WorldWideScience

Sample records for muscle fatigue resistance

  1. CORRELATIONS BETWEEN MUSCLE MASS, MUSCLE STRENGTH, PHYSICAL PERFORMANCE, AND MUSCLE FATIGUE RESISTANCE IN COMMUNITY-DWELLING ELDERLY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Elizabeth

    2016-03-01

    Full Text Available Objective: To determine the correlations between muscle mass, muscle strength, physical performance, and muscle fatigue resistance in community-dwelling elderly people in order to elucidate factors which contribute to elderly’s performance of daily activities. Methods: A cross-sectional study was conducted on community-dwelling elderly in Bandung from September to December 2014. One hundred and thirty elderly, 60 years old or above, were evaluated using bioelectrical impedance analysis to measure muscle mass; grip strength to measure muscle strength and muscle fatigue resistance; habitual gait speed to measure physical performance; and Global Physical Activity Questionnaire (GPAQ to assess physical activity. Results: There were significant positive correlations between muscle mass (r=0,27, p=0,0019, muscle strength (r=0,26, p=0,0024, and physical performance (r=0,32, p=0,0002 with muscle fatigue resistance. Physical performance has the highest correlation based on multiple regression test (p=0,0025. In association with muscle mass, the physical activity showed a significant positive correlation (r=0,42, p=0,0000. Sarcopenia was identified in 19 (14.61% of 130 subjects. Conclusions: It is suggested that muscle mass, muscle strength, and physical performance influence muscle fatigue resistance.

  2. Blunted angiogenesis and hypertrophy are associated with increased fatigue resistance and unchanged aerobic capacity in old overloaded mouse muscle.

    Science.gov (United States)

    Ballak, Sam B; Busé-Pot, Tinelies; Harding, Peter J; Yap, Moi H; Deldicque, Louise; de Haan, Arnold; Jaspers, Richard T; Degens, Hans

    2016-04-01

    We hypothesize that the attenuated hypertrophic response in old mouse muscle is (1) partly due to a reduced capillarization and angiogenesis, which is (2) accompanied by a reduced oxidative capacity and fatigue resistance in old control and overloaded muscles, that (3) can be rescued by the antioxidant resveratrol. To investigate this, the hypertrophic response, capillarization, oxidative capacity, and fatigue resistance of m. plantaris were compared in 9- and 25-month-old non-treated and 25-month-old resveratrol-treated mice. Overload increased the local capillary-to-fiber ratio less in old (15 %) than in adult (59 %) muscle (P muscles of old mice had a higher succinate dehydrogenase (SDH) activity (P < 0.05) and a slower fiber type profile (P < 0.05), the isometric fatigue resistance was similar in 9- and 25-month-old mice. In both age groups, the fatigue resistance was increased to the same extent after overload (P < 0.01), without a significant change in SDH activity, but an increased capillary density (P < 0.05). Attenuated angiogenesis during overload may contribute to the attenuated hypertrophic response in old age. Neither was rescued by resveratrol supplementation. Changes in fatigue resistance with overload and aging were dissociated from changes in SDH activity, but paralleled those in capillarization. This suggests that capillarization plays a more important role in fatigue resistance than oxidative capacity.

  3. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  4. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    Science.gov (United States)

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  5. Effect of vibration during fatiguing resistance exercise on subsequent muscle activity during maximal voluntary isometric contractions.

    Science.gov (United States)

    McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D

    2004-11-01

    This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.

  6. Can a fatigue test of the isolated lumbar extensor muscles of untrained young men predict strength progression in a resistance exercise program?

    NARCIS (Netherlands)

    Helmhout, P.; Staal, B.; Dijk, J. van; Harts, C.; Bertina, F.; Bie, R. de

    2010-01-01

    AIM: The aim of this exploratory study was to investigate the predictive value of a fatigue test of the lumbar extensor muscles for training progression in a group of 28 healthy but predominantly sedentary male students, in an 8-week resistance exercise program. METHODS: A three-phased fatigue test

  7. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    Science.gov (United States)

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all pbands were significantly lower than those at the 1st and 5th stimuli (all pbands than for non-taut bands (both pband itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  8. [Application of near infrared spectroscopy in study of occlusal splints and resistance of masticatory muscles to fatigue pain].

    Science.gov (United States)

    Jiang, Ting; Huang, Dong-Xu

    2013-10-18

    To analyze the influence of occlusal splint on resistance capability of masticatory muscles to fatigue. In the study, 25 young male volunteers were randomly divided to 5 groups according to different splint placements: (1) no splint, (2) 1.5 mm thick soft splint, (3) 2 mm thick resin stability splint, (4) 4 mm thick resin stability splint, (5) buccolingual mock splint. Near infrared spectroscopy (NIRS) was used to measure blood oxygen content in human masticatory muscles during constant strong biting before and after the splint placement at seven time points: before, baseline after, 1 week after, and 2 weeks after splint placement, and immediately after, 1 week after, and 5 weeks after removing of splints. The strength of the biting force was maintained constantly at 30% level of the maximum biting force of each subject by biofeedback to the displayed value of an electro-myographic monitor. The time points of muscular fatigue and pain that appeared were recorded and the correlation between the subjective feeling and the NIRS measurement result was analyzed. The NIRS measurement curve had a point of inflection that had no significant difference with the time point of the muscle pain that appeared. Two weeks after placement of soft splint, the time point of the muscular fatigue and pain that appeared were 2.75 s and 8.00 s delayed respectively compared with that before placement of splint (P0.05) in the group of mock splint. The metabolic status of human masticatory muscles could be monitored in real time by using NIRS; soft splint delayed the appearing of muscle fatigue and muscle pain after two weeks of placement.

  9. Assessment of muscle fatigue using electromygraphm sensing

    Science.gov (United States)

    Helmi, Muhammad Hazimin Bin; Ping, Chew Sue; Ishak, Nur Elliza Binti; Saad, Mohd Alimi Bin Mohd; Mokhtar, Anis Shahida Niza Binti

    2017-08-01

    Muscle fatigue is condition of muscle decline in ability after undergoing any physical activity. Observation of the muscle condition of an athlete during training is crucial to prevent or minimize injury and able to achieve optimum performance in actual competition. The aim of this project is to develop a muscle monitoring system to detect muscle fatigue in swimming athlete. This device is capable to measure muscle stress level of the swimmer and at the same time provide indication of muscle fatigue level to trainer. Electromyography signal was recorded from the muscle movement while practicing the front crawl stroke repetitively. The time domain data was processed to frequency spectra in order to study the effect of muscle fatigue. The results show that the recorded EMG signal is able to sense muscle fatigue.

  10. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    Science.gov (United States)

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  11. Central and Peripheral Fatigue During Resistance Exercise – A Critical Review

    Directory of Open Access Journals (Sweden)

    Zając Adam

    2015-12-01

    Full Text Available Resistance exercise is a popular form of conditioning for numerous sport disciplines, and recently different modes of strength training are being evaluated for health benefits. Resistance exercise differs significantly in nature, and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal system of the body. Some modes of resistance training can also be effective in stimulating the cardiovascular system. These variables include exercise selection (general, specific, single or multi joint, dynamic, explosive, type of resistance (free weights, variable resistance, isokinetics, order of exercise (upper and lower body or push and pull exercises, and most of all the training load which includes intensity expressed as % of 1RM, number of repetitions, number of sets and the rest interval between sets. Manipulating these variables allows for specific adaptive changes which may include gains in muscle mass, muscle strength or muscle endurance. It has been well established that during resistance exercise fatigue occurs, regardless of the volume and intensity of work applied. The peripheral mechanisms of fatigue have been studied and explained in more detail than those related to the CNS. This review is an attempt to bring together the latest knowledge regarding fatigue, both peripheral and central, during resistance exercise. The authors of this review concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load.

  12. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, B. M. [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States); Frye, G. S.; Ahn, B.; Ferreira, L. F. [1864 Stadium Road, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610 (United States); Judge, A.R., E-mail: arjudge@phhp.ufl.edu [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States)

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  13. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    International Nuclear Information System (INIS)

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-01-01

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  14. Quantitative estimation of muscle fatigue using surface electromyography during static muscle contraction.

    Science.gov (United States)

    Soo, Yewguan; Sugi, Masao; Nishino, Masataka; Yokoi, Hiroshi; Arai, Tamio; Kato, Ryu; Nakamura, Tatsuhiro; Ota, Jun

    2009-01-01

    Muscle fatigue is commonly associated with the musculoskeletal disorder problem. Previously, various techniques were proposed to index the muscle fatigue from electromyography signal. However, quantitative measurement is still difficult to achieve. This study aimed at proposing a method to estimate the degree of muscle fatigue quantitatively. A fatigue model was first constructed using handgrip dynamometer by conducting a series of static contraction tasks. Then the degree muscle fatigue can be estimated from electromyography signal with reasonable accuracy. The error of the estimated muscle fatigue was less than 10% MVC and no significant difference was found between the estimated value and the one measured using force sensor. Although the results were promising, there were still some limitations that need to be overcome in future study.

  15. Normal paraspinal muscle electromyographic fatigue characteristics in patients with primary fibromyalgia.

    Science.gov (United States)

    Stokes, M J; Colter, C; Klestov, A; Cooper, R G

    1993-08-01

    Paraspinal muscle fatigue mechanisms were compared in 14 primary fibromyalgia patients and 14 age and sex matched normal subjects using a standardized 60-s isometric endurance test of the paraspinal muscles, during which surface integrated electromyographic (IEMG) activity was recorded. Fatigue-induced IEMG increases were similar for both groups during the initial 40 s (up to 112 +/- 20% and 111 +/- 6% of initial values in patients and normal subjects respectively). Thereafter, IEMG fell significantly in patients (P BMI, range 19-25 in controls) those with a BMI BMI > 26 (n = 9) showed greater IEMG declines after 40 s than either normal subjects or in the fibromyalgia group as a whole. Paraspinal muscle fatigue mechanisms appear normal in primary fibromyalgia patients. Isometric force maintenance in overweight patients, despite IEMG declines, illustrates the action of intrinsic fatigue resistance mechanisms which were presumably utilized to a greater extent in these patients to cope with the extra load.

  16. The role of central and peripheral muscle fatigue in postcancer fatigue: a randomized controlled trial.

    Science.gov (United States)

    Prinsen, Hetty; van Dijk, Johannes P; Zwarts, Machiel J; Leer, Jan Willem H; Bleijenberg, Gijs; van Laarhoven, Hanneke W M

    2015-02-01

    Postcancer fatigue is a frequently occurring problem, impairing quality of life. Little is known about (neuro)physiological factors determining postcancer fatigue. It may be hypothesized that postcancer fatigue is characterized by low peripheral muscle fatigue and high central muscle fatigue. The aims of this study were to examine whether central and peripheral muscle fatigue differ between fatigued and non-fatigued cancer survivors and to examine the effect of cognitive behavioral therapy (CBT) on peripheral and central muscle fatigue of fatigued cancer survivors in a randomized controlled trial. Sixteen fatigued patients in the intervention group (CBT) and eight fatigued patients in the waiting list group were successfully assessed at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 non-fatigued patients. A twitch interpolation technique and surface electromyography were applied, respectively, during sustained contraction of the biceps brachii muscle. Muscle fiber conduction velocity (MFCV) and central activation failure (CAF) were not significantly different between fatigued and non-fatigued patients. Change scores of MFCV and CAF were not significantly different between patients in the CBT and waiting list groups. Patients in the CBT group reported a significantly larger decrease in fatigue scores than patients in the waiting list group. Postcancer fatigue is neither characterized by abnormally high central muscle fatigue nor by low peripheral muscle fatigue. These findings suggest a difference in the underlying physiological mechanism of postcancer fatigue vs. other fatigue syndromes. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  17. A randomized controlled trial on the effects of combined aerobic-resistance exercise on muscle strength and fatigue, glycemic control and health-related quality of life of type 2 diabetes patients.

    Science.gov (United States)

    Tomas-Carus, Pablo; Ortega-Alonso, Alfredo; Pietilainen, Kirsi H; Santos, Vitoria; Goncalves, Helena; Ramos, Jorge; Raimundo, Armando

    2016-05-01

    The aim of this paper was to evaluate the effects of a 12-weeks combined aerobic-resistance exercise therapy on fatigue and isokinetic muscle strength, glycemic control and health-related quality of life (HRQoL) in moderately affected type 2 diabetes (T2DM) patients. A randomized controlled trial design was employed. Forty-three T2DM patients were assigned to an exercise group (N.=22), performing 3 weekly sessions of 60 minutes of combined aerobic-resistance exercise for 12-weeks; or a no exercise control group (N.=21). Both groups were evaluated at a baseline and after 12-weeks of exercise therapy for: 1) muscle strength and fatigue by isokinetic dynamometry; 2) plasma glycated hemoglobin A1C (HbA1C); and 3) HRQoL utilizing the SF-36 questionnaire. The exercise therapy led to improvements in muscle fatigue in knee extensors (-55%) and increased muscle strength in knee flexors and extensors (+15 to +30%), while HbA1C decreased (-18%). In addition, the exercising patients showed sizeable improvements in HRQoL: physical function (+53%), vitality (+21%) and mental health (+40%). Twelve-weeks of combined aerobic-resistance exercise was highly effective to improve muscle strength and fatigue, glycemic control and several aspects of HRQoL in T2DM patients. These data encourage the use of aerobic and resistance exercise in the good clinical care of T2DM.

  18. Assessment of muscle fatigue during biking.

    Science.gov (United States)

    Knaflitz, Marco; Molinari, Filippo

    2003-03-01

    The analysis of the surface myoelectric signal recorded while a muscle is performing a sustained contraction is a valuable tool for assessing the progression of localized fatigue. It is well known that the modifications of the spectral content of the myoelectric signal are mainly related to changes in the interstitial fluid pH, which, in turn, affect the membrane excitability of the active muscle fibers. This paper describes the effects of muscle fatigue on the surface myoelectric signal recorded from three thigh and leg muscles during biking, on a population consisting of 22 young healthy volunteers. The purpose of this study was to obtain normative data relative to an exercise protocol mild enough to be applicable, in the future, to pathological subjects as well. Each subject was asked to exercise 30 min on a cycloergometer at a constant velocity and against a constant torque. While subjects were biking, the surface myoelectric signal was recorded from the rectus femoris, the biceps femoris, and the gastrocnemius muscles. In this study, we considered two different aspects of muscle fatigue: first, the localized muscle fatigue as shown by the decrement of the instantaneous frequency of the myoelectric signal during the exercise; second, the modifications of the muscle ON-OFF timing, which could be explained as a strategy for increasing endurance by modifying the role of different muscles during the exercise. The first aspect was studied by obtaining the spectral characteristics of the signals by means of bilinear time-frequency transforms and by applying an original estimator of the instantaneous frequency of stochastic processes based on cross time-frequency transforms. Our results demonstrated that none of the subjects showed significant signs of localized muscle fatigue, since the decrement of the instantaneous frequency during the exercise was always lower than 5% of its initial value. Muscle ON-OFF timing was obtained by applying to the raw myoelectric signal

  19. Stabilometric response during single-leg stance after lower limb muscle fatigue

    Directory of Open Access Journals (Sweden)

    Carlos A. V. Bruniera

    2013-10-01

    Full Text Available OBJECTIVE: This study sought to analyze the effect of muscle fatigue induced by active isotonic resistance training at a moderate intensity by measuring the knee extension motion during the stabilometric response in a single-leg stance among healthy university students who perform resistance training on a regular basis. METHOD: Eleven healthy university students were subjected to a one-repetition maximum (1RM test. In addition, stabilometric assessment was performed before and after the intervention and consisted of a muscle fatiguing protocol, in which knee extension was selected as the fatiguing task. The Shapiro-Wilk test was used to investigate the normality of the data, and the Wilcoxon test was used to compare the stabilometric parameters before and after induction of muscle fatigue, at a significance level of p≤0.05. Descriptive statistics were used in the analysis of the volunteers' age, height, body mass, and body mass index (BMI. RESULTS: The sample population was 23.1±2.7 years of age, averaged 1.79.2±0.07 m in height and 75.6±8.0 Kg in weight, and had a BMI of 23.27±3.71 Kg.m-2. The volunteers performed exercises 3.36±1.12 days/week and achieved a load of 124.54±22.07 Kg on 1RM and 74.72±13.24 Kg on 60% 1RM. The center of pressure (CoP oscillation on the mediolateral plane before and after fatigue induction was 2.89±0.89 mm and 4.09±0.59 mm, respectively, while the corresponding values on the anteroposterior plane were 2.5±2.2 mm and 4.09±2.26 mm, respectively. The CoP oscillation amplitude on the anteroposterior and mediolateral planes exhibited a significant difference before and after fatigue induction (p=0.04 and p=0.05, respectively. CONCLUSIONS: The present study showed that muscle fatigue affects postural control, particularly with the mediolateral and anteroposterior CoP excursion.

  20. Muscle fatigue and metabolic responses following three different antagonist pre-load resistance exercises

    NARCIS (Netherlands)

    Carregaro, Rodrigo; Cunha, Rafael; Oliveira, Carlos Gomes; Brown, Lee E.; Bottaro, Martim

    2013-01-01

    Purpose: Preload of antagonist muscles can be achieved by reciprocal actions (RAs) or by opposing muscle actions. However, evidence concerning neuromuscular and fatigue responses are scarce. Objective: To compare the effects of different knee flexor (KF) preload methods on knee extension (KE) vastus

  1. Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD.

    Science.gov (United States)

    Rondelli, Rafaella Rezende; Dal Corso, Simone; Simões, Alexandre; Malaguti, Carla

    2009-11-01

    It has been well established that, in addition to the pulmonary involvement, COPD has systemic consequences that can lead to peripheral muscle dysfunction, with greater muscle fatigue, lower exercise tolerance and lower survival in these patients. In view of the negative repercussions of early muscle fatigue in COPD, the objective of this review was to discuss the principal findings in the literature on the metabolic and bioenergy determinants of muscle fatigue, its functional repercussions, as well as the methods for its identification and quantification. The anatomical and functional substrate of higher muscle fatigue in COPD appears to include lower levels of high-energy phosphates, lower mitochondrial density, early lactacidemia, higher serum ammonia and reduced muscle perfusion. These alterations can be revealed by contraction failure, decreased firing rates of motor units and increased recruitment of motor units in a given activity, which can be functionally detected by a reduction in muscle strength, power and endurance. This review article also shows that various types of muscle contraction regimens and protocols have been used in order to detect muscle fatigue in this population. With this understanding, rehabilitation strategies can be developed in order to improve the resistance to muscle fatigue in this population.

  2. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  3. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M

    2016-01-01

    Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training

  4. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    Full Text Available Rapid muscle fatigue during functional electrical stimulation (FES-evoked muscle contractions in individuals with spinal cord injury (SCI is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance.Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review.Following the evaluation of methodological quality (mean (SD, 50 (6 % of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28. Some investigations (n = 13 lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i optimizing electrode positioning, (ii fine-tuning of stimulation patterns and other FES parameters, (iii adjustments to the mode and frequency of exercise

  5. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M.

    2016-01-01

    Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and

  6. Muscle fatigue in fibromyalgia is in the brain, not in the muscles

    DEFF Research Database (Denmark)

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning

    2013-01-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC).......To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC)....

  7. Muscle fiber velocity and electromyographic signs of fatigue in fibromyalgia.

    Science.gov (United States)

    Klaver-Król, Ewa G; Rasker, Johannes J; Henriquez, Nizare R; Verheijen, Wilma G; Zwarts, Machiel J

    2012-11-01

    Fibromyalgia (FM) is a disorder of widespread muscular pain. We investigated possible differences in surface electromyography (sEMG) in clinically unaffected muscle between patients with FM and controls. sEMG was performed on the biceps brachii muscle of 13 women with FM and 14 matched healthy controls during prolonged dynamic exercises, unloaded, and loaded up to 20% of maximum voluntary contraction. The sEMG parameters were: muscle fiber conduction velocity (CV); skewness of motor unit potential (peak) velocities; peak frequency (PF) (number of peaks per second); and average rectified voltage (ARV). There was significantly higher CV in the FM group. Although the FM group performed the tests equally well, their electromyographic fatigue was significantly less expressed compared with controls (in CV, PF, and ARV). In the patients with FM, we clearly showed functional abnormalities of the muscle membrane, which led to high conduction velocity and resistance to fatigue in electromyography. Copyright © 2012 Wiley Periodicals, Inc.

  8. MUSCLE WEAKNESS, FATIGUE, AND TORQUE VARIABILITY: EFFECTS OF AGE AND MOBILITY STATUS

    Science.gov (United States)

    KENT-BRAUN, JANE A.; CALLAHAN, DAMIEN M.; FAY, JESSICA L.; FOULIS, STEPHEN A.; BUONACCORSI, JOHN P.

    2013-01-01

    Introduction Whereas deficits in muscle function, particularly power production, develop in old age and are risk factors for mobility impairment, a complete understanding of muscle fatigue during dynamic contractions is lacking. We tested hypotheses related to torque-producing capacity, fatigue resistance, and variability of torque production during repeated maximal contractions in healthy older, mobility-impaired older, and young women. Methods Knee extensor fatigue (decline in torque) was measured during 4 min of dynamic contractions. Torque variability was characterized using a novel 4-component logistic regression model. Results Young women produced more torque at baseline and during the protocol than older women (P torque variability differed by group (P = 0.022) and was greater in older impaired compared with young women (P = 0.010). Conclusions These results suggest that increased torque variability may combine with baseline muscle weakness to limit function, particularly in older adults with mobility impairments. PMID:23674266

  9. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Gina Rutherford

    2016-01-01

    Full Text Available Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME.

  10. Impact of Resistance Training on Skeletal Muscle Mitochondrial Biogenesis, Content, and Function

    Directory of Open Access Journals (Sweden)

    Thomas Groennebaek

    2017-09-01

    Full Text Available Skeletal muscle metabolic and contractile properties are reliant on muscle mitochondrial and myofibrillar protein turnover. The turnover of these specific protein pools is compromised during disease, aging, and inactivity. Oppositely, exercise can accentuate muscle protein turnover, thereby counteracting decay in muscle function. According to a traditional consensus, endurance exercise is required to drive mitochondrial adaptations, while resistance exercise is required to drive myofibrillar adaptations. However, concurrent practice of traditional endurance exercise and resistance exercise regimens to achieve both types of muscle adaptations is time-consuming, motivationally demanding, and contended to entail practice at intensity levels, that may not comply with clinical settings. It is therefore of principle interest to identify effective, yet feasible, exercise strategies that may positively affect both mitochondrial and myofibrillar protein turnover. Recently, reports indicate that traditional high-load resistance exercise can stimulate muscle mitochondrial biogenesis and mitochondrial respiratory function. Moreover, fatiguing low-load resistance exercise has been shown capable of promoting muscle hypertrophy and expectedly entails greater metabolic stress to potentially enhance mitochondrial adaptations. Consequently, fatiguing low-load resistance exercise regimens may possess the ability to stimulate muscle mitochondrial adaptations without compromising muscle myofibrillar accretion. However, the exact ability of resistance exercise to drive mitochondrial adaptations is debatable, not least due to some methodological challenges. The current review therefore aims to address the evidence on the effects of resistance exercise on skeletal muscle mitochondrial biogenesis, content and function. In prolongation, a perspective is taken on the specific potential of low-load resistance exercise on promoting mitochondrial adaptations.

  11. Disease-Induced Skeletal Muscle Atrophy and Fatigue

    NARCIS (Netherlands)

    Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge

    2016-01-01

    Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal

  12. Effects of physical activity and inactivity on muscle fatigue

    Directory of Open Access Journals (Sweden)

    Gregory C. Bogdanis

    2012-05-01

    Full Text Available The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fibre composition, neuromuscular characteristics high energy metabolite stores, buffering capacity, ionic regulation, capillarization and mitochondrial density. Muscle fiber type transformation during exercise training is usually towards the intermediate type IIA at the expense of both type I and type IIx myosin heavy chain isoforms. High intensity training results in increases of both glycolyic and oxidative enzymes, muscle capilarization, improved phosphocreatine resynthesis and regulation of K+, H+ and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fibre cross-sectional area, decreased oxidative capacity and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high intensity exercise training in patients with different health conditions to demonstrate the powerful effect exercise on health and well

  13. Effects of a Finger Tapping Fatiguing Task on M1-Intracortical Inhibition and Central Drive to the Muscle.

    Science.gov (United States)

    Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo

    2018-06-19

    The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.

  14. Surface electromyography based muscle fatigue analysis for stroke patients at different Brunnstrom stages.

    Science.gov (United States)

    Yinjun Tu; Zhe Zhang; Xudong Gu; Qiang Fang

    2016-08-01

    Muscle fatigue analysis has been an important topic in sport and rehabilitation medicine due to its role in muscle performance evaluation and pathology investigation. This paper proposes a surface electromyography (sEMG) based muscle fatigue analysis approach which was specifically designed for stroke rehabilitation applications. 14 stroke patients from 5 different Brunnstrom recovery stage groups were involved in the experiment and features including median frequency and mean power frequency were extracted from the collected sEMG samples for investigation. After signal decomposition, the decline of motor unit firing rate of patients from different groups had also been studied. Statistically significant presence of fatigue had been observed in deltoideus medius and extensor digitorum communis of patients at early recovery stages (P0.01). It had also been discovered that the motor unit firing frequency declines with a range positively correlated to the recovery stage during repetitive movements. Based on the experiment result, it can be verified that as the recovery stage increases, the central nervous system's control ability strengthens and the patient motion becomes more stable and resistive to fatigue.

  15. Muscle Fatigue in the Temporal and Masseter Muscles in Patients with Temporomandibular Dysfunction

    Directory of Open Access Journals (Sweden)

    Krzysztof Woźniak

    2015-01-01

    Full Text Available The aim of this study is to evaluate muscle fatigue in the temporal and masseter muscles in patients with temporomandibular dysfunction (TMD. Two hundred volunteers aged 19.3 to 27.8 years (mean 21.50, SD 0.97 participated in this study. Electromyographical (EMG recordings were performed using a DAB-Bluetooth Instrument (Zebris Medical GmbH, Germany. Muscle fatigue was evaluated on the basis of a maximum effort test. The test was performed during a 10-second maximum isometric contraction (MVC of the jaws. An analysis of changes in the mean power frequency of the two pairs of temporal and masseter muscles (MPF% revealed significant differences in the groups of patients with varying degrees of temporomandibular disorders according to Di (P<0.0000. The study showed an increase in the muscle fatigue of the temporal and masseter muscles correlated with the intensity of temporomandibular dysfunction symptoms in patients. The use of surface electromyography in assessing muscle fatigue is an excellent diagnostic tool for identifying patients with temporomandibular dysfunction.

  16. Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

    Science.gov (United States)

    Nougarou, François

    2016-01-01

    Aim The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue. Methods Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep. Results Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08). Conclusion Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution. PMID:26866911

  17. An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue

    Science.gov (United States)

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG) of an athlete during isometric contractions. Various signal analysis methods are used illustrating their applicability in real-time settings. This demonstrated system can be used in sports scenarios to promote muscle growth/performance or prevent injury. To date, research on localised muscle fatigue focuses on the clinical side and lacks the implementation for detecting/predicting localised muscle fatigue using an autonomous system. Results show that automating the process of localised muscle fatigue detection/prediction is promising. The autonomous fatigue system was tested on five individuals showing 90.37% accuracy on average of correct classification and an error of 4.35% in predicting the time to when fatigue will onset. PMID:22319367

  18. An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Martin Colley

    2011-01-01

    Full Text Available Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG of an athlete during isometric contractions. Various signal analysis methods are used illustrating their applicability in real-time settings. This demonstrated system can be used in sports scenarios to promote muscle growth/performance or prevent injury. To date, research on localised muscle fatigue focuses on the clinical side and lacks the implementation for detecting/predicting localised muscle fatigue using an autonomous system. Results show that automating the process of localised muscle fatigue detection/prediction is promising. The autonomous fatigue system was tested on five individuals showing 90.37% accuracy on average of correct classification and an error of 4.35% in predicting the time to when fatigue will onset.

  19. Shoulder External Rotation Fatigue and Scapular Muscle Activation and Kinematics in Overhead Athletes

    Science.gov (United States)

    Joshi, Mithun; Thigpen, Charles A.; Bunn, Kevin; Karas, Spero G.; Padua, Darin A.

    2011-01-01

    Context: Glenohumeral external rotation (GH ER) muscle fatigue might contribute to shoulder injuries in overhead athletes. Few researchers have examined the effect of such fatigue on scapular kinematics and muscle activation during a functional movement pattern. Objective: To examine the effects of GH ER muscle fatigue on upper trapezius, lower trapezius, serratus anterior, and infraspinatus muscle activation and to examine scapular kinematics during a diagonal movement task in overhead athletes. Setting: Human performance research laboratory. Design: Descriptive laboratory study. Patients or Other Participants: Our study included 25 overhead athletes (15 men, 10 women; age = 20 ± 2 years, height = 180 ± 11 cm, mass = 80 ± 11 kg) without a history of shoulder pain on the dominant side. Interventions: We tested the healthy, dominant shoulder through a diagonal movement task before and after a fatiguing exercise involving low-resistance, high-repetition, prone GH ER from 0° to 75° with the shoulder in 90° of abduction. Main Outcome Measure(s): Surface electromyography was used to measure muscle activity for the upper trapezius, lower trapezius, serratus anterior, and infraspinatus. An electromyographic motion analysis system was used to assess 3-dimensional scapular kinematics. Repeated-measures analyses of variance (phase × condition) were used to test for differences. Results: We found a decrease in ascending-phase and descending-phase lower trapezius activity (F1,25 = 5.098, P = .03) and an increase in descending-phase infraspinatus activity (F1,25 = 5.534, P = .03) after the fatigue protocol. We also found an increase in scapular upward rotation (F1,24 = 3.7, P = .04) postfatigue. Conclusions: The GH ER muscle fatigue protocol used in this study caused decreased lower trapezius and increased infraspinatus activation concurrent with increased scapular upward rotation range of motion during the functional task. This highlights the interdependence of scapular

  20. Fatigue effects on tracking performance and muscle activity

    NARCIS (Netherlands)

    Huysmans, M.A.; Hoozemans, M.J.M.; van der Beek, A.J.; de Looze, M.P.; van Dieen, J.H.

    2008-01-01

    It has been suggested that fatigue affects proprioception and consequently movement accuracy, the effects of which may be counteracted by increased muscle activity. To determine the effects of fatigue on tracking performance and muscle activity in the M. extensor carpi radialis (ECR), 11 female

  1. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    Science.gov (United States)

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  2. Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Lardon, Arnaud; Dugas, Claude; Descarreaux, Martin

    2016-01-01

    Introduction: When the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g., attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG) may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. Aim: To characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG. Methods: Twenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess: (1) the adaptation effect across trials; (2) the fatigue effect; and (3) the interaction effect (fatigue × adaptation) for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity). Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. Results: An attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle

  3. Influence of lumbar muscle fatigue on trunk adaptations during sudden external perturbations

    Directory of Open Access Journals (Sweden)

    Jacques Abboud

    2016-11-01

    Full Text Available IntroductionWhen the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g. attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. AimTo characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG.MethodsTwenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess 1 the adaptation effect across trials, 2 the fatigue effect, and 3 the interaction effect (fatigue x adaptation for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity. Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. ResultsAn attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle

  4. Degree of muscle fatigue in children with chronic juvenile arthritis

    Directory of Open Access Journals (Sweden)

    Sekulić Aleksandra

    2011-01-01

    Full Text Available The aim of our work was to identify gradient of the muscle fatigue of some muscle groups, among children with chronic juvenile arthritis, which are restricted in function by existing limitation in range of motions. Four patients in age of 9,5, with mentioned diagnosis were examined. Healthy subjects, with same ages were control group. Manuel muscle test, range of motion test and EMG examination were performed. Results shown significance difference in degree of muscle fatigue among observed patients, which explain decrease of muscle efficiency and must be taken when intensity of kinesitherapic treatment has to be done. It is concluded that structural changes on locomotory system induce secondary hypertrophy or atrophy of the muscle system and increase of muscle fatigue when activity of certain muscles is performed.

  5. Coexistence of potentiation and fatigue in skeletal muscle

    Directory of Open Access Journals (Sweden)

    D.E. Rassier

    2000-05-01

    Full Text Available Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.

  6. Electromyogram and perceived fatigue changes in the trapezius muscle during typewriting and recovery.

    Science.gov (United States)

    Kimura, Mitsutoshi; Sato, Hirotaka; Ochi, Mamoru; Hosoya, Satoshi; Sadoyama, Tsugutake

    2007-05-01

    The purpose of the present study was to investigate the development and recovery of muscle fatigue in the upper trapezius muscle by analyzing electromyographic signals. Six male subjects performed a simulated typewriting task for four 25-min sessions. During fatigue and the following rest periods, subjective fatigue and surface electromyography (EMG) from the trapezius muscle during isometric contraction at 30% maximum voluntary contraction (MVC) were periodically measured in the interval. We detected a significant decrease in muscle fiber conduction velocity (MFCV) (P = 0.008) and median frequency (MDF) (P = 0.026) as well as an increase in root mean square (RMS) (P = 0.039) and subjective fatigue (P = 0.0004) during the fatigue period. During the recovery period, subjective fatigue decreased drastically and significantly (P = 0.0004), however, the EMG parameters did not recover completely. Thus, physiological muscle fatigue in the trapezius developed in accordance with subjective muscle fatigue during typewriting. On the other hand, differences between the physiological and subjective parameters were found during recovery. Further studies should be necessary to reveal the discrepancy could be a major factor of a transition from temporal phenomena to serious chronic muscle fatigue and to identify the necessity of some guidelines to prevent VDT work-related chronic muscle fatigue in the trapezius.

  7. Upper-limb exoskeleton for human muscle fatigue

    OpenAIRE

    Ali, SK; Tokhi, MO

    2017-01-01

    Human muscle fatigue is identified as one of the causes to musculuskeletal disorder (MSD). The objective of this paper is to investigate the effect of an exoskeleton in dealing with muscle fatigue in a virtual environment. The focus of this work is, for the exoskeleton to provide support as needed by human joint. A (Proportional, Integration and Derivative) controller is used for both human and exoskeleton. Simmechanics and Simulink are used to evaluate the performance of the exoskeleton. Exp...

  8. Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals.

    Science.gov (United States)

    Karthick, P A; Venugopal, G; Ramakrishnan, S

    2016-01-01

    Analysis of neuromuscular fatigue finds various applications ranging from clinical studies to biomechanics. Surface electromyography (sEMG) signals are widely used for these studies due to its non-invasiveness. During cyclic dynamic contractions, these signals are nonstationary and cyclostationary. In recent years, several nonstationary methods have been employed for the muscle fatigue analysis. However, cyclostationary based approach is not well established for the assessment of muscle fatigue. In this work, cyclostationarity associated with the biceps brachii muscle fatigue progression is analyzed using sEMG signals and Spectral Correlation Density (SCD) functions. Signals are recorded from fifty healthy adult volunteers during dynamic contractions under a prescribed protocol. These signals are preprocessed and are divided into three segments, namely, non-fatigue, first muscle discomfort and fatigue zones. Then SCD is estimated using fast Fourier transform accumulation method. Further, Cyclic Frequency Spectral Density (CFSD) is calculated from the SCD spectrum. Two features, namely, cyclic frequency spectral area (CFSA) and cyclic frequency spectral entropy (CFSE) are proposed to study the progression of muscle fatigue. Additionally, degree of cyclostationarity (DCS) is computed to quantify the amount of cyclostationarity present in the signals. Results show that there is a progressive increase in cyclostationary during the progression of muscle fatigue. CFSA shows an increasing trend in muscle fatiguing contraction. However, CFSE shows a decreasing trend. It is observed that when the muscle progresses from non-fatigue to fatigue condition, the mean DCS of fifty subjects increases from 0.016 to 0.99. All the extracted features found to be distinct and statistically significant in the three zones of muscle contraction (p < 0.05). It appears that these SCD features could be useful in the automated analysis of sEMG signals for different neuromuscular conditions.

  9. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.

    Science.gov (United States)

    Han, Hyonyoung; Jo, Sungho; Kim, Jung

    2015-07-01

    This paper proposes the feasibility of a stiffness measurement for muscle contraction force estimation under muscle fatigue conditions. Bioelectric signals have been widely studied for the estimation of the contraction force for physical human-robot interactions, but the correlation between the biosignal and actual motion is decreased under fatigue conditions. Muscle stiffness could be a useful contraction force estimator under fatigue conditions because it measures the same physical quantity as the muscle contraction that generates the force. Electromyography (EMG), mechanomyography (MMG), and a piezoelectric resonance-based active muscle stiffness sensor were used to analyze the biceps brachii under isometric muscle fatigue conditions with reference force sensors at the end of the joint. Compared to EMG and MMG, the change in the stiffness signal was smaller (p fatigue condition changed fatigue conditions. This result indicates that the muscle stiffness signal is less sensitive to muscle fatigue than other biosignals. This investigation provides insights into methods of monitoring and compensating for muscle fatigue.

  10. Isometric muscle fatigue of the paravertebral and upper extremity muscles after whiplash injury.

    Science.gov (United States)

    Rastovic, Pejana; Gojanovic, Marija Definis; Berberovic, Marina; Pavlovic, Marko; Lesko, Josip; Galic, Gordan; Pandza, Maja

    2017-01-01

    Whiplash-associated disorders (WAD) result from injury of neck structures that most often occur during traffic accidents as a result of rapid acceleration-deceleration. The dominant symptoms manifest in the musculoskeletal system and include increased fatigue. Because of the frequency of whiplash injuries, a simple, cheap and useful diagnostic tool is needed to differentiate whiplash injury from healthy patients or those faking symptoms. To determine muscle fatigue in patients with whiplash injury in six body positions. Analytical cross-sectional study. Emergency center, university hospital. We studied patients with whiplash injury from vehicular traffic accidents who presented to the emergency center within 6 hours of sustaining the injury. We determined whiplash injury grade according to the Quebec Task Force (QTF) classification and measured isometric muscle endurance in six different body positions. Control subjects for each patient were matched by age, gender and anthropomorphic characteristics. Cut-off values were determined to distinguish patients with whiplash injury from controls and for determination of injury grade . QTF grade, time to muscle fatigue in seconds. From September 2013 to September 2016, we enrolled 75 patients with whiplash injury and 75 matching control subjects. In all six positions, the patients with whiplash injury felt muscle fatigue faster than equivalent controls (P whiplash injury grade in all six positions (P whiplash injury and grade. The size of the sample was small. An objective parameter such as electromyography is needed to confirm isometric muscle fatigue.

  11. Use of muscle synergies and wavelet transforms to identify fatigue during squatting.

    Science.gov (United States)

    Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L

    2016-06-01

    The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination during weightlifting.

    Science.gov (United States)

    Hu, Boyi; Ning, Xiaopeng

    2015-01-01

    Lumbar muscle fatigue is a potential risk factor for the development of low back pain. In this study, we investigated the influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination patterns during weightlifting. Each of the 15 male subjects performed five repetitions of weightlifting tasks both before and after a lumbar extensor muscle fatiguing protocol. Lumbar muscle electromyography was collected to assess fatigue. Trunk kinematics was recorded to calculate lumbar-pelvic continuous relative phase (CRP) and CRP variability. Results showed that fatigue significantly reduced the average lumbar-pelvic CRP value (from 0.33 to 0.29 rad) during weightlifting. The average CRP variability reduced from 0.17 to 0.15 rad, yet this change ws statistically not significant. Further analyses also discovered elevated spinal loading during weightlifting after the development of lumbar extensor muscle fatigue. Our results suggest that frequently experienced lumbar extensor muscle fatigue should be avoided in an occupational environment. Lumbar extensor muscle fatigue generates more in-phase lumbar-pelvic coordination patterns and elevated spinal loading during lifting. Such increase in spinal loading may indicate higher risk of back injury. Our results suggest that frequently experienced lumbar muscle fatigue should be avoided to reduce the risk of LBP.

  13. Assessment of Muscle Fatigue Associated with Prolonged Standing in the Workplace

    Science.gov (United States)

    Omar, Abdul Rahman; Saman, Alias Mohd; Othman, Ibrahim

    2012-01-01

    Objectives The objectives of this study were to determine the psychological fatigue and analyze muscle activity of production workers who are performing processes jobs while standing for prolonged time periods. Methods The psychological fatigue experienced by the workers was obtained through questionnaire surveys. Meanwhile, muscle activity has been analyzed using surface electromyography (sEMG) measurement. Lower extremities muscles include: erector spinae, tibialis anterior, and gastrocnemius were concurrently measured for more than five hours of standing. Twenty male production workers in a metal stamping company participated as subjects in this study. The subjects were required to undergo questionnaire surveys and sEMG measurement. Results Results of the questionnaire surveys found that all subjects experienced psychological fatigue due to prolonged standing jobs. Similarly, muscle fatigue has been identified through sEMG measurement. Based on the non-parametric statistical test using the Spearman's rank order correlation, the left erector spinae obtained a moderate positive correlation and statistically significant (rs = 0.552, p fatigue and to muscle fatigue among the production workers. PMID:22953228

  14. Muscle injections with lidocaine improve resting fatigue and pain in patients with chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Staud R

    2017-06-01

    Full Text Available Roland Staud,1 Taylor Kizer,1 Michael E Robinson2 1Department of Medicine, College of Medicine, 2Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA Objective: Patients with chronic fatigue syndrome (CFS complain of long-lasting fatigue and pain which are not relieved by rest and worsened by physical exertion. Previous research has implicated metaboreceptors of muscles to play an important role for chronic fatigue and pain. Therefore, we hypothesized that blocking impulse input from deep tissues with intramuscular lidocaine injections would improve not only the pain but also fatigue of CFS patients. Methods: In a double-blind, placebo-controlled study, 58 CFS patients received 20 mL of 1% lidocaine (200 mg or normal saline once into both trapezius and gluteal muscles. Study outcomes included clinical fatigue and pain, depression, and anxiety. In addition, mechanical and heat hyperalgesia were assessed and serum levels of lidocaine were obtained after the injections. Results: Fatigue ratings of CFS patients decreased significantly more after lidocaine compared to saline injections (p = 0.03. In contrast, muscle injections reduced pain, depression, and anxiety (p < 0.001, but these changes were not statistically different between lidocaine and saline (p > 0.05. Lidocaine injections increased mechanical pain thresholds of CFS patients (p = 0.04 but did not affect their heat hyperalgesia. Importantly, mood changes or lidocaine serum levels did not significantly predict fatigue reductions. Conclusion: These results demonstrate that lidocaine injections reduce clinical fatigue of CFS patients significantly more than placebo, suggesting an important role of peripheral tissues for chronic fatigue. Future investigations will be necessary to evaluate the clinical benefits of such interventions. Keywords: muscle injections, lidocaine, metaboreceptor, chronic fatigue 

  15. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    National Research Council Canada - National Science Library

    Harrison, Richard; Chaiken, Scott; Harville, Donald; Fischer, Joseph; Fisher, Dion; Whitmore, Jeff

    2008-01-01

    The present study was designed to target two specific areas regarding fatigue. The primary purpose was to begin investigations into possible genetic markers linked to fatigue resistance and fatigue susceptibility...

  16. Effect of ascorbic acid on fatigue of skeletal muscle fibres in long term cold exposed sprague dawley rats

    International Nuclear Information System (INIS)

    Rashid, A.; Ayub, M.

