 0.001). The number of forbidden words of symbolic dynamics changes significantly for BL–I1 (p < 0.001) and not for I1–I2 and E1–E2 (p > 0.05). Probability of low-variability POLVAR10 is significantly altered in all comparisons (BL–I1: Δ = 0.032, p < 0.01, I1–I2: Δ = 0.12, p < 0.05, E1–E2: Δ = 0.169, p < 0.01) but especially during nociception. While standard time-domain parameters lacked selectivity, parameters of symbolic dynamics appear to be specifically influenced by changes in depth of hypnosis and nociception, respectively. However, the lack of steady-state ventilation/breathing in this study needs to be considered in future research. To be used for clinical anaesthesia monitoring our results have to be prospectively validated in clinical studies. (paper)

  11. Fish oil concentrate delays sensitivity to thermal nociception in mice

    Science.gov (United States)

    Veigas, Jyothi M.; Williams, Paul J.; Halade, Ganesh; Rahman, Mizanur M.; Yoneda, Toshiyuki; Fernandes, Gabriel

    2011-01-01

    Fish oil has been used to alleviate pain associated with inflammatory conditions such as rheumatoid arthritis. The anti-inflammatory property of fish oil is attributed to the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid. Contrarily, vegetable oils such as safflower oil are rich in n-6 fatty acids which are considered to be mediators of inflammation. This study investigates the effect of n-3 and n-6 fatty acids rich oils as dietary supplements on the thermally induced pain sensitivity in healthy mice. C57Bl/6J mice were fed diet containing regular fish oil, concentrated fish oil formulation (CFO) and safflower oil (SO) for 6 months. Pain sensitivity was measured by plantar test and was correlated to the expression of acid sensing ion channels (ASICs), transient receptor potential vanilloid 1 (TRPV1) and c-fos in dorsal root ganglion cells. Significant delay in sensitivity to thermal nociception was observed in mice fed CFO compared to mice fed SO (p<0.05). A significant diminution in expression of ion channels such as ASIC1a (64%), ASIC13 (37%) and TRPV1 (56%) coupled with reduced expression of c-fos, a marker of neuronal activation, was observed in the dorsal root ganglion cells of mice fed CFO compared to that fed SO. In conclusion, we describe here the potential of fish oil supplement in reducing sensitivity to thermal nociception in normal mice. PMID:21345372

  12. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Science.gov (United States)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  13. Pre-test habituation improves the reliability of a handheld test of mechanical nociceptive threshold in dairy cows

    DEFF Research Database (Denmark)

    Raundal, P. M.; Andersen, P. H.; Toft, Nils

    2015-01-01

    Mechanical nociceptive threshold (MNT) testing has been used to investigate aspects of painful states in bovine claws. We investigated a handheld tool, where the applied stimulation force was monitored continuously relative to a pre-encoded based target force. The effect on MNT of two pre-testing...... habituation procedures was performed in two different experiments comprising a total of 88 sound Holsteins dairy cows kept either inside or outside their home environment. MNT testing was performed using five consecutive mechanical nociceptive stimulations per cow per test at a fixed pre-encoded target rate...... of 2.1 N/s. The habituation procedure performed in dairy cows kept in their home environment led to lowered intra-individual coefficient of variation of MNT (P test...

  14. Cerebral cortex activation mapping upon electrical muscle stimulation by 32-channel time-domain functional near-infrared spectroscopy.

    Science.gov (United States)

    Re, Rebecca; Muthalib, Makii; Contini, Davide; Zucchelli, Lucia; Torricelli, Alessandro; Spinelli, Lorenzo; Caffini, Matteo; Ferrari, Marco; Quaresima, Valentina; Perrey, Stephane; Kerr, Graham

    2013-01-01

    The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.

  15. Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain

    Directory of Open Access Journals (Sweden)

    Wei Tzuping

    2012-07-01

    Full Text Available Abstract Tibia fracture in rats followed by cast immobilization leads to nociceptive, trophic, vascular and bone-related changes similar to those seen in Complex Regional Pain Syndrome (CRPS. Substance P (SP mediated neurogenic inflammation may be responsible for some of the signs of CRPS in humans. We therefore hypothesized that SP acting through the SP receptor (NK1 leads to the CRPS-like changes found in the rat model. In the present study, we intradermally injected rats with SP and monitored hindpaw mechanical allodynia, temperature, and thickness as well as tissue levels of tumor necrosis factor-α (TNF-α, interleukin 1β (IL-1β, interleukin 6 (IL-6, and nerve growth factor-β (NGF for 72 h. Anti-NGF antibody was utilized to block the effects of SP-induced NGF up-regulation. Fracture rats treated with the selective NK1 receptor antagonist LY303870 prior to cast removal were assessed for BrdU, a DNA synthesis marker, incorporation in skin cells to examine cellular proliferation. Bone microarchitecture was measured using micro computed tomography (μCT. We observed that: (1 SP intraplantar injection induced mechanical allodynia, warmth and edema as well as the expression of nociceptive mediators in the hindpaw skin of normal rats, (2 LY303870 administered intraperitoneally after fracture attenuated allodynia, hindpaw unweighting, warmth, and edema, as well as cytokine and NGF expression, (3 LY303870 blocked fracture-induced epidermal thickening and BrdU incorporation after fracture, (4 anti-NGF antibody blocked SP-induced allodynia but not warmth or edema, and (5 LY303870 had no effect on bone microarchitecture. Collectively our data indicate that SP acting through NK1 receptors supports the nociceptive and vascular components of CRPS, but not the bone-related changes.

  16. Role of olfactory reactions, nociception, and immunoendocrine shifts in addictive disorders.

    Science.gov (United States)

    Masterova, Elena; Nevidimova, Tatiana; Savochkina, Dariya; Nikitina, Valentina; Lobacheva, Olga; Vetlugina, Tamara; Bokhan, Nikolay

    2017-09-01

    Addictive pathology is associated with nervous, immune, and endocrine shifts. Meanwhile, the nature of intersystemic relationship lying beneath addictive disorders remains unclear. The purpose of the study was to identify neuroimmunoendocrine markers of addictive disorders in male subjects defining the nature of their interaction. The study enrolled 69 subjects aged 18-43 years: 59 males and 10 females divided into those with addictive disorders (n = 39) and conditionally healthy subjects (n = 30). EEG testing with olfactory stimulation, olfactometric, and pressure algometric examinations was carried out. Multiplex technique was applied to determine mitogen-induced production of cytokines IL-10, IL-1, IL-1RA, IL-2, IFN-gamma, TNF-alpha. ELISA method was applied to measure serum cortisol and testosterone levels. Olfactory responses to isopropanol with open eyes in addicted patients manifested as increase in alpha-rhythm and beta1-rhythm, with closed eyes presentation of this odorant was accompanied by increase of theta-rhythm in opioid-addicted patients. Male subjects with addictive disorders showed reduced alpha-rhythm in terms of olfactory stimulation with modified emotional evaluation of the odorant, deficient mitogen-induced production of IFN-gamma, and reduced pain sensitivity. Male subjects with opioid addiction had reduced beta1-rhythm in terms of olfactory stimulation, mitogen-induced production of IFN-gamma, and elevated testosterone level. The findings obtained verify potential involvement of nociception, olfaction, and cytokine production in addiction pathogenesis evidencing their various roles depending on the range of psychoactive substances (PAS) and pathology progression. The data obtained may provide background for unification of reward circuit and inhibitory control concepts in regulation of addictive behavior. (Am J Addict 2017;26:640-648). © 2017 American Academy of Addiction Psychiatry.

  17. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis.

    Science.gov (United States)

    Greaves, Erin; Grieve, Kelsey; Horne, Andrew W; Saunders, Philippa T K

    2014-09-01

    Ovarian suppression is a common treatment for endometriosis-associated pelvic pain. Its exact mechanism of action is poorly understood, although it is assumed to reflect reduced production/action of estrogens. The objective of the study was to measure the expression of mRNAs encoded by nociceptive genes in the peritoneum of women with chronic pelvic pain (CPP) with or without endometriosis and to investigate whether estrogens alter nociceptive gene expression in human sensory neurons. The study was performed using human tissue analysis and cell culture. The study was conducted at a university research institute. Peritoneal biopsies were obtained from women with CPP and endometriosis (n = 12), CPP and no endometriosis (n = 10), and no pain or endometriosis (n = 5). Endometriosis lesions were obtained from women with endometriosis (n = 18). mRNAs encoding ion channels (P2RX3, SCN9A, SCN11A, TRPA1, TRPV1) and the neurotransmitter TAC1 were measured in human tissue samples and in human embryonic stem cell-derived sensory neurons treated with estrogens. TRPV1, TRPA1, and SCN11A mRNAs were significantly higher in the peritoneum from women with endometriosis (P endometriosis lesions (P endometriosis (P endometriosis-associated pain. Strategies directly targeting ion channels may offer an alternative option for the management of CPP.

  18. Anti-nociceptive, anti-hyperalgesic and anti-arthritic activity of amides and extract obtained from Piper amalago in rodents.

    Science.gov (United States)

    da Silva Arrigo, Jucicléia; Balen, Eloise; Júnior, Ubirajara Lanza; da Silva Mota, Jonas; Iwamoto, Renan Donomae; Barison, Andersson; Sugizaki, Mario Mateus; Leite Kassuya, Cândida Aparecida

    2016-02-17

    Piper amalago (Piperaceae) has been used in folk medicine as an analgesic. This study aimed to evaluate the pharmacological effects of extract and pure amides obtained from P. amalago on pain to provide a pharmacological basis for their use in traditional medicine. This study evaluated the anti-nociceptive, anti-hyperalgesic, anti-arthritic and anti-depressive activities of the ethanolic extract of P. amalago (EEPA) and the amides N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl] pyrrolidine (1) and N-[7-(3',4'-methylenedioxyphenyl)-2(E),4(E)-heptadienoyl] pyrrolidine (2) obtained from P. amalago in animal models. Mice treated daily with EEPA (100mg/kg, p.o.) were assayed for 20 days for knee edema (micrometer measurement), mechanical hyperalgesia (analgesiometer analysis), heat sensitivity and immobility (forced swim test) in the Complete Freund's Adjuvant (CFA) model. Cold (acetone test) and mechanical hyperalgesia (electronic von Frey analysis) responses were evaluated for 15 days in rats treated with oral EEPA (100mg/kg) in the spared nerve injury (SNI) model. Meanwhile, mice were evaluated for carrageenan-induced edema and mechanical hyperalgesia and for nociception using the formalin model after a single administration of EEPA (100mg/kg) or amides 1 and 2 (1mg/kg). Amides (1) and (2) were detected and isolated from the EEPA. The EEPA inhibited mechanical hyperalgesia, knee edema, and heat hyperalgesia, but not depressive-like behavior, induced by the intraplantar injection of CFA. When evaluated in the SNI model, the EEPA inhibited mechanical and cold hyperalgesia. The EEPA, 1 and 2 prevented the mechanical hyperalgesia induced by carrageenan and the anti-nociceptive effects in both phases of formalin nociception. The EEPA did not induce alterations in the open field test. The EEPA was effective for inhibition of pain and arthritic parameters but was not effective against depressive-like behavior; additionally, it did not alter locomotor activity. The

  19. Characterization of nociceptive response to chemical, mechanical, and thermal stimuli in adolescent rats with neonatal dopamine depletion.

    Science.gov (United States)

    Ogata, M; Noda, K; Akita, H; Ishibashi, H

    2015-03-19

    Rats with dopamine depletion caused by 6-hydroxydopamine (6-OHDA) treatment during adulthood and the neonatal period exhibit akinetic motor activity and spontaneous motor hyperactivity during adolescence, respectively, indicating that the behavioral effects of dopamine depletion depend on the period of lesion development. Dopamine depletion during adulthood induces hyperalgesic response to mechanical, thermal, and/or chemical stimuli, whereas the effects of neonatal dopamine depletion on nociceptive response in adolescent rats are yet to be examined. The latter aspect was addressed in this study, and behavioral responses were examined using von-Frey, tail flick, and formalin tests. The formalin test revealed that rats with neonatal dopamine depletion exhibited a significant increase in nociceptive response during interphase (6-15min post formalin injection) and phase 2 (16-75min post formalin injection). This increase in nociceptive response to the formalin injection was not reversed by pretreatment with methamphetamine, which ameliorates motor hyperactivity observed in adolescent rats with neonatal 6-OHDA treatment. The von-Frey filament and tail flick tests failed to reveal significant differences in withdrawal thresholds between neonatal 6-OHDA-treated and vehicle-treated rats. The spinal neuronal response to the formalin injection into the rat hind paw was also examined through immunohistochemical analysis of c-Fos protein. Significantly increased numbers of c-Fos-immunoreactive cells were observed in laminae I-II and V-VI of the ipsilateral spinal cord to the site of the formalin injection in rats with neonatal dopamine depletion compared with vehicle-treated rats. These results suggest that the dopaminergic neural system plays a crucial role in the development of a neural network for tonic pain, including the spinal neural circuit for nociceptive transmission, and that the mechanism underlying hyperalgesia to tonic pain is not always consistent with that of

  20. High levels of N-palmitoylethanolamide and N-stearoylethanolamide in microdialysate samples from myalgic trapezius muscle in women.

    Directory of Open Access Journals (Sweden)

    Nazdar Ghafouri

    Full Text Available BACKGROUND: N-acylethanolamines (NAEs are endogenous compounds that regulate inflammation and pain. These include the cannabinoid ligand anandamide (AEA and the peroxisome proliferator-activated receptor-α ligand palmitoylethanolamide (PEA. Little is known as to the levels of NAEs in pain states in human, particularly in the skeletal muscle. The aim of this study was to investigate the levels of these lipid mediators in muscle dialysate from women with chronic neck-/shoulder pain compared to healthy controls. METHODS: Eleven women with chronic neck-/shoulder pain and eleven healthy women participated in this study. All participants went through microdialysis procedures in the trapezius muscle. Muscle dialysate samples were collected during four hours and analysed by nano liquid chromatography tandem mass spectrometry (nLC-MS/MS. RESULTS: We were able to detect AEA, PEA, N-stearoylethanolamine (SEA and 2-arachidonoylglycerol (2-AG in a single chromatographic run. Of the NAEs studied, PEA and SEA were clearly detectable in the muscle microdialysate samples. The muscle dialysate levels of PEA and SEA were significantly higher in myalgic subjects compared to healthy controls. CONCLUSION: This study demonstrates that microdialysis in combination with mass spectrometry can be used for analysing NAE's in human muscle tissue regularly over time. Furthermore the significant group differences in the concentration of PEA and SEA in this study might fill an important gap in our knowledge of mechanisms in chronic myalgia in humans. In the long run this expanded understanding of nociceptive and anitinociceptive processes in the muscle may provide a base for ameliorating treatment and rehabilitation of pain.

  1. 3,6-Dimethoxy-6″,6″-Dimethyl-(7,8,2″,3″)-Chromeneflavone, a Flavonoid Isolated from Lonchocarpus Araripensis Benth. (Fabaceae), Reduces Nociceptive Behaviour in Mice.

    Science.gov (United States)

    Almeida, Jackson R G S; Silva, Juliane C; Guimarães, Amanda L; Oliveira, Ana P; Souza, Grasielly R; Oliveira-Júnior, Raimundo G; Lima-Saraiva, Sarah R G; Barbosa-Filho, José M; Braz-Filho, Raimundo; Queiroz, Dinalva Brito; Botelho, Marco Antônio

    2015-10-01

    Lonchocarpus araripensis Benth. is largely distributed in the northeast region of Brazil. It is popularly known as 'sucupira'. Recent studies have shown that some species of Lonchocarpus have interesting pharmacological activities. In this study, we evaluated the antinociceptive effect of a flavone isolated from L. araripensis. The chemical examination resulted in the isolation of 3,6-dimethoxy-6″,6″-dimethyl-(7,8,2″,3″)-chromeneflavone (DDF). The structure of the compound was established by spectral analysis. Antinociceptive activity of DDF was evaluated by measuring nociception by acetic acid, formalin and hot plate tests. The rota rod test was used to evaluate motor coordination. The results demonstrated that DDF was able to prevent acetic-acid-writhing-induced nociception (p < 0.001) in mice. Furthermore, DDF produced a significant reduction of the nociceptive behaviour at the early and late phases of paw licking in the formalin test. Also, DDF produced an inhibition of the nociceptive behaviour during a hot-plate test. No alteration in motor coordination was observed. These results confirm the hypothesis that DDF reduces the nociceptive behaviour in mice, probably through central mechanisms, but without compromising the motor coordination of animals. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Henry James L

    2009-09-01

    Full Text Available Abstract Background Clinical data on osteoarthritis (OA suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Aδ-fiber associated neurons and therefore the focus is on Aβ-fiber nociceptive neurons. Results At one month after unilateral derangement of the knee by cutting the anterior cruciate ligament and removing the medial meniscus, the only changes observed in Aβ-fiber dorsal root ganglion (DRG neurons were in nociceptor-like unresponsive neurons bearing a hump on the repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed were in Aβ-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate, reflecting accelerated dynamics of AP genesis. Conclusion These data indicate that Aβ nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Aβ-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA.

  3. Clinical features of muscle dysmorphia among males with body dysmorphic disorder.

    Science.gov (United States)

    Pope, Courtney G; Pope, Harrison G; Menard, William; Fay, Christina; Olivardia, Roberto; Phillips, Katharine A

    2005-12-01

    Muscle dysmorphia - a pathological preoccupation with muscularity - appears to be a form of body dysmorphic disorder (BDD) with a focus on muscularity. However, little is known about muscle dysmorphia in men with BDD, and no study has compared men with BDD who do and do not report muscle dysmorphia. To explore this issue, we reviewed the histories of 63 men with BDD; we compared those rated as having a history of muscle dysmorphia with those who had BDD but not muscle dysmorphia in several domains. The 14 men with muscle dysmorphia resembled the 49 comparison men in demographic features, BDD severity, delusionality, and number of non-muscle-related body parts of concern. However, those with muscle dysmorphia were more likely to have attempted suicide, had poorer quality of life, and had a higher frequency of any substance use disorder and anabolic steroid abuse. Thus, muscle dysmorphia was associated with greater psychopathology.

  4. Evaluation of Postoperative Anti-nociceptive Efficacy of Intrathecal Dexketoprofen in Rats.

    Science.gov (United States)

    Birol Muhammet, Er; Kocamanoğlu, İsmail Serhat; Bozkurt, Ayhan; Bilge, Sırrı; Çetinoğlu, Erhan Çetin

    2016-05-01

    Some studies have suggested that the intrathecal use of cyclooxygenase enzyme inhibitors provides an anti-nociceptive effect. Therefore, the occurrence of side effects seen in systemic usage can be eliminated. The primary objective of this experimental, randomized, controlled trial was to test the hypothesis asserting that intrathecal dexketoprofen trometamol would demonstrate an analgesic effect during postoperative period. Animal experimentation. Forty rats were randomized into 4 groups 7 days after intrathecal catheterization; the following drugs were given through catheter lumens: Group Lidocaine (Group L): Lidocaine 20 μg; Group Lidocaine-Morphine (Group LM): Lidocaine 20 μg and morphine 0.5 μgr; Group Lidocaine-Dexketoprofen (Group LD): Lidocaine 20 μg and dexketoprofen trometamol 100 μg; and Group Dexketoprofen (Group D): Dexketoprofen trometamol 100 μg. Paw incision was achieved under ether inhalation. To measure analgesic potential, hot plate and tail immersion tests were used as nociceptive tests during the postoperative period. The mean reaction times detected in groups during hot plate and tail immersion tests were shortest in Group L at 15, 30, 45, 60, 75, 90, 105, and 120 minutes after start of surgery (pdexketoprofen, as in the morphine group, longer reaction times were detected than in the lidocaine group at all measurement times except 120 minutes (pdexketoprofen in the optimal perioperative pain management is effective, and can be administered as an adjuvant in clinics after neurotoxicity studies in animals, and effective dose studies in volunteers.

  5. The Discriminative validity of "nociceptive," "peripheral neuropathic," and "central sensitization" as mechanisms-based classifications of musculoskeletal pain.

    LENUS (Irish Health Repository)

    Smart, Keith M

    2012-02-01

    OBJECTIVES: Empirical evidence of discriminative validity is required to justify the use of mechanisms-based classifications of musculoskeletal pain in clinical practice. The purpose of this study was to evaluate the discriminative validity of mechanisms-based classifications of pain by identifying discriminatory clusters of clinical criteria predictive of "nociceptive," "peripheral neuropathic," and "central sensitization" pain in patients with low back (+\\/- leg) pain disorders. METHODS: This study was a cross-sectional, between-patients design using the extreme-groups method. Four hundred sixty-four patients with low back (+\\/- leg) pain were assessed using a standardized assessment protocol. After each assessment, patients\\' pain was assigned a mechanisms-based classification. Clinicians then completed a clinical criteria checklist indicating the presence\\/absence of various clinical criteria. RESULTS: Multivariate analyses using binary logistic regression with Bayesian model averaging identified a discriminative cluster of 7, 3, and 4 symptoms and signs predictive of a dominance of "nociceptive," "peripheral neuropathic," and "central sensitization" pain, respectively. Each cluster was found to have high levels of classification accuracy (sensitivity, specificity, positive\\/negative predictive values, positive\\/negative likelihood ratios). DISCUSSION: By identifying a discriminatory cluster of symptoms and signs predictive of "nociceptive," "peripheral neuropathic," and "central" pain, this study provides some preliminary discriminative validity evidence for mechanisms-based classifications of musculoskeletal pain. Classification system validation requires the accumulation of validity evidence before their use in clinical practice can be recommended. Further studies are required to evaluate the construct and criterion validity of mechanisms-based classifications of musculoskeletal pain.

  6. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    Directory of Open Access Journals (Sweden)

    Yeowool eHuh

    2013-10-01

    Full Text Available Anesthetics are often used to characterize the activity of single neurons in-vivo for its advantages such as reduced noise level and convenience in noxious stimulations. Of the anesthetics, urethane had been widely used in some thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested whether this assumption stands by comparing thalamic activity in terms of tonic and burst firing modes during ‘the awake state’ or under ‘urethane anesthesia’ utilizing the extracellular single unit recording technique. First we have tested how thalamic relay neurons respond to the introduction of urethane and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over the 4 hour recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

  7. Tramadol effects on clinical variables and the mechanical nociceptive threshold in horses

    OpenAIRE

    Franco,Leandro Guimarães; Moreno,Juan Carlos Duque; Teixeira Neto,Antônio Raphael; Souza,Moisés Caetano e; Silva,Luiz Antônio Franco da

    2014-01-01

    This study assessed the clinical effects and the mechanical antinociceptive potential of intravenous (IV) tramadol in horses.A blinded and randomized study was designed with 7 horses treated with 1 (Tr1), 2 (Tr2) or 3 (Tr3) mg kg-1 of tramadol IV. The heart rate, respiratory rate (fR), arterial pressure, degree of sedation, gastrointestinal motility (GI), behavior changes and the mechanical nociceptive threshold (MNT) were evaluated. The MNT was determined with von Frey device method.Tr3 had ...

  8. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats.

    Science.gov (United States)

    Ohtani, Norimasa; Masaki, Eiji

    2016-01-01

    Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.

  9. Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors

    Directory of Open Access Journals (Sweden)

    L Xiao

    2017-09-01

    Full Text Available Current non-surgical treatments for lumbar radiculopathy [e.g. epidural steroids and Tumour necrosis factor-α (TNF-α antagonists] are neither effective nor safe. As a non-toxic natural product, curcumin possesses an exceptional anti-inflammatory profile. We hypothesised that curcumin alleviates lumbar radiculopathy by attenuating neuroinflammation, oxidative stress and nociceptive factors. In a dorsal root ganglion (DRG culture, curcumin effectively inhibited TNF-α-induced neuroinflammation, in a dose-dependent manner, as shown by mRNA and protein expression of IL-6 and COX-2. Such effects might be mediated via protein kinase B (AKT and extracellular signal regulated kinase (ERK pathways. Also, a similar effect in combating TNF-α-induced neuroinflammation was observed in isolated primary neurons. In addition, curcumin protected neurons from TNF-α-triggered excessive reactive oxygen species (ROS production and cellular apoptosis and, accordingly, promoted mRNA expression of the anti-oxidative enzymes haem oxygenase-1, catalase and superoxide dismutase-2. Intriguingly, electronic von Frey test suggested that intraperitoneal injection of curcumin significantly abolished ipsilateral hyperalgesia secondary to disc herniation in mice, for up to 2 weeks post-surgery. Such in vivo pain alleviation could be attributed to the suppression, observed in DRG explant culture, of TNF-α-elicited neuropeptides, such as substance P and calcitonin gene-related peptide. Surprisingly, micro-computed tomography (μCT data suggested that curcumin treatment could promote disc height recovery following disc herniation. Alcian blue/picrosirius red staining confirmed that systemic curcumin administration promoted regeneration of extracellular matrix proteins, visualised by presence of abundant newly-formed collagen and proteoglycan content in herniated disc. Our study provided pre-clinical evidence for expediting this natural, non-toxic pleiotropic agent to become a

  10. Muscles and their role in episodic tension-type headache: implications for treatment.

    Science.gov (United States)

    Bendtsen, L; Ashina, S; Moore, A; Steiner, T J

    2016-02-01

    Tension-type headache (TTH) imposes a heavy burden on the global population but remains incompletely understood and poorly managed. Here, we review current knowledge of peripheral factors involved in the mechanism of TTH and make recommendations for the treatment of episodic TTH based on these. Peripheral activation or sensitization of myofascial nociceptors is most probably involved in the development of muscle pain and the acute episode of TTH. Repetitive episodes of muscle pain may sensitize the central nervous system resulting in progression of TTH to the chronic form. Thus, muscular factors may be responsible not only for the acute headache episode but also for chronification of the disorder. Simple analgesics and non-steroidal anti-inflammatory drugs are the mainstays of management of individual headache episodes. Ibuprofen 400 mg and aspirin 1000 mg are recommended as drugs of first choice based on treatment effect, safety profile and costs. Non-pharmacological therapies include electromyographic biofeedback, physiotherapy and muscle relaxation therapy. Future studies should aim to identify the triggers of peripheral nociception and how to avoid peripheral and central sensitization. There is a need for more effective, faster acting drugs for acute TTH. Muscular factors play an important role in episodic TTH. Ibuprofen 400 mg and aspirin 1000 mg are recommended as drugs of first choice. © 2015 European Pain Federation - EFIC®

  11. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.

    Directory of Open Access Journals (Sweden)

    Choong-Wan Woo

    2015-01-01

    Full Text Available Cognitive self-regulation can strongly modulate pain and emotion. However, it is unclear whether self-regulation primarily influences primary nociceptive and affective processes or evaluative ones. In this study, participants engaged in self-regulation to increase or decrease pain while experiencing multiple levels of painful heat during functional magnetic resonance imaging (fMRI imaging. Both heat intensity and self-regulation strongly influenced reported pain, but they did so via two distinct brain pathways. The effects of stimulus intensity were mediated by the neurologic pain signature (NPS, an a priori distributed brain network shown to predict physical pain with over 90% sensitivity and specificity across four studies. Self-regulation did not influence NPS responses; instead, its effects were mediated through functional connections between the nucleus accumbens and ventromedial prefrontal cortex. This pathway was unresponsive to noxious input, and has been broadly implicated in valuation, emotional appraisal, and functional outcomes in pain and other types of affective processes. These findings provide evidence that pain reports are associated with two dissociable functional systems: nociceptive/affective aspects mediated by the NPS, and evaluative/functional aspects mediated by a fronto-striatal system.

  12. Determination of the temperature causing a nociceptive response in the tail of albino BALB/c mice.

    Science.gov (United States)

    Aguirre Siancas, E E; Lam Figueroa, N M; Delgado Rios, J C; Ruiz Ramirez, E; Portilla Flores, O S; Crispín Huamaní, L J; Alarcón Velásquez, L

    2018-06-08

    Designs for determining nociceptive response in rodents are of great use in neurology and experimental neuroscience. Immersing mice's tails in warm water is one of the most widely used procedures to evaluate this response; however, a wide range of temperatures are used in different studies. Knowing the temperature that produces a powerful nociceptive response in the tail of BALB/c mice is extremely useful. Eight 2-month-old male BALB/c mice were used. A 14-cm high beaker was filled with water up to 13 cm. The animals' tails were immersed in the container with a starting temperature of 36°C. The water temperature was raised in 1°C increments until we identified the temperatures that produced nociceptive responses. That response was determined by counting the time taken before the mouse shook its tail to remove it from the water. Six of the 8 mice began shaking their tails at the temperature of 51°C. All animals removed their tails from the water at the temperatures of 54°C, 55°C, and 56°C, taking a mean time of 8.54, 7.99, and 5.33seconds, respectively. ANOVA applied to the response times for each of the 3 temperatures indicated revealed a value of F=2.8 (P=.123). The response time was statistically similar for the temperatures of 54°C, 55°C, and 56°C; however, the data were less dispersed for the latter temperature. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Muscle Control and Non-specific Chronic Low Back Pain.

    Science.gov (United States)

    Russo, Marc; Deckers, Kristiaan; Eldabe, Sam; Kiesel, Kyle; Gilligan, Chris; Vieceli, John; Crosby, Peter

    2018-01-01

    Chronic low back pain (CLBP) is the most prevalent of the painful musculoskeletal conditions. CLBP is a heterogeneous condition with many causes and diagnoses, but there are few established therapies with strong evidence of effectiveness (or cost effectiveness). CLBP for which it is not possible to identify any specific cause is often referred to as non-specific chronic LBP (NSCLBP). One type of NSCLBP is continuing and recurrent primarily nociceptive CLBP due to vertebral joint overload subsequent to functional instability of the lumbar spine. This condition may occur due to disruption of the motor control system to the key stabilizing muscles in the lumbar spine, particularly the lumbar multifidus muscle (MF). This review presents the evidence for MF involvement in CLBP, mechanisms of action of disruption of control of the MF, and options for restoring control of the MF as a treatment for NSCLBP. Imaging assessment of motor control dysfunction of the MF in individual patients is fraught with difficulty. MRI or ultrasound imaging techniques, while reliable, have limited diagnostic or predictive utility. For some patients, restoration of motor control to the MF with specific exercises can be effective, but population results are not persuasive since most patients are unable to voluntarily contract the MF and may be inhibited from doing so due to arthrogenic muscle inhibition. Targeting MF control with restorative neurostimulation promises a new treatment option. © 2017 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.

  14. Evaluation of Postoperative Anti-nociceptive Efficacy of Intrathecal Dexketoprofen in Rats

    Directory of Open Access Journals (Sweden)

    Birol Muhammet Er

    2016-06-01

    Full Text Available Background: Some studies have suggested that the intrathecal use of cyclooxygenase enzyme inhibitors provides an anti-nociceptive effect. Therefore, the occurrence of side effects seen in systemic usage can be eliminated. Aims: The primary objective of this experimental, randomized, controlled trial was to test the hypothesis asserting that intrathecal dexketoprofen trometamol would demonstrate an analgesic effect during postoperative period. Study Design: Animal experimentation. Methods: Forty rats were randomized into 4 groups 7 days after intrathecal catheterization; the following drugs were given through catheter lumens: Group Lidocaine (Group L: Lidocaine 20 μg; Group Lidocaine-Morphine (Group LM: Lidocaine 20 μg and morphine 0.5 μgr; Group Lidocaine-Dexketoprofen (Group LD: Lidocaine 20 μg and dexketoprofen trometamol 100 μg; and Group Dexketoprofen (Group D: Dexketoprofen trometamol 100 μg. Paw incision was achieved under ether inhalation. To measure analgesic potential, hot plate and tail immersion tests were used as nociceptive tests during the postoperative period. Results: The mean reaction times detected in groups during hot plate and tail immersion tests were shortest in Group L at 15, 30, 45, 60, 75, 90, 105, and 120 minutes after start of surgery (p<0.01, all others. In the groups using dexketoprofen, as in the morphine group, longer reaction times were detected than in the lidocaine group at all measurement times except 120 minutes (p<0.01. Conclusion: Intrathecal dexketoprofen in the optimal perioperative pain management is effective, and can be administered as an adjuvant in clinics after neurotoxicity studies in animals, and effective dose studies in volunteers.

  15. Anti-inflammatory and anti-nociceptive activities of methanolic leaf extract of Indigofera cassioides Rottl. Ex. DC.

    Directory of Open Access Journals (Sweden)

    Raju Senthil Kumar

    2013-01-01

    Conclusions: All the results obtained revealed that the extract MEIC showed potent anti-inflammatory and anti-nociceptive activity against all the tested models and the results obtained were comparable with the standards used. The activity of the extract may be due to the presence of terpenoids, flavonoids and other phytochemicals.

  16. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain.

    Science.gov (United States)

    Colon, E; Legrain, V; Mouraux, A

    2012-10-01

    The periodic presentation of a sensory stimulus induces, at certain frequencies of stimulation, a sustained electroencephalographic response of corresponding frequency, known as steady-state evoked potentials (SS-EP). In visual, auditory and vibrotactile modalities, studies have shown that SS-EP reflect mainly activity originating from early, modality-specific sensory cortices. Furthermore, it has been shown that SS-EP have several advantages over the recording of transient event-related brain potentials (ERP), such as a high signal-to-noise ratio, a shorter time to obtain reliable signals, and the capacity to frequency-tag the cortical activity elicited by concurrently presented sensory stimuli. Recently, we showed that SS-EP can be elicited by the selective activation of skin nociceptors and that nociceptive SS-EP reflect the activity of a population of neurons that is spatially distinct from the somatotopically-organized population of neurons underlying vibrotactile SS-EP. Hence, the recording of SS-EP offers a unique opportunity to study the cortical representation of nociception and touch in humans, and to explore their potential crossmodal interactions. Here, (1) we review available methods to achieve the rapid periodic stimulation of somatosensory afferents required to elicit SS-EP, (2) review previous studies that have characterized vibrotactile and nociceptive SS-EP, (3) discuss the nature of the recorded signals and their relationship with transient event-related potentials and (4) outline future perspectives and potential clinical applications of this technique. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats

    Directory of Open Access Journals (Sweden)

    Ohtani N

    2016-10-01

    Full Text Available Norimasa Ohtani, Eiji Masaki Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan Background: Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats.Methods: Male Sprague-Dawley rats (250–300 g were anesthetized with sevoflurane and an intrathecal (IT catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole, or a D2-like receptor antagonist (sulpiride was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision.Results: Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect.Conclusion: A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold. Keywords: postoperative pain, descending pathway

  18. Influence of dental correction on nociceptive test responses, fecal appearance, body condition score, and apparent digestibility coefficient for dry matter of Zamorano-leones donkeys (Equus asinus).

    Science.gov (United States)

    Rodrigues, J B; Ferreira, L M; Bastos, E; San Roman, F; Viegas, C; Santos, A S

    2013-10-01

    The influence of dental correction on nociceptive (pressure) test responses, fecal appearance, BCS, and apparent digestibility coefficient for DM was studied in 18 Zamorano-Leonés donkeys, an endangered local breed from the Zamora province in Spain. For this purpose, donkeys were divided into 2 homogeneous control and treatment groups, based on age, BCS, and dental findings. On d 1, 45, 90, and 135, BCS and nociceptive test responses were evaluated in all donkeys. Feed and fecal samples were collected from all donkeys for 3 consecutive days, starting at each of the aforementioned days. Apparent digestibility coefficient for DM was estimated, using ADL as an internal marker. A progressive decrease of positive nociceptive test responses was observed from d 1 up to 90 (P donkeys but also the equid population, in general, to improve their welfare.

