WorldWideScience

Sample records for muscle insulin signalling

  1. Influence of Unweighting on Insulin Signal Transduction in Muscle

    Science.gov (United States)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  2. Regulation of PDH, GS and insulin signalling in skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup

    of inflammation on resting and exercise-induced PDH regulation in human skeletal muscle and 4) The effect of IL-6 on PDH regulation in mouse skeletal muscle. Study I demonstrated that bed rest–induced insulin resistance was associated with reduced insulinstimulated GS activity and Akt signaling as well...

  3. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  4. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    and increased similarly in both legs during the clamp and L-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand....

  5. Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    2013-11-01

    Full Text Available Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling.

  6. Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Brian T. O’Neill

    2015-05-01

    Full Text Available Insulin and insulin-like growth factor 1 (IGF-1 are major regulators of muscle protein and glucose homeostasis. To determine how these pathways interact, we generated mice with muscle-specific knockout of IGF-1 receptor (IGF1R and insulin receptor (IR. These MIGIRKO mice showed >60% decrease in muscle mass. Despite a complete lack of insulin/IGF-1 signaling in muscle, MIGIRKO mice displayed normal glucose and insulin tolerance. Indeed, MIGIRKO mice showed fasting hypoglycemia and increased basal glucose uptake. This was secondary to decreased TBC1D1 resulting in increased Glut4 and Glut1 membrane localization. Interestingly, overexpression of a dominant-negative IGF1R in muscle induced glucose intolerance in MIGIRKO animals. Thus, loss of insulin/IGF-1 signaling impairs muscle growth, but not whole-body glucose tolerance due to increased membrane localization of glucose transporters. Nonetheless, presence of a dominant-negative receptor, even in the absence of functional IR/IGF1R, induces glucose intolerance, indicating that interactions between these receptors and other proteins in muscle can impair glucose homeostasis.

  7. Denervation and high-fat diet reduce insulin signaling in T-tubules in skeletal muscle of living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M; Ploug, Thorkil; Ai, Hua

    2008-01-01

    OBJECTIVE: Insulin stimulates muscle glucose transport by translocation of GLUT4 to sarcolemma and T-tubules. Despite muscle glucose uptake playing a major role in insulin resistance and type 2 diabetes, the temporal and spatial changes in insulin signaling and GLUT4 translocation during these co...

  8. Racl Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Sylow, L.; Jensen, T. E.; Kleinert, M.

    2013-01-01

    The actin cytoskeleton-regulating GTPase Racl is required for insulin-stimulated GLUT4 translocation in cultured muscle cells. However, involvement of Racl and its downstream signaling in glucose transport in insulin-sensitive and insulin-resistant mature skeletal muscle has not previously been i...

  9. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  10. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  11. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways.

    Science.gov (United States)

    Cersosimo, Eugenio; Xu, Xiaojing; Musi, Nicolas

    2012-02-15

    To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.

  12. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth; Bojsen-Moller, Kirstine N; Dirksen, Carsten

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of this study was to investigate the effect of RYGB on expression and regulation of proteins involved in regulation of peripheral glucose metabolism. Skeletal muscle and adipose tissue biopsies from glucose...... tolerant and type 2 diabetic subjects at fasting and during a hyperinsulinemic-euglycemic clamp before as well as 1 week, 3 and 12 months after RYGB were analyzed for relevant insulin effector proteins/signaling components. Improvement in peripheral insulin sensitivity mainly occurred at 12 months post-surgery...... and glycogen synthase activity were enhanced 12 months post-surgery. In adipose tissue, protein expression of GLUT4, Akt2, TBC1D4 and acetyl-CoA carboxylase (ACC), phosphorylated levels of AMP-activated protein kinase and ACC as well as insulin-induced changes in phosphorylation of Akt and TBC1D4 were enhanced...

  13. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression

    DEFF Research Database (Denmark)

    Ozanne, SE; Jensen, CB; Tingey, KJ

    2005-01-01

    muscle in a human cohort and a rat model. METHODS: We recruited 20 young men with low birthweight (mean birthweight 2702+/-202 g) and 20 age-matched control subjects (mean birthweight 3801+/-99 g). Biopsies were obtained from the vastus lateralis muscle and protein expression of selected insulin......-signalling proteins was determined. Rats used for this study were male offspring born to dams fed a standard (20%) protein diet or a low (8%) protein diet during pregnancy and lactation. Protein expression was determined in soleus muscle from adult offspring. RESULTS: Low-birthweight subjects showed reduced muscle...... expression of protein kinase C (PKC)zeta, p85alpha, p110beta and GLUT4. PKCzeta, GLUT4 and p85 were also reduced in the muscle of rats fed a low-protein diet. Other proteins studied were unchanged in low-birthweight humans and in rats fed a low-protein diet when compared with control groups. CONCLUSIONS...

  14. Skeletal muscle and hepatic insulin signaling is maintained in heat-stressed lactating Holstein cows.

    Science.gov (United States)

    Xie, G; Cole, L C; Zhao, L D; Skrzypek, M V; Sanders, S R; Rhoads, M L; Baumgard, L H; Rhoads, R P

    2016-05-01

    period, but the phosphorylation ratio (abundance of phosphorylated protein:abundance of total protein) of AKT was decreased in P2 for TNPF animals, but not during WFHS. These results indicate that mild systemic insulin resistance during HS may be related to reduced nutrient intake but skeletal muscle and liver insulin signaling remains unchanged. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors.

    Science.gov (United States)

    Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee; Kelly, Ryan M; Kish, Phillip E; Kahana, Alon

    2018-01-01

    Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.

  16. Human muscle fiber type-specific insulin signaling: Impact of obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth; Pedersen, Andreas J T; Birk, Jesper Bratz

    2015-01-01

    Skeletal muscle is a heterogeneous tissue composed of different fiber types. Studies suggest that insulin-mediated glucose metabolism is different between muscle fiber types. We hypothesized that differences are due to fiber-type specific expression/regulation of insulin signaling elements and....../or metabolic enzymes. Pools of type I and II fibers were prepared from biopsies of the vastus lateralis muscles from lean, obese and type 2 diabetic subjects before and after a hyperinsulinemic-euglycemic clamp. Type I fibers compared to type II fibers have higher protein levels of the insulin receptor, GLUT4......, hexokinase II, glycogen synthase (GS), pyruvate dehydrogenase (PDH-E1α) and a lower protein content of Akt2, TBC1D4 and TBC1D1. In type I fibers compared to type II fibers, the phosphorylation-response to insulin was similar (TBC1D4, TBC1D1 and GS) or decreased (Akt and PDH-E1α). Phosphorylation...

  17. Insulin signaling in skeletal muscle of HIV‐infected patients in response to endurance and strength training

    DEFF Research Database (Denmark)

    Broholm, Christa; Mathur, Neha; Hvid, Thine

    2013-01-01

    . Euglycemic-hyperinsulinemic clamps with muscle biopsies were performed before and after the training interventions. Fifteen age- and body mass index (BMI)-matched HIV-negative men served as a sedentary baseline group. Phosphorylation and total protein expression of insulin signaling molecules as well...... hexokinase II (HKII) protein. HIV-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake in skeletal muscle and defects in insulin-stimulated phosphorylation of Akt(thr308). Endurance and strength training increase insulin-stimulated glucose uptake in these patients......Human immunodeficiency virus (HIV)-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake. Both endurance and resistance training improve insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients, but the mechanisms are unknown. This study aims...

  18. Physical inactivity affects skeletal muscle insulin signaling in a birth weight-dependent manner

    DEFF Research Database (Denmark)

    Mortensen, Brynjulf; Friedrichsen, Martin; Andersen, Nicoline Resen

    2014-01-01

    We investigated whether physical inactivity could unmask defects in insulin and AMPK signaling in low birth weight (LBW) subjects.......We investigated whether physical inactivity could unmask defects in insulin and AMPK signaling in low birth weight (LBW) subjects....

  19. Antenatal corticosteroids alter insulin signaling pathways in fetal baboon skeletal muscle.

    Science.gov (United States)

    Blanco, Cynthia L; Moreira, Alvaro G; McGill-Vargas, Lisa L; Anzueto, Diana G; Nathanielsz, Peter; Musi, Nicolas

    2014-05-01

    We hypothesize that prenatal exposure to glucocorticoids (GCs) negatively alters the insulin signal transduction pathway and has differing effects on the fetus according to gestational age (GA) at exposure. Twenty-three fetal baboons were delivered from 23 healthy, nondiabetic mothers. Twelve preterm (0.67 GA) and 11 near-term (0.95 GA) baboons were killed immediately after delivery. Half of the pregnant baboons at each gestation received two doses of i.m. betamethasone 24 h apart (170 μg/kg) before delivery, while the other half received no intervention. Vastus lateralis muscle was obtained from postnatal animals to measure the protein content and gene expression of insulin receptor β (IRβ; INSR), IRβ Tyr 1361 phosphorylation (pIRβ), IR substrate 1 (IRS1), IRS1 tyrosine phosphorylation (pIRS1), p85 subunit of PI3-kinase, AKT (protein kinase B), phospho-AKT Ser473 (pAKT), AKT1, AKT2, and glucose transporters (GLUT1 and GLUT4). Skeletal muscle from preterm baboons exposed to GCs had markedly reduced protein content of AKT and AKT1 (respectively, 73 and 72% from 0.67 GA control, P<0.001); IRβ and pIRβ were also decreased (respectively, 94 and 85%, P<0.01) in the muscle of premature GC-exposed fetuses but not in term fetuses. GLUT1 and GLUT4 tended to increase with GC exposure in preterm animals (P=0.09), while GLUT4 increased sixfold in term animals after exposure to GC (P<0.05). In conclusion, exposure to a single course of antenatal GCs during fetal life alters the insulin signaling pathway in fetal muscle in a manner dependent on the stage of gestation.

  20. Akt and Rac1 signalling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance

    DEFF Research Database (Denmark)

    Sylow, Lykke; Kleinert, Maximilian; Pehmøller, Christian

    2014-01-01

    Skeletal muscle plays a major role in regulating whole body glucose metabolism. Akt and Rac1 are important regulators of insulin-stimulated glucose uptake in skeletal muscle. However the relative role of each pathway and how they interact is not understood. Here we delineate how Akt and Rac1...... pathways signal to increase glucose transport independently of each other and are simultaneously downregulated in insulin resistant muscle. Pharmacological inhibition of Rac1 and Akt signalling was used to determine the contribution of each pathway to insulin-stimulated glucose uptake in mouse muscles....... The actin filament-depolymerizing agent LatrunculinB was combined with pharmacological inhibition of Rac1 or Akt, to examine whether either pathway mediates its effect via the actin cytoskeleton. Akt and Rac1 signalling were investigated under each condition, as well as upon Akt2 knockout and in ob/ob mice...

  1. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  2. Insulin and GH signaling in human skeletal muscle in vivo following exogenous GH exposure: impact of an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Thomas Krusenstjerna-Hafstrøm

    2011-05-01

    Full Text Available GH induces acute insulin resistance in skeletal muscle in vivo, which in rodent models has been attributed to crosstalk between GH and insulin signaling pathways. Our objective was to characterize time course changes in signaling pathways for GH and insulin in human skeletal muscle in vivo following GH exposure in the presence and absence of an oral glucose load.Eight young men were studied in a single-blinded randomized crossover design on 3 occasions: 1 after an intravenous GH bolus 2 after an intravenous GH bolus plus an oral glucose load (OGTT, and 3 after intravenous saline plus OGTT. Muscle biopsies were taken at t = 0, 30, 60, and 120. Blood was sampled at frequent intervals for assessment of GH, insulin, glucose, and free fatty acids (FFA.GH increased AUC(glucose after an OGTT (p<0.05 without significant changes in serum insulin levels. GH induced phosphorylation of STAT5 independently of the OGTT. Conversely, the OGTT induced acute phosphorylation of the insulin signaling proteins Akt (ser(473 and thr(308, and AS160.The combination of OGTT and GH suppressed Akt activation, whereas the downstream expression of AS160 was amplified by GH. WE CONCLUDED THE FOLLOWING: 1 A physiological GH bolus activates STAT5 signaling pathways in skeletal muscle irrespective of ambient glucose and insulin levels 2 Insulin resistance induced by GH occurs without a distinct suppression of insulin signaling proteins 3 The accentuation of the glucose-stimulated activation of AS 160 by GH does however indicate a potential crosstalk between insulin and GH.ClinicalTrials.gov NCT00477997.

  3. Exercise Protects Against Defective Insulin Signaling and Insulin Resistance of Glucose Transport in Skeletal Muscle of Angiotensin II-Infused Rat

    Directory of Open Access Journals (Sweden)

    Juthamard Surapongchai

    2018-04-01

    Full Text Available Objectives: The present study investigated the impact of voluntary exercise on insulin-stimulated glucose transport and the protein expression and phosphorylation status of the signaling molecules known to be involved in the glucose transport process in the soleus muscle as well as other cardiometabolic risks in a rat model with insulin resistance syndrome induced by chronic angiotensin II (ANGII infusion.Materials and Methods: Male Sprague-Dawley rats were assigned to sedentary or voluntary wheel running (VWR groups. Following a 6-week period, rats in each group were subdivided and subcutaneously administered either normal saline or ANGII at 100 ng/kg/min for 14 days. Blood pressure, glucose tolerance, insulin-stimulated glucose transport and signaling proteins, including insulin receptor (IR, insulin receptor substrate 1 (IRS-1, Akt, Akt substrate of 160 kDa (AS160, AMPKα, c-Jun NH2-terminal kinase (JNK, p38 MAPK, angiotensin converting enzyme (ACE, ANGII type 1 receptor (AT1R, ACE2, Mas receptor (MasR and oxidative stress marker in the soleus muscle, were evaluated.Results: Exercise protected against the insulin resistance of glucose transport and defective insulin signaling molecules in the soleus muscle; this effect was associated with a significant increase in AMPK Thr172 (43% and decreases in oxidative stress marker (31% and insulin-induced p38 MAPK Thr180/Tyr182 (45% and SAPK/JNK Thr183/Tyr185 (25%, without significant changes in expression of AT1R, AT2R, ACE, ACE2, and MasR when compared to the sedentary rats given ANGII infusion. At the systemic level, VWR significantly decreased body weight, fat weight, and systolic blood pressure as well as improved serum lipid profiles.Conclusion: Voluntary exercise can alleviate insulin resistance of glucose transport and impaired insulin signaling molecules in the soleus muscle and improve whole-body insulin sensitivity in rats chronically administered with ANGII.

  4. Acute effects of different diet compositions on skeletal muscle insulin signalling in obese individuals during caloric restriction

    Science.gov (United States)

    Wang, Cecilia C.L.; Adochio, Rebecca L.; Leitner, J. Wayne; Abeyta, Ian M.; Draznin, Boris; Cornier, Marc-Andre

    2012-01-01

    Objective The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity. Materials/Methods Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5 days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5 days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate). Results Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3 ± 1.3 kg (pdiet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser 307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity. Conclusion Acute caloric restriction with a LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with a HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity. PMID:23174405

  5. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    before and during a euglycemic-hyperinsulinemic clamp. IGT relatives were insulin-resistant in oxidative and nonoxidative pathways for glucose metabolism. In vivo insulin infusion increased skeletal muscle insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (P = 0.01) and phosphatidylinositide......To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... 3-kinase (PI 3-kinase) activity (phosphotyrosine and IRS-1 associated) in control subjects (P increase in insulin action on IRS-1 tyrosine phosphorylation was lower in IGT relatives versus control subjects (P

  6. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D

    2011-01-01

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout...... mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  7. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.

    Science.gov (United States)

    Lee, Yang; Fluckey, James D; Chakraborty, Sanjukta; Muthuchamy, Mariappan

    2017-07-01

    Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. © FASEB.

  8. Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation.

    Directory of Open Access Journals (Sweden)

    Juanita K Jellyman

    Full Text Available Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth.

  9. Insulin signaling in skeletal muscle and liver of neonatal pigs during endotoxemia

    Science.gov (United States)

    Sepsis has been associated with tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) overproduction, insulin resistance, and a profound suppression of muscle protein synthesis. However, lesser suppression of muscle protein synthesis in neonatal pigs occurs in response to endotoxin (LPS) whe...

  10. Effect of Peroral Administration of Chromium on Insulin Signaling Pathway in Skeletal Muscle Tissue of Holstein Calves.

    Science.gov (United States)

    Jovanović, Ljubomir; Pantelić, Marija; Prodanović, Radiša; Vujanac, Ivan; Đurić, Miloje; Tepavčević, Snežana; Vranješ-Đurić, Sanja; Korićanac, Goran; Kirovski, Danijela

    2017-12-01

    The objective of this study was to investigate the effects of peroral administration of chromium-enriched yeast on glucose tolerance in Holstein calves, assessed by insulin signaling pathway molecule determination and intravenous glucose tolerance test (IVGTT). Twenty-four Holstein calves, aged 1 month, were chosen for the study and divided into two groups: the PoCr group (n = 12) that perorally received 0.04 mg of Cr/kg of body mass daily, for 70 days, and the NCr group (n = 12) that received no chromium supplementation. Skeletal tissue samples from each calf were obtained on day 0 and day 70 of the experiment. Chromium supplementation increased protein content of the insulin β-subunit receptor, phosphorylation of insulin receptor substrate 1 at Tyrosine 632, phosphorylation of Akt at Serine 473, glucose transporter-4, and AMP-activated protein kinase in skeletal muscle tissue, while phosphorylation of insulin receptor substrate 1 at Serine 307 was not affected by chromium treatment. Results obtained during IVGTT, which was conducted on days 0, 30, 50, and 70, suggested an increased insulin sensitivity and, consequently, a better utilization of glucose in the PoCr group. Lower basal concentrations of glucose and insulin in the PoCr group on days 30 and 70 were also obtained. Our results indicate that chromium supplementation improves glucose utilization in calves by enhancing insulin intracellular signaling in the skeletal muscle tissue.

  11. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected

    DEFF Research Database (Denmark)

    Storgaard, H; Song, X M; Jensen, C B

    2001-01-01

    To determine whether defects in the insulin signal transduction cascade are present in skeletal muscle from prediabetic individuals, we excised biopsies from eight glucose-intolerant male first-degree relatives of patients with type 2 diabetes (IGT relatives) and nine matched control subjects...... phosphorylation in control subjects and IGT relatives, with a tendency for reduced phosphorylation in IGT relatives (P = 0.12). In conclusion, aberrant phosphorylation/activity of IRS-1, PI 3-kinase, and Akt is observed in skeletal muscle from relatives of patients with type 2 diabetes with IGT. However...... resistance in skeletal muscle from relatives of patients with type 2 diabetes....

  13. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Umesh B Masharani

    2011-05-01

    Full Text Available The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots.To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL were assessed by DXA, MRI and (1H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05, while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005 while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005. IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2O peak, P<0.05, who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls.This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired

  14. Muscle atrophy in patients wirh ckd results from fgf23/klotho-mediated supression of insulin/igf-i signaling

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    2012-06-01

    Full Text Available Muscle atrophy is a significant consequence of chronic kidney disease (CKD that increases a patient’s risk of mortality and decrease their quality of life. In CKD patients, the circulation levels of FGF23 are significantly increased, but the exact pathological significance of the increase and relationship between FGF23 and muscle atrophy are not clear. Because of Klohto, acts as a co-receptor of FGF23 is detectable in limited tissues including in kidney and brain, but not in skeletal muscles. In contrast, recently reports indicated that the extracellular domain of klohto is cleavage for some reason on the cell surface and detected in the blood in animals. In this study, we attempted to identify the causative factors responsible for the shedding of Klotho, and whether both FGF23 and Klohto induced muscle atrophy via reduction of insulin/IGF-I signaling. We first investigated by treating kidney cells with various factors related in pathological factors in CKD. As a result, we found that advanced glycation endproducts (AGEs, an accumulated in patients with CKD and diabetes mellitus, increases shedding of Klohto in kidney cells. It is common knowledge that insulin/IGF-I signaling is necessary for normal skeletal growth. As a result, we showed that both FGF23 and Klohto inhibited differentiation of cultured skeletal muscle cells through down-regulation of insulin/IGF-I signaling. These observations suggested a divergent role of FGF23 and soluble klohto in the regulation of skeletal muscle differentiation and thereby muscle atrophy under pathological conditioned in CKD patients. Our results further imply that FGF23/Klohto may serve a new therapeutic target for CKD-induced muscle atrophy.

  15. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials.

    Science.gov (United States)

    Consitt, L A; Clark, B C

    2018-01-01

    The age-related loss of skeletal muscle (sarcopenia) is a major health concern as it is associated with physical disability, metabolic impairments, and increased mortality. The coexistence of sarcopenia with obesity, termed 'sarcopenic obesity', contributes to skeletal muscle insulin resistance and the development of type 2 diabetes, a disease prevalent with advancing age. Despite this knowledge, the mechanisms contributing to sarcopenic obesity remain poorly understood, preventing the development of targeted therapeutics. This article will discuss the clinical and physiological consequences of sarcopenic obesity and propose myostatin as a potential candidate contributing to this condition. A special emphasis will be placed on examining the role of myostatin signaling in impairing both skeletal muscle growth and insulin signaling. In addition, the role of myostatin in regulating muscle-to fat cross talk, further exacerbating metabolic dysfunction in the elderly, will be highlighted. Lastly, we discuss how this knowledge has implications for the design of myostatin-inhibitor clinical trials.

  16. Reduced Insulin/Insulin-like Growth Factor-1 Signaling and Dietary Restriction Inhibit Translation but Preserve Muscle Mass in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Depuydt, Geert; Xie, Fang; Petyuk, Vladislav A.; Shanmugam, Nilesh; Smolders, Arne; Dhondt, Ineke; Brewer, Heather M.; Camp, David G.; Smith, Richard D.; Braeckman, Bart P.

    2013-09-03

    Reduced signaling through the C. elegans insulin/IGF1 like tyrosine kinase receptor daf2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LCMS/MS quantitative proteomics we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction as well as in the daf2(e1370) insulin/IGF1 receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that posttranscriptional regulation determines ribosome content. Proteomics also revealed increased presence of many structural muscle cell components in long-lived worms, which appears to result from prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF16, but not diet-restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf2 specific proteome changes include overexpression of aerobic metabolism enzymes and a general activation of stress responsive and immune defense systems, while increased abundance of many protein subunits of the proteasome core complex is a DR-specific characteristic.

  17. Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring.

    Science.gov (United States)

    Yan, Xu; Huang, Yan; Zhao, Jun-Xing; Long, Nathan M; Uthlaut, Adam B; Zhu, Mei-Jun; Ford, Stephen P; Nathanielsz, Peter W; Du, Min

    2011-07-01

    The prevalence of maternal obesity is increasing rapidly in recent decades. We previously showed that maternal obesity affected skeletal muscle development during the fetal stage. The objective of this study was to evaluate the effects of maternal obesity on the skeletal muscle properties of offspring. Ewes were fed a control diet (100% energy requirement, Con) or an obesogenic diet (150% energy requirement, OB) from 2 mo before pregnancy to weaning. After weaning, the offspring lambs were fed a maintenance diet until 19 mo of age and then ad libitum for 12 wk to measure feed intake. At 22 mo old, the longissimus dorsi (LD) muscle was biopsied. The downstream insulin signaling was lower in OB than Con lambs as shown by reduction in the phosphorylation of protein kinase B, mammalian target of rapamycin, and 4-E binding protein 1. On the other hand, the phosphorylation of protein kinase C and insulin receptor substrate 1 was higher in OB compared to Con lambs. More intramuscular adipocytes were observed in OB compared to Con offspring muscle, and the expression of peroxisome proliferator-activated receptor gamma, an adipocyte marker, was also higher, which was consistent with the higher intramuscular triglyceride content. Both fatty acid transport protein 1 and cluster of differentiation 36 (also known as fatty acid translocase) were increased in the OB group. In addition, higher collagen content was also detected in OB compared to Con offspring. In conclusion, our data show that offspring from obese mothers had impaired insulin signaling in muscle compared with control lambs, which correlates with increased intramuscular triglycerides and higher expression of fatty acid transporters. These data clearly show that maternal obesity impairs the function of the skeletal muscle of offspring, supporting the fetal programming of adult metabolic diseases.

  18. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    Science.gov (United States)

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  20. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  1. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects.

    Science.gov (United States)

    Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee; Shanmugasundaram, Karthigayan; Mohan, Sumathy; Espinoza, Sara; Defronzo, Ralph A; Dubé, John J; Musi, Nicolas

    2013-06-01

    Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IBα protein (an indication of decreased IB kinase-nuclear factor B signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs.

  2. Improved insulin sensitivity after exercise: focus on insulin signaling

    DEFF Research Database (Denmark)

    Frøsig, Christian; Richter, Erik

    2009-01-01

    After a single bout of exercise, the ability of insulin to stimulate glucose uptake is markedly improved locally in the previously active muscles. This makes exercise a potent stimulus counteracting insulin resistance characterizing type 2 diabetes (T2D). It is believed that at least part...... of the mechanism relates to an improved ability of insulin to stimulate translocation of glucose transporters (GLUT4) to the muscle membrane after exercise. How this is accomplished is still unclear; however, an obvious possibility is that exercise interacts with the insulin signaling pathway to GLUT4...... translocation allowing for a more potent insulin response. Parallel to unraveling of the insulin signaling cascade, this has been investigated within the past 25 years. Reviewing existing studies clearly indicates that improved insulin action can occur independent of interactions with proximal insulin signaling...

  3. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    Science.gov (United States)

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (pzinc alone. Insulin, as expected, increased glucose oxidation in mouse (pzinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  4. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takenaka

    Full Text Available Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.

  5. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Directory of Open Access Journals (Sweden)

    Abhishek Ghosh

    2014-10-01

    Full Text Available The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  6. Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat

    International Nuclear Information System (INIS)

    Srinivasan, Chinnapaiyan; Khan, Adam Ismail; Balaji, Venkataraman; Selvaraj, Jayaraman; Balasubramanian, Karundevi

    2011-01-01

    Diethyl hexyl phthalate (DEHP) is an endocrine disruptor, it influences various organ systems in human beings and experimental animals. DEHP reduced the serum testosterone and increased the blood glucose, estradiol, T 3 and T 4 in rats. However, the effect of DEHP on insulin signaling and glucose oxidation in skeletal muscle is not known. Adult male albino rats were divided into four groups: Group I: Control; Groups II and III: DEHP treated (dissolved in olive oil at a dose of 10 and 100 mg/kg body weight, respectively, once daily through gastric intubation for 30 days); and Group IV: DEHP (100 mg/kg body weight) plus vitamins E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubation for 30 days. On completion of treatment, animals were euthanized and perfused (whole body); gastrocnemius muscle was dissected out and subjected to assessment of various parameters. DEHP treatment increased the H 2 O 2 , hydroxyl radical levels and lipid peroxidation which disrupt the membrane integrity and insulin receptor. DEHP impaired the insulin signal transduction, glucose uptake and oxidation through decreased expression of plasma membrane GLUT4, which may partly be responsible for the elevation of fasting blood glucose level. The present study suggests that DEHP exposure affects glucose oxidation in skeletal muscle and is mediated through enhanced lipid peroxidation, impaired insulin signaling and GLUT4 expression in plasma membrane. Antioxidant vitamins (C and E) have a protective role against the adverse effect of DEHP. -- Highlights: ► DEHP treatment significantly decreased serum insulin and testosterone levels. ► Increased ROS and decreased glucose uptake were observed in DEHP treated animals. ► Impaired insulin signaling in gastrocnemius muscle was observed in DEHP treatment. ► Vitamins C and E alter ROS, glucose uptake, oxidation and insulin signaling molecules.

  7. Insulin resistance and improvements in signal transduction.

    Science.gov (United States)

    Musi, Nicolas; Goodyear, Laurie J

    2006-02-01

    Type 2 diabetes and obesity are common metabolic disorders characterized by resistance to the actions of insulin to stimulate skeletal muscle glucose disposal. Insulin-resistant muscle has defects at several steps of the insulin-signaling pathway, including decreases in insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, and phosphatidylinositol 3-kinase (PI 3-kinase) activation. One approach to increase muscle glucose disposal is to reverse/improve these insulin-signaling defects. Weight loss and thiazolidinediones (TZDs) improve glucose disposal, in part, by increasing insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation and PI 3-kinase activity. In contrast, physical training and metformin improve whole-body glucose disposal but have minimal effects on proximal insulin-signaling steps. A novel approach to reverse insulin resistance involves inhibition of the stress-activated protein kinase Jun N-terminal kinase (JNK) and the protein tyrosine phosphatases (PTPs). A different strategy to increase muscle glucose disposal is by stimulating insulin-independent glucose transport. AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge and becomes activated in situations of energy consumption, such as muscle contraction. Several studies have shown that pharmacologic activation of AMPK increases glucose transport in muscle, independent of the actions of insulin. AMPK activation is also involved in the mechanism of action of metformin and adiponectin. Moreover, in the hypothalamus, AMPK regulates appetite and body weight. The effect of AMPK to stimulate muscle glucose disposal and to control appetite makes it an important pharmacologic target for the treatment of type 2 diabetes and obesity.

  8. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    Science.gov (United States)

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  9. Insulin signaling and skeletal muscle atrophy and autophagy in transition dairy cows either overfed energy or fed a controlled energy diet prepartum.

    Science.gov (United States)

    Mann, S; Abuelo, A; Nydam, D V; Leal Yepes, F A; Overton, T R; Wakshlag, J J

    2016-05-01

    During periods of negative energy balance, mobilization of muscle is a physiologic process providing energy and amino acids. This is important in transition dairy cows experiencing negative energy and protein balance postpartum. Overconsumption of energy during late pregnancy affects resting glucose and insulin concentrations peripartum and increases the risk for hyperketonemia postpartum, but the effects on muscle tissue are not fully understood. Skeletal muscle accounts for the majority of insulin-dependent glucose utilization in ruminants. Our objective was to study peripartal skeletal muscle insulin signaling as well as muscle accretion and atrophy in cows with excess energy consumption prepartum. Skeletal muscle biopsies were obtained 28 and 10 days prepartum, as well as 4 and 21 days postpartum from 24 Holstein cows. Biopsies were taken immediately before and 60 min after intravenous glucose challenge causing endogenous release of insulin. Gene expression of IGF-1, myostatin, and atrogin-1, as well as immunoblot analysis of atrogin-1, muRF1, ubiquitinated proteins, LC3, and phosphorylation of AKT, ERK and mTORC1 substrate 4EBP1 was performed. Excess energy consumption in late pregnancy did not lead to changes in insulin-dependent molecular regulation of muscle accretion or atrophy compared with the controlled energy group. In both groups, phosphorylation of AKT and mTORC1 substrate was significantly decreased postpartum whereas proteasome activity and macroautopagy were upregulated. This study showed that in addition to the proteasome pathway of muscle atrophy, macroautophagy is upregulated in postpartum negative energy and protein balance regardless of dietary energy strategy prepartum and was higher in cows overfed energy throughout the study period.

  10. Skeletal Muscle Insulin Resistance in Endocrine Disease

    Directory of Open Access Journals (Sweden)

    Melpomeni Peppa

    2010-01-01

    Full Text Available We summarize the existing literature data concerning the involvement of skeletal muscle (SM in whole body glucose homeostasis and the contribution of SM insulin resistance (IR to the metabolic derangements observed in several endocrine disorders, including polycystic ovary syndrome (PCOS, adrenal disorders and thyroid function abnormalities. IR in PCOS is associated with a unique postbinding defect in insulin receptor signaling in general and in SM in particular, due to a complex interaction between genetic and environmental factors. Adrenal hormone excess is also associated with disrupted insulin action in peripheral tissues, such as SM. Furthermore, both hyper- and hypothyroidism are thought to be insulin resistant states, due to insulin receptor and postreceptor defects. Further studies are definitely needed in order to unravel the underlying pathogenetic mechanisms. In summary, the principal mechanisms involved in muscle IR in the endocrine diseases reviewed herein include abnormal phosphorylation of insulin signaling proteins, altered muscle fiber composition, reduced transcapillary insulin delivery, decreased glycogen synthesis, and impaired mitochondrial oxidative metabolism.

  11. Dissociation between fat-induced in vivo insulin resistance and proximal insulin signaling in skeletal muscle in men at risk for type 2 diabetes

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Jensen, Christine B; Björnholm, Marie

    2004-01-01

    The effect of short- (2 h) and long-term (24 h) low-grade Intralipid infusion on whole-body insulin action, cellular glucose metabolism, and proximal components of the insulin signal transduction cascade was studied in seven obese male glucose intolerant first degree relatives of type 2 diabetic...... h Intralipid infusion (0.4 ml.kg(-1).min(-1)). Insulin-stimulated glucose disposal decreased approximately 25% after short- and long-term fat infusion in both IGT relatives and controls. Glucose oxidation decreased and lipid oxidation increased after both short- and long-term fat infusion in both...... groups. Insulin-stimulated glucose oxidation was higher after long-term as compared with short-term fat infusion in control subjects. Short- or long-term infusion did not affect the absolute values of basal or insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation, tyrosine...

  12. Transient gestational exposure to drinking water containing excess hexavalent chromium modifies insulin signaling in liver and skeletal muscle of rat progeny.

    Science.gov (United States)

    Shobana, Navaneethabalakrishnan; Aruldhas, Mariajoseph Michael; Tochhawng, Lalmuankimi; Loganathan, Ayyalu; Balaji, Sadhasivam; Kumar, Mani Kathiresh; Banu, Liaquat Alikhan Sheerin; Navin, Ajit Kumar; Mayilvanan, Chinnaiyan; Ilangovan, Ramachandran; Balasubramanian, Karundevi

    2017-11-01

    Chromium (Cr), an essential micronutrient potentiates insulin action, whereas excess hexavalent Cr (CrVI) acts as an endocrine disruptor. Pregnant mothers living in areas abutting industries using the metal and chromite ore dumps are exposed to ground water contaminated with Cr. Nevertheless, the impact of prenatal exposure to excess CrVI on insulin signaling in the progeny remains obscure. We tested the hypothesis "transient gestational exposure to drinking water containing excess CrVI may modify insulin signaling during postnatal life". Pregnant Wistar rats were given drinking water containing 50, 100 and 200 ppm CrVI (K 2 Cr 2 O 7 ) from gestational day 9-14 encompassing the period of organogenesis; the male progenies were tested at postnatal day 60. Neither fasting blood glucose nor oral glucose tolerance was altered in CrVI treated progeny. Nevertheless, western blot detection pointed out attenuated expression level of insulin receptor (IR), its downstream signaling molecules (IRS-1, pIRS-1 Tyr632 , Akt and pAkt Ser473 ) and organ specific glucose transporters (GLUT2 in liver and GLUT4 in gastrocnemius muscle), along with a significant increase in serum insulin level in male progenies exposed to CrVI. While 14 C-2-deoxy glucose uptake increased in the liver, the same decreased in the skeletal muscle whereas, 14 C-glucose oxidation recorded a consistent decrease in both tissues of CrVI exposed rats. These findings support our hypothesis and suggest that transient gestational exposure to excess CrVI may affect insulin signaling and glucose oxidation in the progeny, predictably rendering them vulnerable to insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway.