    2011-01-01

    On exposure to prolonged cold temperature, the body responds for effective heat production both by shivering and non-shivering thermo genesis. Cold exposure increases the production of reactive oxygen species which influence the sarcoplasmic reticulum Ca/sup ++/ release from the skeletal muscles and affect their contractile properties. The role of ascorbic acid supplementation on force of contraction during fatigue of cold exposed skeletal muscles was evaluated in this study. Method: Ninety healthy, male Sprague Dawley rats were randomly divided into three groups of control, cold exposed, and cold exposed with ascorbic acid 500 mg/L supplementation mixed in drinking water. Group II and III were given cold exposure by keeping their cages in ice-filled tubs for 1 hr/day for one month. After one month, the extensor digitorum longus muscle was dissected out and force of contraction during fatigue in the skeletal muscle fibres was analysed on a computerised data acquisition system. Results: The cold exposed group showed a significant delay in the force of contraction during fatigue of skeletal muscle fibres compared to control group. Group III showed easy fatigability and a better force of contraction than the cold exposed group. Conclusions: Ascorbic acid increases the force of contraction and decreases resistance to fatigue in the muscles exposed to chronic cold. (author)

  17. Strength training improves fatigue resistance and self-rated health in workers with chronic pain

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus Due; Brandt, Mikkel

    2016-01-01

    of a randomized controlled trial investigates the effect of strength training on muscular fatigue resistance and self-rated health among workers with chronic pain. Sixty-six slaughterhouse workers with chronic upper limb pain and work disability were randomly allocated to 10 weeks of strength training or usual...... (Spearman's rho = -0.40; P = 0.01). In conclusion, specific strength training improves muscular fatigue resistance and self-rated health and reduces pain of the hand/wrist in manual workers with chronic upper limb pain. This trial is registered with ClinicalTrials.gov NCT01671267.......-rated health and pain. Time to fatigue, muscle strength, hand/wrist pain, and self-rated health improved significantly more following strength training than usual care (all P

  18. Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings.

    Science.gov (United States)

    Gerwyn, Morris; Maes, Michael

    2017-01-01

    Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.

  19. The Comparison between Spectral and Entropic Measures Following Fatigue in Erector Spinae Muscles

    Directory of Open Access Journals (Sweden)

    Saeed Talebian

    2016-03-01

    Full Text Available Background: Surface electromyography (sEMG of muscles is a non-invasive tool that can be helpful in the assessment of muscle function and some motor control evaluations. A loss of force, known as muscle fatigue is accompanied by changes in muscle electrical activity. One of the most commonly used surface EMG parameters which reflects paraspinal muscle fatigue during different tasks and positions is median frequency. Although it is widely known that the electromyography power spectrum shifts to lower frequencies during fatiguing contraction, an opinion exists that the validity of spectral shifts in assessment of fatigue is questionable. Some researchers have examined whether other quantities derived from sEMG signals are better indicators for muscle fatigue. Following cyclic flexion/extension and consequence fatigue, variation in sEMG signals may be complex for study. The aim of this study was to determine which of the median frequency (MF or entropic (ENTR is more sensitive for measuring muscular fatigue in erector spinae muscles during cyclic flexion/extension. Methods: Surface electromyography of erector spine muscles was recorded in 25 healthy subjects during cyclic dynamic contractions. The experimental session consisted of two parts: measurement of Maximal Voluntary Contraction (MVC, and performing the fatigue test. All subjects performed rhythmic flexion/extension with 50% MVC loading against B-200 Isostation, about 4-6 minutes. The MF and ENTR of the muscle activities were computed to assess muscular fatigue. Results: Paired sample t-tests showed that MF and ENTR changes after fatigue test were significant (P<0.001. Percentage changes of both MF and ENTR were reduced, this reduction for ENTR was more than 40% (P<0.001. Conclusion: It seems that the changes of ENTR in muscle activities have the ability to measure muscular fatigue and is more sensitive in comparison to MF.

  20. Fatigue is associated with muscle weakness in Ehlers-Danlos syndrome: an explorative study.

    Science.gov (United States)

    Voermans, N C; Knoop, H; Bleijenberg, G; van Engelen, B G

    2011-06-01

    Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of inherited connective tissue disorders characterised by joint hypermobility, skin hyperextensibility and tissue fragility. It has recently been shown that muscle weakness occurs frequently in EDS, and that fatigue is a common and clinically important symptom. The aim of this study was to investigate the relationship between fatigue severity and subjective and objective measures of muscle weakness. Furthermore, the predictive value of muscle weakness for fatigue severity was determined, together with that of pain and physical activity. An explorative, cross-sectional, observational study. Thirty EDS patients, recruited from the Dutch patient association, were investigated at the neuromuscular outpatient department of a tertiary referral centre in The Netherlands. Muscle strength measured with manual muscle strength testing and hand-held dynamometry. Self-reported muscle weakness, pain, physical activity levels and fatigue were assessed with standardised questionnaires. Fatigue severity in EDS was significantly correlated with measured and self-reported muscle weakness (r=-0.408 for manual muscle strength, r=0.461 for hand-held dynamometry and r=0.603 for self-reported muscle weakness). Both muscle weakness and pain severity were significant predictors of fatigue severity in a multiple regression analysis. The results suggest a positive and direct relationship between fatigue severity and muscle weakness in EDS. Future research should focus on the relationship between fatigue, muscle weakness and objectively measured physical activity, preferably in a larger cohort of EDS patients. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  1. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  2. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    Science.gov (United States)

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  3. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  4. Fibromyalgia is Associated With Altered Skeletal Muscle Characteristics Which May Contribute to Post-Exertional Fatigue in Post-Menopausal Women

    Science.gov (United States)

    Srikuea, Ratchakrit; Symons, T. Brock; Long, Douglas E.; Lee, Jonah D.; Shang, Yu; Chomentowski, Peter J.; Yu, Guoqiang; Crofford, Leslie J.; Peterson, Charlotte A.

    2012-01-01

    Objective To identify muscle physiological properties that may contribute to post-exertional fatigue and malaise in women with fibromyalgia (FM). Methods Healthy postmenopausal women with (n=11) and without (n=11) fibromyalgia, age 51–70 years, participated in this study. Physical characteristics along with self-reported questionnaires were evaluated. Strength loss and tissue oxygenation in response to a fatiguing exercise protocol were used to quantify fatigability and the local muscle hemodynamic profile. Muscle biopsies were obtained to assess between-group differences in baseline muscle properties using histochemical, immunohistochemical and electron microscopic analyses. Results No significant difference in muscle fatigue in response to exercise was apparent between healthy controls and subjects with FM. However, self-reported fatigue and pain were correlated to prolonged loss of strength following 12-min of recovery in subjects with FM. Although there was no difference in percent SDH positive (type I) and SDH negative (type II) fibers or in mean fiber cross-sectional area between groups, subjects with FM showed greater size variability and altered fiber size distribution. Only in healthy controls, fatigue-resistance was strongly correlated with the size of SDH positive fibers and hemoglobin oxygenation. By contrast, subjects with FM with the highest percentage of SDH positive fibers recovered strength most effectively, which was correlated to capillary density. However, overall, capillary density was lower in subjects with FM. Conclusion Peripheral mechanisms i.e. altered muscle fiber size distribution and decreased capillary density may contribute to post-exertional fatigue in subjects with FM. Understanding these defects in fibromyalgic muscle may provide valuable insight for treatment. PMID:23124535

  5. The positions effect of biarticular muscles on the walking fatigue of bipedal robots

    Directory of Open Access Journals (Sweden)

    Brahim FERNINI

    2016-12-01

    Full Text Available The objective of this paper is to model a bipedal robot with springs like biarticular muscles and to study the positions effect of biarticular muscles on the walking fatigue of bipedal robots through the analysis of the works of the ground reaction force (GRF accumulated at joints and the analysis of the works done by biarticular muscles. We can define the walking fatigue in this paper by the fatigue of joints and muscles caused by the increment of the works accumulated at joints and the increment of the works done by biarticular muscles during the walk period of bipedal robots. It’s found from this study that the position of the muscle biceps femoris (BF has a strong impact on the fatigue of leg joints and the fatigue of the muscle itself during the walk period of bipedal robots.

  6. The Effect of Fatigued External Rotator Muscles of the Shoulder on the Shoulder Position Sense

    Directory of Open Access Journals (Sweden)

    Naoya Iida

    2011-10-01

    Full Text Available This study aimed to investigate the effect of fatigue in shoulder external rotator muscles on position sense of shoulder abduction, internal rotation, and external rotation. The study included 10 healthy subjects. Shoulder position sense was measured before and after a fatigue task involving shoulder external rotator muscles. The fatigue task was performed using an isokinetic machine. To confirm the muscle fatigue, electromyography (EMG was recorded, and an integrated EMG and median power frequency (MDF during 3 sec performed target torque were calculated. After the fatigue task, the MDF of the infraspinatus muscle significantly decreased. This indicates that the infraspinatus muscle was involved in the fatigue task. In addition, the shoulder position sense of internal and external rotation significantly decreased after the fatigue task. These results suggest that the fatigue reduced the accuracy of sensory input from muscle spindles. However, no significant difference was observed in shoulder position sense of abduction before and after the fatigue task. This may be due to the fact that infraspinatus muscle did not act as prime movers in shoulder abduction. These results suggest that muscle fatigue decreased position sense during movements in which the affected muscles acted as prime movers.

  7. Muscle-Cooling Intervention to Reduce Fatigue and Fatigue-Induced Tremor in Novice and Experienced Surgeons: A Preliminary Investigation

    OpenAIRE

    Jensen, Lauren; Dancisak, Michael; Korndorffer, James

    2016-01-01

    A localized, intermittent muscle-cooling protocol was implemented to determine cooling garment efficacy in reducing upper extremity muscular fatigue and tremor in novice ( n  = 10) and experienced surgeons ( n  = 9). Subjects wore a muscle-cooling garment while performing multiple trials of a forearm exercise and paired suturing task to induce muscular fatigue and exercise-induced tremor. A reduction in tremor amplitude and an extension in time to fatigue were expected with muscle...

  8. Muscle-Cooling Intervention to Reduce Fatigue and Fatigue-Induced Tremor in Novice and Experienced Surgeons: A Preliminary Investigation.

    Science.gov (United States)

    Jensen, Lauren; Dancisak, Michael; Korndorffer, James

    2016-10-01

    A localized, intermittent muscle-cooling protocol was implemented to determine cooling garment efficacy in reducing upper extremity muscular fatigue and tremor in novice ( n  = 10) and experienced surgeons ( n  = 9). Subjects wore a muscle-cooling garment while performing multiple trials of a forearm exercise and paired suturing task to induce muscular fatigue and exercise-induced tremor. A reduction in tremor amplitude and an extension in time to fatigue were expected with muscle cooling as compared with control trials. Each subject completed an intervention session (5°C cooling condition) and a control session (32°C or thermal neutral condition). A paired samples t test indicated that tremor amplitude was significantly reduced ( t [8] = 1.89458; p  effect was not significant. Time to fatigue and suture time improved in both cohorts with muscle cooling, but the effect did not reach significance. Results from the pilot work suggest muscle cooling as an intervention for reduction of fatigue and tremor is very promising, warranting further investigation. Surgical specialties that require prolonged procedures might benefit more from this intervention.

  9. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2011-03-01

    Full Text Available Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.

  10. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Science.gov (United States)

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  11. Effects of Kinesio taping on scapular kinematics of overhead athletes following muscle fatigue.

    Science.gov (United States)

    Zanca, Gisele Garcia; Grüninger, Bruno; Mattiello, Stela Márcia

    2016-08-01

    Scapular kinematics alterations have been found following muscle fatigue. Considering the importance of the lower trapezius in coordinated scapular movement, this study aimed to investigate the effects of elastic taping (Kinesio taping, KT) for muscle facilitation on scapular kinematics of healthy overhead athletes following muscle fatigue. Twenty-eight athletes were evaluated in a crossover, single-blind, randomized design, in three sessions: control (no taping), KT (KT with tension) and sham (KT without tension). Scapular tridimensional kinematics and EMG of clavicular and acromial portions of upper trapezius, lower trapezius and serratus anterior were evaluated during arm elevation and lowering, before and after a fatigue protocol involving repetitive throwing. Median power frequency decline of serratus anterior was significantly lower in KT session compared to sham, possibly indicating lower muscle fatigue. However, the effects of muscle fatigue on scapular kinematics were not altered by taping conditions. Although significant changes were found in scapular kinematics following muscle fatigue, they were small and not considered relevant. It was concluded that healthy overhead athletes seem to present an adaptive mechanism that avoids the disruption of scapular movement pattern following muscle fatigue. Therefore, these athletes do not benefit from the use of KT to assist scapular movement under the conditions tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mechanomyogram for identifying muscle activity and fatigue.

    Science.gov (United States)

    Yang, Zhao Feng; Kumar, Dinesh Kant; Arjunan, Sridhar Poosapadi

    2009-01-01

    Mechanomyogram is the recording of the acoustic activity associated with the muscle contraction. While discovered nearly a decade ago with the intention of providing an alternate to the surface electromyogram, it has not yet been investigated thoroughly and there are no current applications associated with MMG. This paper reports an experimental study of MMG against force of contraction and muscle fatigue during cyclic contraction. The results indicate that there is a relationship between the intensity of the MMG recording and force of contraction. A change in the intensity of MMG is also observed with the onset of muscle fatigue. However, the inter-subject variation is very large. The results also indicate that the spectrum of the MMG is very inconsistent and not a useful feature of the signal.

  13. A Muscle Fibre Conduction Velocity Tracking ASIC for Local Fatigue Monitoring.

    Science.gov (United States)

    Koutsos, Ermis; Cretu, Vlad; Georgiou, Pantelis

    2016-12-01

    Electromyography analysis can provide information about a muscle's fatigue state by estimating Muscle Fibre Conduction Velocity (MFCV), a measure of the travelling speed of Motor Unit Action Potentials (MUAPs) in muscle tissue. MFCV better represents the physical manifestations of muscle fatigue, compared to the progressive compression of the myoelectic Power Spectral Density, hence it is more suitable for a muscle fatigue tracking system. This paper presents a novel algorithm for the estimation of MFCV using single threshold bit-stream conversion and a dedicated application-specified integrated circuit (ASIC) for its implementation, suitable for a compact, wearable and easy to use muscle fatigue monitor. The presented ASIC is implemented in a commercially available AMS 0.35 [Formula: see text] CMOS technology and utilizes a bit-stream cross-correlator that estimates the conduction velocity of the myoelectric signal in real time. A test group of 20 subjects was used to evaluate the performance of the developed ASIC, achieving good accuracy with an error of only 3.2% compared to Matlab.

  14. Influence of Skeletal Muscle Carnosine Content on Fatigue during Repeated Resistance Exercise in Recreationally Active Women

    Science.gov (United States)

    Varanoske, Alyssa N.; Hoffman, Jay R.; Church, David D.; Baker, Kayla M.; Dodd, Sarah J.; Coker, Nicholas A.; Oliveira, Leonardo P.; Dawson, Virgil L.; Stout, Jeffrey R.

    2017-01-01

    Carnosine is a naturally occurring intramuscular dipeptide that is thought to attenuate fatigue during high-intensity exercise. Carnosine content is influenced by various factors, including gender and diet. Despite research reporting that carnosine content is lower in women compared to men and lower in vegetarians compared to omnivores, no investigations have examined carnosine content in women based on dietary protein intake and its effect on muscle fatigue. Twenty recreationally active women were assigned to either a high (HI; n = 5), moderate (MOD; n = 10), or low (LO; n = 5) group based upon intramuscular carnosine content of the vastus lateralis. Each participant underwent two unilateral maximal voluntary isometric contractions (MVIC) of the knee extensors separated by an isokinetic exercise protocol consisting of five sets of 50 repeated maximal unilateral contractions. Magnitude-based inferences were used to analyze group differences. Percent decline in rate of force development and peak torque (PT) during the MVICs and changes in PT and mean torque during the muscle-fatiguing protocol were lower in HI compared to both MOD and LO. Additionally, absolute and relative dietary protein intake were greater in HI compared to MOD or LO. Results indicated that greater intramuscular carnosine content was reflective of greater dietary protein intake and that individuals with higher carnosine content displayed a greater attenuation of fatigue compared to those with lower carnosine. PMID:28880219

  15. Are fatigue-related EMG-parameters correlated to trunk extensor muscles fatigue induced by the Sörensen test?

    OpenAIRE

    Demoulin Christophe; George, Florian; Matheve, Thomas; Jidovtseff, Boris; Vanderthommen, Marc

    2016-01-01

    The Sorensen test has been extensively studied and is a rapid, simple, and reproducible evaluation of the trunk extensor muscles [1]. It is often considered as a fatigue test because fatigue-related electromyographic (EMG) parameters change throughout the test [2]; however, only recently it has been confirmed that this test induces a decrease of trunk extensor force during a maximal voluntary contraction (MVC) [3], which best characterises muscle fatigue. The main aim of this stud...

  16. Myoelectric manifestations of jaw elevator muscle fatigue and recovery in healthy and TMD subjects.

    Science.gov (United States)

    Castroflorio, T; Falla, D; Tartaglia, G M; Sforza, C; Deregibus, A

    2012-09-01

    The effects of muscle pain and fatigue on the control of jaw elevator muscles are not well known. Furthermore, the myoelectric manifestations of fatigue and recovery from fatigue in the masticatory muscles are not reported in literature. The main aims of this study were (i) to evaluate the possible use of surface electromyography (sEMG) as an objective measure of fatigue of the jaw elevator muscles, (ii) to compare the myoelectric manifestations of fatigue in the temporalis anterior and masseter muscles bilaterally, (iii) to assess recovery of the investigated muscles after an endurance test and (iv) to compare fatigue and recovery of the jaw elevator muscles in healthy subjects and patients with muscle-related temporomandibular disorders (TMD). The study was performed on twenty healthy volunteers and eighteen patients with muscle-related TMD. An intra-oral compressive-force sensor was used to measure the voluntary contraction forces close to the intercuspal position and to provide visual feedback of submaximal forces to the subject. Surface EMG signals were recorded with linear electrode arrays during isometric contractions at 20%, 40%, 60% and 80% of the maximum voluntary contraction force, during an endurance test and during the recovery phase. The results showed that (i) the slope of the mean power spectral frequency (MNF) and the initial average rectified value (ARV) could be used to monitor fatigue of the jaw elevators, (ii) the temporalis anterior and masseter muscle show the same myoelectric manifestations of fatigue and recovery and (iii) the initial values of MNF and ARV were lower in patients with muscle-related TMD. The assessment of myoelectric manifestations of fatigue in the masticatory muscles may assist in the clinical assessment of TMDs. © 2012 Blackwell Publishing Ltd.

  17. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  18. Phospholemman is not required for the acute stimulation of Na+-K+-ATPase α2-activity during skeletal muscle fatigue

    Science.gov (United States)

    Manoharan, Palanikumar; Radzyukevich, Tatiana L.; Hakim Javadi, Hesamedin; Stiner, Cory A.; Landero Figueroa, Julio A.; Lingrel, Jerry B

    2015-01-01

    The Na+-K+-ATPase α2-isoform in skeletal muscle is rapidly stimulated during muscle use and plays a critical role in fatigue resistance. The acute mechanisms that stimulate α2-activity are not completely known. This study examines whether phosphorylation of phospholemman (PLM/FXYD1), a regulatory subunit of Na+-K+-ATPase, plays a role in the acute stimulation of α2 in working muscles. Mice lacking PLM (PLM KO) have a normal content of the α2-subunit and show normal exercise capacity, in contrast to the greatly reduced exercise capacity of mice that lack α2 in the skeletal muscles. Nerve-evoked contractions in vivo did not induce a change in total PLM or PLM phosphorylated at Ser63 or Ser68, in either WT or PLM KO. Isolated muscles of PLM KO mice maintain contraction and resist fatigue as well as wild type (WT). Rb+ transport by the α2-Na+-K+-ATPase is stimulated to the same extent in contracting WT and contracting PLM KO muscles. Phosphorylation of sarcolemmal membranes prepared from WT but not PLM KO skeletal muscles stimulates the activity of both α1 and α2 in a PLM-dependent manner. The stimulation occurs by an increase in Na+ affinity without significant change in Vmax and is more effective for α1 than α2. These results demonstrate that phosphorylation of PLM is capable of stimulating the activity of both isozymes in skeletal muscle; however, contractile activity alone is not sufficient to induce PLM phosphorylation. Importantly, acute stimulation of α2, sufficient to support exercise and oppose fatigue, does not require PLM or its phosphorylation. PMID:26468207

  19. Estimation of muscle fatigue by ratio of mean frequency to average rectified value from surface electromyography.

    Science.gov (United States)

    Fernando, Jeffry Bonar; Yoshioka, Mototaka; Ozawa, Jun

    2016-08-01

    A new method to estimate muscle fatigue quantitatively from surface electromyography (EMG) is proposed. The ratio of mean frequency (MNF) to average rectified value (ARV) is used as the index of muscle fatigue, and muscle fatigue is detected when MNF/ARV falls below a pre-determined or pre-calculated baseline. MNF/ARV gives larger distinction between fatigued muscle and non-fatigued muscle. Experiment results show the effectiveness of our method in estimating muscle fatigue more correctly compared to conventional methods. An early evaluation based on the initial value of MNF/ARV and the subjective time when the subjects start feeling the fatigue also indicates the possibility of calculating baseline from the initial value of MNF/ARV.

  20. Impaired muscle strength may contribute to fatigue in patients with aneurysmal subarachnoid hemorrhage.

    Science.gov (United States)

    Harmsen, Wouter J; Ribbers, Gerard M; Zegers, Bart; Sneekes, Emiel M; Praet, Stephan F E; Heijenbrok-Kal, Majanka H; Khajeh, Ladbon; van Kooten, Fop; Neggers, Sebastiaan J C M M; van den Berg-Emons, Rita J

    2017-03-01

    Patients with aneurysmal subarachnoid hemorrhage (a-SAH) show long-term fatigue and face difficulties in resuming daily physical activities. Impaired muscle strength, especially of the lower extremity, impacts the performance of daily activities and may trigger the onset of fatigue complaints. The present study evaluated knee muscle strength and fatigue in patients with a-SAH. This study included 33 patients, 6 months after a-SAH, and 33 sex-matched and age-matched healthy controls. Isokinetic muscle strength of the knee extensors and flexors was measured at 60 and 180°/s. Maximal voluntary muscle strength was defined as peak torque and measured in Newton-meter. Fatigue was examined using the Fatigue Severity Scale. In patients with a-SAH, the maximal knee extension was 22% (60°/s) and 25% (180°/s) lower and maximal knee flexion was 33% (60°/s) and 36% (180°/s) lower compared with that of matched controls (P≤0.001). The Fatigue Severity Scale score was related to maximal knee extension (60°/s: r=-0.426, P=0.015; 180°/s: r=-0.376, P=0.034) and flexion (60°/s: r=-0.482, P=0.005; 180°/s: r=-0.344, P=0.083). The knee muscle strength was 28-47% lower in fatigued (n=13) and 11-32% lower in nonfatigued (n=20) patients; deficits were larger in fatigued patients (P<0.05), particularly when the muscle strength (peak torque) was measured at 60°/s. The present results indicate that patients with a-SAH have considerably impaired knee muscle strength, which is related to more severe fatigue. The present findings are exploratory, but showed that knee muscle strength may play a role in the severity of fatigue complaints, or vice versa. Interventions targeting fatigue after a-SAH seem necessary and may consider strengthening exercise training in order to treat a debilitating condition.

  1. Measurement of fatigue in knee flexor and extensor muscles.

    Science.gov (United States)

    Kawabata, Y; Senda, M; Oka, T; Yagata, Y; Takahara, Y; Nagashima, H; Inoue, H

    2000-04-01

    In order to examine fatigue of the knee flexor and extensor muscles and to investigate the characteristics of muscular fatigue in different sports, a Cybex machine was used to measure muscle fatigue and recovery during isokinetic knee flexion and extension. Eighteen baseball players, 12 soccer players and 13 marathon runners were studied. Each subject was tested in the sitting position and made to perform 50 consecutive right knee bends and stretches at maximum strength. This was done 3 times with an interval of 10 min between each series. The peak torque to body weight ratio and the fatigue rate were determined in each case. In all subjects, the peak torque to body weight ratio was higher for extensors than flexors. Over the 3 trials, the fatigue rate of extensors showed little change, while that of flexors had a tendency to increase. In each subject, knee extensors showed a high fatigue rate but a quick recovery, while knee flexors showed a low fatigue rate but a slow recovery. As the marathon runners had the smallest fatigue rates for both flexors and extensors, we concluded that marathon runners had more stamina than baseball players and soccer players.

  2. Predictive model of muscle fatigue after spinal cord injury in humans.

    Science.gov (United States)

    Shields, Richard K; Chang, Ya-Ju; Dudley-Javoroski, Shauna; Lin, Cheng-Hsiang

    2006-07-01

    The fatigability of paralyzed muscle limits its ability to deliver physiological loads to paralyzed extremities during repetitive electrical stimulation. The purposes of this study were to determine the reliability of measuring paralyzed muscle fatigue and to develop a model to predict the temporal changes in muscle fatigue that occur after spinal cord injury (SCI). Thirty-four subjects underwent soleus fatigue testing with a modified Burke electrical stimulation fatigue protocol. The between-day reliability of this protocol was high (intraclass correlation, 0.96). We fit the fatigue index (FI) data to a quadratic-linear segmental polynomial model. FI declined rapidly (0.3854 per year) for the first 1.7 years, and more slowly (0.01 per year) thereafter. The rapid decline of FI immediately after SCI implies that a "window of opportunity" exists for the clinician if the goal is to prevent these changes. Understanding the timing of change in muscle endurance properties (and, therefore, load-generating capacity) after SCI may assist clinicians when developing therapeutic interventions to maintain musculoskeletal integrity.

  3. Extrapulmonary features of bronchiectasis: muscle function, exercise capacity, fatigue, and health status

    Directory of Open Access Journals (Sweden)

    Ozalp Ozge

    2012-06-01

    Full Text Available Abstract Background There are limited number of studies investigating extrapulmonary manifestations of bronchiectasis. The purpose of this study was to compare peripheral muscle function, exercise capacity, fatigue, and health status between patients with bronchiectasis and healthy subjects in order to provide documented differences in these characteristics for individuals with and without bronchiectasis. Methods Twenty patients with bronchiectasis (43.5 ± 14.1 years and 20 healthy subjects (43.0 ± 10.9 years participated in the study. Pulmonary function, respiratory muscle strength (maximal expiratory pressure – MIP - and maximal expiratory pressure - MEP, and dyspnea perception using the Modified Medical Research Council Dyspnea Scale (MMRC were determined. A six-minute walk test (6MWT was performed. Quadriceps muscle, shoulder abductor, and hand grip strength (QMS, SAS, and HGS, respectively using a hand held dynamometer and peripheral muscle endurance by a squat test were measured. Fatigue perception and health status were determined using the Fatigue Severity Scale (FSS and the Leicester Cough Questionnaire (LCQ, respectively. Results Number of squats, 6MWT distance, and LCQ scores as well as lung function testing values and respiratory muscle strength were significantly lower and MMRC and FSS scores were significantly higher in patients with bronchiectasis than those of healthy subjects (p p p p p  Conclusions Peripheral muscle endurance, exercise capacity, fatigue and health status were adversely affected by the presence of bronchiectasis. Fatigue was associated with dyspnea and health status. Respiratory muscle strength was related to peripheral muscle strength and health status, but not to fatigue, peripheral muscle endurance or exercise capacity. These findings may provide insight for outcome measures for pulmonary rehabilitation programs for patients with bronchiectasis.

  4. Locomotor muscle fatigue does not alter oxygen uptake kinetics during high-intensity exercise

    Directory of Open Access Journals (Sweden)

    James Hopker

    2016-10-01

    Full Text Available The slow component (VO2sc that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre fatigue condition or rest for 33 minutes (control condition according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-second maximal sprints at a fixed pedaling cadence of 90 rev·min-1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and VO2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03, the VO2sc was not significantly different between the pre fatigue (464 ± 301 mL·min-1 and the control (556 ± 223 mL·min-1 condition (P = 0.50. Blood lactate response was not significantly different between conditions (P = 0.48 but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01 suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the VO2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the VO2sc is strongly associated with locomotor muscle fatigue.

  5. Muscle glycogen stores and fatigue

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Westerblad, Håkan; Nielsen, Joachim

    2013-01-01

      Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle...... function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct...... pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from...

  6. Evaluation of surgeon's muscle fatigue during thoracoscopic pulmonary lobectomy using interoperative surface electromyography.

    Science.gov (United States)

    Yoon, Seung-Hyun; Jung, Myung-Chul; Park, Seong Yong

    2016-06-01

    The aim of this study was to document the physical stress experienced by a surgeon during thoracoscopic pulmonary lobectomy and mediastinal lymph node dissection for lung cancer by measuring the intraoperative electromyography (EMG). Surface EMG was recorded during 12 cases of thoracoscopic lobectomy. During the operation, 16 channels of a wireless EMG were used to measure muscle activity and fatigue from the bilateral muscles of the splenius capitis (SC), upper trapezius (UT), middle deltoid (MD), flexor carpi radialis (FCR), extensor carpi radialis (ECR), lumbar erector spinae (LES), rectus femoralis (RF), and tibialis anterior (TA). The EMG signals were processed to collect the values of the root mean square for muscle activity and median frequency (MF) for muscle fatigue. All operations were completed without adverse events. The mean operating time was 99.16±35.15 minutes. During the operation, the mean muscle activity of all muscles was 21.91±12.85 mV. High muscle activity was observed in the bilateral FCR and ECR, whereas low muscle activity was observed in the bilateral SC and LES. The final MFs in the bilateral SC and LES were found to be decreased from the initial status, which implied increased muscle fatigue. The muscles of the right and left LES were significantly fatigued by up to 29% and 37% compared to their initial status (P=0.021 and P=0.007, respectively). The MFs of the bilateral LES decreased with time (an average decreases of 0.008/5 minutes, P=0.002 in right LES and 0.004/5 minutes, P=0.018 in left LES). During thoracoscopic lobectomy, muscle fatigue was observed in muscles related to a static posture, such as the bilateral SC, UT, and ES. Further studies are required to investigate the ergonomic adjustments needed to reduce muscle fatigue in these static muscles.

  7. Muscle fatigue and contraction intensity modulates the complexity of surface electromyography.

    Science.gov (United States)

    Cashaback, Joshua G A; Cluff, Tyler; Potvin, Jim R

    2013-02-01

    Nonlinear dynamical techniques offer a powerful approach for the investigation of physiological time series. Multiscale entropy analyses have shown that pathological and aging systems are less complex than healthy systems and this finding has been attributed to degraded physiological control processes. A similar phenomenon may arise during fatiguing muscle contractions where surface electromyography signals undergo temporal and spectral changes that arise from the impaired regulation of muscle force production. Here we examine the affect of fatigue and contraction intensity on the short and long-term complexity of biceps brachii surface electromyography. To investigate, we used an isometric muscle fatigue protocol (parsed into three windows) and three contraction intensities (% of maximal elbow joint moment: 40%, 70% and 100%). We found that fatigue reduced the short-term complexity of biceps brachii activity during the last third of the fatiguing contraction. We also found that the complexity of surface electromyography is dependent on contraction intensity. Our results show that multiscale entropy is sensitive to muscle fatigue and contraction intensity and we argue it is imperative that both factors be considered when evaluating the complexity of surface electromyography signals. Our data contribute to a converging body of evidence showing that multiscale entropy can quantify subtle information content in physiological time series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Skeletal muscle fatigue and decreased efficiency: two sides of the same coin?

    Science.gov (United States)

    Grassi, Bruno; Rossiter, Harry B; Zoladz, Jerzy A

    2015-04-01

    During high-intensity submaximal exercise, muscle fatigue and decreased efficiency are intertwined closely, and each contributes to exercise intolerance. Fatigue and muscle inefficiency share common mechanisms, for example, decreased "metabolic stability," muscle metabolite accumulation, decreased free energy of adenosine triphosphate breakdown, limited O2 or substrate availability, increased glycolysis, pH disturbance, increased muscle temperature, reactive oxygen species production, and altered motor unit recruitment patterns.

  9. [Analysis of the Muscle Fatigue Based on Band Spectrum Entropy of Multi-channel Surface Electromyography].

    Science.gov (United States)

    Liu, Jian; Zou, Renling; Zhang, Dongheng; Xu, Xiulin; Hu, Xiufang

    2016-06-01

    Exercise-induced muscle fatigue is a phenomenon that the maximum voluntary contraction force or power output of muscle is temporarily reduced due to muscular movement.If the fatigue is not treated properly,it will bring about a severe injury to the human body.With multi-channel collection of lower limb surface electromyography signals,this article analyzes the muscle fatigue by adoption of band spectrum entropy method which combined electromyographic signal spectral analysis and nonlinear dynamics.The experimental result indicated that with the increase of muscle fatigue,muscle signal spectrum began to move to low frequency,the energy concentrated,the system complexity came down,and the band spectrum entropy which reflected the complexity was also reduced.By monitoring the entropy,we can measure the degree of muscle fatigue,and provide an indicator to judge fatigue degree for the sports training and clinical rehabilitation training.

  10. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shin-Hong; Wu, Xuan-Han

    2012-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference. PMID:22368481

  11. Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner.

    Science.gov (United States)

    Larkin-Kaiser, Kelly A; Borsa, Paul A; Baweja, Harsimran S; Moore, Molly A; Tillman, Mark D; George, Steven Z; Christou, Evangelos A

    2016-09-01

    Photobiomodulation (PBM) therapy has been implicated as an effective ergogenic aid to delay the onset of muscle fatigue. The purpose of this study was to examine the dose-response ergogenic properties of PBM therapy and its ability to prolong time to task failure by enhancing muscle activity and delaying the onset of muscle fatigue using a static positioning task. Nine participants (24.3 ± 4.9 years) received three doses of near-infrared (NIR) light therapy randomly on three separate sessions (sham, 240, and 480 J). For the positioning task, participants held a 30 % one-repetition maximum (1-RM) load using the index finger until volitional fatigue. Surface electromyography (sEMG) of the first dorsal interosseous muscle was recorded for the length of the positioning task. Outcomes included time to task failure (TTF), muscle fatigue, movement accuracy, motor output variability, and muscle activity (sEMG). The 240-J dose significantly extended TTF by 26 % (p = 0.032) compared with the sham dose. TTF for the 240-J dose was strongly associated with a decrease in muscle fatigue (R (2) = 0.54, p = 0.024). Our findings show that a 240-J dose of NIR light therapy is efficacious in delaying the onset and extent of muscle fatigue during submaximal isometric positioning tasks. Our findings suggest that NIR light therapy may be used as an ergogenic aid during functional tasks or post-injury rehabilitation.

  12. Muscle mass as a target to reduce fatigue in patients with advanced cancer.

    Science.gov (United States)

    Neefjes, Elisabeth C W; van den Hurk, Renske M; Blauwhoff-Buskermolen, Susanne; van der Vorst, Maurice J D L; Becker-Commissaris, Annemarie; de van der Schueren, Marian A E; Buffart, Laurien M; Verheul, Henk M W

    2017-08-01

    Cancer-related fatigue (CRF) reduces quality of life and the activity level of patients with cancer. Cancer related fatigue can be reduced by exercise interventions that may concurrently increase muscle mass. We hypothesized that low muscle mass is directly related to higher CRF. A total of 233 patients with advanced cancer starting palliative chemotherapy for lung, colorectal, breast, or prostate cancer were studied. The skeletal muscle index (SMI) was calculated as the patient's muscle mass on level L3 or T4 of a computed tomography scan, adjusted for height. Fatigue was assessed with the Functional Assessment of Chronic Illness Therapy-fatigue questionnaire (cut-off for fatigue fatigue score was 36 (interquartile range 26-44). A higher SMI on level L3 was significantly associated with less CRF for men (B 0.447, P 0.004) but not for women (B - 0.401, P 0.090). No association between SMI on level T4 and the Functional Assessment of Chronic Illness Therapy-fatigue score was found (n = 82). The association between SMI and CRF may lead to the suggestion that male patients may be able to reduce fatigue by exercise interventions aiming at an increased muscle mass. In women with advanced cancer, CRF is more influenced by other causes, because it is not significantly related to muscle mass. To further reduce CRF in both men and women with cancer, multifactorial assessments need to be performed in order to develop effective treatment strategies. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  13. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Sridhar P. Arjunan

    2014-01-01

    Full Text Available The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC. Six features were considered in this study: normalised spectral index (NSM5, median frequency, root mean square, waveform length, normalised root mean square (NRMS, and increase in synchronization (IIS index. Analysis of variance (ANOVA and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P0.05.

  14. Computation and evaluation of features of surface electromyogram to identify the force of muscle contraction and muscle fatigue.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P 0.05).

  15. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    Science.gov (United States)

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles.

  16. The Effect of Fatigue in Proxmal and Distal Muscles of Lower Extremity on Postural Control

    Directory of Open Access Journals (Sweden)

    Mozhgan Moghadam

    2003-07-01

    Full Text Available Objective: Several studies have shown the effects of muscular fatigue on proprioception and neuromuscular control. However all available researches have studied just the effect of local fatigue in ankle joint muscles on postural control, and no study have found about the effect of fatigue in proximal muscles of the lower extremity on postural control. To compare changes in postural control parameters after isokinetic fatigue of proximal and distal muscles of lower extremity. Materials & Methods: Subjects were twenty healthy men (age: 22.6±2.4 years, height: 173.7± 3.6 cm, weight: 63.3±7.9kg. There were 4 test sessions, with a randomized order according to site and plane of fatigue. During each session one of these muscle groups was fatigued using a Biodex isokinetic dynamometer: ankle plantar / dorsi flexors, ankle evertor / inventors, hip flexor / extensors and hip abductor/adductors. The biodex stability system was used to perform dynamic balance test before and after muscle fatigue in each session. Overall, anterior / posterior, and medial/lateral stability indices were recorded. The higher the stability indices, the lower the balancing skill. Results: Analysis of pre-and post fatigue balance results of all sessions, demonstrated significant increase (P<0.05 in all stability indices. Repeated measures ANOVA performed on the rate of changes in stability indices during each session revealed that hip muscle fatigue caused much more increase in stability indices than ankle muscle fatigue (P<0.05. Conclusion: Isokinetic fatigue of both ankle and hip muscles significantly decreases postural control ability in healthy young men. In addition, our findings suggest that the hip joint musculature plays a more prominent role in postural control.

  17. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise.

    Science.gov (United States)

    Hopker, James G; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M

    2016-01-01

    The [Formula: see text] slow component ([Formula: see text]) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min -1 . Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and [Formula: see text] determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue ( P = 0.03), the [Formula: see text] was not significantly different between the pre-fatigue (464 ± 301 mL·min -1 ) and the control (556 ± 223 mL·min -1 ) condition ( P = 0.50). Blood lactate response was not significantly different between conditions ( P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition ( P locomotor muscle fatigue does not significantly alter the [Formula: see text] kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the [Formula: see text] is strongly associated with locomotor muscle fatigue.

  18. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  19. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    Directory of Open Access Journals (Sweden)

    Faghri Pouran D

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus

  20. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue.

    Science.gov (United States)

    Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J

    2008-04-26

    The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to whether or not progressive resistance

  1. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    Science.gov (United States)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  2. Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Elham Ghoochani

    2011-03-01

    Full Text Available Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigue. Muscle fatigue in shoulders and neck is one of the most prevalent problems reported with computer users especially during typing. Surface electromyography (SEMG signals are used for detecting muscle fatigue as a non-invasive method. Material and Methods: Nine healthy females volunteered for signal recoding during typing. EMG signals were recorded from the trapezius muscle, which is subjected to muscle fatigue during typing.  After signal analysis and feature extraction, detecting and predicting muscle fatigue was performed by using the MLP artificial neural network. Results: Recorded signals were analyzed in time and frequency domains for feature extraction. Results of classification showed that the MLP neural network can detect and predict muscle fatigue during typing with 80.79 % ± 1.04% accuracy. Conclusion: Intelligent classification and prediction of muscle fatigue can have many applications in human factors engineering (ergonomics, rehabilitation engineering and biofeedback equipment for mitigating the injuries of repetitive works.

  3. Direct measurement of skeletal muscle fatigue in patients with chronic heart failure.

    OpenAIRE

    Buller, N P; Jones, D; Poole-Wilson, P A

    1991-01-01

    Skeletal muscle function was measured as force production and fatigue in both the quadriceps (a large locomotive muscle) and adductor pollicis (a small intrinsic hand muscle) in five healthy volunteers, five patients with mild chronic heart failure, and five patients with severe chronic heart failure. The quadriceps of patients with chronic heart failure had a reduced muscle cross sectional area, a reduced maximum isometric force production, and an increased tendency to fatigue. Isometric for...

  4. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles

    DEFF Research Database (Denmark)

    Søgaard, Karen; Gandevia, Simon C; Todd, Gabrielle

    2006-01-01

    Subjects quickly fatigue when they perform maximal voluntary contractions (MVCs). Much of the loss of force is from processes within muscle (peripheral fatigue) but some occurs because voluntary activation of the muscle declines (central fatigue). The role of central fatigue during submaximal...... contractions is not clear. This study investigated whether central fatigue developed during prolonged low-force voluntary contractions. Subjects (n=9) held isometric elbow flexions of 15% MVC for 43 min. Voluntary activation was measured during brief MVCs every 3 min. During each MVC, transcranial magnetic...... several minutes while MVC torque only returned to approximately 85% baseline. The resting twitch showed no recovery. Thus, as well as fatigue in the muscle, the prolonged low-force contraction produced progressive central fatigue, and some of this impairment of the subjects' ability to drive the muscle...

  5. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Directory of Open Access Journals (Sweden)

    Xuan-Han Wu

    2012-01-01

    Full Text Available Surface electromyography (sEMG is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference.

  6. Influence of synchronous and sequential stimulation on muscle fatigue

    NARCIS (Netherlands)

    Thomsen, M.; Thomsen, M.; Veltink, Petrus H.

    1997-01-01

    In acute experiments the sciatic nerve of the rat is electrically stimulated to induce fatigue in the medial Gastrocnemius muscle. Fatigue tests are carried out using intermittent stimulation of different compartments (sequential) or a single compartment (synchronous) of the sciatic nerve. The

  7. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  8. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Adrian Bingham

    2017-12-01

    Full Text Available This study has developed a technique for identifying the presence of muscle fatigue based on the spatial changes of the normalised mutual information (NMI between multiple high density surface electromyography (HD-sEMG channels. Muscle fatigue in the tibialis anterior (TA during isometric contractions at 40% and 80% maximum voluntary contraction levels was investigated in ten healthy participants (Age range: 21 to 35 years; Mean age = 26 years; Male = 4, Female = 6. HD-sEMG was used to record 64 channels of sEMG using a 16 by 4 electrode array placed over the TA. The NMI of each electrode with every other electrode was calculated to form an NMI distribution for each electrode. The total NMI for each electrode (the summation of the electrode’s NMI distribution highlighted regions of high dependence in the electrode array and was observed to increase as the muscle fatigued. To summarise this increase, a function, M(k, was defined and was found to be significantly affected by fatigue and not by contraction force. The technique discussed in this study has overcome issues regarding electrode placement and was used to investigate how the dependences between sEMG signals within the same muscle change spatially during fatigue.

  9. RELATIONSHIPS BETWEEN MUSCLE FATIGUE CHARACTERISTICS AND MARKERS OF ENDURANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Martyn G. Morris

    2008-12-01

    Full Text Available The aim of this study was to examine the relationship of a range of in-vivo whole muscle characteristics to determinants of endurance performance. Eleven healthy males completed a cycle ergometer step test to exhaustion for the determination of the lactate threshold, gross mechanical efficiency, peak power and VO2max. On two separate occasions, contractile and fatigue characteristics of the quadriceps femoris were collected using a specially designed isometric strength-testing chair. Muscle fatigue was then assessed by stimulating the muscle for 3 minutes. Force, rate of force development and rates of relaxation were calculated at the beginning and end of the 3 minute protocol and examined for reliability and in relation to lactate threshold, VO2max, gross mechanical efficiency and peak power. Muscle characteristics, rate of force development and relaxation rate were demonstrated to be reliable measures. Force drop off over the 3 minutes (fatigue index was related to lactate threshold (r = -0.72 p < 0.01 but not to VO2max. The rate of force development related to the peak power at the end of the cycle ergometer test (r = -0.75 p < 0.01. Rates of relaxation did not relate to any of the performance markers. We found in-vivo whole muscle characteristics, such as the fatigue index and rate of force development, relate to specific markers of peripheral, but not to central, fitness components. Our investigation suggests that muscle characteristics assessed in this way is reliable and could be feasibly utilised to further our understanding of the peripheral factors underpinning performance

  10. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.