  19. Interaction of corneal nociceptive stimulation and lacrimal secretion.

    Science.gov (United States)

    Situ, Ping; Simpson, Trefford L

    2010-11-01

    To investigate the interaction between corneal stimuli at different positions and tear secretion and to establish relationships between nociceptive stimuli detection thresholds and stimulated tearing. Using a computerized Belmonte-esthesiometer, mechanical and chemical stimuli, from 0% to 200% of the threshold in 50% steps, were delivered (in random order) to the central and peripheral (approximately 2-mm inside the limbus) cornea during four separate sessions to 15 subjects. Immediately after each stimulus, tear meniscus height (TMH) was measured using optical coherence tomography to quantify the amount of lacrimal secretion, and subjects reported whether they felt tears starting to accumulate in their eyes. Thresholds (50% detection) for detection of tearing were estimated. TMH increased with increasing stimulus intensity (P lacrimation reflex. Central mechanical corneal stimulation is the most effective stimulus-position pairing and appears to be the major sensory driving force for reflex tear secretion by the lacrimal functional unit.

  20. Lack of effect of nitric oxide on KCl, acetylcholine and substance P induced contractions in ileal longitudinal muscle of the rat.

    Science.gov (United States)

    Tanovic, A; Jiménez, M; Fernández, E

    2000-06-23

    The aim of this study was to determine whether an excess of nitric oxide (NO) (mimicked by addition of NO donors) might produce by itself changes in the contractile responses to acetylcholine (ACh), substance P (SP) and KCl in the longitudinal muscle of the rat ileum. We also studied the calcium handling properties of this tissue in presence of NO donors. The NO donors assayed sodium nitroprusside (SNP) and 3-morpholinosydnonimine hydrochloride (SIN-1), induced different responses. SNP caused an immediate contraction followed by a sustained relaxation, whereas SIN-1 induced an immediate relaxation followed by a contraction. Even after prolonged incubations (up to 90 min), the NO donors SNP and SIN-1 were unable to modify the ACh- and SP-concentration-response curves, as well as the response to 30 mM KCl. The nifedipine-resistant component of the ACh-induced contraction was not modified in presence of SNP. Cyclopiazonic acid (CPA) induced a contraction that was not modified when the tissue was pre-incubated with SNP. Nifedipine caused a sharp relaxation when added during the CPA-induced contraction and, when added previously, it reduced the CPA-induced contractile response. It is concluded that NO excess is not, by itself, responsible for the altered responses to KCl. ACh and SP. The contractility changes observed in the longitudinal muscle of the rat ileum during inflammation could rather be related to the presence of other inflammatory mediators.

  1. Neuro chemical characteristic of structures of nociceptive system athyperthyroid function of the thyroid gland

    Directory of Open Access Journals (Sweden)

    O. M. Demchenko

    2015-06-01

    Full Text Available The papercomprises the study of the conditionofpro-antioxidantprocesses in the formationso fnociceptivesystem (cerebral cortex, hippocampus, stem and thalamus in the presence of the experiment al induced hyperthyroidism. It was found that nociceptive irritation (laparotomy on the background of hyper thyroidism had not pronounced effect on the content of diene conjugates (DC and malondialdehyde. The level of enzymes of antioxidant system of superoxidedismutase (SOD and glutathioneperoxidase (GPO decreased.

  2. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    Directory of Open Access Journals (Sweden)

    Yulin Dong

    Full Text Available It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG or FG/tetramethylrhodamine-dextran amine (TMR-DA were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the caudal spinal trigeminal nucleus (Vc. The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt, dorsal and ventral medullary reticular formation (MdD, MdV, supratrigeminal nucleus (Vsup and parabrachial nucleus (PBN with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.

  3. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  4. Psychophysics of a nociceptive test in the mouse: ambient temperature as a key factor for variation.

    Directory of Open Access Journals (Sweden)

    Ivanne Pincedé

    Full Text Available The mouse is increasingly used in biomedical research, notably in behavioral neurosciences for the development of tests or models of pain. Our goal was to provide the scientific community with an outstanding tool that allows the determination of psychophysical descriptors of a nociceptive reaction, which are inaccessible with conventional methods: namely the true threshold, true latency, conduction velocity of the peripheral fibers that trigger the response and latency of the central decision-making process.Basically, the procedures involved heating of the tail with a CO(2 laser, recording of tail temperature with an infrared camera and stopping the heating when the animal reacted. The method is based mainly on the measurement of three observable variables, namely the initial temperature, the heating rate and the temperature reached at the actual moment of the reaction following random variations in noxious radiant heat. The initial temperature of the tail, which itself depends on the ambient temperature, very markedly influenced the behavioral threshold, the behavioral latency and the conduction velocity of the peripheral fibers but not the latency of the central decision-making.We have validated a psychophysical approach to nociceptive reactions for the mouse, which has already been described for rats and Humans. It enables the determination of four variables, which contribute to the overall latency of the response. The usefulness of such an approach was demonstrated by providing new fundamental findings regarding the influence of ambient temperature on nociceptive processes. We conclude by challenging the validity of using as "pain index" the reaction time of a behavioral response to an increasing heat stimulus and emphasize the need for a very careful control of the ambient temperature, as a prevailing environmental source of variation, during any behavioral testing of mice.

  5. The role of protease-activated receptor type 2 in nociceptive signaling and pain

    Czech Academy of Sciences Publication Activity Database

    Mrózková, Petra; Paleček, Jiří; Špicarová, Diana

    2016-01-01

    Roč. 65, č. 3 (2016), s. 357-367 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH12058; GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GA15-11138S; GA MŠk(CZ) LH15279; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : protease-activated receptor (PAR2) * signaling pathways * nociception * pain * spinal cord Subject RIV: FH - Neurology Impact factor: 1.461, year: 2016

  6. Network dynamics in nociceptive pathways assessed by the neuronal avalanche model

    Directory of Open Access Journals (Sweden)

    Wu José

    2012-04-01

    Full Text Available Abstract Background Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value. We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. Findings Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1 and anterior cingulate cortex (ACC. Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. Conclusions The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.

  7. Evidence of altered pressure pain thresholds in persons with disorders of consciousness as measured by the Nociception Coma Scale-Italian version.

    Science.gov (United States)

    Sattin, Davide; Schnakers, Caroline; Pagani, Marco; Arenare, Francesca; Devalle, Guya; Giunco, Fabrizio; Guizzetti, GianBattista; Lanfranchi, Maurizio; Giovannetti, Ambra M; Covelli, Venusia; Bersano, Anna; Nigri, Anna; Minati, Ludovico; Rossi Sebastiano, Davide; Parati, Eugenio; Bruzzone, MariaGrazia; Franceschetti, Silvana; Leonardi, Matilde

    2017-02-28

    Pain assessment in patients with disorders of consciousness (DoC) is a controversial issue for clinicians, who require tools and standardised procedures for testing nociception in non-communicative patients. The aims of the present study were, first, to analyse the psychometric properties of the Italian version of the Nociception Coma Scale and, second, to evaluate pressure pain thresholds in a group of patients with DoC. The authors conducted a multi-centre study on 40 healthy participants and 60 DoC patients enrolled from six hospitals in Italy. For each group an electronic algometer was used to apply all nociceptive pressure stimuli. Our results show that the Italian version of the NCS retains the good psychometric properties of the original version and is therefore suitable for standardised pain assessment in clinical practice. In our study, pressure pain thresholds measured in a group of patients in vegetative and minimally conscious state were relatively lower than pain threshold values found in a group of healthy participants. Such findings motivate additional investigation on possible pain sensitisation in patients with severe brain injury and multiple co-morbidities, and on application of tailored therapeutic approaches useful for pain management in patients unable verbally to communicate their feelings.

  8. Early Postoperative Nociceptive Threshold and Production of Brain-Derived Neurotrophic Factor Induced by Plantar Incision Are Not Influenced with Minocycline in a Rat: Role of Spinal Microglia

    Directory of Open Access Journals (Sweden)

    Eiji Masaki

    2016-03-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF from spinal microglia is crucial for aberrant nociceptive signaling in several pathological pain conditions, including postoperative pain. We assess the contribution of spinal microglial activation and associated BDNF overexpression to the early post-incisional nociceptive threshold. Methods: Male Sprague-Dawley rats were implanted with an intrathecal catheter. A postoperative pain model was established by plantar incision. Thermal and mechanical nociceptive responses were assessed by infrared radiant heat and von Frey filaments before and after plantar incision. Rats were injected intrathecally the microglial activation inhibitor minocycline before incision, 24 h after incision, or both. Other groups were subjected to the same treatments and the L4-L5 spinal cord segment removed for immunohistochemical analysis of microglia activation and BNDF expression. Results: Plantar incision reduced both thermal latency and mechanical threshold, indicating thermal hypersensitivity and mechanical allodynia. Minocycline temporally reduced thermal withdrawal latency but had no effect on mechanical withdrawal threshold, spinal microglial activity, or dorsal horn BDNF overexpression during the early post-incision period. Conclusion: These results suggest that spinal microglia does not contribute substantially to post-incisional nociceptive threshold. The BDNF overexpression response that may contribute to postoperative hyperalgesia and allodynia is likely derived from other sources.

  9. The selective effect of N-feruloylserotonins isolated from Leuzea carthamoides on nociception and anxiety in rats

    Czech Academy of Sciences Publication Activity Database

    Yamamotová, A.; Pometlová, M.; Harmatha, Juraj; Rašková, H.; Rokyta, R.

    2007-01-01

    Roč. 112, č. 2 (2007), s. 368-374 ISSN 0378-8741 R&D Projects: GA MŠk(CZ) 1M0517; GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : nociception * anxiety * N-feruloylserotonin * Leuzea carthamoides Subject RIV: CC - Organic Chemistry Impact factor: 2.049, year: 2007

  10. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats.

    Science.gov (United States)

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-07-30

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain.

  11. The effect of social isolation, gender and familiarity with the experimental procedure on tests of porcine nociceptive thresholds

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Stausholm, Julie S.; Viitasaari, Eliina

    2015-01-01

    Objective To investigate the effects of habituation and isolation on mechanical nociceptive thresholds in pigs at the pelvic limbs and at the tail. Study design Prospective randomized multifactorial study. Animals Thirty-two healthy castrated male (experiment 1), and 12 castrated male and 12 female...

  12. Divergent functions of the left and right central amygdala in visceral nociception.

    Science.gov (United States)

    Sadler, Katelyn E; McQuaid, Neal A; Cox, Abigail C; Behun, Marissa N; Trouten, Allison M; Kolber, Benedict J

    2017-04-01

    The left and right central amygdalae (CeA) are limbic regions involved in somatic and visceral pain processing. These 2 nuclei are asymmetrically involved in somatic pain modulation; pain-like responses on both sides of the body are preferentially driven by the right CeA, and in a reciprocal fashion, nociceptive somatic stimuli on both sides of the body predominantly alter molecular and physiological activities in the right CeA. Unknown, however, is whether this lateralization also exists in visceral pain processing and furthermore what function the left CeA has in modulating nociceptive information. Using urinary bladder distension (UBD) and excitatory optogenetics, a pronociceptive function of the right CeA was demonstrated in mice. Channelrhodopsin-2-mediated activation of the right CeA increased visceromotor responses (VMRs), while activation of the left CeA had no effect. Similarly, UBD-evoked VMRs increased after unilateral infusion of pituitary adenylate cyclase-activating polypeptide in the right CeA. To determine intrinsic left CeA involvement in bladder pain modulation, this region was optogenetically silenced during noxious UBD. Halorhodopsin (NpHR)-mediated inhibition of the left CeA increased VMRs, suggesting an ongoing antinociceptive function for this region. Finally, divergent left and right CeA functions were evaluated during abdominal mechanosensory testing. In naive animals, channelrhodopsin-2-mediated activation of the right CeA induced mechanical allodynia, and after cyclophosphamide-induced bladder sensitization, activation of the left CeA reversed referred bladder pain-like behaviors. Overall, these data provide evidence for functional brain lateralization in the absence of peripheral anatomical asymmetries.

  13. Modulation of melanocortin- induced changes in spinal nociception by µ-opioid receptor agonist and antagonist in neuropathic rats

    NARCIS (Netherlands)

    Gispen, W.H.; Starowitcz, K.; Przewlocki, R.; Przewlocka, B.

    2002-01-01

    Co-localization of opioid and melanocortin receptor expression, especially at the spinal cord level in the dorsal horn and in the gray matter surrounding the central canal led to the suggestion that melanocortins might play a role in nociceptive processes. In the present studies, we aimed to

  14. Specific proteins of the trapezius muscle correlate with pain intensity and sensitivity – an explorative multivariate proteomic study of the trapezius muscle in women with chronic widespread pain

    Directory of Open Access Journals (Sweden)

    Olausson P

    2016-06-01

    Full Text Available Patrik Olausson, Bijar Ghafouri, Nazdar Ghafouri, Björn Gerdle Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden Abstract: Chronic widespread pain (CWP including fibromyalgia syndrome (FMS has a high prevalence and is associated with prominent negative consequences. CWP/FMS exhibits morphological and functional alterations in the central nervous system. The importance of peripheral factors for maintaining the central alterations are under debate. In this study, the proteins from biopsies of the trapezius muscle from 18 female CWP/FMS patients and 19 healthy female controls were analyzed. Pain intensity and pressure pain thresholds (PPT over the trapezius muscles were registered. Twelve proteins representing five different groups of proteins were important regressors of pain intensity in CWP/FMS (R2=0.99; P<0.001. In the regression of PPT in CWP/FMS, it was found that 16 proteins representing six groups of proteins were significant regressors (R2=0.95, P<0.05. Many of the important proteins were stress and inflammation proteins, enzymes involved in metabolic pathways, and proteins associated with muscle damage, myopathies, and muscle recovery. The altered expression of these proteins may reflect both direct and indirect nociceptive/inflammatory processes as well as secondary changes. The relative importance of the identified proteins and central alterations in CWP need to be investigated in future research. Data from this and the previous study concerning the same cohorts give support to the suggestion that peripheral factors are of importance for maintaining pain aspects in CWP/FMS. Keywords: chronic widespread pain, proteomics, biomarkers, multivariate data analysis, pain threshold, numeric rating scale

  15. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    Science.gov (United States)

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  16. Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Geun-Woo; Kim, Min-Ji; Yang, Kui-Ye; Kim, Seong-Taek; Bae, Yong-Cheol

    2015-01-01

    We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund's adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions. PMID:26170739

  17. Polysaccharide rich fractions from barks of Ximenia americana inhibit peripheral inflammatory nociception in mice Antinociceptive effect of Ximenia americana polysaccharide rich fractions

    Directory of Open Access Journals (Sweden)

    Kaira E.S. da Silva-Leite

    Full Text Available Abstract Ximenia americana L., Olacaceae, barks are utilized in folk medicine as analgesic and anti-inflammatory. The objective was to evaluate the toxicity and antinociceptive effect of polysaccharides rich fractions from X. americana barks. The fractions were obtained by extraction with NaOH, followed by precipitation with ethanol and fractionation by ion exchange chromatography. They were administered i.v. or p.o. before nociception tests (writhing, formalin, carragenan-induced hypernociception, hot plate, or during 14 days for toxicity assay. The total polysaccharides fraction (TPL-Xa: 8.1% yield presented 43% carbohydrate (21% uronic acid and resulted in two main fractions after chromatography (FI: 12%, FII: 22% yield. FII showed better homogeneity/purity, content of 44% carbohydrate, including 39% uronic acid, arabinose and galactose as major monosaccharides, and infrared spectra with peaks in carbohydrate range for COO- groups of uronic acid. TPL-Xa (10 mg/kg and FII (0.1 and 1 mg/kg presented inhibitory effect in behavior tests that evaluate nociception induced by chemical and mechanical, but not thermal stimuli. TPL-Xa did not alter parameters of systemic toxicity. In conclusion, polysaccharides rich fractions of X. americana barks inhibit peripheral inflammatory nociception, being well tolerated by animals.

  18. Prohibited anabolic substances, dangerous to human consumers, in accordance of E.U. regulations

    Directory of Open Access Journals (Sweden)

    Flavia A. Hanganu,

    2009-06-01

    Full Text Available Substances with anabolic effects are used to enhance feed conversion, growth rate or muscle tissue deposition in stock farming for several decades. The majority of these compounds have biochemical effects similar to sex steroids (androgens, estrogens, gestagens. However, in the E.U., the use of hormones for growth – promotion or fattening is prohibited. Monitoring of residues of hormonal growth-promotion in meat or milk, is essential for implementing such bans and to protect public health against the harmful effects of these substances, which incidentally is found in products of animal origin.

  19. Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor.

    Science.gov (United States)

    Yu, Xuan; Wang, Xin-Pei; Yan, Xiao-Jin; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; Guo, Yue-Ying; Du, Li-Jun

    2017-08-09

    To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confifirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (Peffect of PA. A decrease in the intracellular calcium level (Peffect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.

  20. Thermal nociception as a measure of non-steroidal anti-inflammatory drug effectiveness in broiler chickens with articular pain☆

    Science.gov (United States)

    Caplen, Gina; Baker, Laurence; Hothersall, Becky; McKeegan, Dorothy E.F.; Sandilands, Victoria; Sparks, Nick H.C.; Waterman-Pearson, Avril E.; Murrell, Joanna C.

    2013-01-01

    Pain associated with poultry lameness is poorly understood. The anti-nociceptive properties of two non-steroidal anti-inflammatory drugs (NSAIDs) were evaluated using threshold testing in combination with an acute inflammatory arthropathy model. Broilers were tested in six groups (n = 8 per group). Each group underwent a treatment (saline, meloxicam (3 or 5 mg/kg) or carprofen (15 or 25 mg/kg)) and a procedure (Induced (arthropathy-induction) or sham (sham-handling)) prior to testing. Induced groups had Freund’s complete adjuvant injected intra-articularly into the left intertarsal joint (hock). A ramped thermal stimulus (1 °C/s) was applied to the skin of the left metatarsal. Data were analysed using random-intercept multi-level models. Saline-induced birds had a significantly higher skin temperature (± SD) than saline-sham birds (37.6 ± 0.8 °C vs. 36.5 ± 0.5 °C; Z = −3.47, P carprofen: Z = 2.58, P = 0.010) in induced birds. Saline-induced birds also had significantly lower TT than saline-sham birds (Z = −2.17, P = 0.030). This study found direct evidence of an association between inflammatory arthropathies and thermal hyperalgesia, and showed that NSAID treatment maintained baseline thermal sensitivity (via anti-nociception). Quantification of nociceptive responsiveness in a predictable broiler pain model identified thermal anti-hyperalgesic properties of two NSAIDs, which suggested that therapeutically effective treatment was provided at the doses administered. Such validation of analgesic strategies will increase the understanding of pain associated with specific natural broiler lameness types. PMID:24129110

  1. Ethanolic extract of Aconiti Brachypodi Radix attenuates nociceptive pain probably via inhibition of voltage-dependent Na⁺ channel.

    Science.gov (United States)

    Ren, Wei; Yuan, Lin; Li, Jun; Huang, Xian-Ju; Chen, Su; Zou, Da-Jiang; Liu, Xiangming; Yang, Xin-Zhou

    2012-01-01

    Aconiti Brachypodi Radix, belonging to the genus of Aconitum (Family Ranunculaceae), are used clinically as anti-rheumatic, anti-inflammatory and anti-nociceptive in traditional medicine of China. However, its mechanism and influence on nociceptive threshold are unknown and need further investigation. The analgesic effects of ethanolic extract of Aconiti Brachypodi Radix (EABR) were thus studied in vivo and in vitro. Three pain models in mice were used to assess the effect of EABR on nociceptive threshold. In vitro study was conducted to clarify the modulation of the extract on the tetrodotoxin-sensitive (TTX-S) sodium currents in rat's dorsal root ganglion (DRG) neurons using whole-cell patch clamp technique. The results showed that EABR (5-20 mg/kg, i.g.) could produce dose-dependent analgesic effect on hot-plate tests as well as writhing response induced by acetic acid. In addition, administration of 2.5-10 mg/kg EABR (i.g.) caused significant decrease in pain responses in the first and second phases of formalin test without altering the PGE₂ production in the hind paw of the mice. Moreover, EABR (10 µg/ml -1 mg/ml) could suppress TTX-S voltage-gated sodium currents in a dose-dependent way, indicating the underlying electrophysiological mechanism of the analgesic effect of the folk plant medicine. Collectively, our results indicated that EABR has analgesic property in three pain models and useful influence on TTX-S sodium currents in DRG neurons, suggesting that the interference with pain messages caused by the modulation of EABR on TTX-S sodium currents in DRG neurones may explain some of its analgesic effect.

  2. Double labelling immunohistochemical characterization of autonomic sympathetic neurons innervating the sow retractor clitoridis muscle

    Directory of Open Access Journals (Sweden)

    L Ragionieri

    2009-08-01

    Full Text Available Retrograde neuronal tracing and immunohistochemical methods were used to define the neurochemical content of sympathetic neurons projecting to the sow retractor clitoridis muscle (RCM. Differently from the other smooth muscles of genital organs, the RCM is an isolated muscle that is tonically contracted in the rest phase and relaxed in the active phase. This peculiarity makes it an interesting experimental model. The fluorescent tracer fast blue was injected into the RCM of three 50 kg subjects. After a one-week survival period, the ipsilateral paravertebral ganglion S1, that in a preliminary study showed the greatest number of cells projecting to the muscle, was collected from each animal. The co-existence of tyrosine hydroxylase with choline acetyltransferase, neuronal nitric oxide synthase, calcitonin gene-related peptide, leuenkephalin, neuropeptide Y, substance P and vasoactive intestinal polypeptide was studied under a fluorescent microscope on cryostat sections. Tyrosine hydroxylase was present in about 58% of the neurons projecting to the muscle and was found to be co-localized with each of the other tested substances.Within fast blue-labelled cells negative to the adrenergic marker, small populations of neurons singularly containing each of the other enzymatic markers or peptides were also observed. The present study documents the complexity of the neurochemical interactions that regulate the activity of the smooth myocytes of the RCM and their vascular components.

  3. Nociceptive responses to thermal and mechanical stimulations in awake pigs

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars Jelstrup; Herskin, Mette S.

    2013-01-01

    body sizes (30 and 60 kg) were exposed to thermal (CO(2) laser) and mechanical (pressure application measurement device) stimulations to the flank and the hind legs in a balanced order. The median response latency and the type of behavioural response were recorded. RESULTS: Small pigs exhibited...... animal studies in a large species require further examination. This manuscript describes the initial development of a porcine model of cutaneous nociception and focuses on interactions between the sensory modality, body size and the anatomical location of the stimulation site. METHODS: Pigs of different...... significantly lower pain thresholds (shorter latency to response) than large pigs to thermal and mechanical stimulations. Stimulations at the two anatomical locations elicited very distinct sets of behavioural responses, with different levels of sensitivity between the flank and the hind legs. Furthermore...

  4. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    Science.gov (United States)

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  5. Factors affecting mechanical nociceptive thresholds in healthy sows.

    Science.gov (United States)

    Nalon, Elena; Maes, Dominiek; Piepers, Sofie; Taylor, Polly; van Riet, Miriam M J; Janssens, Geert P J; Millet, Sam; Tuyttens, Frank A M

    2016-05-01

    To describe anatomical and methodological factors influencing mechanical nociceptive thresholds (MNTs) and intra-site variability in healthy sows. Prospective, randomized validation. Eight pregnant, healthy, mixed-parity sows (176-269 kg). Repeated MNT measurements were taken: 1) with a hand-held probe and a limb-mounted actuator connected to a digital algometer; 2) at nine landmarks on the limbs and tail; and 3) at 1 and 3 minute intervals. Data were analysed using linear mixed regression models. The MNTs (±SEM) of the limbs were lower with the probe (14.7 ± 1.2 N) than with the actuator (21.3 ± 1.2 N; p testing compared with day 1 (p < 0.001). The mean CV (±SE) was 38.9% (±1.1%). MNTs and intra-site variability in healthy sows were affected by several factors, indicating that this methodology requires considerable attention to detail. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  6. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword.

    Science.gov (United States)

    Chen, Jun; Lariviere, William R

    2010-10-01

    Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.

    Science.gov (United States)

    Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R

    2016-08-25

    Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Intrathecal administration of clonidine or yohimbine decreases the nociceptive behavior caused by formalin injection in the marsh terrapin (Pelomedusa subrufa)

    DEFF Research Database (Denmark)

    Makau, Christopher M; Towett, Philemon K; Abelson, Klas S P

    2014-01-01

    BACKGROUND: The role of noradrenergic system in the control of nociception is documented in some vertebrate animals. However, there are no data showing the role of this system on nociception in the marsh terrapins. METHODOLOGY: In this study, the antinociceptive action of intrathecal administration...... of the α 2-adrenoreceptor agonist clonidine and α 2-adrenoreceptor antagonist yohimbine was evaluated in the African marsh terrapin using the formalin test. The interaction of clonidine and yohimbine was also evaluated. RESULTS: Intrathecal administration of clonidine (37.5 or 65 μg/kg) caused...... a significant reduction in the mean time spent in pain-related behavior. Yohimbine, at a dose of 25 μg/kg, significantly blocked the effect of clonidine (65 μg/kg). However, administration of yohimbine (40 or 53 μg/kg) caused a significant reduction in the mean time spent in pain-related behavior. Intrathecal...

  9. Ventrolateral periaqueductal gray lesion attenuates nociception but does not change anxiety-like indices or fear-induced antinociception in mice.

    Science.gov (United States)

    Mendes-Gomes, Joyce; Amaral, Vanessa Cristiane Santana; Nunes-de-Souza, Ricardo Luiz

    2011-06-01

    The exposure of rodents to an open elevated plus-maze (oEPM: four open arms raised from the floor) elicits naloxone-insensitive antinociception. Midazolam infusion into the dorsal portion of the periaqueductal gray (dPAG), a structure of the descending inhibitory system of pain, failed to alter oEPM-induced antinociception. Chemical lesion of dorsomedial and dorsolateral PAG attenuated defensive behavior in the standard EPM (sEPM), an animal model of anxiety, but failed to change oEPM-induced antinociception. The present study investigated the effects of bilateral lesion, with the injection of NMDA (N-methyl-D-aspartic acid), of the ventrolateral column of PAG (vlPAG) (i) on nociceptive response induced by 2.5% formalin injected into the right hind paw (nociception test) in mice exposed to the enclosed EPM (eEPM: four enclosed arms - a non-aversive situation) or to the oEPM and (ii) on anxiety indices in mice exposed to the sEPM without prior formalin injection. Results showed that oEPM-induced antinociception was not altered by lesion of vlPAG. Nevertheless, the lesion reduced the nociceptive response in mice exposed to the eEPM and increased general locomotor activity during the eEPM and oEPM exposure. Furthermore, vlPAG lesion did not alter anxiety-like indices in mice exposed to the sEPM. The results suggest that vlPAG does not play a role in oEPM-induced antinociception or in defensive reactions assessed in the sEPM. Moreover, vlPAG inactivation induces pain inhibition in mice not exposed to an aversive situation and seems to increase general activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Comparative effects of traditional Chinese and Western migraine medicines in an animal model of nociceptive trigeminovascular activation.

    Science.gov (United States)

    Zhao, Yonglie; Martins-Oliveira, Margarida; Akerman, Simon; Goadsby, Peter J

    2017-01-01

    Background Migraine is a highly prevalent and disabling disorder of the brain with limited therapeutic options, particularly for preventive treatment. There is a need to identify novel targets and test their potential efficacy in relevant preclinical migraine models. Traditional Chinese medicines have been used for millennia and may offer avenues for exploration. Methods We evaluated two traditional Chinese medicines, gastrodin and ligustrazine, and compared them to two Western approaches with propranolol and levetiracetam, one effective and one ineffective, in an established in vivo rodent model of nociceptive durovascular trigeminal activation. Results Intravenous gastrodin (30 and 100 mg/kg) significantly inhibited nociceptive dural-evoked neuronal firing in the trigeminocervical complex. Ligustrazine (10 mg/kg) and propranolol (3 mg/kg) also significantly inhibited dural-evoked trigeminocervical complex responses, although the timing of responses of ligustrazine does not match its pharmacokinetic profile. Levetiracetam had no effects on trigeminovascular responses. Conclusion Our data suggest gastrodin has potential as an anti-migraine treatment, whereas ligustrazine seems less promising. Interestingly, in line with clinical trial data, propranolol was effective and levetiracetam not. Exploration of the mechanisms and modelling effects of Chinese traditional therapies offers novel route for drug discovery in migraine.

  11. Radiation-induced changes in the patterns of free ninhydrin-reactive substances of meat

    International Nuclear Information System (INIS)

    Partmann, W.; Keskin, S.

    1979-01-01

    Samples of minced lean beef and pork, breast muscle of chicken, and white meat of carp packed in polyethylene/Hostaphan bags were irradiated in the presence of air at about 25 C with 10-MeV electrons. In the doe range between 10 and 20 Mrad a tendency towards small losses in such components became obvious. In beef samples irradiated at doses >= 0.5 Mrad a new substance (Y) appeared distinctly in the zone of the basic amino acids. Substance Y was also found after irradiation of pork and chicken meat. At a dose of 10 Mrad the concentration of Y in white chicken meat was nearly three times higher than in beef and pork. After irradiation of white carp muscle no Y, but another new basic compound (X) was observed. The irradiation products X and Y may be used to find out whether meat of animals as used in this investigation had been exposed to radiation, if doses of 0.5 Mrad or higher were applied. (orig./AJ) [de

  12. Early, middle, or late administration of zoledronate alleviates spontaneous nociceptive behavior and restores functional outcomes in a mouse model of CFA-induced arthritis.

    Science.gov (United States)

    Morado-Urbina, Carlos Eduardo; Alvarado-Vázquez, Perla Abigail; Montiel-Ruiz, Rosa Mariana; Acosta-González, Rosa Issel; Castañeda-Corral, Gabriela; Jiménez-Andrade, Juan Miguel

    2014-11-01

    This study was performed to evaluate whether early, middle, or late treatment of zoledronate, an approved bisphosphonate that blocks bone resorption, can reduce nociceptive behaviors in a mouse arthritis model. Arthritis was produced by repeated intra-articular knee injections of complete Freund's adjuvant (CFA). A dose-response curve with zoledronate (3, 30, 100, and 300 μg/kg, i.p., day 4 to day 25, twice weekly for 3 weeks) was performed, and the most effective dose of zoledronate (100 μg/kg, i.p.) was initially administered at different times of disease progression: day 4 (early), day 15 (middle), or day 21 (late) and continued until day 25 after the first CFA injection. Flinching of the injected extremity (spontaneous nociceptive behavior), vertical rearings and horizontal activity (functional outcomes), and knee edema were assessed. Zoledronate improved both functional outcomes and reduced flinching behavior. At day 25, the effect of zoledronate on flinching behavior and vertical rearings was greater in magnitude when it was given early or middle rather than late in the treatment regimen. Chronic zoledronate did not reduce knee edema in CFA-injected mice nor functional outcomes in naïve mice by itself. These results suggest that zoledronate may have a positive effect on arthritis-induced nociception and functional disabilities. © 2014 Wiley Periodicals, Inc.

  13. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    International Nuclear Information System (INIS)

    Silva, L.C.R.; Romero, T.R.L.; Guzzo, L.S.; Duarte, I.D.G.

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E 2 (PGE 2 , 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE 2 , which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB 1 and CB 2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB 1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB 2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac

  14. Objective evaluation for venous leg ulcer-related nociceptive pain using thermography

    Directory of Open Access Journals (Sweden)

    Goto T

    2014-08-01

    Full Text Available Taichi Goto,1 Ayumi Naito,1,2 Nao Tamai,1 Gojiro Nakagami,1 Makoto Mo,3 Hiromi Sanada1 1Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; 2Fujisawa City Hospital, Fujisawa, Kanagawa, Japan; 3Department of Cardiovascular Surgery, Yokohama Minami Kyosai Hospital, Yokohama, Kanagawa, Japan Purpose: We aimed to identify distinguishing characteristics in thermographic images of venous leg ulcer (VLU, for objective evaluation of VLU-related nociceptive pain. Patients and methods: Secondary analysis was performed, using existing data obtained from April to November 2010, for patients with VLU. Thermographic images of wounds and their surrounding area were classified according to the periwound temperature pattern as "normal temperature" or "high temperature". These results were compared with the self-reported pain intensity assessed by the short-form McGill Pain Questionnaire. Cohen's kappa coefficients were used to evaluate the interrater reliability for temperature assessment, and Wilcoxon rank sum test was used to compare pain intensities between the two groups. Results: Among 39 thermographic examinations in eight patients, 22 were classified into the high-temperature group and 17 into the normal-temperature group. Kappa coefficients for the temperature classification were 0.90 between the wound, ostomy, and continence nurse and a wound care specialist, and 0.90 between the wound, ostomy, and continence nurse and a graduate student. The pain rating index (Z=−2.981, P=0.003, sensory pain (Z=−3.083, P=0.002, affective pain (Z=−2.764, P=0.006, and present pain intensity (Z=−2.639, P=0.006 ratings were significantly higher in the high-temperature group than in the normal-temperature group, but the visual analog scale (Z=−0.632, P=0.527 was not significantly different between the two groups. Conclusion: Thermographic pattern may reflect VLU

  15. Referred pain elicited by manual exploration of the lateral rectus muscle in chronic tension-type headache.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Cuadrado, Maria Luz; Gerwin, Robert D; Pareja, Juan A

    2009-01-01

    extends to the supraorbital region or the homolateral forehead. Nociceptive inputs from the extraocular muscles may sustain the activation of trigeminal neuron, thus sensitizing central pain pathways and exacerbating headache.

  16. Can preoperative electrical nociceptive stimulation predict acute pain after groin herniotomy?

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Hansen, J.B.; Kehlet, H.

    2008-01-01

    Preoperative identification of patients at risk for high-intensity postoperative pain may be used to predict patients at risk for development of a persistent pain state and allocate patients to more intensive specific pain therapy. Preoperative pain threshold to electrocutaneus stimulation has...... repair. The correlation between the pain data for electrical stimulation was compared with the postoperative pain during the first week in 165 patients, whereof 3 were excluded. Preoperative electrical pain detection threshold and electrical pain tolerance threshold did not correlate to postoperative...... pain (rho = -0.13, P = .09, and rho = -1.2, P = .4, respectively. PERSPECTIVE: Although preoperative electrical nociceptive stimulation may predict patients at risk of high-intensity acute pain after other surgical procedures, this was not the case in groin hernia repair patients receiving concomitant...

  17. Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain.