    Science.gov (United States)

    Tian, Chunyu; Chang, Hong; La, Xiaojin; Li, Ji-An

    2017-01-01

    Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo , WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro , WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion . These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.

  14. Wushenziye Formula Improves Skeletal Muscle Insulin Resistance in Type 2 Diabetes Mellitus via PTP1B-IRS1-Akt-GLUT4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chunyu Tian

    2017-01-01

    Full Text Available Background. Wushenziye formula (WSZYF is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM. Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.

  15. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    transporter protein 4 (GLUT4) to the plasma membrane which leads to facilitated diffusion of glucose into the cell. Understanding the precise signaling events guiding insulin-stimulated glucose uptake is pivotal, because impairment in these signaling events leads to development of insulin resistance and type...... 2 diabetes. This review summarizes current understanding of insulin signaling pathways mediating glucose uptake in healthy and insulin-resistant skeletal muscle....

  16. Diethyl hexyl phthalate-induced changes in insulin signaling molecules and the protective role of antioxidant vitamins in gastrocnemius muscle of adult male rat

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Chinnapaiyan; Khan, Adam Ismail; Balaji, Venkataraman; Selvaraj, Jayaraman; Balasubramanian, Karundevi, E-mail: kbala82@rediffmail.com

    2011-12-15

    Diethyl hexyl phthalate (DEHP) is an endocrine disruptor, it influences various organ systems in human beings and experimental animals. DEHP reduced the serum testosterone and increased the blood glucose, estradiol, T{sub 3} and T{sub 4} in rats. However, the effect of DEHP on insulin signaling and glucose oxidation in skeletal muscle is not known. Adult male albino rats were divided into four groups: Group I: Control; Groups II and III: DEHP treated (dissolved in olive oil at a dose of 10 and 100 mg/kg body weight, respectively, once daily through gastric intubation for 30 days); and Group IV: DEHP (100 mg/kg body weight) plus vitamins E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubation for 30 days. On completion of treatment, animals were euthanized and perfused (whole body); gastrocnemius muscle was dissected out and subjected to assessment of various parameters. DEHP treatment increased the H{sub 2}O{sub 2}, hydroxyl radical levels and lipid peroxidation which disrupt the membrane integrity and insulin receptor. DEHP impaired the insulin signal transduction, glucose uptake and oxidation through decreased expression of plasma membrane GLUT4, which may partly be responsible for the elevation of fasting blood glucose level. The present study suggests that DEHP exposure affects glucose oxidation in skeletal muscle and is mediated through enhanced lipid peroxidation, impaired insulin signaling and GLUT4 expression in plasma membrane. Antioxidant vitamins (C and E) have a protective role against the adverse effect of DEHP. -- Highlights: Black-Right-Pointing-Pointer DEHP treatment significantly decreased serum insulin and testosterone levels. Black-Right-Pointing-Pointer Increased ROS and decreased glucose uptake were observed in DEHP treated animals. Black-Right-Pointing-Pointer Impaired insulin signaling in gastrocnemius muscle was observed in DEHP treatment. Black

  17. Partial rescue of in vivo insulin signalling in skeletal muscle by impaired insulin clearance in heterozygous carriers of a mutation in the insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, K.; Wojtaszewski, Jørgen; Birk, Jesper Bratz

    2006-01-01

    AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable,...

  18. Pharmacodynamic/Pharmacogenomic Modeling of Insulin Resistance Genes in Rat Muscle After Methylprednisolone Treatment: Exploring Regulatory Signaling Cascades

    Directory of Open Access Journals (Sweden)

    Zhenling Yao

    2008-01-01

    Full Text Available Corticosteroids (CS effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX rats were given single doses of 50 mg/kg methylprednisolone (MPL intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1, uncoupling protein 3 (UCP3, pyruvate dehydrogenase kinase isoenzyme 4 (PDK4, fatty acid translocase (FAT and glycerol-3-phosphate acyltransferase (GPAT dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N and transcription factors. The oscillatory feature of endothelin-1 (ET-1 expression was depicted by a negative feedback loop. These integrated models provide test- able quantitative hypotheses for these regulatory cascades.

  19. Electrical vs manual acupuncture stimulation in a rat model of polycystic ovary syndrome: different effects on muscle and fat tissue insulin signaling.

    Directory of Open Access Journals (Sweden)

    Julia Johansson

    Full Text Available In rats with dihydrotestosterone (DHT-induced polycystic ovary syndrome (PCOS, repeated low-frequency electrical stimulation of acupuncture needles restores whole-body insulin sensitivity measured by euglycemic hyperinsulinemic clamp. We hypothesized that electrical stimulation causing muscle contractions and manual stimulation causing needle sensation have different effects on insulin sensitivity and related signaling pathways in skeletal muscle and adipose tissue, with electrical stimulation being more effective in DHT-induced PCOS rats. From age 70 days, rats received manual or low-frequency electrical stimulation of needles in abdominal and hind limb muscle five times/wk for 4-5 wks; controls were handled but untreated rats. Low-frequency electrical stimulation modified gene expression (decreased Tbc1d1 in soleus, increased Nr4a3 in mesenteric fat and protein expression (increased pAS160/AS160, Nr4a3 and decreased GLUT4 by western blot and increased GLUT4 expression by immunohistochemistry in soleus muscle; glucose clearance during oral glucose tolerance tests was unaffected. Manual stimulation led to faster glucose clearance and modified mainly gene expression in mesenteric adipose tissue (increased Nr4a3, Mapk3/Erk, Adcy3, Gsk3b, but not protein expression to the same extent; however, Nr4a3 was reduced in soleus muscle. The novel finding is that electrical and manual muscle stimulation affect glucose homeostasis in DHT-induced PCOS rats through different mechanisms. Repeated electrical stimulation regulated key functional molecular pathways important for insulin sensitivity in soleus muscle and mesenteric adipose tissue to a larger extent than manual stimulation. Manual stimulation improved whole-body glucose tolerance, an effect not observed after electrical stimulation, but did not affect molecular signaling pathways to the same extent as electrical stimulation. Although more functional signaling pathways related to insulin sensitivity

  20. Skeletal muscle insulin signaling defects downstream of phosphatidylinositol 3-kinase at the level of akt are associated with impaired nonoxidative glucose disposal in HIV lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, Steen B.; Andersen, Ove; Madsbad, Sten

    2005-01-01

    More than 40% of HIV-infected patients on highly active antiretroviral therapy (HAART) experience fat redistribution (lipodystrophy), a syndrome associated with insulin resistance primarily affecting insulin-stimulated nonoxidative glucose metabolism (NOGM(ins)). Skeletal muscle biopsies, obtained...

  1. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    Science.gov (United States)

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  2. Higher intramuscular triacylglycerol in women does not impair insulin sensitivity and proximal insulin signaling

    DEFF Research Database (Denmark)

    Høeg, Louise; Roepstorff, Carsten; Thiele, Maja

    2009-01-01

    that despite 47% higher IMTG levels in women in the follicular phase whole body as well as leg insulin sensitivity are higher than in matched men. This was not explained by sex differences in proximal insulin signalling in women. In women it seems that a high capillary density and type 1 muscle fiber...... expression may be important for insulin action. Key words: Muscle Triglycerides, gender, insulin action, sex paradox....

  3. Insulin Signaling and Heart Failure

    Science.gov (United States)

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  4. Characterization of the chicken muscle insulin receptor

    International Nuclear Information System (INIS)

    Adamo, M.; Simon, J.; Rosebrough, R.W.; McMurtry, J.P.; Steele, N.C.; LeRoith, D.

    1987-01-01

    Insulin receptors are present in chicken skeletal muscle. Crude membrane preparations demonstrated specific 125 I-insulin binding. The nonspecific binding was high (36-55% of total binding) and slightly lower affinity receptors were found than are typically observed for crude membrane insulin binding in other chicken tissues. Affinity crosslinking of 125 I-insulin to crude membranes revealed insulin receptor alpha-subunits of Mr 128K, intermediate between those of liver (134K) and brain (124K). When solubilized and partially purified on wheat germ agglutinin (WGA) affinity columns, chicken muscle insulin receptors exhibited typical high affinity binding, with approximately 10(-10) M unlabeled insulin producing 50% inhibition of the specific 125 I-insulin binding. WGA purified chicken muscle insulin receptors also exhibited insulin-stimulated autophosphorylation of the beta-subunit, which appeared as phosphorylated bands of 92- and 81K. Both bands were immunoprecipitated by anti-receptor antiserum (B10). WGA purified membranes also demonstrated dose-dependent insulin-stimulated phosphorylation of the exogenous substrate poly(Glu,Tyr)4:1. However, unlike chicken liver, chicken muscle insulin receptor number and tyrosine kinase activity were unaltered by 48 hr of fasting or 48 hr of fasting and 24 hr of refeeding. Thus, despite the presence of insulin receptors in chicken muscle showing normal coupling to receptor tyrosine kinase activity, nutritional alterations modulate these parameters in a tissue-specific manner in chickens

  5. Differential effects of exposure to maternal obesity or maternal weight loss during the periconceptional period in the sheep on insulin signalling molecules in skeletal muscle of the offspring at 4 months of age.

    Directory of Open Access Journals (Sweden)

    Lisa M Nicholas

    Full Text Available Exposure to maternal obesity before and/or throughout pregnancy may increase the risk of obesity and insulin resistance in the offspring in childhood and adult life, therefore, resulting in its transmission into subsequent generations. We have previously shown that exposure to maternal obesity around the time of conception alone resulted in increased adiposity in female lambs. Changes in the abundance of insulin signalling molecules in skeletal muscle and adipose tissue precede the development of insulin resistance and type 2 diabetes. It is not clear, however, whether exposure to maternal obesity results in insulin resistance in her offspring as a consequence of the impact of increased adiposity on skeletal muscle or as a consequence of the programming of specific changes in the abundance of insulin signalling molecules in this tissue. We have used an embryo transfer model in the sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for one week after conception on the expression and abundance of insulin signalling molecules in muscle in the offspring. We found that exposure to maternal obesity resulted in lower muscle GLUT-4 and Ser 9 phospho-GSK3α and higher muscle GSK3α abundance in lambs when compared to lambs conceived in normally nourished ewes. Exposure to maternal weight loss in normal or obese mothers, however, resulted in lower muscle IRS1, PI3K, p110β, aPKCζ, Thr 642 phospho-AS160 and GLUT-4 abundance in the offspring. In conclusion, maternal obesity or weight loss around conception have each programmed specific changes on subsets of molecules in the insulin signalling, glucose transport and glycogen synthesis pathways in offspring. There is a need for a stronger evidence base to ensure that weight loss regimes in obese women seeking to become pregnant minimize the metabolic costs for the next generation.

  6. Differential aetiology and impact of phosphoinositide 3-kinase (PI3K) and Akt signalling in skeletal muscle on in vivo insulin action

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Poulsen, P.; Richter, Erik

    2010-01-01

    signalling was evaluated at three key levels, i.e. the insulin receptor, IRS-1 and V-akt murine thymoma viral oncogene (Akt) levels, employing kinase assays and phospho-specific western blotting. RESULTS: Proximal insulin signalling was not associated with obesity, age or sex. However, birthweight...... for most measures of insulin signalling activity. Glucose disposal was positively associated with Akt-308 phosphorylation (p

  7. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  8. Peroxynitrite mediates muscle insulin resistance in mice via nitration of IRβ/IRS-1 and Akt

    International Nuclear Information System (INIS)

    Zhou Jun; Huang Kaixun

    2009-01-01

    Accumulating evidence suggests that peroxynitrite (ONOO - ) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor β subunit (IRβ), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRβ and IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.

  9. Involvement of Rac1 and the actin cytoskeleton in insulin- and contraction-stimulated intracellular signaling and glucose uptake in mature skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke

    understood. The aim of the current PhD was therefore to investigate the involvement of Rac1 and the actin cytoskeleton in the regulation of insulin- and contraction-stimulated glucose uptake in mature skeletal muscle. The central findings of this PhD thesis was that Rac1 was activated by both insulin...

  10. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated.

    Science.gov (United States)

    Suryawan, Agus; Orellana, Renan A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Fleming, Jillian R; Davis, Teresa A

    2007-12-01

    Insulin and amino acids act independently to stimulate protein synthesis in skeletal muscle of neonatal pigs, and the responses decrease with development. The purpose of this study was to compare the separate effects of fed levels of INS and AA on the activation of signaling components leading to translation initiation and how these responses change with development. Overnight-fasted 6- (n = 4/group) and 26-day-old (n = 6/ group) pigs were studied during 1) euinsulinemic-euglycemiceuaminoacidemic conditions (controls), 2) euinsulinemic-euglycemichyperaminoacidemic clamps (AA), and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps (INS). INS, but not AA, increased the phosphorylation of protein kinase B (PKB) and tuberous sclerosis 2 (TSC2). Both INS and AA increased protein synthesis and the phosphorylation of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase-1, and eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1), and these responses were higher in 6-day-old compared with 26-day-old pigs. Both INS and AA decreased the binding of 4E-BP1 to eIF4E and increased eIF4E binding to eIF4G; these effects were greater in 6-day-old than in 26-day-old pigs. Neither INS nor AA altered the composition of mTORC1 (raptor, mTOR, and GbetaL) or mTORC2 (rictor, mTOR, and GbetaL) complexes. Furthermore, neither INS, AA, nor age had any effect on the abundance of Rheb and the phosphorylation of AMP-activated protein kinase and eukaryotic elongation factor 2. Our results suggest that the activation by insulin and amino acids of signaling components leading to translation initiation is developmentally regulated and parallels the developmental decline in protein synthesis in skeletal muscle of neonatal pigs.

  11. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    M. E. Hansen

    2014-01-01

    Full Text Available Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects.

  12. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...... resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic...... intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction....

  13. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  14. Increased skeletal muscle capillarization enhances insulin sensitivity

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Laub, Lasse; Vedel, Kenneth

    2014-01-01

    Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. We therefore investigated whether increased skeletal muscle capillarization increases insulin sensitivity....... Skeletal muscle specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist Prazosin to the drinking water of Sprague Dawley rats (n=33) while 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-week Prazosin treatment, which ensured...... that Prazosin was cleared from the blood stream. Whole-body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]-Glucose during the plateau phase of the clamp. Whole...

  15. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  16. Altered expression of genes involved in mitochondrial oxidative phosphorylation and insulin signaling in skeletal muscle of obese women with polycystic ovary syndrome (PCOS)

    DEFF Research Database (Denmark)

    Skov, Vibe

    be of similar importance for insulin resistance in the polycystic ovary syndrome (PCOS).   Materials and methods: Using the HG-U133 Plus 2.0 expression array from Affymetrix, we analyzed gene expression in skeletal muscle from obese women with PCOS (n=16) and age- and body mass index-matched control women (n=13...... a sum statistic and conducting a permutation test. Subsequently, we performed biological pathway analysis using Gene Set Enrichment Analysis (GSEA) and Gene Microarray Pathway Profiler (GenMAPP).   Results: Women with PCOS were characterized by fasting hyperinsulinemia and impaired insulin...... validated by quantitative real-time PCR and immunoblot analyses.   Conclusion: Our results, for the first time, provide evidence for an association between insulin resistance and impaired mitochondrial oxidative metabolism in skeletal muscle in women with PCOS. Furthermore, differential expression of genes...

  17. Insulin action in denervated skeletal muscle

    International Nuclear Information System (INIS)

    Smith, R.L.

    1987-01-01

    The goal of this study was to determine the mechanisms responsible for reduced insulin response in denervated muscle. Denervation for 3 days of rat muscles consisting of very different compositions of fiber types decreased insulin stimulated [U- 14 C]glucose incorporation into glycogen by 80%. Associated with the reduction in glycogen synthesis was a decreased activation of glycogen synthase. Denervation of hemidiaphragms for 1 day decreased both the basal and insulin stimulated activity ratios of glycogen synthase and the rate of insulin stimulated [U- 14 C[glucose incorporation into glycogen by 50%. Insulin stimulation of 2-deoxy[ 3 H]glucose uptake was not decreased until 3 days after denervation. Consistent with the effects on glucose transport,insulin did not increase the intracellular concentration of glucose-6-P in muscles 3 days after denervation. Furthermore, since the Ka for glucose-6-P activation of glycogen synthase was not decreased by insulin in denervated hemidiaphragms, the effects of denervation on glycogen synthase and glucose transport were synergistic resulting in the 80% decrease in glycogen synthesis rates

  18. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity

    DEFF Research Database (Denmark)

    Skovbro, M; Baranowski, M; Skov-Jensen, C

    2008-01-01

    -hyperinsulinaemic clamp was performed for 120 and 90 min for step 1 and step 2, respectively. Muscle biopsies were obtained from vastus lateralis at baseline, and after steps 1 and 2. RESULTS: Glucose infusion rates increased in response to insulin infusion, and significant differences were present between groups (T2D......AIMS/HYPOTHESIS: In skeletal muscle, ceramides may be involved in the pathogenesis of insulin resistance through an attenuation of insulin signalling. This study investigated total skeletal muscle ceramide fatty acid content in participants exhibiting a wide range of insulin sensitivities. METHODS......: The middle-aged male participants (n=33) were matched for lean body mass and divided into four groups: type 2 diabetes (T2D, n=8), impaired glucose tolerance (IGT, n=9), healthy controls (CON, n=8) and endurance-trained (TR, n=8). A two step (28 and 80 mU m(-2) min(-1)) sequential euglycaemic...

  19. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways

    DEFF Research Database (Denmark)

    Palsgaard, J.; Brøns, C.; Friedrichsen, M.

    2009-01-01

    BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing...... type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression...... downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin). LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS...

  20. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  1. The ontogeny of insulin signaling in the preterm baboon model.

    Science.gov (United States)

    Blanco, Cynthia L; Liang, Hanyu; Joya-Galeana, Joaquin; DeFronzo, Ralph A; McCurnin, Donald; Musi, Nicolas

    2010-05-01

    Hyperglycemia, a prevalent condition in premature infants, is thought to be a consequence of incomplete suppression of endogenous glucose production and reduced insulin-stimulated glucose disposal in peripheral tissues. However, the molecular basis for these conditions remains unclear. To test the hypothesis that the insulin transduction pathway is underdeveloped with prematurity, fetal baboons were delivered, anesthetized, and euthanized at 125 d gestational age (GA), 140 d GA, or near term at 175 d GA. Vastus lateralis muscle and liver tissues were obtained, and protein content of insulin signaling molecules [insulin receptor (IR)-beta, IR substate-1, p85 subunit of phosphatidylinositol 3-kinase, Akt, and AS160] and glucose transporters (GLUT)-1 and GLUT4 was measured by Western blotting. Muscle from 125 d GA baboons had markedly reduced GLUT1 protein content (16% of 140 d GA and 9% of 175 d GA fetuses). GLUT4 and AS160 also were severely reduced in 125 d GA fetal muscle (43% of 175 d GA and 35% of 175 d GA, respectively). In contrast, the protein content of IR-beta, IR substate-1, and Akt was elevated by 1.7-, 5.2-, and 1.9-fold, respectively, in muscle from 125 d GA baboons when compared with 175 d GA fetuses. No differences were found in the content of insulin signaling proteins in liver. In conclusion, significant gestational differences exist in the protein content of several insulin signaling proteins in the muscle of fetal baboons. Reduced muscle content of key glucose transport-regulating proteins (GLUT1, GLUT4, AS160) could play a role in the pathogenesis of neonatal hyperglycemia and reduced insulin-stimulated glucose disposal.

  2. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Munk-Hansen, Nanna; Birk, Jesper Bratz

    2017-01-01

    muscle and whole body insulin sensitivity in wild type (WT) mice, respectively. These effects were not found in AMPKα1α2 muscle-specific knockout mice. Prior in situ contraction did not increase insulin sensitivity in m. soleus from either genotype. Improvement in muscle insulin sensitivity....... Collectively, our data suggest that the AMPK-TBC1D4 signaling axis is likely mediating the improved muscle insulin sensitivity after contraction/exercise and illuminates an important and physiological relevant role of AMPK in skeletal muscle.......Earlier studies have demonstrated that muscle insulin sensitivity to stimulate glucose uptake is enhanced several hours after an acute bout of exercise. Using 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR), we recently demonstrated that prior activation of AMPK is sufficient to increase...

  3. Cerebral insulin, insulin signaling pathway, and brain angiogenesis.

    Science.gov (United States)

    Zeng, Yi; Zhang, Le; Hu, Zhiping

    2016-01-01

    Insulin performs unique non-metabolic functions within the brain. Broadly speaking, two major areas of these functions are those related to brain endothelial cells and the blood-brain barrier (BBB) function, and those related to behavioral effects, like cognition in disease states (Alzheimer's disease, AD) and in health. Recent studies showed that both these functions are associated with brain angiogenesis. These findings raise interesting questions such as how they are linked to each other and whether modifying brain angiogenesis by targeting certain insulin signaling pathways could be an effective strategy to treat dementia as in AD, or even to help secure healthy longevity. The two canonical downstream pathways involved in mediating the insulin signaling pathway, the phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinase (MAPK) cascades, in the brain are supposed to be similar to those in the periphery. PI3K and MAPK pathways play important roles in angiogenesis. Both are involved in stimulating hypoxia inducible factor (HIF) in angiogenesis and could be activated by the insulin signaling pathway. This suggests that PI3K and MAPK pathways might act as cross-talk between the insulin signaling pathway and the angiogenesis pathway in brain. But the cerebral insulin, insulin signaling pathway, and the detailed mechanism in the connection of insulin signaling pathway, brain angiogenesis pathway, and healthy aging or dementias are still mostly not clear and need further studies.

  4. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice.

    Science.gov (United States)

    Coomans, Claudia P; Biermasz, Nienke R; Geerling, Janine J; Guigas, Bruno; Rensen, Patrick C N; Havekes, Louis M; Romijn, Johannes A

    2011-12-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated tissue-specific glucose uptake. Tolbutamide, an inhibitor of ATP-sensitive K(+) channels (K(ATP) channels), or vehicle was infused into the lateral ventricle in the basal state and during hyperinsulinemic-euglycemic conditions in postabsorptive, chow-fed C57Bl/6J mice and in postabsorptive C57Bl/6J mice with diet-induced obesity. Whole-body glucose uptake was measured by d-[(14)C]glucose kinetics and tissue-specific glucose uptake by 2-deoxy-d-[(3)H]glucose uptake. During clamp conditions, intracerebroventricular administration of tolbutamide impaired the ability of insulin to inhibit EGP by ∼20%. In addition, intracerebroventricular tolbutamide diminished insulin-stimulated glucose uptake in muscle (by ∼59%) but not in heart or adipose tissue. In contrast, in insulin-resistant mice with diet-induced obesity, intracerebroventricular tolbutamide did not alter the effects of insulin during clamp conditions on EGP or glucose uptake by muscle. Insulin stimulates glucose uptake in muscle in part through effects via K(ATP) channels in the central nervous system, in analogy with the inhibitory effects of insulin on EGP. High-fat diet-induced obesity abolished the central effects of insulin on liver and muscle. These observations stress the role of central insulin resistance in the pathophysiology of diet-induced insulin resistance.

  5. Intact regulation of the AMPK signaling network in response to exercise and insulin in skeletal muscle of male patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Pedersen, Andreas J T; Hingst, Janne R

    2016-01-01

    ). Conversely, exercise decreased AMPK α1β2γ1 activity and TBC1D4 Ser(318)/Thr(642) phosphorylation. Interestingly, compared to pre-exercise, 3 h into exercise recovery AMPK α2β2γ1 and α1β2γ1 activity were increased concomitant with increased TBC1D4 Ser(318)/Ser(341)/Ser(704) phosphorylation. No differences...... and insulin stimulation. Our results reveal a hitherto unrecognized activation of specific AMPK complexes in exercise recovery. We hypothesize that the differential regulation of AMPK complexes plays an important role for muscle metabolism and adaptations to exercise....

  6. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    Science.gov (United States)

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  7. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Peng-Tao Xu

    2015-01-01

    Full Text Available Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  8. mTORC2 Regulation of Muscle Metabolism and Insulin Sensitivity

    DEFF Research Database (Denmark)

    Kleinert, Maximilian

    and skeletal muscle to take up blood glucose, ultimately lowering blood glucose levels. A hallmark of T2D is decreased organ sensitivity to the effects of the insulin. Therefore, an early event in the pathogenesis of T2D is an increase in insulin secretion in response to eating a meal, as more insulin....... In the absence of insulin, the majority of GLUT4 resides within the muscle. Conversely, insulin stimulation increases the muscle’s permeability to glucose, by triggering GLUT4 translocation to the plasma membrane. The effect of insulin on GLUT4 translocation is mediated by a chain of molecular signaling events...... that mTORC2 controls skeletal muscle glycolysis and lipid storage. In agreement, Ric mKO mice exhibited reduced muscle glycolytic flux, greater reliance on fat as an energy substrate, re-partitioning of lean to fat mass and higher intramyocellular triacylglycerol (IMTG) levels compared to Ric WT mice...

  9. Role of chrysin on expression of insulin signaling molecules

    Directory of Open Access Journals (Sweden)

    Kottireddy Satyanarayana

    2015-01-01

    Full Text Available Background: Currently available drugs are unsuccessful for the treatment of tye-2 diabetes due to their adverseside-effects. Hence, a search for novel drugs, especially ofplant origin, continues. Chrysin (5,7-dihydroxyflavone is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts that hasbeen used in traditional medicine around the world to treat numerous ailments. Objective: The present study was aimed to identify the protective role of chrysin on the expression of insulin-signaling molecules in the skeletal muscle of high fat and sucrose-induced type-2 diabetic adult male rats. Materials and Methods: The oral effective dose of chrysin (100 mg/kg body weight was given once a day until the end of the study (30 days post-induction of diabetes to high fat diet-induced diabetic rats.At the end of the experimental period, fasting blood glucose, oral glucose tolerance, serum lipid profile, lipid peroxidation (LPO and free radical generation, as well as the levels of insulin signaling molecules and tissue glycogen in the gastrocnemius muscle were assessed. Results: Diabetic rats showed impaired glucose tolerance and impairment in insulin signaling molecules (IR, IRS-1, p-IRS-1Tyr 632 , p- Akt Thr308 , glucose transporter subtype 4 [GLUT4] proteins and glycogen concentration. Serum insulin, lipid profile, LPO and free radical generation were found to be increased in diabetic control rats.The treatment with chrysin normalized the altered levels of blood glucose, serum insulin, lipid profile, LPO and insulin signaling molecules as well as GLUT4 proteins. Conclusion: Our present findings indicate that chrysin improves glycemic control through activation of insulin signal transduction in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic male rats.

  10. Mitochondrial adaptations in insulin resistant muscle

    OpenAIRE

    Broek, van den, N.M.A.

    2010-01-01

    Diabetes has reached epidemic proportions worldwide. Type 2 diabetes (T2D) accounts for about 90% of all diabetes cases and is characterized by insulin resistance (IR) in major metabolic tissues. The dramatic rise in T2D is associated with the increased occurrence of obesity and excessive ectopic lipid accumulation, in particular in skeletal muscle, due to excessive caloric intake and decreased physical activity. However, the exact processes leading to IR remain unresolved. One of the leading...

  11. Insulin signaling in various equine tissues under basal conditions and acute stimulation by intravenously injected insulin.

    Science.gov (United States)

    Warnken, Tobias; Brehm, Ralph; Feige, Karsten; Huber, Korinna

    2017-10-01

    The aim of the study was to analyze key proteins of the equine insulin signaling cascade and their extent of phosphorylation in biopsies from muscle tissue (MT), liver tissue (LT), and nuchal AT, subcutaneous AT, and retroperitoneal adipose tissues. This was investigated under unstimulated (B1) and intravenously insulin stimulated (B2) conditions, which were achieved by injection of insulin (0.1 IU/kg bodyweight) and glucose (150 mg/kg bodyweight). Twelve warmblood horses aged 15 ± 6.8 yr (yr), weighing 559 ± 79 kg, and with a mean body condition score of 4.7 ± 1.5 were included in the study. Key proteins of the insulin signaling cascade were semiquantitatively determined using Western blotting. Furthermore, modulation of the cascade was assessed. The basal expression of the proteins was only slightly influenced during the experimental period. Insulin induced a high extent of phosphorylation of insulin receptor in LT (P < 0.01) but not in MT. Protein kinase B and mechanistic target of rapamycin expressed a higher extent of phosphorylation in all tissues in B2 biopsies. Adenosine monophosphate protein kinase, as a component related to insulin signaling, expressed enhanced phosphorylation in MT (P < 0.05) and adipose tissues (nuchal AT P < 0.05; SCAT P < 0.01; retroperitoneal adipose tissue P < 0.05), but not in LT at B2. Tissue-specific variations in the acute response of insulin signaling to intravenously injected insulin were observed. In conclusion, insulin sensitivity in healthy horses is based on a complex concerted action of different tissues by their variations in the molecular response to insulin. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Skeletal Muscle Angiogenesis and Its Relation to Insulin Sensitivity

    DEFF Research Database (Denmark)

    Lindqvist, Anna Maria Charlotte K

    mediator of angiogenesis) are reduced in insulin resistant individuals. Exercise training can improve skeletal muscle capillarization and the angiogenic potential and physical activity has also been proven to enhance muscle insulin sensitivity. Increased skeletal muscle capillarization is associated......) or by overexpression of VEGF-A in the tibialis anterior muscle (transfection; study II) and the effect of the increased muscle capillarization on muscle insulin sensitivity was examined. In study I skeletal muscle specific angiogenesis was induced by administering an α1-adrenergic antagonist (prazosin) to healthy...

  13. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    Science.gov (United States)

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  14. Lipid induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling

    DEFF Research Database (Denmark)

    Høeg, Louise D; Sjøberg, Kim Anker; Jeppesen, Jacob

    2011-01-01

    than men. We therefore hypothesized that women would be less prone to lipid induced insulin resistance. Research and design methods: Insulin sensitivity of whole body and leg glucose disposal was studied in 16 young well matched healthy men and women infused with intralipid or saline for 7h. Muscle...... ratio was decreased by intralipid. Conclusion: Intralipid infusion causes less insulin resistance of muscle glucose uptake in women than in men. This insulin resistance is not due to decreased canonical insulin signaling, accumulation of lipid intermediates, inflammation or direct inhibition of glucose......AbstractObjective: We have previously shown that overnight fasted women have higher insulin stimulated whole body and leg glucose uptake despite a higher intramyocellular triacylglycerol concentration than men. Women also express higher muscle mRNA levels of proteins related to lipid metabolism...

  15. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, Claudia P.; Biermasz, Nienke R.; Geerling, Janine J.; Guigas, Bruno; Rensen, Patrick C. N.; Havekes, Louis M.; Romijn, Johannes A.

    2011-01-01

    Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  16. Stimulatory effect of insulin on glucose uptake by muscle involves the central nervous system in insulin-sensitive mice

    NARCIS (Netherlands)

    Coomans, C.P.; Biermasz, N.R.; Geerling, J.J.; Guigas, B.; Rensen, P.C.N.; Havekes, L.M.; Romijn, J.A.

    2011-01-01

    OBJECTIVE - Insulin inhibits endogenous glucose production (EGP) and stimulates glucose uptake in peripheral tissues. Hypothalamic insulin signaling is required for the inhibitory effects of insulin on EGP. We examined the contribution of central insulin signaling on circulating insulin-stimulated

  17. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  18. Insulin signaling pathways in lepidopteran steroidogenesis

    Directory of Open Access Journals (Sweden)

    Wendy eSmith

    2014-02-01

    Full Text Available Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori, the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx , the neuropeptide prothoracicotropic hormone (PTTH appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K, LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the effects of nutritionally-sensitive hormones such as insulin on ecdysone secretion and molting.

  19. Fatty acid metabolism, energy expenditure and insulin resistance in muscle.

    Science.gov (United States)

    Turner, Nigel; Cooney, Gregory J; Kraegen, Edward W; Bruce, Clinton R

    2014-02-01

    Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.

  20. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    Science.gov (United States)

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-05

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.

  1. [Molecular mechanism for ET-1-induced insulin resistance in skeletal muscle cells].

    Science.gov (United States)

    Horinouchi, Takahiro; Mazaki, Yuichi; Terada, Koji; Miwa, Soichi

    2018-01-01

    Insulin resistance is a condition where the sensitivity to insulin of the tissues expressing insulin receptor (InsR) is decreased due to a functional disturbance of InsR-mediated intracellular signaling. Insulin promotes the entry of glucose into the tissues and skeletal muscle is the most important tissue responsible for the insulin's action of decreasing blood glucose levels. Endothelin-1 (ET-1), a potent vasoconstrictor and pro-inflammatory peptide, induces insulin resistance through a direct action on skeletal muscle. However, the signaling pathways of ET-1-induced insulin resistance in skeletal muscle remain unclear. Here we show molecular mechanism underlying the inhibitory effect of ET-1 on insulin-stimulated Akt phosphorylation and glucose uptake in myotubes of rat L6 skeletal muscle cell line. mRNA expression levels of differentiation marker genes, MyoD and myogenin, were increased during L6 myoblasts differentiation into myotubes. Some of myotubes possessed the ability to spontaneously contract. In myotubes, insulin promoted Akt phosphorylation at Thr 308 and Ser 473 , and [ 3 H]-labelled 2-deoxy-D-glucose ([ 3 H]2-DG) uptake. The insulin-facilitated Akt phosphorylation and [ 3 H]2-DG uptake were inhibited by ET-1. The inhibitory effect of ET-1 was counteracted by blockade of ET type A receptor (ET A R), inhibition of G q/11 protein, and siRNA knockdown of G protein-coupled receptor kinase 2 (GRK2). The exogenously overexpressed GRK2 directly bound to endogenous Akt and their association was facilitated by ET-1. In summary, activation of ET A R with ET-1 inhibits insulin-induced Akt phosphorylation and [ 3 H]2-DG uptake in a G q/11 protein- and GRK2-dependent manner in skeletal muscle. These findings indicate that ET A R and GRK2 are potential targets for insulin resistance.

  2. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    Science.gov (United States)

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  3. Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal Muscle of Male Patients With Type 2 Diabetes: Illumination of AMPK Activation in Recovery From Exercise.