    Science.gov (United States)

    Krueger, Eddy; Popović-Maneski, Lana; Nohama, Percy

    2018-02-01

    A motor neural prosthesis based on surface functional electrical stimulation (sFES) can restore functional movement (e.g., standing, walking) in patients with a spinal cord injury (SCI). sFES generates muscle contractions in antigravity muscles and allows balance-assisted standing. This induced standing has several benefits, such as improved cardiovascular function, decreased incidence of urinary infections, reduced joint contractures, and muscle atrophy. The duration of sFES assisted standing is limited due to the quick onset of muscle fatigue. Currently, there is no method available to reliably estimate real-time muscle fatigue during sFES. Simply monitoring the M-wave changes is not suitable due to the high signal disturbances that arise during multi-channel electrical stimulation. Mechanomyography (MMG) is immune to electrical stimulation artifacts and can be used to detect subtle vibrations on the surface of the skin related to activation of the underlying muscle's motor units (MU). The aim of this study was to develop a method for detecting muscle fatigue brought on by sFES. The method was tested in three different heads of the quadriceps muscle in SCI patients during electrically elicited quasi-isometric contraction. Six spinal cord-injured male volunteers, with no voluntary control of the quadriceps muscle participated in the study. Electrical bursts of voltage-controlled monophasic square pulses at frequencies of 1 kHz (50% duty cycle) at 50 Hz (15% duty cycle) were used to generate thigh muscle contractions that controlled the knee joint in the sagittal plane. The pulse amplitudes were set to position the knee joint at a 5° angle from the horizontal plane and when the knee angle dropped to 20° (e.g., the quadriceps were unable to hold the lower leg in the desired position), the test was terminated. Two data segments lasting 10 s each, at the beginning and end of each test, were analyzed. The muscle contraction was assessed by MMG sensors positioned on

  11. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    Science.gov (United States)

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  12. Neck Muscle Fatigue with Helmet-Mounted Systems

    National Research Council Canada - National Science Library

    Eveland, Edward S; Pellettiere, Joseph A

    2006-01-01

    .... Changes in neck muscle strength were identified along with EMG evidence of fatigue. When flights occurred on an almost daily basis over 4 days, the force imparted to the neck was reduced each day...

  13. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  14. Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.

    Science.gov (United States)

    Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry

    2009-06-01

    The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.

  15. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  16. 抗阻训练与疲劳%Resistance Exercise and Fatigue

    Institute of Scientific and Technical Information of China (English)

    王晓磊; 田东; 邹一德; 王华宇; 牛洁

    2017-01-01

    Resistance exercise is a popular form of conditioning in the field of sports.Resistance exercise can improve the health of human body together with other forms of exercise.Resistance exercise differs significantly from other traditional training, and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal system of the body.Some modes of resistance training can also be effective in stimulating the cardiovascular system.These variables include exercise selection, type of resistance, order of exercise, and exercise load.Manipulating these variables allows for specific adaptive changes which may include gains in muscle mass, muscle strength or muscle endurance.It has been well established that during resistance exercise fatigue occurs, regardless of the volume and intensity of work applied.The peripheral mechanisms of fatigue have been studied and explained in more detail than those related to the central nervous system.This review is an attempt to bring together the latest knowledge regarding fatigue, both peripheral and central, during resistance exercise and concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load.%抗阻训练是目前体育领域中非常重要的训练方式,与其他不同形式的训练共同作用,从而促进人体健康.抗阻训练不同于一般运动方式,在抗阻训练时,由于动作的作用方向和训练强度改变的影响,人体肌肉和骨骼会产生适应性变化,同时某些类型的抗阻训练还可以刺激人体的心血管系统.抗阻训练需要考虑的因素包括:训练方案,训练类型,训练顺序,以及训练负荷.这些因素的改变,能够使人体

  17. Muscle fatigue in relation to forearm pain and tenderness among professional computer users

    DEFF Research Database (Denmark)

    Thomsen, GF; Johnson, PW; Svendsen, Susanne Wulff

    2007-01-01

    ABSTRACT: BACKGROUND: To examine the hypothesis that forearm pain with palpation tenderness in computer users is associated with increased extensor muscle fatigue. METHODS: Eighteen persons with pain and moderate to severe palpation tenderness in the extensor muscle group of the right forearm...... response was not explained by differences in the MVC or body mass index. CONCLUSION: Computer users with forearm pain and moderate to severe palpation tenderness had diminished forearm extensor muscle fatigue response. Additional studies are necessary to determine whether this result reflects an adaptive...... and twenty gender and age matched referents without such complaints were enrolled from the Danish NUDATA study of neck and upper extremity disorders among technical assistants and machine technicians. Fatigue of the right forearm extensor muscles was assessed by muscle twitch forces in response to low...

  18. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity

    Science.gov (United States)

    Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.

    2017-01-01

    Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893

  19. Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry.

    Science.gov (United States)

    Coelho, A C; Cannon, D T; Cao, R; Porszasz, J; Casaburi, R; Knorst, M M; Rossiter, H B

    2015-03-01

    A rapid switch from hyperbolic to isokinetic cycling allows the velocity-specific decline in maximal power to be measured, i.e., fatigue. We reasoned that, should the baseline relationship between isokinetic power (Piso) and electromyography (EMG) be reproducible, then contributions to fatigue may be isolated from 1) the decline in muscle activation (muscle activation fatigue); and 2) the decline in Piso at a given activation (muscle fatigue). We hypothesized that the EMG-Piso relationship is linear, velocity dependent, and reliable for instantaneous fatigue assessment at intolerance during and following whole body exercise. Healthy participants (n = 13) completed short (5 s) variable-effort isokinetic bouts at 50, 70, and 100 rpm to characterize baseline EMG-Piso. Repeated ramp incremental exercise tests were terminated with maximal isokinetic cycling (5 s) at 70 rpm. Individual baseline EMG-Piso relationships were linear (r(2) = 0.95 ± 0.04) and velocity dependent (analysis of covariance). Piso at intolerance (two legs, 335 ± 88 W) was ∼45% less than baseline [630 ± 156 W, confidence interval of the difference (CIDifference) 211, 380 W, P fatigue and muscle fatigue (one leg) were 97 ± 55 and 60 ± 50 W, respectively. Mean bias ± limits of agreement for reproducibility were as follows: baseline Piso 1 ± 30 W; Piso at 0-min recovery 3 ± 35 W; and EMG at Piso 3 ± 14%. EMG power is linear, velocity dependent, and reproducible. Deviation from this relationship at the limit of tolerance can quantify the "activation" and "muscle" related components of fatigue during cycling. Copyright © 2015 the American Physiological Society.

  20. Strength gradient enhances fatigue resistance of steels

    Science.gov (United States)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  1. The Investigation of Median Frequency Changes in Paraspinal Muscles Following Fatigue

    Directory of Open Access Journals (Sweden)

    Saeed Talebian

    2009-10-01

    Conclusion: Median frequency shift toward low values following fatigue in global and local paraspinal muscles was seen. However, median frequency values for the local stabilizer muscle were higher than median frequency values for the global muscles.

  2. High-intensity resistance training in multiple sclerosis - An exploratory study of effects on immune markers in blood and cerebrospinal fluid, and on mood, fatigue, health-related quality of life, muscle strength, walking and cognition.

    Science.gov (United States)

    Kierkegaard, Marie; Lundberg, Ingrid E; Olsson, Tomas; Johansson, Sverker; Ygberg, Sofia; Opava, Christina; Holmqvist, Lotta Widén; Piehl, Fredrik

    2016-03-15

    High-intensity resistance training is unexplored in people with multiple sclerosis. To evaluate effects of high-intensity resistance training on immune markers and on measures of mood, fatigue, health-related quality of life, muscle strength, walking and cognition. Further, to describe participants' opinion and perceived changes of the training. Twenty patients with relapsing-remitting multiple sclerosis performed high-intensity resistance training at an intensity of 80% of one-repetition maximum, twice a week for 12 weeks. Blood and optional cerebrospinal fluid samples, and data on secondary outcome measures were collected before and after intervention. A study-specific questionnaire was used for capturing participants' opinion. Seventeen participants completed the study. Plasma cytokine levels of tumor necrosis factor were significantly decreased post-intervention (p=0.001). Exploratory cytokine analyses in cerebrospinal fluid (n=8) did not reveal major changes. Significant and clinically important improvements were found in fatigue (p=0.001) and health-related quality of life (p=0.004). Measures of mood (p=0.002), muscle strength (p ≤ 0.001), walking speed (p=0.013) and cognition (p=0.04) were also improved. A majority of participants evaluated the training as very good and perceived changes to the better. High-intensity resistance training in persons with relapsing remitting multiple sclerosis with low disability had positive effects on peripheral pro-inflammatory cytokine levels, led to clinically relevant improvements in measures of fatigue and health-related quality of life, and was well tolerated. These results provide a basis for a larger randomized trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?

    Science.gov (United States)

    Dankel, Scott J; Mattocks, Kevin T; Jessee, Matthew B; Buckner, Samuel L; Mouser, J Grant; Loenneke, Jeremy P

    2017-11-01

    Many reviews conclude that metabolites play an important role with respect to muscle hypertrophy during resistance exercise, but their actual physiologic contribution remains unknown. Some have suggested that metabolites may work independently of muscle contraction, while others have suggested that metabolites may play a secondary role in their ability to augment muscle activation via inducing fatigue. Interestingly, the studies used as support for an anabolic role of metabolites use protocols that are not actually designed to test the importance of metabolites independent of muscle contraction. While there is some evidence in vitro that metabolites may induce muscle hypertrophy, the only study attempting to answer this question in humans found no added benefit of pooling metabolites within the muscle post-exercise. As load-induced muscle hypertrophy is thought to work via mechanotransduction (as opposed to being metabolically driven), it seems likely that metabolites simply augment muscle activation and cause the mechanotransduction cascade in a larger proportion of muscle fibers, thereby producing greater muscle growth. A sufficient time under tension also appears necessary, as measurable muscle growth is not observed after repeated maximal testing. Based on current evidence, it is our opinion that metabolites produced during resistance exercise do not have anabolic properties per se, but may be anabolic in their ability to augment muscle activation. Future studies are needed to compare protocols which produce similar levels of muscle activation, but differ in the magnitude of metabolites produced, or duration in which the exercised muscles are exposed to metabolites.

  4. Shoulder girdle muscle activity and fatigue in traditional and improved design carpet weaving workstations.

    Science.gov (United States)

    Allahyari, Teimour; Mortazavi, Narges; Khalkhali, Hamid Reza; Sanjari, Mohammad Ali

    2016-01-01

    Work-related musculoskeletal disorders in the neck and shoulder regions are common among carpet weavers. Working for prolonged hours in a static and awkward posture could result in an increased muscle activity and may lead to musculoskeletal disorders. Ergonomic workstation improvements can reduce muscle fatigue and the risk of musculoskeletal disorders. The aim of this study is to assess and to compare upper trapezius and middle deltoid muscle activity in 2 traditional and improved design carpet weaving workstations. These 2 workstations were simulated in a laboratory and 12 women carpet weavers worked for 3 h. Electromyography (EMG) signals were recorded during work in bilateral upper trapezius and bilateral middle deltoid. The root mean square (RMS) and median frequency (MF) values were calculated and used to assess muscle load and fatigue. Repeated measure ANOVA was performed to assess the effect of independent variables on muscular activity and fatigue. The participants were asked to report shoulder region fatigue on the Borg's Category-Ratio scale (Borg CR-10). Root mean square values in workstation A are significantly higher than in workstation B. Furthermore, EMG amplitude was higher in bilateral trapezius than in bilateral deltoid. However, muscle fatigue was not observed in any of the workstations. The results of the study revealed that muscle load in a traditional workstation was high, but fatigue was not observed. Further studies investigating other muscles involved in carpet weaving tasks are recommended. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. Trunk muscle fatigue during a lateral isometric hold test: what are we evaluating?

    Directory of Open Access Journals (Sweden)

    Pagé Isabelle

    2012-04-01

    Full Text Available Abstract Background Side bridge endurance protocols have been suggested to evaluate lateral trunk flexor and/or spine stabilizer muscles. To date, no study has investigated muscle recruitment and fatigability during these protocols. Therefore the purpose of our study was to quantify fatigue parameters in various trunk muscles during a modified side bridge endurance task (i.e. a lateral isometric hold test on a 45° roman chair apparatus and determine which primary trunk muscles get fatigued during this task. It was hypothesized that the ipsilateral external oblique and lumbar erector spinae muscles will exhibit the highest fatigue indices. Methods Twenty-two healthy subjects participated in this study. The experimental session included left and right lateral isometric hold tasks preceded and followed by 3 maximal voluntary contractions in the same position. Surface electromyography (EMG recordings were obtained bilaterally from the external oblique, rectus abdominis, and L2 and L5 erector spinae. Statistical analysis were conducted to compare the right and left maximal voluntary contractions (MVC, surface EMG activities, right vs. left holding times and decay rate of the median frequency as the percent change from the initial value (NMFslope. Results No significant left and right lateral isometric hold tests differences were observed neither for holding times (97.2 ± 21.5 sec and 96.7 ± 24.9 sec respectively nor for pre and post fatigue root mean square during MVCs. However, participants showed significant decreases of MVCs between pre and post fatigue measurements for both the left and right lateral isometric hold tests. Statistical analysis showed that a significantly NMFslope of the ipsilateral external oblique during both conditions, and a NMFslope of the contralateral L5 erector spinae during the left lateral isometric hold test were steeper than those of the other side’s respective muscles. Although some participants

  6. Comparison of Muscle Fatigue Effects on Electromyographic Onset Latency of Trapezius Muscle in Posterior-Anterior Perturbation between Patients with Chronic Neck Pain and Healthy Persons

    Directory of Open Access Journals (Sweden)

    Zahra Rojhani-Shirazi

    2008-07-01

    Full Text Available Objective: Fatigue process in patients with neck pain was happened more quickly than healthy persons and neck muscle fatigue increased body sway during standing, but there is less evidence about the behavior of these muscles in dynamic conditions such as external perturbation, so this study was done to investigate the effect of muscle fatigue on onset latency of upper trapezius muscle in posterior-anterior perturbation among patients with chronic neck pain and healthy individuals. Materials & Methods: In this quasi experimental and interventional study 16 patients with chronic neck pain (intervention group and 16 healthy individuals (control group were selected by simple and convenient sampling and based on inclusive and exclusive criteria. Data collection was done by using questionnaire and doing some tests and the main equipments were dynamometer, accelerometer and surface electromyography. The weight equal to 30% of maximum voluntary contraction used to produce fatigue process and 10% of body weight used to produce perturbation. Independent T test, Paired T test and Repeated ANOVA were used for data analysis. Results: There was significant difference in onset latency of upper Trapezius muscle in posterior – anterior perturbation between two groups, before (P=0.006 and after (P=0.026 fatigue. This means that the onset latency was increased in healthy individuals and decreased in patients after fatigue. Also, there was significant difference in onset latency of Trapezius muscle in posterior – anterior perturbation between before and after fatigue in patients group (P<0.001 and healthy persons group (P=0.04. Conclusion: Pain can change the onset latency of trapezius muscle and possibly it can decrease muscle activity in deep muscle and change the pattern of muscle activation. Fatigue as an exaggerated risk factor can decrease onset latency of superficial muscle in patients with chronic neck pain to stabilize the system, that it can increase

  7. Direct effects of doxorubicin on skeletal muscle contribute to fatigue

    NARCIS (Netherlands)

    Norren, van K.; Helvoort, van A.; Argiles, J.M.; Tuijl, van S.; Arts, K.; Gorselink, M.; Laviano, A.; Kegler, D.; Haagsman, H.P.; Beek, E.M.

    2009-01-01

    Chemotherapy-induced fatigue is a multidimensional symptom. Oxidative stress has been proposed as a working mechanism for anthracycline-induced cardiotoxicity. In this study, doxorubicin (DOX) was tested on skeletal muscle function. Doxorubicin induced impaired ex vivo skeletal muscle relaxation

  8. Effects of Glutamine and Alanine Supplementation on Central Fatigue Markers in Rats Submitted to Resistance Training

    Directory of Open Access Journals (Sweden)

    Audrey Yule Coqueiro

    2018-01-01

    Full Text Available Recent evidence suggests that increased brain serotonin synthesis impairs performance in high-intensity intermittent exercise and specific amino acids may modulate this condition, delaying fatigue. This study investigated the effects of glutamine and alanine supplementation on central fatigue markers in rats submitted to resistance training (RT. Wistar rats were distributed in: sedentary (SED, trained (CON, trained and supplemented with alanine (ALA, glutamine and alanine in their free form (G + A, or as dipeptide (DIP. Trained groups underwent a ladder-climbing exercise for eight weeks, with progressive loads. In the last 21 days, supplementations were offered in water with a 4% concentration. Albeit without statistically significance difference, RT decreased liver glycogen, and enhanced the concentrations of plasma glucose, free fatty acids (FFA, hypothalamic serotonin, and ammonia in muscle and the liver. Amino acids affected fatigue parameters depending on the supplementation form. G + A prevented the muscle ammonia increase by RT, whereas ALA and DIP augmented ammonia and glycogen concentrations in muscle. DIP also increased liver ammonia. ALA and G + A reduced plasma FFA, whereas DIP increased this parameter, free tryptophan/total tryptophan ratio, hypothalamic serotonin, and the serotonin/dopamine ratio. The supplementations did not affect physical performance. In conclusion, glutamine and alanine may improve or impair central fatigue markers depending on their supplementation form.

  9. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Electromyographical manifestations of muscle fatigue during different levels of simulated light manual assembly work

    NARCIS (Netherlands)

    Bosch, T.; Looze, M.P. de; Kingma, I.; Visser, B.; Dieën, J.H. van

    2009-01-01

    The purpose of this study was to determine whether objective electromyographical manifestations of muscle fatigue develop in the upper trapezius muscle in two assembly tasks involving contractions of different low-intensity levels (8% and 12% MVC) and whether these indications of fatigue are

  11. Continuous Wavelet Transform Analysis of Surface Electromyography for Muscle Fatigue Assessment on the Elbow Joint Motion

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available Studying muscle fatigue plays an important role in preventing the risks associated with musculoskeletal disorders. The effect of elbow-joint angle on time-frequency parameters during a repetitive motion provides valuable information in finding the most accurate position of the angle causing muscle fatigue. Therefore, the purpose of this study is to analyze the effect of muscle fatigue on the spectral and time-frequency domain parameters derived from electromyography (EMG signals using the Continuous Wavelet Transform (CWT. Four male participants were recruited to perform a repetitive motion (flexion and extension movements from a non-fatigue to fatigue condition. EMG signals were recorded from the biceps muscle. The recorded EMG signals were then analyzed offline using the complex Morlet wavelet. The time-frequency domain data were analyzed using the time-averaged wavelet spectrum (TAWS and the Scale-Average Wavelet Power (SAWP parameters. The spectral domain data were analyzed using the Instantaneous Mean Frequency (IMNF and the Instantaneous Mean Power Spectrum (IMNP parameters. The index of muscle fatigue was observed by calculating the increase of the IMNP and the decrease of the IMNF parameters. After performing a repetitive motion from non-fatigue to fatigue condition, the average of the IMNF value decreased by 15.69% and the average of the IMNP values increased by 84%, respectively. This study suggests that the reliable frequency band to detect muscle fatigue is 31.10-36.19Hz with linear regression parameters of 0.979mV^2Hz^(-1 and 0.0095mV^2Hz^(-1 for R^2 and slope, respectively.

  12. Fatigue during high-intensity intermittent exercise: application to bodybuilding.

    Science.gov (United States)

    Lambert, Charles P; Flynn, Michael G

    2002-01-01

    Resistance exercise is an activity performed by individuals interested in competition, those who wish to improve muscle mass and strength for other sports, and for individuals interested in improving their strength and physical appearance. In this review we present information suggesting that phosphocreatine depletion, intramuscular acidosis and carbohydrate depletion are all potential causes of the fatigue during resistance exercise. In addition, recommendations are provided for nutritional interventions, which might delay muscle fatigue during this type of activity.

  13. The effect of a single dose of morphine on muscle fatigue indices in male rats

    Directory of Open Access Journals (Sweden)

    Sedigheh Amiresmaili

    2016-09-01

    Full Text Available Background and Aim: Endogenous opioids and addictive opiate drugs change many body functions. . Previous studies have referred to the effects of morphine on smooth and pulmonary muscles ., but the  effects of opioids on skeletal muscles is not known well. Thus, the current study aimed at assessing the effect of a single dose of morphine on muscle fatigue in male rats. Materials and Methods: In this experimental study, 40 male Wistar rats weighing 220-270 g were randomly divided into four equal groups: control (the mice were kept in their cages and received food and water, morphine receiving group, fatigue group (the mice in this group were kept running on  a treadmill . for120 minutes at a rate of 20 meters per minute, and morphine plus fatigue group. At the end of the experiments, blood samples were obtained from the corner of their eyes and were sent to the laboratory for measurement of muscle fatigue indexes including lactate dehydrogenase (LDH and creatine phosphokinase (CPK. Results: Administration of morphine to the fatigue group decreased running time compared with the control group (P=0.009. Furthermore, administration of morphine to the fatigue group significantly increased serum levels of LDH (P=0.009 and CPK (P=0.008. Conclusion: The present study showed that administration of a single dose of morphine in rats increases muscle fatigue biomarkers (LDH, CPK.

  14. Electrically-induced muscle fatigue affects feedforward mechanisms of control.

    Science.gov (United States)

    Monjo, F; Forestier, N

    2015-08-01

    To investigate the effects of focal muscle fatigue induced by electromyostimulation (EMS) on Anticipatory Postural Adjustments (APAs) during arm flexions performed at maximal velocity. Fifteen healthy subjects performed self-paced arm flexions at maximal velocity before and after the completion of fatiguing electromyostimulation programs involving the medial and anterior deltoids and aiming to degrade movement peak acceleration. APA timing and magnitude were measured using surface electromyography. Following muscle fatigue, despite a lower mechanical disturbance evidenced by significant decreased peak accelerations (-12%, pcontrol trials (p>.11 for all analyses). The fatigue signals evoked by externally-generated contractions seem to be gated by the Central Nervous System and result in postural strategy changes which aim to increase the postural safety margin. EMS is widely used in rehabilitation and training programs for its neuromuscular function-related benefits. However and from a motor control viewpoint, the present results show that the use of EMS can lead to acute inaccuracies in predictive motor control. We propose that clinicians should investigate the chronic and global effects of EMS on motor control. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Evaluation of Work Fatigue in Loading Workers Using Muscle Fatigue Assessment Method (MFA: A Case Study in a Brick Factory

    Directory of Open Access Journals (Sweden)

    Haji Omid Kalte

    2016-09-01

    Full Text Available Introduction and purpose: Work fatigue is one of the main causes of workrelated musculoskeletal disorders and reduced productivity in industry. Therefore, it is vital to evaluate work fatigue, especially muscle fatigue, to determine the permissible workload. This study aimed to evaluate muscle fatigue of brick field workers. Methods: This cross-sectional study was conducted on transportation sector workers in Pey Dezh Brick Production Company, Golestan, Iran in 2015. In this research, the qualitative of Muscle Fatigue Assessment (MFA method was used to assess the level of fatigue. Duration of each task and frequency of efforts were determined using the level of effort to obtain a numerical result for comparison with the standard level. Results: The evaluated task was to remove paired bricks from the conveyor and transfer them to trailer truck by workers. The final results revealed that lower back tolerated the most amount of pressure (score=323, followed by the shoulders and wrist of the right hand (scores=313, which were assigned to the fatigue level. Therefore, the highest total fatigue of workload was imposed on these body parts. Conclusion: According to the results of this study, the upper limbs of workers incurred the highest burden in lifting bricks, and there was a in risk of WMSDS due to high workload. Therefore, it is recommended that working systems be improved through rotating work and reducing the number of transferred bricks to avoid risks caused by accumulation of fatigue.

  16. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    Science.gov (United States)

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

  17. Exercise-induced muscle fatigue in the unaffected knee joint and its influence on postural control and lower limb kinematics in stroke patients

    Directory of Open Access Journals (Sweden)

    Sun Wook Park

    2017-01-01

    Full Text Available This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.

  18. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.

    Science.gov (United States)

    Lin, Cheng-Feng; Lee, Wan-Chin; Chen, Yi-An; Hsue, Bih-Jen

    2016-08-01

    Fatigue in ballet dancers may lead to injury, particularly in the lower extremities. However, few studies have investigated the effects of fatigue on ballet dancers' performance and movement patterns. Thus, the current study examines the effect of fatigue on the balance, movement pattern, and muscle activities of the lower extremities in ballet dancers. Twenty healthy, female ballet dancers performed releve on demi-pointe before and after fatigue. The trajectory of the whole body movement and the muscle activities of the major lower extremity muscles were recorded continuously during task performance. The results show that fatigue increases the medial-lateral center of mass (COM) displacement and hip and trunk motion, but decreases the COM velocity and ankle motion. Moreover, fatigue reduces the activities of the hamstrings and tibialis anterior, but increases that of the soleus. Finally, greater proximal hip and trunk motions are applied to compensate for the effects of fatigue, leading to a greater COM movement. Overall, the present findings show that fatigue results in impaired movement control and may therefore increase the risk of dance injury.

  19. Effects of age and acute muscle fatigue on reactive postural control in healthy adults.

    Science.gov (United States)

    Papa, Evan V; Foreman, K Bo; Dibble, Leland E

    2015-12-01

    Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-min (T15) and 30-min (T30) of rest. Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 min of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. EFFECTS OF AGE AND ACUTE MUSCLE FATIGUE ON REACTIVE POSTURAL CONTROL IN HEALTHY ADULTS

    Science.gov (United States)

    Papa, Evan V.; Foreman, K. Bo; Dibble, Lee E.

    2015-01-01

    BACKGROUND Falls can cause moderate to severe injuries such as hip fractures and head trauma in older adults. While declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. The purpose of this investigation was to examine the effects of acute lower extremity muscle fatigue and age on reactive postural control in healthy adults. METHODS A sample of 16 individuals participated in this study (8 healthy older adults and 8 healthy young persons). Whole body kinematic and kinetic data were collected during anterior and posterior reproducible fall tests before (T0) and immediately after (T1) eccentric muscle fatiguing exercise, as well as after 15-minutes (T15) and 30-minutes (T30) of rest. FINDINGS Lower extremity joint kinematics of the stepping limb during the support (landing) phase of the anterior fall were significantly altered by the presence of acute muscle fatigue. Step velocity was significantly decreased during the anterior falls. Statistically significant main effects of age were found for step length in both fall directions. Effect sizes for all outcomes were small. No statistically significant interaction effects were found. INTERPRETATION Muscle fatigue has a measurable effect on lower extremity joint kinematics during simulated falls. These alterations appear to resolve within 15 minutes of recovery. The above deficits, coupled with a reduced step length, may help explain the increased fall risk in older adults. PMID:26351001

  1. Muscle Fatigue Analysis of the Deltoid during Three Head-Related Static Isometric Contraction Tasks

    Directory of Open Access Journals (Sweden)

    Wenxiang Cui

    2017-05-01

    Full Text Available This study aimed to investigate the fatiguing characteristics of muscle-tendon units (MTUs within skeletal muscles during static isometric contraction tasks. The deltoid was selected as the target muscle and three head-related static isometric contraction tasks were designed to activate three heads of the deltoid in different modes. Nine male subjects participated in this study. Surface electromyography (SEMG signals were collected synchronously from the three heads of the deltoid. The performances of five SEMG parameters, including root mean square (RMS, mean power frequency (MPF, the first coefficient of autoregressive model (ARC1, sample entropy (SE and Higuchi’s fractal dimension (HFD, in quantification of fatigue, were evaluated in terms of sensitivity to variability ratio (SVR and consistency firstly. Then, the HFD parameter was selected as the fatigue index for further muscle fatigue analysis. The experimental results demonstrated that the three deltoid heads presented different activation modes during three head-related fatiguing contractions. The fatiguing characteristics of the three heads were found to be task-dependent, and the heads kept in a relatively high activation level were more prone to fatigue. In addition, the differences in fatiguing rate between heads increased with the increase in load. The findings of this study can be helpful in better understanding the underlying neuromuscular control strategies of the central nervous system (CNS. Based on the results of this study, the CNS was thought to control the contraction of the deltoid by taking the three heads as functional units, but a certain synergy among heads might also exist to accomplish a contraction task.

  2. Performance Demands in Softball Pitching: A Comprehensive Muscle Fatigue Study.

    Science.gov (United States)

    Corben, Jeffrey S; Cerrone, Sara A; Soviero, Julie E; Kwiecien, Susan Y; Nicholas, Stephen J; McHugh, Malachy P

    2015-08-01

    Monitoring pitch count is standard practice in minor league baseball but not in softball because of the perception that fast-pitch softball pitching is a less stressful motion. To examine muscle fatigue after fast-pitch softball performances to provide an assessment of performance demand. Descriptive laboratory study. Bilateral strength measurements (handheld dynamometer) were made on 19 female softball pitchers (mean age [±SD], 15.2 ± 1.2 years) before and after pitching a game (mean number of pitches, 99 ± 21; mean innings pitched, 5 ± 1). A total of 20 tests were performed on the dominant and nondominant sides: forearm (grip, wrist flexion/extension, pronation/supination, elbow flexion/extension), shoulder (flexion, abduction/adduction, external/internal rotation, empty can test), scapula (middle/lower trapezius, rhomboid), and hip (hip flexion/extension, abduction/adduction). Fatigue (percentage strength loss) was categorized based on bilateral versus unilateral presentation using paired t tests: bilateral symmetric (significant on dominant and nondominant and not different between sides), bilateral asymmetric (significant on dominant and nondominant but significantly greater on dominant), unilateral asymmetric (significant on dominant only and significantly greater than nondominant), or unilateral equivocal (significant on dominant only but not different from nondominant). Bilateral symmetric fatigue was evident for all hip (dominant, 19.3%; nondominant, 15.2%) and scapular tests (dominant, 19.2%; nondominant, 19.3%). In general, shoulder tests exhibited bilateral asymmetric fatigue (dominant, 16.9%; nondominant, 11.6%). Forearm tests were more variable, with bilateral symmetric fatigue in the elbow flexors (dominant, 22.5%; nondominant, 19.2%), and wrist flexors (dominant, 21.6%; nondominant, 19.0%), bilateral asymmetric fatigue in the supinators (dominant, 21.8%; nondominant, 15.5%), unilateral asymmetric fatigue in the elbow extensors (dominant, 22

  3. Analysis of muscle fatigue conditions using time-frequency images and GLCM features

    Directory of Open Access Journals (Sweden)

    Karthick P.A.

    2016-09-01

    Full Text Available In this work, an attempt has been made to differentiate muscle non-fatigue and fatigue conditions using sEMG signals and texture representation of the time-frequency images. The sEMG signals are recorded from the biceps brachii muscle of 25 healthy adult volunteers during dynamic fatiguing contraction. The first and last curls of these signals are considered as the non-fatigue and fatigue zones, respectively. These signals are preprocessed and the time-frequency spectrum is computed using short time fourier transform (STFT. Gray-Level Co-occurrence Matrix (GLCM is extracted from low (15–45 Hz, medium (46–95 Hz and high (96–150 Hz frequency bands of the time-frequency images. Further, the features such as contrast, correlation, energy and homogeneity are calculated from the resultant matrices. The results show that the high frequency band based features are able to differentiate non-fatigue and fatigue conditions. The features such as correlation, contrast and homogeneity extracted at angles 0°, 45°, 90°, and 135° are found to be distinct with high statistical significance (p < 0.0001. Hence, this framework can be used for analysis of neuromuscular disorders.

  4. Perceived exertion during muscle fatigue as reflected in movement-related cortical potentials: an event-related potential study.

    Science.gov (United States)

    Guo, Feng; Sun, Yong-Jun; Zhang, Ri-Hui

    2017-02-08

    The aim of this study was to explore the mechanism on perceived exertion during muscle fatigue. A total of 15 individuals in the fatigue group and 13 individuals in the nonfatigue group were recruited into this study, performing 200 intermittent handgrip contractions with 30% maximal voluntary contraction. The force, surface electromyography (sEMG), movement-related cortical potentials (MRCPs), and rating perception of effort (RPE) were combined to evaluate the perceived exertion during muscle fatigue. The maximal handgrip force significantly decreased (Pfatigue. The RPE scores reported by the individuals and the motor potential amplitude of MRCPs in the fatigue group significantly increased (Pfatigue but could also reflect the peripheral local muscle fatigue.

  5. Influence of Synchronized Dead Point Elimination Crank on Cyclist Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Khadijah Akmal

    2016-01-01

    Full Text Available The aim of this study was to investigate the influence of newly proposed bicycle’s crank to crank angle setting on the Vastus Lateralis (VL and Bicep Femoris (BF muscle activity during cycling. Procedures of Conconi Test were used throughout the experiment for the data collection purpose. The muscles activities were recorded using surface electromyography and software LabChart7. The raw data were further processed in time (Root-Mean-Square, RMS and frequency (Mean Power Frequency, MPF domain. It was found that 0° crank to crank setting (similar to conventional crank to crank angle setting caused the prime mover VL (Normalized RMS = 0.119 to fatigue more than BF (Normalized RMS = 0.102. This setting is expected to decrease the cycling performance. In addition, −5° is the best crank to crank angle setting that causes least fatigue to both VL and BF. In short, to increase the cycling performance by avoiding the fatigue to the main muscles, −5° is the suggested as setting angle for the proposed crank design.

  6. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Directory of Open Access Journals (Sweden)

    Cristina Roldán-Jiménez

    Full Text Available Sit-to-stand (STS tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG, biceps femoris (BF, vastus medialis of the quadriceps (QM, the abdominal rectus (AR, erector spinae (ES, rectus femoris (RF, soleus (SO and the tibialis anterior (TA. Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  7. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Science.gov (United States)

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  8. Measuring the interactions between different locations in a muscle to monitor localized muscle fatigue.

    Science.gov (United States)

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2017-07-01

    In this study we investigated a technique for estimating the progression of localized muscle fatigue. This technique measures the dependence between motor units using high density surface electromyogram (HD-sEMG) and is based on the Normalized Mutual Information (NMI) measure. The NMI between every pair combination of the electrode array is computed to measure the interactions between electrodes. Participants in the experiment had an array of 64 electrodes (16 by 4) placed over the TA of their dominate leg such that the columns of the array ran parallel with the muscle fibers. The HD-sEMG was recorded whilst the participants maintained an isometric dorsiflexion with their dominate foot until task failure at 40% and 80% of their maximum voluntary contraction (MVC). The interactions between different locations over the muscle were computed using the recorded HD-sEMG signals. The results show that the average interactions between various locations over the TA significantly increased during fatigue at both levels of contraction. This can be attributed to the dependence in the motor units.

  9. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players

    DEFF Research Database (Denmark)

    Zebis, M K; Bencke, J; Andersen, L L

    2011-01-01

    In sports, like team handball, fatigue has been associated with an increased risk of anterior cruciate ligament (ACL) injury. While effects of fatigue on muscle function are commonly assessed during maximal isometric voluntary contraction (MVC), such measurements may not relate to the muscle...... function during match play. The purpose of this study was to investigate the effect of muscle fatigue induced by a simulated handball match on neuromuscular strategy during a functional sidecutting movement, associated with the incidence of ACL injury. Fourteen female team handball players were tested...

  10. Effects of muscle fatigue on the usability of a myoelectric human-computer interface.

    Science.gov (United States)

    Barszap, Alexander G; Skavhaug, Ida-Maria; Joshi, Sanjay S

    2016-10-01

    Electromyography-based human-computer interface development is an active field of research. However, knowledge on the effects of muscle fatigue for specific devices is limited. We have developed a novel myoelectric human-computer interface in which subjects continuously navigate a cursor to targets by manipulating a single surface electromyography (sEMG) signal. Two-dimensional control is achieved through simultaneous adjustments of power in two frequency bands through a series of dynamic low-level muscle contractions. Here, we investigate the potential effects of muscle fatigue during the use of our interface. In the first session, eight subjects completed 300 cursor-to-target trials without breaks; four using a wrist muscle and four using a head muscle. The wrist subjects returned for a second session in which a static fatiguing exercise took place at regular intervals in-between cursor-to-target trials. In the first session we observed no declines in performance as a function of use, even after the long period of use. In the second session, we observed clear changes in cursor trajectories, paired with a target-specific decrease in hit rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Exercise-induced quadriceps muscle fatigue in men and women: effects of arterial oxygen content and respiratory muscle work.

    Science.gov (United States)

    Dominelli, Paolo B; Molgat-Seon, Yannick; Griesdale, Donald E G; Peters, Carli M; Blouin, Jean-Sébastien; Sekhon, Mypinder; Dominelli, Giulio S; Henderson, William R; Foster, Glen E; Romer, Lee M; Koehle, Michael S; Sheel, A William

    2017-08-01

    High work of breathing and exercise-induced arterial hypoxaemia (EIAH) can decrease O 2 delivery and exacerbate exercise-induced quadriceps fatigue in healthy men. Women have a higher work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles and develop EIAH. Despite a greater reduction in men's work of breathing, the attenuation of quadriceps fatigue was similar between the sexes. The degree of EIAH was similar between sexes, and regardless of sex, those who developed the greatest hypoxaemia during exercise demonstrated the most attenuation of quadriceps fatigue. Based on our previous finding that women have a greater relative oxygen cost of breathing, women appear to be especially susceptible to work of breathing-related changes in quadriceps muscle fatigue. Reducing the work of breathing or eliminating exercise-induced arterial hypoxaemia (EIAH) during exercise decreases the severity of quadriceps fatigue in men. Women have a greater work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles, and demonstrate EIAH, suggesting women may be especially susceptible to quadriceps fatigue. Healthy subjects (8 male, 8 female) completed three constant load exercise tests over 4 days. During the first (control) test, subjects exercised at ∼85% of maximum while arterial blood gases and work of breathing were assessed. Subsequent constant load exercise tests were iso-time and iso-work rate, but with EIAH prevented by inspiring hyperoxic gas or work of breathing reduced via a proportional assist ventilator (PAV). Quadriceps fatigue was assessed by measuring force in response to femoral nerve stimulation. For both sexes, quadriceps force was equally reduced after the control trial (-27 ± 2% baseline) and was attenuated with hyperoxia and PAV (-18 ± 1 and -17 ± 2% baseline, P Physiology © 2017 The Physiological Society.

  12. Muscle K+, Na+, and Cl- disturbances and Na+-K+ pump inactivation: implications for fatigue

    DEFF Research Database (Denmark)

    McKenna, Michael J; Bangsbo, Jens; Renaud, Jean-Marc

    2008-01-01

    (+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.......Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx......, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 m...

  13. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Science.gov (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  14. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  15. Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano- and electromyograms

    DEFF Research Database (Denmark)

    Søgaard, K; Blangsted, A K; Jørgensen, L V

    2003-01-01

    The focus of the present study is the long term element of muscle fatigue provoked by prolonged intermittent contractions at submaximal force levels and analysed by force, surface electromyography (EMG) and mechanomyogram (MMG). It was hypothesized that fatigue related changes in mechanical...... performance of the biceps muscle are more strongly reflected in low than in high force test contractions, more prominent in the MMG than in the EMG signal and less pronounced following contractions controlled by visual compared to proprioceptive feedback. Further, it was investigated if fatigue induced by 30...... min intermittent contractions at 30% as well as 10% of maximal voluntary contraction (MVC) lasted more than 30 min recovery. In six male subjects the EMG and MMG were recorded from the biceps brachii muscle during three sessions with fatiguing exercise at 10% with visual feedback and at 30% MVC...

  16. Local Muscle Fatigue and 3D Kinematics of the Cervical Spine in Healthy Subjects.

    Science.gov (United States)

    Niederer, Daniel; Vogt, Lutz; Pippig, Torsten; Wall, Rudolf; Banzer, Winfried

    2016-01-01

    The authors aimed to further explore the effects of local muscle fatigue on cervical 3D kinematics and the interrelationship between these kinematic characteristics and local muscle endurance capacity in the unimpaired cervical spine. Twenty healthy subjects (38 ± 10 years; 5 women) performed 2 × 10 maximal cervical flexion-extension movements. Isometric muscle endurance tests (prone/supine lying) were applied between sets to induce local muscle fatigue quantified by Borg scale rates of perceived exertion (RPE) and slope in mean power frequency (MPF; surface electromyography; m. sternocleidomastoideus, m. splenius capitis). Cervical motion characteristics (maximal range of motion [ROM], coefficient of variation of the 10 repetitive movements, mean angular velocity, conjunct movements in transversal and frontal plane) were calculated from raw 3D ultrasonic movement data. Average isometric strength testing duration for flexion and extension correlated to the cervical ROM (r = .49/r = .48; p .05). Although subjects' cervical muscle endurance capacity and motor output seems to be conjugated, no impact of local cervical muscle fatigue on motor function was shown. These findings underline the importance of complementary measures to address muscular performance and kinematic characteristics in outcome assessment and functional rehabilitation of the cervical spine.

  17. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    International Nuclear Information System (INIS)

    Herrera, V; Romero, J F; Amestegui, M

    2011-01-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  18. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V; Romero, J F [Engineering, Modeling and Applied Social Sciences Center, ABC Federal University, Santo Andr - SP (Brazil); Amestegui, M, E-mail: victoria.herrera@ufabc.edu.br [Engineering Faculty, Electronics Engineering, Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of)

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  19. Correction to: Direct effects of doxorubicin on skeletal muscle contribute to fatigue

    NARCIS (Netherlands)

    Norren, van K.; Helvoort, van A.; Agriles, J.M.; Tuijl, van S.; Arts, K.; Gorselink, M.; Laviano, A.; Kegler, D.; Haagsman, H.P.; Beek, van der E.M.

    2009-01-01

    Chemotherapy-induced fatigue is a multidimensional symptom. Oxidative stress has been proposed as a working mechanism for anthracycline-induced cardiotoxicity. In this study, doxorubicin (DOX) was tested on skeletal muscle function. Doxorubicin induced impaired ex vivo skeletal muscle relaxation

  20. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players.

    Science.gov (United States)

    Zebis, M K; Bencke, J; Andersen, L L; Alkjaer, T; Suetta, C; Mortensen, P; Kjaer, M; Aagaard, P

    2011-12-01

    In sports, like team handball, fatigue has been associated with an increased risk of anterior cruciate ligament (ACL) injury. While effects of fatigue on muscle function are commonly assessed during maximal isometric voluntary contraction (MVC), such measurements may not relate to the muscle function during match play. The purpose of this study was to investigate the effect of muscle fatigue induced by a simulated handball match on neuromuscular strategy during a functional sidecutting movement, associated with the incidence of ACL injury. Fourteen female team handball players were tested for neuromuscular activity [electromyography (EMG)] during a sidecutting maneuver on a force plate, pre and post a simulated handball match. MVC was obtained during maximal isometric quadriceps and hamstring contraction. The simulated handball match consisted of exercises mimicking handball match activity. Whereas the simulated handball match induced a decrease in MVC strength for both the quadriceps and hamstring muscles (Phandball match play. Thus, screening procedures should involve functional movements to reveal specific fatigue-induced deficits in ACL-agonist muscle activation during high-risk phases of match play. © 2010 John Wiley & Sons A/S.

  1. The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients.

    Directory of Open Access Journals (Sweden)

    Jean-Alexandre Boucher

    Full Text Available Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP. This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control.Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE, variable error (VE as well as absolute error (AE in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG.Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm. Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm and AE (13.71 ± 3.45 Nm mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm and AE (16.29 ± 2.82 Nm mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores.Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle fatigue protocol. Muscle vibration

  2. The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Normand, Martin C.

    2015-01-01

    Introduction Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP). This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control. Methods Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE), variable error (VE) as well as absolute error (AE) in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG). Results Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm) than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm). Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm) and AE (13.71 ± 3.45 Nm) mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm) and AE (16.29 ± 2.82 Nm) mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores. Conclusions Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle

  3. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.

    Science.gov (United States)

    Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C

    2013-10-01

    Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy.