    Science.gov (United States)

    Sun, Shukai; Yin, Yue; Yin, Xin; Cao, Fale; Luo, Daoshu; Zhang, Ting; Li, Yunqing; Ni, Longxing

    2012-09-01

    Inflammatory pain is an important clinical symptom. The levels of extracellular signal-regulated kinases (ERKs) and the levels of cytokines such as interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) play important roles in inflammatory pain. Tanshinone IIA (TIIA) is an important component of Danshen, a traditional Chinese medicine that has been commonly used to treat cardiovascular disease. In this study, we investigated the potential anti-inflammatory nociceptive effects of TIIA on complete Freund's adjuvant (CFA)-induced inflammation and inflammatory pain in rats. The effects of TIIA on CFA-induced thermal and mechanical hypersensitivity were investigated using behavioral tests. The levels of ERKs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transient receptor potential vanilloid 1 (TRPV1) in the fifth segment of the lumbar spinal cord (L5) ganglia were detected by Western blot, and the levels of mRNA and protein production of IL1-β, IL-6 and TNF-α were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). In this study, we found that TIIA attenuates the development of CFA-induced mechanical and thermal hypersensitivity. In addition, p-ERK and NF-κB expression levels were inhibited by TIIA, and the levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced. Finally, we found that the expression level of TRPV1 was significantly decreased after TIIA injection. This study demonstrated that TIIA has significant anti-nociceptive effects in a rat model of CFA-induced inflammatory pain. TIIA can inhibit the activation of ERK signaling pathways and the expression of pro-inflammatory cytokines. These results suggest that TIIA may be a potential anti-inflammatory and anti-nociceptive drug. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception

    OpenAIRE

    Hall, Bradford E.; Prochazkova, Michaela; Sapio, Matthew R.; Minetos, Paul; Kurochkina, Natalya; Binukumar, B. K.; Amin, Niranjana D.; Terse, Anita; Joseph, John; Raithel, Stephen J.; Mannes, Andrew J.; Pant, Harish C.; Chung, Man-Kyo; Iadarola, Michael J.; Kulkarni, Ashok B.

    2018-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and th...

  19. The Anti-Nociceptive Effect of Aloe. Vera Aqueous Extract in Fructose-Fed Male Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shahraki

    2010-05-01

    Full Text Available A B S T R A C T Introduction: Aloe Vera extract is used as an anti-inflammatory and anti-bradikinin agent in laboratory animals. The aim of this survey was to evaluate the ant-nociceptive effect of A. Vera aqueous extract in fructose-fed male rats. Methods: Forty-five Wistar-Albino male rats were equally and randomly divided into five groups including sham operated and four test groups. Sham operated group consumed tap water and the test groups consumed fructoseenriched water. Test groups 2, 3 and 4 additionally received, 0, 100, 150 and 200 mg/kg of A. Vera extract, respectively, whereas the other test group received distilled water daily. Tail flick reaction time, serum glucose and oral glucose tolerance test (OGTT were measured. The results were analyzed by SPSS software using ANOVA and Tukey tests. Results were expressed as mean ± SD. Statistical differences were considered significant at p<0.05. Results: The results showed that tail flick reaction time significantly increased in test group 3 which received 200 mg/kg A. Vera extract comparing with that of sham operated group. However, OGTT and serum glucose value were significantly increased in all fructose-fed male rats comparing with those of sham operated group. Discussion: These results indicated that A. Vera aqueous extract can affect tail flick reaction time in fructose-fed male rats. Further studies are required to show the exact mechanism of anti-nociceptive effect of A. Vera extract.

  20. Craniofacial Pain: Brainstem Mechanisms

    Directory of Open Access Journals (Sweden)

    Barry J Sessle

    1996-01-01

    Full Text Available This article reviews recent research advances in animals that have identified critical neural elements in the brainstem receiving and transmitting craniofacial nociceptive inputs, as well as some of the mechanisms involved in the modulation and plasticity of nociceptive transmission. Nociceptive neurones in the trigeminal (V brainstem sensory nuclear complex can be classified as nociceptive-specific (NS or wide dynamic range (WDR. Some of these neurones respond exclusively to sensory inputs evoked by stimulation of facial skin or oral mucosa and have features suggesting that they are critical neural elements involved in the ability to localize an acute superficial pain and sense its intensity and duration. Many of the V brainstem nociceptive neurones, however, receive convergent inputs from afferents supplying deep craniofacial tissues (eg, dural vessel, muscle and skin or mucosa. These neurones are likely involved in deep pain, including headache, because few nociceptive neurones receive inputs exclusively from afferents supplying these tissues. These extensive convergent input patterns also appear to be important factors in pain spread and referral, and in central mechanisms underlying neuroplastic changes in V neuronal properties that may occur with injury and inflammation. For example, application of the small fibre excitant and inflammatory irritant mustard oil into the temporomandibular joint, masseter or tongue musculature induces a prolonged but reversible enhancement of responses to cutaneous and deep afferent inputs of most WDR and NS neurones. These effects may be accompanied by increased electromyographic activity reflexly induced in the masticatory muscles by mustard oil, and involve endogenous N-methyl-D-aspartate and opioid neurochemical mechanisms. Such peripherally induced modulation of brainstem nociceptive neuronal properties reflects the functional plasticity of the central V system, and may be involved in the development of

  1. A Review of Maximizing Muscle Building Capabilities with Anabolic Enzymes

    Directory of Open Access Journals (Sweden)

    Elvis Agbons

    2017-07-01

    Full Text Available Building muscle at a rate faster than the human body would under normal circumstances is of great importance in skills and activities that require intense muscular effort. Although physical training stands as the backbone of muscle building, physiological variations make it an unfair yardstick in measuring individual efforts. Other methods of muscle building such as specialised nutrition and the use of digestive enzymes in breaking down proteins for quick absorption are also commonly used together with physical training. The use of anabolic substances, however, has proved more successful than any of the aforementioned methods. Nevertheless, with it comes ethical, legal, and clinical issues especially in sports. In spite of this, athletes still find ways of circumventing test protocols which have been a major issue for the World Anti-Doping Agency. However, advancements in science have opened the doorway for anabolic enzymes which are the ultimate muscle growers to be more or less, directly manipulated. One method is gene doping which involves altering gene expressions. The future of muscle building lies in man’s ability to decisively alter the functioning of these enzymes directly.

  2. Neuropathic pain in experimental autoimmune neuritis is associated with altered electrophysiological properties of nociceptive DRG neurons.

    Science.gov (United States)

    Taha, Omneya; Opitz, Thoralf; Mueller, Marcus; Pitsch, Julika; Becker, Albert; Evert, Bernd Oliver; Beck, Heinz; Jeub, Monika

    2017-11-01

    Guillain-Barré syndrome (GBS) is an acute, immune-mediated polyradiculoneuropathy characterized by rapidly progressive paresis and sensory disturbances. Moderate to severe and often intractable neuropathic pain is a common symptom of GBS, but its underlying mechanisms are unknown. Pathology of GBS is classically attributed to demyelination of large, myelinated peripheral fibers. However, there is increasing evidence that neuropathic pain in GBS is associated with impaired function of small, unmyelinated, nociceptive fibers. We therefore examined the functional properties of small DRG neurons, the somata of nociceptive fibers, in a rat model of GBS (experimental autoimmune neuritis=EAN). EAN rats developed behavioral signs of neuropathic pain. This was accompanied by a significant shortening of action potentials due to a more rapid repolarization and an increase in repetitive firing in a subgroup of capsaicin-responsive DRG neurons. Na + current measurements revealed a significant increase of the fast TTX-sensitive current and a reduction of the persistent TTX-sensitive current component. These changes of Na + currents may account for the significant decrease in AP duration leading to an overall increase in excitability and are therefore possibly directly linked to pathological pain behavior. Thus, like in other animal models of neuropathic and inflammatory pain, Na + channels seem to be crucially involved in the pathology of GBS and may constitute promising targets for pain modulating pharmaceuticals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  4. Association of cross-sectional area of the rectus capitis posterior minor muscle with active trigger points in chronic tension-type headache: a pilot study.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Cuadrado, María Luz; Arendt-Nielsen, Lars; Ge, Hong-You; Pareja, Juan A

    2008-03-01

    To investigate whether cross-sectional area (CSA) of the suboccipital muscles was associated with active trigger points (TrPs) in chronic tension-type headache (CTTH). Magnetic resonance imaging (MRI) of the cervical spine was performed in 11 females with CTTH aged from 26 to 50 yrs old. CSA for both rectus capitis posterior minor (RCPmin) and rectus capitis posterior major (RCPmaj) muscles were measured from axial T1-weighted images, using axial MRI slices aligned parallel to the C2/3 intervertebral disc. A headache diary was kept for 4 wks to record the pain history. TrPs in the suboccipital muscle were identified by eliciting referred pain to palpation, and increased referred pain with muscle contraction. TrPs were considered active if the elicited referred pain reproduced the head pain pattern and features of the pattern seen during spontaneous headache attacks. Active TrPs were found in six patients (55%), whereas the remaining five patients showed latent TrPs. CSA of the RCPmin was significantly smaller (F = 13.843; P = 0.002) in the patients with active TrPs (right side: 55.9 +/- 4.4 mm; left side: 61.1 +/-: 3.8 mm) than in patients with latent TrPs (right side: 96.9 +/- 14.4 mm; left side: 88.7 +/- 9.7 mm). No significant differences were found for CSA of the RCPmaj between the patients with either active or latent TrP (P > 0.5). It seems that muscle atrophy in the RCPmin, but not in the RCPmaj, was associated with suboccipital active TrPs in CTTH, although studies with larger sample sizes are now required. It may be that nociceptive inputs in active TrPs could lead to muscle atrophy of the involved muscles. Muscle disuse or avoidance behavior can also be involved in atrophy.

  5. Nutritional strategies of physically active subjects with muscle dysmorphia.

    Science.gov (United States)

    Contesini, Nadir; Adami, Fernando; Blake, Márcia de-Toledo; Monteiro, Carlos Bm; Abreu, Luiz C; Valenti, Vitor E; Almeida, Fernando S; Luciano, Alexandre P; Cardoso, Marco A; Benedet, Jucemar; de Assis Guedes de Vasconcelos, Francisco; Leone, Claudio; Frainer, Deivis Elton Schlickmann

    2013-05-26

    The aim of this study was to identify dietary strategies for physically active individuals with muscle dysmorphia based on a systematic literature review. References were included if the study population consisted of adults over 18 years old who were physically active in fitness centers. We identified reports through an electronic search ofScielo, Lilacs and Medline using the following keywords: muscle dysmorphia, vigorexia, distorted body image, and exercise. We found eight articles in Scielo, 17 in Medline and 12 in Lilacs. Among the total number of 37 articles, only 17 were eligible for inclusion in this review. The results indicated that the feeding strategies used by physically active individuals with muscle dysmorphia did not include planning or the supervision of a nutritionist. Diet included high protein and low fat foods and the ingestion of dietary and ergogenic supplements to reduce weight. Physically active subjects with muscle dysmorphia could benefit from the help of nutritional professionals to evaluate energy estimation, guide the diet and its distribution in macronutrient and consider the principle of nutrition to functional recovery of the digestive process, promote liver detoxification, balance and guide to organic adequate intake of supplemental nutrients and other substances.

  6. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    Science.gov (United States)

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons.

    Directory of Open Access Journals (Sweden)

    Stéphanie Ventéo

    Full Text Available Dorsal root ganglia (DRGs contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.

  8. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray.

    Science.gov (United States)

    Sun, Shuzhen; Qi, Dong; Yang, Yingying; Ji, Ping; Kong, Jingjing; Wu, Qingting

    2016-03-02

    P2X3 receptor plays a role in nociception transmission of orofacial pain in temporomandibular disorder patients. A previous study found that P2X3 receptors in masseter muscle afferent neurons and the trigeminal ganglia were involved in masseter muscle pain induced by inflammation caused by chemical agents or eccentric muscle contraction. In this study, we attempted to investigate changes in P2X3 receptors in the trigeminal subnucleus caudalis (Vc) and midbrain periaqueductal gray (PAG) in relation to the hyperalgesia of masseter muscles induced by occlusal interference. Experimental occlusal interference by crown application was established in 30 rats and another 30 rats were treated as sham controls. On days 1, 3, 7, 14, and 28 after crown application, the mechanical pain threshold was examined by von-Frey filaments. The expression of the P2X3 receptor in Vc and PAG was investigated by immunohistochemistry and quantitative PCR. We found that mechanical pain threshold of bilateral masseter muscles decreased significantly after occlusal interference, which remained for the entire experimental period. The mRNA expression of the P2X3 receptor increased significantly and the number of P2X3R-positive neurons increased markedly in Vc and PAG accordingly. These results indicate that the upregulated expression of P2X3 receptors in Vc and PAG may contribute toward the development of orofacial pain induced by occlusal interference and P2X3 receptors in the PAG may play a key role in the supraspinal antiociception effect.

  9. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.C.R.; Romero, T.R.L.; Guzzo, L.S.; Duarte, I.D.G. [Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-21

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E{sub 2} (PGE{sub 2}, 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE{sub 2}, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB{sub 1} and CB{sub 2} cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB{sub 1} cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB{sub 2} cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of

  10. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Directory of Open Access Journals (Sweden)

    L.C.R. Silva

    2012-12-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group. Hyperalgesia was induced by a subcutaneous intraplantar (ipl injection of prostaglandin E2 (PGE2, 2 μg/paw in the rat’s hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g. AM-251 (80 μg/paw and AM-630 (100 μg/paw were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g, 20 μg diclofenac (mean = 4.825 ± 3.850 g and 40 μg indomethacin (mean = 6.650 ± 3.611 g elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g, diclofenac (mean = 2.50 ± 0.8337 g and indomethacin (mean = 6.650 ± 4.069 g or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g, diclofenac (mean = 6.675 ± 1.368 g and indomethacin (mean = 2.85 ± 5.01 g. Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and

  11. Effect of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle in the rabbit.

    Science.gov (United States)

    Griesbacher, T.; Lembeck, F.

    1987-01-01

    1 The inhibition of the bradykinin-induced plasma extravasation by six bradykinin (Bk) antagonists was tested on rabbit skin. All of them showed inhibitory effects without an agonistic action in the does used. B4310 (Lys-Lys-3-Hyp-5,8-Thi-7-DPhe-Bk) was the most active antagonist and was therefore used in the subsequent experiments. 2 B4310 (5-500 nM) antagonized the bradykinin-induced reduction of the venous outflow from the rabbit isolated ear in dose-dependent manner without affecting the arterial vasoconstriction induced by angiotensin II. 3 The bradykinin-induced release of prostaglandin E2 (PGE2) from the perfused rabbit ear was reduced by 63% when B4310 (800 nM) was infused before, during and after the bradykinin injection. 4 Bradykinin was injected into the ear artery of anaesthetized rabbits and the reflex hypotensive response was used as indicator of the nociception. The response was antagonized by a local infusion of B4310 (50 and 500 nM). The antagonism was dose-dependent and reversible. The parallel shift of the dose-response curve to bradykinin suggests a competitive inhibition. However, B4310 did not antagonize acetylcholine-induced nociceptor stimulation. 5 B4310 inhibited bradykinin-induced stimulation of the trigeminal nerve which results in a substance P-mediated contraction of the iris sphincter muscle. A pA2 of 7.59 was calculated. B4310 did not inhibit capsaicin-induced contractions. 6 It is concluded that B4310 inhibits specifically five different actions of bradykinin which are related to its possible pathophysiological role. PMID:3479223

  12. Stimulation of the ventral tegmental area increased nociceptive thresholds and decreased spinal dorsal horn neuronal activity in rat.

    Science.gov (United States)

    Li, Ai-Ling; Sibi, Jiny E; Yang, Xiaofei; Chiao, Jung-Chih; Peng, Yuan Bo

    2016-06-01

    Deep brain stimulation has been found to be effective in relieving intractable pain. The ventral tegmental area (VTA) plays a role not only in the reward process, but also in the modulation of nociception. Lesions of VTA result in increased pain thresholds and exacerbate pain in several pain models. It is hypothesized that direct activation of VTA will reduce pain experience. In this study, we investigated the effect of direct electrical stimulation of the VTA on mechanical, thermal and carrageenan-induced chemical nociceptive thresholds in Sprague-Dawley rats using our custom-designed wireless stimulator. We found that: (1) VTA stimulation itself did not show any change in mechanical or thermal threshold; and (2) the decreased mechanical and thermal thresholds induced by carrageenan injection in the hind paw contralateral to the stimulation site were significantly reversed by VTA stimulation. To further explore the underlying mechanism of VTA stimulation-induced analgesia, spinal cord dorsal horn neuronal responses to graded mechanical stimuli were recorded. VTA stimulation significantly inhibited dorsal horn neuronal activity in response to pressure and pinch from the paw, but not brush. This indicated that VTA stimulation may have exerted its analgesic effect via descending modulatory pain pathways, possibly through its connections with brain stem structures and cerebral cortex areas.

  13. Automated single-trial assessment of laser-evoked potentials as an objective functional diagnostic tool for the nociceptive system.

    Science.gov (United States)

    Hatem, S M; Hu, L; Ragé, M; Gierasimowicz, A; Plaghki, L; Bouhassira, D; Attal, N; Iannetti, G D; Mouraux, A

    2012-12-01

    To assess the clinical usefulness of an automated analysis of event-related potentials (ERPs). Nociceptive laser-evoked potentials (LEPs) and non-nociceptive somatosensory electrically-evoked potentials (SEPs) were recorded in 37 patients with syringomyelia and 21 controls. LEP and SEP peak amplitudes and latencies were estimated using a single-trial automated approach based on time-frequency wavelet filtering and multiple linear regression, as well as a conventional approach based on visual inspection. The amplitudes and latencies of normal and abnormal LEP and SEP peaks were identified reliably using both approaches, with similar sensitivity and specificity. Because the automated approach provided an unbiased solution to account for average waveforms where no ERP could be identified visually, it revealed significant differences between patients and controls that were not revealed using the visual approach. The automated analysis of ERPs characterized reliably and objectively LEP and SEP waveforms in patients. The automated single-trial analysis can be used to characterize normal and abnormal ERPs with a similar sensitivity and specificity as visual inspection. While this does not justify its use in a routine clinical setting, the technique could be useful to avoid observer-dependent biases in clinical research. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    Directory of Open Access Journals (Sweden)

    Serena Boccella

    2015-01-01

    Full Text Available D-Aspartate (D-Asp is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO. D-Asp acts as an agonist on NMDA receptors (NMDARs. Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/− or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS neurons of the dorsal horn of the spinal cord (L4–L6 and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.

  15. In vivo anti-arthritic and anti-nociceptive effects of ethanol extract of Moringa oleifera leaves on complete Freund's adjuvant (CFA)-induced arthritis in rats.

    Science.gov (United States)

    Mahdi, Harith Jameel; Khan, Nurzalina Abdul Karim; Asmawi, Mohd Zaini Bin; Mahmud, Roziahanim; A/L Murugaiyah, Vikneswaran

    2018-03-01

    The medicinal uses of plants are in many cases based exclusively on traditional knowledge without enough scientific evidences. Different parts of Moringa oleifera were traditionally used for the treatment of wide variety of ailments including arthritis and joints pain. The present study had been designed to evaluate the anti-arthritic and anti-nociceptive activities of ethanol extract of Moringa leaves, this being the most abundant plant part suitable for commercial mass production of botanical medicinal products. Complete Freund's adjuvant (CFA)-induced arthritis in rats was used as disease model. CFA-induced inflammatory paw edema, body weight, arthritic index, X-ray radiography, hematological parameters, and walk track and locomotion analysis were all evaluated for the assessment of disease progression. In addition to that, anti-nociceptive activity was examined at different dose levels in both normal and arthritic-induced rats using Eddy's hot plate and tail flick thermal analgesia. The analysis of various arthritic assessment parameters used in this study revealed that Moringa extract has a considerable effect in preventing development or ameliorate arthritis disease severity. Moreover, the ethanol extract of Moringa leaves revealed significant anti-nociceptive activity at in both normal and CFA-induced arthritis rats in a dose-dependent manner. Ethanol extract of Moringa leaves appears to be a really promising as analgesic and arthritis medication, but a larger and more detailed preclinical and clinical studies especially in human is highly recommended.

  16. Chemical composition and anti-inflamatory, anti-nociceptive and antipyretic activity of rhizome essential oil of Globba sessiliflora Sims. collected from Garhwal region of Uttarakhand

    Directory of Open Access Journals (Sweden)

    Ravendra Kumar

    2017-07-01

    Full Text Available Background & Aim: Family Zingiberaceae is worldwide in distribution. Plants of the zingiberaceae family are used in traditional herbal folk medicine besides their uses in spices, cosmetic, ornamental, food preservatives etc. In Uttarakhand the herbs grow from sub-tropical to temperate region. Globba sessiliflora Simsrhizomes were collected at maturity stage in November from Garhwal region of Uttarakhand, India. In present communication the medicinal use of various zingiberaceous herb provoked us to study the chemical diversity and pharmacological activity determination of this important traditional herb. Experimental: The essential oil was extracted using hydrodistillation method and analyzed by GC-MS. Anti-inflamatory, anti-nociceptive and antipyretic activities of essential oil were experimently determined using mice model. Results: The major compounds identified were β-eudesmol (27.6%, (E-β-caryophyllene (24.3%, α-humulene (3.0%, (6E-nerolidol (4.1%, caryophyllene oxide (9.7%, γ-eudesmol (6.4% and τ-muurolol (8.3% besides other minor constituents. Essential oil of G. sessiliflora rhizome showed good anti-inflamatory, anti-nociceptive and antipyretic activities at the dose level of 100 mg/kg body weight. The oral administration of the essential oil exhibited no toxicity at 400, 600 and 800 mg/kg b.wt. concentration. Ibuprofen, indomthacin and paracetamol were used as standard drugs for comparison. Recommended applications/industries: G. sessiliflora essential oil can be used as herbal remedy for its nontoxicityanti-inflamatory, anti-nociceptive and antipyretic activities.

  17. Learned control over spinal nociception: Transfer and stability of training success in a long-term study.

    Science.gov (United States)

    Bäumler, Maximilian; Feller, Moritz; Krafft, Stefanie; Schiffer, Manuela; Sommer, Jens; Straube, Andreas; Weinges, Fabian; Ruscheweyh, Ruth

    2017-12-01

    Healthy subjects can learn to use cognitive-emotional strategies to suppress their spinal nociception, quantified by the nociceptive flexor reflex (RIII reflex), when given visual RIII feedback. This likely reflects learned activation of descending pain inhibition. Here, we investigated if training success persists 4 and 8 months after the end of RIII feedback training, and if transfer (RIII suppression without feedback) is possible. 18 and 8 subjects who had successfully completed feedback training were investigated 4 and 8 months later. At 4 months, RIII suppression during feedback and transfer was similar to that achieved at the final RIII feedback training session (to 50 ± 22%, 53 ± 21% and 52 ± 21% of baseline, all differences n.s.). At 8 months, RIII suppression was somewhat (not significantly) smaller in the feedback run (to 64 ± 17%) compared to the final training session (56 ± 19%). Feedback and transfer runs were similar (to 64 ± 17% vs. 68 ± 24%, n.s.). Concomitant reductions in pain intensity ratings were stable at 4 and 8 months. RIII feedback training success was completely maintained after 4 months, and somewhat attenuated 8 months after training. Transfer was successful. These results are an important pre-requisite for application of RIII feedback training in the context of clinical pain. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Cannabinoid-induced effects on the nociceptive system: a neurophysiological study in patients with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Conte, Antonella; Bettolo, Chiara Marini; Onesti, Emanuela; Frasca, Vittorio; Iacovelli, Elisa; Gilio, Francesca; Giacomelli, Elena; Gabriele, Maria; Aragona, Massimiliano; Tomassini, Valentina; Pantano, Patrizia; Pozzilli, Carlo; Inghilleri, Maurizio

    2009-05-01

    Although clinical studies show that cannabinoids improve central pain in patients with multiple sclerosis (MS) neurophysiological studies are lacking to investigate whether they also suppress these patients' electrophysiological responses to noxious stimulation. The flexion reflex (FR) in humans is a widely used technique for assessing the pain threshold and for studying spinal and supraspinal pain pathways and the neurotransmitter system involved in pain control. In a randomized, double-blind, placebo-controlled, cross-over study we investigated cannabinoid-induced changes in RIII reflex variables (threshold, latency and area) in a group of 18 patients with secondary progressive MS. To investigate whether cannabinoids act indirectly on the nociceptive reflex by modulating lower motoneuron excitability we also evaluated the H-reflex size after tibial nerve stimulation and calculated the H wave/M wave (H/M) ratio. Of the 18 patients recruited and randomized 17 completed the study. After patients used a commercial delta-9-tetrahydrocannabinol (THC) and cannabidiol mixture as an oromucosal spray the RIII reflex threshold increased and RIII reflex area decreased. The visual analogue scale score for pain also decreased, though not significantly. Conversely, the H/M ratio measured before patients received cannabinoids remained unchanged after therapy. In conclusion, the cannabinoid-induced changes in the RIII reflex threshold and area in patients with MS provide objective neurophysiological evidence that cannabinoids modulate the nociceptive system in patients with MS.

  19. High-Intensity Exercise Induced Oxidative Stress and Skeletal Muscle Damage in Postpubertal Boys and Girls: A Comparative Study.

    Science.gov (United States)

    Pal, Sangita; Chaki, Biswajit; Chattopadhyay, Sreya; Bandyopadhyay, Amit

    2018-04-01

    Pal, S, Chaki, B, Chattopadhyay, S, and Bandyopadhyay, A. High-intensity exercise induced oxidative stress and skeletal muscle damage in post-pubertal boys and girls: a comparative study. J Strength Cond Res 32(4): 1045-1052, 2018-The purpose of this study was to examine the sex variation in high-intensity exercise induced oxidative stress and muscle damage among 44 sedentary postpubertal boys and girls through estimation of postexercise release pattern of muscle damage markers like creatine kinase, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and oxidative stress markers like extent of lipid peroxidation (thiobarbituric acid-reactive substances) and catalase activity. Muscle damage markers like creatine kinase, LDH, ALT, and AST were measured before, immediately after, and 24 and 48 hours after high-intensity incremental treadmill running. Oxidative stress markers like thiobarbituric acid-reactive substances and catalase activity were estimated before and immediately after the exercise. Lipid peroxidation and serum catalase activity increased significantly in both groups after exercise (p exercise level at 24 and 48 hours after exercise in both the sexes, (p exercise, the pattern of postexercise release of these markers were found to be similar in both the groups. Accordingly, it has been concluded from the present investigation that high-intensity exercise induces significant oxidative stress and increases indices of skeletal muscle damage in both postpubertal girls and boys. However, postpubertal girls are relatively better protected from oxidative stress and muscle damage as compared to the boys of similar age and physical activity level. It is further evident that sex difference may not be apparent for all the biomarkers of muscle damage in this age group.

  20. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  1. Anti-nociceptive and anti-inflammatory activities of ethanolic flower extract of Newbouldia laevis in mice and rats

    OpenAIRE

    Y Tanko; B Kamba; MI Saleh; K Y Musa; A Mohammed

    2008-01-01

    Summary: The ethanolic flower extract of Newbouldia laevis was investigated for possible anti-nociceptive and anti-inflammatory effects in rodents. Acetic acid induced writhing (in mice) and formalin tests (in rats) were used to study. The extract caused a significant decrease (P< 0.05), which was not dose a dependent inhibition on acetic acid-induced writhing and the neurogenic pain induced by formalin. The extract at the doses (25, 50 and 100mg/kg) tested showed 59, 71 and 47% inhibition...

  2. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    Science.gov (United States)

    Liu, Da-Lu; Lu, Na; Han, Wen-Juan; Chen, Rong-Gui; Cong, Rui; Xie, Rou-Gang; Zhang, Yu-Fei; Kong, Wei-Wei; Hu, San-Jue; Luo, Ceng

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy. PMID:26577374

  3. A comparison of eating, exercise, shape, and weight related symptomatology in males with muscle dysmorphia and anorexia nervosa.

    Science.gov (United States)

    Murray, Stuart B; Rieger, Elizabeth; Hildebrandt, Tom; Karlov, Lisa; Russell, Janice; Boon, Evelyn; Dawson, Robert T; Touyz, Stephen W

    2012-03-01

    In the context of the lack of nosological clarity surrounding muscle dysmorphia, this paper aims to compare the symptomatic profile of muscle dysmorphia and anorexia nervosa in males whilst using measures sensitive to indexing male body image concerns. Twenty-one male muscle dysmorphia patients, 24 male anorexia nervosa patients, and 15 male gym-using controls completed the Eating Disorder Examination-Questionnaire, the Muscle Dysmorphia Disorder Inventory, the Compulsive Exercise Test, and a measure of appearance-enhancing substance use. Men with muscle dysmorphia and anorexia nervosa demonstrated widespread symptomatic similarities spanning the domains of disturbed body image, disordered eating, and exercise behaviour, whilst differences were consistent with the opposing physiques pursued in each condition. Furthermore, correlational analyses revealed significant associations between scores on muscle dysmorphia and eating disorder measures. The present findings provide moderate support for the notion that muscle dysmorphia may be nosologically similar to anorexia nervosa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Directory of Open Access Journals (Sweden)

    Simone C Bosshard

    Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  5. Differences in neurotransmitter systems of ventrolateral periaqueductal gray between the micturition reflex and nociceptive regulation: An in vivo microdialysis study.

    Science.gov (United States)

    Kitta, Takeya; Mitsui, Takahiko; Kanno, Yukiko; Chiba, Hiroki; Moriya, Kimihiko; Yoshioka, Mitsuhiro; Shinohara, Nobuo

    2016-07-01

    To elucidate the possible involvement of glutamate and serotonin (5-hydroxytryptamine) neurons in the ventrolateral midbrain periaqueductal gray during noxious stimulation. The study was carried out by evoking a noxious stimulation by acetic acid in an animal model of cystitis. Changes in glutamate and 5-hydroxytryptamine in the periaqueductal gray during the micturition reflex and acetic acid-induced cystitis were determined using in vivo microdialysis combined with cystometry in rats. Extracellular glutamate levels slightly, but significantly, increased during the micturition reflex induced by saline infusion into the bladder. Intravesical infusion of acetic acid facilitated the micturition reflex characterized by increases in voiding pressure and decreases in the intercontraction interval. Glutamate levels were markedly increased by acetic acid, and this enhancement was sustained for at least 3 h. 5-Hydroxytryptamine levels, which were not altered during the micturition reflex, were increased after intravesical infusion of acetic acid. The results suggest that periaqueductal gray glutamate and 5-hydroxytryptamine neurons differentially participate in the modulation of both nociception and the micturition reflex. Furthermore, periaqueductal gray 5-hydroxytryptamine levels appear to reflect the nociceptive stimuli. © 2016 The Japanese Urological Association.

  6. Characterization of nociceptive behavioural responses in the awake pig following UV–B-induced inflammation

    DEFF Research Database (Denmark)

    di Giminiani, Pierpaolo; Petersen, Lars J.; Herskin, Mette S

    2014-01-01

    due to its great homology with humans. Methods The skin in the flank of awake pigs was irradiated by a UV-B light source (1 J/cm2) and changes in thermal and mechanical sensitivity 24 and 48 h following irradiation were measured via assessment of nociceptive behaviours. Results Thermal sensitivity...... skin site than at the control site 24 and 48 h following irradiation (P UV-B irradiation (P = 0.092). Following the inflammatory challenge, the mechanical sensitivity was higher at the site...... of irradiation compared with the control skin at both 24 and 48 h (P UV-B inflammation in porcine skin, but they were not capable of providing a clear indication...

  7. Effects of noxious stimulation to the back or calf muscles on gait stability.

    Science.gov (United States)

    van den Hoorn, Wolbert; Hug, François; Hodges, Paul W; Bruijn, Sjoerd M; van Dieën, Jaap H

    2015-11-26

    Gait stability is the ability to deal with small perturbations that naturally occur during walking. Changes in motor control caused by pain could affect this ability. This study investigated whether nociceptive stimulation (hypertonic saline injection) in a low back (LBP) or calf (CalfP) muscle affects gait stability. Sixteen participants walked on a treadmill at 0.94ms(-1) and 1.67ms(-1), while thorax kinematics were recorded using 3D-motion capture. From 110 strides, stability (local divergence exponent, LDE), stride-to-stride variability and root mean squares (RMS) of thorax linear velocities were calculated along the three movement axes. At 0.94ms(-1), independent of movement axes, gait stability was lower (higher LDE) and stride-to-stride variability was higher, during LBP and CalfP than no pain. This was more pronounced during CalfP, likely explained by the biomechanical function of calf muscles in gait, as supported by greater mediolateral RMS and stance time asymmetry than in LBP and no pain. At 1.67ms(-1), independent of movement axes, gait stability was greater and stride-to-stride variability was smaller with LBP than no pain and CalfP, whereas CalfP was not different from no pain. Opposite effects of LBP on gait stability between speeds suggests a more protective strategy at the faster speed. Although mediolateral RMS was greater and participants had more asymmetric stance times with CalfP than LBP and no pain, limited effect of CalfP at the faster speed could relate to greater kinematic constraints and smaller effects of calf muscle activity on propulsion at this speed. In conclusion, pain effects on gait stability depend on pain location and walking speed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine

    Directory of Open Access Journals (Sweden)

    Aunis Dominique

    2010-12-01

    Full Text Available Abstract Background- Mice deficient for the stable tubule only peptide (STOP display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. Results- In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p. produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. Conclusions- Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.

  9. Blood flow after contraction and cuff occlusion is reduced in subjects with muscle soreness after eccentric exercise

    DEFF Research Database (Denmark)

    Souza-Silva, Eduardo; Wittrup Christensen, Steffan; Hirata, Rogerio Pessoto

    2018-01-01

    Purpose: Delayed onset muscle soreness (DOMS) occur within 1-2 days after eccentric exercise but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result...... anterior muscle. All measures were done bilaterally at day-0 (pre-exercise), day-2 and day-6 (post-exercise). Subjects scored the muscle soreness on a Likert scale for 6 days. Results: Eccentric exercise increased Likert scores at day-1 and day-2 compared with day-0 (P... in accumulated algesic substances being a part of the sensitization in DOMS. Methods: Twelve healthy subjects (5 women) performed dorsiflexion exercise (5 sets of 10 repeated eccentric contractions) in one leg, while the contralateral leg was the control. The maximal voluntary contraction (MVC) of the tibialis...

  10. Prostaglandin synthesis can be inhibited locally by infusion of NSAIDS through microdialysis catheters in human skeletal muscle

    DEFF Research Database (Denmark)

    Mikkelsen, Ulla Ramer; Helmark, Ida Carøe; Kjaer, Michael

    2008-01-01

    of nonsteroidal anti-inflammatory drugs (NSAIDs). However, to study the local role of prostaglandins, the formation of prostaglandins within the tissue must be controlled. Microdialysis enables determination of local concentrations of water-soluble substances within the tissue. In the present study......, the microdialysis method was used to infuse NSAIDs locally into human skeletal muscles producing a local block of prostaglandin formation. In addition, the graded blockade at various distances from the infusion site within the muscle during rest, exercise and recovery was determined. Microdialysis was performed...... in thigh muscles (vastus lateralis muscle) in six healthy men. One of the microdialysis catheters was used to block prostaglandin synthesis by infusion of the NSAID indomethacin. Additional catheters were placed 1 and 4 cm away from the infusion and in the contralateral leg (working control). Following 2 h...

  11. Aversion substance(s) of the rat coagulating glands

    Science.gov (United States)

    Gawienowski, Anthony M.; Berry, Iver J.; Kennelly, James J.

    1982-01-01

    The aversive substance(s) present in adult male urine were not found in castrate rat urine. Removal of the coagulating glands also resulted in a loss of the aversion compounds. The aversion substances were restored to the urine after androgen treatment of the castrate rats.

  12. Definition of Substance and Non-substance Addiction.

    Science.gov (United States)

    Zou, Zhiling; Wang, Huijun; d'Oleire Uquillas, Federico; Wang, Xiaomei; Ding, Jianrui; Chen, Hong

    2017-01-01

    Substance addiction (or drug addiction) is a neuropsychiatric disorder characterized by a recurring desire to continue taking the drug despite harmful consequences. Non-substance addiction (or behavioral addiction) covers pathological gambling, food addiction, internet addiction, and mobile phone addiction. Their definition is similar to drug addiction but they differ from each other in specific domains. This review aims to provide a brief overview of past and current definitions of substance and non-substance addiction, and also touches on the topic of diagnosing drug addiction and non-drug addiction, ultimately aiming to further the understanding of the key concepts needed for a foundation to study the biological and psychological underpinnings of addiction disorders.