    Science.gov (United States)

    Kjøbsted, Rasmus; Pedersen, Andreas J T; Hingst, Janne R; Sabaratnam, Rugivan; Birk, Jesper B; Kristensen, Jonas M; Højlund, Kurt; Wojtaszewski, Jørgen F P

    2016-05-01

    Current evidence on exercise-mediated AMPK regulation in skeletal muscle of patients with type 2 diabetes (T2D) is inconclusive. This may relate to inadequate segregation of trimeric complexes in the investigation of AMPK activity. We examined the regulation of AMPK and downstream targets ACC-β, TBC1D1, and TBC1D4 in muscle biopsy specimens obtained from 13 overweight/obese patients with T2D and 14 weight-matched male control subjects before, immediately after, and 3 h after exercise. Exercise increased AMPK α2β2γ3 activity and phosphorylation of ACCβ Ser(221), TBC1D1 Ser(237)/Thr(596), and TBC1D4 Ser(704) Conversely, exercise decreased AMPK α1β2γ1 activity and TBC1D4 Ser(318)/Thr(642) phosphorylation. Interestingly, compared with preexercise, 3 h into exercise recovery, AMPK α2β2γ1 and α1β2γ1 activity were increased concomitant with increased TBC1D4 Ser(318)/Ser(341)/Ser(704) phosphorylation. No differences in these responses were observed between patients with T2D and control subjects. Subjects were also studied by euglycemic-hyperinsulinemic clamps performed at rest and 3 h after exercise. We found no evidence for insulin to regulate AMPK activity. Thus, AMPK signaling is not compromised in muscle of patients with T2D during exercise and insulin stimulation. Our results reveal a hitherto unrecognized activation of specific AMPK complexes in exercise recovery. We hypothesize that the differential regulation of AMPK complexes plays an important role for muscle metabolism and adaptations to exercise. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  5. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  6. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-s...

  7. Chronic exercise increases insulin binding in muscles but not liver

    International Nuclear Information System (INIS)

    Bonen, A.; Clune, P.A.; Tan, M.H.

    1986-01-01

    It has been postulated that the improved glucose tolerance provoked by chronic exercise is primarily attributable to increased insulin binding in skeletal muscle. Therefore, the authors investigated the effects of progressively increased training (6 wk) on insulin binding by five hindlimb skeletal muscles and in liver. In the trained animals serum insulin levels at rest were lower either in a fed or fasted state and after an oral glucose tolerance test. Twenty-four hours after the last exercise bout sections of the liver, soleus (S), plantaris (P), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG) muscles were pooled from four to six rats. Insulin binding to plasma membranes increased in S, P, and EDL but not in WG or in liver. There were insulin binding differences among muscles. Comparison of rank orders of insulin binding data with published glucose transport data for the same muscles revealed that these parameters do not correspond well. In conclusion, insulin binding to muscle is shown to be heterogeneous and training can increase insulin binding to selected muscles but not liver

  8. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    Science.gov (United States)

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  9. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    Science.gov (United States)

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p RUN20 (p RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.

  10. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise

    Science.gov (United States)

    2015-01-01

    Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24–48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise. PMID:26487009

  11. Skeletal muscle inflammation and insulin resistance in obesity

    Science.gov (United States)

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  12. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  13. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Karlsson, Håkan K R; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied...... by altered signal transduction, skeletal muscle biopsies were obtained from pancreas-kidney transplant recipients (n = 4), nondiabetic kidney transplant recipients (receiving the same immunosuppressive drugs; n = 5), and healthy subjects (n = 6) before and during a euglycemic-hyperinsulinemic clamp. Basal...... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  14. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    Science.gov (United States)

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  15. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  16. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Tingqing Guo

    Full Text Available Myostatin (Mstn is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/- mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/- mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/- mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/- mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/- mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/- mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  17. Deregulation of brain insulin signaling in Alzheimer's disease.

    Science.gov (United States)

    Chen, Yanxing; Deng, Yanqiu; Zhang, Baorong; Gong, Cheng-Xin

    2014-04-01

    Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.

  18. Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism

    DEFF Research Database (Denmark)

    Li, Mengyao; Vienberg, Sara G; Bezy, Olivier

    2015-01-01

    Protein kinase C (PKC)δ has been shown to be increased in liver in obesity and plays an important role in the development of hepatic insulin resistance in both mice and humans. In the current study, we explored the role of PKCδ in skeletal muscle in the control of insulin sensitivity and glucose......-body insulin sensitivity and muscle insulin resistance and by 15 months of age improved the age-related decline in whole-body glucose tolerance. At 15 months of age, M-PKCδKO mice also exhibited decreased metabolic rate and lower levels of some proteins of the OXPHOS complex suggesting a role for PKCδ...... in the regulation of mitochondrial mass at older age. These data indicate an important role of PKCδ in the regulation of insulin sensitivity and mitochondrial homeostasis in skeletal muscle with aging....

  19. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  20. Effect of exercise on insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Mikines, K J; Galbo, Henrik

    1989-01-01

    The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization...... was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2...... consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp...

  1. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    Science.gov (United States)

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  2. Molecular aspects of glucose homeostasis in skeletal muscle--A focus on the molecular mechanisms of insulin resistance.

    Science.gov (United States)

    Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R

    2015-12-05

    Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle

    DEFF Research Database (Denmark)

    D'Hulst, Gommaar; Sylow, Lykke; Hespel, Peter

    2015-01-01

    PURPOSE: To investigate how acute environmental hypoxia regulates blood glucose and downstream intramuscular insulin signaling after a meal in healthy humans. METHODS: Fifteen subjects were exposed for 4 h to normoxia (NOR) or to normobaric hypoxia (HYP, FiO2 = 0.11) in a randomized order 40 min ...... insulin intolerance developed independently of defects in conventional insulin signaling in skeletal muscle....

  4. Effects of exercise on insulin binding to human muscle

    International Nuclear Information System (INIS)

    Bonen, A.; Tan, M.H.; Clune, P.; Kirby, R.L.

    1985-01-01

    A procedure was developed to measure insulin binding to human skeletal muscle obtained via the percutaneous muscle biopsy technique. With this method the effects of exercise on insulin binding were investigated. Subjects (n = 9) exercised for 60 min on a bicycle ergometer at intensities ranging from 20-86% maximum O 2 consumption (VO 2 max). Blood samples were obtained before, during, and after exercise and analyzed for glucose and insulin. Muscle samples (250 mg) for the vastus lateralis were obtained 30 min before exercise, at the end of exercise, and 60 min after exercise. Two subjects rested during the experimental period. There was no linear relationship between exercise intensities and the changes in insulin binding to human muscle. At rest (n = 2) and at exercise intensities below 60% VO 2 max (n = 5) no change in insulin binding occurred (P greater than 0.05). However, when exercise occurred at greater than or equal to 69% VO 2 max (n = 4), a pronounced decrement in insulin binding (30-50%) was observed (P less than 0.05). This persisted for 60 min after exercise. These results indicate that insulin binding in human muscle is not altered by 60 min of exercise at less than or equal to 60% VO 2 max but that a marked decrement occurs when exercise is greater than or equal to 69% VO 2 max

  5. Regulation of insect behavior via the insulin-signaling pathway

    Directory of Open Access Journals (Sweden)

    Renske eErion

    2013-12-01

    Full Text Available The insulin/insulin-like growth factor signaling (IIS pathway is well established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs, the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.

  6. Serum Is Not Necessary for Prior Pharmacological Activation of AMPK to Increase Insulin Sensitivity of Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Nicolas O. Jørgensen

    2018-04-01

    Full Text Available Exercise, contraction, and pharmacological activation of AMP-activated protein kinase (AMPK by 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR have all been shown to increase muscle insulin sensitivity for glucose uptake. Intriguingly, improvements in insulin sensitivity following contraction of isolated rat and mouse skeletal muscle and prior AICAR stimulation of isolated rat skeletal muscle seem to depend on an unknown factor present in serum. One study recently questioned this requirement of a serum factor by showing serum-independency with muscle from old rats. Whether a serum factor is necessary for prior AICAR stimulation to increase insulin sensitivity of mouse skeletal muscle is not known. Therefore, we investigated the necessity of serum for this effect of AICAR in mouse skeletal muscle. We found that the ability of prior AICAR stimulation to improve insulin sensitivity of mouse skeletal muscle did not depend on the presence of serum during AICAR stimulation. Although prior AICAR stimulation did not enhance proximal insulin signaling, insulin-stimulated phosphorylation of Tre-2/BUB2/CDC16- domain family member 4 (TBC1D4 Ser711 was greater in prior AICAR-stimulated muscle compared to all other groups. These results imply that the presence of a serum factor is not necessary for prior AMPK activation by AICAR to enhance insulin sensitivity of mouse skeletal muscle.

  7. Disruption of Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Integrity Contributes to Muscle Insulin Resistance in Mice and Humans.

    Science.gov (United States)

    Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer

    2018-04-01

    Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.

  8. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  9. Skeletal muscle lipid metabolism in exercise and insulin resistance

    DEFF Research Database (Denmark)

    Kiens, Bente

    2006-01-01

    Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids...... of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed....

  10. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    Science.gov (United States)

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  11. Insulin secretion and signaling in response to dietary restriction and subsequent re-alimentation in cattle.

    Science.gov (United States)

    Keogh, Kate; Kenny, David A; Kelly, Alan K; Waters, Sinéad M

    2015-08-01

    The objectives of this study were to examine systemic insulin response to a glucose tolerance test (GTT) and transcript abundance of genes of the insulin signaling pathway in skeletal muscle, during both dietary restriction and re-alimentation-induced compensatory growth. Holstein Friesian bulls were blocked to one of two groups: 1) restricted feed allowance for 125 days (period 1) (RES, n = 15) followed by ad libitum feeding for 55 days (period 2) or 2) ad libitum access to feed throughout (periods 1 and 2) (ADLIB, n = 15). On days 90 and 36 of periods 1 and 2, respectively, a GTT was performed. M. longissimus dorsi biopsies were harvested from all bulls on days 120 and 15 of periods 1 and 2, respectively, and RNA-Seq analysis was performed. RES displayed a lower growth rate during period 1 (RES: 0.6 kg/day, ADLIB: 1.9 kg/day; P alimentation (RES: 2.5 kg/day, ADLIB: 1.4 kg/day; P alimentation (P > 0.05). Genes differentially expressed in the insulin signaling pathway suggested a greater sensitivity to insulin in skeletal muscle, with pleiotropic effects of insulin signaling interrupted during dietary restriction. Collectively, these results indicate increased sensitivity to glucose clearance and skeletal muscle insulin signaling during dietary restriction; however, no overall role for insulin was apparent in expressing compensatory growth. Copyright © 2015 the American Physiological Society.

  12. Role of AMPK in Regulating Muscle Insulin Sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus

    The ability of insulin to stimulate skeletal muscle glucose uptake is instrumental for controlling whole-body glucose homeostasis. Decreased peripheral sensitivity to insulin increases the risk of developing type 2 diabetes. Insulin sensitivity can be defined as the concentration of insulin that ...... prevail in healthy lean subjects. In the present thesis, experimental results from the three studies as well as unpublished observations are placed in the context of existing literature in order to provide a general overview of the current understandings within this field of research....

  13. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  14. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, S A; Hansen, B F

    1988-01-01

    increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased (mean +/- SE) from 34.9 +/- 1.2 mumol.g-1.h-1 at 0 h to 7.5 +/- 0.7 after 7 h of perfusion. During...... compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal....

  15. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal.

    Directory of Open Access Journals (Sweden)

    Mimi Z Chen

    Full Text Available Weight-loss after bariatric surgery improves insulin sensitivity, but the underlying molecular mechanism is not clear. To ascertain the effect of bariatric surgery on insulin signalling, we examined glucose disposal and Akt activation in morbidly obese volunteers before and after Roux-en-Y gastric bypass surgery (RYGB, and compared this to lean volunteers.The hyperinsulinaemic euglycaemic clamp, at five infusion rates, was used to determine glucose disposal rates (GDR in eight morbidly obese (body mass index, BMI=47.3 ± 2.2 kg/m(2 patients, before and after RYGB, and in eight lean volunteers (BMI=20.7 ± 0.7 kg/m2. Biopsies of brachioradialis muscle, taken at fasting and insulin concentrations that induced half-maximal (GDR50 and maximal (GDR100 GDR in each subject, were used to examine the phosphorylation of Akt-Thr308, Akt-473, and pras40, in vivo biomarkers for Akt activity.Pre-operatively, insulin-stimulated GDR was lower in the obese compared to the lean individuals (P<0.001. Weight-loss of 29.9 ± 4 kg after surgery significantly improved GDR50 (P=0.004 but not GDR100 (P=0.3. These subjects still remained significantly more insulin resistant than the lean individuals (p<0.001. Weight loss increased insulin-stimulated skeletal muscle Akt-Thr308 and Akt-Ser473 phosphorylation, P=0.02 and P=0.03 respectively (MANCOVA, and Akt activity towards the substrate PRAS40 (P=0.003, MANCOVA, and in contrast to GDR, were fully normalised after the surgery (obese vs lean, P=0.6, P=0.35, P=0.46, respectively.Our data show that although Akt activity substantially improved after surgery, it did not lead to a full restoration of insulin-stimulated glucose disposal. This suggests that a major defect downstream of, or parallel to, Akt signalling remains after significant weight-loss.

  16. Acute insulin resistance stimulates and insulin sensitization attenuates vascular smooth muscle cell migration and proliferation.

    Science.gov (United States)

    Cersosimo, Eugenio; Xu, Xiaojing; Upala, Sikarin; Triplitt, Curtis; Musi, Nicolas

    2014-08-01

    Differential activation/deactivation of insulin signaling, PI-3K and MAP-K pathways by high glucose and palmitate, with/out the insulin sensitizer pioglitazone (PIO), have been previously shown in vascular smooth muscle cells (VSMCs). To determine the biological impact of these molecular changes, we examined VSMC migration and proliferation ("M"&"P") patterns in similar conditions. VSMCs from healthy human coronary arteries were incubated in growth medium and "M"&"P" were analyzed after exposure to high glucose (25 mmol/L) ± palmitate (200 μmol/L) and ± PIO (8 μmol/L) for 5 h. "M"&"P" were assessed by: (1) polycarbonate membrane barrier with chemo-attractants and extended cell protrusions quantified by optical density (OD595 nm); (2) % change in radius area (2D Assay) using inverted microscopy images; and (3) cell viability assay expressed as cell absorbance (ABS) in media. "M" in 25 mmol/L glucose media increased by ~25% from baseline and % change in radius area rose from ~20% to ~30%. The addition of PIO was accompanied by a significant decrease in "M" from 0.25 ± 0.02 to 0.19 ± 0.02; a comparable decline from 0.25 ± 0.02 to 0.18 ± 0.02 was also seen with 25 mmol/L of glucose +200 μmol/L of palmitate. When PIO was coincubated with high glucose plus palmitate there was a 50% reduction in % change in radius. A ~10% increase in ABS, reflecting augmented "P" in media with 25 mmol/L glucose versus control was documented. The addition of PIO reduced ABS from 0.208 ± 0.03 to 0.183 ± 0.06. Both high glucose and palmitate showed ABS of ~0.140 ± 0.02, which decreased with PIO to ~0.120 ± 0.02, indicating "P" was reduced. These results confirm that high glucose and palmitate stimulate VSMCs migration and proliferation in vitro, which is attenuated by coincubation with the insulin sensitizer PIO. Although, we cannot ascertain whether these functional changes are coincident with the activation/deactivation of signal molecules, our findings are consistent with the

  17. Insulin induces airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, R.; Ris, J. M.; Zaagsma, J.; Meurs, H.; Nelemans, S. A.

    Background and purpose: Recently, the use of inhaled insulin formulations for the treatment of type I and type II diabetes has been approved in Europe and in the United States. For regular use, it is critical that airway function remains unimpaired in response to insulin exposure. Experimental

  18. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Mackenzie RWA

    2014-02-01

    Full Text Available Richard WA Mackenzie, Bradley T Elliott Department of Human and Health Sciences, Facility of Science and Technology, University of Westminster, London, UK Abstract: Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose transport activity in skeletal muscle, ie, the contraction-stimulated pathway reliant on Ca2+/5′-monophosphate-activated protein kinase (AMPK-dependent mechanisms and an insulin-dependent pathway activated via upregulation of serine/threonine protein kinase Akt/PKB. Metformin is an established treatment for type 2 diabetes due to its ability to increase peripheral glucose uptake while reducing hepatic glucose production in an AMPK-dependent manner. Peripheral insulin action is reduced in type 2 diabetics whereas AMPK signaling remains largely intact. This paper firstly reviews AMPK and its role in glucose uptake and then focuses on a novel mechanism known to operate via an insulin-dependent pathway. Inositol hexakisphosphate (IP6 kinase 1 (IP6K1 produces a pyrophosphate group at the position of IP6 to generate a further inositol pyrophosphate, ie, diphosphoinositol pentakisphosphate (IP7. IP7 binds with Akt/PKB at its pleckstrin homology domain, preventing interaction with phosphatidylinositol 3,4,5-trisphosphate, and therefore reducing Akt/PKB membrane translocation and insulin-stimulated glucose uptake. Novel evidence suggesting a reduction in IP7 production via IP6K1 inhibition represents an exciting therapeutic avenue in the treatment of insulin resistance. Metformin-induced activation of AMPK is a key current intervention in the management of type 2 diabetes. However, this treatment does not seem to improve peripheral insulin resistance. In light of this

  19. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  20. Insulin signaling mediates sexual attractiveness in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tsung-Han Kuo

    Full Text Available Sexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC, many of which function as pheromones. Using traditional gas chromatography/mass spectrometry (GC/MS together with newly introduced laser desorption/ionization orthogonal time-of-flight mass spectrometry (LDI-MS we establish that CHC profiles are significantly affected by genetic manipulations that target IIS. Manipulations that reduce IIS also reduce attractiveness, while females with increased IIS are significantly more attractive than wild-type animals. IIS effects on attractiveness are mediated by changes in CHC profiles. Insulin signaling influences CHC through pathways that are likely independent of dFOXO and that may involve the nutrient-sensing Target of Rapamycin (TOR pathway. These results suggest that the activity of conserved molecular regulators of longevity and reproductive output may manifest in different species as external characteristics that are perceived as honest indicators of fitness potential.

  1. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  2. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Hao Shi

    2018-05-01

    Full Text Available Objective: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT, the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2. Conclusions: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Keywords: O-GlcNAc signaling, Type 2 diabetes, N

  3. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability

    NARCIS (Netherlands)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W.; Pfluger, Paul T.; Fernandez, Ana M.; Luquet, Serge; Woods, Stephen C.; Torres-Alemán, Ignacio; Kahn, C. Ronald; Götz, Magdalena; Horvath, Tamas L.; Tschöp, Matthias H.

    2016-01-01

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and

  4. The Effects of Peripheral and Central High Insulin on Brain Insulin Signaling and Amyloid-β in Young and Old APP/PS1 Mice.

    Science.gov (United States)

    Stanley, Molly; Macauley, Shannon L; Caesar, Emily E; Koscal, Lauren J; Moritz, Will; Robinson, Grace O; Roh, Joseph; Keyser, Jennifer; Jiang, Hong; Holtzman, David M

    2016-11-16

    Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-β (Aβ), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APP swe /PS1 dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aβ compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aβ was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aβ, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aβ in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aβ in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aβ in young and old mice, independent of neuronal insulin signaling. The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections

  5. Responses of the insulin signaling pathways in the brown adipose tissue of rats following cold exposure.

    Science.gov (United States)

    Wang, Xiaofei; Wahl, Richard

    2014-01-01

    The insulin signaling pathway is critical for the control of blood glucose levels. Brown adipose tissue (BAT) has also been implicated as important in glucose homeostasis. The effect of short-term cold exposure on this pathway in BAT has not been explored. We evaluated the effect of 4 hours of cold exposure on the insulin pathway in the BAT of rats. Whole genomic microarray chips were used to examine the transcripts of the pathway in BAT of rats exposed to 4°C and 22°C for 4 hours. The 4 most significantly altered pathways following 4 hours of cold exposure were the insulin signaling pathway, protein kinase A, PI3K/AKT and ERK/MAPK signaling. The insulin signaling pathway was the most affected. In the documented 142 genes of the insulin pathway, 42 transcripts (29.6%) responded significantly to this cold exposure with the least false discovery rate (Benjamini-Hochberg Multiple Testing: -log10 (p-value)  = 7.18). Twenty-seven genes (64%) were up-regulated, including the insulin receptor (Insr), insulin substrates 1 and 2 (Irs1 and Irs2). Fifteen transcripts (36%) were down-regulated. Multiple transcripts of the primary target and secondary effector targets for the insulin signaling were also up-regulated, including those for carbohydrate metabolism. Using western blotting, we demonstrated that the cold induced higher Irs2, Irs1, and Akt-p protein levels in the BAT than in the BAT of controls maintained at room temperature, and higher Akt-p protein level in the muscle. this study demonstrated that 4 hours of cold exposure stimulated the insulin signaling pathway in the BAT and muscle of overnight fasted rats. This raises the possibility that acute cold stimulation may have potential to improve glucose clearance and insulin sensitivity.

  6. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls.

    Science.gov (United States)

    Kindler, J M; Pollock, N K; Laing, E M; Jenkins, N T; Oshri, A; Isales, C; Hamrick, M; Lewis, R D

    2016-01-01

    IGF-1 promotes bone growth directly and indirectly through its effects on skeletal muscle. Insulin and IGF-1 share a common cellular signaling process; thus, insulin resistance may influence the IGF-1-muscle-bone relationship. We sought to determine the effect of insulin resistance on the muscle-dependent relationship between IGF-1 and bone mass in premenarcheal girls. This was a cross-sectional study conducted at a university research center involving 147 girls ages 9 to 11 years. Glucose, insulin, and IGF-1 were measured from fasting blood samples. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin. Fat-free soft tissue (FFST) mass and bone mineral content (BMC) were measured by dual-energy x-ray absorptiometry. Our primary outcome was BMC/height. In our path model, IGF-1 predicted FFST mass (b = 0.018; P = .001), which in turn predicted BMC/height (b = 0.960; P IGF-1 predicted BMC/height (b = 0.001; P = .002), but not after accounting for the mediator of this relationship, FFST mass. The HOMA-IR by IGF-1 interaction negatively predicted FFST mass (b = -0.044; P = .034). HOMA-IR had a significant and negative effect on the muscle-dependent relationship between IGF-1 and BMC/height (b = -0.151; P = .047). Lean body mass is an important intermediary factor in the IGF-1-bone relationship. For this reason, bone development may be compromised indirectly via suboptimal IGF-1-dependent muscle development in insulin-resistant children.

  7. Insulin action in adipose tissue and muscle in hypothyroidism.

    Science.gov (United States)

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Boutati, Eleni; Maratou, Eirini; Panagiotakos, Demosthenes B; Koukkou, Efi; Tzanela, Marinela; Thalassinos, Nikos; Raptis, Sotirios A

    2006-12-01

    Although insulin resistance in thyroid hormone excess is well documented, information on insulin action in hypothyroidism is limited. To investigate this, a meal was given to 11 hypothyroid (HO; aged 45 +/- 3 yr) and 10 euthyroid subjects (EU; aged 42 +/- 4 yr). Blood was withdrawn for 360 min from veins (V) draining the anterior abdominal sc adipose tissue and the forearm and from the radial artery (A). Blood flow (BF) in adipose tissue was measured with 133Xe and in forearm with strain-gauge plethysmography. Tissue glucose uptake was calculated as (A-V)glucose(BF), lipoprotein lipase as (A-V)Triglycerides(BF), and lipolysis as [(V-A)glycerol(BF)]-lipoprotein lipase. The HO group had higher glucose and insulin levels than the EU group (P hypothyroidism: 1) glucose uptake in muscle and adipose tissue is resistant to insulin; 2) suppression of lipolysis by insulin is not impaired; and 3) hypertriglyceridemia is due to decreased clearance by the adipose tissue.

  8. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    International Nuclear Information System (INIS)

    Richter, E.A.; Hansen, S.A.; Hansen, B.F.

    1988-01-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 μU/ml insulin and 11-13 mM glucose increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased from 34.9 μmol·g -1 ·h -1 at 0 h to 7.5 after 7 h of perfusion. During the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-[ 14 C]methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal

  9. Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db mice

    DEFF Research Database (Denmark)

    Meijer, Rick I; Bakker, Wineke; Alta, Caro-Lynn A F

    2013-01-01

    in muscle, the underlying mechanisms, and how obesity disturbs this vasodilation. Insulin-induced vasoreactivity of resistance arteries was studied with PVAT from C57BL/6 or db/db mice. PVAT weight in muscle was higher in db/db mice compared with C57BL/6 mice. PVAT from C57BL/6 mice uncovered insulin......-induced vasodilation; this vasodilation was abrogated with PVAT from db/db mice. Blocking adiponectin abolished the vasodilator effect of insulin in the presence of C57BL/6 PVAT, and adiponectin secretion was lower in db/db PVAT. To investigate this interaction further, resistance arteries of AMPKa2(+/+) and AMPKa2......-induced vasodilation in an adiponectin-dependent manner. In conclusion, PVAT controls insulin-induced vasoreactivity in the muscle microcirculation through secretion of adiponectin and subsequent AMPKa2 signaling. PVAT from obese mice inhibits insulin-induced vasodilation, which can be restored by inhibition of JNK....

  10. Resistance training, insulin sensitivity and muscle function in the elderly

    DEFF Research Database (Denmark)

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes......, and likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...... are associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes...

  11. Mitochondrial adaptations in insulin resistant muscle

    NARCIS (Netherlands)

    Broek, van den N.M.A.

    2010-01-01

    Diabetes has reached epidemic proportions worldwide. Type 2 diabetes (T2D) accounts for about 90% of all diabetes cases and is characterized by insulin resistance (IR) in major metabolic tissues. The dramatic rise in T2D is associated with the increased occurrence of obesity and excessive ectopic

  12. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells.

    Science.gov (United States)

    Hussey, Sophie E; Liang, Hanyu; Costford, Sheila R; Klip, Amira; DeFronzo, Ralph A; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas

    2012-11-30

    Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action.

  13. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipidinduced inflammation and insulin resistance in muscle cells

    Science.gov (United States)

    Hussey, Sophie E.; Liang, Hanyu; Costford, Sheila R.; Klip, Amira; DeFronzo, Ralph A.; Sanchez-Avila, Alicia; Ely, Brian; Musi, Nicolas

    2012-01-01

    Emerging evidence suggests that TLR (Toll-like receptor) 4 and downstream pathways [MAPKs (mitogen-activated protein kinases) and NF-κB (nuclear factor κB)] play an important role in the pathogenesis of insulin resistance. LPS (lipopolysaccharide) and saturated NEFA (non-esterified fatty acids) activate TLR4, and plasma concentrations of these TLR4 ligands are elevated in obesity and Type 2 diabetes. Our goals were to define the role of TLR4 on the insulin resistance caused by LPS and saturated NEFA, and to dissect the independent contribution of LPS and NEFA to the activation of TLR4-driven pathways by employing TAK-242, a specific inhibitor of TLR4. LPS caused robust activation of the MAPK and NF-κB pathways in L6 myotubes, along with impaired insulin signalling and glucose transport. TAK-242 completely prevented the inflammatory response (MAPK and NF-κB activation) caused by LPS, and, in turn, improved LPS-induced insulin resistance. Similar to LPS, stearate strongly activated MAPKs, although stimulation of the NF-κB axis was modest. As seen with LPS, the inflammatory response caused by stearate was accompanied by impaired insulin action. TAK-242 also blunted stearate-induced inflammation; yet, the protective effect conferred by TAK-242 was partial and observed only on MAPKs. Consequently, the insulin resistance caused by stearate was only partially improved by TAK-242. In summary, TAK-242 provides complete and partial protection against LPS- and NEFA-induced inflammation and insulin resistance, respectively. Thus, LPS-induced insulin resistance depends entirely on TLR4, whereas NEFA works through TLR4-dependent and -independent mechanisms to impair insulin action. PMID:23050932

  14. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain.

    Science.gov (United States)

    Scherer, Thomas; Lindtner, Claudia; O'Hare, James; Hackl, Martina; Zielinski, Elizabeth; Freudenthaler, Angelika; Baumgartner-Parzer, Sabina; Tödter, Klaus; Heeren, Joerg; Krššák, Martin; Scheja, Ludger; Fürnsinn, Clemens; Buettner, Christoph

    2016-06-01

    Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Christensen, Anders E; Nellemann, Birgitte

    2017-01-01

    In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number and location of LDs are associated with insulin sensitivity and muscle fiber types...... are associated with insulin resistance in skeletal muscle....

  16. Rac1 in muscle is dispensable for improved insulin action after exercise in mice

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth Liliendal Valbjørn; D'Hulst, Gommaar

    2016-01-01

    sensitivity in inducible muscle-specific Rac1 knockout (mKO) and wildtype littermate (WT) mice. Prior exercise enhanced whole body insulin sensitivity by 40% in WT mice and rescued the insulin intolerance in Rac1 mKO mice by improving whole body insulin sensitivity by 230%. In agreement, prior exercise...... significantly improved insulin sensitivity by 20% in WT and by 40% in Rac1 mKO soleus muscles. These findings suggest that muscle Rac1 is dispensable for the insulin sensitizing effect of exercise. Moreover, insulin resistance in Rac1 mKO mice can be completely normalized by prior exercise explaining why......Exercise has a potent insulin-sensitivity enhancing effect on skeletal muscle but the intracellular mechanisms that mediate this effect are not well understood. In muscle, Rac1 regulates both insulin- and contraction-stimulated glucose transport and is dysregulated in insulin resistant muscle...

  17. Proteomic analysis of skeletal muscle in insulin-resistant mice: response to 6-week aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Hairui Yuan

    Full Text Available Aerobic exercise has beneficial effects on both weight control and skeletal muscle insulin sensitivity through a number of specific signaling proteins. To investigate the targets by which exercise exerts its effects on insulin resistance, an approach of proteomic screen was applied to detect the potential different protein expressions from skeletal muscle of insulin-resistant mice after prolonged aerobic exercise training and their sedentary controls. Eighteen C57BL/6 mice were divided into two groups: 6 mice were fed normal chow (NC and 12 mice were fed high-fat diet (HFD for 10 weeks to produce an IR model. The model group was then subdivided into HFD sedentary control (HC, n = 6 and HFD exercise groups (HE, n = 6. Mice in HE group underwent 6 weeks of treadmill running. After 6 weeks, mice were sacrificed and skeletal muscle was dissected. Total protein (n = 6, each group was extracted and followed by citrate synthase, 2D proteome profile analysis and immunoblot. Fifteen protein spots were altered between the NC and HC groups and 23 protein spots were changed between the HC and HE groups significantly. The results provided an array of changes in protein abundance in exercise-trained skeletal muscle and also provided the basis for a new hypothesis regarding the mechanism of exercise ameliorating insulin resistance.

  18. Role of myotonic dystrophy protein kinase (DMPK in glucose homeostasis and muscle insulin action.

    Directory of Open Access Journals (Sweden)

    Esther Llagostera

    2007-11-01

    Full Text Available Myotonic dystrophy 1 (DM1 is caused by a CTG expansion in the 3'-unstranslated region of the DMPK gene, which encodes a serine/threonine protein kinase. One of the common clinical features of DM1 patients is insulin resistance, which has been associated with a pathogenic effect of the repeat expansions. Here we show that DMPK itself is a positive modulator of insulin action. DMPK-deficient (dmpk-/- mice exhibit impaired insulin signaling in muscle tissues but not in adipocytes and liver, tissues in which DMPK is not expressed. Dmpk-/- mice display metabolic derangements such as abnormal glucose tolerance, reduced glucose uptake and impaired insulin-dependent GLUT4 trafficking in muscle. Using DMPK mutants, we show that DMPK is required for a correct intracellular trafficking of insulin and IGF-1 receptors, providing a mechanism to explain the molecular and metabolic phenotype of dmpk-/- mice. Taken together, these findings indicate that reduced DMPK expression may directly influence the onset of insulin-resistance in DM1 patients and point to dmpk as a new candidate gene for susceptibility to type 2-diabetes.

  19. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance

    Science.gov (United States)

    Wu, Mengrui; Kim, Teayoun; Jariwala, Ravi H.; Garvey, W. John; Luo, Nanlan; Kang, Minsung; Ma, Elizabeth; Tian, Ling; Steverson, Dennis; Yang, Qinglin; Fu, Yuchang

    2016-01-01

    In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis. PMID:27207527

  20. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

    Science.gov (United States)

    Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun

    2018-03-15

    Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.

  1. Regulation of brain insulin signaling: A new function for tau.

    Science.gov (United States)

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  2. Dissection of the insulin signaling pathway via quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Krüger, Marcus; Kratchmarova, Irina; Blagoev, Blagoy

    2008-01-01

    spectrum of the tyrosine phosphorylation cascade, we have defined the tyrosine-phosphoproteome of the insulin signaling pathway, using high resolution mass spectrometry in combination with phosphotyrosine immunoprecipitation and stable isotope labeling by amino acids in cell culture (SILAC......The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full...

  3. Interleukin-6 myokine signaling in skeletal muscle

    DEFF Research Database (Denmark)

    Muñoz-Cánoves, Pura; Scheele, Camilla; Pedersen, Bente K

    2013-01-01

    Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has b...

  4. Insulin-dependent signaling: regulation by amino acids and energy

    NARCIS (Netherlands)

    Meijer, A. J.

    2004-01-01

    Recent research has indicated that amino acids stimulate a signal-transduction pathway that is also used by insulin. Moreover, for insulin to exert its anabolic and anticatabolic effects on protein, there is an absolute requirement for amino acids. This signaling pathway becomes inhibited by

  5. Role of IGF-I Signaling in Muscle Bone Interactions

    Science.gov (United States)

    Bikle, Daniel D; Tahimic, Candice; Chang, Wenhan; Wang, Yongmei; Philippou, Anastassios; Barton, Elisabeth R.

    2015-01-01

    Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. PMID:26453498

  6. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    Science.gov (United States)

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Ionizing Radiation Potentiates High Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

    DEFF Research Database (Denmark)

    Nylander, Vibe; Ingerslev, Lars R; Andersen, Emil

    2016-01-01

    Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment...... mice. Mice subjected to total body irradiation showed alterations in glucose metabolism and, when challenged with HFD, marked hyperinsulinemia. Insulin signaling was chronically disrupted in skeletal muscle and adipose progenitor cells collected from irradiated mice and differentiated in culture...

  8. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence?

    Science.gov (United States)

    Stanley, Molly; Macauley, Shannon L.

    2016-01-01

    Individuals with type 2 diabetes have an increased risk for developing Alzheimer’s disease (AD), although the causal relationship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils of amyloid-β (Aβ) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Aβ levels and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause or consequence of AD. PMID:27432942

  9. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    Science.gov (United States)

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  10. Altered Fetal Skeletal Muscle Nutrient Metabolism Following an Adverse In Utero Environment and the Modulation of Later Life Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Kristyn Dunlop

    2015-02-01

    Full Text Available The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  11. Altered fetal skeletal muscle nutrient metabolism following an adverse in utero environment and the modulation of later life insulin sensitivity.

    Science.gov (United States)

    Dunlop, Kristyn; Cedrone, Megan; Staples, James F; Regnault, Timothy R H

    2015-02-12

    The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.

  12. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism.