    Science.gov (United States)

    Taelman, Joachim; Vanderhaegen, Joke; Robijns, Mieke; Naulaers, Gunnar; Spaepen, Arthur; Van Huffel, Sabine

    2011-01-01

    This study looks at various parameters, derived from surface electromyography (sEMG) and Near Infrared Spectroscopy (NIRS) and their relationship in muscle fatigue during a static elbow flexion until exhaustion as well as during a semidynamic exercise.We found a linear increasing trend for a corrected amplitude parameter and a linear decreasing slope for the frequency content of the sEMG signal. The tissue oxygenation index (TOI) extracted from NIRS recordings showed a four-phase response for all the subjects. A strong correlation between frequency content of the sEMG signal and TOI was established. We can conclude that both sEMG and NIRS give complementary information concerning muscle fatigue.

  5. Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Lara McManus

    2017-11-01

    Full Text Available Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC. A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045. The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04. Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03. MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively, and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04. This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the

  6. Nonlinear smooth orthogonal decomposition of kinematic features of sawing reconstructs muscle fatigue evolution as indicated by electromyography.

    Science.gov (United States)

    Segala, David B; Gates, Deanna H; Dingwell, Jonathan B; Chelidze, David

    2011-03-01

    Tracking or predicting physiological fatigue is important for developing more robust training protocols and better energy supplements and/or reducing muscle injuries. Current methodologies are usually impractical and/or invasive and may not be realizable outside of laboratory settings. It was recently demonstrated that smooth orthogonal decomposition (SOD) of phase space warping (PSW) features of motion kinematics can identify fatigue in individual muscle groups. We hypothesize that a nonlinear extension of SOD will identify more optimal fatigue coordinates and provide a lower-dimensional reconstruction of local fatigue dynamics than the linear SOD. Both linear and nonlinear SODs were applied to PSW features estimated from measured kinematics to reconstruct muscle fatigue dynamics in subjects performing a sawing motion. Ten healthy young right-handed subjects pushed a weighted handle back and forth until voluntary exhaustion. Three sets of joint kinematic angles were measured from the right upper extremity in addition to surface electromyography (EMG) recordings. The SOD coordinates of kinematic PSW features were compared against independently measured fatigue markers (i.e., mean and median EMG spectrum frequencies of individual muscle groups). This comparison was based on a least-squares linear fit of a fixed number of the dominant SOD coordinates to the appropriate local fatigue markers. Between subject variability showed that at most four to five nonlinear SOD coordinates were needed to reconstruct fatigue in local muscle groups, while on average 15 coordinates were needed for the linear SOD. Thus, the nonlinear coordinates provided a one-order-of-magnitude improvement over the linear ones.

  7. Determination of muscle fatigue index for strength training in patients with Duchenne dystrophy

    Directory of Open Access Journals (Sweden)

    Adriano Rodrigues Oliveira

    Full Text Available INTRODUCTION: Muscle weakness is the most prominent impairment in Duchenne muscular dystrophy (DMD and often involves the loss of functional ability as well as other limitations related to daily living. Thus, there is a need to maintain muscle strength in large muscle groups, such as the femoral quadriceps, which is responsible for diverse functional abilities. However, the load and duration of training for such rehabilitation has proven to be a great unknown, mainly due to the undesired appearance of muscle fatigue, which is a severe factor for the injury of muscle fibers. OBJECTIVES: The aim of the present study was to determine a fatigue index by means of surface electromyography (EMG for the parameterization of muscle strengthening physiotherapy training. METHODS: A cross-sectional study (case series was carried out involving four patients with DMD. Three pairs of surface electrodes were placed on the motor point of the Rectus femoris, Vastus lateralis and Vastus medialis of the dominant limb, maintaining the knee at 60º of flexion. The participants were instructed to perform the extension movement of this joint at four strength levels (100%, 80%, 60% and 40% of maximal voluntary isometric contraction. RESULTS: The slope of the linear regression line was used for the determination of the fatigue index, performed by Pearson's test on the median frequency of each strength level. CONCLUSION: Electromyographic measurements of the strength index for muscle training proved to be a simple accessible assessment method, as well as an extremely valuable tool, allowing the design of a muscle strength training program with an individualized load threshold.

  8. Handgrip performance in relation to self-perceived fatigue, physical functioning and circulating IL-6 in elderly persons without inflammation

    Directory of Open Access Journals (Sweden)

    Gorus Ellen

    2007-03-01

    Full Text Available Abstract Background Low grip strength is recognized as one of the characteristics of frailty, as are systemic inflammation and the sensation of fatigue. Contrary to maximal grip strength, the physical resistance of the muscles to fatigue is not often included in the clinical evaluation of elderly patients. The aim of this study was to investigate if the grip strength and the resistance of the handgrip muscles to fatigue are related to self-perceived fatigue, physical functioning and circulating IL-6 in independently living elderly persons. Methods Forty elderly subjects (15 female and 25 male, mean age 75 ± 5 years were assessed for maximal grip strength, as well as for fatigue resistance and grip work (respectively time and work delivered until grip strength drops to 50% of its maximum during sustained contraction, self perceived fatigue (VAS-Fatigue, Mob-Tiredness scale and the energy & fatigue items of the WHOQOL-100, self rated physical functioning (domain of physical functioning on the MOS short-form and circulating IL-6. Relationships between handgrip performance and the other outcome measures were assessed. Results In the male participants, fatigue resistance was negatively related to actual sensation of fatigue (VAS-F, p Conclusion Well functioning elderly subjects presenting less handmuscle fatigue resistance and weaker grip strength are more fatigued, experience more tiredness during daily activities and are more bothered by fatigue sensations. Body weight seems to play an important role in the relation of muscle performance to fatigue perception. Elderly patients complaining from fatigue should be physically assessed, both evaluating maximal grip strength and fatigue resistance, allowing the calculation of grip work, which integrates both parameters. Grip work might best reflect the functional capacity resulting from the development of a certain strength level in relation to the time it can be maintained.

  9. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women.

    Science.gov (United States)

    Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat

    2013-09-01

    The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.

  10. The Effects of Cervical Muscle Fatigue on Balance – A Study with Elite Amateur Rugby League Players

    Directory of Open Access Journals (Sweden)

    Guy Gosselin, Michael J. Fagan

    2014-06-01

    Full Text Available Neck muscle fatigue has been shown to alter an individual’s balance in a similar way to that reported in subjects suffering from neck pain or subjects that have suffered a neck injury. The main purpose of the present study was to quantify the effects of neck fatigue on neck muscle electromyography (EMG activity, balance, perceived fatigue and perceived stability. Forty four elite amateur rugby league players resisted with their neck muscles approximately 35% maximum voluntary isometric contraction (MVIC force for 15 minutes in eight different directions. Sway velocity and surface electromyography were measured. Questionnaires were used to record perceived effort and stability. Repeated measures ANOVA showed that after 15 minutes isometric contraction, significant changes were seen in sway velocity, perceived sway and EMG median frequency. There were no differences in perceived efforts. The changes in sway velocity and median frequency were more pronounced after extension and right and left posterior oblique contractions but there was no significant difference in sway velocity after contraction in the right lateral flexion, right anterior oblique and left anterior oblique direction of contraction. All the subjects showed oriented whole-body leaning in the plane of the contraction. The experiment produced significantly altered and perceived altered balance in this group of physically fit individuals. The results may contribute to our understanding of normal functional capacities of athletes and will provide a basis for further investigation in healthy non-athletes and participants that have suffered neck injuries. This may ultimately help develop accurate and valid rehabilitation outcome measures.

  11. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    Science.gov (United States)

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  12. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

    Directory of Open Access Journals (Sweden)

    Martin eBehrens

    2015-05-01

    Full Text Available Previously published studies on the effect of short-term endurance training on the neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after eight weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms and isometric maximum voluntary contraction of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave, peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that the endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue

  13. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.

    Science.gov (United States)

    Kahl, Lorenz; Hofmann, Ulrich G

    2016-11-01

    This work compared the performance of six different fatigue detection algorithms quantifying muscle fatigue based on electromyographic signals. Surface electromyography (sEMG) was obtained by an experiment from upper arm contractions at three different load levels from twelve volunteers. Fatigue detection algorithms mean frequency (MNF), spectral moments ratio (SMR), the wavelet method WIRM1551, sample entropy (SampEn), fuzzy approximate entropy (fApEn) and recurrence quantification analysis (RQA%DET) were calculated. The resulting fatigue signals were compared considering the disturbances incorporated in fatiguing situations as well as according to the possibility to differentiate the load levels based on the fatigue signals. Furthermore we investigated the influence of the electrode locations on the fatigue detection quality and whether an optimized channel set is reasonable. The results of the MNF, SMR, WIRM1551 and fApEn algorithms fell close together. Due to the small amount of subjects in this study significant differences could not be found. In terms of disturbances the SMR algorithm showed a slight tendency to out-perform the others. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game.

    Science.gov (United States)

    Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G; Krustrup, Peter; Mohr, Magni

    2018-03-01

    We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12) participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement ( p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip abductors (6 ± 1%) demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery.

  15. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game

    Directory of Open Access Journals (Sweden)

    Fransson Dan

    2018-03-01

    Full Text Available We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12 participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement (p ≤ 0.05 at 0 h post-match with knee flexors (14 ± 3% and hip abductors (6 ± 1% demonstrating the largest and smallest impairment. However, 24 h into recovery all individual muscles had recovered. When pooled in specific muscle groups, the trunk muscles and knee joint muscles presented the largest decline 0 h post-match, 11 ± 2% for both, with the performance decrement still persistent (4 ± 1%, p ≤ 0.05 for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin and 24 h into recovery (creatine kinase, respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02. In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing the greatest performance decrement. Fatigue and recovery patterns vary markedly between muscle groups and players, yet trunk muscles display the slowest recovery.

  16. Fatigue resistance of Cr-Ni-Mo-V steel

    International Nuclear Information System (INIS)

    Naumchenkov, N.E.; Filimonova, O.V.; Borisov, I.A.

    1985-01-01

    A study was made on the effect of additional alloying (Ni, Ni+Co), stress concentration, surface plastic strain on fatigue resistance of rotor steel of Cr-Ni-Mo-V-composition. It is shown that the steel with decreased carbon content possesses high complex of mechanical properties. Fatigue characteristics are not inferior to similar characteristics of steels of 25KhN3MFA type. Additional alloying of the steel containing 0.11...0.17% C and 4.5...4.7% N:, with niobium separately or niobium and cobalt in combination enabled to improve fatigue resistance of samles up to 25%. Strengthening of stress concentration zones by surface plastic strain is recommended for improving rotor suppporting 'nower under cyclic loading

  17. The effect of motor learning and fatigue on pre-activation of the lower extremity muscles during different jumps.

    Science.gov (United States)

    Kamelska, Anna M; Kot, Bartosz

    2017-09-22

    The first step in identifying risk factors for injuries is to characterize the myoelectric activity of different muscles after ground contact, especially when fatigue is a limiting factor. This study aimed at: (a) recording the myoelectric activity of calf muscles after ground contact during different types of jumps and (b) investigating the effect of motor learning and fatigue on muscle pre-activation. Twenty four male students aged 24.3 ± 1.2 years old performed three different motor activities: (a) Jump from a box with counter landing (JCL) on 30x30 cm plate (b) Drop jump with bounce drop jump (BDJ) and (c) BDJ followed by a jump on 51-cm step. The surface EMG was used to examine the following muscles: m. tibialis anterior (TA), m. gastrocnemius medialis (GM), m. gastrocnemius lateralis (GL), and m. soleus (S). The measurements were taken during different jumps before and after motor learning and fatigue stimulus. There were significant differences in pre-activation for TA between JCL and BDJ followed by a jump under the influence of fatigue (p<0.05). The differences were observed also during BDJ between non-fatigued and fatigued conditions. There was a statistically significant difference for GL between BDJ pre- and post-movement motor learning and BDJ pre- and post-fatigue influence. Current results indicate that myoelectric activity of muscles during motor activities is different, and the effect of motor learning and fatigue was shown. Thus, it could be important in the injury prevention in sport.

  18. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    Science.gov (United States)

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  19. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.

    Science.gov (United States)

    Karthick, P A; Makaram, Navaneethakrishna; Ramakrishnan, S

    2014-01-01

    Muscle fatigue is a neuromuscular condition where muscle performance decreases due to sustained or intense contraction. It is experienced by both normal and abnormal subjects. In this work, an attempt has been made to analyze the progression of muscle fatigue in biceps brachii muscles using surface electromyography (sEMG) signals. The sEMG signals are recorded from fifty healthy volunteers during dynamic contractions under well defined protocol. The acquired signals are preprocessed and segmented in to six equal parts for further analysis. The features, such as activity, mobility, complexity, sample entropy and spectral entropy are extracted from all six zones. The results are found showing that the extracted features except complexity feature have significant variations in differentiating non-fatigue and fatigue zone respectively. Thus, it appears that, these features are useful in automated analysis of various neuromuscular activities in normal and pathological conditions.

  20. Dynamic stability control in forward falls: postural corrections after muscle fatigue in young and older adults.

    Science.gov (United States)

    Mademli, Lida; Arampatzis, Adamantios; Karamanidis, Kiros

    2008-06-01

    Many studies report that muscle strength loss may alter the human system's capacity to generate rapid force for balance corrections after perturbations, leading to deficient recovery behaviours. Yet little is known regarding the effect of modifications in the neuromuscular system induced by fatigue on dynamic stability control during postural perturbations. This study investigates the effect of muscle strength decline induced by fatiguing contractions on the dynamic stability control of young and older adults during forward falls. Eleven young and eleven older male adults had to regain balance after sudden falls before and after submaximal fatiguing knee extension-flexion contractions. Young subjects had a higher margin of stability than older ones before and after the fatiguing task. This reflects their enhanced ability in using mechanisms for maintaining dynamic stability (i.e. a greater base of support). The margin of stability, the boundary of the base of support and the position of the extrapolated centre of mass, remained unaffected by the reduction in muscle strength induced by the fatiguing contractions, indicating an appropriate adjustment of the motor commands to compensate the deficit in muscle strength. Both young and older adults were able to counteract the decreased horizontal ground reaction forces after the fatiguing task by flexing their knee to a greater extent, leading to similar decreases in the horizontal velocity of centre of mass as in the pre fatigue condition. The results demonstrate the ability of the central nervous system to rapidly modify the execution of postural corrections including mechanisms for maintaining dynamic stability.

  1. The twitch interpolation technique for study of fatigue of human quadriceps muscle

    DEFF Research Database (Denmark)

    Bülow, P M; Nørregaard, J; Mehlsen, J

    1995-01-01

    The aim of the study was to examine if the twitch interpolation technique could be used to objectively measure fatigue in the quadriceps muscle in subjects performing submaximally. The 'true' maximum isometric quadriceps torque was determined in 21 healthy subject using the twitch interpolation...... technique. Then an endurance test was performed in which the subjects made repeated isometric contractions at 50% of the 'true' maximum torque for 4 s, separated by 6 s rest periods. During the test, the force response to single electrical stimulation (twitch amplitude) was measured at 50% and 25......). In conclusion, the twitch technique can be used for objectively measuring fatigue of the quadriceps muscle....

  2. Acoustic Correlates of Fatigue in Laryngeal Muscles: Findings for a Criterion-Based Prevention of Acquired Voice Pathologies

    Science.gov (United States)

    Boucher, Victor J.

    2008-01-01

    Purpose: The objective was to identify acoustic correlates of laryngeal muscle fatigue in conditions of vocal effort. Method: In a previous study, a technique of electromyography (EMG) served to define physiological signs of "voice fatigue" in laryngeal muscles involved in voicing. These signs correspond to spectral changes in contraction…

  3. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2013-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. A wireless Bluetooth transmission sEMG measurement system with a sampling frequency of 2 KHz is developed. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. As fatigue increases, the power spectrum of the sEMG shifts toward lower frequencies. The goal of this study is to evaluate the sensitivity of empirical mode decomposition (EMD) quantifying the electrical manifestations of the local muscle fatigue during exercising in health people. We also compared this method with the raw data and discrete wavelet transform (DWT). Five male and five female volunteers participated. Each subject was asked to run on a multifunctional pedaled elliptical trainer for about 30 minutes, twice a week, and there were a total of six recording times for each subject with a wireless EMG recording system. The results show that sensitivity of the highest frequency component of EMD is better than the highest frequency component of DWT, and raw data.

  4. Development and characterization of fatigue resistant aramid reinforced aluminium laminates (ARALL) for fatigue critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2013-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced Aluminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft. (author)

  5. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    Science.gov (United States)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  6. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    International Nuclear Information System (INIS)

    Qaiser, M H; Umar, S; Nauman, S

    2014-01-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft

  7. Muscle fatigue in women with primary biliary cirrhosis: Spectral analysis of surface electromyography

    Science.gov (United States)

    Biagini, Maria Rosa; Tozzi, Alessandro; Grippo, Antonello; Galli, Andrea; Milani, Stefano; Amantini, Aldo

    2006-01-01

    AIM: To evaluate the myoelectric manifestations of peripheral fatigability in patients with primary biliary cirrhosis in comparison to healthy subjects. METHODS: Sixteen women with primary biliary cirrhosis without comorbidity and 13 healthy women matched for age and body mass index (BMI) completed the self-reported questionnaire fatigue impact scale. All subjects underwent surface electromyography assessment of peripheral fatigability. Anterior tibial muscle isometric voluntary contraction was executed for 20 s at 80% of maximal voluntary isometric contraction. During the exercise electromyographic signal series were recorded and root mean square (expression of central drive) as well as mean and median of electromyographic signal frequency spectrum (estimates of muscle fatigability) were computed. Each subject executed the trial two times. EMG parameters were normalized, then linear regression was applied and slopes were calculated. RESULTS: Seven patients were fatigued (median fatigue impact scale score: 38, range: 26-66) and 9 were not fatigued (median fatigue impact scale score: 7, range: 0-17). The maximal voluntary isometric contraction was similar in patients (82, 54-115 N) and controls (87, 74-101 N), and in patients with high (81, 54-115 N) and low fatigue impact scale scores (86, 65-106 N). Root mean square as well as mean and median of frequency spectrum slopes were compared with the Mann-Whitney U test, and no significant difference was found between fatigued and non-fatigued patients and controls. CONCLUSION: No instrumental evidence of peripheral fatigability can be found in women with primary biliary cirrhosis but no comorbidity, suggesting that fatigue in such patients may be of central origin. PMID:16937530

  8. SELECTIVE ACTIVATION OF THE RECTUS ABDOMINIS MUSCLE DURING LOW-INTENSITY AND FATIGUING TASKS

    Directory of Open Access Journals (Sweden)

    Paulo H. Marchetti

    2011-06-01

    Full Text Available In order to understand the potential selective activation of the rectus abdominis muscle, we conducted two experiments. In the first, subjects performed two controlled isometric exercises: the curl up (supine trunk raise and the leg raise (supine bent leg raise at low intensity (in which only a few motor units are recruited. In the second experiment, subjects performed the same exercises, but they were required to maintain a certain force level in order to induce fatigue. We recorded the electromyographic (EMG activities of the lower and upper portions of the rectus abdominis muscle during the exercises and used spatial-temporal and frequency analyses to describe muscle activation patterns. At low-intensity contractions, the ratio between the EMG intensities of the upper and lower portions during the curl up exercise was significantly larger than during the leg raise exercise (p = 0.02. A cross-correlation analysis indicated that the signals of the abdominal portions were related to each other and this relation did not differ between the tasks (p = 0.12. In the fatiguing condition, fatigue for the upper portion was higher than for the lower portion during the curl up exercise (p = 0.008. We conclude that different exercises evoked, to a certain degree, individualized activation of each part of the rectus abdominis muscle, but different portions of the rectus abdominis muscle contributed to the same task, acting like a functional unit. These results corroborate the relevance of varying exercise to modify activation patterns of the rectus abdominis muscle

  9. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    Science.gov (United States)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  10. Indoor mobility-related fatigue and muscle strength in nonagenarians

    DEFF Research Database (Denmark)

    Mänty, Minna; Ekmann, Anette; Thinggaard, Mikael

    2014-01-01

    needs to be considered when interpreting the results. Accordingly, participants without fatigue had significantly higher chances of being alive and having muscle strength above gender-specific median at first (RR 1.32, 95 % CI 1.07-1.58), second (RR 1.51, 1.06-1.96) and third (RR 1.39, 1...

  11. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Madsen, K.; Kiens, Bente

    1996-01-01

    1. The aim of this study was to examine the effect of muscle pH on muscle metabolism and development of fatigue during intense exercise. 2. Seven subjects performed intense exhaustive leg exercise on two occasions: with and without preceding intense intermittent arm exercise leading to high...... or moderate (control) blood lactate concentrations (HL and C, respectively). Prior to and immediately after each exercise bout, a muscle biopsy was taken from m. vastus lateralis of the active leg. Leg blood flow was measured and femoral arterial and venous blood samples were collected before and frequently...... during the exhaustive exercises. 3. The duration of the exercise was shorter in HL than in C (3.46 +/- 0.28 vs. 4.67 +/- 0.55 min; means +/- S.E.M.; P muscle pH was the same in C and HL (7.17 vs. 7.10), but at the end of exercise muscle pH was lower in HL than in C (6.82 vs. 6...

  12. Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors

    Science.gov (United States)

    Ye, Xin; Beck, Travis W.; Wages, Nathan P.; Carr, Joshua C.

    2018-01-01

    Objectives: To examine non-local muscle fatigue (NLMF) in both contralateral homologous and non-related heterogonous muscles for both sexes. Methods: Ten men and nine women participated in this study. After the familiarization visit, subjects completed four separate randomly sequenced experimental visits, during which the fatiguing interventions (six sets of 30-second maximal isometric contractions) were performed on either their right elbow flexors or knee extensors. Before (Pre-) and after (Post-) the fatiguing interventions, the isometric strength and the corresponding surface electromyographic (EMG) amplitude were measured for the non-exercised left elbow flexors or knee extensors. Results: For the non-exercised elbow flexors, the isometric strength decreased for both sexes (sex combined mean±SE: Pre vs. Post=339.67±18.02 N vs. 314.41±16.37 N; pisometric knee extension strength for men (Pre vs. Post =845.02±66.26 N vs. 817.39±67.64 N; p=0.019), but not for women. Conclusions: The presence of NMLF can be affected by factors such as sex and muscle being tested. Women are less likely to demonstrate NLMF in lower body muscle groups. PMID:29504584

  13. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  14. TARGETED RADIOFREQUENCY THERAPY FOR TRAINING INDUCED MUSCLE FATIGUE EFFECTIVE OR NOT

    Directory of Open Access Journals (Sweden)

    Ondrej Prouza

    2016-12-01

    Full Text Available Background: Training induced muscle fatigue (hereinafter also referred as TIMF is leading to unwanted consequences among sportsmen and actively sporting people such as decreased muscle strength and additional painful discomfort and mobility issues. The knowledge about the mechanisms of influencing the fatigue induced processes in muscle tissue is not comprehensive. The conventional manual techniques, cold patches and conventional physiotherapy have some effect in improving these conditions, however, finding effective methods to influence these consequences appears beneficial in sports medicine. Such method could be Radiofrequency therapy up to 0.5 MHz, known as Targeted Radiofrequency Therapy (hereinafter also referred as TR-Therapy. Aim of this self-controlled study is to evaluate the effect of the TR-Therapy for over-exertion management including the effect on decreased muscle strength, limited range of motion and possible painful discomfort. Materials: 7 healthy and actively sporting participants underwent through 2 stages (Active stage – including overexertion of the forearm flexors and subsequent TR-Therapy session; and Control stage - including overexertion of the forearm flexors and subsequent resting period. Data for muscle strength in kg, active Range of Motion (ROM in (º and Pain and discomfort perception by 10 point Visual Analog Scale (VAS were obtained and evaluated. Results: 31% increase in the muscle strength during the active stage was observed and respectively 12% during the control stage, with level of significance p0.05. Conclusions: The results of this study suggest TR-Therapy as effective solution for muscle strength restoration after TIMF.

  15. Attenuated fatigue in slow twitch skeletal muscle during isotonic exercise in rats with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Morten Munkvik

    Full Text Available During isometric contractions, slow twitch soleus muscles (SOL from rats with chronic heart failure (chf are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic contractions in chf and sham-operated rats. Six weeks following coronary artery ligation, infarcted animals were classified as failing (chf if left ventricle end diastolic pressure was >15 mmHg. During isoflurane anaesthesia, SOL with intact blood supply was stimulated (1s on 1s off at 30 Hz for 15 min and allowed to shorten isotonically against a constant afterload. Muscle temperature was maintained at 37°C. In resting muscle, maximum isometric force (F(max and the concentrations of ATP and CrP were not different in the two groups. During stimulation, F(max and the concentrations declined in parallel sham and chf. Fatigue, which was evident as reduced shortening during stimulation, was also not different in the two groups. The isometric force decline was fitted to a bi-exponential decay equation. Both time constants increased transiently and returned to initial values after approximately 200 s of the fatigue protocol. This resulted in a transient rise in baseline tension between stimulations, although this effect which was less prominent in chf than sham. Myosin light chain 2s phosphorylation declined in both groups after 100 s of isotonic contractions, and remained at this level throughout 15 min of stimulation. In spite of higher energy demand during isotonic than isometric contractions, both shortening capacity and rate of isometric force decline were as well or better preserved in fatigued SOL from chf rats than in sham. This observation is in striking contrast to previous reports which have employed isometric contractions to induce fatigue.

  16. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.

    Science.gov (United States)

    Macdonald, W A; Stephenson, D G

    2006-05-15

    Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.

  17. The reduction in fatigue crack growth resistance of dentin with depth.

    Science.gov (United States)

    Ivancik, J; Neerchal, N K; Romberg, E; Arola, D

    2011-08-01

    The fatigue crack growth resistance of dentin was characterized as a function of depth from the dentino-enamel junction. Compact tension (CT) specimens were prepared from the crowns of third molars in the deep, middle, and peripheral dentin. The microstructure was quantified in terms of the average tubule dimensions and density. Fatigue cracks were grown in-plane with the tubules and characterized in terms of the initiation and growth responses. Deep dentin exhibited the lowest resistance to the initiation of fatigue crack growth, as indicated by the stress intensity threshold (ΔK(th) ≈ 0.8 MPa•m(0.5)) and the highest incremental fatigue crack growth rate (over 1000 times that in peripheral dentin). Cracks in deep dentin underwent incremental extension under cyclic stresses that were 40% lower than those required in peripheral dentin. The average fatigue crack growth rates increased significantly with tubule density, indicating the importance of microstructure on the potential for tooth fracture. Molars with deep restorations are more likely to suffer from the cracked-tooth syndrome, because of the lower fatigue crack growth resistance of deep dentin.

  18. [Evaluating fatigue resistance effect of health food by near-infrared tissue oximeter].

    Science.gov (United States)

    Wu, Jian; Ding, Hai-shu; Ye, Da-tian

    2009-09-01

    Currently, chronic fatigue syndrome (CFS) seriously affects people's normal living and work. In the present paper, the physiological parameters, such as tissue oxygenation saturation and heart rate, were used to evaluate the subjects' fatigue degree, and the fatigue resistance capsule and coffee were taken as a measure to adjust the fatigue. Human tissue oxygen saturation (rSO2) can be monitored noninvasively and in real time by near infrared spectroscopy (NIRS) based on spatially-resolved spectroscopy. Aiming at those brainworkers who need to work in an office for a long time; two static experiments were designed to evaluate the fatigue degree of the subjects who either take the fatigue resistance capsules/coffee or not. The rSO2 and heart rate (HR) of the subjects in the experiment group and contrast group were measured respectively for fatigue evaluation. This work particularly analyzed the changes in rSO2 in these two groups. The results show that the rSO2 of subjects in the experiment group evidently increased compared to that in the contrast group when the subjects took the fatigue resistance capsule or coffee, thereby show that the health food can reduce the fatigue to a certain extent.

  19. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  20. Resistance exercise improves physical fatigue in women with fibromyalgia: a randomized controlled trial.

    Science.gov (United States)

    Ericsson, Anna; Palstam, Annie; Larsson, Anette; Löfgren, Monika; Bileviciute-Ljungar, Indre; Bjersing, Jan; Gerdle, Björn; Kosek, Eva; Mannerkorpi, Kaisa

    2016-07-30

    Fibromyalgia (FM) affects approximately 1-3 % of the general population. Fatigue limits the work ability and social life of patients with FM. A few studies of physical exercise have included measures of fatigue in FM, indicating that exercise can decrease fatigue levels. There is limited knowledge about the effects of resistance exercise on multiple dimensions of fatigue in FM. The present study is a sub-study of a multicenter randomized controlled trial in women with FM. The purpose of the present sub-study was to examine the effects of a person-centered progressive resistance exercise program on multiple dimensions of fatigue in women with FM, and to investigate predictors of the potential change in fatigue. A total of 130 women with FM (age 22-64 years) were included in this assessor-blinded randomized controlled multicenter trial examining the effects of person-centered progressive resistance exercise compared with an active control group. The intervention was performed twice a week for 15 weeks. Outcomes were five dimensions of fatigue measured with the Multidimensional Fatigue Inventory (MFI-20). Information about background was collected and the women also completed several health-related questionnaires. Multiple linear stepwise regression was used to analyze predictors of change in fatigue in the total population. A higher improvement was found at the post-treatment examination for change in the resistance exercise group, as compared to change in the active control group in the MFI-20 subscale of physical fatigue (resistance group Δ -1.7, SD 4.3, controls Δ 0.0, SD 2.7, p = 0.013), with an effect size of 0.33. Sleep efficiency was the strongest predictor of change in the MFI-20 subscale general fatigue (beta = -0.54, p = 0.031, R (2) = 0.05). Participating in resistance exercise (beta = 1.90, p = 0.010) and working fewer hours per week (beta = 0.84, p = 0.005) were independent significant predictors of change in physical

  1. Recovery Effect of the Muscle Fatigue by the Magnetic Stimulation

    Science.gov (United States)

    Uchida, Kousuke; Nuruki, Atsuo; Tsujimura, Sei-Ichi; Tamari, Youzou; Yunokuchi, Kazutomo

    The purpose of this study is to investigate the effect of magnetic stimulation for muscle fatigue. The six healthy subjects participated in the experiment with the repetition grasp using a hand dynamometer. The measurement of EMG (electromyography) and MMG (mechanomyography) is performed on the left forearm. All subjects performed MVC (maximum voluntary contraction), and repeated exercise in 80%MVC after the MVC measurement. The repetition task was entered when display muscular strength deteriorated. We used an EMG and MMG for the measurement of the muscle fatigue. Provided EMG and MMG waves were calculated integral calculus value (iEMG, and iMMG). The result of iEMG and iMMG were divided by muscular strength, because we calculate integral calculus value per the unit display muscular strength. The result of our study, we found recovery effect by the magnetic stimulation in voluntarily muscular strength and iEMG. However, we can not found in a figure of iMMG.

  2. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  3. Low-frequency fatigue, post-tetanic potentiation and their interaction at different muscle lengths following eccentric exercise.

    NARCIS (Netherlands)

    Rijkelijkhuizen, J.M.; de Ruiter, C.J.; Huijing, P.A.J.B.M.; de Haan, A.

    2005-01-01

    Low-frequency fatigue (LFF) and post-tetanic potentiation (PTP) were quantified at different muscle lengths in rat medial gastrocnemius (GM) muscle. In situ experiments were performed on GM muscle-tendon complexes of anaesthetised (urethane, 1.5 g kg

  4. Pathogenesis of Insulin Resistance in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Muhammad A. Abdul-Ghani

    2010-01-01

    Full Text Available Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.

  5. Resistance to corrosion fatigue fracture in heat resistant steels and their welded joints

    International Nuclear Information System (INIS)

    Timofeev, B.T.; Fedorova, V.A.; Zvezdin, Yu.I.; Vajner, L.A.; Filatov, V.M.

    1987-01-01

    Experimental data on cyclic crack resistance of heat-resistant steels and their welded joints employed for production of the reactor bodies are for the first time generalized and systematized. The formula is suggested accounting for surface and inner defects to calculate the fatigue crack growth in the process of operation. This formula for surface defects regards also the effect of the corrosion factor. Mechanisms of the reactor water effect on the fatigue crack growth rate are considered as well as a combined effect of radiation and corrosive medium on this characteristic

  6. The Effect of Pedaling and Fatigue on Changes of Knee Muscles Co-contraction During Running in Triathletes

    Directory of Open Access Journals (Sweden)

    Mehrdad Anbarian

    2015-09-01

    Full Text Available Objective: The purpose of this study was to determine the effect of cycling fatigue on co-activation of knee muscles during running in novice triathletes. Methods: Twelve novice male triathletes aged 23.7±2.1 years participated in this quasi experimental study. Surface electromyographic activity from gastrocnemius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus were recorded during support and non-support phases of running before and after cycling fatigue protocol. General and directed co-activation of the knee muscles were calculated. Paired t-test was used to analyze the data(p<0.05. Results: General co-activation was significantly reduced in propulsion sub-phase, total support and non-support phases after fatigue (p=0.001, but there were not any differences in heel contact and midstance sub-phases. Fatigue only altered directed co-activation of medial and lateral knee muscles during heel contact sub-phase (p=0.034. Extensor and flexor directed co-activation during non-support phase of running significantly decreased after fatigue (p=0.011. Conclusion: Changes in the co-activation during running after cycling fatigue can alter running pattern and reduce the knee function consequently, causing injuries to the lower limbs in novice triathletes.

  7. Changes in Serum Free Amino Acids and Muscle Fatigue Experienced during a Half-Ironman Triathlon.

    Directory of Open Access Journals (Sweden)

    Francisco Areces

    Full Text Available The aim of this study was to investigate the relationship between changes in serum free amino acids, muscle fatigue and exercise-induced muscle damage during a half-ironman triathlon. Twenty-six experienced triathletes (age = 37.0 ± 6.8 yr; experience = 7.4 ± 3.0 yr competed in a real half-ironman triathlon in which sector times and total race time were measured by means of chip timing. Before and after the race, a countermovement jump and a maximal isometric force test were performed, and blood samples were withdrawn to measure serum free amino acids concentrations, and serum creatine kinase levels as a blood marker of muscle damage. Total race time was 320 ± 37 min and jump height (-16.3 ± 15.2%, P 20%. However, neither the changes in serum free amino acids nor the tryptophan/BCAA ratio were related muscle fatigue or muscle damage during the race.

  8. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    Science.gov (United States)

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  9. Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis

    Science.gov (United States)

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael

    2014-01-01

    The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087

  10. Mobility-Related Fatigue, Walking Speed, and Muscle Strength in Older People

    DEFF Research Database (Denmark)

    Mänty, Minna; Mendes de Leon, Carlos F.; Rantanen, Taina

    2012-01-01

    history, as well as performance-based assessment of walking speed and maximal isometric strength of knee extension, body extension, and handgrip. Results. In the cross-sectional baseline analysis, one unit increase in fatigue score was associated with 0.03 m/s (b = −.03, p ... the degree to which muscle strength accounts for this association. Methods. The study is based on baseline (n = 523) and 5-year follow-up data (n = 292) from a cohort of 75-year-old persons. Standardized assessments include self-report measures of mobility-related fatigue (score range 0–6) and medical......, p strength accounted up to 21% and among men up to 24% for the association. In the prospective analysis, fatigue at baseline was predictive of change in walking speed...

  11. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.

    Science.gov (United States)

    Karthick, P A; Ghosh, Diptasree Maitra; Ramakrishnan, S

    2018-02-01

    Surface electromyography (sEMG) based muscle fatigue research is widely preferred in sports science and occupational/rehabilitation studies due to its noninvasiveness. However, these signals are complex, multicomponent and highly nonstationary with large inter-subject variations, particularly during dynamic contractions. Hence, time-frequency based machine learning methodologies can improve the design of automated system for these signals. In this work, the analysis based on high-resolution time-frequency methods, namely, Stockwell transform (S-transform), B-distribution (BD) and extended modified B-distribution (EMBD) are proposed to differentiate the dynamic muscle nonfatigue and fatigue conditions. The nonfatigue and fatigue segments of sEMG signals recorded from the biceps brachii of 52 healthy volunteers are preprocessed and subjected to S-transform, BD and EMBD. Twelve features are extracted from each method and prominent features are selected using genetic algorithm (GA) and binary particle swarm optimization (BPSO). Five machine learning algorithms, namely, naïve Bayes, support vector machine (SVM) of polynomial and radial basis kernel, random forest and rotation forests are used for the classification. The results show that all the proposed time-frequency distributions (TFDs) are able to show the nonstationary variations of sEMG signals. Most of the features exhibit statistically significant difference in the muscle fatigue and nonfatigue conditions. The maximum number of features (66%) is reduced by GA and BPSO for EMBD and BD-TFD respectively. The combination of EMBD- polynomial kernel based SVM is found to be most accurate (91% accuracy) in classifying the conditions with the features selected using GA. The proposed methods are found to be capable of handling the nonstationary and multicomponent variations of sEMG signals recorded in dynamic fatiguing contractions. Particularly, the combination of EMBD- polynomial kernel based SVM could be used to

  12. Changes in motor cortex excitability associated with muscle fatigue in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Milanović Slađan

    2013-01-01

    Full Text Available Background/Aim. Transcranial magnetic stimulation (TMS is a standard technique for noninvasive assessment of changes in central nervous system excitability. The aim of this study was to examine changes in responses to TMS in patients suffering from Parkinson’s disease (PD during sustained submaximal isometric voluntary contraction [60% of maximal voluntary contraction (MVC] of the adductor pollicis muscle, as well as during a subsequent recovery period. Methods. Cortical excitability was tested by single TMS pulses of twice of the motor threshold intensity applied over the vertex. Testing was carried out during the sustained contraction phase every 10 s before and every 5 s after the endurance point, as well as at rest and during brief 60% MVC contractions before (control, immediately after the sustained contraction, and at 5 min intervals during the recovery period. Results. Although the PD patients could sustain the contraction at the required level for as long period of time as the healthy subjects (though contraction level subsided more rapidly after the endurance point, effects of muscle fatigue on the responses to TMS were different. In contrast to the findings observed in the healthy people where motor evoked potentials (MEP and EMG silent period (SP in fatigued muscle gradually diminished during contraction up to the endurance point, and increased thereafter, in the majority of patients no changes occurred in MEP size (peak and area of the adductor pollicis muscle, either before or after the endurance point. On the other hand, changes in the SP of this muscle differed among the subjects, showing a gradual increase, a decrease or no changes in duration. The trends of changes in both MEP size and SP duration in the musculus brachioradialis varied among the tested PD patients, without any consistent pattern, which was in contrast with the findings in the healthy people where both measures showed a gradual increase from the beginning of

  13. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game

    DEFF Research Database (Denmark)

    Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G

    2018-01-01

    soccer protocol, following baseline measures of maximal voluntary contractions of multiple muscle groups and systemic markers of muscle damage and inflammation at 0, 24 and 48 h into recovery. All muscle groups had a strength decrement (p ≤ 0.05) at 0 h post-match with knee flexors (14 ± 3%) and hip...... decrement still persistent (4 ± 1%, p ≤ 0.05) for trunk muscles 24 h into recovery. Large inter-player variations were observed in game-induced fatigue and recovery patterns in the various muscle groups. Markers of muscle damage and inflammation peaked 0 h post-match (myoglobin) and 24 h into recovery...... (creatine kinase), respectively, but thereafter returned to baseline. Intermittent test performance correlated with creatine kinase activity 24 h after the Copenhagen Soccer Test (r = -0.70; p = 0.02). In conclusion, post-game fatigue is evident in multiple muscle groups with knee flexors showing...

  14. Myoelectrical manifestation of fatigue less prominent in patients with cancer related fatigue.

    Directory of Open Access Journals (Sweden)

    Katarzyna Kisiel-Sajewicz

    Full Text Available PURPOSE: A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG signal changes during fatiguing muscle performance. METHODS: Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF, and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue. RESULTS: CRF patients perceived physical "exhaustion" significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle. CONCLUSIONS: CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF.

  15. Deer Antler Extract Improves Fatigue Effect through Altering the Expression of Genes Related to Muscle Strength in Skeletal Muscle of Mice

    Directory of Open Access Journals (Sweden)

    Jaw-Chyun Chen

    2014-01-01

    Full Text Available Deer antler is a well-known traditional Chinese medicine used in Asian countries for the tonic and the improvement of aging symptoms. The present study was designed to investigate the antifatigue effect and mechanism of Formosan sambar deer tip antler extract (FSDTAE. The swimming times to exhaustion of mice administered FSDTAE (8.2 mg/day for 28 days were apparently longer than those of the vehicle-treated mice in forced swim test. However, the indicators of fatigue, such as the reduction in glucose level and the increases in blood urea nitrogen and lactic acid levels, were not significantly inhibited by FSDTAE. Therefore, microarray analysis was further used to examine the anti-fatigue mechanism of FSDTAE. We selected genes with fold changes >2 or <−2 in skeletal muscle for pathway analysis. FSDTAE-affected genes were involved in 9 different signaling pathways, such as GnRH signaling pathway and insulin signaling pathway. All of the significantly expressed genes were classified into 8 different categories by their functions. The most enriched category was muscular system, and 6 upregulated genes, such as troponin I, troponin T1, cysteine and glycine-rich protein 2, myosin heavy polypeptide 7, tropomyosin 2, and myomesin family member 3, were responsible for the development and contraction of muscle. Real-time PCR analysis indicated that FSDTAE increased troponins mRNA expression in skeletal muscle. In conclusion, our findings suggested that FSDTAE might increase the muscle strength through the upregulation of genes responsible for muscle contraction and consequently exhibited the anti-fatigue effect in mice.

  16. Cancer survivors exhibit a different relationship between muscle strength and health-related quality of life/fatigue compared to healthy subjects.

    Science.gov (United States)

    Morishita, S; Tsubaki, A; Fu, J B; Mitobe, Y; Onishi, H; Tsuji, T

    2018-05-16

    We investigated the difference in relationship between muscle strength and quality of life (QOL)/fatigue in long-term cancer survivors and healthy subjects. Thirty-six cancer survivors and 29 healthy subjects were assessed for body composition and bone status at the calcaneus using the Osteo Sono Assessment Index. Muscle strength was evaluated via handgrip and knee extensor strength. Health-related QOL was assessed using the Medical Outcome Study 36-item Short-Form Health Survey. Fatigue was measured using the brief fatigue inventory. Cancer survivors exhibited lower QOL scores in the physical functioning, physical role function, bodily pain and general health domains (p < .05). Grip and knee extension muscle strength in cancer survivors was positively correlated with the physical function and bodily pain of QOL (p < .05). The usual fatigue subscale score was only significantly higher in cancer survivors than in healthy subjects (p < .05). However, there were no correlations between muscle strength and fatigue in cancer survivors. Our results showed that muscle strength was an important factor for improving QOL in cancer survivors. We believe that the findings of this study will be relevant in the context of planning rehabilitation for cancer survivors. © 2018 John Wiley & Sons Ltd.

  17. Effects of plantar-flexor muscle fatigue on the magnitude and regularity of center-of-pressure fluctuations

    NARCIS (Netherlands)

    Roerdink, M.; Hlavackova, P.; Vuillerme, N.