  13. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice.

    Directory of Open Access Journals (Sweden)

    Sonja M Mueller-Tribbensee

    Full Text Available Various transient receptor potential (TRP channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin8 was suggested to be involved in murine colonic mechano-nociception.To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT were used. Visceromotor responses (VMR to colorectal distension (CRD in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA.Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM and stretch-activated channels (gadolinium, 50 μM. VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene.TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon.

  14. In vivo and in vitro anti-inflammatory and anti-nociceptive activities of lovastatin in rodents

    Directory of Open Access Journals (Sweden)

    D.O. Gonçalves

    2011-02-01

    Full Text Available Statins are among the most prescribed drugs in recent clinical practice. They are also known for their pleiotropic actions, which are independent of their lipid-lowering properties. The effect of lovastatin was investigated against carrageenan-induced paw edema in male Wistar rats (200-250 g and on leukocyte migration, as measured by carrageenan-induced peritonitis in male Swiss mice (20-25 g, which are models of acute inflammation. Lovastatin (administered 1 h prior to carrageenan, at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan injection (25, 43, and 37% inhibition, respectively. Inhibitions of 20, 45 and 80% were observed in the leukocyte migration, as evaluated by carrageenan-induced peritonitis in mice with lovastatin doses of 0.5, 1 and 5 mg/kg, as compared to controls. Furthermore, lovastatin (administered 1 h before initiation reduced the nociceptive effect of the formalin test in mice, at both phases, at doses of 2, 5, and 10 mg/kg: first phase (51, 65, and 70%, respectively and second phase (73, 57, and 66% inhibition of licking time, respectively. The anti-nociceptive activity of lovastatin was inhibited by naloxone (3 mg/kg, sc. Lovastatin (0.01, 0.1, and 1 µg/mL inhibited by 23, 79, and 86%, respectively, the release of myeloperoxidase from human neutrophils. Leukocyte (predominantly neutrophils infiltration was almost completely reduced by lovastatin treatment, as observed in the model of acute paw edema with hematoxylin and eosin staining. In addition, lovastatin decreased the number of cells expressing tumor necrosis factor-α (TNF-α and the inducible form of nitric oxide synthase (iNOS activity. Therefore, the alterations in leukocyte activity and cytokine release could contribute to the anti-inflammatory activity of lovastatin.

  15. Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870 on Mechanical Sensitivity in Diet-Induced Obesity Model

    Directory of Open Access Journals (Sweden)

    Fereshteh Dardmeh

    2016-01-01

    Full Text Available Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota, as an endogenous factor, influences obesity and pain sensitivity but the effect of oral probiotic supplementation on musculoskeletal pain perception has not been studied systematically. The present study examined the effect of a single daily oral dose (1 × 109 CFU of probiotics (Lactobacillus rhamnosus PB01, DSM14870 supplement on mechanical pain thresholds in behaving diet-induced obese (DIO mice and their normal weight (NW controls. The mice (N=24, 6-week-old male were randomly divided into four groups on either standard or high fat diet with and without probiotic supplementation. Both DIO and NW groups with probiotic supplementation maintained an insignificant weight gain while the control groups gained significant weight (P<0.05. Similarly, both DIO and NW probiotics supplemented groups demonstrated a significantly (P<0.05 lower sensitivity to mechanical stimulation compared to their corresponding control. The results of this study suggest a protective effect of probiotics on nociception circuits, which propose a direct result of the weight reduction or an indirect result of anti-inflammatory properties of the probiotics. Deciphering the exact underlying mechanism of the weight loss and lowering nociception effect of the probiotic applied in this study require further investigation.

  16. [Muscle dysmorphia, body image and eating behaviors in two male populations].

    Science.gov (United States)

    Behar, Rosa; Molinari, Daniela

    2010-11-01

    Muscle dysmorphia or vigorexia is a disorder in which a person becomes obsessed with the idea that he or she is not muscular enough. To assess physical exercise, eating behaviors and the presence of muscle dysmorphia among weightlifters and medical students. Cross sectional evaluation of 88 male weightlifters aged 27 ± 7 years and 84 male medical students aged 22 ± 1 year was made. Eating behaviors were evaluated using the Eating Attitudes Test (EAT-40) and the Eating Disorders Inventory (EDI). The perception of body image was assessed using the Graduate Hannover Scale (GHS). Prevalence of muscle dysmorphia among weightlifters was 13.6%. Both groups did not differ in body dissatisfaction. Interest in appearance among weightlifters was significantly higher than in students and ranged significantly higher in EAT-40 and EDI (p < 0.001). Other sports were practiced with the same frequency by weightlifters and students. Weightlifters expended more time than students exercising to improve their appearance (p < 0.005). Forty two percent of weightlifters with muscle dysmorphia displayed abuse of anabolics and 67% used other substances to improve their performance (p < 0.005). The presence of muscle dysmorphia among weightlifters was confirmed. They were dissatisfied with their body image and more concerned with their physical appearance than those without muscle dysmorphia and/or students. Their anabolic abuse rate was high. Our findings were similar to those reported in the international literature.

  17. Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat

    Directory of Open Access Journals (Sweden)

    Marchand Fabien

    2011-11-01

    Full Text Available Abstract Background Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP, a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCζ/PKMζ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. Results Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-ζ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs following formalin administration. In addition, Complete Freund's Adjuvant (CFA-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCζ/PKMζ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCζ/PKMζ in dorsal horn neurons, specifically PKMζ phosphorylation in formalin rats. Finally, inhibition of PKCζ/PKMζ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. Conclusions These results suggest that PKCζ, especially PKMζ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation.

  18. Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle.

    Science.gov (United States)

    Lee, Junghan; Ko, Sachan; Kwon, Cheong Hoon; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-04-01

    Boronic acid (BA), known to be a reversible glucose-sensing material, is conjugated to a nanogel (NG) derived from hyaluronic acid biopolymer and used as a guest material for a carbon multiwalled nanotube (MWNT) yarn. By exploiting the swelling/deswelling of the NG that originates from the internal anionic charge changes resulting from BA binding to glucose, a NG MWNT yarn artificial muscle is obtained that provides reversible torsional actuation that can be used for glucose sensing. This actuator shows a short response time and high sensitivity (in the 5-100 × 10(-3) m range) for monitoring changes in glucose concentration in physiological buffer, without using any additional auxiliary substances or an electrical power source. It may be possible to apply the glucose-sensing MWNT yarn muscles as implantable glucose sensors that automatically release drugs when needed or as an artificial pancreas. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry.

    Science.gov (United States)

    Ge, Yanhu; Jiao, Yingfu; Li, Peiying; Xiang, Zhenghua; Li, Zhi; Wang, Long; Li, Wenqian; Gao, Hao; Shao, Jiayun; Wen, Daxiang; Yu, Weifeng

    2018-05-01

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen leads to ER stress, which is related to cellular reactive oxygen species production. Neuropathic pain may result from spinal dorsal horn (SDH) ER stress. In this study, we examined the cause-effect relationship between ER stress and neuropathic pain using the spinal nerve ligation (SNL) rat model. We showed that ER stress was mutually promotive with oxidative stress during the process. We also tested the hypothesis that spinal sensitization arose from reduced activities of GABA-ergic interneurons and that spinal sensitization was mediated by SDH ER stress. Other important findings in this study including the following: (1) nociceptive behavior was alleviated in SNL rat as long as tauroursodeoxycholic acid injections were repeated to inhibit ER stress; (2) inducing SDH ER stress in healthy rat resulted in mechanical hyperalgesia; (3) blocking protein disulfide isomerase pharmacologically reduced ER stress and nociceptive behavior in SNL rat; (4) cells in the dorsal horn with elevated ER stress were mainly neurons; and (5) whole-cell recordings made in slide preparations revealed significant inhibition of GABA-ergic interneuron activity in the dorsal horn with ER stress vs in the healthy dorsal horn. Taken together, results of the current study demonstrate that coregulation of ER stress and oxidative stress played an important role in neuropathic pain process. Inhibiting SDH ER stress could be a potential novel strategy to manage neuropathic pain.

  20. Radiation-induced changes in the patterns of free ninhydrin-reactive substances of meat

    International Nuclear Information System (INIS)

    Partmann, W.; Keskin, S.

    1979-01-01

    Samples of minced lean beef and pork, breast muscle of chicken, and white meat of carp packed in polyethylene/Hostaphan bags were irradiated in the presence of air at about 25 0 C with 10-MeV electrons. The doses applied were for beef 0.5-20 Mrad, and for other meat samples 10 Mrad. In the dose range of 0-5 Mrad, no statistically significant changes in the composition of the free amino acids and similar compounds usually present in beef were found. In the dose range between 10 and 20 Mrad a tendency towards small losses in such components became obvious. In beef samples irradiated at doses >= 0.5 Mrad a new substance (Y) appeared distinctly in the zone of the basic amino-acids. This compound was detected by two independent methods, column chromatography and high-voltage electrophoresis. The yellow colour of the band appearing above carnosine in the pherogram was striking. Substance Y was also found after irradiation of pork and chicken meat. At a dose of 10 Mrad the concentration of Y in white chicken meat was nearly three times higher than in beef and pork. After irradiation of white carp muscle no Y, but another new basic compound (X) was observed. In the pherograms it appeared as a brwonish-red band above β-alanine. (orig./AJ) [de

  1. Substance Identification Information from EPA's Substance Registry

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Substance Registry Services (SRS) is the authoritative resource for basic information about substances of interest to the U.S. EPA and its state and tribal...

  2. Tramadol effects on clinical variables and the mechanical nociceptive threshold in horses

    Directory of Open Access Journals (Sweden)

    Leandro Guimarães Franco

    2014-03-01

    Full Text Available This study assessed the clinical effects and the mechanical antinociceptive potential of intravenous (IV tramadol in horses.A blinded and randomized study was designed with 7 horses treated with 1 (Tr1, 2 (Tr2 or 3 (Tr3 mg kg-1 of tramadol IV. The heart rate, respiratory rate (fR, arterial pressure, degree of sedation, gastrointestinal motility (GI, behavior changes and the mechanical nociceptive threshold (MNT were evaluated. The MNT was determined with von Frey device method.Tr3 had a significant increase in their fR and more pronounced behavioral changes than other treatments.The Tr1 showed a significant increase in arterial pressure. The GI reduced significantly, mainly in Tr2. The tramadol did not change the MNT of the horses.The clinical alterations observed with the different treatments were considered mild and transitory, being most evident in Tr2. However the tramadol did not have any analgesic effect with any of the doses evaluated.

  3. Substance use - prescription drugs

    Science.gov (United States)

    Substance use disorder - prescription drugs; Substance abuse - prescription drugs; Drug abuse - prescription drugs; Drug use - prescription drugs; Narcotics - substance use; Opioid - substance use; Sedative - substance ...

  4. Substance misuse and substance use disorders in sex offenders: a review

    NARCIS (Netherlands)

    Kraanen, F.L.; Emmelkamp, P.M.G.

    2011-01-01

    Substance abuse has often been associated with committing sex offenses. In this article, the following will be reviewed: 1) studies that assessed substance abuse in sex offenders; 2) differences in substance abuse among different types of sex offenders; 3) differences in substance abuse between sex

  5. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, Henning; Gemmer, Carsten

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow......, respectively (P exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction....... was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by L-NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release...

  6. Circadian variation in metabolite and enzyme activities in the femoral and thoracic muscles of adult variegated grasshoppers, Zonocerus variegatus (Linnaeus, 1758 (Orthoptera: Pyrgomorphidae

    Directory of Open Access Journals (Sweden)

    Ademolu Kehinde Olutoyin

    2018-03-01

    Full Text Available The African variegated grasshopper, Zonocerus variegatus, exhibits daily variations in its feeding and destructive activities. A study to investigate circadian variation in metabolites (lipids, protein, glucose, K+, Ca2+, Mg2+, Cl− concentrations and enzymes (lipase, amylase, proteinase, α-glucosidase activities in the femoral and thoracic muscles of adult Z. variegatus was carried out by collecting samples at 06:00, 12:00, 18:00 and 24:00 hrs GMT. The four enzymes were present throughout the day in both thoracic and femoral muscles but at varying levels. Significantly (p<0.05 higher enzymes activities were measured during the day (between 06:00 and 18:00 hours GMT (except proteinase than at night (24:00 hrs. Organic substances in the two tissues were present in significantly higher concentrations during the day than at night. Similarly, significantly more inorganic substances were recorded in the afternoon (12:00-18:00 hrs than at night in both femoral and thoracic muscles. It can thus be concluded that locomotor activities in Z. variegatus reach a peak during the day.

  7. Autoradiographic localization of substance P receptors using 125I substance P

    International Nuclear Information System (INIS)

    Shults, C.W.; Quirion, R.; Jensen, R.T.; Moody, T.W.; O'Donohue, T.L.; Chase, T.N.

    1982-01-01

    This paper describes a method for localization of substance P receptors in the rat central nervous system using 125 I labeled substance P in an autoradiographic procedure. Particularly high densities of substance P receptors were observed in the olfactory bulb, dentate gyrus, amygdala, superior colliculus, and locus coeruleus. Surprisingly low densities of substance P receptors were found in the substantia nigra pars reticulata, a region which contains high concentrations of substance P

  8. Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review.

    Science.gov (United States)

    Loureiro, Laís Monteiro Rodrigues; Reis, Caio Eduardo Gonçalves; da Costa, Teresa Helena Macedo

    2018-01-18

    Coffee is one of the most consumed beverages in the world and it can improve insulin sensitivity, stimulating glucose uptake in skeletal muscle when adequate carbohydrate intake is observed. The aim of this review is to analyze the effects of coffee and coffee components on muscle glycogen metabolism. A literature search was conducted according to PRISMA and seven studies were included. They explored the effects of coffee components on various substances and signaling proteins. In one of the studies with humans, caffeine was shown to increase glucose levels, Ca 2+ /calmodulin-dependent protein kinase (CaMK) phosphorylation, glycogen resynthesis rates and glycogen accumulation after exercise. After intravenous injection of caffeine in rats, caffeine increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and glucose transport. In in vitro studies caffeine raised AMPK and ACC phosphorylation, increasing glucose transport activity and reducing energy status in rat muscle cells. Cafestol and caffeic acid increased insulin secretion in rat beta-cells, and glucose uptake into human muscle cells. Caffeic acid also increased AMPK and ACC phosphorylation, reducing the energy status and increasing glucose uptake in rat muscle cells. Chlorogenic acid did not show any positive or negative effect. The findings from the current review must be taken with caution due to the limited number of studies on the subject. In conclusion, various coffee components had a neutral or positive role in the metabolism of glucose and muscle glycogen, whilst no detrimental effect was described. Coffee beverages should be tested as an option for athlete's glycogen recovery.

  9. Interactions between superficial and deep dorsal horn spinal cord neurons in the processing of nociceptive information.

    Science.gov (United States)

    Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy

    2012-12-01

    In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Assessment of frozen storage duration effect on quality characteristics of various horse muscles

    Directory of Open Access Journals (Sweden)

    Pil Nam Seong

    2017-12-01

    Full Text Available Objective The study aimed at assessing the effects of frozen storage duration on quality characteristics, lipid oxidation and sensory quality of various horse muscles. Methods Five representative muscles: longissimus dorsi (LD, gluteus medius (GM, semimembranosus (SM, biceps femoris (BF, and triceps brachii (TB at 24 h post-mortem obtained from 28-mo-old Jeju female breed horses (n = 8 were used in the present investigation. The muscles were vacuum-packaged and frozen at −20°C for 120, 240, and 360 days. All the samples were analyzed for thawing and cooking losses, pH, Warner–Bratzler shear forces (WBSF, color traits, total volatile basic nitrogen (TVBN, thiobarbituric acid reactive substances (TBARS and sensory traits. The muscle samples analyzed on day 0 of frozen storage (fresh, non-frozen were used for comparison. Results Results revealed that thawing and cooking losses significantly (p<0.05 increased in all the muscles after 120 days and then remained unchanged up to 360 days of frozen storage. The TBARS and TVBN contents significantly increased as increasing frozen storage time up to 360 days (p<0.05. While, significant decreases in WBSF values were observed for all the muscles with increased frozen storage time (p<0.05. Frozen storage variously affected the color traits of the muscles for instance; the redness of LD, GM, and BF muscles showed a decreasing tendency during frozen storage while it was not changed in TB and SM muscles. Furthermore, the frozen storage did not produce detrimental effects on sensory quality as it did not cause flavor and juiciness defects whereas it partially improved the tenderness of all the muscles studied. Conclusion Based on the results obtained from our work, it is concluded that frozen storage could be applied to increase the long-term shelf life of horsemeat while still retaining its sensory quality.

  11. Substance misuse and substance use disorders in sex offenders: a review.

    Science.gov (United States)

    Kraanen, Fleur L; Emmelkamp, Paul M G

    2011-04-01

    Substance abuse has often been associated with committing sex offenses. In this article, the following will be reviewed: 1) studies that assessed substance abuse in sex offenders; 2) differences in substance abuse among different types of sex offenders; 3) differences in substance abuse between sex offenders and nonsexual offenders and substance abuse in the normal population; 4) sex offenders' intoxication at the time of the offense; and 5) differences in intoxication at the time of the offense among different types of sex offenders. Studies will be discussed according to the method they used to assess substance abuse, i.e., file research, screening instruments or semi-structured interviews. This review shows that about half of the sex offenders has a history of substance abuse, a quarter to half of the sex offenders has a history of alcohol misuse and that about one fifth to a quarter of the sex offenders has a history of drug misuse. Furthermore, about a quarter to half of the sex offenders appeared to be intoxicated at the time of the offense. The review results in recommendations for future research. Because of the high prevalence of substance abuse in sex offenders it is advisable to routinely screen for substance abuse and, if necessary, to treat substance abuse. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Nociceptive thermal threshold testing in horses – effect of neuroleptic sedation and neuroleptanalgesia at different stimulation sites

    Science.gov (United States)

    2013-01-01

    Background Aim of the study was to compare the effect of neuroleptic sedation with acepromazine and neuroleptanalgesia with acepromazine and buprenorphine on thermal thresholds (TT) obtained at the nostrils and at the withers. The study was carried out as a randomized, blinded, controlled trial with cross-over design. Thermal thresholds were determined by incremental contact heat applied to the skin above the nostril (N) or the withers (W). Eleven horses were treated with saline (S), acepromazine (0.05 mg/kg) (ACE) or acepromazine and buprenorphine (0.0075 mg/kg) (AB) intravenously (IV). Single stimulations were performed 15 minutes prior and 15, 45, 75, 105, 165, 225, 285, 405 and 525 minutes after treatment. Sedation score, gastrointestinal auscultation score and occurrence of skin lesions were recorded. Data were analysed with analysis of variance for repeated measurements. Results There were no significant differences in TT between N and W with all treatments. The TT remained constant after S and there was no difference in TT between S and ACE. After AB there was a significant increase above baseline in TT until 405 minutes after treatment. Restlessness occurred 30–90 minutes after AB in 7 horses. All horses had reduced to absent borborygmi after AB administration for 165 to 495 minutes. Conclusion Thermal stimulation at both described body areas gives comparable results in the assessment of cutaneous anti-nociception in horses. There is no differential influence of neuroleptic sedation or neuroleptanalgesia on TTs obtained at N or W. Buprenorphine combined with acepromazine has a long lasting anti-nociceptive effect associated with the typical opioid induced side effects in horses. PMID:23837730

  13. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  14. Localization of substance P binding sites in submucous plexus of guinea pig ileum, using whole-mount autoradiography

    International Nuclear Information System (INIS)

    Burcher, E.; Bornstein, J.C.

    1988-01-01

    Whole mounts of guinea pig ileum submucosa were incubated with radiolabeled tachykinins, and binding sites were visualized using autoradiography. Very dense specific binding for [ 125 I]-Bolton-Hunter substance P (BHSP) was observed over ganglia of the submucous plexus, with weaker binding over internodal strands. Dense specific binding was also seen over occasional strands of circular muscle, with weak binding over clumps of mucosa. Although very weak binding was seen over some large blood vessels, no binding was associated with smaller blood vessels. Localization of binding was absent in whole-mounts coincubated with 1 microM substance P, used to define nonspecific binding. Localization of BHSP-specific binding was also abolished in whole-mounts coincubated with 1 nM substance P, but not with 1 nM neurokinin B, suggesting that binding was probably to an NK-1 tachykinin receptor. In whole-mounts incubated in [ 125 I]-iodohistidyl neurokinin A (INKA) or [ 125 I]-Bolton-Hunter neurokinin B (BHNKB), no specific binding over ganglia was observed. These binding sites for BHSP are probably identical with the neuronal substance P receptors mediating mucosal ion transport

  15. Levels of arsenic, cadmium, lead and mercury in the branchial plate and muscle tissue of mobulid rays

    International Nuclear Information System (INIS)

    Ooi, Michelle S.M.; Townsend, Kathy A.; Bennett, Michael B.; Richardson, Anthony J.; Fernando, Daniel; Villa, Cesar A.; Gaus, Caroline

    2015-01-01

    Highlights: • Branchial plate and muscle tissue from mobulid rays were analysed for certain metals. • Mean concentrations of cadmium in Mobula japanica were above the EC ML. • Mean inorganic arsenic concentration in Mobula japanica muscle equalled the FSANZ ML. • Mean concentration of lead in Manta alfredi muscle tissue exceeded EC and Codex MLs. • There were significant correlations between the types of tissues for some metals. - Abstract: Mobulid rays are targeted in fisheries for their branchial plates, for use in Chinese medicine. Branchial plate and muscle tissue from Mobula japanica were collected from fish markets in Sri Lanka, and muscle tissue biopsies from Manta alfredi in Australia. These were analysed for arsenic, cadmium, lead and mercury and compared to maximum levels (MLs) set by Food Standards Australia and New Zealand (FSANZ), European Commission (EC) and Codex Alimentarius Commission. The estimated intake for a vulnerable human age group was compared to minimal risk levels set by the Agency for Toxic Substances and Disease Registry. The mean inorganic arsenic concentration in M. japanica muscle was equivalent to the FSANZ ML while cadmium exceeded the EC ML. The mean concentration of lead in M. alfredi muscle tissue exceeded EC and Codex MLs. There were significant positive linear correlations between branchial plate and muscle tissue concentrations for arsenic, cadmium and lead

  16. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    Science.gov (United States)

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  18. A method and apparatus for preparing the storage of noxious substances, in particular radioactive substances

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to the storage of radioactive substances. It deals with a method for storing a substance, in particular a noxious or radioactive substance, comprising trapping said substance in a solid substance by bombarding said solid substance with ions of the above substance, so that the latter reaches a certain concentration level in the solid substance. This is applicable to the storage of radioactive wastes [fr

  19. Identification of mechanisms involved in the relaxation of rabbit cavernous smooth muscle by a new nitric oxide donor ruthenium compound

    Directory of Open Access Journals (Sweden)

    João Batista Gadelha de Cerqueira

    2012-10-01

    Full Text Available PURPOSE: The aim of this study was to evaluate the relaxation in vitro of cavernous smooth muscle induced by a new NO donor of the complex nitrosil-ruthenium, named trans-[Ru(NH34(caffeine(NO]C13 (Rut-Caf and sodium nitroprusside (SNP. MATERIALS AND METHODS: The tissues, immersed in isolated bath systems, were pre-contracted with phenilephrine (PE (1 µM and then concentration-response curves (10-12 - 10-4 M were obtained. To clarify the mechanism of action involved, it was added to the baths ODQ (10 µM, 30 µM, oxyhemoglobin (10 µM, L-cysteine (100 µM, hydroxicobalamine (100 µM, glibenclamide, iberotoxin and apamine. Tissue samples were frozen in liquid nitrogen to measure the amount of cGMP and cAMP produced. RESULTS: The substances provoked significant relaxation of the cavernous smooth muscle. Both Rut-Caf and SNP determined dose-dependent relaxation with similar potency (pEC50 and maximum effect (Emax. The substances showed activity through activation of the soluble guanylyl cyclase (sGC, because the relaxations were inhibited by ODQ. Oxyhemoglobin significantly diminished the relaxation effect of the substances. L-cysteine failed to modify the relaxations caused by the agents. Hydroxicobalamine significantly diminished the relaxation effect of Rut-Caf. Glibenclamide significantly increased the efficacy of Rut-Caf (pEC50 4.09 x 7.09. There were no alterations of potency or maximum effect of the substances with the addition of the other ion channel blockers. Rut-Caf induced production of significant amounts of cGMP and cAMP during the relaxation process. CONCLUSIONS: In conclusion, Rut-Caf causes relaxation of smooth muscle of corpus cavernosum by means of activation of sGC with intracellular production of cGMP and cAMP; and also by release of NO in the intracellular environment. Rut-Caf releases the NO free radical and it does not act directly on the potassium ion channels.

  20. Psychological Factors Predict Local and Referred Experimental Muscle Pain: A Cluster Analysis in Healthy Adults

    Science.gov (United States)

    Lee, Jennifer E.; Watson, David; Frey-Law, Laura A.

    2012-01-01

    Background Recent studies suggest an underlying three- or four-factor structure explains the conceptual overlap and distinctiveness of several negative emotionality and pain-related constructs. However, the validity of these latent factors for predicting pain has not been examined. Methods A cohort of 189 (99F; 90M) healthy volunteers completed eight self-report negative emotionality and pain-related measures (Eysenck Personality Questionnaire-Revised; Positive and Negative Affect Schedule; State-Trait Anxiety Inventory; Pain Catastrophizing Scale; Fear of Pain Questionnaire; Somatosensory Amplification Scale; Anxiety Sensitivity Index; Whiteley Index). Using principal axis factoring, three primary latent factors were extracted: General Distress; Catastrophic Thinking; and Pain-Related Fear. Using these factors, individuals clustered into three subgroups of high, moderate, and low negative emotionality responses. Experimental pain was induced via intramuscular acidic infusion into the anterior tibialis muscle, producing local (infusion site) and/or referred (anterior ankle) pain and hyperalgesia. Results Pain outcomes differed between clusters (multivariate analysis of variance and multinomial regression), with individuals in the highest negative emotionality cluster reporting the greatest local pain (p = 0.05), mechanical hyperalgesia (pressure pain thresholds; p = 0.009) and greater odds (2.21 OR) of experiencing referred pain compared to the lowest negative emotionality cluster. Conclusion Our results provide support for three latent psychological factors explaining the majority of the variance between several pain-related psychological measures, and that individuals in the high negative emotionality subgroup are at increased risk for (1) acute local muscle pain; (2) local hyperalgesia; and (3) referred pain using a standardized nociceptive input. PMID:23165778

  1. Modulation of Cervical Facet Joint Nociception and Pain Attenuates Physical and Psychological Features of Chronic Whiplash: A Prospective Study.

    Science.gov (United States)

    Smith, Ashley Dean; Jull, Gwendolen; Schneider, Geoff M; Frizzell, Bevan; Hooper, Robert A; Sterling, Michele

    2015-09-01

    To investigate changes in clinical (physical and psychological) features of individuals with chronic whiplash-associated disorder who had previously undergone cervical radiofrequency neurotomy at the time point when the effects of radiofrequency neurotomy had dissipated and pain returned. Prospective cohort observational trial of consecutive patients. Tertiary spinal intervention centre in Calgary, Alberta, Canada. A total of 53 consecutive individuals with chronic whiplash-associated disorder. Individuals underwent radiofrequency neurotomy and were assessed before radiofrequency neurotomy, at 1 and 3 months postprocedure, and then after the return of pain (approximately 10 months postprocedure). Quantitative sensory tests (pressure; thermal pain thresholds; brachial plexus provocation test), nociceptive flexion reflex, and motor function (cervical range of movement; craniocervical flexion test) were measured. Self-reported disability, psychological distress, pain catastrophization, and posttraumatic stress disorder symptoms also were measured. Upon the return of pain after radiofrequency neurotomy, levels of disability increased (P .22). There were no significant changes in pressure hyperalgesia (P > .054) or craniocervical flexion test performance (P > .07) after the return of pain. Psychological distress and pain catastrophizing increased significantly after the return of pain (P .13). However, there was no difference in number or severity of posttraumatic stress symptoms after the return of pain (P > .30). Physical and psychological features of chronic whiplash-associated disorder are modulated dynamically with cervical radiofrequency neurotomy. These findings indicate that peripheral nociception is involved in the manifestations of chronic whiplash-associated disorder in this cohort of individuals. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. Influence of intramuscular granisetron on experimentally induced muscle pain by acidic saline.

    Science.gov (United States)

    Louca, S; Ernberg, M; Christidis, N

    2013-06-01

    The aim of this study was to investigate whether intramuscular administration of the 5-HT(3) receptor antagonist granisetron reduces experimental muscle pain induced by repeated intramuscular injections of acidic saline into the masseter muscles. Twenty-eight healthy and pain-free volunteers, fourteen women and fourteen men participated in this randomized, double-blind and placebo-controlled study. After a screening examination and registration of the baseline pressure-pain threshold (PPT), the first simultaneous bilateral injections of 0·5 mL acidic saline (9 mg mL(-1) , pH 3·3) into the masseter muscles were performed. Two days later, PPT and pain (VAS) were re-assessed. The masseter muscle was then pre-treated with 0·5 mL granisetron (Kytril(®) 1 mg mL(-1) pH 5·3) on one side and control substance (isotonic saline, 9 mg mL(-1) pH 6) on the contralateral side. Two minutes thereafter a bilateral simultaneous injection of 0·5 mL acidic saline followed. The evoked pain intensity, pain duration, pain area and PPT were assessed. The volunteers returned 1 week later to re-assess VAS and PPT. On the side pre-treated with granisetron, the induced pain had significantly lower intensity and shorter duration (P granisetron on pain duration was significant only in women (P granisetron has a pain-reducing effect on experimentally induced muscle pain by repeated acidic saline injection. © 2013 John Wiley & Sons Ltd.

  3. Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Saltin, Bengt; Mortensen, Stefan P

    2012-01-01

    Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α...... sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients...... with essential hypertension have impaired functional sympatholysis in the forearm, and reduced exercise hyperaemia in the leg, but this can be normalized by aerobic exercise training. The effect of physical activity on the local mechanisms that modulate sympathetic vasoconstriction is clear, but it remains...

  4. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  5. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.

    Science.gov (United States)

    Puente-Maestu, Luis; Tejedor, Alberto; Lázaro, Alberto; de Miguel, Javier; Alvarez-Sala, Luis; González-Aragoneses, Federico; Simón, Carlos; Agustí, Alvar

    2012-09-01

    Exercise triggers skeletal muscle oxidative stress in patients with chronic obstructive pulmonary disease (COPD). The objective of this research was to study the specific sites of reactive oxygen species (ROS) production in mitochondria isolated from skeletal muscle of patients with COPD and its relationship with local oxidative stress induced by exercise. Vastus lateralis biopsies were obtained in 16 patients with COPD (66 ± 10 yr; FEV(1), 54 ± 12% ref) and in 14 control subjects with normal lung function who required surgery because of lung cancer (65 ± 7 yr; FEV(1), 91 ± 14% ref) at rest and after exercise. In these biopsies we isolated mitochondria and mitochondrial membrane fragments and determined in vitro mitochondrial oxygen consumption (Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2)) and ROS production before and after inhibition of complex I (rotenone), complex II (stigmatellin), and complex III (antimycin-A). We related the in vitro ROS production during state 3 respiration), which mostly corresponds to the mitochondria respiratory state during exercise, with skeletal muscle oxidative stress after exercise, as measured by thiobarbituric acid reactive substances.State 3 Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2) was similar in patients with COPD and control subjects (191 ± 27 versus 229 ± 46 nmol/min/mg; P = 0.058), whereas H(2)O(2) production was higher in the former (147 ± 39 versus 51 ± 8 pmol/mg/h; P release by mitochondria in patients with COPD and in control subjects. The mitochondrial production of H(2)O(2) in state 3 respiration was related (r = 0.69; P < 0.001) to postexercise muscle thiobarbituric acid reactive substance levels. Our results show that complex III is the main site of the enhanced mitochondrial H(2)O(2) production that occurs in skeletal muscle of patients with COPD, and the latter appears to contribute to muscle oxidative damage.

  6. Radiation-induced changes in the patterns of free ninhydrin-reactive substances of meat

    International Nuclear Information System (INIS)

    Partmann, W.; Keskin, S.

    1979-01-01

    Samples of minced lean beef and pork, breast muscle of chicken, and white meat of carp packed in polyethylene/Hostaphan bags were irradiated in the presence of air at about 25 0 C with 10-MeV electrons. The doses applied were for beef 0.5-20 Mrad, and for other meat samples 10 Mrad. In the dose range of 0-5 Mrad, no statistically significant changes in the composition of the free amino acids and similar compounds usually present in beef were found. In the dose range between 10 and 20 Mrad a tendency towards small losses in such components became obvious. In beef samples irradiated at doses >= 0.5 Mrad a new substance (Y) appeared distinctly in the zone of the basic amino-acids. This compound was detected by two independent methods, column chromatography and high-voltage electrophoresis. The yellow colour of the band appearing above carnosine in the pherogram was striking. Substance Y was also found after irradiation of pork and chicken meat. At a dose of 10 Mrad the concentration of Y in white chicken meat was nearly three times higher than in beef and pork. After irradiation of white carp muscle no Y, but another new basic compound (X) was observed. In the pherograms it appeared as a brownish-red band above β-alanine. The irradiation products X and Y may be used to find out whether meat of animals as used in this investigation had been exposed to radiation, if doses of 0.5 Mrad or higher were applied. (orig.) [de

  7. Central nervous system mast cells in peripheral inflammatory nociception

    Directory of Open Access Journals (Sweden)

    Ellmeier Wilfried

    2011-06-01

    Full Text Available Abstract Background Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation. Results Spinal application of supernatant from activated cultured mast cells induces significant mechanical hyperalgesia and long-term potentiation (LTP at spinal synapses of C-fibers. Lumbar, thoracic and thalamic preparations are then examined for mast cell number and degranulation status after intraplantar capsaicin and carrageenan. Intradermal capsaicin induces a significant percent increase of lumbar dural mast cells at 3 hours post-administration. Peripheral carrageenan in female rats significantly increases mast cell density in the lumbar dura, but not in thoracic dura or thalamus. Intrathecal administration of the mast cell stabilizer sodium cromoglycate or the spleen tyrosine kinase (Syk inhibitor BAY-613606 reduce the increased percent degranulation and degranulated cell density of lumbar dural mast cells after capsaicin and carrageenan respectively, without affecting hyperalgesia. Conclusion The results suggest that lumbar dural mast cells may be sufficient but are not necessary for capsaicin or carrageenan-induced hyperalgesia.