    Science.gov (United States)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael; Enevoldsen, Lotte Hahn; Kjær, Andreas; Clemmensen, Andreas E; Christensen, Anders Nymark; Suetta, Charlotte; Frikke-Schmidt, Ruth; Steenberg, Dorte Enggaard; Wojtaszewski, Jørgen F P; Hellsten, Ylva; Stallknecht, Bente M

    2018-02-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n = 20) women were included in a 3-month high-intensity exercise training intervention. Body composition was assessed by magnetic resonance imaging and dual-energy x-ray absorptiometry, whole body glucose disposal rate (GDR) by hyperinsulinemic euglycemic clamp (40 mU/m/min), and femoral muscle glucose uptake by positron emission tomography/computed tomography, using the glucose analog fluorodeoxyglucose, expressed as estimated metabolic rate (eMR). Insulin signaling was investigated in muscle biopsies. Age difference between groups was 4.5 years, and no difference was observed in body composition. Training increased lean body mass (estimate [95% confidence interval] 0.5 [0.2-0.9] kg, P training (eMR vastus lateralis muscle: 27.8 [19.6-36.0] μmol/min/kg, P training-induced increases in insulin sensitivity included increased expression of hexokinase (19.2 [5.0-24.7] AU, P = 0.02) and glycogen synthase (32.4 [15.0-49.8] AU, P high-intensity exercise training.

  13. NUCKS Is a Positive Transcriptional Regulator of Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Beiying Qiu

    2014-06-01

    Full Text Available Although much is known about the molecular players in insulin signaling, there is scant information about transcriptional regulation of its key components. We now find that NUCKS is a transcriptional regulator of the insulin signaling components, including the insulin receptor (IR. Knockdown of NUCKS leads to impaired insulin signaling in endocrine cells. NUCKS knockout mice exhibit decreased insulin signaling and increased body weight/fat mass along with impaired glucose tolerance and reduced insulin sensitivity, all of which are further exacerbated by a high-fat diet (HFD. Genome-wide ChIP-seq identifies metabolism and insulin signaling as NUCKS targets. Importantly, NUCKS is downregulated in individuals with a high body mass index and in HFD-fed mice, and conversely, its levels increase upon starvation. Altogether, NUCKS is a physiological regulator of energy homeostasis and glucose metabolism that works by regulating chromatin accessibility and RNA polymerase II recruitment to the promoters of IR and other insulin pathway modulators.

  14. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice.

    Science.gov (United States)

    Andrisse, Stanley; Billings, Katelyn; Xue, Ping; Wu, Sheng

    2018-04-01

    Hyperandrogenemia and hyperinsulinemia are believed to play prominent roles in polycystic ovarian syndrome (PCOS). We explored the effects of low-dose dihydrotestosterone (DHT), a model of PCOS, on insulin signaling in metabolic and reproductive tissues in a female mouse model. Insulin resistance in the energy storage tissues is associated with type 2 diabetes. Insulin signaling in the ovaries and pituitary either directly or indirectly stimulates androgen production. Energy storage and reproductive tissues were isolated and molecular assays were performed. Livers and white adipose tissue (WAT) from DHT mice displayed lower mRNA and protein expression of insulin signaling intermediates. However, ovaries and pituitaries of DHT mice exhibited higher expression levels of insulin signaling genes/proteins. Insulin-stimulated p-AKT levels were blunted in the livers and WAT of the DHT mice but increased or remained the same in the ovaries and pituitaries compared with controls. Glucose uptake decreased in liver and WAT but was unchanged in pituitary and ovary of DHT mice. Plasma membrane GLUTs were decreased in liver and WAT but increased in ovary and pituitary of DHT mice. Skeletal muscle insulin-signaling genes were not lowered in DHT mice compared with control. DHT mice did not display skeletal muscle insulin resistance. Insulin-stimulated glucose transport increased in skeletal muscles of DHT mice compared with controls. DHT mice were hyperinsulinemic. However, the differential mRNA and protein expression pattern was independent of hyperinsulinemia in cultured hepatocytes and pituitary cells. These findings demonstrate a differential effect of DHT on the insulin-signaling pathway in energy storage vs. reproductive tissues independent of hyperinsulinemia.

  15. INSULIN HORMONE EFFECTS ON FT&ST MUSCLES OF BODY BULDING ATHLETS AND DIABETIC PEOPLE TYPE

    Directory of Open Access Journals (Sweden)

    MEHDI GHORBANI

    2014-07-01

    Full Text Available Insulin is a Hormone that is secreted from pancreas and has an undeniable role in regulating blood - suger. In medicine, the injection samples of this Hormone are used for controlling diabetes disease. But recently, it has been used by athletes for driving G lucose and Amino Acids in to muscle - cells in industrial and injection forms for fast development of muscle volume and power among potency athletes specially body - builders. The present study, is reviewing consumption consequences of this drug by athletes and it’s important and of course hidden hazards. In this study, the Hormone’s impression and it’s high secretion and mechanism imbalance in body - builders bodies are analyzed by following Dosage and period of Insulin consumption among athletes and body - b uilders and studying different forms and injection amounts of Insulin, and comparing them with diabetes disease. Results show that Insulin is a Hormone with high Anabolic effect and it is responsible for nutrient materials transmission into blood stream an d muscle - cells. The blood - suger is saved as glycogen in muscles on this hormone effect and Amino acid transmission is developed in body’s muscle system. This features by muscle manufacturing apparent of athletes and muscle exhausting delay in fast contra cting muscle fibers and enthusiasm of practicing for hours, dosen’t cause to ignore the dangerous disadvantageous of this hormone including: imbalance of metabolism such as extra lipid burning and glycogen saving in body. Because of Insulin long consumptio n body produces little amount of glycogen and adrenaline hormones to re increase the amount of blood - suger, therefore increasing blood - suger isn’t declared with warning signals such as: trembling and nervousness, and athletes encounter with the shock of decreasing blood - suger (Hyper - glysemia and die. This study shows that in correct consumption of diabetes drugs are hazardous in body. Builders in different

  16. Developmental Programming: Prenatal Testosterone Excess and Insulin Signaling Disruptions in Female Sheep.

    Science.gov (United States)

    Lu, Chunxia; Cardoso, Rodolfo C; Puttabyatappa, Muraly; Padmanabhan, Vasantha

    2016-05-01

    Women with polycystic ovary syndrome often manifest insulin resistance. Using a sheep model of polycystic ovary syndrome-like phenotype, we explored the contribution of androgen and insulin in programming and maintaining disruptions in insulin signaling in metabolic tissues. Phosphorylation of AKT, ERK, GSK3beta, mTOR, and p70S6K was examined in the liver, muscle, and adipose tissue of control and prenatal testosterone (T)-, prenatal T plus androgen antagonist (flutamide)-, and prenatal T plus insulin sensitizer (rosiglitazone)-treated fetuses as well as 2-yr-old females. Insulin-stimulated phospho (p)-AKT was evaluated in control and prenatal T-, prenatal T plus postnatal flutamide-, and prenatal T plus postnatal rosiglitazone-treated females at 3 yr of age. GLUT4 expression was evaluated in the muscle at all time points. Prenatal T treatment increased mTOR, p-p70S6K, and p-GSK3beta levels in the fetal liver with both androgen antagonist and insulin sensitizer preventing the mTOR increase. Both interventions had partial effect in preventing the increase in p-GSK3beta. In the fetal muscle, prenatal T excess decreased p-GSK3beta and GLUT4. The decrease in muscle p-GSK3beta was partially prevented by insulin sensitizer cotreatment. Both interventions partially prevented the decrease in GLUT4. Prenatal T treatment had no effect on basal expression of any of the markers in 2-yr-old females. At 3 yr of age, prenatal T treatment prevented the insulin-stimulated increase in p-AKT in liver and muscle, but not in adipose tissue, and neither postnatal intervention restored p-AKT response to insulin stimulation. Our findings provide evidence that prenatal T excess changes insulin sensitivity in a tissue- and development-specific manner and that both androgens and insulin may be involved in the programming of these metabolic disruptions. © 2016 by the Society for the Study of Reproduction, Inc.

  17. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  18. Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment

    DEFF Research Database (Denmark)

    Højlund, Kurt; Glintborg, Dorte; Andersen, Nicoline R

    2008-01-01

    , and we examined the effect of 16 weeks of treatment with pioglitazone in PCOS patients. RESULTS: Impaired insulin-mediated total (R(d)) oxidative and nonoxidative glucose disposal (NOGD) was paralleled by reduced insulin-stimulated Akt phosphorylation at Ser473 and Thr308 and AS160 phosphorylation......OBJECTIVE: Insulin resistance in skeletal muscle is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). However, the molecular mechanisms underlying skeletal muscle insulin resistance and the insulin-sensitizing effect of thiazolidinediones in PCOS in vivo...... are less well characterized. RESEARCH DESIGN AND METHODS: We determined molecular mediators of insulin signaling to glucose transport in skeletal muscle biopsies of 24 PCOS patients and 14 matched control subjects metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry...

  19. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen

    2007-01-01

    Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). In patients with type 2 diabetes, insulin resistance in skeletal muscle is associated with abnormalities in insulin signaling, fatty acid metabolism......, and mitochondrial oxidative phosphorylation (OXPHOS). In PCOS patients, the molecular mechanisms of insulin resistance are, however, less well characterized. To identify biological pathways of importance for the pathogenesis of insulin resistance in PCOS, we compared gene expression in skeletal muscle...... of metabolically characterized PCOS patients (n = 16) and healthy control subjects (n = 13) using two different approaches for global pathway analysis: gene set enrichment analysis (GSEA 1.0) and gene map annotator and pathway profiler (GenMAPP 2.0). We demonstrate that impaired insulin-stimulated total, oxidative...

  20. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    Science.gov (United States)

    Kristensen, Jonas Møller; Treebak, Jonas T.; Schjerling, Peter; Goodyear, Laurie

    2014-01-01

    Metformin-induced activation of the 5′-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPKα2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (∼45%, P metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr308/Ser473 and TBC1D4 Thr642/Ser711 phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment. PMID:24644243

  1. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N

    2012-01-01

    and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  2. The role of insulin receptor signaling in the brain.

    Science.gov (United States)

    Plum, Leona; Schubert, Markus; Brüning, Jens C

    2005-03-01

    The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.

  3. Guava leaf extracts promote glucose metabolism in SHRSP.Z-Leprfa/Izm rats by improving insulin resistance in skeletal muscle.

    Science.gov (United States)

    Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua

    2013-03-01

    Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.

  4. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    Science.gov (United States)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  5. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats

    International Nuclear Information System (INIS)

    Westfall, M.V.; Sayeed, M.M.

    1988-01-01

    Membrane glucose transport with and without insulin was studied in soleus muscle from 5-h endotoxic rats (40 mg/kg Salmonella enteritidis lipopolysaccharide), and in soleus and epitrochlearis muscles from 12-h bacteremic (Escherichia coli, 4 X 10(10) CFU/kg) rats. Glucose transport was measured in muscles by evaluating the fractional efflux of 14 C-labeled 3-O-methylglucose ( 14 C-3-MG) after loading muscles with 14 C-3-MG. Basal 3-MG transport was elevated in soleus muscles from endotoxic as well as in soleus and epitrochlearis muscles from bacteremic rats compared with time-matched controls. Low insulin concentrations stimulated 14 C-3-MG transport more in bacteremic and endotoxic rat muscles than in controls. However, sugar transport in the presence of high insulin dose was attenuated in soleus and epitrochlearis muscles from bacteremic rats and soleus muscles from endotoxic rats compared with controls. Analysis of the dose-response relationship with ALLFIT revealed that the maximal transport response to insulin was significantly decreased in both models of septic shock. Sensitivity to insulin (EC50) was increased in endotoxic rat muscles, and a somewhat similar tendency was observed in bacteremic rat soleus muscles. Neural and humoral influences and/or changes in cellular metabolic energy may contribute to the increase in basal transport. Shifts in insulin-mediated transport may be due to alterations in insulin-receptor-effector coupling and/or the number of available glucose transporters

  6. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  7. The insulin receptor substrate 1 associates with phosphotyrosine phosphatase SHPTP2 in liver and muscle of rats

    Directory of Open Access Journals (Sweden)

    Lima M.H.M.

    1998-01-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1 which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.

  8. Signalling and the control of skeletal muscle size

    International Nuclear Information System (INIS)

    Otto, Anthony; Patel, Ketan

    2010-01-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  9. Signalling and the control of skeletal muscle size

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Anthony [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom); Patel, Ketan, E-mail: ketan.patel@reading.ac.uk [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom)

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  10. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    Science.gov (United States)

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  11. Action of Phytochemicals on Insulin Signaling Pathways Accelerating Glucose Transporter (GLUT4 Protein Translocation

    Directory of Open Access Journals (Sweden)

    Abu Sadat Md Sayem

    2018-01-01

    Full Text Available Diabetes is associated with obesity, generally accompanied by a chronic state of oxidative stress and redox imbalances which are implicated in the progression of micro- and macro-complications like heart disease, stroke, dementia, cancer, kidney failure and blindness. All these complications rise primarily due to consistent high blood glucose levels. Insulin and glucagon help to maintain the homeostasis of glucose and lipids through signaling cascades. Pancreatic hormones stimulate translocation of the glucose transporter isoform 4 (GLUT4 from an intracellular location to the cell surface and facilitate the rapid insulin-dependent storage of glucose in muscle and fat cells. Malfunction in glucose uptake mechanisms, primarily contribute to insulin resistance in type 2 diabetes. Plant secondary metabolites, commonly known as phytochemicals, are reported to have great benefits in the management of type 2 diabetes. The role of phytochemicals and their action on insulin signaling pathways through stimulation of GLUT4 translocation is crucial to understand the pathogenesis of this disease in the management process. This review will summarize the effects of phytochemicals and their action on insulin signaling pathways accelerating GLUT4 translocation based on the current literature.

  12. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    Science.gov (United States)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  13. Glucose clearance in aged trained skeletal muscle during maximal insulin with superimposed exercise

    DEFF Research Database (Denmark)

    Dela, Flemming; Mikines, K J; Larsen, J J

    1999-01-01

    Insulin and muscle contractions are major stimuli for glucose uptake in skeletal muscle and have in young healthy people been shown to be additive. We studied the effect of superimposed exercise during a maximal insulin stimulus on glucose uptake and clearance in trained (T) (1-legged bicycle tra...

  14. Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review

    NARCIS (Netherlands)

    Trommelen, J.; Groen, B.; Hamer, H.M.; Groot, de C.P.G.M.; Loon, van L.J.C.

    2015-01-01

    Background Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. Objective To

  15. INSULIN SIGNALING AND THE REGULATION OF INSECT DIAPAUSE

    Directory of Open Access Journals (Sweden)

    Cheolho eSim

    2013-07-01

    Full Text Available A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs, ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs, and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.

  16. Impaired Insulin/IGF Signaling in Experimental Alcohol-Related Myopathy

    Directory of Open Access Journals (Sweden)

    Elizabeth Silbermann

    2012-08-01

    Full Text Available Alcohol-related myopathy (Alc-M is highly prevalent among heavy drinkers, although its pathogenesis is not well understood. We hypothesize that Alc-M is mediated by combined effects of insulin/IGF resistance and oxidative stress, similar to the effects of ethanol on liver and brain. We tested this hypothesis using an established model in which adult rats were pair-fed for 8 weeks with isocaloric diets containing 0% (N = 8 or 35.5% (N = 13 ethanol by caloric content. Gastrocnemius muscles were examined by histology, morphometrics, qRT-PCR analysis, and ELISAs. Chronic ethanol feeding reduced myofiber size and mRNA expression of IGF-1 polypeptide, insulin, IGF-1, and IGF-2 receptors, IRS-1, and IRS-2. Multiplex ELISAs demonstrated ethanol-associated inhibition of insulin, IRS-1, Akt, and p70S6K signaling, and increased activation of GSK-3β. In addition, ethanol-exposed muscles had increased 4-hydroxy-2-nonenal immunoreactivity, reflecting lipid peroxidation, and reduced levels of mitochondrial Complex IV, Complex V, and acetylcholinesterase. These results demonstrate that experimental Alc-M is associated with inhibition of insulin/IGF/IRS and downstream signaling that mediates metabolism and cell survival, similar to findings in alcoholic liver and brain degeneration. Moreover, the increased oxidative stress, which could be mediated by mitochondrial dysfunction, may have led to inhibition of acetylcholinesterase, which itself is sufficient to cause myofiber atrophy and degeneration.

  17. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  18. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    Science.gov (United States)

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  19. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1.

    Science.gov (United States)

    Kimura, Taro; Kato, Eisuke; Machikawa, Tsukasa; Kimura, Shunsuke; Katayama, Shinji; Kawabata, Jun

    2014-02-28

    Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA's mechanism revealed the involvement of IRS1, PI3K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling

    OpenAIRE

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V.

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a ...

  1. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle

    DEFF Research Database (Denmark)

    Bouzakri, Karim; Plomgaard, Peter; Berney, Thierry

    2011-01-01

    Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells.......Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) β-cells....

  2. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  3. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and ageing.

    Science.gov (United States)

    Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew

    2016-04-15

    This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: Role of insulin signaling in the brain.

    Science.gov (United States)

    Fang, Fangfang; Gao, Yue; Wang, Tingwei; Chen, Donglong; Liu, Jingli; Qian, Wenyi; Cheng, Jie; Gao, Rong; Wang, Jun; Xiao, Hang

    2016-03-14

    Bisphenol A (BPA), an environmental estrogenic endocrine disruptor, is widely used for producing polycarbonate plastics and epoxy resins. Available data have shown that perinatal exposure to BPA contributes to peripheral insulin resistance, while in the present study, we aimed to investigate the effects of perinatal BPA exposure on insulin signaling and glucose transport in the cortex of offspring mice. The pregnant mice were administrated either vehicle or BPA (100 μg/kg/day) at three perinatal stages. Stage I: from day 6 of gestation until parturition (P6-PND0 fetus exposure); Stage II: from lactation until delactation (PND0-PND21 newborn exposure) and Stage III: from day 6 of pregnancy until delactation (P6-PND21 fetus and newborn exposure). At 8 months of age for the offspring mice, the insulin signaling pathways and glucose transporters (GLUTs) were detected. Our data indicated that the insulin signaling including insulin, phosphorylated insulin receptor (IR), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular signal regulated protein kinase (p-ERK) were significantly decreased in the brain. In parallel, GLUTs (GLUT1/3/4) were obviously decreased as well in BPA-treated group in mice brain. Noteworthily, the phosphorylated tau (p-tau) and amyloid precursor protein (APP) were markedly up-regulated in all BPA-treated groups. These results, taken together, suggest the adverse effects of BPA on insulin signaling and GLUTs, which might subsequently contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore, perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring male mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  6. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients.

    Directory of Open Access Journals (Sweden)

    Jakob G Jespersen

    Full Text Available BACKGROUND: Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR, glycogen synthase kinase 3β (GSK3β and forkhead box O (FoxO pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU patients compared with healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, and muscle ring finger protein 1 (MuRF1; and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1, FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6, tumor necrosis factor α (TNF-α and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p<0.05 between insulin infusion dose and phosphorylated Akt was demonstrated. CONCLUSIONS/SIGNIFICANCE: We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.

  7. Carnitine acetyltransferase: A new player in skeletal muscle insulin resistance?

    Directory of Open Access Journals (Sweden)

    Sofia Mikkelsen Berg

    2017-03-01

    Full Text Available Carnitine acetyltransferase (CRAT deficiency has previously been shown to result in muscle insulin resistance due to accumulation of long-chain acylcarnitines. However, differences in the acylcarnitine profile and/or changes in gene expression and protein abundance of CRAT in myotubes obtained from obese patients with type 2 diabetes mellitus (T2DM and glucose-tolerant obese and lean controls remain unclear. The objective of the study was to examine whether myotubes from obese patients with T2DM express differences in gene expression and protein abundance of CRAT and in acylcarnitine species pre-cultured under glucose and insulin concentrations similar to those observed in healthy individuals in the over-night fasted, resting state. Primary myotubes obtained from obese persons with or without T2DM and lean controls (n=9 in each group were cultivated and harvested for LC-MS-based profiling of acylcarnitines. The mRNA expression and protein abundance of CRAT were determined by qPCR and Western Blotting, respectively. Our results suggest that the mRNA levels and protein abundance of CRAT were similar between groups. Of the 14 different acylcarnitine species measured by LC-MS, the levels of palmitoylcarnitine (C16 and octadecanoylcarnitine (C18 were slightly reduced in myotubes derived from T2DM patients (p<0.05 compared to glucose-tolerant obese and lean controls. This suggests that the CRAT function is not the major contributor to primary insulin resistance in cultured myotubes obtained from obese T2DM patients.

  8. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Treebak, Jonas Thue; Schjerling, Peter

    2014-01-01

    signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase α2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and Extensor Digitorum Longus (EDL) muscles were used for measurements of glucose transport and Western blot......Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK...... analyzes. Results: Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (45%, P...

  9. Cardiac Development and Transcription Factors: Insulin Signalling, Insulin Resistance, and Intrauterine Nutritional Programming of Cardiovascular Disease

    Science.gov (United States)

    Govindsamy, Annelene; Naidoo, Strinivasen

    2018-01-01

    Programming with an insult or stimulus during critical developmental life stages shapes metabolic disease through divergent mechanisms. Cardiovascular disease increasingly contributes to global morbidity and mortality, and the heart as an insulin-sensitive organ may become insulin resistant, which manifests as micro- and/or macrovascular complications due to diabetic complications. Cardiogenesis is a sequential process during which the heart develops into a mature organ and is regulated by several cardiac-specific transcription factors. Disrupted cardiac insulin signalling contributes to cardiac insulin resistance. Intrauterine under- or overnutrition alters offspring cardiac structure and function, notably cardiac hypertrophy, systolic and diastolic dysfunction, and hypertension that precede the onset of cardiovascular disease. Optimal intrauterine nutrition and oxygen saturation are required for normal cardiac development in offspring and the maintenance of their cardiovascular physiology. PMID:29484207

  10. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K

    1996-01-01

    is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove...... is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... to be additive stimuli of muscle glucose uptake at any plasma insulin level. In conclusion, the extent to which muscle glucose uptake is stimulated during exercise depends on various factors, including 1) the intensity of the contractile activity, 2) the magnitude of the exercise-associated increase in muscle...

  11. Nitric oxide is required for the insulin sensitizing effects of contraction in mouse skeletal muscle.

    Science.gov (United States)

    Zhang, Xinmei; Hiam, Danielle; Hong, Yet-Hoi; Zulli, Anthony; Hayes, Alan; Rattigan, Stephen; McConell, Glenn K

    2017-12-15

    People with insulin resistance or type 2 diabetes can substantially increase their skeletal muscle glucose uptake during exercise and insulin sensitivity after exercise. Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise, although how prior exercise increases insulin sensitivity is unclear. In the present study, we examined whether NO is necessary for normal increases in skeletal muscle insulin sensitivity after contraction ex vivo in mouse muscle. The present study uncovers, for the first time, a novel role for NO in the insulin sensitizing effects of ex vivo contraction, which is independent of blood flow. The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are unclear. We examined whether nitric oxide (NO) is required for the increase in insulin sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) inhibition (N G -monomethyl-l-arginine; l-NMMA; 100 μm). Then, 3.5 h post contraction/basal, muscles were exposed to saline or insulin (120 μU ml -1 ) with or without l-NMMA during the last 30 min. l-NMMA had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose uptake with insulin (57%) was significantly (P contraction (140% increase). NOS inhibition during the contractions had no effect on this insulin-sensitizing effect of contraction, whereas NOS inhibition during insulin prevented the increase in skeletal muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, protein kinase G (PKG) inhibition or cyclic nucleotide phosphodiesterase inhibition each had no effect on the insulin-sensitizing effect of prior contraction. In conclusion, NO is required for increases in insulin sensitivity several hours after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway. © 2017 The Authors. The Journal of Physiology

  12. Severe insulin-resistant diabetes mellitus in patients with congenital muscle fiber type disproportion myopathy

    DEFF Research Database (Denmark)

    Vestergaard, H; Klein, H H; Hansen, T

    1995-01-01

    Congenital muscle fiber type disproportion myopathy (CFTDM) is a chronic, nonprogressive muscle disorder characterized by universal muscle hypotrophy and growth retardation. Histomorphometric examination of muscle shows a preponderance of smaller than normal type 1 fibers and overall fiber size....... Insulin receptor function and glycogen synthase (GS) activity and expression were examined in biopsies of vastus lateralis muscle. Despite a 45-90-fold increase in both fasting and postprandial serum insulin levels, both CFTDM patients had diabetes mellitus. Clamp studies revealed that the oldest boy had...

  13. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance.

    Science.gov (United States)

    Kwon, Hayeong; Jang, Donghwan; Choi, Moonjeong; Lee, Jaewoong; Jeong, Kyuho; Pak, Yunbae

    2018-06-01

    Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  15. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?

    Science.gov (United States)

    Havekes, Bas; Sauerwein, Hans P

    2010-11-01

    To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.

  16. Gender differences in skeletal muscle substrate metabolism - molecular mechanisms and insulin sensitivity

    DEFF Research Database (Denmark)

    Lundsgaard, Annemarie; Kiens, Bente

    2014-01-01

    higher insulin sensitivity of female skeletal muscle can be related to gender-specific regulation of molecular metabolism will be topic for discussion. Gender differences in muscle fiber type distribution and substrate availability to and in skeletal muscle are highly relevant for substrate metabolism...

  17. Loss of regulator of G protein signaling 5 exacerbates obesity, hepatic steatosis, inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Wei Deng

    Full Text Available BACKGROUND: The effect of regulator of G protein signaling 5 (RGS5 on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC or a high-fat diet (HF. METHODOLOGY/PRINCIPAL FINDINGS: Male, 8-week-old RGS5 knockout (KO and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.

  18. Alantolactone Improves Prolonged Exposure of Interleukin-6-Induced Skeletal Muscle Inflammation Associated Glucose Intolerance and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Minjee Kim

    2017-06-01

    Full Text Available The pro-inflammatory cytokine, Interleukin-6 (IL-6, has been proposed to be one of the mediators that link chronic inflammation to glucose intolerance and insulin resistance. Many studies have demonstrated the effects of IL-6 on insulin action in the skeletal muscle. However, few studies have investigated the effect of long-term treatment of IL-6, leading to glucose intolerance and insulin resistance. In the present study, we observed protective effects of alantolactone, a sesquiterpene lactone isolated from Inula helenium against glucose intolerance and insulin resistance induced by prolonged exposure of IL-6. Alantolactone has been reported to have anti-inflammatory and anti-cancer effects through IL-6-induced signal transducer and activator of transcription 3 (STAT3 signaling pathway. The relationship between IL-6 exposure and expression of toll-like receptor 4 (TLR4, involved in inflammation in the skeletal muscle, and the underlying mechanisms were investigated. We observed maximum dysregulation of glucose uptake after 40 ng/ml IL-6 induction for 24 h in L6 myotubes. Prolonged IL-6 exposure suppressed glucose uptake regulating alpha serine/threonine-protein kinase (AKT phosphorylation; however, pretreatment with alantolactone activated AKT phosphorylation and improved glucose uptake. Alantolactone also attenuated IL-6-stimulated STAT3 phosphorylation, followed by an increase in expression of negative regulator suppressor of cytokine signaling 3 (SOCS3. Furthermore, IL-6-induced expression of pathogen recognition receptor, TLR4, was also suppressed by alantolactone pretreatment. Post-silencing of STAT3 using siRNA approach, IL-6-stimulated siRNA-STAT3 improved glucose uptake and suppressed TLR4 gene expression. Taken together, we propose that, as a STAT3 inhibitor, alantolactone, improves glucose regulation in the skeletal muscle by inhibiting IL-6-induced STAT3-SOCS3 signaling followed by inhibition of the TLR4 gene expression. Therefore

  19. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    Science.gov (United States)

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  20. Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Schulz, Tim J; Espinoza, Daniel O

    2010-01-01

    Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin...... BMP7's suppressive effect on pref-1 transcription. Together, these data suggest cross talk between the insulin and BMP signaling systems by which BMP7 can rescue brown adipogenesis in cells with insulin resistance....

  1. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin...... stimulation but was unaffected by contractions. In addition, the insulin-stimulated PI 3-kinase activity and muscle glucose uptake and transport in individual muscles were dose-dependently inhibited by wortmannin with one-half maximal inhibition values of approximately 10 nM and total inhibition at 1 micro......M. This concentration of wortmannin also decreased the contraction-stimulated glucose transport and uptake by approximately 30-70% without confounding effects on contractility or on muscle ATP and phosphocreatine concentrations. At higher concentrations (3 and 10 microM), wortmannin completely blocked the contraction...

  2. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training

    DEFF Research Database (Denmark)

    Schmidt, T A; Hasselbalch, S; Farrell, P A

    1994-01-01

    cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P dependent diabetes...... mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na......(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes....

  3. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States); Martyn, J.A. Jeevendra, E-mail: jmartyn@partners.org [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States)

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  4. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    International Nuclear Information System (INIS)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao; Martyn, J.A. Jeevendra

    2013-01-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [ 3 H]glucose and 2-deoxy[ 14 C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats

  5. Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation*

    OpenAIRE

    Kim, Jeong-Ho; Yoon, Mee-Sup; Chen, Jie

    2009-01-01

    Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation a...

  6. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    Science.gov (United States)

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Double stranded viral RNA induces inflammation and insulin resistance in skeletal muscle from pregnant women in vitro.

    Science.gov (United States)

    Lappas, Martha

    2015-05-01

    Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies complicated by pre-existing maternal obesity and gestational diabetes mellitus (GDM). There is now increasing evidence that activation of Toll-like receptor (TLR) signalling pathways by viral products may play a role in the pathophysiology of diabetes. Thus, the aim of this study was to assess the effect of the TLR3 ligand and viral dsRNA analogue polyinosinic polycytidilic acid (poly(I:C)) on inflammation and the insulin signalling pathway in skeletal muscle from pregnant women. Human skeletal muscle tissue explants were performed to determine the effect of poly(I:C) on the expression and secretion of markers of inflammation, and the insulin signalling pathway and glucose uptake. Poly(I:C) significantly increased the expression of a number of inflammatory markers in skeletal muscle from pregnant women. Specifically, there was an increase in the expression and/or secretion of the pro-inflammatory cytokines TNF-α, and IL-6 and the pro-inflammatory chemokines IL-8 and MCP-1. These effect of poly(I:C) appear to mediated via a number of signalling molecules including the pro-inflammatory transcription factor NF-κB, and the serine threonine kinases GSK3 and AMPKα. Additionally, poly(I:C) decreased insulin stimulated GLUT-4 expression and glucose uptake in skeletal muscle from pregnant women. The in vitro data presented in this study suggests that viral infection may contribute to the pathophysiology of pregnancies complicated by pre-existing maternal obesity and/or GDM. It should be noted that the in vitro studies cannot be directly used to infer the same outcomes in the intact subject. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Insulin-sensitive phospholipid signaling systems and glucose transport. Update II.

    Science.gov (United States)

    Farese, R V

    2001-04-01

    Insulin provokes rapid changes in phospholipid metabolism and thereby generates biologically active lipids that serve as intracellular signaling factors that regulate glucose transport and glycogen synthesis. These changes include: (i) activation of phosphatidylinositol 3-kinase (PI3K) and production of PIP3; (ii) PIP3-dependent activation of atypical protein kinase Cs (PKCs); (iii) PIP3-dependent activation of PKB; (iv) PI3K-dependent activation of phospholipase D and hydrolysis of phosphatidylcholine with subsequent increases in phosphatidic acid (PA) and diacylglycerol (DAG); (v) PI3K-independent activation of glycerol-3-phosphate acylytansferase and increases in de novo synthesis of PA and DAG; and (vi) activation of DAG-sensitive PKCs. Recent findings suggest that atypical PKCs and PKB serve as important positive regulators of insulin-stimulated glucose metabolism, whereas mechanisms that result in the activation of DAG-sensitive PKCs serve mainly as negative regulators of insulin signaling through PI3K. Atypical PKCs and PKB are rapidly activated by insulin in adipocytes, liver, skeletal muscles, and other cell types by a mechanism requiring PI3K and its downstream effector, 3-phosphoinositide-dependent protein kinase-1 (PDK-1), which, in conjunction with PIP3, phosphorylates critical threonine residues in the activation loops of atypical PKCs and PKB. PIP3 also promotes increases in autophosphorylation and allosteric activation of atypical PKCs. Atypical PKCs and perhaps PKB appear to be required for insulin-induced translocation of the GLUT 4 glucose transporter to the plasma membrane and subsequent glucose transport. PKB also appears to be the major regulator of glycogen synthase. Together, atypical PKCs and PKB serve as a potent, integrated PI3K/PDK-1-directed signaling system that is used by insulin to regulate glucose metabolism.

  9. MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review.

    Science.gov (United States)

    Trommelen, Jorn; Groen, Bart B L; Hamer, Henrike M; de Groot, Lisette C P G M; van Loon, Luc J C

    2015-07-01

    Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000  pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults. © 2015 European Society of Endocrinology.

  10. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats.

    Science.gov (United States)

    Yamazaki, Ricardo K; Brito, Gleisson A P; Coelho, Isabela; Pequitto, Danielle C T; Yamaguchi, Adriana A; Borghetti, Gina; Schiessel, Dalton Luiz; Kryczyk, Marcelo; Machado, Juliano; Rocha, Ricelli E R; Aikawa, Julia; Iagher, Fabiola; Naliwaiko, Katya; Tanhoffer, Ricardo A; Nunes, Everson A; Fernandes, Luiz Claudio

    2011-04-28

    Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  11. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    Directory of Open Access Journals (Sweden)

    Iagher Fabiola

    2011-04-01

    Full Text Available Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG (4 mg/g body weight was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C, coconut fat-treated normal weight group (CO, fish oil-treated normal weight group (FO, obese control group (Ob, coconut fat-treated obese group (ObCO and fish oil-treated obese group (ObFO. Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30% and triacylglycerol (TG; 33% compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms.

  12. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Science.gov (United States)

    Na, Ha-Na; Hegde, Vijay; Dubuisson, Olga; Dhurandhar, Nikhil V

    2016-01-01

    Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  13. E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling.

    Directory of Open Access Journals (Sweden)

    Ha-Na Na

    Full Text Available Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR, and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1. In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.

  14. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  15. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  16. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available BACKGROUND: Emerging evidence suggests that high density lipoprotein (HDL may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. METHODS: Human primary and THP-1 macrophages were treated with vehicle (PBS or acetylated low density lipoprotein (acLDL with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. RESULTS: Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05. This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. CONCLUSION: Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.

  17. Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism

    DEFF Research Database (Denmark)

    Mandrup, Camilla M; Egelund, Jon; Nyberg, Michael

    2018-01-01

    To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause. Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n...

  18. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    Science.gov (United States)

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-02-26

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation.

  19. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    Science.gov (United States)

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  20. Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training.