    2011-01-01

    Control of bipedal posture is highly automatized but requires attentional investment, the amount of which varies between participants and with postural constraints, such as plantar-flexor muscle fatigue. Elevated attentional demands for standing with fatigued plantar flexors have been demonstrated

  18. Sex Comparison of Knee Extensor Size, Strength and Fatigue Adaptation to Sprint Interval Training.

    Science.gov (United States)

    Bagley, Liam; Al-Shanti, Nasser; Bradburn, Steven; Baig, Osamah; Slevin, Mark; McPhee, Jamie S

    2018-03-12

    Regular sprint interval training (SIT) improves whole-body aerobic capacity and muscle oxidative potential, but very little is known about knee extensor anabolic or fatigue resistance adaptations, or whether effects are similar for males and females. The purpose of this study was to compare sex-related differences in knee extensor size, torque-velocity relationship and fatigability adaptations to 12 weeks SIT. Sixteen males and fifteen females (mean (SEM) age: 41 (±2.5) yrs) completed measurements of total body composition assessed by DXA, quadriceps muscle cross-sectional area (CSAQ) assessed by MRI, the knee extensor torque-velocity relationship (covering 0 - 240°·sec) and fatigue resistance, which was measured as the decline in torque from the first to the last of 60 repeated concentric knee extensions performed at 180°·sec. SIT consisted of 4 x 20 second sprints on a cycle ergometer set at an initial power output of 175% of power at VO2max, three times per week for 12 weeks. CSAQ increased by 5% (p=0.023) and fatigue resistance improved 4.8% (p=0.048), with no sex differences in these adaptations (sex comparisons: p=0.140 and p=0.282, respectively). Knee extensor isometric and concentric torque was unaffected by SIT in both males and females (p>0.05 for all velocities). 12 weeks SIT, totalling 4 minutes very intense cycling per week, significantly increased fatigue resistance and CSAQ similarly in males and females, but did not significantly increase torque in males or females. These results suggest that SIT is a time-effective training modality for males and females to increase leg muscle size and fatigue resistance.

  19. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments.

    Science.gov (United States)

    Capar, Ismail Davut; Ertas, Huseyin; Arslan, Hakan

    2015-04-01

    New files (ProTaper Next/HyFlex/OneShape) are made from novel nickel-titanium (NiTi) alloys/treatments. The purpose of this study was to compare the cyclic fatigue resistance of these new instruments with that of Revo-S instruments. Four groups of 20 NiTi endodontic instruments were tested in steel canals with a 3 mm radius and a 60° angle of curvature. The cyclic fatigue of the following NiTi instruments with a tip size 25 and 0.06 taper that were manufactured with different alloys was tested: ProTaper Next X2 (M-Wire), OneShape (conventional NiTi), Revo-S Shaping Universal (conventional NiTi) and HyFlex 25/0.6 (controlled memory NiTi wire). A one-way anova and post-hoc Tukey's test (α = 0.05) revealed that the HyFlex files had the highest fatigue resistance and the Revo-S had the least fatigue resistance among the groups (P < 0.001). © 2014 Australian Society of Endodontology.

  20. Acute hypoxia limits endurance but does not affect muscle contractile properties.

    NARCIS (Netherlands)

    Degens, H.; Sanchez Horneros, J.M.; Hopman, M.T.E.

    2006-01-01

    Acute hypoxia causes skeletal muscle dysfunction in vitro, but little is known about its effect on muscle function in vivo. In 10 healthy male subjects, isometric contractile properties and fatigue resistance of the quadriceps muscle were determined during normoxia and hypoxia using electrically

  1. Fatigue resistance of engine-driven rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Chaves Craveiro de Melo, Marta; Guiomar de Azevedo Bahia, Maria; Lopes Buono, Vicente Tadeu

    2002-11-01

    A comparative study of the fatigue resistance of engine-driven nickel-titanium endodontic instruments was performed, aiming to access the influence of the cutting flute design and of the size of the files that reach the working length in curved canal shaping. Geometrical conditions similar to those found in practice were used. Series 29 #5 ProFile, together with #6 and #8 Quantec instruments, were tested in artificial canals with a 45-degree angle of curvature and 5-mm radius of curvature. It was observed that the size of the instrument, which determines the maximum strain amplitude during cyclic deformation, is the most important factor controlling fatigue resistance. The effect of heat sterilization on the fatigue resistance of the instruments was also examined. The results obtained indicate that the application of five sterilization procedures in dry heat increases the average number of cycles to failure of unused instruments by approximately 70%.

  2. Electrically induced contraction levels of the quadriceps femoris muscles in healthy men: the effects of three patterns of burst-modulated alternating current and volitional muscle fatigue.

    Science.gov (United States)

    Parker, Michael G; Broughton, Alex J; Larsen, Ben R; Dinius, Josh W; Cimbura, Mac J; Davis, Matthew

    2011-12-01

    The purpose of this study was to compare electrically induced contraction levels produced by three patterns of alternating current in fatigued and nonfatigued skeletal muscles. Eighteen male volunteers without health conditions, with a mean (SD) age of 24.9 (3.4) yrs were randomly exposed to a fatiguing volitional isometric quadriceps contraction and one of three patterns of 2.5-KHz alternating current; two were modulated at 50 bursts per second (10% burst duty cycle with five cycles per burst and 90% burst duty cycle with 45 cycles per burst), and one pattern was modulated at 100 bursts per second (10% burst duty cycle with 2.5 cycles per burst). The electrically induced contraction levels produced by the three patterns of electrical stimulation were compared before and after the fatiguing contraction. The 10% burst duty cycles produced 42.9% (95% confidence interval, 29.1%-56.7%) and 32.1% (95% confidence interval, 18.2%-45.9%) more muscle force (P stronger muscle contractions. Furthermore, the stimulation patterns had no influence on the difference in muscle force before and after the fatiguing quadriceps contraction. Consequently, for clinical applications in which high forces are desired, the patterns using the 10% burst duty cycle may be helpful.

  3. Effect of carnitine supplementation on fatigue level in the gastrocnemius muscle of trained and sedentary rats

    Directory of Open Access Journals (Sweden)

    Rossana Anelice Gomez

    2012-04-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n3p324 L-carnitine, considered to be of great value in metabolic processes, plays an important role in the mitochondrial β-oxidation process. It may be used to improve athletic performance and to maintain a higher workload during exercise. This study aimed to investigate the effect of L-carnitine supplementation on muscle fatigue in sciatic nerve-gastrocnemius muscle preparations in sedentary and trained rats. The animals were divided into 4 groups: non-supplemented sedentary (NSS, supplemented sedentary (SS, non-supplemented trained (NST, and supplemented trained (ST rats. The animals were trained in daily 1-h sessions (5 days/week and received chronic oral L-carnitine supplementation (1 mg/mL for 4 weeks. Muscle fatigue was determined by supramaximal tetanic stimulation of the sciatic nerve (50 Hz. Time values for strength reduction were significantly different (p<0.05 between NSS vs. SS and NST vs. ST rats. No significant differences were observed between SS vs. ST and NST vs. NSS rats. These findings demonstrate that L-carnitine lengthen the time required for induction of muscle fatigue.

  4. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training.

    Science.gov (United States)

    Łochyński, Dawid; Kaczmarek, Dominik; Mrówczyński, Włodzimierz; Warchoł, Wojciech; Majerczak, Joanna; Karasiński, Janusz; Korostyński, Michał; Zoladz, Jerzy A; Celichowski, Jan

    2016-10-01

    Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca 2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca 2+ -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca 2+ -handling genes. Copyright © 2016 the American Physiological Society.

  5. Acute effects of muscle fatigue on anticipatory and reactive postural control in older individuals: a systematic review of the evidence.

    Science.gov (United States)

    Papa, Evan V; Garg, Hina; Dibble, Leland E

    2015-01-01

    Falls are the leading cause of traumatic brain injury and fractures and the No. 1 cause of emergency department visits by older adults. Although declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. In an effort to increase awareness of the detrimental effects of skeletal muscle fatigue on postural control, we sought to systematically review research studies examining this issue. The specific purpose of this review was to provide a detailed assessment of how anticipatory and reactive postural control tasks are influenced by acute muscle fatigue in healthy older individuals. An extensive search was performed using the CINAHL, Scopus, PubMed, SPORTDiscus, and AgeLine databases for the period from inception of each database to June 2013. This systematic review used standardized search criteria and quality assessments via the American Academy for Cerebral Palsy and Developmental Medicine Methodology to Develop Systematic Reviews of Treatment Interventions (2008 version, revision 1.2, AACPDM, Milwaukee, Wisconsin). A total of 334 citations were found. Six studies were selected for inclusion, whereas 328 studies were excluded from the analytical review. The majority of articles (5 of 6) utilized reactive postural control paradigms. All studies incorporated extrinsic measures of muscle fatigue, such as declines in maximal voluntary contraction or available active range of motion. The most common biomechanical postural control task outcomes were spatial measures, temporal measures, and end-points of lower extremity joint kinetics. On the basis of systematic review of relevant literature, it appears that muscle fatigue induces clear deteriorations in reactive postural control. A paucity of high-quality studies examining anticipatory postural control supports the need for further research in this area. These results should serve to heighten

  6. Study of the corrosion fatigue resistance of steel grades for automotive suspension springs

    Energy Technology Data Exchange (ETDEWEB)

    Mougin, J. [Ascometal CREAS, BP70045, F-57301 Hagondange Cedex (France); Mostacchi, A. [Ascometal Developpement, BP17, F-38570 Le Cheylas (France); Hersart, Y. [Allevard Rejna Autosuspensions CRDT, 201 Rue de Sin-le-Noble, BP629, F-59506 Douai Cedex (France)

    2004-07-01

    In order to reduce the total weight of vehicles for ecological and economical reasons, the car makers use down-sizing for several components of the cars. Concerning helical suspension springs, the size of the bar diameter and the number of spring coils are decreased, leading to an increase of the stress level applied on the spring. In this respect, steels with high mechanical properties are required, to achieve a good fatigue resistance of the springs. The corrosion resistance is also important for this application. Indeed, during service, the protective coating applied on the springs can be scratched by gravels, and bare underlying metal can be put in contact with the atmosphere, including humidity, drops of rain but also de-icing salts. Generally speaking, an increase of mechanical properties decreases the corrosion fatigue resistance of the steels. In this respect, a compromise needs to be found, that is why the study of corrosion fatigue resistance is very important. In order to study the corrosion fatigue resistance of spring steels, an original device and test procedure have been set up. Torsional fatigue on specimens is used to simulate the stress applied on each spring coil. The stress levels are chosen to be representative of the actual inservice loads. The specimens are shot-peened and coated in a same way as the actual springs. Scratching of the painting is performed, giving rise to small areas of bare metal. Three types of tests are performed: fatigue in air (taken as the reference level), fatigue on specimens which have been corroded previously (test similar to the spring-makers practice) and coupled corrosion fatigue. The mechanisms involved in corrosion fatigue have been studied. For all the specimens, crack initiated on corrosion pits. For the specimens corroded prior fatigue testing, the corrosion pits can be quite severe. In this case, these pits act as a surface defect which increases locally the stress concentration and accelerates the crack

  7. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise.

    Science.gov (United States)

    Broxterman, R M; Craig, J C; Smith, J R; Wilcox, S L; Jia, C; Warren, S; Barstow, T J

    2015-09-01

    Critical power represents an important threshold for neuromuscular fatigue development and may, therefore, dictate intensities for which exercise tolerance is determined by the magnitude of fatigue accrued. Peripheral fatigue appears to be constant across O2 delivery conditions for large muscle mass exercise, but this consistency is equivocal for smaller muscle mass exercise. We sought to determine the influence of blood flow occlusion during handgrip exercise on neuromuscular fatigue development and to examine the relationship between neuromuscular fatigue development and W '. Blood flow occlusion influenced the development of both peripheral and central fatigue, thus providing further evidence that the magnitude of peripheral fatigue is not constant across O2 delivery conditions for small muscle mass exercise. W ' appears to be related to the magnitude of fatigue accrued during exercise, which may explain the reported consistency of intramuscular metabolic perturbations and work performed for severe-intensity exercise. The influence of the muscle metabolic milieu on peripheral and central fatigue is currently unclear. Moreover, the relationships between peripheral and central fatigue and the curvature constant (W ') have not been investigated. Six men (age: 25 ± 4 years, body mass: 82 ± 10 kg, height: 179 ± 4 cm) completed four constant power handgrip tests to exhaustion under conditions of control exercise (Con), blood flow occlusion exercise (Occ), Con with 5 min post-exercise blood flow occlusion (Con + Occ), and Occ with 5 min post-exercise blood flow occlusion (Occ + Occ). Neuromuscular fatigue measurements and W ' were obtained for each subject. Each trial resulted in significant peripheral and central fatigue. Significantly greater peripheral (79.7 ± 5.1% vs. 22.7 ± 6.0%) and central (42.6 ± 3.9% vs. 4.9 ± 2.0%) fatigue occurred for Occ than for Con. In addition, significantly greater peripheral (83.0 ± 4.2% vs. 69.0 ± 6.2%) and central

  8. An Exercise Model to Study Progressive Muscle Fatigue During Constant Work Rate Exercise on a Cycle Ergometer

    National Research Council Canada - National Science Library

    Fulco, Charles

    2003-01-01

    ... of the same muscles during the activity. However, conventional ergometric testing modes such as stationary cycling or treadmill exercise do not readily lend themselves to quantitating the progressive increase in muscle fatigue...

  9. Central and peripheral fatigue development in the shoulder muscle with obesity during an isometric endurance task.

    Science.gov (United States)

    Pajoutan, Mojdeh; Ghesmaty Sangachin, Mahboobeh; Cavuoto, Lora A

    2017-07-21

    Fatigue increases the likelihood of developing work-related musculoskeletal disorders and injury. Due to the physiological and neuromuscular changes that accompany obesity, it may alter the fatigue development mechanism and exacerbate injury risk. The upper extremities have the highest incidence rates for work-related musculoskeletal disorders. Therefore, the goals of this study were to investigate the effect of obesity on central vs. peripheral fatigue as well as on the physical signs of fatigue on the middle deltoid muscle. A measure of central activation ratio was used to quantify central fatigue by considering the increment in the torque output by superimposed twitch relative to its corresponding maximum voluntary contraction. For this purpose, electrical stimulation was delivered at the middle deltoid muscles of 22 non-obese (18 obese (30 motor units (p = 0.001) with fatigue was observed for individuals who are obese. Contrary to the effect of obesity on central fatigue, a trend toward reduced peripheral fatigue (p = 0.06) was observed for the obese group compared to the non-obese group. On average, a 14% higher rate of torque loss per second was observed among individuals with obesity in comparison to non-obese participants. The observed greater contribution of central fatigue during the sustained endurance tasks suggests that among young healthy obese individuals, the faster fatigue development with obesity, commonly reported in the literature, is most likely due to the central elements rather than the peripheral factors. This finding has implications for fatigue prevention programs during sustained exertions and can help to develop training, work, and rest schedules considering obesity.

  10. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.

    Science.gov (United States)

    Soylu, Abdullah Ruhi; Arpinar-Avsar, Pinar

    2010-08-01

    The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal's 0s time index corresponds to maximum force point). Then, the first 8s of sEMG and force signals were divided into 0.5s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0s time intervals (i.e. -0.25 to 0.25s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn's post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r=0.9462, pfatigue starts after the 0s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2s gradual increase time) for 12 subjects were 2353, 1258ms and 536-4186ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations

  11. A Laboratory Experiment on Muscular Metabolism and Fatigue Using the Isolated Frog Muscle Preparation.

    Science.gov (United States)

    Ianuzzo, C. David; And Others

    1987-01-01

    Describes an experiment which demonstrates the association of particular metabolic biochemical changes and muscular fatigue. Highlights applications related to cellular energy metabolism, metabolic regulation, and muscle energetics. (ML)

  12. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    Science.gov (United States)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  13. Assessment of Whole Body and Local Muscle Fatigue Using Electromyography and a Perceived Exertion Scale for Squat Lifting

    Directory of Open Access Journals (Sweden)

    Imran Ahmad

    2018-04-01

    Full Text Available This research study aims at addressing the paradigm of whole body fatigue and local muscle fatigue detection for squat lifting. For this purpose, a comparison was made between perceived exertion with the heart rate and normalized mean power frequency (NMPF of eight major muscles. The sample consisted of 25 healthy males (age: 30 ± 2.2 years. Borg’s CR-10 scale was used for perceived exertion for two segments of the body (lower and upper and the whole body. The lower extremity of the body was observed to be dominant compared to the upper and whole body in perceived response. First mode of principal component analysis (PCA was obtained through the covariance matrix for the eight muscles for 25 subjects for NMPF of eight muscles. The diagonal entries in the covariance matrix were observed for each muscle. The muscle with the highest absolute magnitude was observed across all the 25 subjects. The medial deltoid and the rectus femoris muscles were observed to have the highest frequency for each PCA across 25 subjects. The rectus femoris, having the highest counts in all subjects, validated that the lower extremity dominates the sense of whole body fatigue during squat lifting. The findings revealed that it is significant to take into account the relation between perceived and measured effort that can help prevent musculoskeletal disorders in repetitive occupational tasks.

  14. Assessment of Whole Body and Local Muscle Fatigue Using Electromyography and a Perceived Exertion Scale for Squat Lifting.

    Science.gov (United States)

    Ahmad, Imran; Kim, Jung-Yong

    2018-04-18

    This research study aims at addressing the paradigm of whole body fatigue and local muscle fatigue detection for squat lifting. For this purpose, a comparison was made between perceived exertion with the heart rate and normalized mean power frequency (NMPF) of eight major muscles. The sample consisted of 25 healthy males (age: 30 ± 2.2 years). Borg’s CR-10 scale was used for perceived exertion for two segments of the body (lower and upper) and the whole body. The lower extremity of the body was observed to be dominant compared to the upper and whole body in perceived response. First mode of principal component analysis (PCA) was obtained through the covariance matrix for the eight muscles for 25 subjects for NMPF of eight muscles. The diagonal entries in the covariance matrix were observed for each muscle. The muscle with the highest absolute magnitude was observed across all the 25 subjects. The medial deltoid and the rectus femoris muscles were observed to have the highest frequency for each PCA across 25 subjects. The rectus femoris, having the highest counts in all subjects, validated that the lower extremity dominates the sense of whole body fatigue during squat lifting. The findings revealed that it is significant to take into account the relation between perceived and measured effort that can help prevent musculoskeletal disorders in repetitive occupational tasks.

  15. Assessment of skeletal muscle fatigue of road maintenance workers based on heart rate monitoring and myotonometry

    Directory of Open Access Journals (Sweden)

    Kalkis Henrijs

    2006-07-01

    Full Text Available Abstract Objective This research work is dedicated to occupational health problems caused by ergonomic risks. The research object was road building industry, where workers have to work very intensively, have long work hours, are working in forced/constrained work postures and overstrain during the work specific parts of their bodies. The aim of this study was to evaluate the work heaviness degree and to estimate the muscle fatigue of workers after one week work cycle. The study group consisted of 10 road construction and maintenance workers and 10 pavers aged between 20 and 60 years. Methods Physical load were analyzed by measuring heart rate (HR, work postures (OWAS and perceived exertion (RPE. Assessments of the muscles strain and functional state (tone were carried out using myotonometric (MYO measurements. The reliability of the statistical processing of heart rate monitoring and myotonometry data was determined using correlating analysis. Results This study showed that that road construction and repairing works should be considered as a hard work according to average metabolic energy consumption 8.1 ± 1.5 kcal/min; paving, in its turn, was a moderately hard work according to 7.2 ± 1.1 kcal/min. Several muscle tone levels were identified allowing subdivision of workers into three conditional categories basing on muscle tone and fatigue: I – absolute muscle relaxation and ability to relax; II – a state of equilibrium, when muscles are able to adapt to the work load and are partly able to relax; and III – muscle fatigue and increased tone. It was also found out that the increase of muscle tone and fatigue mainly depend on workers physical preparedness and length of service, and less – on their age. Conclusion We have concluded that a complex ergonomic analysis consisting of heart rate monitoring, assessment of compulsive working postures and myotonometry is appropriate to assess the work heaviness degree and can provide prognosis of

  16. Randomized controlled trial to evaluate the effects of progressive resistance training compared to progressive muscle relaxation in breast cancer patients undergoing adjuvant radiotherapy: the BEST study

    International Nuclear Information System (INIS)

    Potthoff, Karin; Steindorf, Karen; Schmidt, Martina E; Wiskemann, Joachim; Hof, Holger; Klassen, Oliver; Habermann, Nina; Beckhove, Philipp; Debus, Juergen; Ulrich, Cornelia M

    2013-01-01

    Cancer-related fatigue (CRF) is one of the most common and distressing side effects of cancer and its treatment. During and after radiotherapy breast cancer patients often suffer from CRF which frequently impairs quality of life (QoL). Despite the high prevalence of CRF in breast cancer patients and the severe impact on the physical and emotional well-being, effective treatment methods are scarce. Physical activity for breast cancer patients has been reported to decrease fatigue, to improve emotional well-being and to increase physical strength. The pathophysiological and molecular mechanisms of CRF and the molecular-biologic changes induced by exercise, however, are poorly understood. In the BEST trial we aim to assess the effects of resistance training on fatigue, QoL and physical fitness as well as on molecular, immunological and inflammatory changes in breast cancer patients during adjuvant radiotherapy. The BEST study is a prospective randomized, controlled intervention trial investigating the effects of a 12-week supervised progressive resistance training compared to a 12-week supervised muscle relaxation training in 160 patients with breast cancer undergoing adjuvant radiotherapy. To determine the effect of exercise itself beyond potential psychosocial group effects, patients in the control group perform a group-based progressive muscle relaxation training. Main inclusion criterion is histologically confirmed breast cancer stage I-III after lumpectomy or mastectomy with indication for adjuvant radiotherapy. Main exclusion criteria are acute infectious diseases, severe neurological, musculosceletal or cardiorespiratory disorders. The primary endpoint is cancer-related fatigue; secondary endpoints include immunological and inflammatory parameters analyzed in peripheral blood, saliva and urine. In addition, QoL, depression, physical performance and cognitive capacity will be assessed. The BEST study is the first randomized controlled trial comparing progressive

  17. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite.

    Science.gov (United States)

    Narva, Katja K; Lassila, Lippo V J; Vallittu, Pekka K

    2004-02-01

    Retentive properties of cast metal clasps decrease over time because of metal fatigue. Novel fiber-reinforced composite materials are purported to have increased fatigue resistance compared with metals and may offer a solution to the problem of metal fatigue. The aim of this study was to investigate the fatigue resistance and stiffness of E-glass fiber-reinforced composite. Twelve cylindrical fiber-reinforced composite test cylinders (2 mm in diameter and 60 mm in length) were made from light-polymerized urethane dimethacrylate monomer with unidirectional, single-stranded, polymer preimpregnated E-glass fiber reinforcement. Six cylinders were stored in dry conditions and 6 in distilled water for 30 days before testing. Fatigue resistance was measured by a constant-deflection fatigue test with 1 mm of deflection across a specimen span of 11 mm for a maximum of 150,000 loading cycles. The resistance of the cylinder against deflection was measured (N) and the mean values of the force were compared by 1-way analysis of variance (alpha = .05). The flexural modulus (GPa) was calculated for the dry and water-stored cylinders for the first loading cycle. Scanning electron microscopy was used to assess the distribution of the fibers, and the volume percent of fibers and polymer were assessed by combustion analysis. The test cylinders did not fracture due to fatigue following 150,000 loading cycles. Flexural modulus at the first loading cycle was 18.9 (+/- 2.9) GPa and 17.5 (+/- 1.7) GPa for the dry and water-stored cylinders, respectively. The mean force required to cause the first 1-mm deflection was 33.5 (+/- 5.2) N and 37.7 (+/- 3.6) N for the dry and water stored cylinders, respectively; however, the differences were not significant. After 150,000 cycles the mean force to cause 1-mm deflection was significantly reduced to 23.4 (+/- 8.5) N and 13.1 (+/- 3.5) N, respectively (P fiber- and polymer-rich areas within the specimens and indicated that individual fibers were

  18. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    Science.gov (United States)

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks.

  19. Internal Oblique and Transversus Abdominis Muscle Fatigue Induced by Slumped Sitting Posture after 1 Hour of Sitting in Office Workers

    Directory of Open Access Journals (Sweden)

    Pooriput Waongenngarm

    2016-03-01

    Conclusion: Prolonged sitting led to increased body discomfort in the neck, shoulder, upper back, low back, and buttock. No sign of trunk muscle fatigue was detected over 1 hour of sitting in the upright and forward leaning postures. Prolonged slumped sitting may relate to IO/TrA muscle fatigue, which may compromise the stability of the spine, making it susceptible to injury.

  20. Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle.

    Science.gov (United States)

    Pinheiro, Carlos Hermano da Justa; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Souza, Alcione Lescano; Vitzel, Kaio Fernando; Nachbar, Renato Tadeu; Nunes, Maria Tereza; Curi, Rui

    2012-07-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

  1. [Electromyographic determination of the fatigability of respiratory and leg muscles before and after aortocoronary bypass operation].

    Science.gov (United States)

    Worth, H; Grundmann, C; Goeckenjan, G; Smidt, U; Irlich, G; Loogen, F

    1984-01-01

    To study the effect of postoperative confinement to bed on respiratory muscle fatigue, 31 male subjects (age, 34-66 years) undergoing coronary artery revascularization were examined. Fatigue of both respiratory muscles (musculi intercostales externi) and leg muscles (musculus gastrocnemius) was determined by electromyography prior to and 7 and 12 days after operation. Additionally, oscillatory resistance to breathing and phase angle were measured. Pre- and postoperative routine lung function tests were performed. A comparison between preoperative and postoperative measurements reveals that respiratory as well as leg muscle fatigue occurred at higher loads during the preoperative and the second postoperative than during the first postoperative determination. After surgery vital capacity, total lung capacity, 1-second capacity, and, to a lower extent, thoracic gas volume were diminished, while specific airway conductance, oscillatory resistance to breathing, phase angle, residual volume, and relative 1-second capacity remained unchanged. The constancy of the latter parameters indicates that neither airway obstruction nor a significant restriction of the lung and/or thorax occurred due to surgery. Therefore, the increase of respiratory muscle fatigue after surgery may more probably be attributed to a lack of training of respiratory muscles which may contribute to limitation of ventilation in bedridden patients.

  2. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.

    Directory of Open Access Journals (Sweden)

    Marta Nocella

    Full Text Available Repetitive or prolonged muscle contractions induce muscular fatigue, defined as the inability of the muscle to maintain the initial tension or power output. In the present experiments, made on intact fiber bundles from FDB mouse, fatigue and recovery from fatigue were investigated at 24°C and 35°C. Force and stiffness were measured during tetani elicited every 90 s during the pre-fatigue control phase and recovery and every 1.5 s during the fatiguing phase made of 105 consecutive tetani. The results showed that force decline could be split in an initial phase followed by a later one. Loss of force during the first phase was smaller and slower at 35°C than at 24°C, whereas force decline during the later phase was greater at 35°C so that total force depression at the end of fatigue was the same at both temperatures. The initial force decline occurred without great reduction of fiber stiffness and was attributed to a decrease of the average force per attached crossbridge. Force decline during the later phase was accompanied by a proportional stiffness decrease and was attributed to a decrease of the number of attached crossbridge. Similarly to fatigue, at both 24 and 35°C, force recovery occurred in two phases: the first associated with the recovery of the average force per attached crossbridge and the second due to the recovery of the pre-fatigue attached crossbridge number. These changes, symmetrical to those occurring during fatigue, are consistent with the idea that, i initial phase is due to the direct fast inhibitory effect of [Pi]i increase during fatigue on crossbridge force; ii the second phase is due to the delayed reduction of Ca(2+ release and /or reduction of the Ca(2+ sensitivity of the myofibrils due to high [Pi]i.

  3. Comparison of cyclic fatigue resistance of original and counterfeit rotary instruments.

    Science.gov (United States)

    Ertas, Huseyin; Capar, Ismail Davut; Arslan, Hakan; Akan, Ender

    2014-05-31

    In recent years, with the advances in counterfeiting methods, counterfeit products have reached the dental market. The purpose of this study was to compare the cyclic fatigue resistance of original and counterfeit rotary root canal instruments. The cyclic fatigue of original and counterfeit ProTaper F2 endodontic instruments was tested (n = 20) in 3 mm radius steel canals with a 60° angle of curvature. The number of cycles to fracture (NCF) was calculated, and the data were subjected to the Student's t-test (α = 0.05). The original instruments showed better cyclic fatigue resistance than the counterfeit ones (p instruments was very low. As a result, clinicians should be careful not to purchase counterfeit products.

  4. Métodos de avaliação da fadigabilidade muscular periférica e seus determinantes energético-metabólicos na DPOC Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD

    Directory of Open Access Journals (Sweden)

    Rafaella Rezende Rondelli

    2009-11-01

    Full Text Available Está bem estabelecido que, além do acometimento pulmonar, a DPOC apresenta consequências sistêmicas que podem convergir para a disfunção muscular periférica, com maior fadigabilidade muscular, menor tolerância ao exercício e menor sobrevida nesses pacientes. Tendo em vista as repercussões negativas da fadiga muscular precoce na DPOC, esta revisão teve como objetivo discutir os principais achados da literatura relacionados aos seus determinantes metabólicos e bioenergéticos e suas repercussões funcionais, bem como seus métodos de identificação e de quantificação. O substrato anatomofuncional da maior fadigabilidade muscular na DPOC parece incluir a redução dos níveis de fosfatos de alta energia, a redução da densidade mitocondrial, a lactacidemia precoce, o aumento da amônia sérica e a perfusão muscular reduzida. Essas alterações podem ser evidenciadas por falência de contração, redução da taxa de disparo das unidades motoras e maior recrutamento de unidades motoras numa dada atividade, exteriorizando-se funcionalmente por redução da força, potência e resistência musculares. Esta revisão mostra também que diversos tipos de regimes contráteis e protocolos têm sido utilizados com o intuito de detectar fadiga nessa população. A partir de tais conhecimentos, estratégias reabilitadoras podem ser traçadas visando o aumento da resistência à fadiga muscular nessa população.It has been well established that, in addition to the pulmonary involvement, COPD has systemic consequences that can lead to peripheral muscle dysfunction, with greater muscle fatigue, lower exercise tolerance and lower survival in these patients. In view of the negative repercussions of early muscle fatigue in COPD, the objective of this review was to discuss the principal findings in the literature on the metabolic and bioenergy determinants of muscle fatigue, its functional repercussions, as well as the methods for its

  5. Fatigue-induced change in corticospinal drive to back muscles in elite rowers.

    Science.gov (United States)

    Fulton, Rick C; Strutton, Paul H; McGregor, Alison H; Davey, Nick J

    2002-09-01

    elite rowers after light exercise reflects less central fatigue within corticospinal control pathways than that seen in the non-rowers. The longer latency of MEPs seen in the elite rowers may reflect recruitment of more slower-conducting fatigue-resistant motor units compared with the non-rowers. These differences may be because the energy requirements for the non-rowers during light exercise are closer to their maximum capacity, leading to more fatigue. This notion is supported by the lack of any difference between groups following intense exercise when both groups were working at their own maximum.

  6. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  7. Nanotwin-enhanced fatigue resistance of ultrathin Ag films for flexible electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H.Y. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016 (China); Luo, X.M.; Li, X.; Liu, W. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, G.P., E-mail: gpzhang@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2016-10-31

    Fatigue strength and cracking behavior of ultrathin Ag films on flexible polyimide substrates were investigated. The experimental results show that the enhanced fatigue strength of the 50 nm-thick Ag films not only is caused by the increase in the yield stress and the suppression of cyclic strain localization, but also results from the severe crack deflection induced by the formation of nanotwins, which delays the fatigue crack initiation and enhances the resistance to the fatigue crack growth. The fatigue cracking mechanism for the nanocrystalline metal films is evaluated.

  8. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  9. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  10. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  11. Skeletal muscle properties and fatigue resistance in relation to smoking history

    OpenAIRE

    W?st, Rob C. I.; Morse, Christopher I.; de Haan, Arnold; Rittweger, J?rn; Jones, David A.; Degens, Hans

    2008-01-01

    Although smoking-related diseases, such as chronic obstructive pulmonary disease (COPD), are often accompanied by increased peripheral muscle fatigability, the extent to which this is a feature of the disease or a direct effect of smoking per se is not known. Skeletal muscle function was investigated in terms of maximal voluntary isometric torque, activation, contractile properties and fatigability, using electrically evoked contractions of the quadriceps muscle of 40 smokers [19 men and 21 w...

  12. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  13. Effects of Muscle Fatigue, Creep, and Musculoskeletal Pain on Neuromuscular Responses to Unexpected Perturbation of the Trunk: A Systematic Review.

    Science.gov (United States)

    Abboud, Jacques; Lardon, Arnaud; Boivin, Frédéric; Dugas, Claude; Descarreaux, Martin

    2016-01-01

    Introduction: Trunk neuromuscular responses have been shown to adapt under the influence of muscle fatigue, as well as spinal tissue creep or even with the presence of low back pain (LBP). Despite a large number of studies exploring how these external perturbations affect the spinal stability, characteristics of such adaptations remains unclear. Aim: The purpose of this systematic review was to assess the quality of evidence of studies investigating trunk neuromuscular responses to unexpected trunk perturbation. More specifically, the targeted neuromuscular responses were trunk muscle activity reflex and trunk kinematics under the influence of muscle fatigue, spinal creep, and musculoskeletal pain. Methods: A research of the literature was conducted in Pubmed, Embase, and Sport-Discus databases using terms related to trunk neuromuscular reflex responses, measured by electromyography (baseline activity, reflex latency, and reflex amplitude) and/or trunk kinematic, in context of unexpected external perturbation. Moreover, independent variables must be either trunk muscle fatigue or spinal tissue creep or LBP. All included articles were scored for their electromyography methodology based on the "Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM)" and the "International Society of Electrophysiology and Kinesiology (ISEK)" recommendations whereas overall quality of articles was scored using a specific quality checklist modified from the Quality Index. Meta-analysis was performed on reflex latency variable. Results: A final set of 29 articles underwent quality assessments. The mean quality score was 79%. No effect of muscle fatigue on erector spinae reflex latency following an unexpected perturbation, nor any other distinctive effects was found for back muscle fatigue and reflex parameters. As for spinal tissue creep effects, no alteration was found for any of the trunk reflex variables. Finally, the meta-analysis revealed an increased erector

  14. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    Science.gov (United States)

    Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.

    2014-01-01

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324

  15. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions.

    Science.gov (United States)

    Adam, Alexander; De Luca, Carlo J

    2003-11-01

    Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 +/- 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated (R2 >or= 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.

  16. Men exhibit greater fatigue resistance than women in alternated bench press and leg press exercises.

    Science.gov (United States)

    Monteiro, Estêvão R; Steele, James; Novaes, Jefferson S; Brown, Amanda F; Cavanaugh, Mark T; Vingren, Jakob L; Behm, David G

    2017-11-17

    The purpose of this study was to evaluate the influence of sex, exercise order, and rest interval on neuromuscular fatigue resistance for an alternated strength training sequence of bench press (BP) and leg press (LP) exercises. Twelve women and 16 men, both recreationally trained, performed four sessions in a random order: 1) BP followed by LP with three-minutes rest (BP+LP with rest), 2) LP followed by BP with three-minutes rest (LP+BP with rest), 3) BP followed by LP without rest interval (BP+LP no rest), and 4) LP followed by BP without rest interval (LP+BP no rest). Participants performed four sets with 100% of 10RM load to concentric failure with the goal of completing the maximum number of repetitions in both exercises. The fatigue index was analyzed from the first and last sets of each exercise bout. A main effect for sex showed that women exhibited 25.5% (p=0.001) and 24.5% (p=0.001) greater BP and LP fatigue than men respectively when performing 10RM. Men exhibited greater BP (p<0.0001; 34.1%) and LP (p<0.0001; 30.5%) fatigue resistance when a rest period was provided. Men did not show an exercise order effect for BP fatigue and exhibited greater (p=0.0003; 14.5%) LP fatigue resistance when BP was performed first. The present study demonstrated the greater fatigue resistance of men when performing 10RM BP and LP exercises. Since men tend to experience less fatigue with the second exercise in the exercise pairing, women's training programs should be adjusted to ensure they do not parallel men's resistance training programs.

  17. Muscle Fatigue in the Three Heads of the Triceps Brachii During a Controlled Forceful Hand Grip Task with Full Elbow Extension Using Surface Electromyography.

    Science.gov (United States)

    Ali, Asraf; Sundaraj, Kenneth; Badlishah Ahmad, R; Ahamed, Nizam Uddin; Islam, Anamul; Sundaraj, Sebastian

    2015-06-27

    The objective of the present study was to investigate the time to fatigue and compare the fatiguing condition among the three heads of the triceps brachii muscle using surface electromyography during an isometric contraction of a controlled forceful hand grip task with full elbow extension. Eighteen healthy subjects concurrently performed a single 90 s isometric contraction of a controlled forceful hand grip task and full elbow extension. Surface electromyographic signals from the lateral, long and medial heads of the triceps brachii muscle were recorded during the task for each subject. The changes in muscle activity among the three heads of triceps brachii were measured by the root mean square values for every 5 s period throughout the total contraction period. The root mean square values were then analysed to determine the fatiguing condition for the heads of triceps brachii muscle. Muscle fatigue in the long, lateral, and medial heads of the triceps brachii started at 40 s, 50 s, and 65 s during the prolonged contraction, respectively. The highest fatiguing rate was observed in the long head (slope = -2.863), followed by the medial head (slope = -2.412) and the lateral head (slope = -1.877) of the triceps brachii muscle. The results of the present study concurs with previous findings that the three heads of the triceps brachii muscle do not work as a single unit, and the fiber type/composition is different among the three heads.

  18. Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals.

    Science.gov (United States)

    Xie, Hong-Bo; Guo, Jing-Yi; Zheng, Yong-Ping

    2010-04-01

    In the present contribution, a complexity measure is proposed to assess surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Approximate entropy (ApEn) is believed to provide quantitative information about the complexity of experimental data that is often corrupted with noise, short data length, and in many cases, has inherent dynamics that exhibit both deterministic and stochastic behaviors. We developed an improved ApEn measure, i.e., fuzzy approximate entropy (fApEn), which utilizes the fuzzy membership function to define the vectors' similarity. Tests were conducted on independent, identically distributed (i.i.d.) Gaussian and uniform noises, a chirp signal, MIX processes, Rossler equation, and Henon map. Compared with the standard ApEn, the fApEn showed better monotonicity, relative consistency, and more robustness to noise when characterizing signals with different complexities. Performance analysis on experimental EMG signals demonstrated that the fApEn significantly decreased during the development of muscle fatigue, which is a similar trend to that of the mean frequency (MNF) of the EMG signal, while the standard ApEn failed to detect this change. Moreover, fApEn of EMG demonstrated a better robustness to the length of the analysis window in comparison with the MNF of EMG. The results suggest that the fApEn of an EMG signal may potentially become a new reliable method for muscle fatigue assessment and be applicable to other short noisy physiological signal analysis.

  19. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yong; Kim, No Hyu [Korean University of Technology and Education, Cheonan (Korea, Republic of)

    2013-04-15

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  20. Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance

    International Nuclear Information System (INIS)

    Yang, Seung Yong; Kim, No Hyu

    2013-01-01

    Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

  1. Fatigue Resistance Assessed in Five Tasks for a Single Session of Sleep Deprivation

    National Research Council Canada - National Science Library

    Chaiken, Scott R; Harville, Donald L; Harrison, Richard; Fischer, Joe; Fisher, Dion; Whitmore, Jeff

    2008-01-01

    ..., as part of a larger project investigating genetic factors in fatigue-resistance. We considered a rule based on percent-change decrement with fatigue and another rule based on residuals of task performance predicted...

  2. Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy.

    Science.gov (United States)

    Ferguson, Sue A; Allread, W Gary; Le, Peter; Rose, Joseph; Marras, William S

    2013-12-01

    The objective of this study was to quantify shoulder muscle fatigue during repetitive exertions similar to motions found in automobile assembly tasks. Shoulder musculoskeletal disorders (MSDs) are a common and costly problem in automotive manufacturing. Ten subjects participated in the study. There were three independent variables: shoulder angle, frequency, and force. There were two types of dependent measures: percentage change in near-infrared spectroscopy (NIRS) measures and change in electromyography (EMG) median frequency. The anterior deltoid and trapezius muscles were measured for both NIRS and EMG. Also, EMG was collected on the middle deltoid and biceps muscles. The results showed that oxygenated hemoglobin decreased significantly due to the main effects (shoulder angle, frequency, and force). The percentage change in oxygenated hemoglobin had a significant interaction attributable to force and repetition for the anterior deltoid muscle, indicating that as repetition increased, the magnitude of the differences between the forces increased. The interaction of repetition and shoulder angle was also significant for the percentage change in oxygenated hemoglobin. The median frequency decreased significantly for the main effects; however, no interactions were statistically significant. There was significant shoulder muscle fatigue as a function of shoulder angle, task frequency, and force level. Furthermore, percentage change in oxygenated hemoglobin had two statistically significant interactions, enhancing our understanding of these risk factors. Ergonomists should examine interactions of force and repetition as well as shoulder angle and repetition when evaluating the risk of shoulder MSDs.

  3. Evaluating the Training Effects of Two Swallowing Rehabilitation Therapies Using Surface Electromyography--Chin Tuck Against Resistance (CTAR) Exercise and the Shaker Exercise.

    Science.gov (United States)

    Sze, Wei Ping; Yoon, Wai Lam; Escoffier, Nicolas; Rickard Liow, Susan J

    2016-04-01

    In this study, the efficacy of two dysphagia interventions, the Chin Tuck against Resistance (CTAR) and Shaker exercises, were evaluated based on two principles in exercise science-muscle-specificity and training intensity. Both exercises were developed to strengthen the suprahyoid muscles, whose contractions facilitate the opening of the upper esophageal sphincter, thereby improving bolus transfer. Thirty-nine healthy adults performed two trials of both exercises in counter-balanced order. Surface electromyography (sEMG) recordings were simultaneously collected from suprahyoid muscle group and sternocleidomastoid muscle during the exercises. Converging results using sEMG amplitude analyses suggested that the CTAR was more specific in targeting the suprahyoid muscles than the Shaker exercise. Fatigue analyses on sEMG signals further indicated that the suprahyoid muscle group were equally or significantly fatigued (depending on metric), when participants carried out CTAR compared to the Shaker exercise. Importantly, unlike during Shaker exercise, the sternocleidomastoid muscles were significantly less activated and fatigued during CTAR. Lowering the chin against resistance is therefore sufficiently specific and intense to fatigue the suprahyoid muscles.

  4. Nitrogen implantation of type 303 stainless steel gears for improved wear and fatigue resistance

    International Nuclear Information System (INIS)

    Kustas, F.M.; Misra, M.S.; Tack, W.T.

    1987-01-01

    Fine-positioning mechanisms are responsible for accurate and reproducible control of aerospace system devices, i.e. filter grading wheels. Low wear and fatigue resistance of mechanism components, such as pinions and gears, can reduce system performance and reliability. Surface modification using ion implantation with nitrogen was used on type 303 stainless steel pinions and gears to increase tribological performance. Wear-life tests of untreated, nitrogen-implanted and nitrogen-implanted-and-annealed gears were performed in a fine-positioning mechanism under controlled environmental conditions. Wear and fatigue resistance were monitored at selected time intervals which were a percentage of the predicted failure life as determined by a numerical stress analysis. Surface analyses including scanning electron microscopy and Auger electron spectroscopy were performed to establish the wear and fatigue mechanisms and the nitrogen concentration-depth distributions respectively. Nitrogen implantation resulted in a significant improvement in both surface wear and fatigue spalling resistance over those of untreated gears. A 40% reduction in surface wear and a 44% reduction in dedendum spalling was observed. In contrast, the nitrogen-implanted-and-annealed gears showed a 46% increase in sliding wear area and an 11% increase in spall density compared with those of untreated gears, indicating that the post-implantation anneal was detrimental to wear and fatigue resistance. (orig.)

  5. Skeletal muscle inflammation and insulin resistance in obesity

    Science.gov (United States)

    Wu, Huaizhu; Ballantyne, Christie M.

    2017-01-01

    Obesity is associated with chronic inflammation, which contributes to insulin resistance and type 2 diabetes mellitus. Under normal conditions, skeletal muscle is responsible for the majority of insulin-stimulated whole-body glucose disposal; thus, dysregulation of skeletal muscle metabolism can strongly influence whole-body glucose homeostasis and insulin sensitivity. Increasing evidence suggests that inflammation occurs in skeletal muscle in obesity and is mainly manifested by increased immune cell infiltration and proinflammatory activation in intermyocellular and perimuscular adipose tissue. By secreting proinflammatory molecules, immune cells may induce myocyte inflammation, adversely regulate myocyte metabolism, and contribute to insulin resistance via paracrine effects. Increased influx of fatty acids and inflammatory molecules from other tissues, particularly visceral adipose tissue, can also induce muscle inflammation and negatively regulate myocyte metabolism, leading to insulin resistance. PMID:28045398

  6. Efficacy of kinesiology tape versus postural correction exercises on neck disability and axioscapular muscles fatigue in mechanical neck dysfunction: A randomized blinded clinical trial.