  8. CORRELATIONS BETWEEN MUSCLE MASS, MUSCLE STRENGTH, PHYSICAL PERFORMANCE, AND MUSCLE FATIGUE RESISTANCE IN COMMUNITY-DWELLING ELDERLY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Elizabeth

    2016-03-01

    Full Text Available Objective: To determine the correlations between muscle mass, muscle strength, physical performance, and muscle fatigue resistance in community-dwelling elderly people in order to elucidate factors which contribute to elderly’s performance of daily activities. Methods: A cross-sectional study was conducted on community-dwelling elderly in Bandung from September to December 2014. One hundred and thirty elderly, 60 years old or above, were evaluated using bioelectrical impedance analysis to measure muscle mass; grip strength to measure muscle strength and muscle fatigue resistance; habitual gait speed to measure physical performance; and Global Physical Activity Questionnaire (GPAQ to assess physical activity. Results: There were significant positive correlations between muscle mass (r=0,27, p=0,0019, muscle strength (r=0,26, p=0,0024, and physical performance (r=0,32, p=0,0002 with muscle fatigue resistance. Physical performance has the highest correlation based on multiple regression test (p=0,0025. In association with muscle mass, the physical activity showed a significant positive correlation (r=0,42, p=0,0000. Sarcopenia was identified in 19 (14.61% of 130 subjects. Conclusions: It is suggested that muscle mass, muscle strength, and physical performance influence muscle fatigue resistance.

  9. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  10. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  11. A randomized, phase I, double-blind, crossover study on pharmacokinetics of peppermint oil capsules in healthy volunteers : Enteric-coating versus colon-targeted-delivery

    NARCIS (Netherlands)

    Weerts, Z.Z.R.M.; Keszthelyi, D.; Frijlink, H.W.; Brouwers, J.R.B.J.; Vork, L.; Jonkers, D.M.A.E.; Masclee, A.A.M.

    2016-01-01

    Peppermint oil (PO) has been shown to reduce abdominal pain in patients with Irritable Bowel Syndrome (IBS). Menthol, the main constituent of PO, induces intestinal smooth muscle relaxation and desensitizes nociceptive nerve afferents. Enteric-coated (EC PO) capsules that release PO mainly in the

  12. Long-Term Effects of Neonatal Pain and Stress on Reactivity of the Nociceptive System.

    Science.gov (United States)

    Butkevich, I P; Mikhailenko, V A

    2016-10-01

    The influence of inflammatory pain and/or weaning stress at different terms of neonatal development on functional activity of the nociceptive system during adulthood was studied in rats. Repeated stress in 1-2-day-old rat pups (a premature baby model) enhanced pain sensitivity to peripheral inflammation in both males and females. Repeated inflammatory pain experienced by male pups aged 1-2 or 7-8 days (models of preterm and full-term baby), even in presence of mother, enhanced pain behavior under conditions of repeated inflammatory pain in adulthood. Pain sensitivity in adult animals before (hot plate test) and after formation of the inflammatory focus (formalin test) depended on the age when the animals were subjected to the injury, type of exposure, and on animal sex. The priority data obtained by us will help to understand the mechanisms of long-term effects of early injuries and are important for pediatricians and neonatologists.

  13. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Czech Academy of Sciences Publication Activity Database

    Pařízek, Martin; Kasálková-Slepičková, N.; Bačáková, Lucie; Švindrych, Zdeněk; Slepička, P.; Bačáková, Markéta; Lisá, Věra; Švorčík, V.

    2013-01-01

    Roč. 2013, č. 2013 (2013), s. 371430 ISSN 2314-6133 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : biotechnology * tissue replacements * vascular smooth muscle cells * adhesion * modification Subject RIV: JJ - Other Materials

  14. Interaction of calcitonin gene related peptide (CGRP) and substance P (SP) in human skin.

    Science.gov (United States)

    Schlereth, Tanja; Schukraft, Jonas; Krämer-Best, Heidrun H; Geber, Christian; Ackermann, Tatiana; Birklein, Frank

    2016-10-01

    Calcitonin gene related peptide (CGRP) and substance P (SP) are neuropeptides that are simultaneously released from nociceptive C-fibers. CGRP is a potent vasodilator, inducing a long-lasting increase in superficial skin blood flow, whereas SP induces only a brief vasodilation but a significant plasma extravasation. CGRP and SP may play important roles in the pathophysiology of various pain states but little is known about their interaction. Different concentrations of SP (ranging from 10 -5 M to 10 -9 M) were applied to the volar forearm of 24 healthy subjects via dermal microdialysis. SP was applied either alone or in combination with CGRP10 -9 M and CGRP 10 -6 M. As expected, SP induced a transient increase in skin blood flow that decayed shortly after application. This transient blood flow peak was blunted with co-application of CGRP 10 -9 M and inhibited with co-application of CGRP10 -6 M. SP alone induced plasma protein extravasation (PPE). However, when CGRP10 -6 M was added, the PPE significantly increased. Our results demonstrate a complex interaction of the neuropeptides CGRP and SP. CGRP10 -6 M prevented SP-induced early vasodilation but augmented SP-induced PPE. These interactions might explain why vascular symptoms in chronic pain can differ strikingly between individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  16. Ultrasound-Guided Injection of Botulinum Toxin Type A for Piriformis Muscle Syndrome: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Andrea Santamato

    2015-08-01

    Full Text Available Piriformis muscle syndrome (PMS is caused by prolonged or excessive contraction of the piriformis muscle associated with pain in the buttocks, hips, and lower limbs because of the close proximity to the sciatic nerve. Botulinum toxin type A (BoNT-A reduces muscle hypertonia as well as muscle contracture and pain inhibiting substance P release and other inflammatory factors. BoNT-A injection technique is important considering the difficult access of the needle for deep location, the small size of the muscle, and the proximity to neurovascular structures. Ultrasound guidance is easy to use and painless and several studies describe its use during BoNT-A administration in PMS. In the present review article, we briefly updated current knowledge regarding the BoNT therapy of PMS, describing also a case report in which this syndrome was treated with an ultrasound-guided injection of incobotulinumtoxin A. Pain reduction with an increase of hip articular range of motion in this patient with PMS confirmed the effectiveness of BoNT-A injection for the management of this syndrome.

  17. Sexual orientation, substance use behaviors and substance dependence in the United States

    Science.gov (United States)

    McCabe, Sean Esteban; Hughes, Tonda L.; Bostwick, Wendy B.; West, Brady T.; Boyd, Carol J.

    2009-01-01

    Aims To assess past-year prevalence rates of substance use behaviors and substance dependence across three major dimensions of sexual orientation (identity, attraction, and behavior) in a large national sample of adult women and men in the United States. Design Data were collected from structured diagnostic face-to-face interviews using the Alcohol Use Disorder and Associated Disabilities Interview Schedule DSM-IV Version (AUDADIS-IV). Setting Prevalence estimates were based on data collected from the 2004–2005 (Wave 2) National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Participants A large national sample of 34,653 adults aged 20 years and older: 52% female, 71% White, 12% Hispanic, 11% African American, 4% Asian, and 2% Native American or other racial/ethnic categories. Findings Approximately 2% of the sample self-identified as lesbian, gay or bisexual; 4% reported at least one lifetime same-sex sexual partner, and 6% reported same-sex sexual attraction. Although non-heterosexual orientation was generally associated with a higher risk of substance use and substance dependence, the majority of sexual minority respondents did not report substance use or meet criteria for DSM-IV substance dependence. There was considerable variation in substance use outcomes across sexual orientation dimensions; these variations were more pronounced among women than among men. Conclusions Results support previous research findings of heightened risk of substance use and substance dependence among some sexual minority groups and point to the need for research that examines reasons for such differences. Results also highlight important gender differences and question previous findings indicating uniformly higher risk for substance dependence among sexual minorities. Risks appear to vary based on gender and how sexual orientation is defined. Findings have implications for prevention and intervention efforts that more effectively target subgroups at greatest

  18. Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    Science.gov (United States)

    Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

    2012-01-01

    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (I NaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I NaT and a decrease of potassium currents, especially slowly inactivating potassium currents (I AS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I NaT and total potassium current as well as I AS currents induced by STZ were normalized by GAS. This study provides a

  19. Evaluation of muscle hyperactivity of the grimacing muscles by unilateral tight eyelid closure and stapedius muscle tone.

    Science.gov (United States)

    Shiba, Masato; Matsuo, Kiyoshi; Ban, Ryokuya; Nagai, Fumio

    2012-10-01

    Muscle hyperactivity of grimacing muscles, including the orbicularis oculi and corrugator supercilii muscles that cause crow's feet and a glabellar frown line with ageing, cannot be accurately evaluated by surface observation. In 71 subjects, this study investigated the extent to which grimacing muscles are innervated by the bilateral motor cortices, whether the corticofacial projection to the grimacing muscles affects the facially innervated stapedius muscle tone by measuring static compliance of the tympanic membrane, and whether unilateral tight eyelid closure with contraction of the grimacing muscles changes static compliance. Unilateral tight eyelid closure and its subsequent change in the contralateral vertical medial eyebrow position revealed that motor neurons of the orbicularis oculi and corrugator supercilii muscles were innervated by the bilateral motor cortices with weak-to-strong contralateral dominance. The orbicularis oculi, corrugator supercilii, and stapedius muscles innervated by the bilateral motor cortices had increased muscle hyperactivity, which lowered the vertical medial eyebrow position and decreased the static compliance of the tympanic membrane more than those innervated by the unilateral motor cortex. Unilateral enhanced tight eyelid closure with contraction of the grimacing muscles in certain subjects ipsilaterally decreased the static compliance with increased contraction of the stapedius muscle, which probably occurs to immobilise the tympanic membrane and protect the inner ear from loud sound. Evaluation of unilateral tight eyelid closure and the subsequent change in the contralateral vertical medial eyebrow position as well as a measurement of the static compliance for the stapedius muscle tone has revealed muscle hyperactivity of grimacing muscles.

  20. Muscle force depends on the amount of transversal muscle loading.

    Science.gov (United States)

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Comparison of the effects of the alpha-2 agonists detomidine, romifidine and xylazine on nociceptive withdrawal reflex and temporal summation in horses.

    Science.gov (United States)

    Rohrbach, Helene; Korpivaara, Toni; Schatzmann, Urs; Spadavecchia, Claudia

    2009-07-01

    To evaluate and compare the antinociceptive effects of the three alpha-2 agonists, detomidine, romifidine and xylazine at doses considered equipotent for sedation, using the nociceptive withdrawal reflex (NWR) and temporal summation model in standing horses. Prospective, blinded, randomized cross-over study. Ten healthy adult horses weighing 527-645 kg and aged 11-21 years old. Electrical stimulation was applied to the digital nerves to evoke NWR and temporal summation in the left thoracic limb and pelvic limb of each horse. Electromyographic reflex activity was recorded from the common digital extensor and the cranial tibial muscles. After baseline measurements a single bolus dose of detomidine, 0.02 mg kg(-1), romifidine 0.08 mg kg(-1), or xylazine, 1 mg kg(-1), was administered intravenously (IV). Determinations of NWR and temporal summation thresholds were repeated at 10, 20, 30, 40, 60, 70, 90, 100, 120 and 130 minutes after test-drug administration alternating the thoracic limb and the pelvic limb. Depth of sedation was assessed before measurements at each time point. Behavioural reaction was observed and recorded following each stimulation. The administration of detomidine, romifidine and xylazine significantly increased the current intensities necessary to evoke NWR and temporal summation in thoracic limbs and pelvic limbs of all horses compared with baseline. Xylazine increased NWR thresholds over baseline values for 60 minutes, while detomidine and romifidine increased NWR thresholds over baseline for 100 and 120 minutes, respectively. Temporal summation thresholds were significantly increased for 40, 70 and 130 minutes after xylazine, detomidine and romifidine, respectively. Detomidine, romifidine and xylazine, administered IV at doses considered equipotent for sedation, significantly increased NWR and temporal summation thresholds, used as a measure of antinociceptive activity. The extent of maximal increase of NWR and temporal summation thresholds was

  3. Pricing hazardous substance emissions

    Energy Technology Data Exchange (ETDEWEB)

    Staring, Knut; Vennemo, Haakon

    1997-12-31

    This report discusses pricing of emissions to air of several harmful substances. It combines ranking indices for environmentally harmful substances with economic valuation data to yield price estimates. The ranking methods are discussed and a relative index established. Given the relative ranking of the substances, they all become valued by assigning a value to one of them, the `anchor` substance, for which lead is selected. Valuations are provided for 19 hazardous substances that are often subject to environmental regulations. They include dioxins, TBT, etc. The study concludes with a discussion of other categories of substances as well as uncertainties and possible refinements. When the valuations are related to CO, NOx, SOx and PM 10, the index system undervalues these pollutants as compared to other studies. The scope is limited to the outdoor environment and does not include global warming and eutrophication. The indices are based on toxicity and so do not apply to CO{sub 2} or other substances that are biologically harmless. The index values are not necessarily valid for all countries and should be considered as preliminary. 18 refs., 6 tabs.

  4. Pricing hazardous substance emissions

    Energy Technology Data Exchange (ETDEWEB)

    Staring, Knut; Vennemo, Haakon

    1998-12-31

    This report discusses pricing of emissions to air of several harmful substances. It combines ranking indices for environmentally harmful substances with economic valuation data to yield price estimates. The ranking methods are discussed and a relative index established. Given the relative ranking of the substances, they all become valued by assigning a value to one of them, the `anchor` substance, for which lead is selected. Valuations are provided for 19 hazardous substances that are often subject to environmental regulations. They include dioxins, TBT, etc. The study concludes with a discussion of other categories of substances as well as uncertainties and possible refinements. When the valuations are related to CO, NOx, SOx and PM 10, the index system undervalues these pollutants as compared to other studies. The scope is limited to the outdoor environment and does not include global warming and eutrophication. The indices are based on toxicity and so do not apply to CO{sub 2} or other substances that are biologically harmless. The index values are not necessarily valid for all countries and should be considered as preliminary. 18 refs., 6 tabs.

  5. Effect of phosphate treatments on microbiological, physicochemical changes of spent hen muscle marinated with Tom Yum paste during chilled storage.

    Science.gov (United States)

    Wongwiwat, Pirinya; Wattanachant, Saowakon; Siripongvutikorn, Sunisa

    2010-06-01

    This research aimed to study the effect of phosphate on quality of ready-to-cook spent hen muscle marinated with Tom Yum paste, a famous Thai food made from chilli, lime leaves and garcinia (pH 2.5-2.9). The effects of phosphate treatments (phosphate types, soaking time, and phosphate concentration) on physical characteristics of spent hen muscle in high acid condition were investigated. Quality changes of muscles pretreated with or without phosphate and marinated with Tom Yum paste were determined during storage at 4 degrees C for 30 days. The acidified muscle pretreated with 40 g L(-1) sodium tripolyphosphate for 10 h had the highest marinade absorption, and the lowest cooking loss and shear force among all treatment samples. Microstructures of acidified muscle pretreated with and without sodium tripolyphosphate showed significant swelling with larger fibre diameter. Phosphate pretreatment had no influence on cooking loss, shear force and thiobarbituric acid reactive substance values of Tom Yum marinated muscle during storage. Tom Yum marination with phosphate pretreatment caused a higher increase in psychrophilic bacteria compared to that of marinating without phosphate. Phosphate pretreatment could not improve the physical quality of Tom-Yum marinated spent hen muscle and affected the antimicrobial property of Tom-Yum marinade, resulting in a reduction of shelf-life of the marinated muscle from 30 days to 20 days. Copyright (c) 2010 Society of Chemical Industry.

  6. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  7. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury

    Directory of Open Access Journals (Sweden)

    Victor Eduardo G

    2012-03-01

    Full Text Available Abstract Background Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound with gold nanoparticles (GNP on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury. Materials and methods Animals were divided in nine groups: sham (uninjured muscle; muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP. The ROS production was determined by concentration of superoxide anion, modulation of antioxidant defenses was determined by the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, oxidative damage determined by formation of thiobarbituric acid-reactive substance and protein carbonyls. The levels of interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α were measured as inflammatory parameters. Results Compared to muscle injury without treatment group, the muscle injury + TPU + DMSO + GNP gel group promoted a significant decrease in superoxide anion production and lipid peroxidation levels (p Conclusions Our results suggest that TPU + DMSO + GNP gel presents beneficial effects on the muscular healing process, inducing a reduction in the production of ROS and also the expression of pro-inflammatory molecules.

  8. Titanium Implant Impairment and Surrounding Muscle Cell Death Following High-Salt Diet: An In Vivo Study.

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    Full Text Available High-salt consumption has been widely described as a risk factor for cardiovascular, renal and bone functions. In the present study, the extent to which high-salt diet could influence Ti6Al4V implant surface characteristic, its adhesion to rat tibial crest, and could modify muscle cell viability of two surrounding muscles, was investigated in vivo. These parameters have also been assessed following a NMES (neuro-myoelectrostimulation program similar to that currently used in human care following arthroplasty.After a three-week diet, a harmful effect on titanium implant surface and muscle cell viability was noted. This is probably due to salt corrosive effect on metal and then release of toxic substance around biologic tissue. Moreover, if the use of NMES with high-salt diet induced muscles damages, the latter were higher when implant was added. Unexpectedly, higher implant-to-bone adhesion was found for implanted animals receiving salt supplementation.Our in vivo study highlights the potential dangerous effect of high-salt diet in arthroplasty based on titanium prosthesis. This effect appears to be more important when high-salt diet is combined with NMES.

  9. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  10. Surgical and nonsurgical treatment of total rupture of the pectoralis major muscle in athletes: update and critical appraisal.

    Science.gov (United States)

    Kircher, Jörn; Ziskoven, Christoph; Patzer, Thilo; Zaps, Daniela; Bittersohl, Bernd; Krauspe, Rüdiger

    2010-10-11

    The complete rupture of the pectoralis major tendon is an uncommon injury but has become increasingly common among athletes in recent years. This may be due to a higher number of individuals taking part in high-impact sports and weightlifting as well as the use of anabolic substances, which can make muscles and tendons vulnerable to injury. In recent literature, there are only few recommendations to rely on conservative treatment alone, but there are a number of reports and case series recommending early surgical intervention. Comparing the results of the two treatment regimens, there is clear evidence for a superior outcome after surgical repair with better cosmesis, better functional results, regaining of muscle power, and return to sports compared with the conservative treatment. In summary, anatomic surgical repair is the treatment of choice for complete acute ruptures of the pectoralis major tendon or muscle in athletes.

  11. Peer Substance Use and Homelessness Predicting Substance Abuse from Adolescence Through Early Adulthood

    OpenAIRE

    Tompsett, Carolyn J.; Domoff, Sarah E.; Toro, Paul A.

    2013-01-01

    Adolescents who experience homelessness are at higher risk for abusing substances, and for being exposed to substance-using peers. The current study used a longitudinal design to track substance abuse, affiliation with substance-using peers, and episodes of homelessness among a sample of 223 adolescents who were homeless at thebaseline data collection and 148 adolescents who were housed at baseline. Participants were interviewed at six waves over 6.5 years, covering an age rang...

  12. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  13. Modulation of Visceral Nociception, Inflammation and Gastric Mucosal Injury by Cinnarizine

    Directory of Open Access Journals (Sweden)

    Omar M.E. Abdel-Salam

    2007-01-01

    Full Text Available The effect of cinnarizine, a drug used for the treatment of vertigo was assessed in animal models of visceral nociception, inflammation and gastric mucosal injury. Cinnarizine (1.25–20 mg/kg, s.c. caused dose-dependent inhibition of the abdominal constrictions evoked by i.p. injection of acetic acid by 38.7–99.4%. This effect of cinnarizine (2.5 mg/kg was unaffected by co-administration of the centrally acting dopamine D2 receptor antagonists, sulpiride, haloperidol or metoclopramide, the peripherally acting D2 receptor antagonist domperidone, but increased by the D2 receptor agonist bromocryptine and by the non-selective dopamine receptor antagonist chlorpromazine. The antinociception caused by cinnarizine was naloxone insenstive, but enhanced by propranolol, atropine and by yohimbine. The antinociceptive effect of cinnarizine was prevented by co-treatment with the adenosine receptor blocker theophylline or by the ATP-sensitive potassium channel (KATP blocker glibenclamide. Cinnarizine at 2.5 mg/kg reversed the baclofen-induced antinociception. Cinnarizine at 2.5 mg/kg reduced immobility time in the Porsolt’s forced-swimming test by 24%. Cinnarizine inhibited the paw oedema response to carrageenan and reduced gastric mucosal lesions caused by indomethacin in rats. It is suggested that cinnarizine exerts anti-infl ammatory, antinociceptive and gastric protective properties. The mechanism by which cinnarizine modulates pain transmission is likely to involve adenosine receptors and KATP channels.

  14. microRNAs in nociceptive circuits as predictors of future clinical applications

    Directory of Open Access Journals (Sweden)

    Michaela eKress

    2013-10-01

    Full Text Available Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs (ncRNAs – and microRNAs (miRNAs in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesised as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioural components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome (CRPS. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.

  15. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Naffaa, Lena [American University of Beirut, Department of Diagnostic Radiology, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon); Moukaddam, Hicham [Saint Rita Medical Center, Lima, OH (United States); Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Lemieux, Aaron [University of California, San Diego School of Medicine, La Jolla, CA (United States); Smitaman, Edward [University of California, San Diego, Teleradiology and Education Center, San Diego, CA (United States)

    2017-03-15

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  16. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    International Nuclear Information System (INIS)

    Naffaa, Lena; Moukaddam, Hicham; Samim, Mohammad; Lemieux, Aaron; Smitaman, Edward

    2017-01-01

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  17. Microvascular system forming in skeletal muscle near trichinella larvae

    International Nuclear Information System (INIS)

    Berzentsev, Y.A.; Oksov, I.V.

    1986-01-01

    The fine structure and dynamics of formation of the microcirculatory system about the larvae of the two Trichinella species, providing for the rapid entry of nutrient substances to the larvae, were investigated in the muscles of white mice. Hitological, hitochemical, autoradiographic, and electron-microscopic methods were used in the investigation. At a certain period of the experiment, the greatest quantity of RNA was found in the endotheliocyte cytoplasm, tritium-thymidine label was incorporated into the nuclei, and mitoses were visible. The transition to tissue parasitism was accompanied by a complication of the relationships with the host and the formation of a more complex independent microcirculatory system, which ensures a more intensive influx of blood

  18. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Central nociceptive sensitization vs. spinal cord training: Opposing forms of plasticity that dictate function after complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training. Conversely intradermal formalin impaired future spinal learning (24 h post-injection. Because the NMDA receptor has been implicated in formalin-induced central sensitization, we tested whether pretreatment with NMDA affects spinal learning. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24h. These data provide strong evidence for an

  20. Perfluoroalkyl substances in aquatic environment-comparison of fish and passive sampling approaches.

    Science.gov (United States)

    Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Kodes, Vit; Golovko, Oksana; Zlabek, Vladimir; Randak, Tomas

    2016-01-01

    The concentrations of seven perfluoroalkyl substances (PFASs) were investigated in 36 European chub (Squalius cephalus) individuals from six localities in the Czech Republic. Chub muscle and liver tissue were analysed at all sampling sites. In addition, analyses of 16 target PFASs were performed in Polar Organic Chemical Integrative Samplers (POCISs) deployed in the water at the same sampling sites. We evaluated the possibility of using passive samplers as a standardized method for monitoring PFAS contamination in aquatic environments and the mutual relationships between determined concentrations. Only perfluorooctane sulphonate was above the LOQ in fish muscle samples and 52% of the analysed fish individuals exceeded the Environmental Quality Standard for water biota. Fish muscle concentration is also particularly important for risk assessment of fish consumers. The comparison of fish tissue results with published data showed the similarity of the Czech results with those found in Germany and France. However, fish liver analysis and the passive sampling approach resulted in different fish exposure scenarios. The total concentration of PFASs in fish liver tissue was strongly correlated with POCIS data, but pollutant patterns differed between these two matrices. The differences could be attributed to the metabolic activity of the living organism. In addition to providing a different view regarding the real PFAS cocktail to which the fish are exposed, POCISs fulfil the Three Rs strategy (replacement, reduction, and refinement) in animal testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. 21 CFR 172.510 - Natural flavoring substances and natural substances used in conjunction with flavors.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Natural flavoring substances and natural substances used in conjunction with flavors. 172.510 Section 172.510 Food and Drugs FOOD AND DRUG ADMINISTRATION....510 Natural flavoring substances and natural substances used in conjunction with flavors. Natural...

  2. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    Science.gov (United States)

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-05-13

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge. Copyright © 2017. Published by Elsevier Inc.

  3. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  4. Psychotoxic Substances

    Science.gov (United States)

    1964-11-16

    halluci- nations , disturbances of body perception, depersonalization symptoms, and a "psychotic" status. Also with the derivatives, the individual...the substance had also local anesthetic properties. After clinical testing, ibogaine was then used as stimulans for neurasthenics and convalescents1 1 3...con- siderably disturbed by this group of substances. The optic halluci- nations consist to a small extent in scenic proceedings of actions, more

  5. THE NEPHROTOXICITY RISK IN RATS SUBJECTED TO HEAVY MUSCLE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Gülsen Öner

    2009-09-01

    Full Text Available When the body is exposed to insults, the kidneys exhibit adaptive changes termed renal cytoresistance, characterized by cholesterol accumulation in the membranes of the tubule cells. However, heavy muscle activity has not yet been accepted as one of the stressors that could lead to cytoresistance. In order to study the renal functional characteristics of animals exposed to heavy muscle activity, rats were subjected to exhaustive treadmill exercise for 5 days and their data was compared to those of sedentary controls. It was found that in exercised rats, blood lactate, muscle citrate synthase and proximal tubule peroxynitrite levels were all elevated, suggesting the presence of oxidative stress in the proximal tubule segments. However, mean arterial pressure, renal blood flow, glomerular filtration rate, fractional excretion of sodium and potassium, and organic anion excretion remained normal. Despite unchanged blood cholesterol levels, cholesterol loading in the proximal tubule segments, especially the free form, and decreased lactate dehydrogenase release from cytoresistant proximal tubule segments indicated the development of renal cytoresistance. However, this resistance did not seem to have protected the kidneys as expected because organic anion accumulation associated with glycosuria and proteinuria, in addition to the elevated urinary cholesterol levels, all imply the presence of an impaired glomerular permeability and reabsorption in the proximal tubule cells. Therefore, we suggest that in response to heavy muscle activity the tubular secretion may remain intact, although cytoresistance in the proximal tubule cells may affect the tubular reabsorptive functions and basolateral uptake of substances. Thus, this differential sensitivity in the cytoresistance should be taken into account during functional evaluation of the kidneys

  6. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  7. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  8. Australian athletes' knowledge of the WADA Prohibited Substances List and performance enhancing substances.

    Science.gov (United States)

    Orr, Rhonda; Grassmayr, Matthew; Macniven, Rona; Grunseit, Anne; Halaki, Mark; Bauman, Adrian

    2018-03-15

    This study investigated athlete knowledge of the World Anti-doping Agency (WADA) Prohibited Substances List and the effects of four well-known performance enhancing substances (PES). A sample of 1925 elite and sub-elite athletes (mean age 20.6 years) completed a questionnaire about the banned status of 30 substances/methods and their knowledge of the effects of amphetamines, anabolic steroids, growth hormone and erythropoietin. Athletes showed limited understanding of the WADA Prohibited Substances List, scoring 32.2% correct, 36.3% incorrect, and 31.4% indicated they did not know the status of 30 substances. Responses of >50% correct were given for only eight substances/method: anabolic steroids, amphetamines, blood doping, erythropoietin, caffeine, vitamins/minerals, protein powders and iron. Athletes demonstrated moderate knowledge of the desired effects of the four PES (49% correct), but poor knowledge of their adverse effects (29% correct). Age, sex, ethnicity, professional/amateur status, and current competition level were significant predictors of the number of correct responses (r 2  = 0.16, p wide range of substances and PES. Better targeted drug education towards younger and non-professional athletes and evaluation of current anti-doping programs are warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Substance Use Stigma: Reliability and validity of a theory-based scale for substance-using populations*

    Science.gov (United States)

    Smith, Laramie R.; Earnshaw, Valerie A.; Copenhaver, Michael M.; Cunningham, Chinazo O.

    2016-01-01

    Background Substance use disorders consistently rank among the most stigmatized conditions worldwide. Thus, substance use stigma fosters health inequities among persons with substance use disorders and remains a key barrier to successful screening and treatment efforts. Current efforts to measure substance use stigma are limited. This study aims to advance measurement efforts by drawing on stigma theory to develop and evaluate the Substance Use Stigma Mechanisms Scale (SU-SMS). The SU-SMS was designed to capture enacted, anticipated, and internalized substance use stigma mechanisms among persons with current and past substance use disorders, and distinguish between key stigma sources most likely to impact this target population. Methods This study was a cross-sectional evaluation of the validity, reliability, and generalizability of the SU-SMS across two independent samples with diverse substance use and treatment histories. Results Findings support the structural and construct validity of the SU-SMS, suggesting the scale was able to capture enacted, anticipated, and internalized stigma as distinct stigma experiences. It also further differentiated between two distinct stigma sources (family and healthcare providers). Analysis of these mechanisms and psychosocial metrics suggests that the scale is also associated with other health-related outcomes. Furthermore, the SU-SMS demonstrated high levels of internal reliability and generalizability across two independent samples of persons with diverse substance use disorders and treatment histories. Conclusion The SU-SMS may serve as a valuable tool for better understanding the processes through which substance use stigma serves to undermine key health behaviors and outcomes among persons with substance use disorders. PMID:26972790

  10. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ulex europaeus agglutinin-I binding to dental primary afferent projections in the spinal trigeminal complex combined with double immunolabeling of substance P and GABA elements using peroxidase and colloidal gold.

    Science.gov (United States)

    Matthews, M A; Hoffmann, K D; Hernandez, T V

    1989-01-01

    Ulex europaeus agglutinin I (UEA-I) is a plant lectin with an affinity for L-fucosyl residues in the chains of lactoseries oligosaccharides associated with medium- and smaller-diameter dorsal root ganglion neurons and their axonal processes. These enter Lissauer's tract and terminate within the superficial laminae of the spinal cord overlapping projections known to have a nociceptive function. This implies that the surface coatings of neuronal membranes may have a relationship with functional modalities. The present investigation further examined this concept by studying a neuronal projection with a nociceptive function to determine whether fucosyl-lactoseries residues were incorporated in its primary afferent terminals. Transganglionic transport of horseradish peroxidase (HRP) following injection into tooth pulp chambers was employed to demonstrate dental pulp terminals in the trigeminal spinal complex, while peroxidase and fluorescent tags were used concomitantly to stain for UEA-I. Double immunolabeling for substance P (SP) and gamma-aminobutyric acid (GABA) using peroxidase and colloidal gold allowed a comparison of the distribution of a known excitatory nociceptive transmitter with that of UEA-I binding in specific subnuclei. Synaptic interrelationships between UEA-I positive dental pulp primary afferent inputs and specific inhibitory terminals were also examined. SP immunoreactivity occurred in laminae I and outer lamina II (IIo) of subnucleus caudalis (Vc) and in the ventrolateral and lateral marginal region of the caudal half of subnucleus interpolaris (Vi), including the periobex area in which Vi is slightly overlapped on its lateral aspect by cellular elements of Vc. The adjacent interstitial nucleus (IN) also showed an intense immunoreactivity for this peptide antibody. UEA-I binding displayed a similar distribution pattern in both Vc and Vi, but extended into lamina IIi and the superficial part of Lamina III in Vc. Dental pulp terminals were found to

  12. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  13. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: individual and sex differences.

    Science.gov (United States)

    Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki

    2018-05-29

    Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.

  14. Screening for prenatal substance use: development of the Substance Use Risk Profile-Pregnancy scale.

    Science.gov (United States)

    Yonkers, Kimberly A; Gotman, Nathan; Kershaw, Trace; Forray, Ariadna; Howell, Heather B; Rounsaville, Bruce J

    2010-10-01

    To report on the development of a questionnaire to screen for hazardous substance use in pregnant women and to compare the performance of the questionnaire with other drug and alcohol measures. Pregnant women were administered a modified TWEAK (Tolerance, Worried, Eye-openers, Amnesia, K[C] Cut Down) questionnaire, the 4Ps Plus questionnaire, items from the Addiction Severity Index, and two questions about domestic violence (N=2,684). The sample was divided into "training" (n=1,610) and "validation" (n=1,074) subsamples. We applied recursive partitioning class analysis to the responses from individuals in the training subsample that resulted in a three-item Substance Use Risk Profile-Pregnancy scale. We examined sensitivity, specificity, and the fit of logistic regression models in the validation subsample to compare the performance of the Substance Use Risk Profile-Pregnancy scale with the modified TWEAK and various scoring algorithms of the 4Ps. The Substance Use Risk Profile-Pregnancy scale is comprised of three informative questions that can be scored for high- or low-risk populations. The Substance Use Risk Profile-Pregnancy scale algorithm for low-risk populations was mostly highly predictive of substance use in the validation subsample (Akaike's Information Criterion=579.75, Nagelkerke R=0.27) with high sensitivity (91%) and adequate specificity (67%). The high-risk algorithm had lower sensitivity (57%) but higher specificity (88%). The Substance Use Risk Profile-Pregnancy scale is simple and flexible with good sensitivity and specificity. The Substance Use Risk Profile-Pregnancy scale can potentially detect a range of substances that may be abused. Clinicians need to further assess women with a positive screen to identify those who require treatment for alcohol or illicit substance use in pregnancy. III.

  15. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  16. Muscle enzyme release does not predict muscle function impairment after triathlon.

    Science.gov (United States)

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  17. Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol.

    Science.gov (United States)

    Naziroğlu, Mustafa; Ozgül, Cemil

    2012-02-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperature and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of environmental cold stress such as cold allodynia in dorsal root ganglion (DRG) neuron; however, the underlying mechanisms of action are unclear. We tested the effects of physiological heat (37°C), anthralic acid (ACA and 0.025 mM), 2-aminoethyl diphenylborinate (2-APB and 0.05) on noxious cold (10°C) and menthol (0.1 mM)-induced TRPM8 cation channel currents in the DRG neurons of rats. DRG neurons were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM8 currents were consistently induced by noxious cold or menthol. TRPM8 channels current densities of the neurons were higher in cold and menthol groups than in control. When the physiological heat is introduced by chamber TRPM8 channel currents were inhibited by the heat. Noxious cold-induced Ca(2+) gates were blocked by the ACA although menthol-induced TRPM8 currents were not blocked by ACA and 2-APB. In conclusion, the results suggested that activation of TRPM8 either by menthol or nociceptive cold can activate TRPM8 channels although we observed the protective role of heat, ACA and 2-APB through a TRPM8 channel in nociceptive cold-activated DRG neurons. Since cold allodynia is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.

  18. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  19. Handheld mechanical nociceptive threshold testing in dairy cows - intra-individual variation, inter-observer agreement and variation over time.