    Science.gov (United States)

    Sriwijitkamol, Apiradee; Christ-Roberts, Christine; Berria, Rachele; Eagan, Phyllis; Pratipanawatr, Thongchai; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-03-01

    Skeletal muscle insulin resistance plays a key role in the pathogenesis of type 2 diabetes. It recently has been hypothesized that excessive activity of the inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB) inflammatory pathway is a mechanism underlying skeletal muscle insulin resistance. However, it is not known whether IkappaB/NFkappaB signaling in muscle from subjects with type 2 diabetes is abnormal. We studied IkappaB/NFkappaB signaling in vastus lateralis muscle from six subjects with type 2 diabetes and eight matched control subjects. Muscle from type 2 diabetic subjects was characterized by a 60% decrease in IkappaB beta protein abundance, an indicator of increased activation of the IkappaB/NFkappaB pathway. IkappaB beta abundance directly correlated with insulin-mediated glucose disposal (Rd) during a hyperinsulinemic (40 mU x m(-2) x min(-1))-euglycemic clamp (r = 0.63, P = 0.01), indicating that increased IkappaB/NFkappaB pathway activity is associated with muscle insulin resistance. We also investigated whether reversal of this abnormality could be a mechanism by which training improves insulin sensitivity. In control subjects, 8 weeks of aerobic exercise training caused a 50% increase in both IkappaB alpha and IkappaB beta protein. In subjects with type 2 diabetes, training increased IkappaB alpha and IkappaB beta protein to levels comparable with that of control subjects, and these increments were accompanied by a 40% decrease in tumor necrosis factor alpha muscle content and a 37% increase in insulin-stimulated glucose disposal. In summary, subjects with type 2 diabetes have reduced IkappaB protein abundance in muscle, suggesting excessive activity of the IkappaB/NFkappaB pathway. Moreover, this abnormality is reversed by exercise training.

  1. Heparanase augments insulin receptor signaling in breast carcinoma

    Science.gov (United States)

    Goldberg, Rachel; Sonnenblick, Amir; Hermano, Esther; Hamburger, Tamar; Meirovitz, Amichay; Peretz, Tamar; Elkin, Michael

    2017-01-01

    Recently, growing interest in the potential link between metabolic disorders (i.e., diabetes, obesity, metabolic syndrome) and breast cancer has mounted, including studies which indicate that diabetic/hyperinsulinemic women have a significantly higher risk of bearing breast tumors that are more aggressive and associated with higher death rates. Insulin signaling is regarded as a major contributor to this phenomenon; much less is known about the role of heparan sulfate-degrading enzyme heparanase in the link between metabolic disorders and cancer. In the present study we analyzed clinical samples of breast carcinoma derived from diabetic/non-diabetic patients, and investigated effects of heparanase on insulin signaling in breast carcinoma cell lines, as well as insulin-driven growth of breast tumor cells. We demonstrate that heparanase activity leads to enhanced insulin signaling and activation of downstream tumor-promoting pathways in breast carcinoma cells. In agreement, heparanase enhances insulin-induced proliferation of breast tumor cells in vitro. Moreover, analyzing clinical data from diabetic breast carcinoma patients, we found that concurrent presence of both diabetic state and heparanase in tumor tissue (as opposed to either condition alone) was associated with more aggressive phenotype of breast tumors in the patient cohort analyzed in our study (two-sided Fisher's exact test; p=0.04). Our findings highlight the emerging role of heparanase in powering effect of hyperinsulinemic state on breast tumorigenesis and imply that heparanase targeting, which is now under intensive development/clinical testing, could be particularly efficient in a growing fraction of breast carcinoma patients suffering from metabolic disorders. PMID:28038446

  2. Pregnancy-induced insulin resistance in liver and skeletal muscles of the conscious rabbit

    International Nuclear Information System (INIS)

    Hauguel, S.; Gilbert, M.; Girard, J.

    1987-01-01

    Insulin sensitivity of maternal nonuterine tissues (liver and skeletal muscles) has been investigated in the conscious rabbit during late gestation (24 and 30 days). The specific effect of insulin on glucose production and utilization was evaluated with the hyperinsulinemic euglycemic clamp technique using two types of labelled microspheres ( 57 Co and 113 Sn). The net balance of glucose across the hindlimb muscles was studied by means of the Fick principle in basal and insulin stimulated conditions (clamp study). The results show that an insulin-resistant state developed between days 24 and 30 of gestation in the rabbit and involves both glucose producing (liver) and utilizing (muscles) tissues. On day 30 of gestation, muscle glucose uptake was not significantly stimulated at a plasma insulin concentration of 700 μU/ml determined by radioimmunoassay, whereas it was stimulated by 30-40% in nonpregnant and 24 day pregnant rabbits. At similar plasma insulin concentration, endogenous glucose production was suppressed by 85% in both nonpregnant and 24 day pregnant rabbits, whereas it was decreased by only 30% in 30 day pregnant rabbits. The present data suggest that hindlimb muscles of late pregnant rabbits are able to reduce their insulin-induced glucose utilization. This could contribute to meet the glucose requirements of pregnant uterus in late gestation

  3. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Treebak, Jonas Thue; Fentz, Joachim

    2015-01-01

    Acute exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise insulin sensitivity to increase glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood, but appear to involve an increased ...

  4. Sex and muscle structural lipids in obese subjects - an impact on insulin action?

    DEFF Research Database (Denmark)

    Haugaard, SB; Vaag, A.; Høy, Carl-Erik

    2008-01-01

    BACKGROUND: Long-chain polyunsaturated fatty acid (LCPUFA) especially the n-3-FA of skeletal muscle phospholipids may facilitate insulin action, whereas saturated and trans-FA act oppositely. Community studies show that non-diabetic weight matched obese men and women display similar insulin resis...

  5. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  6. Wnt Signaling in Skeletal Muscle Development and Regeneration.

    Science.gov (United States)

    Girardi, Francesco; Le Grand, Fabien

    2018-01-01

    Wnt is a family of signaling molecules involved in embryogenesis, adult tissue repair, and cancer. They activate canonical and noncanonical Wnt signaling cascades in target cells. Several studies, within the last decades, showed that several Wnt ligands are involved in myogenesis and both canonical and noncanonical Wnt pathways regulate muscle formation and the maintenance of adult tissue homeostasis. In this review, we provide a comprehensive overview of the roles of Wnt signaling during muscle development and an updated description of Wnt functions during muscle repair. Lastly, we discuss the crosstalk between Wnt and TGFβ signaling pathways in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H.; Bouwman, Freek G.; Moors, Chantalle C.; Boekschoten, Mark; Afman, Lydia; Muller, Michael; Mariman, Edwin C.; Blaak, Ellen E.

    2012-01-01

    Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin

  8. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  9. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    Science.gov (United States)

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Early Stress History Alters Serum Insulin-Like Growth Factor-1 and Impairs Muscle Mitochondrial Function in Adult Male Rats.

    Science.gov (United States)

    Ghosh, S; Banerjee, K K; Vaidya, V A; Kolthur-Seetharam, U

    2016-09-01

    Early-life adversity is associated with an enhanced risk for adult psychopathology. Psychiatric disorders such as depression exhibit comorbidity for metabolic dysfunction, including obesity and diabetes. However, it is poorly understood whether, besides altering anxiety and depression-like behaviour, early stress also evokes dysregulation of metabolic pathways and enhances vulnerability for metabolic disorders. We used the rodent model of the early stress of maternal separation (ES) to examine the effects of early stress on serum metabolites, insulin-like growth factor (IGF)-1 signalling, and muscle mitochondrial content. Adult ES animals exhibited dyslipidaemia, decreased serum IGF1 levels, increased expression of liver IGF binding proteins, and a decline in the expression of specific metabolic genes in the liver and muscle, including Pck1, Lpl, Pdk4 and Hmox1. These changes occurred in the absence of alterations in body weight, food intake, glucose tolerance, insulin tolerance or insulin levels. ES animals also exhibited a decline in markers of muscle mitochondrial content, such as mitochondrial DNA levels and expression of TFAM (transcription factor A, mitochondrial). Furthermore, the expression of several genes involved in mitochondrial function, such as Ppargc1a, Nrf1, Tfam, Cat, Sesn3 and Ucp3, was reduced in skeletal muscle. Adult-onset chronic unpredictable stress resulted in overlapping and distinct consequences from ES, including increased circulating triglyceride levels, and a decline in the expression of specific metabolic genes in the liver and muscle, with no change in the expression of genes involved in muscle mitochondrial function. Taken together, our results indicate that a history of early adversity can evoke persistent changes in circulating IGF-1 and muscle mitochondrial function and content, which could serve to enhance predisposition for metabolic dysfunction in adulthood. © 2016 British Society for Neuroendocrinology.

  11. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.

    Science.gov (United States)

    Fogt, Donovan L; Pan, Shujia; Lee, Sukho; Ding, Zhenping; Scrimgeour, Angus; Lawrence, John C; Ivy, John L

    2004-03-01

    Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.

  12. Insulin facilitates transport of macromolecules and nutrients to muscles

    DEFF Research Database (Denmark)

    Christensen, N J; Hilsted, J

    1993-01-01

    We previously showed that intravenous insulin increased plasma noradrenaline during euglycemia and without concomitant changes in plasma adrenaline. Insulin decreased plasma volume and increased the fractional escape rate of albumin from plasma. In normal subjects, oral glucose increased heart ra...... the blood to the extracellular space after food intake. This process may be greatly disturbed in insulin-dependent diabetic patients....

  13. Brain insulin signaling and Alzheimer's disease: current evidence and future directions.

    Science.gov (United States)

    Schiöth, Helgi B; Craft, Suzanne; Brooks, Samantha J; Frey, William H; Benedict, Christian

    2012-08-01

    Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimer's disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.

  14. Role of IRS-2 in insulin and cytokine signalling.

    Science.gov (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  15. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle.

    Science.gov (United States)

    Tran, Ha T; Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-01-01

    Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.

  16. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    DEFF Research Database (Denmark)

    Shi, Hao; Munk, Alexander; Nielsen, Thomas Svava

    2018-01-01

    -GlcNAcylation, in skeletal muscle. METHODS: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body...... of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated...

  17. Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Madsbad, Sten

    2007-01-01

    CONTEXT: Low birth weight (LBW), a surrogate marker of an adverse fetal milieu, is linked to muscle insulin resistance, impaired insulin-stimulated glycolysis, and future risk of type 2 diabetes. Skeletal muscle mass, fiber composition, and capillary density are important determinants of muscle...

  18. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    Science.gov (United States)

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in

  19. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  1. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  2. The Crucial Role of C18-Cer in Fat-Induced Skeletal Muscle Insulin Resistance.

    Science.gov (United States)

    Blachnio-Zabielska, Agnieszka U; Chacinska, Marta; Vendelbo, Mikkel H; Zabielski, Piotr

    2016-01-01

    Muscle bioactive lipids accumulation leads to several disorder states. The most common are insulin resistance (IR) and type 2 diabetes. There is an ongoing debate which of the lipid species plays the major role in induction of muscle IR. Our aim was to elucidate the role of particular lipid group in induction of muscle IR. The analyses were performed on muscle from the following groups of rats: 1. Control, fed standard diet, 2 HFD, fed high fat diet, 3. HFD/Myr, fed HFD and treated with myriocin (Myr), an inhibitor of ceramide de novo synthesis. We utilized [U13C] palmitate isotope tracer infusion and mass spectrometry to measure content and synthesis rate of muscle long-chain acyl-CoA (LCACoA), diacylglycerols (DAG) and ceramide (Cer). HFD led to intramuscular accumulation of LCACoA, DAG and Cer and skeletal muscle IR. Myr-treatment caused decrease in Cer (most noticeable for stearoyl-Cer and oleoyl-Cer) and accumulation of DAG, possibly due to re-channeling of excess of intramuscular LCACoA towards DAG synthesis. An improvement in insulin sensitivity at both systemic and muscular level coincided with decrease in ceramide, despite elevated intramuscular DAG. The improved insulin sensitivity was associated with decreased muscle stearoyl- and oleoyl-ceramide content. The results indicate that accumulation of those ceramide species has the greatest impact on skeletal muscle insulin sensitivity in rats. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Hypertrophy of mature xenopus muscle fibres in culture induced by synergy of albumin and insulin

    NARCIS (Netherlands)

    Jaspers, R.T.; van Beek-Harmsen, B.J.; Blankenstein, M.A.; Goldspink, G.; Huijing, P.A.J.B.M.; van der Laarse, W.J.

    2008-01-01

    The aim of this study was to investigate effects of albumin and insulin separately as well as in combination on mature muscle fibres during long-term culture. Single muscle fibres were dissected from m. iliofibularis of Xenopus laevis and attached to a force transducer in a culture chamber. Fibres

  4. Insulin signaling in Caenorhabditis elegans regulates both endocrine-like and cell-autonomous outputs.

    Science.gov (United States)

    Iser, Wendy B; Gami, Minaxi S; Wolkow, Catherine A

    2007-03-15

    In C. elegans, insulin signaling affects development, lifespan and stress resistance. Several studies have shown that insulin signaling affects lifespan in an endocrine-like manner from different cells, while the major downstream target of insulin, the FOXO transcription factor encoded by daf-16, may act preferentially in intestinal cells to prolong lifespan. This discrepancy raised the possibility that insulin may have both endocrine and cell-intrinsic outputs. Here, we further investigated the types of cells capable of producing endocrine outputs of insulin and also identified a new cell-intrinsic insulin output. We found that insulin signaling within groups of neurons promoted wildtype lifespan, showing that the endocrine outputs of insulin were not restricted to specific cells. In contrast, DAF-16 appeared to have a greater effect on lifespan when expressed in a combination of tissues. These results suggest that insulin signaling may regulate DAF-16 through cell-intrinsic and endocrine pathways. We also found that an insulin-dependent response to fasting in intestinal cells was preferentially regulated by intestinal insulin signaling and was less responsive to insulin signaling from non-intestinal cells. Together, these results show that C. elegans insulin signaling has endocrine as well as tissue-specific outputs which could influence lifespan in a combinatorial fashion.

  5. Insulin Resistance and Increased Muscle Cytokine Levels in Patients With Mitochondrial Myopathy

    DEFF Research Database (Denmark)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-01-01

    CONTEXT: Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. OBJECTIVE: The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. DESIGN......: The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. MAIN OUTCOME MEASURES: Glucose infusion rate during 90-120 minutes of insulin infusion...... was measured. Cytokine concentrations in dialysate were also measured. RESULTS: Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P insulin, C-peptide, and glucagon were higher...

  6. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  7. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    Science.gov (United States)

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The triglyceride content in skeletal muscle is associated with hepatic but not peripheral insulin resistance in elderly twins

    DEFF Research Database (Denmark)

    Grunnet, L G; Laurila, Esa; Hansson, Ola

    2012-01-01

    Total muscle triglyceride (MT) content has been associated with insulin resistance. We investigated the predictors and impact of MT on relevant metabolic parameters including peripheral and hepatic insulin resistance in elderly twins.......Total muscle triglyceride (MT) content has been associated with insulin resistance. We investigated the predictors and impact of MT on relevant metabolic parameters including peripheral and hepatic insulin resistance in elderly twins....

  9. Fucosterol activates the insulin signaling pathway in insulin resistant HepG2 cells via inhibiting PTP1B.

    Science.gov (United States)

    Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue

    2016-10-01

    Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.

  10. Quercetin ameliorates chronic unpredicted stress-induced behavioral dysfunction in male Swiss albino mice by modulating hippocampal insulin signaling pathway.

    Science.gov (United States)

    Mehta, Vineet; Singh, Tiratha Raj; Udayabanu, Malairaman

    2017-12-01

    Chronic stress is associated with impaired neurogenesis, neurodegeneration and behavioral dysfunction, whereas the mechanism underlying stress-mediated neurological complications is still not clear. In the present study, we aimed to investigate whether chronic unpredicted stress (CUS) mediated neurological alterations are associated with impaired hippocampal insulin signaling or not, and studied the effect of quercetin in this scenario. Male Swiss albino mice were subjected to 21day CUS, during which 30mg/kg quercetin treatment was given orally. After 21days, behavioral functions were evaluated in terms of locomotor activity (Actophotometer), muscle coordination (Rota-rod), depression (Tail Suspension Test (TST), Forced Swim Test (FST)) and memory performance (Passive-avoidance step-down task (PASD)). Further, hippocampal insulin signaling was evaluated in terms of protein expression of insulin, insulin receptor (IR) and glucose transporter 4 (GLUT-4) and neurogenesis was evaluated in terms of doublecortin (DCX) expression. 21day CUS significantly impaired locomotion and had no effect on muscle coordination. Stressed animals were depressed and showed markedly impaired memory functions. Quercetin treatment significantly improvement stress-mediated behavior dysfunction as indicated by improved locomotion, lesser immobility time and greater frequency of upward turning in TST and FST and increased transfer latency on the day 2 (short-term memory) and day 5 (long-term memory) in PASD test. We observed significantly higher IR expression and significantly lower GLUT-4 expression in the hippocampus of stressed animals, despite of nonsignificant difference in insulin levels. Further, chronic stress impaired hippocampal neurogenesis, as indicated by the significantly reduced levels of hippocampal DCX expression. Quercetin treatment significantly lowered insulin and IR expression and significantly enhanced GLUT-4 and DCX expression in the hippocampus, when compared to CUS. In

  11. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    R.M. Banin

    2014-09-01

    Full Text Available Ginkgo biloba extract (GbE has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1, protein tyrosine phosphatase 1B (PTP-1B, and protein kinase B (Akt, as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD or a normal fat diet (NFD for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V, and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb. NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  12. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    International Nuclear Information System (INIS)

    Banin, R.M.; Hirata, B.K.S.; Andrade, I.S.; Zemdegs, J.C.S.; Clemente, A.P.G.; Dornellas, A.P.S.; Boldarine, V.T.; Estadella, D.; Albuquerque, K.T.; Oyama, L.M.; Ribeiro, E.B.; Telles, M.M.

    2014-01-01

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment

  13. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Banin, R. M.; Hirata, B. K.S. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil); Andrade, I. S.; Zemdegs, J. C.S. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Clemente, A. P.G. [Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL (Brazil); Dornellas, A. P.S.; Boldarine, V. T. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Estadella, D. [Departamento de Biociências, Universidade Federal de São Paulo, Baixada Santista, SP (Brazil); Albuquerque, K. T. [Curso de Nutrição, Universidade Federal do Rio de Janeiro, Macaé, RJ (Brazil); Oyama, L. M.; Ribeiro, E. B. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Telles, M. M. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil)

    2014-07-25

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  14. Acute High-intensity Interval Exercise-induced Redox Signaling is Associated with Enhanced Insulin Sensitivity in Obese Middle-aged Men.

    Directory of Open Access Journals (Sweden)

    Lewan Parker

    2016-09-01

    Full Text Available Background. Obesity and ageing are associated with increased oxidative stress, activation of stress and mitogen activated protein kinases (SAPK, and the development of insulin resistance and metabolic disease. In contrast, acute exercise also increases oxidative stress and SAPK signaling, yet is reported to enhance insulin sensitivity and reduce the risk of metabolic disease. This study explored this paradox by investigating the effect of a single session of high-intensity interval-exercise (HIIE on redox status, muscle SAPK and insulin protein signaling in eleven middle-aged obese men. Methods. Participants completed a 2 hour hyperinsulinaemic-euglycaemic clamp at rest, and 60 minutes after HIIE (4x4 mins at 95% HRpeak; 2 min recovery periods, separated by 1-3 weeks. Results. Irrespective of exercise-induced changes to redox status, insulin stimulation both at rest and after HIIE similarly increased plasma superoxide dismutase activity, plasma catalase activity, and skeletal muscle 4-HNE; and significantly decreased plasma TBARS and hydrogen peroxide. The SAPK signaling pathways of p38 MAPK, NF-κB p65, and JNK, and the distal insulin signaling protein AS160Ser588, were activated with insulin stimulation at rest and to a greater extent with insulin stimulation after a prior bout of HIIE. Higher insulin sensitivity after HIIE was associated with higher insulin-stimulated SAPK phosphorylation (JNK, p38 MAPK and NF-κB and SOD activity (p<0.05. Conclusion. These findings support a role for redox homeostasis and SAPK signaling in insulin-stimulated glucose uptake which may contribute to the enhancement of insulin sensitivity in obese men 3 hours after HIIE.

  15. The role of adipose tissue and excess of fatty acids in the induction of insulin resistance in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Agnieszka Błachnio-Zabielska

    2016-11-01

    Full Text Available Skeletal muscle is the main tissue responsible for insulin-stimulated glucose uptake. Consumption of a high-fat diet rich in saturated fats (HFD and obesity are associated with accumulation of intramuscular lipids that leads to several disorders, e.g. insulin resistance (IRes and type 2 diabetes (T2D. The mechanism underlying the induction of IRes is still unknown. It was speculated that accumulation of intramuscular triacylglycerols (TAG is linked to induction of IRes. Now, research focuses on bioactive lipids: long-chain acyl-CoA (LCACoA, diacylglycerols (DAG and ceramides (Cer. It has been demonstrated that accumulation of each of the above-mentioned lipid classes negatively affects the insulin signaling pathway. It is not clear which of those lipids play the most important role in HFD-induced skeletal muscle IRes. The aim of the present work is to present the current knowledge of the role of adipose tissue and excess of fatty acids in the induction of insulin resistance.

  16. Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance.

    Science.gov (United States)

    Fick, Laura J; Belsham, Denise D

    2010-08-15

    Obesity and type 2 diabetes mellitus represent a significant global health crisis. These two interrelated diseases are typified by perturbed insulin signaling in the hypothalamus. Using novel hypothalamic cell lines, we have begun to elucidate the molecular and intracellular mechanisms involved in the hypothalamic control of energy homeostasis and insulin resistance. In this review, we present evidence of insulin and glucose signaling pathways that lead to changes in neuropeptide gene expression. We have identified some of the molecular mechanisms involved in the control of de novo hypothalamic insulin mRNA expression. And finally, we have defined key mechanisms involved in the etiology of cellular insulin resistance in hypothalamic neurons that may play a fundamental role in cases of high levels of insulin or saturated fatty acids, often linked to the exacerbation of obesity and diabetes.

  17. Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2

    DEFF Research Database (Denmark)

    de Boer, Michiel P; Meijer, Rick I; Richter, Erik

    2016-01-01

    Decreased tissue perfusion increases the risk of developing insulin resistance and cardiovascular disease in obesity, and decreased levels of globular adiponectin (gAdn) have been proposed to contribute to this risk. We hypothesized that gAdn controls insulin's vasoactive effects through AMP......-activated protein kinase (AMPK), specifically its α2 subunit, and studied the mechanisms involved. In healthy volunteers, we found that decreased plasma gAdn levels in obese subjects associate with insulin resistance and reduced capillary perfusion during hyperinsulinemia. In cultured human microvascular...... endothelial cells (HMEC), gAdn increased AMPK activity. In isolated muscle resistance arteries gAdn uncovered insulin-induced vasodilation by selectively inhibiting insulin-induced activation of ERK1/2, and the AMPK inhibitor compound C as well as genetic deletion of AMPKα2 blunted insulin...

  18. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus

    DEFF Research Database (Denmark)

    Jørgensen, Jens O L; Jessen, Niels; Pedersen, Steen Bønløkke

    2006-01-01

    Growth hormone (GH) regulates muscle and fat metabolism, which impacts on body composition and insulin sensitivity, but the underlying GH signaling pathways have not been studied in vivo in humans. We investigated GH signaling in biopsies from muscle and abdominal fat obtained 30 (n = 3) or 60 (n...... was measured by in vitro phosphorylation of PI. STAT5 DNA binding activity was assessed with EMSA, and the expression of IGF-I and SOCS mRNA was measured by real-time RT-PCR. GH induced a 52% increase in circulating FFA levels with peak values after 155 min (P = 0.03). Tyrosine-phosphorylated STAT5...... tended to increase after GH in muscle and fat, respectively. We conclude that 1) STAT5 is acutely activated in human muscle and fat after a GH bolus, but additional downstream GH signaling was significant only in fat; 2) the direct GH effects in muscle need further characterization; and 3) this human...

  19. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    Directory of Open Access Journals (Sweden)

    Christine M. Kusminski

    2015-10-01

    Conclusion: We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  1. Effect of lipopolysaccharide on inflammation and insulin action in human muscle.

    Science.gov (United States)

    Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia; Tantiwong, Puntip; Musi, Nicolas

    2013-01-01

    Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS on insulin action and glucose metabolism in human muscle cells. In the present study we compared plasma LPS concentration in insulin resistant [obese non-diabetic and obese type 2 diabetic (T2DM)] subjects versus lean individuals. In addition, we employed a primary human skeletal muscle cell culture system to investigate the effect of LPS on glucose metabolism and whether these effects are mediated via TLR4. Obese non-diabetic and T2DM subjects had significantly elevated plasma LPS and LPS binding protein (LBP) concentrations. Plasma LPS (r = -0.46, P = 0.005) and LBP (r = -0.49, P = 0.005) concentrations negatively correlated with muscle insulin sensitivity (M). In human myotubes, LPS increased JNK phosphorylation and MCP-1 and IL-6 gene expression. This inflammatory response led to reduced insulin-stimulated IRS-1, Akt and AS160 phosphorylation and impaired glucose transport. Both pharmacologic blockade of TLR4 with TAK-242, and TLR4 gene silencing, suppressed the inflammatory response and insulin resistance caused by LPS in human muscle cells. Taken together, these findings suggest that elevations in plasma LPS concentration found in obese and T2DM subjects could play a role in the pathogenesis of insulin resistance and that antagonists of TLR4 may improve insulin action in these individuals.

  2. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    Science.gov (United States)

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (Pmuscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (Pmuscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Insulin resistance and increased muscle cytokine levels in patients with mitochondrial myopathy.

    Science.gov (United States)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-10-01

    Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. This was an experimental, controlled study in outpatients. Eight overnight-fasted patients (P) with various inherited mitochondrial myopathies and eight healthy subjects (C) matched for sex, age, weight, height, and physical activity participated in the study. The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. Glucose infusion rate during 90-120 minutes of insulin infusion was measured. Cytokine concentrations in dialysate were also measured. Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P fatty acids and glycerol at 120 minutes were higher in P vs C (2P myopathies, insulin sensitivity of muscle, adipose tissue, and pancreatic A cells is reduced, supporting that mitochondrial function influences insulin action. Furthermore, a local, low-grade inflammation of potential clinical importance exists in the muscle of these patients.

  4. IL-6 and IGF-1 signaling within and between muscle and bone: how important is the mTOR pathway for bone metabolism?

    NARCIS (Netherlands)

    Bakker, A.D.; Jaspers, R.T.

    2015-01-01

    Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well

  5. IL-6 and IGF-1 Signaling within, and between, Muscle and Bone: How Important is the mTOR Pathway for Bone Metabolism?

    NARCIS (Netherlands)

    Bakker, A.D.; Jaspers, R.T.

    2015-01-01

    Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well

  6. Influence of age on leptin induced skeletal muscle signaling

    DEFF Research Database (Denmark)

    Guadalupe Grau, Amelia; Larsen, Steen; Guerra, Borja

    2014-01-01

    transducer and activator of transcription 3 (STAT3), insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC), combined with the leptin signaling inhibitors suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in human...

  7. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic.

    Science.gov (United States)

    Ishikura, S; Koshkina, A; Klip, A

    2008-01-01

    Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.

  8. Expression of glycogen synthase and phosphofructokinase in muscle from type 1 (insulin-dependent) diabetic patients before and after intensive insulin treatment

    DEFF Research Database (Denmark)

    Vestergaard, H; Andersen, P H; Lund, S

    1994-01-01

    The aim of the present study was to determine whether short-term appropriate insulinization of Type 1 (insulin-dependent) diabetic patients in long-term poor glycaemic control (HbA1C > 9.5%) was associated with an adaptive regulation of the activity and gene expression of key proteins in muscle...... glycogen storage and glycolysis: glycogen synthase and phosphofructokinase, respectively. In nine diabetic patients biopsies of quadriceps muscle were taken before and 24-h after intensified insulin therapy and compared to findings in eight control subjects. Subcutaneous injections of rapid acting insulin...... were given at 3-h intervals to improve glycaemic control in diabetic patients (fasting plasma glucose decreased from 20.8 +/- 0.8 to 8.7 +/- 0.8 mmol/l whereas fasting serum insulin increased from 59 +/- 8 to 173 +/- 3 pmol/l). Before intensified insulin therapy, analysis of muscle biopsies from...

  9. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Skov, Vibe; Petersson, Stine Juhl

    2014-01-01

    Insulin resistance in obesity and type 2 diabetes is related to abnormalities in mitochondrial oxidative phosphorylation (OxPhos) in skeletal muscle. We tested the hypothesis that mitochondrial oxidative metabolism is impaired in muscle of patients with inherited insulin resistance and defective...

  10. Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.

    Science.gov (United States)

    Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-02-01

    The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    OpenAIRE

    Iagher Fabiola; Aikawa Julia; Rocha Ricelli ER; Machado Juliano; Kryczyk Marcelo; Schiessel Dalton; Borghetti Gina; Yamaguchi Adriana A; Pequitto Danielle CT; Coelho Isabela; Brito Gleisson AP; Yamazaki Ricardo K; Naliwaiko Katya; Tanhoffer Ricardo A; Nunes Everson A

    2011-01-01

    Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish...

  12. Effect of starvation on human muscle protein metabolism and its response to insulin

    International Nuclear Information System (INIS)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A.

    1990-01-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using [3H]phenylalanine (Phe) and [14C]leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action

  13. Effect of starvation on human muscle protein metabolism and its response to insulin

    Energy Technology Data Exchange (ETDEWEB)

    Fryburg, D.A.; Barrett, E.J.; Louard, R.J.; Gelfand, R.A. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1990-10-01

    To assess the effect of fasting on muscle protein turnover in the basal state and in response to insulin, we measured forearm amino acid kinetics, using (3H)phenylalanine (Phe) and (14C)leucine (Leu) infused systemically, in eight healthy subjects after 12 (postabsorptive) and 60 h of fasting. After a 150-min basal period, forearm local insulin concentration was selectively raised by approximately 25 muU/ml for 150 min by intra-arterial insulin infusion (0.02 mU.kg-1. min-1). The 60-h fast increased urine nitrogen loss and whole body Leu flux and oxidation (by 50-75%, all P less than 0.02). Post-absorptively, forearm muscle exhibited a net release of Phe and Leu, which increased two- to threefold after the 60-h fast (P less than 0.05); this effect was mediated exclusively by accelerated local rates of amino acid appearance (Ra), with no reduction in rates of disposal (Rd). Local hyperinsulinemia in the postabsorptive condition caused a twofold increase in forearm glucose uptake (P less than 0.01) and completely suppressed the net forearm output of Phe and Leu (P less than 0.02). After the 60-h fast, forearm glucose disposal was depressed basally and showed no response to insulin; in contrast, insulin totally abolished the accelerated net forearm release of Phe and Leu. The action of insulin to reverse the augmented net release of Phe and Leu was mediated exclusively by approximately 40% suppression of Ra (P less than 0.02) rather than a stimulation of Rd. We conclude that in short-term fasted humans (1) muscle amino acid output accelerates due to increased proteolysis rather than reduced protein synthesis, and (2) despite its catabolic state and a marked impairment in insulin-mediated glucose disposal, muscle remains sensitive to insulin's antiproteolytic action.

  14. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine respond to exercise and influence insulin sensitivity in men.

    Science.gov (United States)

    Lee, Sindre; Norheim, Frode; Gulseth, Hanne L; Langleite, Torgrim M; Aker, Andreas; Gundersen, Thomas E; Holen, Torgeir; Birkeland, Kåre I; Drevon, Christian A

    2018-04-25

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) composition in skeletal muscle have been linked to insulin sensitivity. We evaluated the relationships between skeletal muscle PC:PE, physical exercise and insulin sensitivity. We performed lipidomics and measured PC and PE in m. vastus lateralis biopsies obtained from 13 normoglycemic normal weight men and 13 dysglycemic overweight men at rest, immediately after 45 min of cycling at 70% maximum oxygen uptake, and 2 h post-exercise, before as well as after 12 weeks of combined endurance- and strength-exercise intervention. Insulin sensitivity was monitored by euglycemic-hyperinsulinemic clamp. RNA-sequencing was performed on biopsies, and mitochondria and lipid droplets were quantified on electron microscopic images. Exercise intervention for 12 w enhanced insulin sensitivity by 33%, skeletal muscle levels of PC by 21%, PE by 42%, and reduced PC:PE by 16%. One bicycle session reduced PC:PE by 5%. PC:PE correlated negatively with insulin sensitivity (β = -1.6, P insulin sensitivity.

  15. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Effect of hypothermia on the insulin-receptor interaction in skeletal muscle plasma membranes

    International Nuclear Information System (INIS)

    Torlinska T, Mackowiak P.; Nogowski L, Kozlik J.

    1996-01-01

    The aim of the study was to investigate the effect of hypothermia on (125-I)-insulin binding to rat skeletal muscle membranes and to determine whether the decrease in blood insulin concentration could be related to changes in the number or in the affinity of insulin receptor sites according to the down-regulation theory. Rat skeletal muscle membranes were prepared from control, normothermic rats (Tr = 35.6 ± 0.3 degree C) and hypothermic rats (Tr = 26.0 ± 0.5 deg C) and purified according to Havrankowa. In order to determine the kinetic parameters of the hormone-receptor interaction the data from the competition binding studies were analysed by the method of Scatchard using the LIGAND Pc.v.3.1. computer program of Munson and Rodbard. We have shown that under hypothermic conditions insulin receptors number is significantly increased in specific hindlimb skeletal muscles but the changes take place mainly in the low affinity receptors class. The phenomenon probably results from the lack of spare high affinity insulin receptors in skeletal muscle as shown recently by Camps et al. (author). 36 refs., 3 figs, 2 tabs

  17. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway.

    Science.gov (United States)

    Yang, Zhou; Wu, Fan; He, Yanming; Zhang, Qiang; Zhang, Yuan; Zhou, Guangrong; Yang, Hongjie; Zhou, Ping

    2018-01-24

    Insulin resistance caused by the overexpression of protein tyrosine phosphatase 1 B (PTP1B) as well as the dephosphorylation of its target is one of the main causes of type 2 diabetes (T2D). A newly discovered proteoglycan, Fudan-Yueyang Ganoderma lucidum (FYGL) extracted from Ganoderma lucidum, was first reported to be capable of competitively inhibiting PTP1B activity in vitro in our previous work. In the present study, we sought to reveal the mechanism of PTP1B inhibition by FYGL at the animal and cellular levels. We found that FYGL can decrease blood glucose, reduce body weight and ameliorate insulin resistance in ob/ob mice. Decrease of PTP1B expression and increase of the phosphorylation of PTP1B targets in the insulin signaling pathway of skeletal muscles were observed. In order to clearly reveal the underlying mechanism of the hypoglycemic effect caused by FYGL, we further investigated the effects of FYGL on the PTP1B-involved insulin signaling pathway in rat myoblast L6 cells. We demonstrated that FYGL had excellent cell permeability by using a confocal laser scanning microscope and a flow cytometer. We found that FYGL had a positive effect on insulin-stimulated glucose uptake by using the 2-deoxyglucose (2-DG) method. FYGL could inhibit PTP1B expression at the mRNA level, phosphorylating insulin receptor substrate-1 (IRS1), as well as activating phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt). Finally, FYGL increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and consequently up-regulated the expression of glucose transporter type 4 (GLUT4), promoting GLUT4 transportation to the plasma membrane in PTP1B-transfected L6 cells. Our study provides theoretical evidence for FYGL to be potentially used in T2D management.