    Science.gov (United States)

    El-Abd, Aliaa M; Ibrahim, Abeer R; El-Hafez, Haytham M

    2017-04-01

    Mechanical neck dysfunction (MND), with axioscapular muscles fatigue, is highly prevalent worldwide. While postural correction is commonly used for its treatment, efficacy of kinesiology tape (KT) has received considerable attention. To determine the effectiveness of KT versus correction exercises on neck disability, and axioscapular muscles fatigue in MND patients. 46 MND patients were randomly assigned into 1 of 2 groups receiving 4 weeks treatment of either KT or correction exercises. Neck disability and axioscapular muscles fatigue as median frequency of electromyography (EMG-MF) were measured pre and post treatment. Group-by-time interaction was not significant in the multivariable test. Post hoc tests revealed that KT produced more disability reduction than the postural exercises. However, there was no significant interaction for EMG-MF. KT has been found to be more effective than postural exercises to reduce neck disability. However, both modalities have similar effects to reduce axioscapular muscles fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A phenomenological model of muscle fatigue and the power-endurance relationship.

    Science.gov (United States)

    James, A; Green, S

    2012-11-01

    The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.

  8. Cyclic Fatigue Resistance of Novel Rotary Files Manufactured from Different Thermal Treated Nickel-Titanium Wires in Artificial Canals.

    Science.gov (United States)

    Karataşlıoglu, E; Aydın, U; Yıldırım, C

    2018-02-01

    The aim of this in vitro study was to compare the static cyclic fatigue resistance of thermal treated rotary files with a conventional nickel-titanium (NiTi) rotary file. Four groups of 60 rotary files with similar file dimensions, geometries, and motion were selected. Groups were set as HyFlex Group [controlled memory wire (CM-Wire)], ProfileVortex Group (M-Wire), Twisted File Group (R-Phase Wire), and OneShape Group (conventional NiTi wire)] and tested using a custom-made static cyclic fatigue testing apparatus. The fracture time and fragment length of the each file was also recorded. Statistical analysis was performed using one-way analysis of variance and Tukey's test at the 95% confidence level (P = 0.05). The HyFlex group had a significantly higher mean cyclic fatigue resistance than the other three groups (P Wire alloy represented the best performance in cyclic fatigue resistance, and NiTi alloy in R-Phase had the second highest fatigue resistance. CM and R-Phase manufacturing technology processed to the conventional NiTi alloy enhance the cyclic fatigue resistance of files that have similar design and size. M-wire alloy did not show any superiority in cyclic fatigue resistance when compared with conventional NiTi wire.

  9. The Eligibility of Surface Electromyography in the Assessment of Paraspinal Muscles Fatigue Following Interventions in Patients with Chronic Low Back Pain: A Systematic Review

    OpenAIRE

    Nahid Rahmani; Mohammad Ali Mohseni-Bandpei; Iraj Abdollahi

    2013-01-01

    Objective: Evaluation of paraspinal muscles endurance in patients with chronic low back pain (LBP) seems to be of great importance. Many studies demonstrated that surface electromyography has merit to assess muscle fatigue using frequency spectrum. The purpose of this study was to systematically review the eligibility of the surface electromyography in the assessment of paraspinal muscles fatigue changes following different interventions in patients with chronic LBP. Materials & Methods: ...

  10. Validity and everyday clinical applicability of lumbar muscle fatigue assessment methods in patients with chronic non-specific low back pain: a systematic review.

    Science.gov (United States)

    Villafañe, Jorge H; Gobbo, Massimiliano; Peranzoni, Matteo; Naik, Ganesh; Imperio, Grace; Cleland, Joshua A; Negrini, Stefano

    2016-09-01

    This systematic literature review aimed at examining the validity and applicability in everyday clinical rehabilitation practise of methods for the assessment of back muscle fatiguability in patients with chronic non-specific low back pain (CNSLBP). Extensive research was performed in MEDLINE, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Embase, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials (CENTRAL) databases from their inception to September 2014. Potentially relevant articles were also manually looked for in the reference lists of the identified publications. Studies examining lumbar muscle fatigue in people with CNSLBP were selected. Two reviewers independently selected the articles, carried out the study quality assessment and extracted the results. A modified Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) scale was used to evaluate the scientific rigour of the selected works. Twenty-four studies fulfilled the selection criteria and were included in the systematic review. We found conflicting data regarding the validity of methods used to examine back muscle fatigue. The Biering-Sorensen test, performed in conjunction with surface electromyography spectral analysis, turned out to be the most widely used and comparatively, the most optimal modality currently available to assess objective back muscle fatigue in daily clinical practise, even though critical limitations are discussed. Future research should address the identification of an advanced method for lower back fatigue assessment in patients with CNSLBP which, eventually, might provide physical therapists with an objective and reliable test usable in everyday clinical practise. Implications for Rehabilitation Despite its limitations, the Biering-Sorensen test is currently the most used, convenient and easily available fatiguing test for lumbar muscles. To increase validity and reliability of the Biering

  11. Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2010-05-01

    Full Text Available Surface Electromyography (sEMG activity of the biceps muscle was recorded from ten subjects performing isometric contraction until fatigue. A novel feature (1D spectro_std was used to extract the feature that modeled three classes of fatigue, which enabled the prediction and detection of fatigue. Initial results of class separation were encouraging, discriminating between the three classes of fatigue, a longitudinal classification on Non-Fatigue and Transition-to-Fatigue shows 81.58% correct classification with accuracy 0.74 of correct predictions while the longitudinal classification on Transition-to-Fatigue and Fatigue showed lower average correct classification of 66.51% with a positive classification accuracy 0.73 of correct prediction. Comparison of the 1D spectro_std with other sEMG fatigue features on the same dataset show a significant improvement in classification, where results show a significant 20.58% (p < 0.01 improvement when using the 1D spectro_std to classify Non-Fatigue and Transition-to-Fatigue. In classifying Transition-to-Fatigue and Fatigue results also show a significant improvement over the other features giving 8.14% (p < 0.05 on average of all compared features.

  12. Fatigue in soccer

    DEFF Research Database (Denmark)

    Mohr, Magni; Krustrup, Peter; Bangsbo, Jens

    2005-01-01

    This review describes when fatigue may develop during soccer games and the potential physiological mechanisms that cause fatigue in soccer. According to time?-?motion analyses and performance measures during match-play, fatigue or reduced performance seems to occur at three different stages......, acidity or the breakdown of creatine phosphate. Instead, it may be related to disturbances in muscle ion homeostasis and an impaired excitation of the sarcolemma. Soccer players' ability to perform maximally is inhibited in the initial phase of the second half, which may be due to lower muscle...... concentrations in a considerable number of individual muscle fibres. In a hot and humid environment, dehydration and a reduced cerebral function may also contribute to the deterioration in performance. In conclusion, fatigue or impaired performance in soccer occurs during various phases in a game, and different...

  13. Fatigue with HIV/AIDS

    Science.gov (United States)

    ... 21, 2014 Select a Language: Fact Sheet 551 Fatigue WHAT IS FATIGUE? IS FATIGUE IMPORTANT? HOW DO ... It can be physical or psychological. With physical fatigue , your muscles cannot do things as easily as ...

  14. Low-level activity of the trunk extensor muscles causes electromyographic manifestations of fatigue in absence of decreased oxygenation

    NARCIS (Netherlands)

    Dieën, J.H. van; Westebring van der; Putten, E.P.; Kingma, I.; Looze, M.P. de

    2009-01-01

    This study was designed to determine whether trunk extensor fatigue occurs during low-level activity and whether this is associated with a drop in muscle tissue oxygenation. Electromyography (EMG) feedback was used to impose constant activity in a part of the trunk extensor muscles. We hypothesized

  15. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  16. Relations between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy

    NARCIS (Netherlands)

    Eken, Maaike M.; Houdijk, Han; Doorenbosch, Caroline A. M.; Kiezebrink, Francisca E. M.; van Bennekom, Coen A. M.; Harlaar, Jaap; Dallmeijer, Annet J.

    2016-01-01

    To investigate the relation between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy (CP) and peers with typical development. In this case-control study, knee extensor muscle endurance was estimated from

  17. Relations between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy

    NARCIS (Netherlands)

    Eken, Maaike M; Houdijk, Han; Doorenbosch, Caroline A M; Kiezebrink, Francisca E.M.; van Bennekom, Coen A.M.; Harlaar, Jaap; Dallmeijer, Annet J.

    2016-01-01

    Aim: To investigate the relation between muscle endurance and subjectively reported fatigue, walking capacity, and participation in mildly affected adolescents with cerebral palsy (CP) and peers with typical development. Method: In this case–control study, knee extensor muscle endurance was

  18. Characterization of fatigue resistance in photochromic composite materials for 3D rewritable optical memory applications

    International Nuclear Information System (INIS)

    Samoylova, Elena; Dallari, William; Allione, Marco; Pignatelli, Francesca; Marini, Lara; Cingolani, Roberto; Diaspro, Alberto; Athanassiou, Athanassia

    2013-01-01

    Highlights: • Fatigue resistance of diarylethene–polymer composites was tested with optical absorption and fluorescence methods upon repetitive UV–VIS irradiation. • Significant differences in fatigue were found in different polymeric matrices and in one-photon and two-photon excitation experiments. • Several explanations for fatigue resistance of the composites are proposed based on the physico-chemical properties of the diarylethenes and polymeric matrices. -- Abstract: Fatigue resistance of the photochromic diarylethene molecules 1,2-bis[2-methylbenzo[b]thyophen-3-yl] -3,3,4,4,5,5-hexafluoro-1-cyclopentene embedded in three different acrylic polymers is studied upon multiple coloration–decoloration cycles. The resistance to photofatigue is found to be different in the three polymeric materials when one-photon excitation was used for the reversible photoconversion experiment. In particular, the photochromic molecules lose their photoisomerization ability faster if they are embedded in poly(methyl methacrylate) (PMMA) with respect to poly(ethyl methacrylate-co-methyl acrylate) (PEMMA) and poly(ethyl methacrylate) (PEMA). We propose several explanations based on the physico-chemical properties of the matrix and of the photochromic molecules. In the case of two-photon excitation, which is necessary for 3D optical writing, the fatigue resistance is found to be poorer than in the one-photon case. The accelerated photodegradation can be assigned to the non-linear nature of interaction between the polymeric composite material and light

  19. Characterization of fatigue resistance in photochromic composite materials for 3D rewritable optical memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Samoylova, Elena, E-mail: Elena.Samoylova@physik.uni-muenchen.de [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Dallari, William; Allione, Marco; Pignatelli, Francesca; Marini, Lara; Cingolani, Roberto; Diaspro, Alberto [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Center for Biomolecular Nanotechnologies-Unile, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce (Italy)

    2013-06-01

    Highlights: • Fatigue resistance of diarylethene–polymer composites was tested with optical absorption and fluorescence methods upon repetitive UV–VIS irradiation. • Significant differences in fatigue were found in different polymeric matrices and in one-photon and two-photon excitation experiments. • Several explanations for fatigue resistance of the composites are proposed based on the physico-chemical properties of the diarylethenes and polymeric matrices. -- Abstract: Fatigue resistance of the photochromic diarylethene molecules 1,2-bis[2-methylbenzo[b]thyophen-3-yl] -3,3,4,4,5,5-hexafluoro-1-cyclopentene embedded in three different acrylic polymers is studied upon multiple coloration–decoloration cycles. The resistance to photofatigue is found to be different in the three polymeric materials when one-photon excitation was used for the reversible photoconversion experiment. In particular, the photochromic molecules lose their photoisomerization ability faster if they are embedded in poly(methyl methacrylate) (PMMA) with respect to poly(ethyl methacrylate-co-methyl acrylate) (PEMMA) and poly(ethyl methacrylate) (PEMA). We propose several explanations based on the physico-chemical properties of the matrix and of the photochromic molecules. In the case of two-photon excitation, which is necessary for 3D optical writing, the fatigue resistance is found to be poorer than in the one-photon case. The accelerated photodegradation can be assigned to the non-linear nature of interaction between the polymeric composite material and light.

  20. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    Science.gov (United States)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  1. Development of fatigue and discomfort in the upper trapezius muscle during light manual work

    NARCIS (Netherlands)

    Bosch, T.; Looze, M.P. de; Dieën, J.H. van

    2007-01-01

    Optimization of the temporal aspects of task design requires a better understanding of the development of muscle fatigue in the neck and shoulder region over time. The objective of the study was to investigate this in two production companies and to determine the relationship between objective and

  2. Modification of working conditions based on ergo THK reducing workload, muscle tension, and fatigue of rice milling workers in J village

    Science.gov (United States)

    Ruliati, L. P.; Adiputra, N.; Sutjana, I. D. P.; Sutajaya, I. M.

    2017-11-01

    Rice mill is one of the businesses in informal sector. From the rice milling process, ergonomic problems arise when employees work with bent position that done repeatedly to lift grain sacks to be transferred to peeler machine. This situation will affect the comfort of work, thus increasing the workload, muscle tension, and fatigue. The consequence will certainly affect the health and productivity of workers. In this study introduces ergo Tri Hita Karana (ergo THK) as an ergonomics intervention model which solves ergonomics problems of the cultural aspects of THK. The study aim is to determine the modification of working conditions based Ergo THK to reduce workload, muscle tension and fatigue. This research uses Randomized Pretest and Posttest Control Group Design experimental design. The subjects were 30 male rice mill workers with an age range of 16 until 56 years, and then divided into 15 subjects in the control group and 15 subjects in the treatment group. The results showed that the average posttest workloads in the control group are 136.950 more less 0.297 and in the treatment group are 107.60 more less 0.396. Significance analysis showed that after the two groups done their activities, the average workload significantly different p less than 0.005. The amount of reduction in the workload between the two groups was 21.43 percent. In muscle tension posttest showed that the mean score of the muscle tension in the control group was 62.67 more less 7.31 and the treatment group was 20.96 more less 2.96. Significance analysis showed that both groups mean muscle-tension results were significantly different p less than 0.005. The amount of reduction in tension between the control group and the treatment group while working was 66.55 percent. At fatigue posttest showed that the mean score of fatigue in the control group was 76.40 more less 13.51 and the treatment group was 55.53 more less 9.51. Significant analysis showed that the mean fatigue of both groups

  3. Effects of High-Intensity Blood Flow Restriction Exercise on Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Neto Gabriel R.

    2014-07-01

    Full Text Available Strength training combined with blood flow restriction (BFR have been used to improve the levels of muscle adaptation. The aim of this paper was to investigate the acute effect of high intensity squats with and without blood flow restriction on muscular fatigue levels. Twelve athletes (aged 25.95 ± 0.84 years were randomized into two groups: without Blood Flow Restriction (NFR, n = 6 and With Blood Flow Restriction (WFR, n = 6 that performed a series of free weight squats with 80% 1-RM until concentric failure. The strength of the quadriceps extensors was assessed in a maximum voluntary isometric contraction integrated to signals from the surface electromyogram. The average frequency showed significant reductions in the WFR group for the vastus lateralis and vastus medialis muscles, and intergroup only for the vastus medialis. In conclusion, a set of squats at high intensity with BFR could compromise muscle strength immediately after exercise, however, differences were not significant between groups.

  4. The Influence of Casting Defects on Fatigue Resistance of Elektron 21 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Pikos I.

    2013-06-01

    Full Text Available The Mg-RE alloys are attractive, constructional materials, especially for aircraft and automotive industry, thanks to combination of low density, good mechanical properties, also at elevated temperature, and good castability and machinability. Present paper contains results of fatigue resistance test carried out on Elektron 21 magnesium alloy, followed by microstructural and fractographical investigation of material after test. The as-cast material has been heat treated according to two different procedures. The fatigue resistance test has been conducted with 106 cycles of uniaxial, sine wave form stress between 9 MPa and 90 MPa. Fractures of specimens, which ruptured during the test, have been investigated with scanning electron microscope. The microstructure of specimens has been investigated with light microscopy. Detrimental effect of casting defects, as inclusions and porosity, on fatigue resistance has been proved. Also the influence of heat treatment's parameters has been described.

  5. Age-Related Changes in Dynamic Postural Control and Attentional Demands are Minimally Affected by Local Muscle Fatigue

    Science.gov (United States)

    Remaud, Anthony; Thuong-Cong, Cécile; Bilodeau, Martin

    2016-01-01

    Normal aging results in alterations in the visual, vestibular and somtaosensory systems, which in turn modify the control of balance. Muscle fatigue may exacerbate these age-related changes in sensory and motor functions, and also increase the attentional demands associated with dynamic postural control. The purpose of this study was to investigate the effect of aging on dynamic postural control and posture-related attentional demands before and after a plantar flexor fatigue protocol. Participants (young adults: n = 15; healthy seniors: n = 13) performed a dynamic postural task along the antero-posterior (AP) and the medio-lateral (ML) axes, with and without the addition of a simple reaction time (RT) task. The dynamic postural task consisted in following a moving circle on a computer screen with the representation of the center of pressure (COP). This protocol was repeated before and after a fatigue task where ankle plantar flexor muscles were targeted. The mean COP-target distance and the mean COP velocity were calculated for each trial. Cross-correlation analyses between the COP and target displacements were also performed. RTs were recorded during dual-task trials. Results showed that while young adults adopted an anticipatory control mode to move their COP as close as possible to the target center, seniors adopted a reactive control mode, lagging behind the target center. This resulted in longer COP-target distance and higher COP velocity in the latter group. Concurrently, RT increased more in seniors when switching from static stance to dynamic postural conditions, suggesting potential alterations in the central nervous system (CNS) functions. Finally, plantar flexor muscle fatigue and dual-tasking had only minor effects on dynamic postural control of both young adults and seniors. Future studies should investigate why the fatigue-induced changes in quiet standing postural control do not seem to transfer to dynamic balance tasks. PMID:26834626

  6. Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions

    Directory of Open Access Journals (Sweden)

    Ok-In Cho

    2013-02-01

    Full Text Available Objectives This study compared the cyclic fatigue resistance of nickel-titanium (NiTi files obtained in a conventional test using a simulated canal with a newly developed method that allows the application of constant fatigue load conditions. Materials and Methods ProFile and K3 files of #25/.06, #30/.06, and #40/.04 were selected. Two types of testing devices were built to test their fatigue performance. The first (conventional device prescribed curvature inside a simulated canal (C-test, the second new device exerted a constant load (L-test whilst allowing any resulting curvature. Ten new instruments of each size and brand were tested with each device. The files were rotated until fracture and the number of cycles to failure (NCF was determined. The NCF were subjected to one-way ANOVA and Duncan's post-hoc test for each method. Spearman's rank correlation coefficient was computed to examine any association between methods. Results Spearman's rank correlation coefficient (ρ = -0.905 showed a significant negative correlation between methods. Groups with significant difference after the L-test divided into 4 clusters, whilst the C-test gave just 2 clusters. From the L-test, considering the negative correlation of NCF, K3 gave a significantly lower fatigue resistance than ProFile as in the C-test. K3 #30/.06 showed a lower fatigue resistance than K3 #25/.06, which was not found by the C-test. Variation in fatigue test methodology resulted in different cyclic fatigue resistance rankings for various NiTi files. Conclusions The new methodology standardized the load during fatigue testing, allowing determination fatigue behavior under constant load conditions.

  7. A proposta biomecânica para a avaliação de sobrecarga na coluna lombar: efeito de diferentes variáveis demográficas na fadiga muscular A biomechamical approach for assessment of overload on lumbar spine: the effects of different demographic variables on muscle fatigue

    Directory of Open Access Journals (Sweden)

    Fernando Sérgio Silva Barbosa

    2007-01-01

    Full Text Available OBJETIVOS: Analisar a fadiga de músculos lombares e determinar as variáveis demográficas relacionadas com a fadiga destes músculos. MÉTODOS: A atividade eletromiográfica (EMG dos músculos iliocostal direito (IL-D, iliocostal esquerdo (IL-E, multífido direito (MU-D e multífido esquerdo (MU-E de 18 voluntários foi captada durante contrações isométricas sub-máximas. Valores de root mean square (RMS e freqüência mediana (FM foram correlacionados com o tempo de resistência isométrica (TRI. Slopes de RMS positivos e de FM negativos indicaram a ocorrência da fadiga muscular. Procedimentos de regressão múltipla foram realizados para verificar as variáveis demográficas relacionadas com a fadiga muscular. RESULTADOS: A fadiga foi identificada em todos os músculos e intensidades de contração (pOBJECTIVES: To assess low back muscles fatigue and to determine the demographic variables associated to fatigue on these muscles. METHODS: The electromyographic (EMG activity of the right iliocostal (R-IL, left iliocostal (L-IL, right multifidus (R-MU and left multifidus (L-MU of 18 volunteers was recorded during submaximal isometric contractions. Root mean square (RMS and median frequency (MF values were correlated with isometric endurance time (IET. Positive RMS and negative MF slopes indicated occurrence of muscle fatigue. Multiple regression procedures were performed in order to verify the demographic variables related with the muscle fatigue. RESULTS: Fatigue was identified in all muscles and contraction intensities (p<0.01, except for MU-E at 5% in RMS slope analysis. Significant differences were found between the endurance time of 5% and 15% (p=0.01, 5% and 20% (p=0.0002. Higher levels of fatigue were found bilaterally in the multifidus muscles in the MF slope analysis. The combination of endurance time, age and body mass of the volunteers was identified as the determinant factor for the occurrence of muscle fatigue in the assessed

  8. Pacing Strategy, Muscle Fatigue, and Technique in 1500-m Speed-Skating and Cycling Time Trials.

    Science.gov (United States)

    Stoter, Inge K; MacIntosh, Brian R; Fletcher, Jared R; Pootz, Spencer; Zijdewind, Inge; Hettinga, Florentina J

    2016-04-01

    To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500-m speed-skating and cycling time trials when a faster or slower start is instructed. Nine speed skaters and 9 cyclists, all competing at regional or national level, performed two 1500-m time trials in their sport. Athletes were instructed to start faster than usual in 1 trial and slower in the other. Mean velocity was measured per 100 m. Blood lactate concentrations were measured. Maximal voluntary contraction (MVC), voluntary activation (VA), and potentiated twitch (PT) of the quadriceps muscles were measured to estimate central and peripheral contributions to muscle fatigue. In speed skating, knee, hip, and trunk angles were measured to evaluate technique. Cyclists showed a more explosive start than speed skaters in the fast-start time trial (cyclists performed first 300 m in 24.70 ± 1.73 s, speed skaters in 26.18 ± 0.79 s). Both trials resulted in reduced MVC (12.0% ± 14.5%), VA (2.4% ± 5.0%), and PT (25.4% ± 15.2%). Blood lactate concentrations after the time trial and the decrease in PT were greater in the fast-start than in the slow-start trial. Speed skaters showed higher trunk angles in the fast-start than in the slow-start trial, while knee angles remained similar. Despite similar instructions, behavioral adaptations in pacing differed between the 2 sports, resulting in equal central and peripheral contributions to muscle fatigue in both sports. This provides evidence for the importance of neurophysiological aspects in the regulation of pacing. It also stresses the notion that optimal pacing needs to be studied sport specifically, and coaches should be aware of this.

  9. Assessing the Therapeutic Effect of 630 nm Light-Emitting Diodes Irradiation on the Recovery of Exercise-Induced Hand Muscle Fatigue with Surface Electromyogram

    Directory of Open Access Journals (Sweden)

    Dandan Yang

    2012-01-01

    Full Text Available This paper aims to investigate the effect of light emitting diode therapy (LEDT on exercise-induced hand muscle fatigue by measuring the surface electromyography (sEMG of flexor digitorum superficialis. Ten healthy volunteers were randomly placed in the equal sized LEDT group and control group. All subjects performed a sustained fatiguing isometric contraction with the combination of four fingertips except thumb at 30% of maximal voluntary contraction (MVC until exhaustion. The active LEDT or an identical passive rest therapy was then applied to flexor digitorum superficialis. Each subject was required to perform a re-fatigue task immediately after therapy which was the same as the pre-fatigue task. Average rectified value (ARV and fractal dimension (FD of sEMG were calculated. ARV and FD were significantly different between active LEDT and passive rest groups at 20%–50%, 70%–80%, and 100% of normalized contraction time (P<0.05. Compared to passive rest, active LEDT induced significantly smaller increase in ARV values and decrease in FD values, which shows that LEDT is effective on the recovery of muscle fatigue. Our preliminary results also suggest that ARV and FD are potential replacements of biochemical markers to assess the effects of LEDT on muscle fatigue.

  10. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    Science.gov (United States)

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  11. Skeletal muscle capillarization and oxidative metabolism in healthy smokers

    NARCIS (Netherlands)

    Wüst, Rob C. I.; Jaspers, Richard T.; van der Laarse, Willem J.; Degens, Hans

    2008-01-01

    We investigated whether the lower fatigue resistance in smokers than in nonsmokers is caused by a compromised muscle oxidative metabolism. Using calibrated histochemistry, we found no differences in succinate dehydrogenase (SDH) activity, myoglobin concentration, or capillarization in sections of

  12. Functional adaptation of tendon and skeletal muscle to resistance training in three patients with genetically verified classic Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Møller, Mathias Bech; Kjær, Michael; Svensson, René Brüggebusch

    2014-01-01

    undergoing muscle strength training. We investigated patients with classical Ehlers Danlos Syndrome (EDS) (collagen type V defect) who display articular hypermobility, skin extensibility and tissue fragility. METHODS: subjects underwent strength training 3 times a week for 4 months and were tested before...... and after intervention in regards to muscle strength, tendon mechanical properties, and muscle function. RESULTS: three subjects completed the scheduled 48 sessions and had no major adverse events. Mean isometric leg extension force and leg extensor power both increased by 8 and 11% respectively (358 to 397...... sway-area of the participants decreased by 26% (0.144 to 0.108 m(2)). On the subscale of CIS20 the participants lowered their average subjective fatigue score from 33 to 25. CONCLUSION: in this small pilot study, heavy resistance training was both feasible and effective in classic Ehlers Danlos...

  13. Evaluating abdominal core muscle fatigue: Assessment of the validity and reliability of the prone bridging test.

    Science.gov (United States)

    De Blaiser, C; De Ridder, R; Willems, T; Danneels, L; Vanden Bossche, L; Palmans, T; Roosen, P

    2018-02-01

    The aims of this study were to research the amplitude and median frequency characteristics of selected abdominal, back, and hip muscles of healthy subjects during a prone bridging endurance test, based on surface electromyography (sEMG), (a) to determine if the prone bridging test is a valid field test to measure abdominal muscle fatigue, and (b) to evaluate if the current method of administrating the prone bridging test is reliable. Thirty healthy subjects participated in this experiment. The sEMG activity of seven abdominal, back, and hip muscles was bilaterally measured. Normalized median frequencies were computed from the EMG power spectra. The prone bridging tests were repeated on separate days to evaluate inter and intratester reliability. Significant differences in normalized median frequency slope (NMF slope ) values between several abdominal, back, and hip muscles could be demonstrated. Moderate-to-high correlation coefficients were shown between NMF slope values and endurance time. Multiple backward linear regression revealed that the test endurance time could only be significantly predicted by the NMF slope of the rectus abdominis. Statistical analysis showed excellent reliability (ICC=0.87-0.89). The findings of this study support the validity and reliability of the prone bridging test for evaluating abdominal muscle fatigue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods.

    Science.gov (United States)

    Gambarini, Gianluca; Grande, Nicola Maria; Plotino, Gianluca; Somma, Francesco; Garala, Manish; De Luca, Massimo; Testarelli, Luca

    2008-08-01

    The aim of the present study was to investigate whether cyclic fatigue resistance is increased for nickel-titanium instruments manufactured by using new processes. This was evaluated by comparing instruments produced by using the twisted method (TF; SybronEndo, Orange, CA) and those using the M-wire alloy (GTX; Dentsply Tulsa-Dental Specialties, Tulsa, OK) with instruments produced by a traditional NiTi grinding process (K3, SybronEndo). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments inside curved artificial canals. Results indicated that size 06-25 TF instruments showed a significant increase (p 0.05) in the mean number of cycles to failure when compared with size 06-20 GT series X instruments. The new manufacturing process produced nickel-titanium rotary files (TF) significantly more resistant to fatigue than instruments produced with the traditional NiTi grinding process. Instruments produced with M-wire (GTX) were not found to be more resistant to fatigue than instruments produced with the traditional NiTi grinding process.

  15. Fatigue resistance of rotary ProTaper Universal instruments after use with and without lateral pressure motion

    OpenAIRE

    Vieira, Evandro Pires; Pereira, Érika Sales Joviano; Peixoto, Isabella Faria da Cunha; Buono, Vicente Tadeu Lopes; Bahia, Maria Guiomar de Azevedo

    2016-01-01

    Aim: To evaluate the fatigue resistance of rotary ProTaper Universal instruments after multiple clinical uses with and without lateral pressure motion. Methods: Thirty sets of ProTaper Universal (PTU) instruments (Dentsply-Maillefer, Ballaigues, Switzerland), types S1, S2, F1 and F2, totaling 120 files, were analyzed and divided into three groups, as follows: Control Group (CG), with 10 sets of new instruments, which were fatigue tested until rupture to determine their fatigue resistance; Lat...

  16. Electrically and hybrid-induced muscle activations: effects of muscle size and fiber type

    Directory of Open Access Journals (Sweden)

    Kelly Stratton

    2016-07-01

    Full Text Available The effect of three electrical stimulation (ES frequencies (10, 35, and 50 Hz on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB and vastus lateralis (VL was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations. Surface electromyography (sEMG and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1 compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC force, and 2 compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.

  17. Effect of BCAA intake during endurance exercises on fatigue substances, muscle damage substances, and energy metabolism substances.

    Science.gov (United States)

    Kim, Dong-Hee; Kim, Seok-Hwan; Jeong, Woo-Seok; Lee, Ha-Yan

    2013-12-01

    The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.

  18. Combined effect of repetitive work and cold on muscle function and fatigue.

    Science.gov (United States)

    Oksa, Juha; Ducharme, Michel B; Rintamäki, Hannu

    2002-01-01

    This study compared the effect of repetitive work in thermoneutral and cold conditions on forearm muscle electromyogram (EMG) and fatigue. We hypothesize that cold and repetitive work together cause higher EMG activity and fatigue than repetitive work only, thus creating a higher risk for overuse injuries. Eight men performed six 20-min work bouts at 25 degrees C (W-25) and at 5 degrees C while exposed to systemic (C-5) and local cooling (LC-5). The work was wrist flexion-extension exercise at 10% maximal voluntary contraction. The EMG activity of the forearm flexors and extensors was higher during C-5 (31 and 30%, respectively) and LC-5 (25 and 28%, respectively) than during W-25 (P forearm flexors at the end of W-25 was 15%. The corresponding values at the end of C-5 and LC-5 were 37% (P < 0.05 in relation to W-25) and 20%, respectively. Thus repetitive work in the cold causes higher EMG activity and fatigue than repetitive work in thermoneutral conditions.

  19. Pilot study: Effects of drinking hydrogen-rich water on muscle fatigue caused by acute exercise in elite athletes

    Directory of Open Access Journals (Sweden)

    Aoki Kosuke

    2012-07-01

    Full Text Available Abstract Background Muscle contraction during short intervals of intense exercise causes oxidative stress, which can play a role in the development of overtraining symptoms, including increased fatigue, resulting in muscle microinjury or inflammation. Recently it has been said that hydrogen can function as antioxidant, so we investigated the effect of hydrogen-rich water (HW on oxidative stress and muscle fatigue in response to acute exercise. Methods Ten male soccer players aged 20.9 ± 1.3 years old were subjected to exercise tests and blood sampling. Each subject was examined twice in a crossover double-blind manner; they were given either HW or placebo water (PW for one week intervals. Subjects were requested to use a cycle ergometer at a 75 % maximal oxygen uptake (VO2 for 30 min, followed by measurement of peak torque and muscle activity throughout 100 repetitions of maximal isokinetic knee extension. Oxidative stress markers and creatine kinase in the peripheral blood were sequentially measured. Results Although acute exercise resulted in an increase in blood lactate levels in the subjects given PW, oral intake of HW prevented an elevation of blood lactate during heavy exercise. Peak torque of PW significantly decreased during maximal isokinetic knee extension, suggesting muscle fatigue, but peak torque of HW didn’t decrease at early phase. There was no significant change in blood oxidative injury markers (d-ROMs and BAP or creatine kinease after exercise. Conclusion Adequate hydration with hydrogen-rich water pre-exercise reduced blood lactate levels and improved exercise-induced decline of muscle function. Although further studies to elucidate the exact mechanisms and the benefits are needed to be confirmed in larger series of studies, these preliminary results may suggest that HW may be suitable hydration for athletes.

  20. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials

    Directory of Open Access Journals (Sweden)

    Rean Maharaj

    2015-01-01

    Full Text Available The influence of waste cooking oil (WCO on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA, Trinidad Petroleum Bitumen (TPB, and TLA : TPB (50 : 50 blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G∗ and phase angle (δ were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G∗/sinδ values and increases in the fatigue cracking resistance (decrease in G∗sinδ value. The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50 blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials.

  1. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG).

    Science.gov (United States)

    García-Manso, Juan Manuel; Rodríguez-Ruiz, David; Rodríguez-Matoso, Dario; de Saa, Yves; Sarmiento, Samuel; Quiroga, Miriam

    2011-03-01

    In this study, we used tensiomyography (TMG) to assess muscle status immediately after an ultra-endurance triathlon. Maximal radial displacement or deformation of the muscle belly, contraction time, delay time, sustain time, and relaxation time were measured for both legs, and dependent t-tests were used to compare means between the beginning and end of the race. The 19 men assessed (age 37.9 ± 7.1 years; height 177.5 ± 4.6 cm; weight: 73.6 ± 6.5 kg) participated in the 2009 edition of the Lanzarote Ironman. Deterioration in the neural response was observed for contraction time (P = 0.008) and relaxation time (P = 0.011), with a moderate decrease in the response time (sustain time) and a loss in muscle stiffness (deformation of the muscle belly). The effect of muscle fatigue on the rectus femoris and biceps femoris was different. Barely any changes in contraction time, relaxation time, sustain time, and deformation of the muscle belly were observed, while only the contraction response time decreased to a significant extent (reduction in delay time; P = 0.003). The considerable loss in contractile capacity induced by a long-distance race was reflected in changes in the neuromuscular response and fluctuations in the contractile capacity of the muscle. These modifications, derived from a prolonged, exhausting effort, can be assessed in a simple, non-aggressive, non-invasive way using tensiomyography.

  2. Changes of postural control and muscle activation pattern in response to external perturbations after neck flexor fatigue in young subjects with and without chronic neck pain.

    Science.gov (United States)

    Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Yen, Ling-Wei; Lin, Yang-Hua; Cheng, Hsin-Yi Kathy

    2015-03-01

    Previous studies have identified sensorimotor disturbances and greater fatigability of neck muscles in patients with neck pain. The purpose of this study was to investigate the effect of neck pain and neck flexor fatigue on standing balance following postural perturbations. Twenty patients with chronic neck pain (CNP) (24.7±3.6 year-old) and 20 age-matched asymptomatic subjects (22.1±2.2 year-old) were recruited. Subjects stood barefoot on a force plate and experienced backward perturbations before and after neck flexor fatigue. Center of pressure, electromyography of cervical and lumbar muscles, and head/trunk accelerations were recorded. Two-way ANOVA (pain×fatigue) was used for statistical analysis. CNP group showed larger body sway during quiet standing but not during perturbed standing compared with asymptomatic adults. In both groups, neck flexor fatigue resulted in greater body sway during the quiet standing but smaller body sway during perturbed standing, increased neck muscle activations and decreased lumbar muscle activations, as well as increased time to maximal head acceleration. Disturbed balance control was observed in CNP patients during the quiet standing. However, a rigid strategy was used to minimize the postural sway and to protect the head against backward perturbations in both CNP and asymptomatic young adults after neck flexor fatigue. The results facilitate the understanding of how the subjects with chronic neck pain and with neck muscle fatigue deal with the challenging condition. Further studies are needed to verify if such phenomenon could be changed after the intervention of specific flexor muscle retraining and balance control exercises. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Musculus gastrocnemius tetanus kinetics in alcohol-intoxicated rats with experimentally-induced hindlimb vascular ischemia under conditions of low-frequence muscle fatigue

    Directory of Open Access Journals (Sweden)

    O. A. Melnychuk

    2014-04-01

    Full Text Available Alcohol intoxication and ischemic injury of skeletal muscles often accompany each other. It is shown that patients hospitalized with chronic alcoholism develop muscle fatigue. Skeletal muscle dysfunction in alcohol-dependent patients is caused by ethanol-associated myofibrillar atrophy and metabolic disbalance, while compression-ischemic lesions result from unconsciousness of the patient, in case of taking the critical alcohol dose. Therefore, the aim of this study is to discover typical m. gastrocnemius (cap. med. tetanic kinetics changes in alcohol intoxicated rats with experimentally induced vascular ischemia of hindlimb muscles under conditions of low-frequency progressive muscle fatigue. Experiments were carried out on 10 young male Wistar rats (149.5 ± 5.8 g kept under standard vivarium conditions and diet. The investigation was conducted in two phases: chronic (30 days and acute (3 hours experiment. All surgical procedures were carried out aseptically under general anesthesia. Ishemic m. gastrocnemius (cap. med. tetanic kinetic changes and force productivity in alcohol intoxicated rats were investigated in the isometric mode, with direct electrical stimulation. The fatigue of m. gastrocnemius (cap. med. was evaluated by three characteristic criteria: the first sag effect, the secondary force rise, the second sag effect. There have been 10 similar experiments: 5 series in each study group with 10 tetanic runs in each series. The highest amplitude of the native m. gastrocnemius (cap. med. tetanus relative to isoline was taken as 100% force response. The same pattern of m. gastrocnemius (cap. med. low-frequency fatigue development was found in both rat groups under study. It is evidenced by the absence of substantial m. gastrocnemius (cap. med. tetanus kinetics differences in alcohol intoxicated rats, compared with non-alcohol intoxicated rats during fatigue test. However, the appreciable m. gastrocnemius (cap. med. tetanic force reduction

  4. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; Joanisse, Sophie; Leenders, Marika; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2017-04-01

    Adequate muscle fibre perfusion is critical for the maintenance of muscle mass; it is essential in the rapid delivery of oxygen, nutrients and growth factors to the muscle, stimulating muscle fibre growth. Muscle fibre capillarization is known to decrease substantially with advancing age. However, whether (relative) low muscle fibre capillarization negatively impacts the muscle hypertrophic response following resistance exercise training in older adults is unknown. Twenty-two healthy older men (71 ± 1 years) performed 24 weeks of progressive resistance type exercise training. To assess the change in muscle fibre characteristics, percutaneous biopsies from the vastus lateralis muscle were taken before and following 12 and 24 weeks of the intervention programme. A comparison was made between participants who had a relatively low type II muscle fibre capillary-to-fibre perimeter exchange index (CFPE; LOW group) and high type II muscle fibre CFPE (HIGH group) at baseline. Type I and type II muscle fibre size, satellite cell, capillary content and distance between satellite cells to the nearest capillary were determined by immunohistochemistry. Overall, type II muscle fibre size (from 5150 ± 234 to 6719 ± 446 µm 2 , P muscle fibre, P muscle fibre capillarization, whereas muscle fibre size (from 5170 ± 390 to 7133 ± 314 µm 2 , P muscle fibre, P muscle fibre capillarization were observed in response to 12 and 24 weeks of resistance exercise training in both the LOW and HIGH group. Type II muscle fibre capillarization at baseline may be a critical factor for allowing muscle fibre hypertrophy to occur during prolonged resistance exercise training in older men. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  5. Effect of creatine supplementation and drop-set resistance training in untrained aging adults.

    Science.gov (United States)

    Johannsmeyer, Sarah; Candow, Darren G; Brahms, C Markus; Michel, Deborah; Zello, Gordon A

    2016-10-01

    To investigate the effects of creatine supplementation and drop-set resistance training in untrained aging adults. Participants were randomized to one of two groups: Creatine (CR: n=14, 7 females, 7 males; 58.0±3.0yrs, 0.1g/kg/day of creatine+0.1g/kg/day of maltodextrin) or Placebo (PLA: n=17, 7 females, 10 males; age: 57.6±5.0yrs, 0.2g/kg/day of maltodextrin) during 12weeks of drop-set resistance training (3days/week; 2 sets of leg press, chest press, hack squat and lat pull-down exercises performed to muscle fatigue at 80% baseline 1-repetition maximum [1-RM] immediately followed by repetitions to muscle fatigue at 30% baseline 1-RM). Prior to and following training and supplementation, assessments were made for body composition, muscle strength, muscle endurance, tasks of functionality, muscle protein catabolism and diet. Drop-set resistance training improved muscle mass, muscle strength, muscle endurance and tasks of functionality (pcreatine to drop-set resistance training significantly increased body mass (p=0.002) and muscle mass (p=0.007) compared to placebo. Males on creatine increased muscle strength (lat pull-down only) to a greater extent than females on creatine (p=0.005). Creatine enabled males to resistance train at a greater capacity over time compared to males on placebo (p=0.049) and females on creatine (p=0.012). Males on creatine (p=0.019) and females on placebo (p=0.014) decreased 3-MH compared to females on creatine. The addition of creatine to drop-set resistance training augments the gains in muscle mass from resistance training alone. Creatine is more effective in untrained aging males compared to untrained aging females. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  7. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...... on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise...

  8. The effect of fatigue on the corrosion resistance of common medical alloys.

    Science.gov (United States)

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle

    NARCIS (Netherlands)

    de Ruiter, C.J.; Elzinga, M.J.; Verdijk, P.W.L.; van Mechelen, W.; de Haan, A.

    2005-01-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n=9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50%

  10. Quality of life and fatigue of patients with spinal bone metastases under combined treatment with resistance training and radiation therapy- a randomized pilot trial

    International Nuclear Information System (INIS)

    Rief, Harald; Gioules, Alexandros; Debus, Jürgen; Akbar, Michael; Keller, Monika; Omlor, Georg; Welzel, Thomas; Bruckner, Thomas; Rieken, Stefan; Häfner, Matthias F; Schlampp, Ingmar

    2014-01-01

    The aim of this trial was to compare the effects of resistance training versus passive physical therapy on quality of life (QoL), fatigue, and emotional distress outcomes during radiation therapy in patients with spinal bone metastases under radiotherapy (RT). In this randomized trial, 60 patients were treated from September 2011 until March 2013 into one of the two groups: isometric resistance training or physical therapy with thirty patients in each group during RT. EORTC QLQ-BM22, EORTC QLQ-FA13, and FBK-R10 were assessed at baseline, three months, and six months after RT. Psychosocial aspects in resistance training group (Arm A) were significantly improved after three (p = 0.001) and six months (p = 0.010). Other rated items of the QLQ-BM22 painful site, and pain characteristics were without significant differences. Functional interference showed a positive trend after six months (p = 0.081). After six months, physical fatigue (p = 0.013), and interference with daily life (p = 0.006) according to the QLQ-FA13 assessment improved in Arm A significantly. Emotional distress was in Arm A lower after six months (p = 0.016). The Cohen’s effect size confirmed the clinically significant improvement of these findings. In this group of patients we were able to show that guided isometric resistance training of the paravertebral muscles can improve functional capacity, reduce fatigue and thereby enhance QoL over a 6-months period in patients with stable spinal metastases. The results offer a rationale for future large controlled investigations to confirm these findings

  11. Diaphragmatic fatigue in man.

    Science.gov (United States)

    Roussos, C S; Macklem, P T

    1977-08-01

    The time required (tlim) to produce fatigue of the diaphragm was determined in three normal seated subjects, breathing through a variety of high alinear, inspiratory resistances. During each breath in all experimental runs the subject generated a transdiaphragmatic pressure (Pdi) which was a predetermined fraction of his maximum inspiratory Pdi (Pdimax) at functional residual capacity. The breathing test was performed until the subject was unable to generate this Pdi. The relationship between Pdi/Pdimax and tlim was curvilinear so that when Pdi/Pdimax was small tlim increased markedly for little changes in Pdi/Pdimax. The value of Pdi/Pdimax that could be generated indefinitely (Pdicrit) was around 0.4. Hypoxia appeared to have no influence on Pdicrit, but probably led to a reduction in tlim at Pdi greater than Pdicrit for equal rates of energy consumption. Insofar as the behavior of the diaphragm reflects that of other respiratory muscles it appears that quite high inspiratory loads can be tolerated indefinitely. However, when the energy consumption of the respiratory muscles exceeds a critical level, fatigue should develop. This may be a mechanism of respiratory failure in a variety in a variety of lung diseases.