    Science.gov (United States)

    Raundal, Peter M; Andersen, Pia H; Toft, Nils; Forkman, Björn; Munksgaard, Lene; Herskin, Mette S

    2014-11-01

    To examine the use of handheld methodology to assess mechanical nociceptive threshold (MNT) on cows kept loose-housed. Prospective randomized partial cross-over experimental study. A one-factor (test day) design was used to evaluate MNT over time. One hundred and fifteen healthy, loose-housed Danish Holstein cattle. We evaluated intra-individual variation, inter-observer agreement and variation over time of MNT using two handheld devices and two stimulation sites. Mechanical, ramped stimulations were performed with an algometer (6.5 mm diameter steel probe, 0-10.0 kgf) or an electronic von Frey device (plastic tip with diameter 0.8 mm, 0-1000 gf). Each cow received 5-6 consecutive stimulations within a 2 × 5 cm skin area on the dorsal or lateral aspect of the left third metatarsus until an avoidance reaction occurred. We investigated the difference in precision [expressed as coefficient of variation (CV)] between the combinations of devices and stimulation sites. The inter-observer agreement and the difference in MNT between test day 1, 3, 7, 10 and 24 were investigated for selected combinations. Data were analysed in mixed models and Bland-Altman as relevant. The CVs did not differ [range 0.34-0.52 (p = 0.1)]. Difference between observers (95% limits) was 0.2 kgf (2.8) and 4 gf (369) for the algometer and von Frey device, respectively. Mechanical nociceptive threshold increased from 361 on test day one to 495 gf on test day 24 (p < 0.01). All methods showed a high degree of intra-individual variation, and no combination of device and stimulation site showed superior precision. Mean difference between observers was low, and MNT was not consistent over time. Further development of the methods is required before they can be used in research to investigate possible relations between claw lesions and hyperalgesia. © 2014 The Authors Veterinary Anaesthesia and Analgesia published by John Wiley & Sons Ltd on behalf of Association of Veterinary Anaesthetists and the

  20. Psychopathology in Substance Use Disorder Patients with and without Substance-Induced Psychosis

    Directory of Open Access Journals (Sweden)

    Simon Zhornitsky

    2015-01-01

    Full Text Available Background. Substance-induced psychotic disorder (SIPD is a diagnosis constructed to distinguish substance-induced psychotic states from primary psychotic disorders. A number of studies have compared SIPD persons with primary psychotic patients, but there is little data on what differentiates substance use disorder (SUD individuals with and without SIPD. Here, we compared psychopathology, sociodemographic variables, and substance use characteristics between SUD patients with and without SIPD. Methods. A retrospective chart review was conducted on newly admitted patients at a rehabilitation centre between 2007 and 2012. Results. Of the 379 patients included in the study, 5% were diagnosed with SIPD n=19 and 95% were diagnosed with SUDs without SIPD n=360. More SIPD patients reported using cannabis and psychostimulants, and fewer SIPD patients reported using alcohol than SUDs patients without SIPD. SIPD patients scored higher on the “schizophrenia nuclear symptoms” dimension of the SCL-90R psychoticism scale and exhibited more ClusterB personality traits than SUD patients without SIPD. Discussion. These data are consistent with previous studies suggesting that psychopathology, substance type, and sociodemographic variables play important role in the development of SIPD. More importantly, the results highlight the need for paying greater attention to the types of self-reported psychotic symptoms during the assessment of psychotomimetic effects associated with psychoactive substances.

  1. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Directory of Open Access Journals (Sweden)

    Chien-Wen Hou

    Full Text Available The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05. Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05.Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  2. Improved inflammatory balance of human skeletal muscle during exercise after supplementations of the ginseng-based steroid Rg1.

    Science.gov (United States)

    Hou, Chien-Wen; Lee, Shin-Da; Kao, Chung-Lan; Cheng, I-Shiung; Lin, Yu-Nan; Chuang, Sheng-Ju; Chen, Chung-Yu; Ivy, John L; Huang, Chih-Yang; Kuo, Chia-Hua

    2015-01-01

    The purpose of the study was to determine the effect of ginseng-based steroid Rg1 on TNF-alpha and IL-10 gene expression in human skeletal muscle against exercise challenge, as well as on its ergogenic outcomes. Randomized double-blind placebo-controlled crossover trials were performed, separated by a 4-week washout. Healthy young men were randomized into two groups and received capsule containing either 5 mg of Rg1 or Placebo one night and one hour before exercise. Muscle biopsies were conducted at baseline, immediately and 3 h after a standardized 60-min cycle ergometer exercise. While treatment differences in glycogen depletion rate of biopsied quadriceps muscle during exercise did not reach statistical significance, Rg1 supplementations enhanced post-exercise glycogen replenishment and increased citrate synthase activity in the skeletal muscle 3 h after exercise, concurrent with improved meal tolerance during recovery (P<0.05). Rg1 suppressed the exercise-induced increases in thiobarbituric acids reactive substance (TBARS) and reversed the increased TNF-alpha and decreased IL-10 mRNA of quadriceps muscle against the exercise challenge. PGC-1 alpha and GLUT4 mRNAs of exercised muscle were not affected by Rg1. Maximal aerobic capacity (VO2max) was not changed by Rg1. However, cycling time to exhaustion at 80% VO2max increased significantly by ~20% (P<0.05). Our result suggests that Rg1 is an ergogenic component of ginseng, which can minimize unwanted lipid peroxidation of exercised human skeletal muscle, and attenuate pro-inflammatory shift under exercise challenge.

  3. Could a functional artificial skeletal muscle be useful in muscle wasting?

    Science.gov (United States)

    Fuoco, Claudia; Cannata, Stefano; Gargioli, Cesare

    2016-05-01

    Regardless of the underlying cause, skeletal muscle wasting is detrimental for a person's life quality, leading to impaired strength, locomotion, and physiological activity. Here, we propose a series of studies presenting tissue engineering-based approaches to reconstruct artificial muscle in vitro and in vivo. Skeletal muscle tissue engineering is attracting more and more attention from scientists, clinicians, patients, and media, thanks to the promising results obtained in the last decade with animal models of muscle wasting. The use of novel and refined biomimetic scaffolds mimicking three-dimensional muscle environment, thus supporting cell survival and differentiation, in combination with well characterized myogenic stem/progenitor cells, revealed the noteworthy potential of these technologies for creating artificial skeletal muscle tissue. In vitro, the production of three-dimensional muscle structures offer the possibility to generate a drug-screening platform for patient-specific pharmacological treatment, opening new frontiers in the development of new compounds with specific therapeutic actions. In vivo, three-dimensional artificial muscle biomimetic constructs offer the possibility to replace, in part or entirely, wasted muscle by means of straight reconstruction and/or by enhancing endogenous regeneration. Reports of tissue engineering approaches for artificial muscle building appeared in large numbers in the specialized press lately, advocating the suitability of this technology for human application upon scaling up and a near future applicability for medical care of muscle wasting. http://links.lww.com/COCN/A9

  4. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  5. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle

    NARCIS (Netherlands)

    Zuurbier, C. J.; Huijing, P. A.

    1992-01-01

    The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of

  6. Toxic substances alert program

    Science.gov (United States)

    Junod, T. L.

    1978-01-01

    A toxicity profile is provided, of 187 toxic substances procured by NASA Lewis Research Center during a 3 1/2 year period, including 27 known or suspected carcinogens. The goal of the program is to assure that the center's health and safety personnel are aware of the procurement and use of toxic substances and to alert and inform the users of these materials as to the toxic characteristics and the control measures needed to ensure their safe use. The program also provides a continuing record of the toxic substances procured, who procured them, what other toxic substances the user has obtained in the past, and where similar materials have been used elsewhere at the center.

  7. Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine.

    Science.gov (United States)

    Greco, Rosaria; Siani, Francesca; Demartini, Chiara; Zanaboni, Annamaria; Nappi, Giuseppe; Davinelli, Sergio; Scapagnini, Giovanni; Tassorelli, Cristina

    2016-01-01

    Administration of nitroglycerin (NTG) to rats induces a hyperalgesic condition and neuronal activation of central structures involved in migraine pain. In order to identify therapeutic strategies for migraine pain, we evaluated the anti-nociceptive activity of Andrographis Paniculata (AP), a herbaceous plant, in the hyperalgesia induced by NTG administration in the formalin test. We also analyzed mRNA expression of cytokines in specific brain areas after AP treatment. Male Sprague-Dawley rats were pre-treated with AP extract 30 minutes before NTG or vehicle injection. The data show that AP extract significantly reduced NTG-induced hyperalgesia in phase II of the test, 4 hours after NTG injection. In addition, AP extract reduced IL-6 mRNA expression in the medulla and mesencephalon and also mRNA levels of TNFalpha in the mesencephalic region. These findings suggest that AP extract may be a potential therapeutic approach in the treatment of general pain, and possibly of migraine.

  8. Substance abuse and child maltreatment.

    Science.gov (United States)

    Wells, Kathryn

    2009-04-01

    Pediatricians and other medical providers caring for children need to be aware of the dynamics in the significant relationship between substance abuse and child maltreatment. A caregiver's use and abuse of alcohol, marijuana, heroin, cocaine, methamphetamine, and other drugs place the child at risk in multiple ways. Members of the medical community need to understand these risks because the medical community plays a unique and important role in identifying and caring for these children. Substance abuse includes the abuse of legal drugs as well as the use of illegal drugs. The abuse of legal substances may be just as detrimental to parental functioning as abuse of illicit substances. Many substance abusers are also polysubstance users and the compounded effect of the abuse of multiple substances may be difficult to measure. Often other interrelated social features, such as untreated mental illness, trauma history, and domestic violence, affect these families.

  9. Functional neurokinin and NMDA receptor activity in an animal naturally lacking substance P: the naked mole-rat.

    Directory of Open Access Journals (Sweden)

    Antje Brand

    Full Text Available Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP. In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1 SP, 2 an SP antagonist (GR-82334, and 3 an NMDA antagonist (APV on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to naïve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.

  10. Functional neurokinin and NMDA receptor activity in an animal naturally lacking substance P: the naked mole-rat.

    Science.gov (United States)

    Brand, Antje; Smith, Ewan St J; Lewin, Gary R; Park, Thomas J

    2010-12-21

    Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP). In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1) SP, 2) an SP antagonist (GR-82334), and 3) an NMDA antagonist (APV) on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to naïve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.

  11. Sensitization of the Nociceptive System in Complex Regional Pain Syndrome

    Science.gov (United States)

    Diedrichs, Carolina; Baron, Ralf; Gierthmühlen, Janne

    2016-01-01

    Background Complex regional pain syndrome type I (CRPS-I) is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion. Objective Aims were to investigate how sensory, autonomic and motor function change in the course of the disease. Methods 19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1–33 months) were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms), motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16–53 months later). Results CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain. Conclusions The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients’ pain and disability. PMID:27149519

  12. Sensitization of the Nociceptive System in Complex Regional Pain Syndrome.

    Directory of Open Access Journals (Sweden)

    Maren Reimer

    Full Text Available Complex regional pain syndrome type I (CRPS-I is characterized by sensory, motor and autonomic abnormalities without electrophysiological evidence of a nerve lesion.Aims were to investigate how sensory, autonomic and motor function change in the course of the disease.19 CRPS-I patients (17 with acute, 2 with chronic CRPS, mean duration of disease 5.7±8.3, range 1-33 months were examined with questionnaires (LANSS, NPS, MPI, Quick DASH, multiple choice list of descriptors for sensory, motor, autonomic symptoms, motor and autonomic tests as well as quantitative sensory testing according to the German Research Network on Neuropathic Pain at two visits (baseline and 36±10.6, range 16-53 months later.CRPS-I patients had an improvement of sudomotor and vasomotor function, but still a great impairment of sensory and motor function upon follow-up. Although pain and mechanical detection improved upon follow-up, thermal and mechanical pain sensitivity increased, including the contralateral side. Increase in mechanical pain sensitivity and loss of mechanical detection were associated with presence of ongoing pain.The results demonstrate that patients with CRPS-I show a sensitization of the nociceptive system in the course of the disease, for which ongoing pain seems to be the most important trigger. They further suggest that measured loss of function in CRPS-I is due to pain-induced hypoesthesia rather than a minimal nerve lesion. In conclusion, this article gives evidence for a pronociceptive pain modulation profile developing in the course of CRPS and thus helps to assess underlying mechanisms of CRPS that contribute to the maintenance of patients' pain and disability.

  13. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    Science.gov (United States)

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  14. When acute-stage psychosis and substance use co-occur: differentiating substance-induced and primary psychotic disorders.

    Science.gov (United States)

    Caton, C L; Samet, S; Hasin, D S

    2000-09-01

    Substances such as alcohol, cocaine, amphetamine, and cannabis can produce psychotic reactions in individuals who are otherwise free of serious mental illness. However, persons with primary psychotic disorders, such as schizophrenia and bipolar disorder, who use these substances often present for treatment with signs and symptoms similar to those whose psychosis resulted from the use of drugs alone. While it is often difficult to distinguish substance-induced from primary psychoses, especially early in the course of treatment, this differential diagnosis has important implications for treatment planning. To help clinicians distinguish these two types of presentations, the authors first review the types of psychotic symptoms that can co-occur with substance use. They discuss the prevalence and patterns of substance use that have been found in patients with schizophrenia and other primary psychotic disorders and review the negative outcomes associated with substance use in this population. The prevalence of and types of symptoms and problems associated with psychotic symptoms that occur as a result of substance use alone are also reviewed. The authors describe assessment procedures for differentiating substance-induced and primary psychotic disorders. They stress the importance of accurately establishing the temporal relationship between the substance use and the onset and continuation of psychotic symptoms in making a differential diagnosis, as well as the importance of being familiar with the types of psychological symptoms that can occur with specific substances. The authors review the utility and limitations of a number of diagnostic instruments for assessing patients with co-occurring psychosis and substance use problems, including The Addiction Severity Index, The Michigan Alcohol Screening Test, and diagnostic interviews such as the Schedule for Affective Disorders and Schizophrenia and the Structured Clinical Interview for DSM. They then discuss the

  15. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.

    Science.gov (United States)

    Bátkai, S; Rácz, I B; Ivanics, T; Tóth, A; Hamar, J; Slaaf, D W; Reneman, R S; Ligeti, L

    1999-10-01

    The understanding of the regulation of the free cytosolic [Ca2+] ([Ca2+]i) in skeletal muscle is hampered by the lack of techniques for quantifying free [Ca2+]i in muscle fibres in situ. We describe a model for studying the dynamics of free [Ca2+]i in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus (SOL) muscles of the rat in vivo using caffeine superfusion to induce changes in free [Ca2+]i. We assumed that differences in sensitivity between the two muscle types for this substance reflect differences in intracellular Ca2+ handling in the fibres of which these muscles consist. The Indo-1 ratiometric method, using intravital microscopy with incident light, was adapted to measure free [Ca2+]i in vivo. Fluorescence images were collected by means of a digital camera. Caffeine superfusion at 37 degrees C for 2 min, at concentrations of 1, 2, 5, 10 or 20 mmol/l, induced a concentration-dependent increase in free [Ca2+]i and revealed differences in caffeine sensitivity between the muscle types, with the SOL being more sensitive. In a separate set of experiments the contracture threshold, as assessed by topical application of caffeine, was determined in both muscle types. EDL had a higher threshold for developing contracture than SOL. These finding are in agreement with previous in vitro studies. We may conclude that the dynamics of free [Ca2+]i can be assessed reliably in intact mammalian muscle in vivo.

  16. Sarcocystis arieticanis (Apicomplexa: Sarcocystidae) infecting the heart muscles of the domestic sheep, Ovis aries (Artiodactyla: Bovidae), from K. S. A. on the basis of light and electron microscopic data.

    Science.gov (United States)

    Al Quraishy, Saleh; Morsy, Kareem; Bashtar, Abdel-Rahman; Ghaffar, Fathy Abdel; Mehlhorn, Heinz

    2014-10-01

    In the present study, the heteroxenous life cycle of Sarcocystis species from three strains of the slaughtered sheep at Al-Azizia and Al-Saada abattoirs in Riyadh city, K.S.A., was studied. Muscle samples of the oesophagus, diaphragm, tongue, skeletal and heart muscles were examined. Varied natural infection rates in the muscles of the examined sheep strains were recorded as 83% in Niemy, 81.5% in Najdy and 90% in Sawakny sheep. Muscles of the diaphragm showed the highest infection level above all organs except Najdy sheep in which oesophagus has the highest rate. Also, the heart was the lowest infected organ (40% Niemy, 44% Najdy and 53% Sawakny). Microscopic sarcocysts of Sarcocystis arieticanis are easily identified in sections through the heart muscles of the domestic sheep Ovis aries (Artiodactyla: Bovidae). Cysts measured 38.5-64.4 μm (averaged 42.66 μm) in width and 62.4-173.6 μm (averaged 82.14 μm) in length. The validity of this species was confirmed by means of ultrastructural characteristics of the primary cyst wall (0.1-0.27 μm thick) which revealed the presence of irregularly shaped crowded and hairy-like projections underlined by a thin layer of ground substance. This layer consisted mainly of fine, dense homogenous granules enclosing the developing metrocytes and merozoites that usually contain nearly all the structures of the apical complex and fill the interior cavity of the cyst. Several septa derived from the ground substance divided the cyst into compartments. The merozoites were banana-shaped and measured 12-16 μm in length with centrally or posteriorly located nuclei. Experimental infection of carnivores by feeding heavily infected sheep muscles revealed that the dog, Canis familiaris, is the only final host of the present Sarcocystis species. Gamogony, sporogonic stages and characteristics of sporulated oocysts were also investigated.

  17. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  18. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  20. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  1. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    Science.gov (United States)

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  2. Stereospecific effects of morphine on plasma opioid peptide levels and nociception in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.L.; Morris, D.L.; Dewey, W.L.

    1986-03-05

    ..beta..-endorphin, (met)enkephalin, and (leu)enkephalin were quantitated in canine plasma by radioimmunoassay (RIA) after extraction of the peptides on Sep Pak C18 cartridges. Plasma samples were taken one hour after a 10 mg/kg s.c. injection of (-)-morphine SO/sub 4/ or (+)-morphine HBr. Antinociception, measured by a dog tail-flick test, and morphine-induced emesis, salivation, diarrhea, and ataxia were quantitated before sampling. Control levels for each dog were taken one week earlier at the same time of day after saline injections. Antinociception, morphine signs, and opioid peptide levels in plasma were significantly increased by (-)-morphine. Antinociception increased from zero to 83.54 +/- 11.0%. The number of morphine signs increased from zero to 2.9 +/- 0.28 per dog. ..beta..-endorphin levels increased from 44.52 +/- 4.25 to 90.6 +/- 7.38 pg/ml; (met)enkephalin levels increased from 253.56 +/- 22.04 to 497.1 +/- 58.12 pg/ml; (leu)-enkephalin increased from 141.65 +/- 12.9 to 313.24 +/- 35.95 pg/ml. None of these effects were observed in the dogs that received (+)-morphine. The conclude that morphine stereospecifically inhibits nociception, induces observable signs, and increases plasma opioid peptide levels in dogs.

  3. Stereospecific effects of morphine on plasma opioid peptide levels and nociception in dogs

    International Nuclear Information System (INIS)

    Adams, M.L.; Morris, D.L.; Dewey, W.L.

    1986-01-01

    β-endorphin, [met]enkephalin, and [leu]enkephalin were quantitated in canine plasma by radioimmunoassay (RIA) after extraction of the peptides on Sep Pak C18 cartridges. Plasma samples were taken one hour after a 10 mg/kg s.c. injection of (-)-morphine SO 4 or (+)-morphine HBr. Antinociception, measured by a dog tail-flick test, and morphine-induced emesis, salivation, diarrhea, and ataxia were quantitated before sampling. Control levels for each dog were taken one week earlier at the same time of day after saline injections. Antinociception, morphine signs, and opioid peptide levels in plasma were significantly increased by (-)-morphine. Antinociception increased from zero to 83.54 +/- 11.0%. The number of morphine signs increased from zero to 2.9 +/- 0.28 per dog. β-endorphin levels increased from 44.52 +/- 4.25 to 90.6 +/- 7.38 pg/ml; [met]enkephalin levels increased from 253.56 +/- 22.04 to 497.1 +/- 58.12 pg/ml; [leu]-enkephalin increased from 141.65 +/- 12.9 to 313.24 +/- 35.95 pg/ml. None of these effects were observed in the dogs that received (+)-morphine. The conclude that morphine stereospecifically inhibits nociception, induces observable signs, and increases plasma opioid peptide levels in dogs

  4. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3.

    Directory of Open Access Journals (Sweden)

    Ligen Lin

    Full Text Available We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the establishment of a transgenic mouse model with muscle-specific expression of the murine SIRT3 short isoform (SIRT3M3. Calorimetry study revealed that the transgenic mice had increased energy expenditure and lower respiratory exchange rate (RER, indicating a shift towards lipid oxidation for fuel usage, compared to control mice. The transgenic mice exhibited better exercise performance on treadmills, running 45% further than control animals. Moreover, the transgenic mice displayed higher proportion of slow oxidative muscle fibers, with increased muscle AMPK activation and PPARδ expression, both of which are known regulators promoting type I muscle fiber specification. Surprisingly, transgenic expression of SIRT3M3 reduced muscle mass up to 30%, likely through an up-regulation of FOXO1 transcription factor and its downstream atrophy gene MuRF-1. In summary, these results suggest that SIRT3 regulates the formation of oxidative muscle fiber, improves muscle metabolic function, and reduces muscle mass, changes that mimic the effects of caloric restriction.

  5. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy

    Directory of Open Access Journals (Sweden)

    Liu Xian-Guo

    2011-03-01

    Full Text Available Abstract Long-term potentiation (LTP in nociceptive spinal pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Spinal LTP is typically induced by noxious input and has therefore been hypothesized to contribute to acute postoperative pain and to forms of chronic pain that develop from an initial painful event, peripheral inflammation or neuropathy. Under this assumption, preventing LTP induction may help to prevent the development of exaggerated postoperative pain and reversing established LTP may help to treat patients who have an LTP component to their chronic pain. Spinal LTP is also induced by abrupt opioid withdrawal, making it a possible mechanism of some forms of opioid-induced hyperalgesia. Here, we give an overview of targets for preventing LTP induction and modifying established LTP as identified in animal studies. We discuss which of the various symptoms of human experimental and clinical pain may be manifestations of spinal LTP, review the pharmacology of these possible human LTP manifestations and compare it to the pharmacology of spinal LTP in rodents.

  6. On the use of information theory for the analysis of synchronous nociceptive withdrawal reflexes and somatosensory evoked potentials elicited by graded electrical stimulation.

    Science.gov (United States)

    Arguissain, Federico G; Biurrun Manresa, José A; Mørch, Carsten D; Andersen, Ole K

    2015-01-30

    To date, few studies have combined the simultaneous acquisition of nociceptive withdrawal reflexes (NWR) and somatosensory evoked potentials (SEPs). In fact, it is unknown whether the combination of these two signals acquired simultaneously could provide additional information on somatosensory processing at spinal and supraspinal level compared to individual NWR and SEP signals. By using the concept of mutual information (MI), it is possible to quantify the relation between electrical stimuli and simultaneous elicited electrophysiological responses in humans based on the estimated stimulus-response signal probability distributions. All selected features from NWR and SEPs were informative in regard to the stimulus when considered individually. Specifically, the information carried by NWR features was significantly higher than the information contained in the SEP features (pinformation carried by the combination of features showed an overall redundancy compared to the sum of the individual contributions. Comparison with existing methods MI can be used to quantify the information that single-trial NWR and SEP features convey, as well as the information carried jointly by NWR and SEPs. This is a model-free approach that considers linear and non-linear correlations at any order and is not constrained by parametric assumptions. The current study introduces a novel approach that allows the quantification of the individual and joint information content of single-trial NWR and SEP features. This methodology could be used to decode and interpret spinal and supraspinal interaction in studies modulating the responsiveness of the nociceptive system. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Playing video games while using or feeling the effects of substances: associations with substance use problems.

    Science.gov (United States)

    Ream, Geoffrey L; Elliott, Luther C; Dunlap, Eloise

    2011-10-01

    This study tested the hypothesis that playing video games while using or feeling the effects of a substance--referred to herein as "concurrent use"-is related to substance use problems after controlling for substance use frequency, video gaming as an enthusiastic hobby, and demographic factors. Data were drawn from a nationally representative online survey of adult video gamers conducted by Knowledge Networks, valid n = 2,885. Problem video game playing behavior was operationalized using Tejeiro Salguero and Bersabé Morán's 2002 problem video game play (PVP) measure, and measures for substance use problems were taken from the National Survey of Drug Use and Health (NSDUH). Separate structural equation modeling analyses were conducted for users of caffeine, tobacco, alcohol, and marijuana. In all four models, concurrent use was directly associated with substance use problems, but not with PVP. Video gaming as an enthusiastic hobby was associated with substance use problems via two indirect paths: through PVP for all substances, and through concurrent use for caffeine, tobacco, and alcohol only. Results illustrate the potential for "drug interaction" between self-reinforcing behaviors and addictive substances, with implications for the development of problem use.

  8. A potent and selective calcitonin gene-related peptide (CGRP) receptor antagonist, MK-8825, inhibits responses to nociceptive trigeminal activation: Role of CGRP in orofacial pain.

    Science.gov (United States)

    Romero-Reyes, Marcela; Pardi, Vanessa; Akerman, Simon

    2015-09-01

    Temporomandibular disorders (TMDs) are orofacial pains within the trigeminal distribution, which involve the masticatory musculature, the temporomandibular joint or both. Their pathophysiology remains unclear, as inflammatory mediators are thought to be involved, and clinically TMD presents pain and sometimes limitation of function, but often appears without gross indications of local inflammation, such as visible edema, redness and increase in temperature. Calcitonin gene-related peptide (CGRP) has been implicated in other pain disorders with trigeminal distribution, such as migraine, of which TMD shares a significant co-morbidity. CGRP causes activation and sensitization of trigeminal primary afferent neurons, independent of any inflammatory mechanisms, and thus may also be involved in TMD. Here we used a small molecule, selective CGRP receptor antagonist, MK-8825, to dissect the role of CGRP in inducing spontaneous nociceptive facial grooming behaviors, neuronal activation in the trigeminal nucleus, and systemic release of pro-inflammatory cytokines, in a mouse model of acute orofacial masseteric muscle pain that we have developed, as a surrogate of acute TMD. We show that CFA masseteric injection causes significant spontaneous orofacial pain behaviors, neuronal activation in the trigeminal nucleus, and release of interleukin-6 (IL-6). In mice pre-treated with MK-8825 there is a significant reduction in these spontaneous orofacial pain behaviors. Also, at 2 and 24h after CFA injection the level of Fos immunoreactivity in the trigeminal nucleus, used as a marker of neuronal activation, was much lower on both ipsilateral and contralateral sides after pre-treatment with MK-8825. There was no effect of MK-8825 on the release of IL-6. These data suggest that CGRP may be involved in TMD pathophysiology, but not via inflammatory mechanisms, at least in the acute stage. Furthermore, CGRP receptor antagonists may have therapeutic efficacy in the treatment of TMD, as they

  9. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  10. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation.

    Science.gov (United States)

    Gay, André; Aimonetti, Jean-Marc; Roll, Jean-Pierre; Ribot-Ciscar, Edith

    2015-07-30

    In the present study, muscle pain was induced experimentally in healthy subjects by administrating hypertonic saline injections into the tibialis anterior (TA) muscle. We first aimed at comparing the analgesic effects of mechanical vibration applied to either cutaneous or muscle receptors of the TA or to both types simultaneously. Secondly, pain alleviation was compared in subjects in whom muscle tendon vibration evoked kinesthetic illusions of the ankle joint. Muscle tendon vibration, which primarily activated muscle receptors, reduced pain intensity by 30% (p<0.01). In addition, tangential skin vibration reduced pain intensity by 33% (p<0.01), primarily by activating cutaneous receptors. Concurrently stimulating both sensory channels induced stronger analgesic effects (-51%, p<0.01), as shown by the lower levels of electrodermal activity. The strongest analgesic effects of the vibration-induced muscle inputs occurred when illusory movements were perceived (-38%, p=0.01). The results suggest that both cutaneous and muscle sensory feedback reduce muscle pain, most likely via segmental and supraspinal processes. Further clinical trials are needed to investigate these new methods of muscle pain relief. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L.; Egsgaard, L.L.; Jensen, R.

    2008-01-01

    Central sensitization caused by prolonged nociceptive input from muscles is considered to play an important role for chronification of tension-type headache. In the present study we used a new high-density EEG brain mapping technique to investigate spatiotemporal aspects of brain activity...... in response to muscle pain in 19 patients with chronic tension-type headache (CTTH) and 19 healthy, age- and sex-matched controls. Intramuscular electrical stimuli (single and train of five pulses delivered at 2 Hz) were applied to the trapezius muscle and somatosensory evoked potentials were recorded...... with 128-channel EEG both in- and outside a condition with induced tonic neck/shoulder muscle pain (glutamate injection into the trapezius muscle). Significant reduction in magnitude during and after induced tonic muscle pain was found in controls at the P200 dipole in response to both the first (baseline...

  12. National substance use patterns on Twitter.

    Directory of Open Access Journals (Sweden)

    Hsien-Wen Meng

    Full Text Available We examined openly shared substance-related tweets to estimate prevalent sentiment around substance use and identify popular substance use activities. Additionally, we investigated associations between substance-related tweets and business characteristics and demographics at the zip code level.A total of 79,848,992 tweets were collected from 48 states in the continental United States from April 2015-March 2016 through the Twitter API, of which 688,757 were identified as being related to substance use. We implemented a machine learning algorithm (maximum entropy text classifier to estimate sentiment score for each tweet. Zip code level summaries of substance use tweets were created and merged with the 2013 Zip Code Business Patterns and 2010 US Census Data.Quality control analyses with a random subset of tweets yielded excellent agreement rates between computer generated and manually generated labels: 97%, 88%, 86%, 75% for underage engagement in substance use, alcohol, drug, and smoking tweets, respectively. Overall, 34.1% of all substance-related tweets were classified as happy. Alcohol was the most frequently tweeted substance, followed by marijuana. Regression results suggested more convenience stores in a zip code were associated with higher percentages of tweets about alcohol. Larger zip code population size and higher percentages of African Americans and Hispanics were associated with fewer tweets about substance use and underage engagement. Zip code economic disadvantage was associated with fewer alcohol tweets but more drug tweets.The patterns in substance use mentions on Twitter differ by zip code economic and demographic characteristics. Online discussions have great potential to glorify and normalize risky behaviors. Health promotion and underage substance prevention efforts may include interactive social media campaigns to counter the social modeling of risky behaviors.

  13. Handheld mechanical nociceptive threshold testing in dairy cows – intra-individual variation, inter-observer agreement and variation over time

    Science.gov (United States)

    Raundal, Peter M; Andersen, Pia H; Toft, Nils; Forkman, Björn; Munksgaard, Lene; Herskin, Mette S

    2014-01-01

    Objective To examine the use of handheld methodology to assess mechanical nociceptive threshold (MNT) on cows kept loose-housed. Study design Prospective randomized partial cross-over experimental study. A one-factor (test day) design was used to evaluate MNT over time. Animals One hundred and fifteen healthy, loose-housed Danish Holstein cattle. Methods We evaluated intra-individual variation, inter-observer agreement and variation over time of MNT using two handheld devices and two stimulation sites. Mechanical, ramped stimulations were performed with an algometer (6.5 mm diameter steel probe, 0–10.0 kgf) or an electronic von Frey device (plastic tip with diameter 0.8 mm, 0–1000 gf). Each cow received 5–6 consecutive stimulations within a 2 × 5 cm skin area on the dorsal or lateral aspect of the left third metatarsus until an avoidance reaction occurred. We investigated the difference in precision [expressed as coefficient of variation (CV)] between the combinations of devices and stimulation sites. The inter-observer agreement and the difference in MNT between test day 1, 3, 7, 10 and 24 were investigated for selected combinations. Data were analysed in mixed models and Bland-Altman as relevant. Results The CVs did not differ [range 0.34–0.52 (p = 0.1)]. Difference between observers (95% limits) was 0.2 kgf (2.8) and 4 gf (369) for the algometer and von Frey device, respectively. Mechanical nociceptive threshold increased from 361 on test day one to 495 gf on test day 24 (p < 0.01). Conclusion and clinical relevance All methods showed a high degree of intra-individual variation, and no combination of device and stimulation site showed superior precision. Mean difference between observers was low, and MNT was not consistent over time. Further development of the methods is required before they can be used in research to investigate possible relations between claw lesions and hyperalgesia. PMID:24734991

  14. Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila

    Science.gov (United States)

    Roy, Sudipto; VijayRaghavan, K.

    1998-01-01

    Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved. PMID:9606206

  15. Validation of the Explorer® 2.0 test coupled to e-Reader® for the screening of antimicrobials in muscle from different animal species.

    Science.gov (United States)

    Mata, Luis; Sanz, David; Razquin, Pedro

    2014-01-01

    The Explorer(®) 2.0 tube test is a microbial inhibition test for the screening of antimicrobial residues in food samples. The new e-Reader(®) device coupled to Explorer(®) 2.0 operates by incubation at a selected temperature, determination of the endpoint of the assay and interpretation to generate results. This system was validated for muscle samples according to the European Commission Decision 2002/657/EC. Sensitivity towards 25 substances from several groups of antimicrobials was investigated in a first step. Detection capabilities for six substances representing the six major antimicrobial groups were also determined in bovine muscle. The detection capabilities for amoxicillin (10 µg l(-1)), cefalexin (200 µg l(-1)), doxycyclin (100 µg l(-1)), sulfamethazine (100 µg l(-1)), tylosin (100 µg l(-1)) and neomycin (200 µg l(-1)) were in all cases at or below the maximum residue limit (MRL). Specificity and applicability of the test were demonstrated with muscle samples from four animal species (bovine, porcine, ovine and poultry) and results were found to be satisfactory. Ruggedness was evaluated on negative and spiked samples with sulfamethazine as a representative antimicrobial. Neither false-positives nor false-negatives were detected when varying the sample volume, the time of pre-incubation, the temperature of incubation and the batch of the test. These results prove that Explorer(®) 2.0 coupled to e-Reader(®) is a valuable tool for the screening of a broad range of antimicrobials in muscle. This new methodology simplifies the analysis and increases the accuracy of interpretation of the test results since the endpoint of the assay is automatically determined and results are interpreted objectively.

  16. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  17. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  18. TSCA Chemical Substance Inventory

    Science.gov (United States)

    Section 8 (b) of the Toxic Substances Control Act (TSCA) requires EPA to compile, keep current, and publish a list of each chemical substance that is manufactured or processed in the United States for TSCA uses.

  19. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    Science.gov (United States)

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  20. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  1. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    Science.gov (United States)

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  2. Lung injury-dependent oxidative status and chymotrypsin-like activity of skeletal muscles in hamsters with experimental emphysema.

    Science.gov (United States)

    Tonon, Jair; Cecchini, Alessandra Lourenço; Brunnquell, Cláudia Roberta; Bernardes, Sara Santos; Cecchini, Rubens; Guarnier, Flávia Alessandra

    2013-01-23

    Peripheral skeletal muscle is altered in patients suffering from emphysema and chronic obstructive pulmonary disease (COPD). Oxidative stress have been demonstrated to participate on skeletal muscle loss of several states, including disuse atrophy, mechanical ventilation, and chronic diseases. No evidences have demonstrated the occurance in a severity manner. We evaluated body weight, muscle loss, oxidative stress, and chymotrypsin-like proteolytic activity in the gastrocnemius muscle of emphysemic hamsters. The experimental animals had 2 different severities of lung damage from experimental emphysema induced by 20 mg/mL (E20) and 40 mg/mL (E40) papain. The severity of emphysema increased significantly in E20 (60.52 ± 2.8, p < 0.05) and E40 (52.27 ± 4.7; crossed the alveolar intercepts) groups. As compared to the control group, there was a reduction on body (171.6 ± 15.9 g) and muscle weight (251.87 ± 24.87 mg) in the E20 group (157.5 ± 10.3 mg and 230.12 ± 23.52 mg, for body and muscle weight, respectively), which was accentuated in the E40 group (137.4 ± 7.2 g and 197.87 ± 10.49 mg, for body and muscle weight, respectively). Additionally, the thiobarbituric acid reactive substances (TBARS), tert-butyl hydroperoxide-initiated chemiluminescence (CL), carbonylated proteins, and chymotrypsin-like proteolytic activity were elevated in the E40 group as compared to the E20 group (p < 0.05 for all comparisons). The severity of emphysema significantly correlated with the progressive increase in CL (r = -0.95), TBARS (r = -0.98), carbonyl proteins (r = -0.99), and chymotrypsin-like proteolytic activity (r = -0.90). Furthermore, augmentation of proteolytic activity correlated significantly with CL (r = 0.97), TBARS (r = 0.96), and carbonyl proteins (r = 0.91). Taken together, the results of the present study suggest that muscle atrophy observed in this model of emphysema is mediated by increased muscle chymotrypsin-like activity, with possible involvement of

  3. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise

    Science.gov (United States)

    Gundersen, Kristian

    2011-01-01

    Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine

  4. [Acting out and psychoactive substances: alcohol, drugs, illicit substances].