  18. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Chiu, Tim T; Jensen, Thomas Elbenhardt; Sylow, Lykke

    2011-01-01

    Small Rho family GTPases are important regulators of cellular traffic. Emerging evidence now implicates Rac1 and Rac-dependent actin reorganisation in insulin-induced recruitment of glucose transporter-4 (GLUT4) to the cell surface of muscle cells and mature skeletal muscle. This review summarises...... the current thinking on the regulation of Rac1 by insulin, the role of Rac-dependent cortical actin remodelling in GLUT4 traffic, and the impact of Rac1 towards insulin resistance in skeletal muscle....

  19. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  20. The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes

    DEFF Research Database (Denmark)

    Giebelstein, J; Poschmann, G; Højlund, K

    2012-01-01

    The molecular mechanisms underlying insulin resistance in skeletal muscle are incompletely understood. Here, we aimed to obtain a global picture of changes in protein abundance in skeletal muscle in obesity and type 2 diabetes, and those associated with whole-body measures of insulin action....

  1. Insulin modulates energy and substrate sensing and protein catabolism induced by chronic peritonitis in skeletal muscle of neonatal pigs

    Science.gov (United States)

    Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to ind...

  2. Expression of insulin signalling components in the sensory epithelium of the human saccule

    DEFF Research Database (Denmark)

    Degerman, Eva; Rauch, Uwe; Lindberg, Sven

    2013-01-01

    signalling components in the inner ear is sparce. Our immunohistochemistry approach has shown that the insulin receptor, insulin receptor substrate 1 (IRS1), protein kinase B (PKB) and insulin-sensitive glucose transporter (GLUT4) are expressed in the sensory epithelium of the human saccule, which also...

  3. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    Science.gov (United States)

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  4. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance.

    Science.gov (United States)

    Pereira, Renata Oliveira; Tadinada, Satya M; Zasadny, Frederick M; Oliveira, Karen Jesus; Pires, Karla Maria Pereira; Olvera, Angela; Jeffers, Jennifer; Souvenir, Rhonda; Mcglauflin, Rose; Seei, Alec; Funari, Trevor; Sesaki, Hiromi; Potthoff, Matthew J; Adams, Christopher M; Anderson, Ethan J; Abel, E Dale

    2017-07-14

    Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism. © 2017 The Authors.

  5. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.

    Science.gov (United States)

    Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi; Moreira, Gabriela V; Jurczak, Michael J; Friedman, Glenn; Haqq, Christopher M; Petersen, Kitt Falk; Shulman, Gerald I

    2016-02-23

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.

  6. Short-and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue

    OpenAIRE

    Gathercole, LL; Morgan, SA; Bujalska, IJ; Stewart, PM; Tomlinson, JW

    2011-01-01

    Background: Endogenous or exogenous glucocorticoid (GC) excess (Cushing's syndrome) is characterized by increased adiposity and insulin resistance. Although GCs cause global insulin resistance in vivo, we have previously shown that GCs are able to augment insulin action in human adipose tissue, contrasting with their action in skeletal muscle. Cushing's syndrome develops following chronic GC exposure and, in addition, is a state of hyperinsulinemia. Objectives: We have therefore compared the ...

  7. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-01-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  8. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  9. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    Science.gov (United States)

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  10. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    Science.gov (United States)

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  11. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    International Nuclear Information System (INIS)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.; Gallardo-Escarate, C.; Molina, A.; Valdés, J.A.

    2015-01-01

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast

  12. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Gallardo-Escarate, C. [Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Molina, A. [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción (Chile)

    2015-08-21

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletal myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.

  13. Compartmentalization of NO signaling cascade in skeletal muscles

    International Nuclear Information System (INIS)

    Buchwalow, Igor B.; Minin, Evgeny A.; Samoilova, Vera E.; Boecker, Werner; Wellner, Maren; Schmitz, Wilhelm; Neumann, Joachim; Punkt, Karla

    2005-01-01

    Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma

  14. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance.

    Science.gov (United States)

    Cheng, Pei-Wen; Lin, Yu-Te; Ho, Wen-Yu; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Tseng, Ching-Jiunn; Liu, Chun-Peng

    2017-11-01

    Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1 S307 ) and suppressed Akt S473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Skeletal muscle phosphatidylcholine and phosphatidylethanolamine are related to insulin sensitivity and respond to acute exercise in humans.

    Science.gov (United States)

    Newsom, Sean A; Brozinick, Joseph T; Kiseljak-Vassiliades, Katja; Strauss, Allison N; Bacon, Samantha D; Kerege, Anna A; Bui, Hai Hoang; Sanders, Phil; Siddall, Parker; Wei, Tao; Thomas, Melissa; Kuo, Ming Shang; Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C; Perreault, Leigh; Bergman, Bryan C

    2016-06-01

    Several recent reports indicate that the balance of skeletal muscle phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is a key determinant of muscle contractile function and metabolism. The purpose of this study was to determine relationships between skeletal muscle PC, PE and insulin sensitivity, and whether PC and PE are dynamically regulated in response to acute exercise in humans. Insulin sensitivity was measured via intravenous glucose tolerance in sedentary obese adults (OB; n = 14), individuals with type 2 diabetes (T2D; n = 15), and endurance-trained athletes (ATH; n = 15). Vastus lateralis muscle biopsies were obtained at rest, immediately after 90 min of cycle ergometry at 50% maximal oxygen consumption (V̇o2 max), and 2-h postexercise (recovery). Skeletal muscle PC and PE were measured via infusion-based mass spectrometry/mass spectrometry analysis. ATH had greater levels of muscle PC and PE compared with OB and T2D (P insulin sensitivity (both P insulin sensitivity among the entire cohort (r = -0.43, P = 0.01). Muscle PC and PE were altered by exercise, particularly after 2 h of recovery, in a highly group-specific manner. However, muscle PC:PE ratio remained unchanged in all groups. In summary, total muscle PC and PE are positively related to insulin sensitivity while PC:PE ratio is inversely related to insulin sensitivity in humans. A single session of exercise significantly alters skeletal muscle PC and PE levels, but not PC:PE ratio. Copyright © 2016 the American Physiological Society.

  16. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source

    Directory of Open Access Journals (Sweden)

    Rosalba ePutti

    2016-01-01

    Full Text Available It has been suggested that skeletal muscle mitochondria play a key role in high fat diet induced insulin resistance. Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle insulin resistance. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to insulin resistance. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of insulin resistance. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift towards mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and insulin resistance development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle insulin resistance and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle insulin resistance, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.

  17. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    Science.gov (United States)

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  18. Insulin and the Lung

    DEFF Research Database (Denmark)

    Singh, Suchita; Prakash, Y S; Linneberg, Allan

    2013-01-01

    , molecular understanding is necessary. Insulin resistance is a strong, independent risk factor for asthma development, but it is unknown whether a direct effect of insulin on the lung is involved. This review summarizes current knowledge regarding the effect of insulin on cellular components of the lung...... and highlights the molecular consequences of insulin-related metabolic signaling cascades that could adversely affect lung structure and function. Examples include airway smooth muscle proliferation and contractility and regulatory signaling networks that are associated with asthma. These aspects of insulin...

  19. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  20. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    Science.gov (United States)

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  1. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.

    Science.gov (United States)

    Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo

    2015-04-20

    Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.

  2. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  3. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    NARCIS (Netherlands)

    Van Der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    VAN DER HEIJDEN, G.-J., Z. J. WANG, Z. CHU, G. TOFFOLO, E. MANESSO, P. J. J. SAUER, and A. L. SUNEHAG. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth. Med. Sci. Sports Exerc., Vol. 42, No. 11, pp. 1973-1980, 2010. Introduction: Data on the metabolic effects of

  4. Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle

    DEFF Research Database (Denmark)

    Middelbeek, R J W; Chambers, M A; Tantiwong, P

    2013-01-01

    Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 tr...

  5. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    NARCIS (Netherlands)

    Van Der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    2010-01-01

    VAN DER HEIJDEN, G.-J., Z. J. WANG, Z. CHU, G. TOFFOLO, E. MANESSO, P. J. J. SAUER, and A. L. SUNEHAG. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth. Med. Sci. Sports Exerc., Vol. 42, No. 11, pp. 1973-1980, 2010. Introduction: Data on the metabolic effects of

  6. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals

    DEFF Research Database (Denmark)

    Kase, E. T.; Feng, Y. Z.; Badin, P. M.

    2015-01-01

    A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic...

  7. Histopathological nerve and skeletal muscle changes in rats subjected to persistent insulin-induced hypoglycemia

    DEFF Research Database (Denmark)

    Jensen, Vivi Flou Hjorth; Mølck, Anne-Marie; Heydenreich, Annette

    2016-01-01

    femoris muscle tissue, as little is known about the response to persistent hypoglycemia in these tissues. Histopathologic changes in insulin-infused animals included axonal degeneration and myofibre degeneration. To our knowledge, this is the first study to show that persistent IIH provokes peripheral...

  8. Signalling role of skeletal muscle during exercise

    NARCIS (Netherlands)

    Catoire, M.

    2014-01-01

    Abstract

    Upon acute exercise skeletal muscle is immediately and heavily recruited, while other organs appear to play only a minor role during exercise. These other organs show significant changes and improvements in function, although they are not directly targeted by

  9. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... (Thr37/46) (P mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued...

  10. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    Science.gov (United States)

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  11. Insulin induces suppressor of cytokine signaling-3 tyrosine phosphorylation through janus-activated kinase

    NARCIS (Netherlands)

    Peraldi, P; Filloux, C; Emanuelli, B; Hilton, DJ; Van Obberghen, E

    2001-01-01

    Suppressor of cytokine signaling (SOCS) proteins were originally described as cytokine-induced molecules involved in negative feedback loops. We have shown that SOCS-3 is also a component of the insulin signaling network (1), Indeed, insulin leads to SOCS-3 expression in 3T3-L1 adipocytes. Once

  12. Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes.

    Science.gov (United States)

    Standaert, M L; Bandyopadhyay, G; Zhou, X; Galloway, L; Farese, R V

    1996-07-01

    Previous studies have provided conflicting findings on whether insulin activates certain, potentially important, phospholipid signaling systems in skeletal muscle preparations. In particular, insulin effects on the hydrolysis of phosphatidylcholine (PC) and subsequent activation of protein kinase C (PKC) have not been apparent in some studies. Presently, we examined insulin effects on phospholipid signaling systems, diacylglycerol (DAG) production, and PKC translocation/activation in L6 myotubes. We found that insulin provoked rapid increases in phospholipase D (PLD)-dependent hydrolysis of PC, as evidenced by increases in choline release and phosphatidylethanol production in cells incubated in the presence of ethanol. In association with PC-PLD activation, Rho, a small G protein that is known to activate PC-PLD activation, translocated from the cytosol to the membrane fraction in response to insulin treatment. PC-PLD activation was also accompanied by increases in total DAG production and increases in the translocation of both PKC enzyme activity and DAG-sensitive PKC-alpha, -beta, -delta, and -epsilon from the cytosol to the membrane fraction. A potential role for PKC or a related protein kinase in insulin action was suggested by the finding that RO 31-8220 inhibited both PKC enzyme activity and insulin-stimulated [3H]2-deoxyglucose uptake. Our findings provide the first evidence that insulin stimulates Rho translocation and activates PC-PLD in L6 skeletal muscle cells. Moreover, this signaling system appears to lead to increases in DAG/PKC signaling, which, along with other related signaling factors, may regulate certain metabolic processes, such as glucose transport, in these cells.

  13. p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients

    DEFF Research Database (Denmark)

    Brown, Audrey E; Palsgaard, Jane; Borup, Rehannah

    2015-01-01

    Skeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic cultured myotubes, which is in keeping with a retained genetic/epigenetic defect of insulin action. We investigated differences in gene...... expression during differentiation between diabetic and control muscle cell cultures. Microarray analysis was performed using skeletal muscle cell cultures established from type 2 diabetic patients with a family history of type 2 diabetes and clinical evidence of marked insulin resistance and nondiabetic...... significantly, it did not improve insulin-stimulated glucose uptake. Increased cytokine expression driven by increased p38 MAPK activation is a key feature of cultured myotubes derived from insulin-resistant type 2 diabetic patients. p38 MAPK inhibition decreased cytokine expression but did not affect...

  14. Effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat.

    Science.gov (United States)

    Dimitriadis, G D; Leighton, B; Parry-Billings, M; West, D; Newsholme, E A

    1989-01-01

    1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations. PMID:2649073

  15. Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes

    DEFF Research Database (Denmark)

    Plomgaard, P; Nielsen, A R; Fischer, C P

    2007-01-01

    AIMS/HYPOTHESIS: Clear evidence exists that TNF-alpha inhibits insulin signalling and thereby glucose uptake in myocytes and adipocytes. However, conflicting results exist with regard to the role of TNF-alpha in type 2 diabetes. METHODS: We obtained blood and biopsy samples from skeletal muscle...... and subcutaneous adipose tissue in patients with type 2 diabetes (n = 96) and healthy controls matched for age, sex and BMI (n = 103). RESULTS: Patients with type 2 diabetes had higher plasma levels of fasting insulin (p ...) uptake (VO2/kg) in the diabetes group (p type 2 diabetic patients. Immunohistochemistry revealed more TNF-alpha protein...

  16. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs.

    Science.gov (United States)

    Nash, Abigail I

    2017-10-01

    In the setting of rising rates of obesity and metabolic syndrome, characterized in part by hyperinsulinemia, it is increasingly important to understand the mechanisms that contribute to insulin dysregulation. The higher risk for metabolic syndrome imparted by antipsychotic medication use highlights one such mechanism. Though there is great variation in the number and types of signaling pathways targeted by these medications, the one common mechanism of action is through dopamine. Dopamine's effects on insulin signaling begin at the level of insulin secretion from the pancreas and continue through the central nervous system. In a reciprocal fashion, insulin also affects dopamine signaling, with specific effects on dopamine reuptake from the synapse. This review probes the dopamine-insulin connection to provide a comprehensive examination of how antipsychotics may contribute towards insulin resistance. Published by Elsevier B.V.

  17. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L. [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States); Piroli, Gerardo G.; Frizzell, Norma [Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tseng, Yu-Hua; Goodyear, Laurie J. [Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 (United States); Koh, Ho-Jin, E-mail: kohh@mailbox.sc.edu [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States)

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  18. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    International Nuclear Information System (INIS)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.; Piroli, Gerardo G.; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J.; Koh, Ho-Jin

    2016-01-01

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  19. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin

    International Nuclear Information System (INIS)

    Zhang, Zi-wei; Guo, Rui-wei; Lv, Jin-lin; Wang, Xian-mei; Ye, Jin-shan; Lu, Ni-hong; Liang, Xing; Yang, Li-xia

    2017-01-01

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. - Highlights: • Suggesting a new mechanism of insulin-triggered VSMC functions. • Providing a new therapeutic strategies that target atherosclerosis in T2DM patients. • Providing a new strategies that target in-stent restenosis in T2DM patients.

  20. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway.

    Science.gov (United States)

    Bae, Ju Yong; Shin, Ki Ok; Woo, Jinhee; Woo, Sang Heon; Jang, Ki Soeng; Lee, Yul Hyo; Kang, Sunghwun

    2016-06-01

    The purpose of this study was to investigate the effect of exercise and dietary change on obesity and insulin resistance and mTOR signaling protein levels in skeletal muscles of obese rats. Sixty male Sprague-Dawley rats were divided into CO (Normal diet) and HF (High Fat diet) groups in order to induce obesity for 15 weeks. The rats were then subdivided into CO, COT (CO + Training), HF, HFT (HF + Training), HFND (Dietary change), and HFNDT (HFND + Training) groups (10 rats / group). The training groups underwent moderate-intensity treadmill exercise for 8 weeks, after which soleus muscles were excised and analyzed. Data was statistically analyzed by independent t-test and One-way ANOVA tests with a 0.05 significance level. Fasting blood glucose, plasma insulin, and HOMA-IR in the HF group were significantly higher, as compared with other groups (p continuous high fat intake, regular exercise and dietary change showed a positive effect on insulin resistance and mTOR signaling protein levels.

  1. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  2. Roles of circulating WNT-signaling proteins and WNT-inhibitors in human adiposity, insulin resistance, insulin secretion, and inflammation.

    Science.gov (United States)

    Almario, R U; Karakas, S E

    2015-02-01

    Wingless-type MMTV integration site family member (WNT) signaling and WNT-inhibitors have been implicated in regulation of adipogenesis, insulin resistance, pancreatic function, and inflammation. Our goal was to determine serum proteins involved in WNT signaling (WNT5 and WISP2) and WNT inhibition (SFRP4 and SFRP5) as they relate to obesity, serum adipokines, insulin resistance, insulin secretion, and inflammation in humans. Study population comprised 57 insulin resistant women with polycystic ovary syndrome (PCOS) and 27 reference women. In a cross-sectional study, blood samples were obtained at fasting, during oral, and frequently sampled intravenous glucose tolerance tests. Serum WNT5, WISP2, and SFRP4 concentrations did not differ between PCOS vs. reference women. Serum WNT5 correlated inversely with weight both in PCOS and reference women, and correlated directly with insulin response during oral glucose tolerance test in PCOS women. Serum WISP2 correlated directly with fatty acid binding protein 4. Serum SFRP5 did not differ between obese (n=32) vs. nonobese (n=25) PCOS women, but reference women had lower SFRP5 (pPCOS groups). Serum SFRP5 correlated inversely with IL-1β, TNF-α, cholesterol, and apoprotein B. These findings demonstrated that WNT5 correlated inversely with adiposity and directly with insulin response, and the WNT-inhibitor SFRP5 may be anti-inflammatory. Better understanding of the role of WNT signaling in obesity, insulin resistance, insulin secretion, lipoprotein metabolism, and inflammation is important for prevention and treatment of metabolic syndrome, diabetes and cardiovascular disease. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  4. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle

    International Nuclear Information System (INIS)

    Clausen, T.; Flatman, J.A.

    1987-01-01

    To identify possible cause-effect relationships between changes in active Na + -K + transport, resting membrane potential, and glucose transport, the effects of insulin and epinephrine were compared in rat soleus muscle. Epinephrine, which produced twice as large a hyperpolarization as insulin, induced only a modest increase in 14 C-labeled sugar transport. Ouabain, at a concentration (10 -3 M) sufficient to block active Na + -K + transport and the hyperpolarization induced by the two hormones, did not interfere with sugar transport stimulation. After Na + loading in K + -free buffer, the return to K + -containing standard buffer caused marked stimulation of active 22 Na + - 42 K + transport, twice the hyperpolarization produced by insulin but no change in sugar transport. The insulin-induced activation of the 22 Na + - 42 K + pump leads to decreased intracellular 22 Na + concentration and hyperpolarization, but none of these events can account for the concomitant activation of the glucose transport system. The stimulating effect of insulin on active Na + -K + transport was not suppressed by amiloride, indicating that in intact skeletal muscle it is not elicited by a primary increase in Na + influx via the Na + /H + -exchange system

  5. Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM

    DEFF Research Database (Denmark)

    Klein, H H; Vestergaard, H; Kotzke, G

    1995-01-01

    The role of skeletal muscle insulin receptor kinase in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM) was investigated. Muscle biopsies from 13 patients with NIDDM and 10 control subjects at fasting serum insulin concentrations and approximately 1,000 pmol/l steady-state serum...... insulin during euglycemic hyperinsulinemic clamps were immediately frozen. The biopsies were then solubilized, and the receptors were immobilized to anti-insulin receptor antibody-coated microwells. Receptor kinase and binding activities were consecutively measured in these wells. The increase in serum...... and control groups, respectively). Moreover, by selecting only the receptors that bound to anti-phosphotyrosine antibody, we found similar hyperinsulinemia-induced increases of this receptor fraction and its kinase activity in both study groups. In vitro activation of the immobilized receptors with 2 mmol...

  6. Differential Effects of Camel Milk on Insulin Receptor Signaling – Towards Understanding the Insulin-like Properties of Camel Milk

    Directory of Open Access Journals (Sweden)

    Abdulrasheed O Abdulrahman

    2016-01-01

    Full Text Available Previous studies on the Arabian camel (Camelus dromedarius showed beneficial effects of its milk reported in diverse models of human diseases including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293 cells using bioluminescence resonance energy transfer (BRET technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1 and the growth factor receptor-bound protein 2 (Grb2. Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

  7. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health.

    Science.gov (United States)

    Zhang, Ning; Valentine, Joseph M; Zhou, You; Li, Mengyao E; Zhang, Yiqiang; Bhattacharya, Arunabh; Walsh, Michael E; Fischer, Katherine E; Austad, Steven N; Osmulski, Pawel; Gaczynska, Maria; Shoelson, Steven E; Van Remmen, Holly; Chen, Hung I; Chen, Yidong; Liang, Hanyu; Musi, Nicolas

    2017-08-01

    Older adults universally suffer from sarcopenia and approximately 60-70% are diabetic or prediabetic. Nonetheless, the mechanisms underlying these aging-related metabolic disorders are unknown. NFκB has been implicated in the pathogenesis of several aging-related pathologies including sarcopenia and type 2 diabetes and has been proposed as a target against them. NFκB also is thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis). We tested the hypothesis that lifelong inhibition of the classical NFκB pathway would protect against aging-related sarcopenia and insulin resistance. Aged mice with muscle-specific overexpression of a super-repressor IκBα mutant (MISR) were protected from insulin resistance. However, MISR mice were not protected from sarcopenia; to the contrary, these mice had decreases in muscle mass and strength compared to wild-type mice. In MISR mice, NFκB suppression also led to an increase in proteasome activity and alterations in several genes and pathways involved in muscle growth and atrophy (e.g., myostatin). We conclude that the mechanism behind aging-induced sarcopenia is NFκB independent and differs from muscle wasting due to pathologic conditions. Our findings also indicate that, while suppressing NFκB improves insulin sensitivity in aged mice, this transcription factor is important for normal muscle mass maintenance and its sustained inhibition is detrimental to muscle function. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

    Directory of Open Access Journals (Sweden)

    Dumitru Constantin-Teodosiu

    2013-10-01

    Full Text Available Since the mitochondrial pyruvate dehydrogenase complex (PDC controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D. There are also situations where muscle insulin resistance can occur independently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same underlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome proliferator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycaemia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell's ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D's complications are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and peripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be viable strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.

  9. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    DEFF Research Database (Denmark)

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus

    2013-01-01

    Circulating interleukin (IL)-18 is elevated in obesity, but paradoxically causes hypophagia. We hypothesized that IL-18 may attenuate high fat diet induced insulin resistance by activating AMP activated protein kinase (AMPK). We studied mice with a global deletion of the α isoform of the IL-18...... receptor (IL-18R(-/-)), fed a standard chow or high fat diet (HFD). We next performed gain of function experiments in skeletal muscle, in vitro, ex vivo and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation and insulin resistance via mechanisms involving the activation...

  10. A role for suppressed skeletal muscle thermogenesis in pathways from weight fluctuations to the insulin resistance syndrome.

    Science.gov (United States)

    Dulloo, A G

    2005-08-01

    An impressive body of epidemiological evidence suggests that a history of large perturbations in body weight earlier in life, independently of excess weight, is a risk factor for later development of insulin-related complications, namely central obesity, type 2 diabetes and cardiovascular disease. Such an increased risk has been reported in men and women who in young adulthood experienced weight fluctuations that involved weight recovery after weight loss caused by disease, famine or voluntary 'yoyo' dieting, and is particularly strong when the weight fluctuations occurred much earlier in life and are characterized by catch-up growth after foetal and/or neonatal growth retardation. As the phase of weight recovery/catch-up growth is associated with both hyperinsulinaemia and an accelerated rate for recovering fat mass (i.e. catch-up fat), the questions arise as to whether, why and how processes that regulate catch-up fat might predispose to hyperinsulinaemia and to insulin-related diseases. In addressing these issues, this paper first reviews evidence for the existence of an adipose-specific control of thermogenesis, whose suppression contributes to the phenomenon of catch-up fat during weight recovery/catch-up growth. It subsequently concentrates upon recent findings suggesting that: (i) such suppression of thermogenesis directed at catch-up fat is accompanied by a redistribution of glucose from skeletal muscle to white adipose tissue, and (ii) substrate cycling between de novo lipogenesis and lipid oxidation can operate as a thermogenic effector in skeletal muscle in response to signalling interactions between leptin and insulin - two key 'adiposity' hormones implicated in the peripheral control of substrate metabolism. These new findings are integrated into the proposal that, in its 'evolutionary adaptive' role to spare glucose for rapid rebuilding of the fat stores, suppressed thermogenesis in skeletal muscle - via inhibition of substrate cycling between de novo

  11. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression.

    Science.gov (United States)

    Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R

    2013-10-01

    The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Alteration in insulin action

    DEFF Research Database (Denmark)

    Tanti, J F; Gual, P; Grémeaux, T

    2004-01-01

    Insulin resistance, when combined with impaired insulin secretion, contributes to the development of type 2 diabetes. Insulin resistance is characterised by a decrease in insulin effect on glucose transport in muscle and adipose tIssue. Tyrosine phosphorylation of insulin receptor substrate 1 (IRS......-1) and its binding to phosphatidylinositol 3-kinase (PI 3-kinase) are critical events in the insulin signalling cascade leading to insulin-stimulated glucose transport. Modification of IRS-1 by serine phosphorylation could be one of the mechanisms leading to a decrease in IRS-1 tyrosine...... to phosphorylate these serine residues have been identified. These exciting results suggest that serine phosphorylation of IRS-1 is a possible hallmark of insulin resistance in biologically insulin responsive cells or tIssues. Identifying the pathways by which "diabetogenic" factors activate IRS-1 kinases...

  13. Insulin binding characteristics in canine muscle tissue: effects of the estrous cycle phases

    Directory of Open Access Journals (Sweden)

    Álan G. Pöppl

    Full Text Available Abstract: Hormonal fluctuations during the different estrous cycle are a well-recognized cause of insulin resistance in bitches, and little is known about insulin receptor binding or post-binding defects associated with insulin resistance in dogs. To evaluate insulin binding characteristics in muscle tissue of bitches during the estrous cycle, 17 owned bitches were used in the study (six in anestrus, five in estrus, and six in diestrus. An intravenous glucose tolerance test (IVGTT was performed in all patients by means of injection of 1mL/kg of a glucose 50% solution (500mg/kg, with blood sample collection for glucose determination at 0, 3, 5, 7, 15, 30, 45 and 60 minutes after glucose infusion. Muscle samples, taken after spaying surgery, were immediately frozen in liquid nitrogen and then stored at -80 ºC until the membranes were prepared by sequential centrifugation after being homogenized. For binding studies, membranes were incubated in the presence of 20,000cpm of human 125I-insulin and in increasing concentrations of unlabeled human regular insulin for cold saturation. The IVGTT showed no differences among bitches during the estrous cycle regarding baseline glycemia or glycemic response after glucose infusion. Two insulin binding sites - high-affinity and low-affinity ones - were detected by Scatchard analysis, and significant statistical differences were observed in the dissociation constant (Kd1 and maximum binding capacity (Bmax1 of the high-affinity binding sites. The Kd1 for the anestrus group (6.54±2.77nM/mg of protein was smaller (P<0.001 than for the estrus (28.54±6.94nM/mg of protein and diestrus (15.56±3.88nM/mg of protein groups. Bmax1 in the estrus (0.83±0.42nM/mg of protein and diestrus (1.24±0.24nM/mg of protein groups were also higher (P<0.001 than the values observed in anestrus (0.35±0.06nM/mg of protein. These results indicate modulation of insulin binding characteristics during different phases of the estrous

  14. High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling.

    Science.gov (United States)

    Gómez-Ruiz, Ana; Milagro, Fermín I; Campión, Javier; Martínez, J Alfredo; de Miguel, Carlos

    2011-04-13

    The effect of food intake on caveolin expression in relation to insulin signalling was studied in skeletal muscle and adipocytes from retroperitoneal (RP) and subcutaneous (SC) adipose tissue, comparing fasted (F) to not fasted (NF) rats that had been fed a control or high-fat (HF) diet for 72 days. Serum glucose was analysed enzymatically and insulin and leptin by ELISA. Caveolins and insulin signalling intermediaries (IR, IRS-1 and 2 and GLUT4) were determined by RT-PCR and western blotting. Caveolin and IR phosphorylation was measured by immunoprecipitation. Data were analysed with Mann-Whitney U test. High-fat fed animals showed metabolic alterations and developed obesity and insulin resistance. In skeletal muscle, food intake (NF) induced activation of IR and increased expression of IRS-2 in control animals with normal metabolic response. HF animals became overweight, hyperglycaemic, hyperinsulinemic, hyperleptinemic and showed insulin resistance. In skeletal muscle of these animals, food intake (NF) also induced IRS-2 expression together with IR, although this was not active. Caveolin 3 expression in this tissue was increased by food intake (NF) in animals fed either diet. In RP adipocytes of control animals, food intake (NF) decreased IR and IRS-2 expression but increased that of GLUT4. A similar but less intense response was found in SC adipocytes. Food intake (NF) did not change caveolin expression in RP adipocytes with either diet, but in SC adipocytes of HF animals a reduction was observed. Food intake (NF) decreased caveolin-1 phosphorylation in RP but increased it in SC adipocytes of control animals, whereas it increased caveolin-2 phosphorylation in both types of adipocytes independently of the diet. Animals fed a control-diet show a normal response to food intake (NF), with activation of the insulin signalling pathway but without appreciable changes in caveolin expression, except a small increase of caveolin-3 in muscle. Animals fed a high-fat diet

  15. Environmental arsenic as a disruptor of insulin signaling

    OpenAIRE

    Paul, David S.; Devesa, Vicenta; Hernandez-Zavala, Araceli; Adair, Blakely M.; Walton, Felecia S.; Drobnâ, Zuzana; Thomas, David J.; Styblo, Miroslav

    2008-01-01

    Previous laboratory studies have shown that exposures to inorganic As (iAs) disrupt insulin production or glucose metabolism in cellular and animal models. Epidemiological evidence has also linked chronic human exposures to iAs to an increased risk of diabetes mellitus, a metabolic disease characterized by impaired glucose tolerance and insulin resistance. We have recently shown that arsenite and its methylated metabolites inhibit insulin-stimulated glucose uptake in cultured adipocytes by di...

  16. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Eunhui Seo

    2015-04-01

    Full Text Available The aim of this study was to evaluate the effects of ginseng berry extract on insulin sensitivity and associated molecular mechanisms in aged mice. C57BL/6 mice (15 months old were maintained on a regular diet (CON or a regular diet supplemented with 0.05% ginseng berry extract (GBD for 24 or 32 weeks. GBD-fed mice showed significantly lower serum insulin levels (p = 0.016 and insulin resistance scores (HOMA-IR (p = 0.012, suggesting that GBD improved insulin sensitivity. Pancreatic islet hypertrophy was also ameliorated in GBD-fed mice (p = 0.007. Protein levels of tyrosine phosphorylated insulin receptor substrate (IRS-1 (p = 0.047, and protein kinase B (AKT (p = 0.037, were up-regulated in the muscle of insulin-injected GBD-fed mice compared with CON-fed mice. The expressions of forkhead box protein O1 (FOXO1 (p = 0.036 and peroxisome proliferator-activated receptor gamma (PPARγ (p = 0.032, which are known as aging- and insulin resistance-related genes, were also increased in the muscle of GBD-fed mice. We conclude that ginseng berry extract consumption might increase activation of IRS-1 and AKT, contributing to the improvement of insulin sensitivity in aged mice.

  17. Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice.

    Science.gov (United States)

    Liepinsh, Edgars; Makrecka-Kuka, Marina; Makarova, Elina; Volska, Kristine; Vilks, Karlis; Sevostjanovs, Eduards; Antone, Unigunde; Kuka, Janis; Vilskersts, Reinis; Lola, Daina; Loza, Einars; Grinberga, Solveiga; Dambrova, Maija

    2017-09-10

    Acylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity. © 2017 BioFactors, 43(5):718-730, 2017. © 2017 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  18. Eicosapentaenoic acid abolishes inhibition of insulin-induced mTOR phosphorylation by LPS via PTP1B downregulation in skeletal muscle.

    Science.gov (United States)

    Wei, Hong-Kui; Deng, Zhao; Jiang, Shu-Zhong; Song, Tong-Xing; Zhou, Yuan-Fei; Peng, Jian; Tao, Ya-Xiong

    2017-01-05

    Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) increase insulin signaling in skeletal muscle. In the current study, we investigated the effect of eicosapentaenoic acid (EPA) on insulin-induced mammalian target of rapamycin (mTOR) phosphorylation in myotubes. We showed that EPA did not affect basal and insulin-induced mTOR phosphorylation in myotubes. However, EPA abolished lipopolysaccharide (LPS) -induced deficiency in insulin signaling (P  0.05). In myotubes, LPS stimulated PTP1B expression via NF-κB and activation protein-1 (AP1). Pre-incubation of 50 μM EPA prevented the LPS-induced activation of AP1 and NF-κΒ as well as PTP1B expression (P < 0.05). Interestingly, incubation of peroxisome proliferator-activated receptor γ (PPARγ) antagonist (GW9662) prior to EPA treatment, the effect of EPA on insulin-induced mTOR phosphorylation was blocked. Accordingly, EPA did not inhibit the LPS-induced activation of AP1 or NF-κΒ as well as PTP1B expression when incubation of GW9662 prior to EPA treatment. The in vivo study showed that EPA prevented LPS-induced PTPT1B expression and a decrease in insulin-induced mTOR phosphorylation in muscle of mice. In summary, EPA abolished LPS inhibition of insulin-induced mTOR phosphorylation in myotubes, and one of the key mechanisms was to inhibit AP1 and NF-κB activation and PTP1B transcription. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Normal insulin-stimulated endothelial function and impaired insulin-stimulated muscle glucose uptake in young adults with low birth weight

    DEFF Research Database (Denmark)

    Hermann, T S; Rask-Madsen, C; Ihlemann, N

    2003-01-01

    of acetylcholine and sodium nitroprusside in the forearm of fourteen 21-yr-old men with low birth weight and 16 controls of normal birth weight. Glucose uptake was measured during intraarterial insulin infusion. Dose-response studies were repeated during insulin infusion. The maximal blood flow during......Low birth weight has been linked to insulin resistance and cardiovascular disease. We hypothesized that insulin sensitivity of both muscle and vascular tissues were impaired in young men with low birth weight. Blood flow was measured by venous occlusion plethysmography during dose-response studies...... acetylcholine infusion was 14.1 +/- 2.7 and 14.4 +/- 2.1 [ml x (100 ml forearm)(-1) x min(-1)] in low and normal birth weight subjects, respectively. Insulin coinfusion increased acetylcholine-stimulated flow in both groups: 18.0 +/- 3.1 vs. 17.9 +/- 3.1 [ml x (100 ml forearm)(-1) x min(-1)], NS. Insulin...