  12. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...... expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance....

  13. Fatigue Perceived by Multiple Sclerosis Patients Is Associated With Muscle Fatigue

    NARCIS (Netherlands)

    Steens, Anneke; de Vries, Astrid; Hemmen, Jolien; Heersema, Thea; Heerings, Marco; Maurits, Natasha; Zijdewind, Inge

    Background. Fatigue is a debilitating symptom in multiple sclerosis (MS). Previous studies showed no association between fatigue as perceived by the patient and physiological measures of fatigability. Objective. The authors investigated associations between perceived fatigue and measures of

  14. Ductile cast irons: microstructure influence on fatigue crack propagation resistance

    Directory of Open Access Journals (Sweden)

    Mauro Cavallini

    2010-07-01

    Full Text Available Microstructure influence on fatigue crack propagation resistance in five different ductile cast irons (DCI was investigated. Four ferrite/pearlite volume fractions were considered, performing fatigue crack propagation tests according to ASTM E647 standard (R equals to 0.1, 0.5 and 0.75, respectively. Results were compared with an austempered DCI. Damaging micromechanisms were investigated according to the following procedures: - “traditional” Scanning Electron Microscope (SEM fracture surfaces analysis; - SEM fracture surface analysis with 3D quantitative analysis; - SEM longitudinal crack profile analysis - Light Optical Microscope (LOM transversal crack profile analysis;

  15. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation...... of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise...... in the heat, because increased oxygen extraction compensates for the reduction in systemic blood flow. The decrease in endurance seems to involve changes in the function of the central nervous system (CNS) that lead to fatigue. The CNS fatigue appears to be influenced by neurotransmitter activity...

  16. Cyclic fatigue resistance of XP-endo Shaper compared with different nickel-titanium alloy instruments.

    Science.gov (United States)

    Elnaghy, Amr; Elsaka, Shaymaa

    2018-04-01

    The aims of this study were to assess and compare the resistance to cyclic fatigue of XP-endo Shaper (XPS; FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments with TRUShape (TRS; Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), HyFlex CM (HCM; Coltene, Cuyahoga Falls, OH, USA), Vortex Blue (VB; Dentsply Tulsa Dental Specialties), and iRace (iR; FKG Dentaire) nickel-titanium rotary instruments at body temperature. Size 30, 0.01 taper of XPS, size 30, 0.04 taper of HCM, VB, iR, and size 30, 0.06 taper of TRS instruments were immersed in saline at 37 ± 1 °C during cyclic fatigue testing. The instruments were tested with 60° angle of curvature and a 3-mm radius of curvature. The number of cycles to failure (NCF) was calculated and the length of the fractured segment was measured. Fractographic examination of the fractured surface was performed using a scanning electron microscope. The data were analyzed statistically using Kruskal-Wallis H test and Mann-Whitney U tests. Statistical significance was set at P ductile fracture of cyclic fatigue failure. XPS instruments exhibited greater cyclic fatigue resistance compared with the other tested instruments. XP-endo Shaper instruments could be used more safely in curved canals due to their higher fatigue resistance.

  17. Influence of Exergaming on the Perception of Cancer-Related Fatigue.

    Science.gov (United States)

    da Silva Alves, Ricardo; Iunes, Denise Hollanda; Pereira, Isabela Carvalho; Borges, Juliana Bassalobre Carvalho; Nogueira, Denismar Alves; Silva, Andreia Maria; Lobato, Daniel Ferreira Moreira; Carvalho, Leonardo Cesar

    2017-04-01

    Exercise is recommended for cancer patients to reduce fatigue and improve quality of life. This study's aim is to evaluate the influence of an exergaming protocol on cancer-related fatigue, muscle fatigue, and muscle strength in cancer patients. We conducted a quasi-experimental control study using exergaming in all groups through an Xbox360 Kinect™ console, two to three times per week, for 20 sessions. Three groups were created: cancer patients in chemotherapy and/or radiotherapy group (CRG; n:15), cancer patients after chemotherapy and/or radiotherapy (CAG; n:15), and a control group (CG; n:15). They were assessed for cancer-related fatigue using the fatigue subscale of the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) questionnaire. To assess dorsiflexor and plantar flexor muscle functioning, we used median frequency (MDF) of the surface electromyography and muscle strength using a dynamometer. The assessments were performed preintervention (EV0), after 10 sessions (EV1), and after 20 sessions (EV2). With an exergaming protocol, CRG and CAG showed a reduction in related fatigue compared with CG (P fatigue, including muscle fatigue, and increasing muscle strength in patients' legs.

  18. Muscle Activation During Landing Before and After Fatigue in Individuals With or Without Chronic Ankle Instability

    Science.gov (United States)

    Webster, Kathryn A.; Pietrosimone, Brian G.; Gribble, Phillip A.

    2016-01-01

    Context: Ankle instability is a common condition in physically active individuals. It often occurs during a jump landing or lateral motion, particularly when participants are fatigued. Objective: To compare muscle activation during a lateral hop prefatigue and postfatigue in individuals with or without chronic ankle instability (CAI). Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: A total of 32 physically active participants volunteered for the study. Sixteen participants with CAI (8 men, 8 women; age = 20.50 ± 2.00 years, height = 172.25 ± 10.87 cm, mass = 69.13 ± 13.31 kg) were matched with 16 control participants without CAI (8 men, 8 women; age = 22.00 ± 3.30 years, height = 170.50 ± 9.94 cm, mass = 69.63 ± 14.82 kg) by age, height, mass, sex, and affected side. Intervention(s): Electromyography of the tibialis anterior, peroneus longus, gluteus medius, and gluteus maximus was measured before and after a functional fatigue protocol. Main Outcome Measure(s): Activation of 4 lower extremity muscles was measured 200 milliseconds before and after landing from a lateral hop. Results: We observed no interactions. The group main effects for the peroneus longus demonstrated higher muscle activation in the CAI group (52.89% ± 11.36%) than in the control group (41.12% ± 11.36%) just before landing the lateral hop (F1,30 = 8.58, P = .01), with a strong effect size (d = 1.01). The gluteus maximus also demonstrated higher muscle activation in the CAI group (45.55% ± 12.08%) than in the control group (36.81% ± 12.08%) just before landing the lateral hop (F1,30 = 4.19, P = .049), with a moderate effect size (d = 0.71). We observed a main effect for fatigue for the tibialis anterior, with postfatigue activation higher than prefatigue activation (F1,30 = 7.45, P = .01). No differences were present between groups for the gluteus medius. Conclusions: Our results support the presence of a centralized feed

  19. Pacing Strategy, Muscle Fatigue and Technique in 1500m Speed Skating and Cycling Time-Trials

    NARCIS (Netherlands)

    Stoter, Inge K; MacIntosh, Brian R; Fletcher, Jared R; Pootz, Spencer; Zijdewind, Inge; Hettinga, Florentina J

    2016-01-01

    PURPOSE: To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500m speed skating and cycling time-trials, when a faster or slower start is instructed. METHODS: Nine speed skaters and nine cyclists, all competing at regional or national level, performed two 1500m

  20. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  1. Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents.

    Science.gov (United States)

    Wan, Sijie; Zhang, Qi; Zhou, Xiaohang; Li, Dechang; Ji, Baohua; Jiang, Lei; Cheng, Qunfeng

    2017-07-25

    Portable and wearable electronics require much more flexible graphene-based electrode with high fatigue life, which could repeatedly bend, fold, or stretch without sacrificing its mechanical properties and electrical conductivity. Herein, a kind of ultrahigh fatigue resistant graphene-based nanocomposite via tungsten disulfide (WS 2 ) nanosheets is synthesized by introducing a synergistic effect with covalently cross-linking inspired by the orderly layered structure and abundant interfacial interactions of nacre. The fatigue life of resultant graphene-based nanocomposites is more than one million times at the stress level of 270 MPa, and the electrical conductivity can be kept as high as 197.1 S/cm after 1.0 × 10 5 tensile testing cycles. These outstanding properties are attributed to the synergistic effect from lubrication of WS 2 nanosheets for deflecting crack propagation, and covalent bonding between adjacent GO nanosheets for bridging crack, which is verified by the molecular dynamics (MD) simulations. The WS 2 induced synergistic effect with covalent bonding offers a guidance for constructing graphene-based nanocomposites with high fatigue life, which have great potential for applications in flexible and wearable electronic devices, etc.

  2. A dissipated energy comparison to evaluate fatigue resistance using 2-point bending

    Directory of Open Access Journals (Sweden)

    Cinzia Maggiore

    2014-02-01

    Full Text Available Fatigue is the main failure mode in pavement engineering. Typically, micro-cracks originate at the bottom of asphalt concrete layer due to horizontal tensile strains. Micro-cracks start to propagate towards the upper layers under repeated loading which can lead to pavement failure. Different methods are usually used to describe fatigue behavior in asphalt materials such as: phenomenological approach, fracture mechanics approach and dissipated energy approach. This paper presents a comparison of fatigue resistances calculated for different dissipated energy models using 2-point bending (2PB at IFSTTAR in Nantes. 2PB tests have been undertaken under different loading and environmental conditions in order to evaluate the properties of the mixtures (stiffness, dissipated energy, fatigue life and healing effect.

  3. Fatigue, mood and quality of life improve in MS patients after progressive resistance training

    DEFF Research Database (Denmark)

    Dalgas, U; Stenager, E; Jakobsen, J

    2010-01-01

    Fatigue occurs in the majority of multiple sclerosis patients and therapeutic possibilities are few. Fatigue, mood and quality of life were studied in patients with multiple sclerosis following progressive resistance training leading to improvement of muscular strength and functional capacity...... disabled (Expanded Disability Status Scale, EDSS: 3-5.5) multiple sclerosis patients including a Control group (n = 15) and an Exercise group (n = 16). Fatigue (FSS > 4) was present in all patients. Scores of FSS, MDI, PCS-SF36 and MCS-SF36 were comparable at start of study in the two groups. Fatigue...

  4. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work.

    Science.gov (United States)

    Mehta, Ranjana K; Agnew, Michael J

    2012-08-01

    Most occupational tasks involve some level of mental/cognitive processing in addition to physical work; however, the etiology of work-related musculoskeletal disorders (WMSDs) due to these demands remains unclear. The aim of this study was to quantify the interactive effects of physical and mental workload on muscle endurance, fatigue, and recovery during intermittent work. Twelve participants, balanced by gender, performed intermittent static shoulder abductions to exhaustion at 15, 35, and 55% of individual maximal voluntary contraction (MVC), in the absence (control) and presence (concurrent) of a mental arithmetic task. Changes in muscular capacity were determined using endurance time, strength decline, electromyographic (EMG) fatigue indicators, muscle oxygenation, and heart rate measures. Muscular recovery was quantified through changes in strength and physiological responses. Mental workload was associated with shorter endurance times, specifically at 35% MVC, and greater strength decline. EMG and oxygenation measures showed similar changes during fatigue manifestation during concurrent conditions compared to the control, despite shorter endurance times. Moreover, decreased heart rate variability during concurrent demand conditions indicated increased mental stress. Although strength recovery was not influenced by mental workload, a slower heart rate recovery was observed after concurrent demand conditions. The findings from this study provide fundamental evidence that physical capacity (fatigability and recovery) is adversely affected by mental workload. Thus, it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.

  5. Wnt and β-Catenin Signaling and Skeletal Muscle Myogenesis in Response to Muscle Damage and Resistance Exercise and Training

    Directory of Open Access Journals (Sweden)

    Dan Newmire

    2015-10-01

    Full Text Available The factors that regulate skeletal muscle hypertrophy in human adults in response to resistance training (RT has largely focused on endogenous endocrine responses. However, the endocrine response to RT as having an obligatory role in muscle hypertrophy has come under scrutiny, as other mechanisms and pathways seem to also be involved in up-regulating muscle protein synthesis (MPS. Skeletal muscle myogenesis is a multifactorial process of tissue growth and repair in response to resistance training is regulated by many factors.  As a result, satellite cell-fused myogenesis is a possible factor in skeletal muscle regeneration and hypertrophy in response to RT.  The Wnt family ligands interact with various receptors and activate different downstream signaling pathways and have been classified as either canonical (β-catenin dependent or non-canonical (β-catenin independent.  Wnt is secreted from numerous tissues in a paracrine fashion. The Wnt/β-catenin signaling pathway is a highly-regulated and intricate pathway that is essential to skeletal muscle myogenesis.  The canonical Wnt/β-catenin pathway may influence satellite cells to myogenic commitment, differentiation, and fusion into muscle fibers in response to injury or trauma, self-renewal, and normal basal turnover.  The current literature has shown that, in response mechanical overload from acute resistance exercise and chronic resistance training, that the Wnt/β-catenin signaling pathway is stimulated which may actuate the process of muscle repair and hypertrophy in response to exercise-induced muscle damage. The purpose of this review is to elaborate on the Wnt/β-catenin signaling  pathway, the current literature investigating the relationship of the Wnt/β-catenin pathway and its effects on myogenesis is response to muscle damage and resistance exercise and training.      Keywords: skeletal muscle, hypertrophy, myogenesis, cell signaling, protein synthesis, resistance

  6. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  7. Estimating the progression of muscle fatigue based on dependence between motor units using high density surface electromyogram.

    Science.gov (United States)

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2016-08-01

    In this study we have tested the hypothesis regarding the increase in synchronization with the onset of muscle fatigue. For this aim, we have investigated the difference in the synchronicity between high density surface electromyogram (sEMG) channels of the rested muscles and when at the limit of endurance. Synchronization was measured by computing and normalizing the mutual information between the sEMG signals recorded from the high-density array electrode locations. Ten volunteers (Age range: 21 and 35 years; Mean age = 26 years; Male = 6, Female = 4) participated in our experiment. The participants performed isometric dorsiflexion of their dominate foot at two levels of contraction; 40% and 80% of their maximum voluntary contraction (MVC) until task failure. During the experiment an array of 64 electrodes (16 by 4) placed over the TA parallel to the muscle fiber was used to record the HD-sEMG. Normalized Mutual Information (NMI) between electrodes was calculated using the HD-sEMG data and then analyzed. The results show that that the average NMI of the TA significantly increased during fatigue at both levels of contraction. There was a statistically significant difference between NMI of the rested muscle compared with it being at the point of task failure.

  8. Biochemical and muscle studies in patients with acute onset post-viral fatigue syndrome.

    OpenAIRE

    Preedy, V R; Smith, D G; Salisbury, J R; Peters, T J

    1993-01-01

    AIMS--To investigate in detail various biochemical and pathophysiological indices of muscle pathology in acute onset post-viral fatigue syndrome (PVFS). METHODS--Twenty three patients with PVFS (of mean duration 4.6 years) were subjected to needle biopsy for histomorphometry and total RNA contents. Plasma analysis included serology and creatine kinase activities. Indices of whole body mass were also measured--namely, whole body potassium content and plasma carnosinase activities. RESULTS--Abo...

  9. Provision of wear resistance and fatigue strength of surfaces during electroerosive processing

    Science.gov (United States)

    Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.

    2018-03-01

    This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.

  10. Experimental evaluation of cyclic fatigue resistance of four different nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization

    Directory of Open Access Journals (Sweden)

    Ureyen Kaya BULEM

    2013-12-01

    Full Text Available NiTi instruments have a high risk of separation due to torsional or flexural fatigue (cyclic fatigue. Chemomechanical preparation, cleaning procedures, chemical disinfection and sterilization cause the corrosion of endodontic instruments that may weaken the fracture resistance of the instruments. Objective To assess the effects of NaOCl immersion and autoclave sterilization on the cyclic fatigue resistance of ProFile, FlexMaster, Mtwo and TwistedFiles NiTi instruments (tip size 25, 0.06 taper, n=160. Material and Methods The instruments (n=10 for each subgroup were dynamically immersed in NaOCl; immersed in NaOCl and sterilized in one autoclave cycle; 5 cycles immersed in NaOCl and sterilized in autoclave and not immersed in NaOCl and not sterilized (control group. Dynamic cyclic fatigue resistance was tested. The number of cycles to failure (NCF were statistically analyzed (P.05. Conclusions Cyclic fatigue resistance of the tested NiTi instruments cannot be adversely affected by NaOCl immersion and autoclave sterilization. Production process (TwistedFiles or design (Twisted Files, FlexMaster, Mtwo and ProFile of the instruments can influence their cyclic fatigue resistance.

  11. Cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments in artificial canals.

    Science.gov (United States)

    Higuera, Oscar; Plotino, Gianluca; Tocci, Luigi; Carrillo, Gabriela; Gambarini, Gianluca; Jaramillo, David E

    2015-06-01

    The purpose of this study was to evaluate the cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments. A total of 45 nickel-titanium instruments were tested and divided into 3 experimental groups (n = 15): group 1, WaveOne Primary instruments; group 2, Reciproc R25 instruments; and group 3, Twisted File (TF) Adaptive M-L1 instruments. The instruments were then subjected to cyclic fatigue test on a static model consisting of a metal block with a simulated canal with 60° angle of curvature and a 5-mm radius of curvature. WaveOne Primary, Reciproc R25, and TF Adaptive instruments were activated by using their proprietary movements, WaveOne ALL, Reciproc ALL, and TF Adaptive, respectively. All instruments were activated until fracture occurred, and the time to fracture was recorded visually for each file with a 1/100-second chronometer. Mean number of cycles to failure and standard deviations were calculated for each group, and data were statistically analyzed (P fatigue resistance of Reciproc R25 and TF Adaptive M-L1 was significantly higher than that of WaveOne Primary (P = .009 and P = .002, respectively). The results showed no statistically significant difference between TF Adaptive M-L1 and Reciproc R25 (P = .686). Analysis of the fractured portion under scanning electron microscopy indicated that all instruments showed morphologic characteristics of ductile fracture that were due to accumulation of metal fatigue. No statistically significant differences were found between the instruments tested except for WaveOne Primary, which showed the lowest resistance to cyclic fatigue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Effects of Mental Fatigue on Physical Endurance Performance and Muscle Activation Are Attenuated by Monetary Incentives.

    Science.gov (United States)

    Brown, Denver M Y; Bray, Steven R

    2017-12-01

    Physical performance is impaired following cognitive control exertion. Incentives can ameliorate adverse carryover effects of cognitive control exertion but have not been investigated for physical endurance. This study examined the effect of monetary incentives on physical performance and muscle activation following exposure to a mentally fatiguing, cognitive control task. Participants (N = 82) performed two isometric endurance handgrip trials separated by a 12-min cognitive control manipulation using a 2 (high cognitive control [HCC]/low cognitive control [LCC]) × 2 (incentive/no incentive) design. Mental fatigue was significantly higher in the HCC conditions. Performance decreased in the HCC/no incentive condition but was unaffected in the HCC/incentive condition, which did not differ from the low cognitive control conditions. Electromyography data revealed increased muscle activation in the HCC/no incentive condition, which was also attenuated in the HCC/incentive condition. Findings show that incentives counteract the negative effects of HCC on physical endurance and alter central drive to motor units.

  13. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Buhari Rosnawati

    2018-01-01

    Full Text Available This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2 powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  14. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  15. Resistance of heat resisting steels and alloys to thermal and mechanical low-cycle fatigue

    International Nuclear Information System (INIS)

    Tulyakov, G.A.

    1980-01-01

    Carried out is a comparative evalUation of resistance of different materials to thermocyclic deformation and fracture on the base of the experimental data on thermal and mechanical low-cycle fatigUe. Considered are peculiarities of thermal fatigue resistance depending on strength and ductility of the material. It is shown, that in the range of the cycle small numbers before the fracture preference is given to the high-ductility cyclically strengthening austenitic steels of 18Cr-10Ni type with slight relation of yield strength to the σsub(0.2)/σsub(B) tensile strength Highly alloyed strength chromium-nickel steels, as well as cyclically destrengthening perlitic and ferritic steels with stronger σsub(0.2)/σsub(B) relation as compared with simple austenitic steels turn to be more long-lived in the range of the cycle great numbers berore fracture. Perlitic steels are stated to have the lowest parameter values of the K crack growth intensity under the similar limiting conditions of the experiment, while steels and alloys with austenite structure-higher values of the K parameter

  16. Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments.

    Science.gov (United States)

    Vieira, E P; França, E C; Martins, R C; Buono, V T L; Bahia, M G A

    2008-02-01

    To examine the influence of clinical use on the occurrence of deformation and fracture and on the fatigue resistance of ProTaper rotary instruments. Root canal treatments were performed on patients using the ProTaper rotary system. Ten sets of instruments were used by an experienced endodontist, each set in five molars. Another 10 sets of instruments were used by the same operator, each set in eight molars. In addition, 10 sets of instruments were used, each set in five molars, by undergraduate students with no clinical experience with the system. After clinical use, S1, S2, F1 and F2 instruments were analysed for damage by optical and scanning electron microscopy. The used sets, along with a control group of 12 sets of new instruments, were then tested in a bench device for fatigue resistance. The use of the ProTaper rotary instruments by an experienced endodontist allowed for the cleaning and shaping of the root canal system of up to eight molars without fracture. During the students work, six instruments fractured. Fatigue resistance decreased upon clinical use for all instruments analysed. Fatigue resistance of used instruments was reduced, but no significant change was observed amongst the instruments used for shaping the canals of five and eight molars. Operator experience affected the occurrence of fracture and plastic deformation during shaping.

  17. Fatigue resistance of teeth restored with cuspal-coverage composite restorations.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Kuijs, R.H.; Kreulen, C.M.; Verdonschot, N.J.J.; Creugers, N.H.J.

    2004-01-01

    PURPOSE: This study assessed the influence of palatal cuspal coverage on the in vitro fatigue resistance and failure mode of Class II resin composite restorations including replacement of the buccal cusp in premolars. MATERIALS AND METHODS: A master model was made of a maxillary premolar with an MOD

  18. Effects of a resistance training program on balance and fatigue perception in patients with Parkinson's disease: A randomized controlled trial.

    Science.gov (United States)

    Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Torres-Sánchez, Irene; Casilda-López, Jesús; López-López, Laura; Valenza, Marie Carmen

    2017-11-22

    Fatigue and balance impairment leads to a loss of independence and are important to adequately manage. The objective of this study was to examine the effects of a resistance training program on dynamic balance and fatigue in patients with Parkinson's disease (PD). Randomized controlled trial. Forty-six patients with PD were randomly allocated to an intervention group receiving a 8-week resistance training program focused on lower limbs or to a control group. Balance was assessed using the Mini-BESTest and fatigue was assessed by the Piper Fatigue Scale. Patients in the intervention group improved significantly (p<0.05) on dynamic balance (reactive postural control and total values) and perceived fatigue. An 8-week resistance training program was found to be effective at improving dynamic balance and fatigue in patients with PD. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  19. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Science.gov (United States)

    Zuo, Li; Diaz, Philip T; Chien, Michael T; Roberts, William J; Kishek, Juliana; Best, Thomas M; Wagner, Peter D

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  20. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr followed by a high oxygen level (550 Torr, can reduce intracellular reactive oxygen species (ROS as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  1. Improvement in thermal fatigue resistance of cast iron piston; Chutetsu piston no tainetsu hiro sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Amano, K; Uosaki, Y; Takeshige, N [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Cast iron piston is superior in reduction of diesel engine emission to aluminum piston because of its characteristic of heat insulation. In order to study thermal fatigue characteristics of cast iron, thermal fatigue tests were carried out on two kinds of ferrite ductile cast iron. Differences between cast iron piston and aluminum piston in thermal fatigue resistance have been investigated by using FEM analysis. 5 refs., 14 figs., 1 tab.

  2. Insulin resistance and mitochondrial function in skeletal muscle

    DEFF Research Database (Denmark)

    Dela, Flemming; Helge, Jørn Wulff

    2013-01-01

    are used in the attempt to resolve the mechanisms of insulin resistance. In this context, a dysfunction of mitochondria in the skeletal muscle has been suggested to play a pivotal role. It has been postulated that a decrease in the content of mitochondria in the skeletal muscle can explain the insulin...... resistance. Complementary to this also specific defects of components in the respiratory chain in the mitochondria have been suggested to play a role in insulin resistance. A key element in these mechanistic suggestions is inability to handle substrate fluxes and subsequently an accumulation of ectopic...... intramyocellular lipids, interfering with insulin signaling. In this review we will present the prevailing view-points and argue for the unlikelihood of this scenario being instrumental in human insulin resistance. This article is part of a Directed Issue entitled: Bioenergetic dysfunction....

  3. Skeletal Muscle Insulin Resistance in Endocrine Disease

    Directory of Open Access Journals (Sweden)

    Melpomeni Peppa

    2010-01-01

    Full Text Available We summarize the existing literature data concerning the involvement of skeletal muscle (SM in whole body glucose homeostasis and the contribution of SM insulin resistance (IR to the metabolic derangements observed in several endocrine disorders, including polycystic ovary syndrome (PCOS, adrenal disorders and thyroid function abnormalities. IR in PCOS is associated with a unique postbinding defect in insulin receptor signaling in general and in SM in particular, due to a complex interaction between genetic and environmental factors. Adrenal hormone excess is also associated with disrupted insulin action in peripheral tissues, such as SM. Furthermore, both hyper- and hypothyroidism are thought to be insulin resistant states, due to insulin receptor and postreceptor defects. Further studies are definitely needed in order to unravel the underlying pathogenetic mechanisms. In summary, the principal mechanisms involved in muscle IR in the endocrine diseases reviewed herein include abnormal phosphorylation of insulin signaling proteins, altered muscle fiber composition, reduced transcapillary insulin delivery, decreased glycogen synthesis, and impaired mitochondrial oxidative metabolism.

  4. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    Keulemans, F.; Palav, P.; Aboushelib, M.M.N.; van Dalen, A.; Kleverlaan, C.J.; Feilzer, A.J.

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a

  5. Neuromuscular electrical stimulation as a method to maximize the beneficial effects of muscle stem cells transplanted into dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Giovanna Distefano

    Full Text Available Cellular therapy is a potential approach to improve the regenerative capacity of damaged or diseased skeletal muscle. However, its clinical use has often been limited by impaired donor cell survival, proliferation and differentiation following transplantation. Additionally, functional improvements after transplantation are all-too-often negligible. Because the host microenvironment plays an important role in the fate of transplanted cells, methods to modulate the microenvironment and guide donor cell behavior are warranted. The purpose of this study was to investigate whether the use of neuromuscular electrical stimulation (NMES for 1 or 4 weeks following muscle-derived stem cell (MDSC transplantation into dystrophic skeletal muscle can modulate the fate of donor cells and enhance their contribution to muscle regeneration and functional improvements. Animals submitted to 4 weeks of NMES after transplantation demonstrated a 2-fold increase in the number of dystrophin+ myofibers as compared to control transplanted muscles. These findings were concomitant with an increased vascularity in the MDSC+NMES group when compared to non-stimulated counterparts. Additionally, animals subjected to NMES (with or without MDSC transplantation presented an increased maximal specific tetanic force when compared to controls. Although cell transplantation and/or the use of NMES resulted in no changes in fatigue resistance, the combination of both MDSC transplantation and NMES resulted in a faster recovery from fatigue, when compared to non-injected and non-stimulated counterparts. We conclude that NMES is a viable method to improve MDSC engraftment, enhance dystrophic muscle strength, and, in combination with MDSC transplantation, improve recovery from fatigue. These findings suggest that NMES may be a clinically-relevant adjunct approach for cell transplantation into skeletal muscle.

  6. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    Science.gov (United States)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were

  7. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    Science.gov (United States)

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  8. Effect of autoclave sterilization on the cyclic fatigue resistance of thermally treated Nickel-Titanium instruments.

    Science.gov (United States)

    Zhao, D; Shen, Y; Peng, B; Haapasalo, M

    2016-10-01

    To compare the cyclic fatigue resistance of HyFlex CM, Twisted Files (TF), K3XF, Race, and K3, and evaluate the effect of autoclave sterilization on the cyclic fatigue resistance of these instruments both before and after the files were cycled. Five types of NiTi instruments with similar size 30, .06 taper were selected: HyFlex CM, TF, K3XF, Race and K3. Files were tested in a simulated canal with a curvature of 60° and a radius of 3 mm. The number of cycles to failure of each instrument was determined to evaluate cyclic fatigue resistance. Each type of instruments was randomly divided into four experimental groups: group 1 (n = 20), unsterilized instruments; group 2 (n = 20), pre-sterilized instruments subjected to 10 cycles of autoclave sterilization; group 3 (n = 20), instruments tested were sterilized at 25%, 50% and 75% of the mean cycles to failure as determined in group 1, and then cycled to failure; group 4 (n = 20), instruments cycled in the same manner as group 3 but without sterilization. The fracture surfaces of instruments were examined by scanning electron microscopy (SEM). HyFlex CM, TF and K3XF had significantly higher cyclic fatigue resistance than Race and K3 in the unsterilized group 1 (P Autoclave sterilization significantly increased the MCF of HyFlex CM and K3XF (P Autoclaving extended the cyclic fatigue life of HyFlex CM and K3XF. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Fatigue and Fracture Resistance of Heavy-Section Ferritic Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Matteo Benedetti

    2017-03-01

    Full Text Available In this paper, we explore the effect of a long solidification time (12 h on the mechanical properties of an EN-GJS-400-type ferritic ductile cast iron (DCI. For this purpose, static tensile, rotating bending fatigue, fatigue crack growth and fracture toughness tests are carried out on specimens extracted from the same casting. The obtained results are compared with those of similar materials published in the technical literature. Moreover, the discussion is complemented with metallurgical and fractographic analyses. It has been found that the long solidification time, representative of conditions arising in heavy-section castings, leads to an overgrowth of the graphite nodules and a partial degeneration into chunky graphite. With respect to minimum values prescribed for thick-walled (t > 60 mm EN-GJS-400-15, the reduction in tensile strength and total elongation is equal to 20% and 75%, respectively. The rotating bending fatigue limit is reduced by 30% with respect to the standard EN-1563, reporting the results of fatigue tests employing laboratory samples extracted from thin-walled castings. Conversely, the resistance to fatigue crack growth is even superior and the fracture toughness comparable to that of conventional DCI.

  10. Selective effects of different fatigue protocols on the function of upper body muscles assessed through the force-velocity relationship.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Feriche, Belén; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Padial, Paulino; Jaric, Slobodan

    2018-02-01

    This study explored the feasibility of the force-velocity relationship (F-V) to detect the acute effects of different fatigue protocols on the selective changes of the maximal capacities of upper body muscles to produce force, velocity, and power. After determining the bench press one-repetition maximum (1RM), participants' F-V relationships were assessed during the bench press throw exercise on five separate sessions after performing one of the following fatiguing protocols: 60%1RM failure, 60%1RM non-failure, 80%1RM failure, 80%1RM non-failure, and no-fatigue. In the non-failure protocols, participants performed half the maximum number of repetitions than in their respective failure protocols. The main findings revealed that (1) all F-V relationships were highly linear (median r = 0.997 and r = 0.982 for averaged across participants and individual data, respectively), (2) the fatiguing protocols were ranked based on the magnitude of power loss as follows: 60%1RM failure > 80%1RM failure > 60%1RM non-failure > 80%1RM non-failure, while (3) the assessed maximum force and velocity outputs showed a particularly prominent reduction in the protocols based on the lowest and highest levels of fatigue (i.e., 80%1RM non-failure and 60%1RM failure), respectively. The results support the use of F-V to assess the effects of fatigue on the distinctive capacities of the muscles to produce force, velocity, and power output while performing multi-joint tasks, while the assessed maximum force and velocity capacities showed a particularly prominent reduction in the protocols based on the lowest and highest levels of fatigue (i.e., 80%1RM non-failure and 60%1RM failure), respectively.

  11. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.

    Science.gov (United States)

    Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Amann, Markus; Richardson, Russell S

    2017-05-01

    Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy ( 31 P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (P i ), diprotonated phosphate ([Formula: see text]), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Q tw ) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATP OX ) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATP OX normalized to force production (ATP OX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min -1 ·N -1 ), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min -1 ·N -1 ). Additionally, the pre- to postexercise change in Q tw (-52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH ( r = 0.75) and [Formula: see text] concentration ( r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a "slow component-like" increase in intramuscular ATP OX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and [Formula: see text] concentration). NEW & NOTEWORTHY The physiological mechanisms

  12. Abnormalities of AMPK activation and glucose uptake in cultured skeletal muscle cells from individuals with chronic fatigue syndrome.

    Directory of Open Access Journals (Sweden)

    Audrey E Brown

    Full Text Available Post exertional muscle fatigue is a key feature in Chronic Fatigue Syndrome (CFS. Abnormalities of skeletal muscle function have been identified in some but not all patients with CFS. To try to limit potential confounders that might contribute to this clinical heterogeneity, we developed a novel in vitro system that allows comparison of AMP kinase (AMPK activation and metabolic responses to exercise in cultured skeletal muscle cells from CFS patients and control subjects.Skeletal muscle cell cultures were established from 10 subjects with CFS and 7 age-matched controls, subjected to electrical pulse stimulation (EPS for up to 24h and examined for changes associated with exercise.In the basal state, CFS cultures showed increased myogenin expression but decreased IL6 secretion during differentiation compared with control cultures. Control cultures subjected to 16 h EPS showed a significant increase in both AMPK phosphorylation and glucose uptake compared with unstimulated cells. In contrast, CFS cultures showed no increase in AMPK phosphorylation or glucose uptake after 16 h EPS. However, glucose uptake remained responsive to insulin in the CFS cells pointing to an exercise-related defect. IL6 secretion in response to EPS was significantly reduced in CFS compared with control cultures at all time points measured.EPS is an effective model for eliciting muscle contraction and the metabolic changes associated with exercise in cultured skeletal muscle cells. We found four main differences in cultured skeletal muscle cells from subjects with CFS; increased myogenin expression in the basal state, impaired activation of AMPK, impaired stimulation of glucose uptake and diminished release of IL6. The retention of these differences in cultured muscle cells from CFS subjects points to a genetic/epigenetic mechanism, and provides a system to identify novel therapeutic targets.

  13. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - titanium instruments.

    Science.gov (United States)

    Pedullà, E; Lo Savio, F; Boninelli, S; Plotino, G; Grande, N M; Rapisarda, E; La Rosa, G

    2015-11-01

    To evaluate the effect of different torsional preloads on cyclic fatigue resistance of endodontic rotary instruments constructed from conventional nickel-titanium (NiTi), M-Wire or CM-Wire. Eighty new size 25, 0.06 taper Mtwo instruments (Sweden & Martina), size 25, 0.06 taper HyFlex CM (Coltene/Whaledent, Inc) and X2 ProTaper Next (Dentsply Maillefer) were used. The Torque and distortion angles at failure of new instruments (n = 10) were measured, and 0% (n = 10), 25%, 50% and 75% (n = 20) of the mean ultimate torsional strength as preloading condition were applied according to ISO 3630-1 for each brand. The twenty files tested for every extent of preload were subjected to 20 or 40 torsional cycles (n = 10). After torsional preloading, the number of cycles to failure was evaluated in a simulated canal with 60° angle of curvature and 5 mm of radius of curvature. Data were analysed using two-way analysis of variance. The fracture surface of each fragment was examined with a scanning electron microscope (SEM). Data were analysed by two-way analyses of variance. Preload repetitions did not influence the cyclic fatigue of the three brands; however, the 25%, 50% and 75% torsional preloading significantly reduced the fatigue resistance of all instruments tested (P 0.05). Torsional preloads reduced the cyclic fatigue resistance of conventional and treated (M-wire and CM-wire) NiTi rotary instruments except for size 25, 0.06 taper HyFlex CM instruments with a 25% of torsional preloading. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Contribution of respiratory muscle blood flow to exercise-induced diaphragmatic fatigue in trained cyclists

    DEFF Research Database (Denmark)

    Vogiatzis, Ioannis; Athanasopoulos, Dimitris; Boushel, Robert Christopher

    2008-01-01

    We investigated whether the greater degree of exercise-induced diaphragmatic fatigue previously reported in highly trained athletes in hypoxia (compared with normoxia) could have a contribution from limited respiratory muscle blood flow. Seven trained cyclists completed three constant load 5 min...... exercise tests at inspired O(2) fractions (FIO2) of 0.13, 0.21 and 1.00 in balanced order. Work rates were selected to produce the same tidal volume, breathing frequency and respiratory muscle load at each FIO2 (63 +/- 1, 78 +/- 1 and 87 +/- 1% of normoxic maximal work rate, respectively). Intercostals......(-1) and 95.1 +/- 7.8 ml (100 ml)(-1) min(-1), respectively). Neither IMBF was different across hypoxia, normoxia and hyperoxia (53.6 +/- 8.5, 49.9 +/- 5.9 and 52.9 +/- 5.9 ml (100 ml)(-1) min(-1), respectively). We conclude that when respiratory muscle energy requirement is not different between...

  15. Simulated laparoscopy using a head-mounted display vs traditional video monitor: an assessment of performance and muscle fatigue.

    Science.gov (United States)

    Maithel, S K; Villegas, L; Stylopoulos, N; Dawson, S; Jones, D B

    2005-03-01

    The direction of visual gaze may be an important ergonomic factor that affects operative performance. We designed a study to determine whether a head-mounted display (HMD) worn by the surgeon would improve task performance and/or reduce muscle fatigue during a laparoscopic task when compared to the use of a traditional video monitor display (VMD). Surgical residents (n = 30) were enrolled in the study. A junior group, consisting of 15 postgraduate year (PGY) = 1 subjects with no previous laparoscopic experience, and a senior group, consisting of 15 PGY 4 and PGY 5 subjects with experience, completed a laparoscopic task that was repeated four times using the Computer Enhanced Laparoscopic Training System (CELTS). Groups alternated between using the HMD with the task placed in a downward frontal position and the VMD with the task at a 30 degrees lateral angle. The CELTS module assessed task completion time, depth perception, path length of instruments, response orientation, motion smoothness; the system then generated an overall score. Electromyography (EMG) was used to record sternocleidomastoid muscle activity. Display preference was surveyed. The senior residents performed better than the junior residents overall on all parameters (p < 0.05) except for motion smoothness, where there was no difference. In both groups, the HMD significantly improved motion smoothness when compared to the VMD (p < 0.05). All other parameters were equal. There was less muscle fatigue when using the VMD (p < 0.05). We found that 66% of the junior residents but only 20% of the senior residents preferred the HMD. The CELTS module demonstrated evidence of construct validity by differentiating the performances of junior and senior residents. By aligning the surgeon's visual gaze with the instruments, HMD improved smoothness of motion. Experienced residents preferred the traditional monitor display. Although the VMD produced less muscle fatigue, inexperienced residents preferred the HMD

  16. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  17. Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG.

    Science.gov (United States)

    Uzun, S; Pourmoghaddam, A; Hieronymus, M; Thrasher, T A

    2012-11-01

    Wheelchair basketball is the most popular exercise activity among individuals with spinal cord injury (SCI). The purpose of this study was to investigate muscular endurance and fatigue in wheelchair basketball athletes with SCI using surface electromyography (SEMG) and maximal torque values. SEMG characteristics of 10 wheelchair basketball players (WBP) were compared to 13 able-bodied basketball players and 12 sedentary able-bodied subjects. Participants performed sustained isometric elbow flexion at 50% maximal voluntary contraction until exhaustion. Elbow flexion torque and SEMG signals were recorded from three elbow flexor muscles: biceps brachii longus, biceps brachii brevis and brachioradialis. SEMG signals were clustered into 0.5-s epochs with 50% overlap. Root mean square (RMS) and median frequency (MDF) of SEMG signals were calculated for each muscle and epoch as traditional fatigue monitoring. Recurrence quantification analysis was used to extract the percentage of determinism (%DET) of SEMG signals. The slope of the %DET for basketball players and WBP showed slower increase with time than the sedentary able-bodied control group for three different elbow flexor muscles, while no difference was observed for the slope of the %DET between basketball and WBP. This result indicated that the athletes are less fatigable during the task effort than the nonathletes. Normalized MDF slope decay exhibited similar results between the groups as %DET, while the slope of the normalized RMS failed to show any significant differences among the groups (p > 0.05). MDF and %DET could be useful for the evaluation of muscle fatigue in wheelchair basketball training. No conclusions about special training for WBP could be determined.

  18. The Effect of Local Fatigue Induced at Proximal and Distal Muscles of Lower Extremity in Sagittal Plane on Visual Dependency in Quiet Standing Postural Stability of Healthy Young Females

    Directory of Open Access Journals (Sweden)

    Manijeh Soleymani-Far

    2007-10-01

    Full Text Available Objective: The purpose of the present study was to assess the effect of local muscle fatigue induced at proximal and distal segments of lower extremity on sagittal plane mover on visual dependency in quiet standing postural stability. Materials & Methods: In this Quasi–experimental study (before – after comparison sagittal plane prime movers of the ankle and hip musculature were fatigued using isokinetic contractions at two test sessions with a randomized order and one week interval. Twenty five healthy young female students were َselected by using non probability selection and sample of convenience and asked to maintain single leg upright posture as immobile as possible. RMS and SD of Center of Pressure displacements were assessed in 30 seconds and consequently, the eyes were closed after 15 seconds. A analysis of variance (ANOVA for repeated measures was used to analyze the effect of the following factors over two periods of 5 seconds immediately before and after eye closure: (1 fatigue, (2 vision, (3 segment of fatigue. Results: The main effects of each within-subject factors (fatigue, vision and segment of fatigue were significant (P<0.05. The analysis of RMS and SD of Center of Pressure demonstrated a significant interaction between fatigue and vision, and fatigue and segment of fatigue so that the effects of Fatigue on Proximal segment and eye closed conditions were increased. Conclusion: The visual dependency for control of postural stability incremented following muscle fatigue. Proximal muscle fatigue lead to exaggeration of visual dependency for control of postural stability. Based on the present results, emphasis on the proprioception of proximal segment of lower extremity may be recommended for postural stability training.

  19. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  20. Low-cycle fatigue of heat-resistant alloys in high-temperature gas-cooled reactor helium

    International Nuclear Information System (INIS)

    Tsuji, H.; Kondo, T.

    1984-01-01

    Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 0 C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of about 10 -6 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environmentenhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage

  1. Differences in Muscle Oxygenation, Perceived Fatigue and Recovery between Long-Track and Short-Track Speed Skating.

    Science.gov (United States)

    Hettinga, Florentina J; Konings, Marco J; Cooper, Chris E

    2016-01-01

    Due to the technical nature of speed skating, that is affecting physiological mechanisms such as oxygenation and blood flow, this sport provides a unique setting allowing us to uncover novel mechanistic insights of the physiological response to exercise in elite middle-distance and endurance sports. The present study aimed to examine the influence of skating mode (short-track vs. long-track) on muscle oxygenation, perceived fatigue, and recovery in elite speed skating. Muscle oxygenation of 12 talented short-track speed skaters was continuously monitored during a long-track (LT) and a short-track (ST) skating time-trial of maximal effort using near-infrared spectroscopy (NIRS) on the m. vastus lateralis for both legs. Video captures were made of each testing session for further interpretation of the muscle oxygenation. To determine recovery, perceived exertion was measured 2 and 4 h after each testing sessions. Repeated measures ANOVA's were used for statistical analysis ( p skating (TSI%-slope: left = 0.050 ± 0.052, right = 0.001 ± 0.053, p skating modes in muscle oxygenation. Respectively, two ( ST = 5.8 ± 2.0; LT = 4.2 ± 1.5) and 4 h ( ST = 4.6 ± 1.9; LT = 3.1 ± 1.6) after the time-trials, a higher rate of perceived exertion was found for ST. Based on our results, ST seems more physiologically demanding, and longer periods of recovery are needed after training compared to LT. Technical aspects unique to the exercise mode seem to impact on oxygenation, affecting processes related to the regulation of exercise intensity such as fatigue and recovery.