    Science.gov (United States)

    Gillet, C; Polard, E; Mauduit, N; Allain, H

    2001-01-01

    In humans, some psychotropic agents (alcohol, drugs, illicit substances) have been suggested to play a role in the occurrence of major behavioural disorders, mainly due to the suppression of psychomotor inhibition. Behavioural disinhibition is a physiological mechanism which allows humans to behave appropriately according to a given environmental situation. The behavioural disinhibition induced by either therapeutic dosage or misuse involves the loss of restraint over certain types of social behaviour and may increase the risk of auto or hetero-aggression and acting out. The increased use of psychotropic agents in recent years and the occurrence of unwanted effects are worrying and must be detected and evaluated. The objective of the present study was to establish a causal relationship between psychoactive substance use and occurrence of major behavioural disorders, such as paradoxical rage reactions and suicidal behaviour, based on a literature analysis. It consisted of reviewing reports of drug-induced violent reactions in healthy volunteers and demonstrating, where possible, a cause-effect relationship. Patients with schizophrenia and psychopathic personalities were not included in our study since psychiatric comorbidity could influence behavioural responses. Psychotropic agents included drugs, licit and illicit substances already associated with violence in the past. Many reports used the "Go/No Go test" to evaluate the disinhibiting effect of psychotropic substances; this allows the "cognitive mapping" of drugs. The results suggest that only alcohol, antidepressants, benzodiazepines and cocaïne are related to aggressive behaviour. The best known precipitant of behavioural disinhibition is alcohol, which induces aggressive behaviour. However, there are large differences between individuals, and attentional mechanisms are now recognised as being important in mediating the effects of alcohol. Suicidal tendency as an adverse antidepressant reaction is rare

  5. Effects of humic substances on the migration of radionuclides: Complexation of actinides with humic substances

    International Nuclear Information System (INIS)

    Kim, J.I.; Rhee, D.S.; Wimmer, H.; Buckau, G.; Klenze, R.; Decambox, P.; Moulin, C.; Moulin, V.; Tits, J.; Marquardt, C.; Herrmann, G.; Trautmann, N.; Dierckx, A.; Vancluysen, J.; Maes, A.

    1992-09-01

    The aim of the present research programme is to study the complexation behaviour of actinide ions with humic substances in natural aquifer systems and hence to quantify the effect of humic substances on the actinide migration. Aquatic humic substances commonly found in all groundwaters in different concentrations have a strong tendency towards complexation with actinide ions. This is one of the major geochemical reactions but hitherto least quantified. Therefore, the effect of humic substances on the actinide migration is poorly understood. In the present research programme the complexation of actinide ions with humic substances will be described thermodynamically. This description will be based on a model being as simple as possible to allow an easy introduction of the resulting constants into geochemical modelling of the actinide migration. (orig.)

  6. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    Science.gov (United States)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  7. Muscle fatigue in fibromyalgia is in the brain, not in the muscles

    DEFF Research Database (Denmark)

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning

    2013-01-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC).......To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC)....

  8. Alexithymia in Egyptian Substance Abusers.

    Science.gov (United States)

    El Rasheed, Amany Haroun

    2001-03-01

    Alexithymia is thought of as a trait that predisposes to drug abuse. Moreover, it is suggested to be related to type of the substance abused, with the worst-case scenario including a worse prognosis as well as tendency to relapse or even not to seek treatment at all. To address this important subject in Egyptian patients, a sample of 200 Egyptian substance abusers was randomly selected from inpatients in the Institute of Psychiatry, Ain Shams University, Egypt. The study also included 200 group-matched controls. DSM-IV criteria were used for assessment of substance use disorders, and toxicologic urine analysis was used to confirm the substances of abuse. Toronto Alexithymia Scale (TAS)-Arabic version was used for assessment of alexithymia. It was found that alexithymia was significantly more prevalent in the substance use disorders group as compared to healthy controls. It was also found that among the substance use disorders group, alexithymics reported more polysubstance abuse, more opiate use (other than heroin IV), lower numbers of hospitalizations, lower numbers of reported relapses, and a lower tendency to relapse as a result of internal cues compared to patients without alexithymia. Statistically significant associations were also found between alexithymia and more benzodiazepine abuse and nonpersistence in treatment. The results suggest that alexithymia should be targeted in a treatment setting for substance use disorders.

  9. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.

    Science.gov (United States)

    Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin

    2018-07-01

    The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The number and choice of muscles impact the results of muscle synergy analyses

    Directory of Open Access Journals (Sweden)

    Katherine Muterspaugh Steele

    2013-08-01

    Full Text Available One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small

  11. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  12. Onset of rigor mortis is earlier in red muscle than in white muscle.

    Science.gov (United States)

    Kobayashi, M; Takatori, T; Nakajima, M; Sakurada, K; Hatanaka, K; Ikegaya, H; Matsuda, Y; Iwase, H

    2000-01-01

    Rigor mortis is thought to be related to falling ATP levels in muscles postmortem. We measured rigor mortis as tension determined isometrically in three rat leg muscles in liquid paraffin kept at 37 degrees C or 25 degrees C--two red muscles, red gastrocnemius (RG) and soleus (SO) and one white muscle, white gastrocnemius (WG). Onset, half and full rigor mortis occurred earlier in RG and SO than in WG both at 37 degrees C and at 25 degrees C even though RG and WG were portions of the same muscle. This suggests that rigor mortis directly reflects the postmortem intramuscular ATP level, which decreases more rapidly in red muscle than in white muscle after death. Rigor mortis was more retarded at 25 degrees C than at 37 degrees C in each type of muscle.

  13. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2013-01-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  14. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, William G., E-mail: bp1@bu.edu [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States); Hindson, David F. [Department of Radiology, Boston Medical Center, Boston, Massachusetts (United States); Langmore, Susan E. [Department of Otolaryngology, Boston Medical Center, Boston, Massachusetts (United States); Speech and Hearing Sciences, Boston University, Boston, Massachusetts (United States); Zumwalt, Ann C. [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States)

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  15. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle.

    Science.gov (United States)

    Yao, Li-Hua; Meng, Wei; Song, Rong-Feng; Xiong, Qiu-Ping; Sun, Wei; Luo, Zhi-Qiang; Yan, Wen-Wen; Li, Yu-Ping; Li, Xin-Ping; Li, Hai-Hang; Xiao, Peng

    2014-03-05

    Isolated toad gastrocnemius muscle is a typical skeletal muscle tissue that is frequently used to study the motor system because it is an important component of the motor system. This study investigates the effects of cordycepin on the skeletal muscle contractile function of isolated toad gastrocnemius muscles by electrical field stimulation. Results showed that cordycepin (20 mg/l to 100 mg/l) significantly decreased the contractile responses in a concentration-dependent manner. Cordycepin (50 mg/l) also produced a rightward shift of the contractile amplitude-stimulation intensity relationship, as indicated by the increases in the threshold stimulation intensity and the saturation stimulation intensity. However, the most notable result was that the maximum amplitude of the muscle contractile force was significantly increased under cordycepin application (122±3.4% of control). This result suggests that the skeletal muscle contractile function and muscle physical fitness to the external stimulation were improved by the decreased response sensitivity in the presence of cordycepin. Moreover, cordycepin also prevented the repetitive stimulation-induced decrease in muscle contractile force and increased the recovery amplitude and recovery ratio of muscle contraction. However, these anti-fatigue effects of cordycepin on muscle contraction during long-lasting muscle activity were absent in Ca2+-free medium or in the presence of all Ca2+ channels blocker (0.4 mM CdCl2). These results suggest that cordycepin can positively affect muscle performance and provide ergogenic and prophylactic benefits in decreasing skeletal muscle fatigue. The mechanisms involving excitation-coupled Ca2+ influxes are strongly recommended.

  16. Playing Video Games While Using or Feeling the Effects of Substances: Associations with Substance Use Problems

    Directory of Open Access Journals (Sweden)

    Geoffrey L. Ream

    2011-10-01

    Full Text Available This study tested the hypothesis that playing video games while using or feeling the effects of a substance—referred to herein as “concurrent use”—is related to substance use problems after controlling for substance use frequency, video gaming as an enthusiastic hobby, and demographic factors. Data were drawn from a nationally representative online survey of adult video gamers conducted by Knowledge Networks, valid n = 2,885. Problem video game playing behavior was operationalized using Tejeiro Salguero and Bersabé Morán’s 2002 problem video game play (PVP measure, and measures for substance use problems were taken from the National Survey of Drug Use and Health (NSDUH. Separate structural equation modeling analyses were conducted for users of caffeine, tobacco, alcohol, and marijuana. In all four models, concurrent use was directly associated with substance use problems, but not with PVP. Video gaming as an enthusiastic hobby was associated with substance use problems via two indirect paths: through PVP for all substances, and through concurrent use for caffeine, tobacco, and alcohol only. Results illustrate the potential for “drug interaction” between self-reinforcing behaviors and addictive substances, with implications for the development of problem use.

  17. Playing Video Games While Using or Feeling the Effects of Substances: Associations with Substance Use Problems

    Science.gov (United States)

    Ream, Geoffrey L.; Elliott, Luther C.; Dunlap, Eloise

    2011-01-01

    This study tested the hypothesis that playing video games while using or feeling the effects of a substance—referred to herein as “concurrent use”—is related to substance use problems after controlling for substance use frequency, video gaming as an enthusiastic hobby, and demographic factors. Data were drawn from a nationally representative online survey of adult video gamers conducted by Knowledge Networks, valid n = 2,885. Problem video game playing behavior was operationalized using Tejeiro Salguero and Bersabé Morán’s 2002 problem video game play (PVP) measure, and measures for substance use problems were taken from the National Survey of Drug Use and Health (NSDUH). Separate structural equation modeling analyses were conducted for users of caffeine, tobacco, alcohol, and marijuana. In all four models, concurrent use was directly associated with substance use problems, but not with PVP. Video gaming as an enthusiastic hobby was associated with substance use problems via two indirect paths: through PVP for all substances, and through concurrent use for caffeine, tobacco, and alcohol only. Results illustrate the potential for “drug interaction” between self-reinforcing behaviors and addictive substances, with implications for the development of problem use. PMID:22073023

  18. Detection of muscle gap by L-BIA in muscle injuries: clinical prognosis.

    Science.gov (United States)

    Nescolarde, L; Yanguas, J; Terricabras, J; Lukaski, H; Alomar, X; Rosell-Ferrer, J; Rodas, G

    2017-06-21

    Sport-related muscle injury classifications are based basically on imaging criteria such as ultrasound (US) and magnetic resonance imaging (MRI) without consensus because of a lack of clinical prognostics for return-to-play (RTP), which is conditioned upon the severity of the injury, and this in turn with the muscle gap (muscular fibers retraction). Recently, Futbol Club Barcelona's medical department proposed a new muscle injury classification in which muscle gap plays an important role, with the drawback that it is not always possible to identify by MRI. Localized bioimpedance measurement (L-BIA) has emerged as a non-invasive technique for supporting US and MRI to quantify the disrupted soft tissue structure in injured muscles. To correlate the severity of the injury according to the gap with the RTP, through the percent of change in resistance (R), reactance (Xc) and phase-angle (PA) by L-BIA measurements in 22 muscle injuries. After grouping the data according to the muscle gap (by MRI exam), there were significant differences in R between grade 1 and grade 2f (myotendinous or myofascial muscle injury with feather-like appearance), as well as between grade 2f and grade 2g (myotendinous or myofascial muscle injury with feather and gap). The Xc and PA values decrease significantly between each grade (i.e. 1 versus 2f, 1 versus 2g and 2f versus 2g). In addition, the severity of the muscle gap adversely affected the RTP with significant differences observed between 1 and 2g as well as between 2f and 2g. These results show that L-BIA could aid MRI and US in identifying the severity of an injured muscle according to muscle gap and therefore to accurately predict the RTP.

  19. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  20. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent e...... proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.......Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...

  1. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  2. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  4. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  5. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Science.gov (United States)

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  6. Abortion Legalization and Adolescent Substance Use

    OpenAIRE

    Charles, Kerwin Kofi; Stephens, Melvin, Jr

    2006-01-01

    We assess whether in utero exposure to legalized abortion in the early 1970's affected individuals' propensities to use controlled substances as adolescents. We exploit the fact that some states legalized abortion before national legalization in 1973 to compare differences in substance use for adolescents across birth cohorts in different states. We find that persons exposed to early legalization were, on average, much less likely to use controlled substances. We also assess how substance use...

  7. Muscle fiber population and biochemical properties of whole body muscles in Thoroughbred horses.

    Science.gov (United States)

    Kawai, Minako; Minami, Yoshio; Sayama, Yukiko; Kuwano, Atsutoshi; Hiraga, Atsushi; Miyata, Hirofumi

    2009-10-01

    We examine the muscle fiber population and metabolic properties of skeletal muscles from the whole body in Thoroughbred horses. Postmortem samples were taken from 46 sites in six Thoroughbred horses aged between 3 and 6 years. Fiber type population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform and metabolic enzyme activities were determined spectrophotometrically. Histochemical analysis demonstrated that most of the muscles had a high percentage of Type IIa fibers. In terms of the muscle characteristic in several parts of the horse body, the forelimb muscles had a higher percentage of Type IIa fiber and a significantly lower percentage of Type IIx fiber than the hindlimb muscles. The muscle fiber type populations in the thoracic and trunk portion were similar to those in the hindlimb portion. Biochemical analysis indicated high succinate dehydrogenase activity in respiratory-related muscle and high phosphofructokinase activity in hindlimbs. We suggested that the higher percentage of Type IIa fibers in Thoroughbred racehorses is attributed to training effects. To consider further the physiological significance of each part of the body, data for the recruitment pattern of each muscle fiber type during exercise are needed. The muscle fiber properties in this study combined with the recruitment data would provide fundamental information for physiological and pathological studies in Thoroughbred horses.

  8. Muscle synergy space: learning model to create an optimal muscle synergy.

    Science.gov (United States)

    Alnajjar, Fady; Wojtara, Tytus; Kimura, Hidenori; Shimoda, Shingo

    2013-01-01

    Muscle redundancy allows the central nervous system (CNS) to choose a suitable combination of muscles from a number of options. This flexibility in muscle combinations allows for efficient behaviors to be generated in daily life. The computational mechanism of choosing muscle combinations, however, remains a long-standing challenge. One effective method of choosing muscle combinations is to create a set containing the muscle combinations of only efficient behaviors, and then to choose combinations from that set. The notion of muscle synergy, which was introduced to divide muscle activations into a lower-dimensional synergy space and time-dependent variables, is a suitable tool relevant to the discussion of this issue. The synergy space defines the suitable combinations of muscles, and time-dependent variables vary in lower-dimensional space to control behaviors. In this study, we investigated the mechanism the CNS may use to define the appropriate region and size of the synergy space when performing skilled behavior. Two indices were introduced in this study, one is the synergy stability index (SSI) that indicates the region of the synergy space, the other is the synergy coordination index (SCI) that indicates the size of the synergy space. The results on automatic posture response experiments show that SSI and SCI are positively correlated with the balance skill of the participants, and they are tunable by behavior training. These results suggest that the CNS has the ability to create optimal sets of efficient behaviors by optimizing the size of the synergy space at the appropriate region through interacting with the environment.

  9. Effects of extracts of denervated muscles on the morphology of cultured muscle cells

    NARCIS (Netherlands)

    Hooisma, J.; Krijger, J.de; Groot, D.M.G. de

    1981-01-01

    Previously tropic effects of extracts from whole chick embryos and from innervated muscles on cultured muscle cells were described. The present study demonstrated similar effects of extracts from 10-days denervated chick muscles. Extracts from innervated as well as from denervated muscles

  10. Influence of temperature on muscle recruitment and muscle function in vivo.

    Science.gov (United States)

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  11. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  12. Storage of hazardous substances in bonded warehouses

    International Nuclear Information System (INIS)

    Villalobos Artavia, Beatriz

    2008-01-01

    A variety of special regulations exist in Costa Rica for registration and transport of hazardous substances; these set the requirements for entry into the country and the security of transport units. However, the regulations mentioned no specific rules for storing hazardous substances. Tax deposits have been the initial place where are stored the substances that enter the country.The creation of basic rules that would be regulating the storage of hazardous substances has taken place through the analysis of regulations and national and international laws governing hazardous substances. The regulatory domain that currently exists will be established with a field research in fiscal deposits in the metropolitan area. The storage and security measures that have been used by the personnel handling the substances will be identified to be putting the reality with that the hazardous substances have been handled in tax deposits. A rule base for the storage of hazardous substances in tax deposits can be made, protecting the safety of the environment in which are manipulated and avoiding a possible accident causing a mess around. The rule will have the characteristics of the storage warehouses hazardous substances, such as safety standards, labeling standards, infrastructure features, common storage and transitional measures that must possess and meet all bonded warehouses to store hazardous substances. (author) [es

  13. Peer substance use and homelessness predicting substance abuse from adolescence through early adulthood.

    Science.gov (United States)

    Tompsett, Carolyn J; Domoff, Sarah E; Toro, Paul A

    2013-06-01

    Adolescents who experience homelessness are at higher risk for abusing substances, and for being exposed to substance-using peers. The current study used a longitudinal design to track substance abuse, affiliation with substance-using peers, and episodes of homelessness among a sample of 223 adolescents who were housed at the baseline data collection and 148 adolescents who were housed at baseline. Participants were interviewed at six waves over 6.5 years, covering an age range from 13 to 25. Many participants experienced a recurrence of homelessness during follow-up, with 64.6 % of the baseline homeless group and 22.6 % of the baseline housed group reporting an additional episode of homelessness. Both alcohol abuse and other drug abuse symptoms showed an increase in adolescence followed by slowing in early adulthood. Recent homelessness and friend alcohol use predicted alcohol abuse symptoms, and the strength of the influence of friend use decreased over time. Recent homelessness and friend drug use predicted other drug abuse symptoms. Duration of the initial episode of adolescent homelessness showed no influence on substance abuse over time, or the effects of other predictors, highlighting the importance of conceptualizing the experience of homelessness as a recent stressor rather than an enduring personal characteristic.

  14. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    Science.gov (United States)

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  15. Radioactive Substances Act 1948

    International Nuclear Information System (INIS)

    1948-01-01

    This Act regulates the use of radioactive substances and radiation producing devices in the United Kingdom. It provides for the control of import, export, sale, supply etc. of such substances and devices and lays down the safety regulations to be complied with when dealing with them. (NEA) [fr

  16. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  17. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Directory of Open Access Journals (Sweden)

    Ulrich Lindemann

    Full Text Available The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628, leg push power (r = 0.550, isometric quadriceps strength (r = 0.442, hand grip strength (r = 0.367, fast gait speed (r = 0.291, habitual gait speed (r = 0.256, body mass index (r = 0.411 and age (r = -0.392. Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  18. The Promotion of a Functional Fibrosis in Skeletal Muscle with Volumetric Muscle Loss Injury Following the Transplantation of Muscle-ECM

    Science.gov (United States)

    2013-02-04

    Zou K, Boppart MD. Eccentric exercise facil- itates mesenchymal stem cell appearance in skeletal muscle. PLoS One 2012; 7:e29760. [40] Matziolis G...remaining muscle mass leading to additional improvements in functional capacity; how- ever, no study has explicitly studied these effects . The purpose of...muscles were isolated from donor Lewis rats. The tendon and fascia were removed and TA muscle decellularization was performed using an enzymatic and

  19. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Science.gov (United States)

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  20. Relationship of trauma exposure and substance abuse to self-reported violence among men and women in substance abuse treatment.

    Science.gov (United States)

    Clark, C Brendan; Reiland, Sarah; Thorne, Chris; Cropsey, Karen L

    2014-05-01

    Past research showed a relationship between substance abuse and aggression and past trauma and aggression. The nature of the relationships between substance use, trauma, and aggression is inconclusive. The current research hypothesized greater aggression among those with a history of substance abuse and trauma compared with those without such a history and an additive relationship between substance abuse and trauma on aggression. Participants were 615 individuals in a substance abuse treatment program for individuals under criminal justice supervision. Data were collected from face-to-face interviews and self-report measures. Univariate and multivariate analyses assessed the relationships among substance use, trauma, and aggression. Participants with a history of trauma and regular substance use reported the highest rates of homicidal ideation, problem behaviors, and person offenses. Participants in this group also reported greater desire for help managing their stress and tension, dealing with problems in their intimate relationships, developing healthier relationships in general, and learning prosocial approaches to express their feelings. Substance abusing participants who experienced trauma reported more externalizing behaviors and a greater desire for coping- and social-skills training than participants who abused substances but did not report a history of trauma. This suggests that participants in substance abuse treatment programs may have improved outcomes with the addition of components to address these issues.

  1. [Immunotoxicity and environmental substances].

    Science.gov (United States)

    Teshima, Reiko

    2014-01-01

    A well functioning immune system is essential in maintaining integrity of the organism, and malfunction may have severe health consequences. Environmental substances may pose direct toxicity to components of the immune system, often leading to immunosuppression and resulting reduced resistance to infections and tumors. Alternatively, such substances may be recognized by the immune system in a specific fashion, which may result in allergy and autoimmunity. A proper risk assessment of environmental substances in terms of immunotoxicity is necessary. In this manuscript, I reviewed recent three topics about immunotoxicity: (1) IPCS/WHO Guidance for immunotoxicity risk assessment for chemicals, (2) Intestinal immunotoxicity, and (3) Epicutaneous sensitization of food proteins.

  2. Substance use pattern, self-control and social network are associated with crime in a substance-using population.

    Science.gov (United States)

    Skjaervø, Ingeborg; Skurtveit, Svetlana; Clausen, Thomas; Bukten, Anne

    2017-03-01

    Crime rates are high in substance-using populations; therefore, investigation of factors associated with crime in these populations is highly relevant. We describe crime prevalence and associations between crime, pattern of substance use and psychosocial factors, such as self-control and social network. This is a cross-sectional study including substance users (n = 549; mean age 34 years; 27% women) entering treatment at 21 treatment centres across Norway (December 2012 to April 2015). Data on demographics, substance use, psychosocial variables and crime in the 6 months prior to treatment were obtained through interviews. Adjusted odds ratios (aOR) with 95% confidence intervals (CI) were estimated through logistic regression. Sixty-four percent of participants had committed crime in the 6 months prior to treatment. Of these, 93% committed income-generating crime. Several factors were associated with increased likelihood of having committed crime: use of stimulants (aOR = 1.82, 95% CI 1.04-3.17), use of a higher number of different substances (aOR = 1.16, 95% CI 1.04-1.31) and spending most of their time with family or friends using addictive substances (aOR = 2.38, 95% CI 1.10-5.16 and aOR = 2.22, 95% CI 1.32-3.73). Protective factors associated with decreased likelihood of committing crime were being older (aOR = 0.95, 95% CI 0.92-0.97) and having higher self-control (aOR = 0.94, 95% CI 0.91-0.97). Stimulant use, higher number of different substances used, lower self-control, primarily a substance-using social network and being younger were associated with crime in this substance-using population. Treatment clinics should consider these risk factors for crime, and suitable interventions should be implemented and evaluated. [Skjaervø I, Skurtveit S, Clausen T, Bukten A. Substance use pattern, self-control and social network are associated with crime in a substance-using population. Drug Alcohol Rev 2017;36:245-252]. © 2016

  3. Muscle activation during selected strength exercises in women with chronic neck muscle pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Kjaer, Michael; Andersen, Christoffer H

    2008-01-01

    selected strengthening exercises in women undergoing rehabilitation for chronic neck muscle pain (defined as a clinical diagnosis of trapezius myalgia). SUBJECTS: The subjects were 12 female workers (age=30-60 years) with a clinical diagnosis of trapezius myalgia and a mean baseline pain intensity of 5......BACKGROUND AND PURPOSE: Muscle-specific strength training has previously been shown to be effective in the rehabilitation of chronic neck muscle pain in women. The aim of this study was to determine the level of activation of the neck and shoulder muscles using surface electromyography (EMG) during...... muscle pain. Several of the strength exercises had high activation of neck and shoulder muscles in women with chronic neck pain. These exercises can be used equally in the attempt to achieve a beneficial treatment effect on chronic neck muscle pain....

  4. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  5. ATP-sensitive K(+-channels in muscle cells: features and physiological role

    Directory of Open Access Journals (Sweden)

    O. B. Vadzyuk

    2014-08-01

    Full Text Available ATP-sensitive K+-channels of plasma membranes belong to the inward rectifier potassium channels type. They are involved in coupling of electrical activity of muscle cell with its metabolic­ state. These channels are heterooctameric and consist of two types of subunits: four poreforming (Kir 6.х and four regulatory (SUR, sulfonylurea receptor. The Kir subunits contain highly selective K+ filter and provide for high-velocity K+ currents. The SUR subunits contain binding sites for activators and blockers and have metabolic sensor, which enables channel activation under conditions of metabolic stress. ATP blocks K+ currents through the ATP-sensitive K+-channels in the most types of muscle cells. However, functional activity of these channels does not depend on absolute concentration of ATP but on the АТР/ADP ratio and presence of Mg2+. Physiologically active substances, such as phosphatidylinositol bisphosphate and fatty acid esters can regulate the activity of these structures in muscle cells. Activation of these channels under ischemic conditions underlies their cytoprotective action, which results in prevention of Ca2+ overload in cytosol. In contrast to ATP-sensitive K+-channels of plasma membranes, the data regarding the structure and function of ATP-sensitive K+-channels of mitochondrial membrane are contradictory. Pore-forming subunits of this channel have not been firmly identified yet. ATP-sensitive K+ transport through the mitochondrial­ membrane is easily tested by different methods, which are briefly reviewed in this paper. Interaction of mitoKATP with physiological and pharmacological ligands is discussed as well.

  6. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  7. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  8. Is it the music? Peer substance use as a mediator of the link between music preferences and adolescent substance use.

    Science.gov (United States)

    Mulder, Juul; Ter Bogt, Tom F M; Raaijmakers, Quinten A W; Nic Gabhainn, Saoirse; Monshouwer, Karin; Vollebergh, Wilma A M

    2010-06-01

    Both music preferences and the substance use behavior of peers are important elements in explaining adolescent substance use. The extent to which music preference and peer use overlap in explaining adolescent substance use remains to be determined. A nationally representative sample of 7324 Dutch school-going adolescents (aged 12-16) provided data on music preferences, substance use behaviors and perceived number of peers using substances. Factor analyses showed that preferences for eight music genres factored into four styles: Pop (chart music, Dutch pop), Adult (classical music, jazz), Urban (rap/hiphop, soul/R&B) and Hard (punk/hardcore, techno/hardhouse); substance use was indicated by smoking, drinking, and cannabis use. Structural equation modeling revealed that the relationship between music preference and substance use was either wholly or partially mediated by perceived peer use. Music can model substance use and fans of different types of music may select friends with use patterns that reinforce their own substance use inclinations.

  9. Substance abuse: medical and slang terminology.

    Science.gov (United States)

    Hamid, Humera; El-Mallakh, Rif S; Vandeveir, Keith

    2005-03-01

    Substance abuse is among one of the major problems plaguing our society. It has come to the attention of several healthcare professionals that a communication gap exists between themselves and substance abusers. Most of the time the substance abusers are only familiar with the slang terms of abused substances, a terminology that medical professionals are usually unaware of. This paper is an attempt to close that communication gap, allowing health care professionals to understand the slang terminology that their patients use, thus enabling them to make appropriate treatment decisions. In addition, the article presents some key features (including active ingredient, pharmacological classification, medical use, abuse form, usage method, combinations used, effects sought, long-term possible effects, and detectability in urine) of the most commonly abused substances.

  10. Jaw muscle pain and its effect on gothic arch tracings.

    Science.gov (United States)

    Obrez, A; Stohler, C S

    1996-04-01

    Perceived changes in occlusion and decreased range of motion are often expressed by patients with masticatory muscle pain. The adverse loading of craniomandibular tissues that results from an inadequate maxillomandibular relationship in combination with the coexisting dysfunction is widely regarded as the cause of pain. This study was designed to test whether pain can cause significant changes in position of the mandible and therefore form the basis for any perceived changes in the maxillomandibular relationship. A second objective was to determine whether pain can cause changes in the mandibular range of motion. Five subjects who rated pain intensity on a visual analog scale were used in a single-blind, randomized, repeated-measures study design. Tonic muscle pain was induced by infusion of 5% hypertonic saline solution into the central portion of the superficial masseter muscle. Isotonic saline solution was used as a control, with subjects blinded to the type of substance given. The effect of pain on the position of the apex of the gothic arch tracing, the direction of the lateral mandibular border movements, and the mandibular range of motion was studied in a horizontal plane with minimal occlusal separation. Pain significantly affected the position of the apex of the gothic arch tracing in anterior (F = 11.46, p = 0.03) and transverse (F = 35.0, p = 0.004) directions. Similarly, pain affected the orientation of the mandibular lateral border movements (F = 12.44, p = 0.02) and their magnitude (F = 14.97, p = 0.01). All pain-induced effects proved to be reversible. The observed effect of pain can explain the perceived change of bite that is frequently noted by patients with orofacial pain. This study provided evidence of an alternative causal relationship between pain and changes in occlusal relationship and questions occlusal therapy as treatment, directed toward the elimination of the underlying cause in patients with masticatory muscle pain.

  11. Ultrasound assessment of hamstring muscle size using posterior thigh muscle thickness.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2016-05-01

    Several studies have investigated the relationship between ultrasound-measured muscle thickness (MT) and individual muscle cross-sectional area (CSA) and muscle volume (MV) in extremity and trunk muscles; however, the hamstring muscle has not been studied. The purpose of this study was to examine the relationship between posterior thigh MT by ultrasound and the muscle CSA and MV of the hamstring obtained by magnetic resonance imaging (MRI). Ten young women aged 20-31 had MT measured by ultrasound at three sites on the medial anterior (50% of thigh length; TL) and posterior (50% and 70% of TL) aspects of the thigh. On the same day, a series of continuous muscle CSA along the thigh was measured by MRI. In each slice, the anatomical CSA of the hamstring (biceps femoris, semitendinosus and semimembranosus) and quadriceps muscle was analysed, and the CSAs at 50% and 70% of TL and maximal CSA of the hamstring (CSAmax ) were determined. MV was calculated by multiplying CSA by slice thickness. A significant correlation was observed between posterior 50% MT and 50% hamstring CSA (r = 0·848, P = 0·002) and between posterior 70% MT and 70% hamstring CSA (r = 0·679, P = 0·031). Posterior 50% MT (r = 0·732, P = 0·016) and 50% MTxTL (r = 0·873, P = 0·001) were also correlated to hamstring MV. Anterior:posterior 50% thigh MT ratio was correlated to MV ratio of quadriceps and hamstring muscles (r = 0·803, P = 0·005). Our results suggest that posterior thigh MT reflects hamstring muscle CSA and MV. The anterior:posterior MT ratio may serve as a surrogate for MV ratio of quadriceps and hamstring. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Adult attention-deficit/hyperactivity disorder and its association with substance use and substance use disorders in young men.

    Science.gov (United States)

    Estévez, N; Dey, M; Eich-Höchli, D; Foster, S; Gmel, G; Mohler-Kuo, M

    2016-06-01

    Functional and mental health impairments that adults with attention-deficit/hyperactivity disorder (ADHD) experience may be exacerbated by regular substance use and co-morbidity with substance use disorders (SUD). This may be especially true during young adulthood, which represents a critical stage of life associated with increased substance use and associated problems. However, previous studies investigating the association between ADHD and substance use and SUD have demonstrated inconsistent results, probably due to methodological limitations (e.g., small and non-representative samples). Thus, the relationship of ADHD with substance use and related disorders remains unclear. The aim of the present study was to examine the association between ADHD and both the use of licit and illicit substances and the presence of SUD in a large, representative sample of young men. The sample included 5677 Swiss men (mean age 20 ± 1.23 years) who participated in the Cohort Study on Substance Use Risk Factors (C-SURF). ADHD was assessed using the adult ADHD Self Report Screener (ASRS). The association between ADHD and substance use and SUD was assessed for alcohol, nicotine, cannabis and other illicit drugs, while controlling for socio-demographic variables and co-morbid psychiatric disorders (i.e., major depression (MD) and anti-social personality disorder (ASPD)). Men with ADHD were more likely to report having used nicotine, cannabis and other illicit drugs at some time in their life, but not alcohol. ADHD was positively associated with early initiation of alcohol, nicotine and cannabis use, the risky use of these substances, and the presence of alcohol use disorders, and nicotine and cannabis dependence. Additionally, our analyses revealed that these patterns are also highly associated with ASPD. After adjusting for this disorder, the association between ADHD and licit and illicit substance use and the presence of SUDs was reduced, but remained significant. Our findings

  13. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  14. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone.

    Science.gov (United States)

    Parr, Maria Kristina; Zhao, Piwen; Haupt, Oliver; Ngueu, Sandrine Tchoukouegno; Hengevoss, Jonas; Fritzemeier, Karl Heinrich; Piechotta, Marion; Schlörer, Nils; Muhn, Peter; Zheng, Wen-Ya; Xie, Ming-Yong; Diel, Patrick

    2014-09-01

    The phytoectysteroid ecdysterone (Ecdy) was reported to stimulate protein synthesis and enhance physical performance. The aim of this study was to investigate underlying molecular mechanisms particularly the role of ER beta (ERβ). In male rats, Ecdy treatment increased muscle fiber size, serum IGF-1 increased, and corticosteron and 17β-estradiol (E2) decreased. In differentiated C2C12 myoblastoma cells, treatment with Ecdy, dihydrotestosterone, IGF-1 but also E2 results in hypertrophy. Hypertrophy induced by E2 and Ecdy could be antagonized with an antiestrogen but not by an antiandrogen. In HEK293 cells transfected with ER alpha (ERα) or ERβ, Ecdy treatment transactivated a reporter gene. To elucidate the role of ERβ in Ecdy-mediated muscle hypertrophy, C2C12 myotubes were treated with ERα (ALPHA) and ERβ (BETA) selective ligands. Ecdy and BETA treatment but not ALPHA induced hypertrophy. The effect of Ecdy, E2, and BETA could be antagonized by an ERβ-selective antagonist (ANTIBETA). In summary, our results indicate that ERβ is involved in the mediation of the anabolic activity of the Ecdy. These findings provide new therapeutic perspectives for the treatment of muscle injuries, sarcopenia, and cachectic disease, but also imply that such a substance could be abused for doping purposes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Substance Use among Muslim Students in Aceh, Indonesia

    Directory of Open Access Journals (Sweden)

    Inda Mariana Harahap

    2012-08-01

    Full Text Available Background: Illicit substance use is a serious social problem faced by adolescents worldwide, including adolescents in Aceh and has many negative consequences. In addition, illicit substance use does not fit with the values of Islamic teaching, and is strictly prohibited in Islam. Purpose: The aims of this paper are to determine the prevalence of illicit substance use, the stages of substance use, and types of substance used among Muslim students in senior high schools in Aceh, Indonesia. Method: Four hundred and twenty six students who met the inclusion criteria were recruited from four senior high schools in Banda Aceh by using simple random sampling, and of these, 290 returned a completed questionnaire. A self reported questionnaire was used to collect data. Result: The mean age of the subjects was 15.9 years old and the majority of them were female (68.6%. The study found that the prevalence of substance use was 2.4%with a higher number of females than males who had used illicit substances. The common substances that were used by the students were marijuana and dextromethorphon, as well as intentionally inhaled substances. Lastly, out of the students who had used illegal substances the majority was in the regular use stage (1.4%. Conclusion: This study found that substance use among Muslim students in Aceh exists, although prevalence was low. Thus, several preventive programs may be needed in Aceh not only for Muslims students who have used substances but also for students who have not use illegal substances. Keywords: Adolescents, Substance use, Muslim students, Indonesia.