  20. Urotensin II inhibits skeletal muscle glucose transport signaling pathways via the NADPH oxidase pathway.

    Directory of Open Access Journals (Sweden)

    Hong-Xia Wang

    Full Text Available Our previous studies have demonstrated that the urotensin (UII and its receptor are up-regulated in the skeletal muscle of mice with type II diabetes mellitus (T2DM, but the significance of UII in skeletal muscle insulin resistance remains unknown. The purpose of this study was to investigate the effect of UII on NADPH oxidase and glucose transport signaling pathways in the skeletal muscle of mice with T2DM and in C2C12 mouse myotube cells. KK/upj-AY/J mice (KK mice were divided into the following groups: KK group, with saline treatment for 2 weeks; KK+ urantide group, with daily 30 µg/kg body weight injections over the same time period of urantide, a potent urotensin II antagonist peptide; Non-diabetic C57BL/6J mice were used as normal controls. After urantide treatment, mice were subjected to an intraperitoneal glucose tolerance test, in addition to measurements of the levels of ROS, NADPH oxidase and the phosphorylated AKT, PKC and ERK. C2C12 cells were incubated with serum-free DMEM for 24 hours before conducting the experiments, and then administrated with 100 nM UII for 2 hours or 24 hours. Urantide treatment improved glucose tolerance, decreased the translocation of the NADPH subunits p40-phox and p47-phox, and increased levels of the phosphorylated PKC, AKT and ERK. In contrast, UII treatment increased ROS production and p47-phox and p67-phox translocation, and decreased the phosphorylated AKT, ERK1/2 and p38MAPK; Apocynin abrogated this effect. In conclusion, UII increased ROS production by NADPH oxidase, leading to the inhibition of signaling pathways involving glucose transport, such as AKT/PKC/ERK. Our data imply a role for UII at the molecular level in glucose homeostasis, and possibly in skeletal muscle insulin resistance in T2DM.

  1. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes.

    Science.gov (United States)

    Xu, Qi; Luo, Jiao; Wu, Ning; Zhang, Renshuai; Shi, Dayong

    2018-01-01

    Insulin resistance is a key feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling cascade and has attracted intensive investigation in recent T2DM therapy study. BPN, a marine-derived bromophenol compound, was isolated from the red alga Rhodomela confervoides. This study investigated the effects of BPN on the insulin signaling pathway in insulin-resistant C2C12 myotubes by inhibiting PTP1B. Molecular docking study and analysis of small- molecule interaction with PTP1B all showed BPN inhibited PTP1B activity via binding to the catalytic site through hydrogen bonds. We then found that BPN permeated into C2C12 myotubes, on the one hand, activated insulin signaling in an insulin-independent manner in C2C12 cells; on the other hand, ameliorated palmitate-induced insulin resistance through augmenting insulin sensitivity. Moreover, our studies also showed that PTP1B inhibition by BPN increased glucose uptake in normal and insulin-resistant C2C12 myotubes through glucose transporter 4 (GLUT4) translocation. Taken together, BPN activates insulin signaling and alleviates insulin resistance and represents a potential candidate for further development as an antidiabetic agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P.; Handberg, A.; Kühl, C.

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  3. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  4. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation

    OpenAIRE

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-01-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters ...

  5. Hypoxia in Combination With Muscle Contraction Improves Insulin Action and Glucose Metabolism in Human Skeletal Muscle via the HIF-1α Pathway.

    Science.gov (United States)

    Görgens, Sven W; Benninghoff, Tim; Eckardt, Kristin; Springer, Christian; Chadt, Alexandra; Melior, Anita; Wefers, Jakob; Cramer, Andrea; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Al-Hasani, Hadi; Eckel, Jürgen

    2017-11-01

    Skeletal muscle insulin resistance is the hallmark of type 2 diabetes and develops long before the onset of the disease. It is well accepted that physical activity improves glycemic control, but the knowledge on underlying mechanisms mediating the beneficial effects remains incomplete. Exercise is accompanied by a decrease in intramuscular oxygen levels, resulting in induction of HIF-1α. HIF-1α is a master regulator of gene expression and might play an important role in skeletal muscle function and metabolism. Here we show that HIF-1α is important for glucose metabolism and insulin action in skeletal muscle. By using a genome-wide gene expression profiling approach, we identified RAB20 and TXNIP as two novel exercise/HIF-1α-regulated genes in skeletal muscle. Loss of Rab20 impairs insulin-stimulated glucose uptake in human and mouse skeletal muscle by blocking the translocation of GLUT4 to the cell surface. In addition, exercise/HIF-1α downregulates the expression of TXNIP , a well-known negative regulator of insulin action. In conclusion, we are the first to demonstrate that HIF-1α is a key regulator of glucose metabolism in skeletal muscle by directly controlling the transcription of RAB20 and TXNIP These results hint toward a novel function of HIF-1α as a potential pharmacological target to improve skeletal muscle insulin sensitivity. © 2017 by the American Diabetes Association.

  6. Exercise Increases Insulin Sensitivity and Skeletal Muscle AMPK Expression in Systemic Lupus Erythematosus: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Fabiana B. Benatti

    2018-04-01

    Full Text Available Systemic lupus erythematosus (SLE patients may show increased insulin resistance (IR when compared with their healthy peers. Exercise training has been shown to improve insulin sensitivity in other insulin-resistant populations, but it has never been tested in SLE. Therefore, the aim of the present study was to assess the efficacy of a moderate-intensity exercise training program on insulin sensitivity and potential underlying mechanisms in SLE patients with mild/inactive disease. A 12-week, randomized controlled trial was conducted. Nineteen SLE patients were randomly assigned into two groups: trained (SLE-TR, n = 9 and non-trained (SLE-NT, n = 10. Before and after 12 weeks of the exercise training program, patients underwent a meal test (MT, from which surrogates of insulin sensitivity and beta-cell function were determined. Muscle biopsies were performed after the MT for the assessment of total and membrane GLUT4 and proteins related to insulin signaling [Akt and AMP-activated protein kinase (AMPK]. SLE-TR showed, when compared with SLE-NT, significant decreases in fasting insulin [−39 vs. +14%, p = 0.009, effect size (ES = −1.0] and in the insulin response to MT (−23 vs. +21%, p = 0.007, ES = −1.1, homeostasis model assessment IR (−30 vs. +15%, p = 0.005, ES = −1.1, a tendency toward decreased proinsulin response to MT (−19 vs. +6%, p = 0.07, ES = −0.9 and increased glucagon response to MT (+3 vs. −3%, p = 0.09, ES = 0.6, and significant increases in the Matsuda index (+66 vs. −31%, p = 0.004, ES = 0.9 and fasting glucagon (+4 vs. −8%, p = 0.03, ES = 0.7. No significant differences between SLT-TR and SLT-NT were observed in fasting glucose, glucose response to MT, and insulinogenic index (all p > 0.05. SLE-TR showed a significant increase in AMPK Thr 172 phosphorylation when compared to SLE-NT (+73 vs. −12%, p = 0.014, ES = 1.3, whereas no

  7. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    Science.gov (United States)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. In Vitro Palmitate Treatment of Myotubes from Postmenopausal Women Leads to Ceramide Accumulation, Inflammation and Affected Insulin Signaling

    DEFF Research Database (Denmark)

    Abildgaard, Julie; Henstridge, Darren C; Pedersen, Anette Tønnes

    2014-01-01

    Menopause is associated with an increased incidence of insulin resistance and metabolic diseases. In a chronic palmitate treatment model, we investigated the role of skeletal muscle fatty acid exposure in relation to the metabolic deterioration observed with menopause. Human skeletal muscle......, post-myotubes showed a blunted insulin stimulated phosphorylation of AS160 in response to chronic palmitate treatment compared with pre-myotubes (p = 0.02). The increased intramyocellular ceramide content in the post-myotubes was associated with a significantly higher mRNA expression of Serine...... Palmitoyltransferase1 (SPT1) after one day of palmitate treatment (p = 0.03) in post-myotubes compared with pre-myotubes. Our findings indicate that post-myotubes are more prone to develop lipid accumulation and defective insulin signaling following chronic saturated fatty acid exposure as compared to pre-myotubes....

  10. Adaptation of signal transduction and muscle proteome in trained horses

    NARCIS (Netherlands)

    Ginneken, Mireille Maria Elisabeth van

    2006-01-01

    In the present thesis the localization and activation of signaling proteins, known from human studies, in equine muscle were investigated under conditions of rest, after an acute bout of exercise and before and after a period of (intensified) training. Proteins of interest (protein kinase C (PKC),

  11. Redox Signaling in Skeletal Muscle: Role of Aging and Exercise

    Science.gov (United States)

    Ji, Li Li

    2015-01-01

    Skeletal muscle contraction is associated with the production of ROS due to altered O[subscript 2] distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely…

  12. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in sit...

  13. Changes in phosphatidylcholine fatty acid composition are associated with altered skeletal muscle insulin responsiveness in normal man.

    Science.gov (United States)

    Clore, J N; Harris, P A; Li, J; Azzam, A; Gill, R; Zuelzer, W; Rizzo, W B; Blackard, W G

    2000-02-01

    The fatty acid composition of skeletal muscle cell membrane phospholipids (PLs) is known to influence insulin responsiveness in man. We have recently shown that the fatty acid composition of phosphatidylcholine (PC), and not phosphatidylethanolamine (PE), from skeletal muscle membranes is of particular importance in this relationship. Efforts to alter the PL fatty acid composition in animal models have demonstrated induction of insulin resistance. However, it has been more difficult to determine if changes in insulin sensitivity are associated with changes in the skeletal muscle membrane fatty acid composition of PL in man. Using nicotinic acid (NA), an agent known to induce insulin resistance in man, 9 normal subjects were studied before and after treatment for 1 month. Skeletal muscle membrane fatty acid composition of PC and PE from biopsies of vastus lateralis was correlated with insulin responsiveness using a 3-step hyperinsulinemic-euglycemic clamp. Treatment with NA was associated with a 25% increase in the half-maximal insulin concentration ([ED50] 52.0 +/- 7.5 to 64.6 +/- 9.0 microU/mL, P insulin sensitivity. Significant changes in the fatty acid composition of PC, but not PE, were also observed after NA administration. An increase in the percentage of 16:0 (21% +/- 0.3% to 21.7% +/- 0.4%, P insulin resistance with NA is associated with changes in the fatty acid composition of PC in man.

  14. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  15. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  16. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin.

    Science.gov (United States)

    Jolivalt, C G; Lee, C A; Beiswenger, K K; Smith, J L; Orlov, M; Torrance, M A; Masliah, E

    2008-11-15

    We have evaluated the effect of peripheral insulin deficiency on brain insulin pathway activity in a mouse model of type 1 diabetes, the parallels with Alzheimer's disease (AD), and the effect of treatment with insulin. Nine weeks of insulin-deficient diabetes significantly impaired the learning capacity of mice, significantly reduced insulin-degrading enzyme protein expression, and significantly reduced phosphorylation of the insulin-receptor and AKT. Phosphorylation of glycogen synthase kinase-3 (GSK3) was also significantly decreased, indicating increased GSK3 activity. This evidence of reduced insulin signaling was associated with a concomitant increase in tau phosphorylation and amyloid beta protein levels. Changes in phosphorylation levels of insulin receptor, GSK3, and tau were not observed in the brain of db/db mice, a model of type 2 diabetes, after a similar duration (8 weeks) of diabetes. Treatment with insulin from onset of diabetes partially restored the phosphorylation of insulin receptor and of GSK3, partially reduced the level of phosphorylated tau in the brain, and partially improved learning ability in insulin-deficient diabetic mice. Our data indicate that mice with systemic insulin deficiency display evidence of reduced insulin signaling pathway activity in the brain that is associated with biochemical and behavioral features of AD and that it can be corrected by insulin treatment.

  17. Living without insulin: the role of leptin signaling in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Teppei eFujikawa

    2015-03-01

    Full Text Available Since its discovery in 1922, insulin has been thought to be required for normal metabolic homeostasis and survival. However, this view would need to be revised as recent results from different laboratories have convincingly indicated that life without insulin is possible in rodent models. These data indicate that particular neuronal circuitries, which include hypothalamic leptin-responsive neurons, are empowered with the capability of permitting life in complete absence of insulin. Here, we review the neuronal and peripheral mechanisms by which leptin signaling in the central nervous system (CNS regulates glucose metabolism in an insulin-independent manner.

  18. Impact of fasting on growth hormone signaling and action in muscle and fat

    DEFF Research Database (Denmark)

    Moller, Louise; Dalman, Lisa; Norrelund, Helene

    2008-01-01

    CONTEXT: Whether GH promotes IGF-I production or lipolysis depends on nutritional status, but the underlying mechanisms remain unknown. OBJECTIVE: To investigate the impact of fasting on GH-mediated changes in substrate metabolism, insulin sensitivity, and signaling pathways. DESIGN: We conducted...... a randomized crossover study. SUBJECTS: Ten healthy men (age 24.3 +/- 0.6 yr, body mass index 23.1 +/- 0.4 kg/m(2)) participated. INTERVENTION: A GH bolus administered 1) postabsorptively and 2) in the fasting state (37.5 h). Skeletal muscle and adipose tissue biopsies were taken, and a hyperinsulinemic...... signaling protein 3 and IGF-I mRNA. RESULTS: Fasting was associated with reduced MCR of GH (P

  19. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1-40/42 and Phospho-Tau May Abet Alzheimer Development.

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret; Farese, Robert V

    2016-07-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat-fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1-40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1-40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1α and Increases in Aβ1–40/42 and Phospho-Tau May Abet Alzheimer Development

    Science.gov (United States)

    Sajan, Mini; Hansen, Barbara; Ivey, Robert; Sajan, Joshua; Ari, Csilla; Song, Shijie; Braun, Ursula; Leitges, Michael; Farese-Higgs, Margaret

    2016-01-01

    Increased coexistence of Alzheimer disease (AD) and type 2 diabetes mellitus (T2DM) suggests that insulin resistance abets neurodegenerative processes, but linkage mechanisms are obscure. Here, we examined insulin signaling factors in brains of insulin-resistant high-fat–fed mice, ob/ob mice, mice with genetically impaired muscle glucose transport, and monkeys with diet-dependent long-standing obesity/T2DM. In each model, the resting/basal activities of insulin-regulated brain protein kinases, Akt and atypical protein kinase C (aPKC), were maximally increased. Moreover, Akt hyperactivation was accompanied by hyperphosphorylation of substrates glycogen synthase kinase-3β and mammalian target of rapamycin and FOXO proteins FOXO1, FOXO3A, and FOXO4 and decreased peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) expression. Akt hyperactivation was confirmed in individual neurons of anterocortical and hippocampal regions that house cognition/memory centers. Remarkably, β-amyloid (Aβ1–40/42) peptide levels were as follows: increased in the short term by insulin in normal mice, increased basally in insulin-resistant mice and monkeys, and accompanied by diminished amyloid precursor protein in monkeys. Phosphorylated tau levels were increased in ob/ob mice and T2DM monkeys. Importantly, with correction of hyperinsulinemia by inhibition of hepatic aPKC and improvement in systemic insulin resistance, brain insulin signaling normalized. As FOXOs and PGC-1α are essential for memory and long-term neuronal function and regeneration and as Aβ1–40/42 and phospho-tau may increase interneuronal plaques and intraneuronal tangles, presently observed aberrations in hyperinsulinemic states may participate in linking insulin resistance to AD. PMID:26895791

  1. Regulation of leptin and insulin signaling by the t cell protein tyrosine phosphatase

    OpenAIRE

    Loh, Kim Yong

    2017-01-01

    The prevalence of obesity and diabetes are increasing at alarming rates. Both are major health concerns worldwide. Food intake, energy expenditure and hepatic glucose production are regulated by hypothalamic neuronal circuits that respond to peripheral signals including leptin and insulin. Leptin is produced by adipose tissue and acts in the hypothalamus via the JAK2/STAT3 signaling pathway to decrease food intake and increase energy expenditure. It is now also widely appreciated that insulin...

  2. Low-Frequency Electroacupuncture Improves Insulin Sensitivity in Obese Diabetic Mice through Activation of SIRT1/PGC-1α in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fengxia Liang

    2011-01-01

    Full Text Available Electroacupuncture (EA has been observed to reduce insulin resistance in obesity and diabetes. However, the biochemical mechanism underlying this effect remains unclear. This study investigated the effects of low-frequency EA on metabolic action in genetically obese and type 2 diabetic db/db mice. Nine-week-old db/m and db/db mice were randomly divided into four groups, namely, db/m, db/m + EA, db/db, and db/db + EA. db/m + EA and db/db + EA mice received 3-Hz electroacupuncture five times weekly for eight consecutive weeks. In db/db mice, EA tempered the increase in fasting blood glucose, food intake, and body mass and maintained insulin levels. In EA-treated db/db mice, improved insulin sensitivity was established through intraperitoneal insulin tolerance test. EA was likewise observed to decrease free fatty acid levels in db/db mice; it increased protein expression in skeletal muscle Sirtuin 1 (SIRT1 and induced gene expression of peroxisome proliferator-activated receptor coactivator (PGC-, nuclear respiratory factor 1 (NRF1, and acyl-CoA oxidase (ACOX. These results indicated that EA offers a beneficial effect on insulin resistance in obese and diabetic db/db mice, at least partly, via stimulation of SIRT1/PGC-, thus resulting in improved insulin signal.

  3. Role of altered insulin signaling pathways in the pathogenesis of podocyte malfunction and microalbuminuria

    Science.gov (United States)

    Jauregui, Alexandra; Mintz, Daniel H; Mundel, Peter; Fornoni, Alessia

    2010-01-01

    Purpose of review In diabetic nephropathy (DN), insulin resistance and hyperinsulinemia correlate with the development of albuminuria. The possibility that altered insulin signaling in glomerular cells and particularly podocytes contributes to the development of DN will be discussed. Recent findings While normal podocytes uptake glucose in response to insulin, diabetic podocytes become insulin resistant in experimental DN prior to the development of significant albuminuria. Both clinical and experimental data suggest that insulin sensitizers may be renoprotective independently of their systemic effects on the metabolic control of diabetes. Summary We will review the clinical and experimental evidence that altered insulin signaling correlates with the development of DN in both type 1 and type 2 diabetes, and that insulin sensitizers may be superior to other hypoglycemic agents in the prevention of DN. We will then review potential mechanisms by which altered podocyte insulin signaling may contribute to the development of DN. Understanding the role of podocyte in glucose metabolism is important because it may lead to the discovery of novel pathogenetic mechanisms of DN, it may affect current strategies for prevention and treatment of DN, and it may allow for the identification of novel therapeutic targets. PMID:19724224

  4. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-01-01

    Full Text Available Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing.

  5. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  6. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    Science.gov (United States)

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  7. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    Science.gov (United States)

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  8. The effect of intensive insulin therapy on the insulin-regulatable glucose transporter (GLUT4) expression in skeletal muscle in type 1 diabetes

    DEFF Research Database (Denmark)

    Andersen, P H; Vestergaard, H; Lund, S

    1993-01-01

    h given to patients with Type 1 diabetes in poor metabolic control was associated with an adaptive regulation of GLUT4 mRNA and protein levels in vastus lateralis muscle. Nine Type 1 diabetic patients with a mean HbA1c of 10.3% were included in the protocol. After intensified treatment with soluble.......54). These results suggest, that in spite of evidence that high insulin levels affect GLUT4 expression in muscle, changes in serum insulin within the physiological range do not play a major role in the short-term regulation of GLUT4 expression in Type 1 diabetic patients....

  9. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models.

    Science.gov (United States)

    Ostler, Joseph E; Maurya, Santosh K; Dials, Justin; Roof, Steve R; Devor, Steven T; Ziolo, Mark T; Periasamy, Muthu

    2014-03-01

    Type 2 diabetes mellitus is associated with an accelerated muscle loss during aging, decreased muscle function, and increased disability. To better understand the mechanisms causing this muscle deterioration in type 2 diabetes, we assessed muscle weight, exercise capacity, and biochemistry in db/db and TallyHo mice at prediabetic and overtly diabetic ages. Maximum running speeds and muscle weights were already reduced in prediabetic db/db mice when compared with lean controls and more severely reduced in the overtly diabetic db/db mice. In contrast to db/db mice, TallyHo muscle size dramatically increased and maximum running speed was maintained during the progression from prediabetes to overt diabetes. Analysis of mechanisms that may contribute to decreased muscle weight in db/db mice demonstrated that insulin-dependent phosphorylation of enzymes that promote protein synthesis was severely blunted in db/db muscle. In addition, prediabetic (6-wk-old) and diabetic (12-wk-old) db/db muscle exhibited an increase in a marker of proteasomal protein degradation, the level of polyubiquitinated proteins. Chronic treadmill training of db/db mice improved glucose tolerance and exercise capacity, reduced markers of protein degradation, but only mildly increased muscle weight. The differences in muscle phenotype between these models of type 2 diabetes suggest that insulin resistance and chronic hyperglycemia alone are insufficient to rapidly decrease muscle size and function and that the effects of diabetes on muscle growth and function are animal model-dependent.

  10. Differential response of early and late phases of skeletal muscle regeneration to exogenous supply of testosterone and insulin

    International Nuclear Information System (INIS)

    Qazi, I.; Riaz, S.

    2005-01-01

    Effect of insulin and testosterone, separately and in combination on the regeneration of skeletal fibres within intact extensor digitorum longus (EDL) muscle grafts was studied in mice. It was found that intraperitoneal supply of 2 mg/100 g body weight/day of testosterone accelerated skeletal muscle regeneration within ten days of grafting. The regenerated muscle fibres in such grafts attained significantly higher % recovery of average cross-sectional area (ACSA) than in the controls grafts. Later on, provision of the hormone did not further promote growth of the regenerated muscle fibres. In the insulin-supplemented animals (2 units/100 g body weight/day) the grafts showed hyperplasia and atrophy of the regenerating muscle fibres during the first and the last study periods, respectively. Histological and morphometric analysis of 20-day old EDL muscle regenerates that were supplied with either insulin or testosterone during the first 10-days of transplantation followed by hormone administration in reverse sequence revealed valuable differences. Supply of testosterone and then insulin escalated the process of regeneration and growth so that the ACSA of the regenerated muscle fibres in such grafts turned out to be significantly higher that in the corresponding stages of control, or when only insulin and only testosterone were administered. Reverse sequence of the administration of the hormones exerted negative effects and the regenerated muscle fibres showed various levels of atrophy. These results indicate the importance of identification of particular phases of the process of skeletal muscle regeneration that may be more responsive to anabolic agents. Proper sequence of administration of the hormones to promote the regeneration of skeletal muscle fibres in whole EDL muscle autotransplants is also explained. (author)

  11. Ischaemia and insulin, but not ischaemia and contraction, act synergistically in stimulating muscle glucose uptake in vivo in humans.

    NARCIS (Netherlands)

    Bosselaar, M.; Smits, P.; Tack, C.J.J.

    2009-01-01

    Ischaemia, like muscle contraction, has been reported to induce skeletal muscle glucose uptake in in vitro models. This stimulating effect appears independent of insulin and is probably mediated by activation of AMPK (AMP-activated protein kinase). In the present study, we hypothesized that in vivo

  12. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle

    DEFF Research Database (Denmark)

    Chursa, Urszula; Nuñez-Durán, Esther; Cansby, Emmelie

    2017-01-01

    AIMS/HYPOTHESIS: Understanding the molecular networks controlling ectopic lipid deposition and insulin responsiveness in skeletal muscle is essential for developing new strategies to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator...... in skeletal muscle, highlighting the potential of STK25 antagonists for type 2 diabetes treatment....

  13. Hydrogen peroxide induces activation of insulin signaling pathway via AMP-dependent kinase in podocytes

    International Nuclear Information System (INIS)

    Piwkowska, Agnieszka; Rogacka, Dorota; Angielski, Stefan; Jankowski, Maciej

    2012-01-01

    Highlights: ► H 2 O 2 activates the insulin signaling pathway and glucose uptake in podocytes. ► H 2 O 2 induces time-dependent changes in AMPK phosphorylation. ► H 2 O 2 enhances insulin signaling pathways via AMPK activation. ► H 2 O 2 stimulation of glucose uptake is AMPK-dependent. -- Abstract: Podocytes are cells that form the glomerular filtration barrier in the kidney. Insulin signaling in podocytes is critical for normal kidney function. Insulin signaling is regulated by oxidative stress and intracellular energy levels. We cultured rat podocytes to investigate the effects of hydrogen peroxide (H 2 O 2 ) on the phosphorylation of proximal and distal elements of insulin signaling. We also investigated H 2 O 2 -induced intracellular changes in the distribution of protein kinase B (Akt). Western blots showed that H 2 O 2 (100 μM) induced rapid, transient phosphorylation of the insulin receptor (IR), the IR substrate-1 (IRS1), and Akt with peak activities at 5 min (Δ 183%, P 2 O 2 >. Furthermore, H 2 O 2 inhibited phosphorylation of the phosphatase and tensin homologue (PTEN; peak activity at 10 min; Δ −32%, P 2 O 2 on IR phosphorylation by about 40% (from 2.07 ± 0.28 to 1.28 ± 0.12, P 2 O 2 increased glucose uptake in podocytes (from 0.88 ± 0.04 to 1.29 ± 0.12 nmol/min/mg protein, P 2 O 2 activated the insulin signaling pathway and glucose uptake via AMPK in cultured rat podocytes. This signaling may play a potential role in the prevention of insulin resistance under conditions associated with oxidative stress.

  14. High Sugar Intake and Development of Skeletal Muscle Insulin Resistance and Inflammation in Mice: A Protective Role for PPAR-δ Agonism

    Directory of Open Access Journals (Sweden)

    Elisa Benetti

    2013-01-01

    Full Text Available Peroxisome Proliferator Activated Receptor (PPAR-δ agonists may serve for treating metabolic diseases. However, the effects of PPAR-δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR-δ agonist, GW0742 (1 mg/kg/day for 16 weeks, in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS, the major sweetener in foods and soft-drinks (15% wt/vol in drinking water. Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR-δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR-δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.

  15. High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism.

    Science.gov (United States)

    Benetti, Elisa; Mastrocola, Raffaella; Rogazzo, Mara; Chiazza, Fausto; Aragno, Manuela; Fantozzi, Roberto; Collino, Massimo; Minetto, Marco A

    2013-01-01

    Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades.

  16. Insulin Signaling in the Aging of Healthy and Proteotoxically Stressed Mechanosensory Neurons

    Directory of Open Access Journals (Sweden)

    Courtney eScerbak

    2014-07-01

    Full Text Available Insulin signaling is central to cellular metabolism and organismal aging. However, the role of insulin signaling in natural and proteotoxically stressed aging neurons has yet to be fully described. We studied aging of Caenorbaditis elegans mechanosensory neurons expressing a neurotoxic expanded polyglutamine transgene (polyQ128, or lacking this proteotoxicity stressor (polyQ0, under conditions in which the insulin signaling pathway was disrupted by RNA interference (RNAi. We describe specific changes in lifespan, mechanosensory neuronal morphologies, and mechansensory function following RNAi treatment targeting the insulin signaling pathway. Overall, we confirmed that transcription factor DAF-16 is neuroprotective in the proteotoxically stressed model, though not strikingly in the naturally aging model. Decreased insulin signaling through daf-2 RNAi improved mechanosensory function in both models and decreased protein aggregation load in polyQ128, yet showed opposing effects on accumulation of neuronal aberrations in both strains. Decreased daf-2 signaling slightly enhanced mechanosensation while greatly enhancing branching of the mechanosensory neuron axons and dendrites in polyQ0 animals, suggesting that branching is an adaptive response in natural aging. These effects in polyQ0 did not appear to involve DAF-16, suggesting the existence of a non-canonical DAF-2 pathway for the modulation of morphological adaptation. However, in polyQ128 animals, decreased daf-2 signaling significantly enhanced mechanosensation while decreasing neuronal aberrations. Unlike other interventions that reduce the strength of insulin signaling, daf-2 RNAi dramatically redistributed large polyQ128 aggregates to the cell body, away from neuronal processes. Our results suggest that insulin signaling strength can differentially affect specific neurons aging naturally or under proteotoxic stress.

  17. [Effect of Jinlida on DGAT1 in Skeletal Muscle in Fat-Induced Insulin Resistance ApoE -/- Mice].

    Science.gov (United States)

    Jin, Xin; Zhang, Hui-xin; Cui, Wen-wen

    2015-06-01

    To investigate the effect of Jinlida on DGAT1 in skeletal muscle in fat-induced insulin resistance ApoE-/- mice. Eight male C57BL/6J mice were used as normal group. 40 male ApoE -/- mice were fed high-fat diet for 16 weeks and divided into five groups: control group, rosiglitazone group, and Jinlida low, middle and high dose groups. Then corresponding drugs were administrated intragastrically for eight weeks. TG content in skeletal muscle was measured by enzymic enzymatic, Glucose tolerance test (OGTT) was used to evaluate the degree of insulin resistance in mice. The mRNA and protein expression of insulin receptor substrate (IRS-1) and diacylglycerol acyltransferase 1 (DGAT1) in skeletal muscle were measured by real-time quantitative reverse transcription PCR (RT-PCR)and Western blot. Jinlida particles reduced fasting blood glucose (FBG) cholesterol (TC), triglyceride (TG), free fatty acid (FFA)and fasting insulin (FIns) levels, raised insulin sensitive index (ISI), improved glucose tolerance, and reduced skeletal muscle lipid deposition in ApoE -/- mice significantly. Jinlida particles increased the expression of IRS-1 mRNA and protein, and reduced DGAT1. Jinlida can alleviate the expression of DGAT in skeletal muscle in fat-induced insulin resistance ApoE-/- mice.

  18. The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity

    DEFF Research Database (Denmark)

    Henstridge, Darren C; Forbes, Josephine M; Penfold, Sally A

    2010-01-01

    Decreased gene expression of heat shock protein 72 (HSP72) in skeletal muscle is associated with insulin resistance in humans. We aimed to determine whether HSP72 protein expression in insulin-sensitive tissues is related to criterion standard measures of adiposity and insulin resistance in a young...... healthy human population free of hyperglycemia. Healthy participants (N = 17; age, 30 ± 3 years) underwent measurement of body composition (dual-energy x-ray absorptiometry), a maximum aerobic capacity test (VO(2max)), an oral glucose tolerance test, and a hyperinsulinemic-euglycemic clamp (M) to access...... insulin sensitivity. Skeletal muscle and subcutaneous adipose tissue biopsies were obtained by percutaneous needle biopsy. HSP72 protein expression in skeletal muscle was inversely related to percentage body fat (r = -0.54, P

  19. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    Science.gov (United States)

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. AMPK and insulin action

    DEFF Research Database (Denmark)

    Frøsig, Christian; Jensen, Thomas Elbenhardt; Jeppesen, Jacob

    2013-01-01

    The 5'-AMP-activated protein kinase (AMPK) is considered "a metabolic master-switch" in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact...... role of AMPK is not well understood. Here we hypothesized that mice lacking a2AMPK activity in muscle would be more susceptible to develop insulin resistance associated with ageing alone or in combination with high fat diet. Young (~4 month) or old (~18 month) wild type and muscle specific a2AMPK...... kinase-dead mice on chow diet as well as old mice on 17 weeks of high fat diet were studied for whole body glucose homeostasis (OGTT, ITT and HOMA-IR), insulin signaling and insulin-stimulated glucose uptake in muscle. We demonstrate that high fat diet in old mice results in impaired glucose homeostasis...

  1. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  2. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level

    Science.gov (United States)

    Ilany, Jacob; Bilan, Philip J.; Kapur, Sonia; Caldwell, James S.; Patti, Mary-Elizabeth; Marette, Andre; Kahn, C. Ronald

    2006-03-01

    Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes. diabetes mellitus | glucose transport | RGK GTPase | transgenic mouse

  3. Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Yukina Kawada

    Full Text Available Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2 expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.

  4. Effect of diabetes and insulin on the turnover of hexokinase II in the skeletal muscle

    International Nuclear Information System (INIS)

    Frank, S.K.

    1985-01-01

    An ELISA procedure was developed to determine the amount of hexokinase II protein in the skeletal muscle extracts of rats, and immunoprecipitation was utilized to determine the hexokinase II activity. Both hexokinase II activity and the amount of hexokinase II protein decreased in the diabetic rat. Both increased toward normal treatment with insulin. The rate of synthesis of hexokinase II in the skeletal muscle was determined by the rate of incorporation of [ 3 H] leucine into hexokinase II. This rate was compared to that of the total cytosolic proteins to determine if the rate of hexokinase II synthesis was specifically affected by insulin. This relative rate of synthesis of hexokinase II was found to be approximately two times greater in the normal as compared to the diabetic rat. The apparent rate constants of degradation were determined using a double-isotope technique and from these constants it was possible to calculate the apparent half-lives. The apparent half-life was approximately 2.3 times greater in the normal compared to the diabetic rat and 2 times greater in the insulin-treated compared to the diabetic

  5. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Qiu

    Full Text Available Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice. Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of

  6. Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Tepavčević, Snežana; Vojnović Milutinović, Danijela; Macut, Djuro; Žakula, Zorica; Nikolić, Marina; Božić-Antić, Ivana; Romić, Snježana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran

    2014-05-01

    It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats. Treatment with DHT resulted in increased body mass, absolute mass of the heart, elevated plasma insulin concentration, dyslipidemia and insulin resistance. At the molecular level, DHT treatment did not change protein expression of cardiac insulin receptor and insulin receptor substrate 1, while phosphorylation of the substrate at serine 307 was increased. Unexpectedly, although expression of downstream Akt kinase and its phosphorylation at threonine 308 were not altered, phosphorylation of Akt at serine 473 was increased in the heart of DHT-treated rats. In contrast, expression and phosphorylation of extracellular signal regulated kinases 1/2 were decreased. Plasma membrane contents of GLUT1 and GLUT4 were decreased, as well as the expression of GLUT4 in cardiac cells at the end of androgen treatment. The obtained results provide evidence for alterations in expression and especially in functional characteristics of insulin signaling molecules and glucose transporters in the heart of DHT-treated rats with PCOS, indicating impaired cardiac insulin action. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of mild intermittent hypoxia on glucose tolerance, muscle morphology and AMPK-PGC-1alpha signaling.

    Science.gov (United States)

    Chen, Chung-Yu; Tsai, Ying-Lan; Kao, Chung-Lan; Lee, Shin-Da; Wu, Ming-Chieh; Mallikarjuna, K; Liao, Yi-Hung; Ivy, John L; Kuo, Chia-Hua

    2010-02-28

    The main goal of this study was to investigate the long-term effect of daily 8-hour mild intermittent hypoxia (14-15% O2) on glucose tolerance and muscle morphology of Sprague-Dawley rats. The involvement of AMPK-PGC-1alpha-VEGF signaling pathways in the skeletal muscle was also determined during the first 8 hours of hypoxia. We found that mRNA levels of VEGF and PGC-1alpha were significantly increased above control after 8-h mild hypoxia without a change in AMPK phosphorylation. After 8 weeks of mild intermittent hypoxia treatment, plasma glucose and insulin levels in oral glucose tolerance test (OGTT), epididymal fat mass, and body weight were significantly lower compared to the control group. While soleus muscle weight was not changed, capillary and fiber densities in the hypoxia group were 33% and 35% above the control suggesting reorganization of muscle fibers. In conclusion, our data provide strong evidence that long-term mild intermittent hypoxia decreases the diffusion distance of glucose and insulin across muscle fibers, and decreases adiposity in rats. These changes may account for the improved glucose tolerance observed following the 8-week hypoxia treatment, and provides grounds for investigating the development of a mild non-pharmacological intervention in the treatment of obesity and type 2 diabetes.