  17. Substance use and abuse among patients with comorbid dysthymia and substance disorder.

    Science.gov (United States)

    Eames, S L; Westermeyer, J; Crosby, R D

    1998-11-01

    This study determines the substance use and abuse patterns among patients with comorbid substance-related disorder (SRD) and dysthymia in SRD-dysthymia as compared with patients with SRD only. Differences in use and abuse patterns could be useful for (a) understanding motivations for use, such as self-treatment, and (b) assisting clinicians to identify cases of dysthymia among SRD patients. Retrospective and current data were obtained regarding history of substance use and current SRD diagnoses. Two university medical centers with alcohol-drug programs located within departments of psychiatry were the settings. A total of 642 patients was assessed. of whom 39 had SRD-dysthymia and 308 had SRD only. Data on past usc were collected by a research associate using a questionnaire. Current SRD and dysthymia diagnoses were made by psychiatrists specializing in addiction. The patients with SRD-dysthymia and SRD only did not differ with regard to use of alcohol, tobacco, and benzodiazepines. The patients with SRD-dysthymia started caffeine use at an earlier age, had shorter "use careers" of cocaine, amphetamines, and opiates, and had fewer days of cocaine and cannabis use in the last year. They also had a lower rate of cannabis abuse/dependence. This study indicated that patients with dysthymia and SRD have exposure to most substances of abuse that is comparable to patients with SRD only. However, they selectively use certain substances less often than patients with SRD only. Early use of caffeine may reflect self-treatment for depressive symptoms among patients with SRD-dysthymia.

  18. Detection of diffusible substances

    Energy Technology Data Exchange (ETDEWEB)

    Warembourg, M [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France)

    1976-12-01

    The different steps of a radioautographic technique for the detection of diffusible substances are described. Using this radioautographic method, the topographic distribution of estradiol-concentrating neurons was studied in the nervous system and pituitary of the ovariectomized mouse and guinea-pig. A relatively good morphological preservation of structures can be ascertained on sections from unfixed, unembedded tissues prepared at low temperatures and kept-under relatively low humidity. The translocation or extraction of diffusible substances is avoided by directly mounting of frozen sections on dried photographic emulsion. Since no solvent is used, this technique excludes the major sources of diffusion artifacts and permits to be in favourable conditions for the localization of diffusible substances.

  19. Negative attributions towards people with substance use disorders in South Africa: Variation across substances and by gender

    Directory of Open Access Journals (Sweden)

    Sorsdahl Katherine

    2012-08-01

    Full Text Available Abstract Background Little research has examined attitudes towards people who use substances in low and middle income countries (LMIC. Therefore, the present study examined the attributions made by the general South African population about people who use substances and whether these attributions differ by the type of substance being used, the gender of the person using the substance, or the characteristics of the person making the attribution. Method A convenience sample of 868 members of the general public was obtained through street-intercept methods. One of 8 vignettes portraying alcohol, cannabis, methamphetamine or heroin, with either a male or female as the protagonist was presented to each respondent. Respondents’ attitudes towards the specific cases were investigated. Results Respondents held equally negative views of the presented substances, with the exception of the cannabis vignette which was considered significantly less “dangerous” than the alcohol vignette. Respondents were more likely to offer “help” to women who use alcohol, but more likely to suggest “coercion into treatment” for men. Individuals who scored higher on the ASSIST were more likely to hold negative attitudes towards substance users and black African respondents were more likely to offer help to individuals who use substances. Conclusion The stigma associated with substance use in South Africa is high and not necessarily dependent on the drug of choice. However, a range of factors, including gender of the substance user, and ethnicity of the rater, may impact on stigma. Interventions designed to strengthen mental health literacy and gender-focused anti-stigma campaigns may have the potential to increase treatment seeking behaviour.

  20. Alcohol and Substance Use Disorders in DSM-5

    Directory of Open Access Journals (Sweden)

    Gulcan Gulec

    2015-12-01

    Full Text Available When we compare the categories about alcohol, and substance-related disorders in DSM-IV and DSM-5, the new category, named addictive disorders is the most striking change. Only gambling disorder have been identified currently in this category. This may be the most remarkable change among the changes in the DSM-5. Because the expansion of the existing diagnostic criteria may cause the assessment of and lsquo;normal behavior' as a disorder. Additionally, withdrawal of caffeine and cannabis are defined in the DSM-5. Disorders collected under the title of substance-related disorders in the DSM-IV were collected under the name of substance-related and addictive disorders in the DSM-5. Specific criterias for substance abuse and substance addiction have been combined into the name of "substance use disorders". In substance abuse, "experienced legal problems" criteria was removed and "a strong desire or urge or craving for substance use" criteria has been introduced. Henceforth, substance abuse is defined as a mild form of substance use disorders in the DSM-5. A change in the prevalence of substance use disorders should be investigated by the new researches.

  1. Transport of radioactive substances

    International Nuclear Information System (INIS)

    2014-12-01

    The report on the transport of radioactive substances covers the following topics: facts on radioactive materials transport, safety of the transport of radioactive substances, legal regulations and guidelines: a multiform but consistent system, transport of nuclear fuels, safety during the transport of nuclear fuel, future transport of spent fuel elements and high-level radioactive wastes in Germany.

  2. Involvement of melatonin metabolites in the long-term inhibitory effect of the hormone on rat spinal nociceptive transmission.

    Science.gov (United States)

    Mondaca, Mauricio; Hernández, Alejandro; Valladares, Luis; Sierralta, Walter; Noseda, Rodrigo; Soto-Moyano, Rubén

    2004-02-01

    There is evidence that melatonin and its metabolites could bind to nuclear sites in neurones, suggesting that this hormone is able to exert long-term functional effects in the central nervous system via genomic mechanisms. This study was designed to investigate (i) whether systemically administered melatonin can exert long-term effects on spinal cord windup activity, and (ii) whether blockade of melatonin degradation with eserine could prevent this effect. Rats receiving melatonin (10 mg/kg ip), the same dose of melatonin plus eserine (0.5 mg/kg ip), or saline were studied. Seven days after administration of the drugs or saline, spinal windup of rats was assessed in a C-fiber reflex response paradigm. Results show that rats receiving melatonin exhibited a reduction in spinal windup activity. This was not observed in the animals receiving melatonin plus eserine or saline, suggesting a role for melatonin metabolites in long-term changes of nociceptive transmission in the rat spinal cord.

  3. Cholesterol and fatty acids oxidation in meat from three muscles of Massese suckling lambs slaughtered at different weights

    Directory of Open Access Journals (Sweden)

    Andrea Serra

    2014-09-01

    Full Text Available Eighteen Massese male lambs fed mainly with maternal milk were slaughtered at 11, 14 and 17 kg. Samples of Longissimus dorsi (LD, Triceps brachii (TB and Semimembranosus (Sm muscles were collected. Total intramuscular lipids were extracted by means of a mixture of chloroform methanol 2/1. Cholesterol content and its oxidation product (COP were determined by a gas chromatography apparatus equipped with an apolar 30 m column. Fatty acid oxidation was evaluated by means of thiobarbituric acid reactive substances (TBARS extracting the sample with aqueous acidic solution. The effect of slaughter weight on oxidation of intramuscular lipids was found only in TB muscles. In this muscle the cholesterol content showed a decreasing trend, while the content of COPs significantly increased with the age of animals. Among the COPs, the 7-ketocholesterol and 7β-hydroxycholesterol were the most abundant, followed by α- and β- epoxy-cholesterol and cholestan-triol. The content of TBARS did not vary owing to a similar fatty acid composition of intramuscular fat across weight of slaughter. In any case, the values of TBARS did not reach the threshold of the detection of off-flavour in meat.

  4. Surgical and nonsurgical treatment of total rupture of the pectoralis major muscle in athletes: update and critical appraisal

    Directory of Open Access Journals (Sweden)

    Jörn Kircher

    2010-10-01

    Full Text Available Jörn Kircher, Christoph Ziskoven, Thilo Patzer, Daniela Zaps, Bernd Bittersohl, Rüdiger KrauspeUniversity Hospital, Orthopaedic Department, Heinrich-Heine University Düsseldorf, Düsseldorf, GermanyAbstract: The complete rupture of the pectoralis major tendon is an uncommon injury but has become increasingly common among athletes in recent years. This may be due to a higher number of individuals taking part in high-impact sports and weightlifting as well as the use of anabolic substances, which can make muscles and tendons vulnerable to injury. In recent literature, there are only few recommendations to rely on conservative treatment alone, but there are a number of reports and case series recommending early surgical intervention. Comparing the results of the two treatment regimens, there is clear evidence for a superior outcome after surgical repair with better cosmesis, better functional results, regaining of muscle power, and return to sports compared with the conservative treatment. In summary, anatomic surgical repair is the treatment of choice for complete acute ruptures of the pectoralis major tendon or muscle in athletes.Keywords: pectoralis major, rupture, athlete, conservative treatment, surgical treatment, steroid, tendon, sports injury

  5. Just say know: an examination of substance use disorders among older adults in gerontological and substance abuse journals.

    Science.gov (United States)

    Rosen, Daniel; Engel, Rafael J; Hunsaker, Amanda E; Engel, Yael; Detlefsen, Ellen Gay; Reynolds, Charles F

    2013-01-01

    This article examines the extent to which studies of alcohol abuse, illicit drug use, and prescription drug abuse among older adults appear in the leading gerontological and substance abuse journals. The authors reviewed articles published in the 10 social science gerontological journals and the 10 social science substance abuse journals with the highest 5-year impact factors in PubMed from 2000 to 2010. Articles were selected that presented original research on alcohol, substance, or prescription abuse with older adults aged 50 and older; and were identified through aging and substance abuse-related Medical Subject Headings and word searches of titles and abstracts (N = 634). Full text of each article was reviewed by the authors, and consensus determined inclusion in the final sample. Of the 19,953 articles published respectively in the top 10 gerontological and substance abuse journals, 181 articles met the inclusion criteria of reporting findings related to substance use disorders among older adults. Specifically, 0.9% (102 of 11,700) of articles from the top 10 gerontology journals and 1.0% (79 of 8,253) of articles from the top 10 substance abuse journals met the criteria. Most published articles addressed alcohol misuse/abuse or polysubstance abuse with few articles addressing illicit drug use or the misuse of prescription medications. Less than 1% of articles published in the 10 gerontology journals and the 10 substance abuse journals with the highest 5-year impact scores addressed substance abuse in older adults. Practitioners treating health and/or mental health problems are at a disadvantage in accurately identifying and treating these conditions in older adult populations without a proper understanding of the role of comorbid substance use disorders.

  6. Toxic myopathies: muscle biopsy features Miopatia tóxica: biópsia muscular

    Directory of Open Access Journals (Sweden)

    Rosana Herminia Scola

    2007-03-01

    Full Text Available Several drugs and toxic substances can cause muscular abnormalities and are frequent causes of acquired myopathies. We present a series of 32 patients, predominance of young adult patients, diagnosed with toxic myopathy. The most common substances inducing myopathy were corticosteroids (56.2% followed by the propoxyphene, neuroleptics, zidovudine and drug-induced hypokalemia. The investigation showed normal serum creatine kinase levels in 65.4%, myopathic pattern of the needle electromyography in 40% and the more frequent histological diagnosis of the muscle biopsy was type 2 fiber atrophy (59.3%. Clinical features, etiology, course of the disease, serum levels of muscular enzymes, electromyographic features and, especially, muscle biopsy features are discussed.Diversos medicamentos e substâncias tóxicas podem causar alterações musculares e são causas freqüentes de miopatia adquirida. Apresentamos uma série de 32 pacientes, predomínio de pacientes adulto jovens, com miopatia tóxica. As substâncias mais relacionadas com a miopatia foram os corticosteróides (56,2% seguidos pelo propoxifeno, neurolépticos, zidovudina e drogas indutoras de hipocalemia. A investigação mostrou níveis normais de creatino quinase sérica em 65,4%, eletromiografia de agulha com padrão miopático em 40% e o mais freqüente diagnóstico histológico da biópsia muscular foi atrofia de fibras do tipo 2 (59,3%. As manifestações clínicas, etiologia, tempo de evolução, nível sérico das enzimas musculares, alterações da eletroneuromiografia e, especialmente, da biópsia muscular são discutidos.

  7. Substance use and treatment of substance use disorders in a community sample of transgender adults.

    Science.gov (United States)

    Keuroghlian, Alex S; Reisner, Sari L; White, Jaclyn M; Weiss, Roger D

    2015-07-01

    Transgender people have elevated substance use prevalence compared with the U.S. general population, however no studies have comprehensively examined the relationship of psychosocial risk factors to substance use and substance use disorder (SUD) treatment among both male-to-female (MTF) and female-to-male (FTM) transgender adults. Secondary data analysis of a 2013 community-based survey of transgender adults in Massachusetts (N=452) was conducted. Adjusted multivariable logistic regression models were fit to examine the relationship of four risk factor domains with SUD treatment history and recent substance use: (1) demographics; (2) gender-related characteristics; (3) mental health; (4) socio-structural factors. Adjusted Odds Ratios (aOR) and 95% Confidence Intervals (95% CI) were estimated. Ten percent of the sample reported lifetime SUD treatment. Factors associated with significant increase in odds of lifetime SUD treatment alongside recent substance use (all pdiscrimination (aOR=1.90; 95% CI=1.22-2.95), unstable housing (aOR=1.80; 95% CI=1.21-2.67), and sex work (aOR=2.48; 95% CI=1.24-4.95). Substance use and SUD treatment among transgender adults are associated with demographic, gender-related, mental health, and socio-structural risk factors. Studies are warranted that identify SUD treatment barriers, and integrate SUD treatment with psychosocial and structural interventions for a diverse spectrum of transgender adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Extraocular muscle function testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003397.htm Extraocular muscle function testing To use the sharing features on this page, please enable JavaScript. Extraocular muscle function testing examines the function of the eye muscles. ...

  9. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  10. MRI appearances of the anterior fibulocalcaneus muscle: a rare anterior compartment muscle

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Bhavin [Basildon and Thurrock University Hospitals NHS Foundation Trust, Imaging Department, Essex (United Kingdom); Amiras, Dimitri [Imperial College Health Care NHS Trust, Imaging Department, London (United Kingdom)

    2015-05-01

    MRI of a 62-year-old female presenting with ankle pain demonstrated an accessory muscle within the anterior compartment of the lower leg. The muscle originated from the fibula and anterior crural septum. The tendon passed anterior to the lateral malleolus and inserted at the critical angle of Gissane on the calcaneus. This muscle was initially described in the anatomic literature by Lambert and Atsas in 2010. To our knowledge, this is the first time the MRI appearances of this muscle has been described in the radiological literature. Awareness of the fibulocalcaneal muscle is important as it may represent a cause of ankle pain. In addition, the tendon could potentially be harvested for use in reconstructive procedures. (orig.)

  11. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  12. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-01-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1 −/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  13. Respiratory muscle involvement in sarcoidosis.

    Science.gov (United States)

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  14. Substance abuse and cancer.

    Science.gov (United States)

    Moussas, G I; Papadopoulou, A G

    2017-01-01

    Substance abuse is a health problem with serious psychological and psychiatric dimensions and multiple social and economic consequences. Cancer is a disease that threatens not only life and physical integrity but mental health as well. Oncology patients suffer from mental disorders in high rates, especially from depression and anxiety. The role of substance abuse in the pathogenesis of cancer is studied systematically, since there are research data supporting the mutagenic effects of certain substances. It has been supported that a possible dysregulation of the immune system is linked to the oncogenic processes induced by substances of abuse. Specifically, opioids are the first addictive substances that have been identified as oncogenic factors. However, conflicting results have been offered by experimental animal studies, which showed that opioids, such as morphine, depending on the dosage administered, may not only enhance the process of tumor growth, but also inhibit it. Additionally, research data indicate that the use of cannabis may be associated with cancer, either as an independent factor or in relation to other mutagenics, although it is not yet clear to which extent these effects may be connected to the disease, especially once the consumption of tobacco and alcohol by these patients are taken into account. However, it has been argued that certain cannabinoids may have biological -anticancer- activities which could be used therapeutically without being accompanied by the corresponding 9-tetrahydrocannabinol psychoactive effects. It is well known that alcohol is a risk factor for developing head and neck cancer, and epidemiological studies indicate that the higher the consumption of alcohol, the more mortality due to cancer increases. In addition, it is suggested that there is no safety level for alcohol consumption regarding the risk of developing cancer; that is even a minimum daily consumption is associated with the occurrence of certain types of cancer

  15. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  16. The optimal stimulation pattern for skeletal muscle is dependent on muscle length

    NARCIS (Netherlands)

    Mela, P.; Veltink, Petrus H.; Huijing, P.A.J.B.M.; Salmons, S.; Jarvis, J.C.

    2002-01-01

    elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator

  17. Survey of Anthropometric Indices Addicts due to the History of Addiction and Substance Abuse in Qom Province, 2014

    Directory of Open Access Journals (Sweden)

    Mohammad Hozoori

    2017-02-01

    Full Text Available Background: Substance abuse has significant impact on nutritional status. Due to the increased malnutrition during drug use and withdrawal, this study aimed at assessing the anthropometric indices in individuals referring to drug treatment centers in Qom. Methods: In this descriptive-analytical study, 329 addicted individuals referring to addiction centers in Qom were randomly selected. A questionnaire was used with three parts including demographic characteristics, drug abuse history, and anthropometric indices including measurement of height, weight, waist circumference, arm circumference, and skinfold thickness in triceps and calf muscles. Results: The participants consisted of 328 men and only one woman, 29% of whom were in detoxification. The participants' mean age was 39.0 ± 7.1 years. The first and most-frequently used drug was opium. All anthropometric indices were associated with the consumption of opium substances and drug use was associated significantly with some parameters. With the exception of skinfold thickness in the calf, all the indices were affected by the type of consumed substances. The opium addicts had a higher body mass index compared with other drug users. Conclusions: Due to the importance of nutrition status in drug abusers' health and their lack of self-care, careful monitoring and evaluation of dietary intake, as well as nutrition status can play important roles in the rehabilitation of these individuals and help to prevent from reappearance of these habits.

  18. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  19. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  20. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    Science.gov (United States)

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  1. Influence of Diet and Postmortem Ageing on Oxidative Stability of Lipids, Myoglobin and Myofibrillar Proteins and Quality Attributes of Gluteus Medius Muscle in Goats

    Science.gov (United States)

    Adeyemi, Kazeem Dauda; Shittu, Rafiat Morolayo; Sabow, Azad Behnan; Ebrahimi, Mahdi; Sazili, Awis Qurni

    2016-01-01

    This study appraised the effects of dietary blend of 80% canola oil and 20% palm oil and postmortem ageing on oxidative stability, fatty acids and quality attributes of gluteus medius (GM) muscle in goats. Twenty-four Boer bucks were randomly allotted to diet supplemented with 0, 4 and 8% oil blend, fed for 100 days and slaughtered, and the GM muscle was subjected to a 7 d chill storage (4±1°C). Diet had no effect (P> 0.05) on the colour, drip loss, thiobarbituric acid-reactive substances (TBARS) value, free thiol, carbonyl, myoglobin and metmyoglobin contents, metmyoglobin reducing activity (MRA), antioxidant enzyme activities and abundance of myosin heavy chain (MHC) and actin in the GM muscle in goats. The meat from goats fed 4 and 8% oil blend had higher (Pgoats. The GM muscle from the oil-supplemented goats had lower (Pgoats. Nonetheless, diet did not affect (Pgoats. Regardless of the diet, the free thiol and myoglobin contents, concentration of tocopherol and total carotenoids, MHC and MRA in the GM muscle decreased (P< 0.05) while carbonyl content, TBARS, drip loss and metmyoglobin content increased over storage. Dietary blend of 80% canola oil and 20% palm oil beneficially altered tissue lipids without hampering the oxidative stability of chevon. PMID:27138001

  2. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala.

    Science.gov (United States)

    Li, Ming-Jia; Liu, Ling-Yu; Chen, Lin; Cai, Jie; Wan, You; Xing, Guo-Gang

    2017-04-01

    Exacerbation of pain by chronic stress and comorbidity of pain with stress-related psychiatric disorders, including anxiety and depression, represent significant clinical challenges. However, the underlying mechanisms still remain unclear. Here, we investigated whether chronic forced swim stress (CFSS)-induced exacerbation of neuropathic pain is mediated by the integration of stress-affect-related information with nociceptive information in the central nucleus of the amygdala (CeA). We first demonstrated that CFSS indeed produces both depressive-like behaviors and exacerbation of spared nerve injury (SNI)-induced mechanical allodynia in rats. Moreover, we revealed that CFSS induces both sensitization of basolateral amygdala (BLA) neurons and augmentation of long-term potentiation (LTP) at the BLA-CeA synapse and meanwhile, exaggerates both SNI-induced sensitization of CeA neurons and LTP at the parabrachial (PB)-CeA synapse. In addition, we discovered that CFSS elevates SNI-induced functional up-regulation of GluN2B-containing NMDA (GluN2B-NMDA) receptors in the CeA, which is proved to be necessary for CFSS-induced augmentation of LTP at the PB-CeA synapse and exacerbation of pain hypersensitivity in SNI rats. Suppression of CFSS-elicited depressive-like behaviors by antidepressants imipramine or ifenprodil inhibits the CFSS-induced exacerbation of neuropathic pain. Collectively, our findings suggest that CFSS potentiates synaptic efficiency of the BLA-CeA pathway, leading to the activation of GluN2B-NMDA receptors and sensitization of CeA neurons, which subsequently facilitate pain-related synaptic plasticity of the PB-CeA pathway, thereby exacerbating SNI-induced neuropathic pain. We conclude that chronic stress exacerbates neuropathic pain via the integration of stress-affect-related information with nociceptive information in the CeA.

  4. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  5. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    Science.gov (United States)

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-10-16

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  6. Oxidative metabolism in muscle.

    OpenAIRE

    Ferrari, M; Binzoni, T; Quaresima, V

    1997-01-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantage...

  7. Oxidative and proteolysis-related parameters of skeletal muscle from hamsters with experimental pulmonary emphysema: a comparison between papain and elastase induction.

    Science.gov (United States)

    Brunnquell, Cláudia R; Vieira, Nichelle A; Sábio, Laís R; Sczepanski, Felipe; Cecchini, Alessandra L; Cecchini, Rubens; Guarnier, Flávia A

    2015-06-01

    The objective of this study was to investigate whether emphysema induced by elastase or papain triggers the same effects on skeletal muscle, related to oxidative stress and proteolysis, in hamsters. For this purpose, we evaluated pulmonary lesions, body weight, muscle loss, oxidative stress (thiobarbituric acid-reactive substances, total and oxidized glutathiones, chemiluminescence stimulated by tert-butyl hydroperoxide and carbonyl proteins), chymotrypsin-like and calpain-like proteolytic activities and muscle fibre cross-sectional area in the gastrocnemius muscles of emphysemic hamsters. Two groups of animals received different intratracheal inductions of experimental emphysema: by 40 mg/ml papain (EP) or 5.2 IU/100 g animal (EE) elastase (n = 10 animals/group). The control group received intratracheal instillation of 300 μl sterile NaCl 0.9%. Compared with the control group, the EP group had reduced muscle weight (18.34%) and the EE group had increased muscle weight (8.37%). Additionally, tert-butyl hydroperoxide-initiated chemiluminescence, carbonylated proteins and chymotrypsin-like proteolytic activity were all elevated in the EP group compared to the CS group, while total glutathione was decreased compared to the EE group. The EE group showed more fibres with increased cross-sectional areas and increased calpain-like activity. Together, these data show that elastase and papain, when used to induce experimental models of emphysema, lead to different speeds and types of adaptation. These findings provide more information on choosing a suitable experimental model for studying skeletal muscle adaptations in emphysema. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  8. Eccentric muscle challenge shows osteopontin polymorphism modulation of muscle damage.

    Science.gov (United States)

    Barfield, Whitney L; Uaesoontrachoon, Kitipong; Wu, Chung-Sheih; Lin, Stephen; Chen, Yue; Wang, Paul C; Kanaan, Yasmine; Bond, Vernon; Hoffman, Eric P

    2014-08-01

    A promoter polymorphism of the osteopontin (OPN) gene (rs28357094) has been associated with multiple inflammatory states, severity of Duchenne muscular dystrophy (DMD) and muscle size in healthy young adults. We sought to define the mechanism of action of the polymorphism, using allele-specific in vitro reporter assays in muscle cells, and a genotype-stratified intervention in healthy controls. In vitro reporter constructs showed the G allele to respond to estrogen treatment, whereas the T allele showed no transcriptional response. Young adult volunteers (n = 187) were enrolled into a baseline study, and subjects with specific rs28357094 genotypes enrolled into an eccentric muscle challenge intervention [n = 3 TT; n = 3 GG/GT (dominant inheritance model)]. Female volunteers carrying the G allele showed significantly greater inflammation and increased muscle volume change as determined by magnetic resonance imaging T1- and T2-weighted images after eccentric challenge, as well as greater decrement in biceps muscle force. Our data suggest a model where the G allele enables enhanced activities of upstream enhancer elements due to loss of Sp1 binding at the polymorphic site. This results in significantly greater expression of the pro-inflammatory OPN cytokine during tissue remodeling in response to challenge in G allele carriers, promoting muscle hypertrophy in normal females, but increased damage in DMD patients. © The Author 2014. Published by Oxford University Press.

  9. Your Muscles

    Science.gov (United States)

    ... and you need to throw up. The muscles push the food back out of the stomach so it comes up ... body the power it needs to lift and push things. Muscles in your neck and the top part of your back aren't as large, but they are capable ...

  10. The Comparison of Body Image, Quality of Sleep and Marital Satisfaction among Substance Abuser and Non-substance Abuser Women

    Directory of Open Access Journals (Sweden)

    Sara Behzad

    2016-05-01

    Full Text Available Background and Objective: The previous research has demonstrated that addiction treatment services for women need to be based on knowledge of female psychological needs. Therefore, the aim of current study is to compare body image, quality of sleep and marital satisfaction among substance abuser and non-substance abuser women.Materials and Methods: This study is a descriptive comparative research. 200 women including 100 substance abuser women and 100 non-substance abuser women were chosen through convenience method in Arak in 2015. The measuring instruments were Fisher body image scale (1970, Pittsburgh Sleep Quality Index (1989 and Enrich Marital Satisfaction Scale (1989. Data was analyzed utilizing t independent.Results: The results showed that there is the significant difference between marital satisfaction (P=0.001 and quality of sleep (P=0.001 among substance abuser and non-substance abuser women. Additionally, the significant difference was not observed between body image (P= 0.31 among these two groups.Conclusion: These findings emphasized that substance use decreases the quality of sleep and marital satisfaction in women. Hence, it should be considered these factors in process of therapeutic intervention in substance abuser women.

  11. Quantitative estimation of muscle fatigue using surface electromyography during static muscle contraction.

    Science.gov (United States)

    Soo, Yewguan; Sugi, Masao; Nishino, Masataka; Yokoi, Hiroshi; Arai, Tamio; Kato, Ryu; Nakamura, Tatsuhiro; Ota, Jun

    2009-01-01

    Muscle fatigue is commonly associated with the musculoskeletal disorder problem. Previously, various techniques were proposed to index the muscle fatigue from electromyography signal. However, quantitative measurement is still difficult to achieve. This study aimed at proposing a method to estimate the degree of muscle fatigue quantitatively. A fatigue model was first constructed using handgrip dynamometer by conducting a series of static contraction tasks. Then the degree muscle fatigue can be estimated from electromyography signal with reasonable accuracy. The error of the estimated muscle fatigue was less than 10% MVC and no significant difference was found between the estimated value and the one measured using force sensor. Although the results were promising, there were still some limitations that need to be overcome in future study.

  12. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers.

    Science.gov (United States)

    Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki

    2017-11-01

    Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Muscles, exercise and obesity

    DEFF Research Database (Denmark)

    Pedersen, Bente K; Febbraio, Mark A

    2012-01-01

    During the past decade, skeletal muscle has been identified as a secretory organ. Accordingly, we have suggested that cytokines and other peptides that are produced, expressed and released by muscle fibres and exert either autocrine, paracrine or endocrine effects should be classified as myokines....... The finding that the muscle secretome consists of several hundred secreted peptides provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs, such as adipose tissue, liver, pancreas, bones and brain. However, some myokines exert their effects within...... the muscle itself. Thus, myostatin, LIF, IL-6 and IL-7 are involved in muscle hypertrophy and myogenesis, whereas BDNF and IL-6 are involved in AMPK-mediated fat oxidation. IL-6 also appears to have systemic effects on the liver, adipose tissue and the immune system, and mediates crosstalk between intestinal...

  14. Evaluation of anti-nociceptive and anti-inflammatory activities of hydroalcoholic extract derived from root of Apium graveolens L. in mice

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Apium graveolens L. (celery has been considered as sedative, analgesic, carminative, antispasmodic and diuretic plant in traditional Iranian medicine. The aim of the present study was to evaluate the anti-nociceptive and anti-inflammatory effect of celery root in mice. Methods: Analgesic effect of celery root was determined by two animal models of hot plate and acetic acid writhing test. Anti-inflammatory potential of the extract was also determined by formalin induced ear edema and xylene induced paw edema tests.  Results: The result showed no significant difference between the positive control group and the test group in hot plate test and the most effective dose of celery root was 200 mg/kg, while the frequency of writhings was significantly different in whole test groups in comparison with control group (p

  15. Vitamin D and muscle trophicity.

    Science.gov (United States)

    Domingues-Faria, Carla; Boirie, Yves; Walrand, Stéphane

    2017-05-01

    We review recent findings on the involvement of vitamin D in skeletal muscle trophicity. Vitamin D deficiencies are associated with reduced muscle mass and strength, and its supplementation seems effective to improve these parameters in vitamin D-deficient study participants. Latest investigations have also evidenced that vitamin D is essential in muscle development and repair. In particular, it modulates skeletal muscle cell proliferation and differentiation. However, discrepancies still exist about an enhancement or a decrease of muscle proliferation and differentiation by the vitamin D. Recently, it has been demonstrated that vitamin D influences skeletal muscle cell metabolism as it seems to regulate protein synthesis and mitochondrial function. Finally, apart from its genomic and nongenomic effects, recent investigations have demonstrated a genetic contribution of vitamin D to muscle functioning. Recent studies support the importance of vitamin D in muscle health, and the impact of its deficiency in regard to muscle mass and function. These 'trophic' properties are of particular importance for some specific populations such as elderly persons and athletes, and in situations of loss of muscle mass or function, particularly in the context of chronic diseases.

  16. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities.

    Science.gov (United States)

    Kim, In-Tae; Park, Young-Mi; Won, Jong-Heon; Jung, Hyun-Ju; Park, Hee-Juhn; Choi, Jong-Won; Lee, Kyung-Tae

    2005-01-01

    As an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the effects of the methanol extract of the semen of Xanthium strumarium L. (MEXS) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) production in RAW 264.7 cells. Our data indicate that MEXS is a potent inhibitor of NO, PGE2 and TNF-alpha production. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2 and TNF-alpha mRNA were down-regulated in a concentration-dependent manner. Furthermore, MEXS inhibited nuclear factor kappa B (NF-kappaB) DNA binding activity and the translocation of NF-kappaB to the nucleus by blocking the degradation of inhibitor of kappa B-alpha (IkappaB-alpha). We further evaluated the anti-inflammatory and anti-nociceptive activities of MEXS in vivo. MEXS (100, 200 mg/kg/d, p.o.) reduced acute paw edema induced by carrageenin in rats, and showed analgesic activities in an acetic acid-induced abdominal constriction test and a hot plate test in mice. Thus, our study suggests that the inhibitions of iNOS, COX-2 expression, and TNF-alpha release by the methanol extract of the semen of Xanthium strumarium L. are achieved by blocking NF-kappaB activation, and that this is also responsible for its anti-inflammatory effects.

  17. MRI appearance of muscle denervation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, S. [University Hospital of Wales, Department of Radiology, Cardiff (United Kingdom); Venkatanarasimha, N.; Walsh, M.A.; Hughes, P.M. [Derriford Hospital, Department of Radiology, Plymouth (United Kingdom)

    2008-05-15

    Muscle denervation results from a variety of causes including trauma, neoplasia, neuropathies, infections, autoimmune processes and vasculitis. Traditionally, the diagnosis of muscle denervation was based on clinical examination and electromyography. Magnetic resonance imaging (MRI) offers a distinct advantage over electromyography, not only in diagnosing muscle denervation, but also in determining its aetiology. MRI demonstrates characteristic signal intensity patterns depending on the stage of muscle denervation. The acute and subacutely denervated muscle shows a high signal intensity pattern on fluid sensitive sequences and normal signal intensity on T1-weighted MRI images. In chronic denervation, muscle atrophy and fatty infiltration demonstrate high signal changes on T1-weighted sequences in association with volume loss. The purpose of this review is to summarise the MRI appearance of denervated muscle, with special emphasis on the signal intensity patterns in acute and subacute muscle denervation. (orig.)

  18. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  19. Substance Use and Mental Health

    Science.gov (United States)

    ... and Alcohol Tobacco Learn More Substance Use and Mental Health Drugs and Alcohol Did you know that addiction ... Plus – also en Español Treatment Substance Abuse and Mental Health Administration (SAMHSA): SAMHSA’s National Helpline: 1-800-662- ...

  20. Observational Study on the Occurrence of Muscle Spindles in Human Digastric and Mylohyoideus Muscles

    Directory of Open Access Journals (Sweden)

    Daniele Saverino

    2014-01-01

    Full Text Available Although the occurrence of muscle spindles (MS is quite high in most skeletal muscles of humans, few MS, or even absence, have been reported in digastric and mylohyoideus muscles. Even if this condition is generally accepted and quoted in many papers and books, observational studies are scarce and based on histological sections of a low number of specimens. The aim of the present study is to confirm previous data, assessing MS number in a sample of digastric and mylohyoideus muscles. We investigated 11 digastric and 6 mylohyoideus muscles from 13 donors. Muscle samples were embedded in paraffin wax, cross-sectioned in a rostrocaudal direction, and stained using haematoxylin-eosin. A mean of 5.1 ± 1.1 (range 3–7 MS was found in digastric muscles and mean of 0.5 ± 0.8 (range 0–2 in mylohyoideus muscles. A significant difference (P<0.001 was found with the control sample, confirming the correctness of the histological procedure. Our results support general belief that the absolute number of spindles is sparse in digastric and mylohyoideus muscles. External forces, such as food resistance during chewing or gravity, do not counteract jaw-opening muscles. It is conceivable that this condition gives them a limited proprioceptive importance and a reduced need for having specific receptors as MS.