  8. Chinese medicine Jinlida (JLD) ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    Science.gov (United States)

    Zang, Sha-Sha; Song, An; Liu, Yi-Xuan; Wang, Chao; Song, Guang-Yao; Li, Xiao-Ling; Zhu, Ya-Jun; Yu, Xian; Li, Ling; Liu, Chen-Xi; Kang, Jun-Cong; Ren, Lu-Ping

    2015-01-01

    The present paper reports the effects of Jinlida (JLD), a traditional Chinese medicine which has been given as a treatment for high-fat-diet (HFD)-induced insulin resistance. A randomized controlled experiment was conducted to provide evidence in support of the affects of JLD on insulin resistance induced by HFD. The affect of JLD on blood glucose, lipid, insulin, adiponectin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) in serum and lipid content in skeletal muscle was measured. Genes and proteins of the AMPK signaling pathway were analyzed by real time RT-PCR and Western blot. Adiponectin receptor 1 and 2 (ADIPOR1, ADIPOR2) and other genes involved in mitochondrial function and fat oxidation were analyzed by real time RT-PCR. Histological staining was also performed. JLD or pioglitazone administration ameliorated fasting plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), ALT, AST and non-esterified fatty acid (NEFA) (P < 0.05). Treatment with JLD or pioglitazone significantly reverted muscle lipid content (P < 0.05). JLD (1.5 g/kg) significantly increased plasma adiponectin concentration by 60.17% and increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation in skeletal muscle (P < 0.05). JLD administration increased levels of ADIPOR1 and ADIPOR2 by 1.48 and 1.29 respectively. Levels of genes involved in mitochondrial function and fat oxidation were increased. This study provides the molecular mechanism by which JLD ameliorates HFD-induced insulin resistance in rats.

  9. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain

    2009-01-01

    Skeletal muscle Na(+)-K(+)-ATPase plays a central role in the clearance of K(+) from the extracellular fluid, therefore maintaining blood [K(+)]. Na(+)-K(+)-ATPase activity in peripheral tissue is impaired in insulin resistant states. We determined effects of high-fat diet (HFD) and exercise......(+)-K(+)-ATPase activity after 4 wk of HFD. Exercise training restored alpha(1)-, alpha(2)-, and beta(1)-subunit expression and Na(+)-K(+)-ATPase activity to control levels and reduced beta(2)-subunit expression 2.2-fold (P ... phospholemman. Phospholemman mRNA and protein expression were increased after HFD and restored to control levels after ET. Insulin-stimulated translocation of the alpha(2)-subunit to plasma membrane was impaired by HFD, whereas alpha(1)-subunit translocation remained unchanged. Alterations in sodium pump...

  10. Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration.

    Science.gov (United States)

    Deochand, Chetram; Tong, Ming; Agarwal, Amit R; Cadenas, Enrique; de la Monte, Suzanne M

    2016-01-01

    Human studies suggest tobacco smoking is a risk factor for cognitive impairment and neurodegeneration, including Alzheimer's disease (AD). However, experimental data linking tobacco smoke exposures to underlying mediators of neurodegeneration, including impairments in brain insulin and insulin-like growth factor (IGF) signaling in AD are lacking. This study tests the hypothesis that cigarette smoke (CS) exposures can impair brain insulin/IGF signaling and alter expression of AD-associated proteins. Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 or 8 weeks (CS4, CS8), or CS8 followed by 2 weeks recovery (CS8+R). Gene expression was measured by qRT-PCR analysis and proteins were measured by multiplex bead-based or direct binding duplex ELISAs. CS exposure effects on insulin/IGF and insulin receptor substrate (IRS) proteins and phosphorylated proteins were striking compared with the mRNA. The main consequences of CS4 or CS8 exposures were to significantly reduce insulin R, IGF-1R, IRS-1, and tyrosine phosphorylated insulin R and IGF-1R proteins. Paradoxically, these effects were even greater in the CS8+R group. In addition, relative levels of S312-IRS-1, which inhibits downstream signaling, were increased in the CS4, CS8, and CS8+R groups. Correspondingly, CS and CS8+R exposures inhibited expression of proteins and phosphoproteins required for signaling through Akt, PRAS40, and/or p70S6K, increased AβPP-Aβ, and reduced ASPH protein, which is a target of insulin/IGF-1 signaling. Secondhand CS exposures caused molecular and biochemical abnormalities in brain that overlap with the findings in AD, and many of these effects were sustained or worsened despite short-term CS withdrawal.

  11. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  12. Glycogen synthase and phosphofructokinase protein and mRNA levels in skeletal muscle from insulin-resistant patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Larsen, F S

    1993-01-01

    In patients with non-insulin-dependent diabetes mellitus (NIDDM) and matched control subjects we examined the interrelationships between in vivo nonoxidative glucose metabolism and glucose oxidation and the muscle activities, as well as the immunoreactive protein and mRNA levels of the rate-limit...

  13. The Effect of Tianmai Xiaoke Pian on Insulin Resistance through PI3-K/AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Nana Wang

    2016-01-01

    Full Text Available In the clinical setting, given the potential adverse effects of thiazolidinediones and biguanides, we often have difficulty in treatment that no other insulin sensitizers are available for use in type 2 diabetic mellitus (T2DM patients. Tianmai Xiaoke Pian (TMXKP is a traditional Chinese medicine tablet, which is comprised of chromium picolinate, Tianhuafen, Maidong, and Wuweizi. To understand its mechanism of action on insulin resistance, TMXKP (50 mg/kg orally was tested in T2DM rats (induced by a high-fat diet and streptozotocin. Eight weeks later, fasting blood glucose (FBG and oral glucose tolerance tests (OGTT were performed. Area under the curve (AUC and homeostatic model assessment of insulin resistance (HOMA-IR were calculated, and PI3-K/AKT signal pathway-related genes and proteins were tested by reverse transcription-polymerase chain reaction (RT-PCR and western blot analysis in muscle, adipose, and liver tissues, respectively. TMXKP significantly reduced FBG, OGTT, AUC, and HOMA-IR in diabetic rats P<0.05. Furthermore, we also observed that TMXKP could significantly decrease IRS-1, IRS-2, PI3-K p85α, and AKT2 gene expression and also IRS-1, IRS-2, PI3-K, AKT2, and p-AKT2 protein expression levels P<0.05 in diabetic rats. These findings confirm that TMXKP can alleviate insulin resistance in T2DM rats through the PI3K/AKT pathway. Thus TMXKP appears to be a promising insulin sensitizer.

  14. Altered Regulation of Contraction-Induced Akt/mTOR/p70S6k Pathway Signaling in Skeletal Muscle of the Obese Zucker Rat

    Directory of Open Access Journals (Sweden)

    Anjaiah Katta

    2009-01-01

    Full Text Available Increased muscle loading results in the phosphorylation of the 70 kDa ribosomal S6 kinase (p70S6k, and this event is strongly correlated with the degree of muscle adaptation following resistance exercise. Whether insulin resistance or the comorbidities associated with this disorder may affect the ability of skeletal muscle to activate p70S6k signaling following an exercise stimulus remains unclear. Here, we compare the contraction-induced activation of p70S6k signaling in the plantaris muscles of lean and insulin resistant obese Zucker rats following a single bout of increased contractile loading. Compared to lean animals, the basal phosphorylation of p70S6k (Thr389; 37.2% and Thr421/Ser424; 101.4%, Akt (Thr308; 25.1%, and mTOR (Ser2448; 63.0% was higher in obese animals. Contraction increased the phosphorylation of p70S6k (Thr389, Akt (Ser473, and mTOR (Ser2448 in both models however the magnitude and kinetics of activation differed between models. These results suggest that contraction-induced activation of p70S6k signaling is altered in the muscle of the insulin resistant obese Zucker rat.

  15. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Tobias Boothe

    2016-05-01

    Full Text Available Objective: The role and mechanisms of insulin receptor internalization remain incompletely understood. Previous trafficking studies of insulin receptors involved fluorescent protein tagging at their termini, manipulations that may be expected to result in dysfunctional receptors. Our objective was to determine the trafficking route and molecular mechanisms of functional tagged insulin receptors and endogenous insulin receptors in pancreatic beta-cells. Methods: We generated functional insulin receptors tagged with pH-resistant fluorescent proteins between domains. Confocal, TIRF and STED imaging revealed a trafficking pattern of inter-domain tagged insulin receptors and endogenous insulin receptors detected with antibodies. Results: Surprisingly, interdomain-tagged and endogenous insulin receptors in beta-cells bypassed classical Rab5a- or Rab7-mediated endocytic routes. Instead, we found that removal of insulin receptors from the plasma membrane involved tyrosine-phosphorylated caveolin-1, prior to trafficking within flotillin-1-positive structures to lysosomes. Multiple methods of inhibiting caveolin-1 significantly reduced Erk activation in vitro or in vivo, while leaving Akt signaling mostly intact. Conclusions: We conclude that phosphorylated caveolin-1 plays a role in insulin receptor internalization towards lysosomes through flotillin-1-positive structures and that caveolin-1 helps bias physiological beta-cell insulin signaling towards Erk activation. Author Video: Author Video Watch what authors say about their articles Keywords: Insulin receptor internalization, Insulin resistance, Pancreatic islet beta-cells, Autocrine insulin signaling

  16. FENOFIBRATE ADMINISTRATION DOES NOT AFFECT MUSCLE TRIGLYCERIDE CONCENTRATION OR INSULIN SENSITIVITY IN HUMANS

    Science.gov (United States)

    Perreault, Leigh; Bergman, Bryan C.; Hunerdosse, Devon M.; Howard, David J.; Eckel, Robert H.

    2010-01-01

    Objective Animal data suggest that males, in particular, rely on PPAR-α activity to maintain normal muscle triglyceride metabolism. We sought to examine whether this was also true in men vs. women and its relationship to insulin sensitivity. Materials/Methods Normolipidemic obese men (n=9) and women (n=9) underwent an assessment of insulin sensitivity (IVGTT) and intramuscular triglyceride metabolism (GC/MS and GC/C/IRMS from plasma and muscle biopsies taken after infusion of [U-13C]palmitate) before and after 12 weeks of fenofibrate treatment. Results Women were more insulin sensitive (Si; 5.2(0.7 vs. 2.4(0.4 ×10−4/uU/ml, W vs. M, ptriglyceride (IMTG) concentration (41.9(15.5 vs. 30.8(5.1 ug/mg dry weight, W vs. M, p=0.43), and IMTG fractional synthesis rate (FSR; 0.27(0.07 vs. 0.35(0.06/hr, W vs. M, p=0.41) as men. Fenofibrate enhanced FSR in men (0.35(0.06 to 0.54(0.06, p=0.05), with no such change seen in women (0.27(0.07 to 0.32(0.13, p=0.73), and no change in IMTG concentration in either group (23.0(3.9 in M, p=0.26 vs. baseline; 36.3(12.0 in W, p=0.79 vs. baseline). Insulin sensitivity was unaffected by fenofibrate (p>0.68). Lower percent saturation of IMTG in women vs. men before (29.1(2.3 vs. 35.2(1.7%, p=0.06) and after (27.3(2.8 vs. 35.1(1.9%, p=0.04) fenofibrate most closely related to their greater insulin sensitivity (R2=0.34, p=0.10), and was largely unchanged by the drug. Conclusions PPAR-α agonist therapy had little effect on IMTG metabolism in men or women. IMTG saturation, rather than IMTG concentration or FSR, most closely (but not significantly) related to insulin sensitivity and was unchanged by fenofibrate administration. PMID:21306746

  17. Spatial memory impairment is associated with hippocampal insulin signals in ovariectomized rats.

    Science.gov (United States)

    Wang, Fang; Song, Yan-Feng; Yin, Jie; Liu, Zi-Hua; Mo, Xiao-Dan; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Estrogen influences memory formation and insulin sensitivity. Meanwhile, glucose utilization directly affects learning and memory, which are modulated by insulin signals. Therefore, this study investigated whether or not the effect of estrogen on memory is associated with the regulatory effect of this hormone on glucose metabolism. The relative expression of estrogen receptor β (ERβ) and glucose transporter type 4 (GLUT4) in the hippocampus of rats were evaluated by western blot. Insulin level was assessed by ELISA and quantitative RT-PCR, and spatial memory was tested by the Morris water maze. Glucose utilization in the hippocampus was measured by 2-NBDG uptake analysis. Results showed that ovariectomy impaired the spatial memory of rats. These impairments are similar as the female rats treated with the ERβ antagonist tamoxifen (TAM). Estrogen blockade by ovariectomy or TAM treatment obviously decreased glucose utilization. This phenomenon was accompanied by decreased insulin level and GLUT4 expression in the hippocampus. The female rats were neutralized with hippocampal insulin with insulin antibody, which also impaired memory and local glucose consumption. These results indicated that estrogen blockade impaired the spatial memory of the female rats. The mechanisms by which estrogen blockade impaired memory partially contributed to the decline in hippocampal insulin signals, which diminished glucose consumption.

  18. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  19. Phosphatidylcholine Transfer Protein Interacts with Thioesterase Superfamily Member 2 to Attenuate Insulin Signaling

    OpenAIRE

    Ersoy, Baran A.; Tarun, Akansha; D’Aquino, Katharine; Hancer, Nancy J.; Ukomadu, Chinweike; White, Morris F.; Michel, Thomas; Manning, Brendan D.; Cohen, David E.

    2013-01-01

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenc...

  20. High-dose Resveratrol Inhibits Insulin Signaling Pathway in 3T3-L1 Adipocytes

    OpenAIRE

    Lee, Haemi; Kim, Jae-woo

    2013-01-01

    Background Insulin resistance is a major factor in the development of metabolic syndrome and is associated with central obesity and glucose intolerance. Resveratrol, a polyphenol found in fruits, has been shown to improve metabolic conditions. Although it has been widely studied how resveratrol affects metabolism, little is known about how resveratrol regulates lipogenesis with insulin signaling in 3T3-L1 adipocytes. Methods: We treated differentiated 3T3-L1 adipocytes with resveratrol to obs...

  1. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation.

    Science.gov (United States)

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-05-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.

  2. The IGFBP7 homolog Imp-L2 promotes insulin signaling in distinct neurons of the Drosophila brain.

    Science.gov (United States)

    Bader, R; Sarraf-Zadeh, L; Peters, M; Moderau, N; Stocker, H; Köhler, K; Pankratz, M J; Hafen, E

    2013-06-15

    In Drosophila, Insulin-like peptide 2 (Dilp-2) is expressed by insulin-producing cells in the brain, and is secreted into the hemolymph to activate insulin signaling systemically. Within the brain, however, a more local activation of insulin signaling may be required to couple behavioral and physiological traits to nutritional inputs. We show that a small subset of neurons in the larval brain has high Dilp-2-mediated insulin signaling activity. This local insulin signaling activation is accompanied by selective Dilp-2 uptake and depends on the expression of the Imaginal morphogenesis protein-late 2 (Imp-L2) in the target neurons. We suggest that Imp-L2 acts as a licensing factor for neuronal IIS activation through Dilp-2 to further increase the precision of insulin activity in the brain.

  3. The importance of dietary modulation of cAMP and insulin signaling in adipose tissue and the development of obesity

    DEFF Research Database (Denmark)

    Madsen, Lise; Kristiansen, Karsten

    2010-01-01

    branches of cAMP signaling, the canonical protein kinase A-dependent pathways and the novel exchange protein activated by cAMP (Epac)-dependent pathways, and insulin signaling. We discuss how macronutrients via changes in the balance between insulin- and cAMP-dependent signaling can affect the development...

  4. Swimming training alleviated insulin resistance through Wnt3a/β-catenin signaling in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Qiang Yang

    2017-11-01

    Full Text Available Objective(s: Increasing evidence suggests that regular physical exercise improves type 2 diabetes mellitus (T2DM. However, the potential beneficial effects of swimming on insulin resistance and lipid disorder in T2DM, and its underlying mechanisms remain unclear. Materials and Methods: Rats were fed with high fat diet and given a low dosage of Streptozotocin (STZ to induce T2DM model, and subsequently treated with or without swimming exercise. An 8-week swimming program (30, 60 or 120 min per day, 5 days per week decreased body weight, fasting blood glucose and fasting insulin. Results: Swimming ameliorated lipid disorder, improved muscular atrophy and revealed a reduced glycogen deposit in skeletal muscles of diabetic rats. Furthermore, swimming also inhibited the activation of Wnt3a/β-catenin signaling pathway, decreased Wnt3a mRNA and protein level, upregulated GSK3β phosphorylation activity and reduced the expression of β-catenin phosphorylation in diabetic rats. Conclusion: The trend of the result suggests that swimming exercise proved to be a potent ameliorator of insulin resistancein T2DM through the modulation of Wnt3a/β-catenin pathway and therefore, could present a promising therapeutic measure towards the treatment of diabetes and its relatives.

  5. Experimental muscle pain produces central modulation of proprioceptive signals arising from jaw muscle spindles.

    Science.gov (United States)

    Capra, N F; Ro, J Y

    2000-05-01

    The aim of the present study was to investigate the effects of intramuscular injection with hypertonic saline, a well-established experimental model for muscle pain, on central processing of proprioceptive input from jaw muscle spindle afferents. Fifty-seven cells were recorded from the medial edge of the subnucleus interpolaris (Vi) and the adjacent parvicellular reticular formation from 11 adult cats. These cells were characterized as central units receiving jaw muscle spindle input based on their responses to electrical stimulation of the masseter nerve, muscle palpation and jaw stretch. Forty-five cells, which were successfully tested with 5% hypertonic saline, were categorized as either dynamic-static (DS) (n=25) or static (S) (n=20) neurons based on their responses to different speeds and amplitudes of jaw movement. Seventy-six percent of the cells tested with an ipsilateral injection of hypertonic saline showed a significant modulation of mean firing rates (MFRs) during opening and/or holding phases. The most remarkable saline-induced change was a significant reduction of MFR during the hold phase in S units (100%, 18/18 modulated). Sixty-nine percent of the DS units (11/16 modulated) also showed significant changes in MFRs limited to the hold phase. However, in the DS neurons, the MFRs increased in seven units and decreased in four units. Finally, five DS neurons showed significant changes of MFRs during both opening and holding phases. Injections of isotonic saline into the ipsilateral masseter muscle had little effect, but hypertonic saline injections made into the contralateral masseter muscle produced similar results to ipsilateral injections with hypertonic saline. These results unequivocally demonstrate that intramuscular injection with an algesic substance, sufficient to produce muscle pain, produces significant changes in the proprioceptive properties of the jaw movement-related neurons. Potential mechanisms involved in saline-induced changes in the

  6. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  7. Undernutrition regulates the expression of a novel splice variant of myostatin and insulin-like growth factor 1 in ovine skeletal muscle.

    Science.gov (United States)

    Jeanplong, F; Osepchook, C C; Falconer, S J; Smith, H K; Bass, J J; McMahon, C D; Oldham, J M

    2015-07-01

    Undernutrition suppresses the growth of skeletal muscles and alters the expression of insulin-like growth factor 1 (IGF1), a key mitogen, and myostatin, a potent inhibitor of myogenesis. These changes can explain, at least in part, the reduced growth of skeletal muscles in underfed lambs. We have recently identified a myostatin splice variant (MSV) that binds to and antagonizes the canonical signaling of myostatin. In the present study, we hypothesized that the expression of MSV would be reduced in conjunction with myostatin and IGF1 in response to underfeeding in skeletal muscles of sheep. Young growing ewes were fed either ad libitum or an energy-restricted diet (30% of maintenance requirements) for 28 d. This regime of underfeeding resulted in a 24% reduction in body mass (P myostatin mRNA was not altered in semitendinosus muscles. Unlike the reduced expression of mRNA, the abundance of MSV protein was increased (P myostatin protein. Our results suggest that undernutrition for 28 d decreases the signaling of myostatin by increasing the abundance of MSV protein. Although this action may reduce the growth inhibitory activity of myostatin, it cannot prevent the loss of growth of skeletal muscles during undernutrition. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  9. Skeletal muscle blood flow in vivo: detection with rubidium-82 and effects of glucose, insulin, and exercise

    International Nuclear Information System (INIS)

    Mossberg, K.A.; Mullani, N.; Gould, K.L.; Taegtmeyer, H.

    1987-01-01

    In order to assess the effects of glucose, insulin, and exercise on skeletal muscle blood flow in vivo, we measured positron emission from the thigh muscle of anesthetized rabbits after simultaneous aortic bolus injection of 82 Rb and radiolabeled microspheres (15 micron diameter). Estimates of flow with 82 Rb were based on first-pass regional extraction of 82 Rb by skeletal muscle. Flow estimates were made serially as a function of variations in plasma glucose and insulin and changing the muscle contractile state by electrical stimulation. Flow ranged from 3.1 ml/min/100 g at rest to 71 ml/min/100 g during stimulation. There was good agreement between the two methods of flow measurement over the entire range of flows (r = 0.96 at a slope of 0.90). Flow measured by either method did not vary significantly from baseline over a range of plasma glucose from 5 to 30 mM and plasma insulin from 0 to 20 microU/ml. When flow was increased up to 20-fold by electrical stimulation there was a decrease in extraction of 82 Rb proportional to the increase in flow. However, at pharmacologic levels of insulin (greater than 150 microU/ml) flow was increased twofold as measured by radiolabeled microspheres, but not as measured by rubidium. There was no apparent decrease in extraction of 82 Rb with high insulin. The discrepancy between the microsphere measured flow and rubidium measured flow with high plasma insulin levels can be explained by the assumption that the expected decrease in the extraction fraction was counteracted by an increase in Na+/K+-ATPase activity. It is concluded that the first-pass flow model gives valid estimates of skeletal muscle blood flow in vivo with 82 Rb, provided that plasma insulin levels are normal

  10. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin.

    Science.gov (United States)

    Wilson, Fiona A; Orellana, Renán A; Suryawan, Agus; Nguyen, Hanh V; Jeyapalan, Asumthia S; Frank, Jason; Davis, Teresa A

    2008-07-01

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.

  11. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons.

    Science.gov (United States)

    Zhang, Jie; Light, Alan R; Hoppel, Charles L; Campbell, Caitlin; Chandler, Carol J; Burnett, Dustin J; Souza, Elaine C; Casazza, Gretchen A; Hughen, Ronald W; Keim, Nancy L; Newman, John W; Hunter, Gary R; Fernandez, Jose R; Garvey, W Timothy; Harper, Mary-Ellen; Fiehn, Oliver; Adams, Sean H

    2017-01-01

    What is the central question of this study? Does improved metabolic health and insulin sensitivity following a weight-loss and fitness intervention in sedentary, obese women alter exercise-associated fuel metabolism and incomplete mitochondrial fatty acid oxidation (FAO), as tracked by blood acylcarnitine patterns? What is the main finding and its importance? Despite improved fitness and blood sugar control, indices of incomplete mitochondrial FAO increased in a similar manner in response to a fixed load acute exercise bout; this indicates that intramitochondrial muscle FAO is inherently inefficient and is tethered directly to ATP turnover. With insulin resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives [markers of incomplete long-chain fatty acid oxidation (FAO)]. We reasoned that incomplete FAO in muscle would be ameliorated concurrent with improved insulin sensitivity and fitness following a ∼14 week training and weight-loss intervention in obese, sedentary, insulin-resistant women. Contrary to this hypothesis, overnight-fasted and exercise-induced plasma C4-C14 acylcarnitines did not differ between pre- and postintervention phases. These metabolites all increased robustly with exercise (∼45% of pre-intervention peak oxygen consumption) and decreased during a 20 min cool-down. This supports the idea that, regardless of insulin sensitivity and fitness, intramitochondrial muscle β-oxidation and attendant incomplete FAO are closely tethered to absolute ATP turnover rate. Acute exercise also led to branched-chain amino acid acylcarnitine derivative patterns suggestive of rapid and transient diminution of branched-chain amino acid flux through the mitochondrial branched-chain ketoacid dehydrogenase complex. We confirmed our prior novel observation

  12. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP

    Science.gov (United States)

    Galic, Sandra; Hauser, Christine; Kahn, Barbara B.; Haj, Fawaz G.; Neel, Benjamin G.; Tonks, Nicholas K.; Tiganis, Tony

    2005-01-01

    The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell. PMID:15632081

  13. Insulin signaling regulates fatty acid catabolism at the level of CoA activation.

    Directory of Open Access Journals (Sweden)

    Xiaojun Xu

    2012-01-01

    Full Text Available The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS. We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis.

  14. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes

    DEFF Research Database (Denmark)

    Moltke, Ida; Grarup, Niels; Jørgensen, Marit Eika

    2014-01-01

    carriers of this variant have markedly higher concentrations of plasma glucose (β = 3.8 mmol l(-1), P = 2.5 × 10(-35)) and serum insulin (β = 165 pmol l(-1), P = 1.5 × 10(-20)) 2 hours after an oral glucose load compared with individuals with other genotypes (both non-carriers and heterozygous carriers......). Furthermore, homozygous carriers have marginally lower concentrations of fasting plasma glucose (β = -0.18 mmol l(-1), P = 1.1 × 10(-6)) and fasting serum insulin (β = -8.3 pmol l(-1), P = 0.0014), and their T2D risk is markedly increased (odds ratio (OR) = 10.3, P = 1.6 × 10(-24)). Heterozygous carriers have...... transporter GLUT4, with increasing number of p.Arg684Ter alleles. These findings are concomitant with a severely decreased insulin-stimulated glucose uptake in muscle, leading to postprandial hyperglycaemia, impaired glucose tolerance and T2D. The observed effect sizes are several times larger than any...

  15. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  16. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes

    OpenAIRE

    Mackenzie, Richard WA; Elliott, Bradley T

    2014-01-01

    Richard WA Mackenzie, Bradley T Elliott Department of Human and Health Sciences, Facility of Science and Technology, University of Westminster, London, UK Abstract: Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose tr...

  17. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight

    DEFF Research Database (Denmark)

    Brøns, Charlotte; Jensen, Christine B; Storgaard, Heidi

    2008-01-01

    OBJECTIVE: Low birth weight (LBW) is an independent risk factor of insulin resistance and type 2 diabetes. Recent studies suggest that mitochondrial dysfunction and impaired expression of genes involved in oxidative phosphorylation (OXPHOS) may play a key role in the pathogenesis of insulin...... in 20 young, lean men with LBW and 26 matched controls. On a separate day, a hyperinsulinemic euglycemic clamp with excision of muscle biopsies and dual-energy x-ray absorptiometry scanning was performed. Muscle gene expression of selected OXPHOS genes was determined by quantitative real-time PCR...

  18. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Feng, Hui-Li; Dang, Hui-Zi; Fan, Hui; Chen, Xiao-Pei; Rao, Ying-Xue; Ren, Ying; Yang, Jin-Duo; Shi, Jing; Wang, Peng-Wen; Tian, Jin-Zhou

    2016-12-01

    Deficits in glucose, impaired insulin signalling and brain insulin resistance are common in the pathogenesis of Alzheimer's disease (AD); therefore, some scholars even called AD type 3 diabetes mellitus. Curcumin can reduce the amyloid pathology in AD. Moreover, it is a well-known fact that curcumin has anti-oxidant and anti-inflammatory properties. However, whether or not curcumin could regulate the insulin signal transduction pathway in AD remains unclear. In this study, we used APPswe/PS1dE9 double transgenic mice as the AD model to investigate the mechanisms and the effects of curcumin on AD. Immunohistochemical (IHC) staining and a western blot analysis were used to test the major proteins in the insulin signal transduction pathway. After the administration of curcumin for 6 months, the results showed that the expression of an insulin receptor (InR) and insulin receptor substrate (IRS)-1 decreased in the hippocampal CA1 area of the APPswe/PS1dE9 double transgenic mice, while the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated PI3K (p-PI3K), serine-threonine kinase (AKT) and phosphorylated AKT (p-AKT) increased. Among the curcumin groups, the medium-dose group was the most effective one. Thus, we believe that curcumin may be a potential therapeutic agent that can regulate the critical molecules in brain insulin signalling pathways. Furthermore, curcumin could be adopted as one of the AD treatments to improve a patient's learning and memory ability. © The Author(s) 2016.

  19. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  20. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term.

    Science.gov (United States)

    Yates, Dustin T; Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Macko, Antoni R; Anderson, Miranda J; Camacho, Leticia E; Limesand, Sean W

    2016-06-01

    Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance. Copyright © 2016 the American Physiological Society.

  1. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  2. Evaluation of the relationship between the pelvic floor muscles and insulin resistance

    Directory of Open Access Journals (Sweden)

    Micussi MT

    2015-08-01

    Full Text Available Maria Thereza Micussi,1 Rodrigo Pegado Freitas,1 Priscylla Helouyse Angelo,2 Elvira Maria Soares,3 Telma Maria Lemos,4 Técia Maria Maranhão51Physical Therapy Department, 2Postgraduate Program in Physical Therapy, 3Januário Cicco Maternity School, 4Clinical Analysis Department, 5Tocogynecology Department, Federal University of Rio Grande do Norte (UFRN, Natal, Rio Grande do Norte, BrazilPurpose: The aim of this study was to evaluate the pelvic floor muscles (PFMs in women with insulin resistance (IR using surface electromyography and to associate the results with insulin levels.Patients and methods: Through an analytical, cross-sectional study, 86 women were evaluated and divided into two groups: a control group (n=35 and an IR group (n=51. Data were collected through detailed history-taking, physical examination, and biochemical analysis. Fasting insulin levels were used for diagnosing IR. Electromyography of the PFMs was used for analyzing the tone and maximal voluntary contraction (MVC. The measures of central tendency and linear regression models were used.Results: The average age was 25.3±4.5 years in the IR group and 27.2±4.4 years in the control group. The mean weight was 75.6±17.6 kg and 51.8±4.9 kg in the IR and control groups, respectively. Fasting insulin levels were 19.7±6.6 µIU/mL in the IR group and 5.4±1.8 µIU/mL in the control group (P<0.010. There were significant differences between the groups with regard to PFM tone (IR: 13.4±3.4 µV; control: 25.1±3.3 µV; P<0.001 and MVC (IR: 47.6±4.5 µV; control: 64.3±5.0 µV; P<0.001. Multiple linear regression analysis using the insulin levels as dependent variable showed a significant association for MVC (P=0.047, weight (P=0.017, and waist circumference (P=0.000.Conclusion: Compared with the control group, the IR group showed lower electromyographic activity of the PFMs, and there was an association between insulin levels and electromyographic activity.Keywords: tone

  3. Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans.

    Directory of Open Access Journals (Sweden)

    David Patsouris

    Full Text Available Inflammation is now recognized as a major factor contributing to type 2 diabetes (T2D. However, while the mechanisms and consequences associated with white adipose tissue inflammation are well described, very little is known concerning the situation in skeletal muscle. The aim of this study was to investigate, in vitro and in vivo, how skeletal muscle inflammation develops and how in turn it modulates local and systemic insulin sensitivity in different mice models of T2D and in humans, focusing on the role of the chemokine MCP1. Here, we found that skeletal muscle inflammation and macrophage markers are increased and associated with insulin resistance in mice models and humans. In addition, we demonstrated that intra-muscular TNFα expression is exclusively restricted to the population of intramuscular leukocytes and that the chemokine MCP1 was associated with skeletal muscle inflammatory markers in these models. Furthermore, we demonstrated that exposure of C2C12 myotubes to palmitate elevated the production of the chemokine MCP1 and that the muscle-specific overexpression of MCP1 in transgenic mice induced the local recruitment of macrophages and altered local insulin sensitivity. Overall our study demonstrates that skeletal muscle inflammation is clearly increased in the context of T2D in each one of the models we investigated, which is likely consecutive to the lipotoxic environment generated by peripheral insulin resistance, further increasing MCP1 expression in muscle. Consequently, our results suggest that MCP1-mediated skeletal muscle macrophages recruitment plays a role in the etiology of T2D.

  4. Beta-adrenoceptor-agonist and insulin actions on glucose metabolism in rat skeletal muscle in different thyroid states.

    OpenAIRE

    Dimitriadis, G D; Richards, S J; Parry-Billings, M; Leighton, B; Newsholme, E A; Challiss, R A

    1991-01-01

    1. The actions of the beta-adrenoceptor agonist isoprenaline on glucose and glycogen metabolism, in the presence of various concentrations of insulin, were investigated in isolated soleus muscle preparations taken from eu-, hyper- and hypothyroid rats. 2. Hyperthyroidism, induced by 3,3',5-tri-iodo-D-thyronine (T3) administration for 5 days, increased the rate of lactate formation and suppressed the rate of glycogen synthesis in soleus muscle in response to isoprenaline, even in the presence ...

  5. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues.

    Science.gov (United States)

    Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Chen, Fang; Mitch, William E; Zhang, Liping

    2016-03-01

    In mice, a high-fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using small hairpin RNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their responses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or irisin. Isolated peritoneal macrophages were treated with myostatin or irisin to determine whether myostatin or irisin induce inflammatory mechanisms. In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In HFD-fed mice, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both the muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue, whereas stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by irisin. Myostatin inhibition increased peroxisome proliferator-activated receptor gamma, coactivator 1α expression and irisin production in the muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. These results uncover a metabolic pathway from an increase in myostatin that suppresses irisin leading to the activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well

  6. Muscle biopsies off-set normal cellular signaling in surrounding musculature

    DEFF Research Database (Denmark)

    Krag, Thomas O; Hauerslev, Simon; Dahlqvist, Julia R

    2013-01-01

    muscle tissue for at least 3 weeks after the biopsy was performed and magnetic resonance imaging suggests that an effect of a biopsy may persist for at least 5 months. Cellular signaling after a biopsy resembles what is seen in severe limb-girdle muscular dystrophy type 2I with respect to protein......Studies of muscle physiology and muscular disorders often require muscle biopsies to answer questions about muscle biology. In this context, we have often wondered if muscle biopsies, especially if performed repeatedly, would affect interpretation of muscle morphology and cellular signaling. We...... hypothesized that muscle morphology and cellular signaling involved in myogenesis/regeneration and protein turnover can be changed by a previous muscle biopsy in close proximity to the area under investigation. Here we report a case where a past biopsy or biopsies affect cellular signaling of the surrounding...

  7. Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A; Salehzadeh, F; Metayer-Coustard, S

    2009-01-01

    Excessive nutrients, especially amino acids, impair insulin action on glucose metabolism in skeletal muscle. We tested the hypothesis that the branched-chain amino acid leucine reduces acute insulin action in primary myotubes via a negative feedback mechanism involving ribosomal protein S6 kinase 1...... to excessive leucine. In conclusion, S6K1 plays an important role in the regulation of insulin action on glucose metabolism in skeletal muscle....

  8. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-08

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.

  9. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  10. FoxO6 Integrates Insulin Signaling With Gluconeogenesis in the Liver

    Science.gov (United States)

    Kim, Dae Hyun; Perdomo, German;