  2. Creatine Loading, Resistance Exercise Performance, and Muscle Mechanics.

    Science.gov (United States)

    Stevenson, Scott W.; Dudley, Gary A.

    2001-01-01

    Examined whether creatine (CR) monohydrate loading would alter resistance exercise performance, isometric strength, or in vivo contractile properties of the quadriceps femoris muscle compared with placebo loading in resistance-trained athletes. Overall, CR loading did not provide an ergogenic benefit for the unilateral dynamic knee extension…

  3. Verification of anti-fatigue effect of anserine by angle fatigue indicator based on median frequency changes of electromyograms

    Directory of Open Access Journals (Sweden)

    Hirohisa Kishi

    2013-10-01

    Full Text Available ABSTRACT: Objective: Anserine, which is abundant in avian species and in a wide range of fish such as bonito and tuna, is reported to have anti-fatigue effect. Although chicken soup and bonito soup is traditionally used to recover from physical fatigue, it is generally difficult to verify the effect in humans. This study was to directly demonstrate the anti-fatigue effect of oceanic anserine in humans. Methods: Edible-grade anserine was purified from fish extract with food-grade reagents. Subjects were 17 healthy male volunteers (35.5 ± 5 yr., 75.5 ± 5.0 kg. Each subject performed the isometric exercise tolerance test (ETT on the rectus femoris muscle twice (Ex_1, Ex_2 both for anserine and water conditions on a different day. Median frequency changes (MDF during Functional Foods in Health and Disease 2013; 3(10 389-399 ETTs were calculated and regression curves were calculated over a frequency range of 21-214 Hz. The difference, or angle, between the slopes of Ex_1 and Ex_2 MDF regression curves, which corresponds to the degree of fatigue, was defined as an angle fatigue index and compared between anserine and water intake conditions. Results: MDF decreased during ETTs in most patients and the slopes of regression curves were larger in Ex_2 than in Ex_1. Angle fatigue index for water (control was significantly larger than that for anserine (p<0.01, paired t-test, n=17. The result indicates that anserine have an anti-fatigue effect on skeletal muscle in humans. Conclusions: We proposed the angle fatigue index as a touchstone of the muscle fatigue. The index indicates that anserine is effective to reduce the muscle fatigue in humans.

  4. Effect of Fatigue Upon Performance and Electromyographic Activity in 6-RM Bench Press.

    Science.gov (United States)

    van den Tillaar, Roland; Saeterbakken, Atle

    2014-03-27

    The aim of this study was to examine the effect of fatigue during one set of 6-RM bench pressing upon the muscle patterning and performance. Fourteen resistance-trained males (age 22.5±2.0 years, stature 1.82±0.07 m, body mass 82.0±7.8 kg) conducted a 6-RM bench press protocol. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were measured in each repetition during the 6-RM bench press. Total lifting time increased and the velocity in the ascending movement decreased (p≤0.001). However, the kinematics in the descending phase deferred: the time decreased and velocity increased during the 6-RM (p≤0.001). Generally, muscles increased their EMG amplitude during the six repetitions in the ascending movement, while only three of the seven measured muscles showed an increase over the six repetitions in the descending part in 6-RM bench pressing. It was concluded that the bench pressing performance decreased (lower barbell velocities and longer lifting times) with increasing fatigue in the 6-RM execution. Furthermore EMG increased in the prime movers and the trunk stabilizers (abdominal and spine), while the antagonist muscle (biceps) activity was not affected by fatigue during the lifting phase in a single set of 6-RM bench pressing.

  5. Muscle wasting and resistance of muscle anabolism: the "anabolic threshold concept" for adapted nutritional strategies during sarcopenia.

    Science.gov (United States)

    Dardevet, Dominique; Rémond, Didier; Peyron, Marie-Agnès; Papet, Isabelle; Savary-Auzeloux, Isabelle; Mosoni, Laurent

    2012-01-01

    Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on muscle protein anabolism. However, on the long term, these nutritional strategies have often failed in improving muscle mass even if given for long periods of time in both humans and rodent models. Muscle mass loss situations have been often correlated to a resistance of muscle protein anabolism to food intake which may be explained by an increase of the anabolic threshold toward the stimulatory effect of amino acids. In this paper, we will emphasize how this anabolic resistance may affect the intensity and the duration of the muscle anabolic response at the postprandial state and how it may explain the negative results obtained on the long term in the prevention of muscle mass. Sarcopenia, the muscle mass loss observed during aging, has been chosen to illustrate this concept but it may be kept in mind that it could be extended to any other catabolic states or recovery situations.

  6. Muscle Shear Moduli Changes and Frequency of Alternate Muscle Activity of Plantar Flexor Synergists Induced by Prolonged Low-Level Contraction

    Directory of Open Access Journals (Sweden)

    Ryota Akagi

    2017-09-01

    Full Text Available During prolonged low-level contractions, synergist muscles are activated in an alternating pattern of activity and silence called as alternate muscle activity. Resting muscle stiffness is considered to increase due to muscle fatigue. Thus, we investigated whether the difference in the extent of fatigue of each plantar flexor synergist corresponded to the difference in the frequency of alternate muscle activity between the synergists using muscle shear modulus as an index of muscle stiffness. Nineteen young men voluntarily participated in this study. The shear moduli of the resting medial and lateral gastrocnemius muscles (MG and LG and soleus muscle (SOL were measured using shear wave ultrasound elastography before and after a 1-h sustained contraction at 10% peak torque during maximal voluntary contraction of isometric plantar flexion. One subject did not accomplish the task and the alternate muscle activity for MG was not found in 2 subjects; therefore, data for 16 subjects were used for further analyses. The magnitude of muscle activation during the fatiguing task was similar in MG and SOL. The percent change in shear modulus before and after the fatiguing task (MG: 16.7 ± 12.0%, SOL: −4.1 ± 13.9%; mean ± standard deviation and the alternate muscle activity during the fatiguing task (MG: 33 [20–51] times, SOL: 30 [17–36] times; median [25th–75th percentile] were significantly higher in MG than in SOL. The contraction-induced change in shear modulus (7.4 ± 20.3% and the alternate muscle activity (37 [20–45] times of LG with the lowest magnitude of muscle activation during the fatiguing task among the plantar flexors were not significantly different from those of the other muscles. These results suggest that the degree of increase in muscle shear modulus induced by prolonged contraction corresponds to the frequency of alternate muscle activity between MG and SOL during prolonged contraction. Thus, it is likely that, compared with

  7. Age-related differences in muscle fatigue vary by contraction type: a meta-analysis.

    Science.gov (United States)

    Avin, Keith G; Law, Laura A Frey

    2011-08-01

    During senescence, despite the loss of strength (force-generating capability) associated with sarcopenia, muscle endurance may improve for isometric contractions. The purpose of this study was to perform a systematic meta-analysis of young versus older adults, considering likely moderators (ie, contraction type, joint, sex, activity level, and task intensity). A 2-stage systematic review identified potential studies from PubMed, CINAHL, PEDro, EBSCOhost: ERIC, EBSCOhost: Sportdiscus, and The Cochrane Library. Studies reporting fatigue tasks (voluntary activation) performed at a relative intensity in both young (18-45 years of age) and old (≥ 55 years of age) adults who were healthy were considered. Sample size, mean and variance outcome data (ie, fatigue index or endurance time), joint, contraction type, task intensity (percentage of maximum), sex, and activity levels were extracted. Effect sizes were (1) computed for all data points; (2) subgrouped by contraction type, sex, joint or muscle group, intensity, or activity level; and (3) further subgrouped between contraction type and the remaining moderators. Out of 3,457 potential studies, 46 publications (with 78 distinct effect size data points) met all inclusion criteria. A lack of available data limited subgroup analyses (ie, sex, intensity, joint), as did a disproportionate spread of data (most intensities ≥ 50% of maximum voluntary contraction). Overall, older adults were able to sustain relative-intensity tasks significantly longer or with less force decay than younger adults (effect size=0.49). However, this age-related difference was present only for sustained and intermittent isometric contractions, whereas this age-related advantage was lost for dynamic tasks. When controlling for contraction type, the additional modifiers played minor roles. Identifying muscle endurance capabilities in the older adult may provide an avenue to improve functional capabilities, despite a clearly established decrement in

  8. Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle

    Science.gov (United States)

    Koh, Ho-Jin; Toyoda, Taro; Didesch, Michelle M.; Lee, Min-Young; Sleeman, Mark W.; Kulkarni, Rohit N.; Musi, Nicolas; Hirshman, Michael F.; Goodyear, Laurie J.

    2013-01-01

    Endoplasmic Reticulum (ER) stress has been linked to insulin resistance in multiple tissues but the role of ER stress in skeletal muscle has not been explored. ER stress has also been reported to increase tribbles 3 (TRB3) expression in multiple cell lines. Here, we report that high fat feeding in mice, and obesity and type 2 diabetes in humans significantly increases TRB3 and ER stress markers in skeletal muscle. Overexpression of TRB3 in C2C12 myotubes and mouse tibialis anterior muscles significantly impairs insulin signaling. Incubation of C2C12 cells and mouse skeletal muscle with ER stressors thapsigargin and tunicamycin increases TRB3 and impairs insulin signaling and glucose uptake, effects reversed in cells overexpressing RNAi for TRB3 and in muscles from TRB3 knockout mice. Furthermore, TRB3 knockout mice are protected from high fat diet-induced insulin resistance in skeletal muscle. These data demonstrate that TRB3 mediates ER stress-induced insulin resistance in skeletal muscle. PMID:23695665

  9. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game

    DEFF Research Database (Denmark)

    Fransson, Dan; Vigh-Larsen, Jeppe Foged; Fatouros, Ioannis G

    2018-01-01

    We examined the degree of post-game fatigue and the recovery pattern in various leg and upper-body muscle groups after a simulated soccer game. Well-trained competitive male soccer players (n = 12) participated in the study. The players completed the Copenhagen Soccer Test, a 2 x 45 min simulated...

  10. Hamstring Muscle Fatigue and Central Motor Output during a Simulated Soccer Match

    Science.gov (United States)

    Marshall, Paul W. M.; Lovell, Ric; Jeppesen, Gitte K.; Andersen, Kristoffer; Siegler, Jason C.

    2014-01-01

    Purpose To examine changes in hamstring muscle fatigue and central motor output during a 90-minute simulated soccer match, and the concomitant changes in hamstring maximal torque and rate of torque development. Method Eight amateur male soccer players performed a 90-minute simulated soccer match, with measures performed at the start of and every 15-minutes during each half. Maximal torque (Nm) and rate of torque development (RTD; Nm.s–1) were calculated from maximal isometric knee flexor contractions performed at 10° of flexion. Hamstring peripheral fatigue was assessed from changes in the size and shape of the resting twitch (RT). Hamstring central motor output was quantified from voluntary activation (%) and normalized biceps femoris (BF) and medial hamstrings (MH) electromyographic amplitudes (EMG/M). Results Maximal torque was reduced at 45-minutes by 7.6±9.4% (phamstring peripheral fatigue. Conclusion Centrally mediated reductions in maximal torque and rate of torque development provide insight into factors that may explain hamstring injury risk during soccer. Of particular interest were early reductions during the first-half of hamstring rate of torque development, and the decline in maximal EMG/M of biceps femoris in the latter stages of the half. These are important findings that may help explain why the hamstrings are particularly vulnerable to strain injury during soccer. PMID:25047547

  11. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  12. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    Science.gov (United States)

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.; Odette, G.R.

    1994-01-01

    The influence of the type, volume fraction, thickness and orientation of ductile phase reinforcements on the room temperature fatigue and fracture resistance of γ-TiAl intermetallic alloys is investigated. Large improvements in toughness compared to monolithic γ-TiAl are observed in both the TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing ductile phase content, reinforcement thickness and strength; orientation effect are minimal. Crack-growth behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to monolithic γ-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic loading

  14. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  15. Back muscle fatigue of younger and older adults with and without chronic low back pain using two protocols: A case-control study.

    Science.gov (United States)

    da Silva, Rubens A; Vieira, Edgar R; Cabrera, Marcos; Altimari, Leandro R; Aguiar, Andreo F; Nowotny, Alexandre H; Carvalho, Adriana F; Oliveira, Marcio R

    2015-12-01

    The purpose of this study was to compare back muscle fatigue of younger and older participants with and without chronic low back pain (CLBP). Twenty participants without and 20 with nonspecific CLBP participated in this study. Each group contained 10 younger (50% males; mean age: 31 ± 6 yrs) and 10 older adults (50% males; age mean: 71 ± 7 yrs). Two isometric fatigue protocols were presented randomly: (1) to maintain the unsupported trunk at the horizontal position while on a 45° Roman chair for a minute, and (2) to maintain a 10% of body weight box close to the trunk in the upright position for a minute. Surface electromyography (EMG) signals from the back (multifidus and iliocostalis) and one hip (biceps femoris) muscles were recorded bilaterally, and the median frequency fatigue estimate from linear regression slopes of the EMG time-series was computed. There were no significant (P > 0.05) age effects, and group-by-age interaction in both isometric and functional fatigue tasks. However, the CLBP groups (both younger and old) displayed more back fatigue than people without CLBP in both fatigue protocols (P size varying of d = 0.17-0.32). This study was sensitive to discriminate that individuals with CLBP did present significantly more pronounced EMG back fatigue than people without CLBP, in both younger and older adults. These results have significant clinical implications for low back pain rehabilitation programs with regard to endurance assessment in both younger and older. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effect of test temperature on tensile and fatigue properties of nickel-base heat-resistant alloys

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Nakajima, Hajime

    1987-01-01

    A series of tensile and strain controlled low-cycle fatigue tests were conducted at temperatures ranging from RT to 900 0 C on a nickel-base heat-resistant alloy, Hastelloy XR-II, which is one of the candidate alloys for applications in the process heating high-temperature gas-cooled reactor (HTGR). Fatigue tests at room temperature and all tensile tests were conducted in air, while fatigue tests at and above 400 0 C were conducted in the simulated HTGR helium environment. In those tests the effect of test temperature on tensile and fatigue properties was investigated. The ductility minimum point was observed near 600 0 C, while tensile and fatigue strengths decreased with increasing test temperature. The fatigue lives estimated with the method proposed by Manson were compatible with the experimental results under the given conditions. For the specimens fatigued at and above 700 0 C, the percentage of the intergranular fracture mode gradually increased with increasing test temperature. (orig.)

  17. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    Science.gov (United States)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  18. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    International Nuclear Information System (INIS)

    Bonora, R; Cioffi, M O H; Voorwald, H J C

    2017-01-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment. (paper)

  19. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1996-01-01

    and during exercise. MVC force was 578 +/- 29 N in normoxia and 569 +/- 29 N in hypobaria before exercise and fell, at exhaustion, to similar levels (265 +/- 10 and 284 +/- 20 N for normoxia and hypobaria, respectively; P > 0.05) that were higher (P ...Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight...... healthy men performed exhaustive constant work rate knee extension (21 +/- 3 W, 79 +/- 2 and 87 +/- 2% of 1-leg knee extension O2 peak uptake for normoxia and hypobaria, respectively) from knee angles of 90-150 degrees at a rate of 1 Hz. MVC (90 degrees knee angle) was performed before dynamic exercise...

  20. Liver overload in Brazilian triathletes after half-ironman competition is related muscle fatigue.

    Science.gov (United States)

    Bürger-Mendonça, Marcos; Bielavsky, Monica; Barbosa, Fernanda C R

    2008-01-01

    Triathlon competition is dependent on the athletes' ability to perform each discipline at optimal time, without excessive fatigue influencing the next one. Determine the effects of a long distance triathlon on biochemistry parameters related to liver function. Blood samples from six athletes were collected before (T = 0) and immediately after the triathlon competition (T = 1). AST, ALT and alkaline phosphatase (ALP) values were assessed. Significant changes after triathlon competition were found for AST and ALP and no significant changes were found for ALT over time. A series of metabolically alterations, mainly related to energy production and also to muscle and skeletal adaptations occurs during and after strenuous exercise. The altered status of those metabolical changes cannot directly reflect the intensity of any possible muscular or hepatic damage or overload and elevated AST/ALT ratio is better associated to skeletal muscle lesion during competition.

  1. Possible use of repeated cold stress for reducing fatigue in Chronic Fatigue Syndrome: a hypothesis

    Directory of Open Access Journals (Sweden)

    Shevchuk Nikolai A

    2007-10-01

    Full Text Available Abstract Background Physiological fatigue can be defined as a reduction in the force output and/or energy-generating capacity of skeletal muscle after exertion, which may manifest itself as an inability to continue exercise or usual activities at the same intensity. A typical example of a fatigue-related disorder is chronic fatigue syndrome (CFS, a disabling condition of unknown etiology and with uncertain therapeutic options. Recent advances in elucidating pathophysiology of this disorder revealed hypofunction of the hypothalamic-pituitary-adrenal axis and that fatigue in CFS patients appears to be associated with reduced motor neurotransmission in the central nervous system (CNS and to a smaller extent with increased fatigability of skeletal muscle. There is also some limited evidence that CFS patients may have excessive serotonergic activity in the brain and low opioid tone. Presentation of the hypothesis This work hypothesizes that repeated cold stress may reduce fatigue in CFS because brief exposure to cold may transiently reverse some physiological changes associated with this illness. For example, exposure to cold can activate components of the reticular activating system such as raphe nuclei and locus ceruleus, which can result in activation of behavior and increased capacity of the CNS to recruit motoneurons. Cold stress has also been shown to reduce the level of serotonin in most regions of the brain (except brainstem, which would be consistent with reduced fatigue according to animal models of exercise-related fatigue. Finally, exposure to cold increases metabolic rate and transiently activates the hypothalamic-pituitary-adrenal axis as evidenced by a temporary increase in the plasma levels of adrenocorticotropic hormone, beta-endorphin and a modest increase in cortisol. The increased opioid tone and high metabolic rate could diminish fatigue by reducing muscle pain and accelerating recovery of fatigued muscle, respectively. Testing

  2. Effects of photobiomodulation on the fatigue level in elderly women: an isokinetic dynamometry evaluation.

    Science.gov (United States)

    Vassão, P G; Toma, R L; Antunes, H K M; Tucci, H T; Renno, A C M

    2016-02-01

    Aging is responsible by a series of morphological and functional modifications that lead to a decline of muscle function, particularly in females. Muscle tissue in elderly people is more susceptible to fatigue and, consequently, to an increased inability to maintain strength and motor control. In this context, therapeutic approaches able of attenuating muscle fatigue have been investigated. Among these, the photobiomodulation demonstrate positive results to interacts with biological tissues, promoting the increase in cell energy production. Thus, the aim of this study was to investigate the effects of photobiomodulation (808 nm, 250 J/cm(2), 100 mW, 7 J each point) in the fatigue level and muscle performance in elderly women. Thirty subjects entered a crossover randomized double-blinded placebo-controlled trial. Photobiomodulation was delivered on the rectus femoris muscle of the dominant limb immediately before the fatigue protocol. In both sessions, peripheral muscle fatigue was analyzed by surface electromyography (EMG) and blood lactate analysis. Muscle performance was evaluated using an isokinetic dynamometer. The results showed that photobiomodulation was able of reducing muscle fatigue by a significant increase of electromyographic fatigue index (EFI) (p = 0.047) and decreasing significantly lactate concentration 6 min after the performance of the fatigue protocol (p = 0. 0006) compared the placebo laser session. However, the photobiomodulation was not able of increasing muscle performance measured by the isokinetic dynamometer. Thus, it can be conclude that the photobiomodulation was effective in reducing fatigue levels. However, no effects of photobiomodulation on muscle performance was observed.

  3. Effect of tooth whitening strips on fatigue resistance and flexural strength of bovine dentin in vitro.

    Directory of Open Access Journals (Sweden)

    Laura E Tam

    Full Text Available To determine the effects of whitening strips on bovine dentin fatigue resistance and flexural strength in vitro.A total of eighty bovine dentin specimens (2x2x17mm were treated with either: control glycerine gel on plastic film wrap or whitening strips containing 9.5% hydrogen peroxide. Treatment was applied for 30 minutes, twice a day, for 1- or 4-weeks. After the last treatment, ten specimens per group were randomly selected to undergo fatigue testing (106 cycles, 3Hz, 20N while the other ten were subjected to flexural strength testing after ten days of storage in artificial saliva. Kaplan-Meier method with a log rank test, Wilcoxon test and Cox regression were used to assess fatigue test results (p<0.05. One-way ANOVA and Tukey's tests were used to compare the flexural strength results (p<0.05.There were significant differences in survival during the fatigue test among the groups (p<0.001. Treatment (control or bleach was a significant factor for specimen survival (p<0.001, Exp(B = 33.45. There were significant differences in mean flexural strength (p<0.001. No significant difference was found between "1-wk control" and "4-wk control". The mean flexural strength and fatigue resistance of the "4-wk bleach" were significantly lower than all the other groups.The use of whitening strips reduced the fatigue resistance and flexural strength of bovine dentin in vitro. Until the effect of whitening strips on mechanical properties of human dentin is fully elucidated, it remains prudent to advise patients to avoid excessive direct use of whitening strips on dentin.

  4. Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy

    OpenAIRE

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; Bellamy, Leeann; Parise, Gianni; Baker, Steven K.; Phillips, Stuart M.

    2013-01-01

    PURPOSE: To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. METHODS: Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk....

  5. EFFECTS OF FATIGUE ON FRONTAL PLANE KNEE MOTION, MUSCLE ACTIVITY, AND GROUND REACTION FORCES IN MEN AND WOMEN DURING LANDING

    Directory of Open Access Journals (Sweden)

    Michael P. Smith

    2009-09-01

    Full Text Available Women tear their Anterior Cruciate Ligament (ACL 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comparison group design was used. Twenty-six volunteers (14 women; 12 Men; Mean ± standard deviation age = 24.5 ± 2.7 yrs; height = 1.73 ± 0.09 m; mass = 74.3 ± 11.8 kg participated in the study. Knee frontal plane ranges of motion and positions, ground reaction force peak magnitudes, and surface EMG RMS amplitudes from five lower extremity muscles (vastus medialis, vastus lateralis, medial hamstring, lateral hamstring, and lateral gastrocnemius were obtained during the landing phase of a drop-jump. MANOVA and ANOVA indicated that peak GRF significantly (p < 0.05; 2.50 ± 0.75 BW vs. 2.06 ± 0.93 BW decreased during fatigued landings. No other variables exhibited a fatigue main effect, although there was a significant (p < 0.05 fatigue by gender interaction for the frontal plane range of motion from initial contact to max knee flexion variable. Follow-up analyses failed to reveal significant gender differences at the different levels of fatigue for this variable. Additionally, no variables exhibited a significant gender main effect. Single subject analysis indicated that fatigue significantly altered frontal plane knee motion, peak GRF, and EMG in some subjects and the direction of differences varied by individual. Fatigue altered some aspects of landing performance in both men and women, but there were no gender differences. Additionally, both group and single subject analyses provided valuable but different information about factors representing

  6. Smoking impact on grip strength and fatigue resistance: implications for exercise and hand therapy practice.

    Science.gov (United States)

    Al-Obaidi, Saud; Al-Sayegh, Nowall; Nadar, Mohammed

    2014-07-01

    Grip strength assessment reflects on overall health of the musculoskeletal system and is a predictor of functional prognosis and mortality. The purpose of this study was: examine whether grip-strength and fatigue resistance are impaired in smokers, determine if smoking-related impairments (fatigue-index) can be predicted by demographic data, duration of smoking, packets smoked-per-day, and physical activity. Maximum isometric grip strength (MIGS) of male smokers (n = 111) and nonsmokers (n = 66) was measured before/after induced fatigue using Jamar dynamometer at 5-handle positions. Fatigue index was calculated based on percentage change in MIGS initially and after induced fatigue. Number of repetitions to squeeze the soft rubber ball to induce fatigue was significantly lower in smokers compared with nonsmokers (t = 10.6, P smoking status on MIGS scores was significantly different between smokers and nonsmokers after induced fatigue (β = -3.98, standard error = 0.59, P Smoking status was the strongest significant independent predictor of the fatigue-index. Smokers demonstrated reduced grip strength and fast fatigability in comparison with nonsmokers.

  7. Concentric resistance training increases muscle strength without affecting microcirculation

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Hildebrandt, Wulf; Schroeder, Leif; Kinscherf, Ralf; Krix, Martin; Bachert, Peter; Delorme, Stefan; Essig, Marco; Kauczor, Hans-Ulrich; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 ± 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P 2 after training) and in absolute muscle strength (isometric, 146 ± 44 vs. 174 ± 50 Nm; isokinetic, 151 ± 53 vs. 174 ± 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 ± 75 vs. 326 ± 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 ± 1.2 vs. 1.1 ± 1.1 ml/min/100 g; blood flow velocity, 0.49 ± 0.44 vs. 0.52 ± 0.74 mm s -1 ). Also, the intensities of high-energy phosphates phosphocreatine and β-adenosintriphosphate were not different after training within the skeletal muscle at rest (β-ATP/phosphocreatine, 0.29 ± 0.06 vs. 0.28 ± 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric resistance training occurs without an increase in the in vivo microcirculation of the skeletal muscles at

  8. Concentric resistance training increases muscle strength without affecting microcirculation

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany)], E-mail: MarcAndre.Weber@med.uni-heidelberg.de; Hildebrandt, Wulf [Immunochemistry, German Cancer Research Center (dkfz), Heidelberg (Germany); Schroeder, Leif [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kinscherf, Ralf [Department of Anatomy and Developmental Biology, University of Heidelberg, Heidelberg (Germany); Krix, Martin [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Bachert, Peter [Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Delorme, Stefan; Essig, Marco [Radiology, German Cancer Research Center (dkfz), Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg (Germany); Krakowski-Roosen, Holger [National Center for Tumor Diseases (NCT), Heidelberg (Germany)

    2010-03-15

    Purpose: While the evidence is conclusive regarding the positive effects of endurance training, there is still some controversy regarding the effects of resistance training on muscular capillarity. Thus, the purpose was to assess whether resistance strength training influences resting skeletal muscle microcirculation in vivo. Materials and methods: Thirty-nine middle-aged subjects (15 female, 24 male; mean age, 54 {+-} 9 years) were trained twice a week on an isokinetic system (altogether 16 sessions lasting 50 min, intensity 75% of maximum isokinetic and isometric force of knee flexors and extensors). To evaluate success of training, cross-sectional area (CSA) of the quadriceps femoris muscle and its isokinetic and isometric force were quantified. Muscular capillarization was measured in biopsies of the vastus lateralis muscle. In vivo, muscular energy and lipid metabolites were quantified by magnetic resonance spectroscopy and parameters of muscular microcirculation, such as local blood volume, blood flow and velocity, by contrast-enhanced ultrasound analyzing replenishment kinetics. Results: The significant (P < 0.001) increase in CSA (60 {+-} 16 before vs. 64 {+-} 15 cm{sup 2} after training) and in absolute muscle strength (isometric, 146 {+-} 44 vs. 174 {+-} 50 Nm; isokinetic, 151 {+-} 53 vs. 174 {+-} 62 Nm) demonstrated successful training. Neither capillary density ex vivo (351 {+-} 75 vs. 326 {+-} 62) nor ultrasonographic parameters of resting muscle perfusion were significantly different (blood flow, 1.2 {+-} 1.2 vs. 1.1 {+-} 1.1 ml/min/100 g; blood flow velocity, 0.49 {+-} 0.44 vs. 0.52 {+-} 0.74 mm s{sup -1}). Also, the intensities of high-energy phosphates phosphocreatine and {beta}-adenosintriphosphate were not different after training within the skeletal muscle at rest ({beta}-ATP/phosphocreatine, 0.29 {+-} 0.06 vs. 0.28 {+-} 0.04). Conclusion: The significant increase in muscle size and strength in response to concentric isokinetic and isometric

  9. Hand rest and wrist support are effective in preventing fatigue during prolonged typing.

    Science.gov (United States)

    Callegari, Bianca; de Resende, Marília Maniglia; da Silva Filho, Manoel

    Case series (longitudinal). Only few reports concerning the efficacy of commonly used strategies for preventing upper limb occupational disorders associated with prolonged typing exist. We aimed to investigate whether the duration of typing and the use of 2 strategies (hand rest and wrist support) changes muscle physiological response and therefore the electromyography records. We enrolled 25 volunteers, who were unfamiliar with the task and did not have musculoskeletal disorders. The subjects underwent 3 prolonged typing protocols to investigate the efficacy of the 2 adopted strategies in reducing the trapezius, biceps brachii, and extensor digitorum communis fatigue. Typing for 1 hour induced muscular fatigue (60%-67% of the subjects). The extensor digitorum communis muscle exhibited the highest percentage of fatigue (72%-84%) after 1 and 4 hours of typing (1 hour, P = .04; 4 hours, P = .02). Fatigue levels in this muscle were significantly reduced (24%) with the use of pause typing (4 hours, P = .045), whereas biceps brachii muscle fatigue was reduced (32%) only with the use of wrist supports (P = .02, after 4 hours). Trapezius muscle fatigue was unaffected by the tested occupational strategies (1 hour, P = .62; 4 hours, P = .85). Despite presenting an overall tendency for fatigue detected during the application of the protocols, the assessed muscles exhibited different behavior patterns, depending on both the preventive strategy applied and the muscle mechanical role during the task. Hand rest and wrist support can successfully reduce muscle fatigue in specific upper limb muscles during prolonged typing, leading to a muscle-selective reduction in the occurrence of fatigue and thus provide direct evidence that they may prevent work-related musculoskeletal disorders. N/A. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  10. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  11. Asymmetry and Thigh Muscle Coactivity in Fatigued Anterior Cruciate Ligament-Reconstructed Elite Skiers

    DEFF Research Database (Denmark)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    PURPOSE: The acute effects of fatigue on functional interlimb asymmetry and quadriceps/hamstring muscle activity levels, including preparatory coactivation during squat jump takeoff and landing, were evaluated in elite alpine ski racers with/without anterior cruciate ligament reconstruction (ACLR......). METHODS: Twenty-two elite ski racers (ACLR, n = 11; control, n = 11) performed an 80-s repeated squat jump test (jump test) on a dual force plate system with simultaneous EMG recordings in vastus lateralis, vastus medialis, semitendinosus, and biceps femoris. Asymmetry index (AI) and jump height of body...

  12. Reliability of contractile properties of the knee extensor muscles in individuals with post-polio syndrome.

    Directory of Open Access Journals (Sweden)

    Eric L Voorn

    Full Text Available To assess the reliability of contractile properties of the knee extensor muscles in 23 individuals with post-polio syndrome (PPS and 18 age-matched healthy individuals.Contractile properties of the knee extensors were assessed from repeated electrically evoked contractions on 2 separate days, with the use of a fixed dynamometer. Reliability was determined for fatigue resistance, rate of torque development (MRTD, and early and late relaxation time (RT50 and RT25, using the intraclass correlation coefficient (ICC and standard error of measurement (SEM, expressed as % of the mean.In both groups, reliability for fatigue resistance was good, with high ICCs (>0.90 and small SEM values (PPS: 7.1%, healthy individuals: 7.0%. Reliability for contractile speed indices varied, with the best values found for RT50 (ICCs>0.82, SEM values <2.8%. We found no systematic differences between test and retest occasions, except for RT50 in healthy subjects (p = 0.016.In PPS and healthy individuals, the reliability of fatigue resistance, as obtained from electrically evoked contractions is high. The reliability of contractile speed is only moderate, except for RT50 in PPS, demonstrating high reliability.This was the first study to examine the reliability of electrically evoked contractile properties in individuals with PPS. Our results demonstrate its potential to study mechanisms underlying muscle fatigue in PPS and to evaluate changes in contractile properties over time in response to interventions or from natural course.

  13. Resistance training, insulin sensitivity and muscle function in the elderly

    DEFF Research Database (Denmark)

    Dela, Flemming; Kjaer, Michael

    2006-01-01

    Ageing is associated with a loss in both muscle mass and in the metabolic quality of skeletal muscle. This leads to sarcopenia and reduced daily function, as well as to an increased risk for development of insulin resistance and type 2 diabetes. A major part, but not all, of these changes......, and likewise to improve muscle strength in both elderly healthy individuals and in elderly individuals with chronic disease. The increased strength is coupled to improved function and a decreased risk for fall injuries and fractures. Elderly individuals have preserved the capacity to improve muscle strength...... are associated with an age-related decrease in the physical activity level and can be counteracted by increased physical activity of a resistive nature. Strength training has been shown to improve insulin-stimulated glucose uptake in both healthy elderly individuals and patients with manifest diabetes...

  14. Importance of mind-muscle connection during progressive resistance training

    DEFF Research Database (Denmark)

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus Due

    2016-01-01

    PURPOSE: This study evaluates whether focusing on using specific muscles during bench press can selectively activate these muscles. METHODS: Altogether 18 resistance-trained men participated. Subjects were familiarized with the procedure and performed one-maximum repetition (1RM) test during...... electromyography (EMG) signals were recorded for the triceps brachii and pectoralis major muscles. Subsequently, peak EMG of the filtered signals were normalized to maximum maximorum EMG of each muscle. RESULTS: In both muscles, focusing on using the respective muscles increased muscle activity at relative loads...... between 20 and 60 %, but not at 80 % of 1RM. Overall, a threshold between 60 and 80 % rather than a linear decrease in selective activation with increasing intensity appeared to exist. The increased activity did not occur at the expense of decreased activity of the other muscle, e.g. when focusing...

  15. Cyclic Fatigue Resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium Instruments.

    Science.gov (United States)

    Gündoğar, Mustafa; Özyürek, Taha

    2017-07-01

    The purpose of this study was to compare the cyclic fatigue resistances of Reciproc Blue (VDW, Munich, Germany), HyFlex EDM (Coltene/Whaledent, Altstätten, Switzerland), WaveOne Gold (Dentsply Maillefer, Ballaigues, Switzerland), and OneShape (Micro Mega, Besancon, France) single-file NiTi systems. Thirty Reciproc Blue R25 (25/.08), 30 HyFlex EDM (25/.∼), 30 WaveOne Gold Primary (25/.07), and 30 OneShape (25/.06) instruments were included in this study. All the instruments were rotated in artificial canals, which were made of stainless steel with an inner diameter of 1.5 mm, a 60° angle of curvature, and radii of curvatures of 5 mm until fracture occurred, and the time to fracture was recorded in seconds using a digital chronometer. The data were analyzed statistically using Kruskal-Wallis and post hoc Dunn tests via SPSS 21.0 software (SPSS Inc, Chicago, IL). The statistical significance level was set at 5%. The HyFlex EDM file (3456.33 ± 633.37) file had the statistically highest fatigue resistance, and the OneShape file (1221.63 ± 812.4) had the least fatigue resistance (P  .05) in the mean length of the fractured fragments of the files (P > .05). Within the limitations of the present in vitro study, it was found that cyclic fatigue resistance of HyFlex EDM files was higher than the cyclic fatigue resistances of OneShape, Reciproc Blue, and WaveOne Gold files. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Analysis of fatigue resistance of continuous and non-continuous welded rectangular frame intersections by finite element method

    International Nuclear Information System (INIS)

    McCoy, M. L.; Moradi, R.; Lankarani, H. M.

    2011-01-01

    Agricultural and construction equipment are commonly implemented with rectangular tubing in their structural frame designs. A typical joining method to fabricate these frames is by welding and the use of ancillary structural plating at the connections. This aids two continuous members to pass through an intersection point of the frame with some degree of connectivity, but the connections are highly unbalanced as the tubing centroids exhibit asymmetry. Due to the practice of welded continuous member frame intersections in current agricultural equipment designs, a conviction may exist that welded continuous member frames are superior in structural strength over that of structural frame intersections implementing welded non-continuous members where the tubing centroids lie within two planes of symmetry, a connection design that would likely fabricating a more fatigue resistant structural frame. Three types of welded continuous tubing frame intersections currently observed in the designs of agricultural equipment were compared to two non-continuous frame intersection designs. Each design was subjected to the same loading condition and then examined for stress levels using the Finite Element Method to predict fatigue life. Results demonstrated that a lighter weight, non-continuous member frame intersection design was two magnitudes superior in fatigue resistance than some current implemented frame designs when using Stress-Life fatigue prediction methods and empirical fatigue strengths for fillet welds. Stress-Life predictions were also made using theoretical fatigue strength calculations for the fatigue strength at the welds for comparison to the empirical derived weld fatigue strength

  17. Insulin Resistance Is Not Associated with an Impaired Mitochondrial Function in Contracting Gastrocnemius Muscle of Goto-Kakizaki Diabetic Rats In Vivo.

    Directory of Open Access Journals (Sweden)

    Michael Macia

    Full Text Available Insulin resistance, altered lipid metabolism and mitochondrial dysfunction in skeletal muscle would play a major role in type 2 diabetes mellitus (T2DM development, but the causal relationships between these events remain conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in Goto-Kakizaki (GK rats, a non-obese T2DM model developing peripheral insulin resistant without abnormal level of plasma non-esterified fatty acids (NEFA. Wistar rats were used as controls. Mechanical performance and energy metabolism were assessed strictly non-invasively using magnetic resonance (MR imaging and 31-phosphorus MR spectroscopy (31P-MRS. Compared with control group, plasma insulin and glucose were respectively lower and higher in GK rats, but plasma NEFA level was normal. In resting GK muscle, phosphocreatine content was reduced whereas glucose content and intracellular pH were both higher. However, there were not differences between both groups for basal oxidative ATP synthesis rate, citrate synthase activity, and intramyocellular contents for lipids, glycogen, ATP and ADP (an important in vivo mitochondrial regulator. During a standardized fatiguing protocol (6 min of maximal repeated isometric contractions electrically induced at a frequency of 1.7 Hz, mechanical performance and glycolytic ATP production rate were reduced in diabetic animals whereas oxidative ATP production rate, maximal mitochondrial capacity and ATP cost of contraction were not changed. These findings provide in vivo evidence that insulin resistance is not caused by an impairment of mitochondrial function in this diabetic model.

  18. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    Science.gov (United States)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  19. Effects of Fatigue on Frontal Plane Knee Motion, Muscle Activity, and Ground Reaction Forces In Men and Women During Landing

    OpenAIRE

    Smith, Michael P.; Sizer, Phillip S.; James, C. Roger

    2009-01-01

    Women tear their Anterior Cruciate Ligament (ACL) 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comp...

  20. Cyclic Fatigue Resistance of Reciproc Blue, Reciproc, and WaveOne Gold Reciprocating Instruments.

    Science.gov (United States)

    Keskin, Cangül; Inan, Uğur; Demiral, Murat; Keleş, Ali

    2017-08-01

    The aim of the present study was to compare the cyclic fatigue resistance of Reciproc Blue R25 (VDW, Munich, Germany) with Reciproc R25 (VDW) and WaveOne Gold Primary (Denstply Maillefer, Ballaigues, Switzerland). Fifteen Reciproc Blue R25, 15 Reciproc R25, and 15 WaveOne Gold Primary instruments were collected and tested in a dynamic cyclic fatigue test device, which has an artificial canal with a 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and time to fracture (TF) and the lengths of the fractured fragments were recorded. The mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data were subjected to Kruskal-Wallis 1-way analysis of variance and the Dunn test, whereas fractured fragment length data were subjected to 1-way analysis of variance (P  .05). Reciproc Blue R25 instruments had significantly higher cyclic fatigue resistance than WaveOne Gold and Reciproc R25 instruments. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    Full Text Available BACKGROUND: While ryanodine receptor 1 (RyR1 critically contributes to skeletal muscle contraction abilities by mediating Ca²⁺ion oscillation between sarcoplasmatic and myofibrillar compartments, AMP-activated protein kinase (AMPK senses contraction-induced energetic stress by phosphorylation at Thr¹⁷². Phosphorylation of RyR1 at serine²⁸⁴³ (pRyR1Ser²⁸⁴³ results in leaky RyR1 channels and impaired Ca²⁺homeostasis. Because acute resistance exercise exerts decreased contraction performance in skeletal muscle, preceded by high rates of Ca²⁺-oscillation and energetic stress, intense myofiber contractions may induce increased RyR1 and AMPK phosphorylation. However, no data are available regarding the time-course and magnitude of early RyR1 and AMPK phosphorylation in human myofibers in response to acute resistance exercise. PURPOSE: Determine the effects and early time-course of resistance exercise on pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² in type I and II myofibers. METHODS: 7 male subjects (age 23±2 years, height: 185±7 cm, weight: 82±5 kg performed 3 sets of 8 repetitions of maximum eccentric knee extensions. Muscle biopsies were taken at rest, 15, 30 and 60 min post exercise. pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² levels were determined by western blot and semi-quantitative immunohistochemistry techniques. RESULTS: While total RyR1 and total AMPK levels remained unchanged, RyR1 was significantly more abundant in type II than type I myofibers. pRyR1Ser²⁸⁴³ increased 15 min and peaked 30 min (p<0.01 post exercise in both myofiber types. Type I fibers showed relatively higher increases in pRyR1Ser²⁸⁴³ levels than type II myofibers and remained elevated up to 60 min post resistance exercise (p<0.05. pAMPKThr¹⁷² also increased 15 to 30 min post exercise (p<0.01 in type I and II myofibers and in whole skeletal muscle. CONCLUSION: Resistance exercise induces acutely increased pRyR1Ser²⁸⁴³ and

  2. Comparison of cyclic fatigue resistance of three different rotary nickel-titanium instruments designed for retreatment.

    Science.gov (United States)

    Inan, Ugur; Aydin, Cumhur

    2012-01-01

    A number of rotary nickel-titanium (NiTi) systems have been developed to provide better, faster, and easier cleaning and shaping of the root canal system, and recently, rotary NiTi systems designed for root canal retreatment have been introduced. Because the main problem with the rotary NiTi files is fracture, the aim of this study was to compare the cyclic fatigue resistance of 3 different rotary NiTi systems designed for root canal retreatment. Total of 60 instruments of 3 different rotary NiTi systems designed for root canal retreatment were used in this study. Twenty R-Endo R3, 20 ProTaper D3, and 20 Mtwo R (Retreatment) 25.05 instruments were tested. Cyclic fatigue testing of instruments was performed by using a device that allowed the instruments to rotate freely inside an artificial canal. Each instrument was rotated until fracture occurred, and the number of cycles to fracture for each instrument was calculated. Representative samples were also evaluated under a scanning electron microscope to confirm the fracture was flexural. Data were analyzed by using 1-way analysis of variance test. R-Endo R3 instruments showed better cyclic fatigue resistance than ProTaper D3 and Mtwo R 25.05 instruments, and the difference was statistically significant (P instruments were more resistant to fatigue failure than ProTaper D3 and Mtwo R 25.05. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Interactive processes link the multiple symptoms of fatigue in sport competition.

    Science.gov (United States)

    Knicker, Axel J; Renshaw, Ian; Oldham, Anthony R H; Cairns, Simeon P

    2011-04-01

    Muscle physiologists often describe fatigue simply as a decline of muscle force and infer this causes an athlete to slow down. In contrast, exercise scientists describe fatigue during sport competition more holistically as an exercise-induced impairment of performance. The aim of this review is to reconcile the different views by evaluating the many performance symptoms/measures and mechanisms of fatigue. We describe how fatigue is assessed with muscle, exercise or competition performance measures. Muscle performance (single muscle test measures) declines due to peripheral fatigue (reduced muscle cell force) and/or central fatigue (reduced motor drive from the CNS). Peak muscle force seldom falls by >30% during sport but is often exacerbated during electrical stimulation and laboratory exercise tasks. Exercise performance (whole-body exercise test measures) reveals impaired physical/technical abilities and subjective fatigue sensations. Exercise intensity is initially sustained by recruitment of new motor units and help from synergistic muscles before it declines. Technique/motor skill execution deviates as exercise proceeds to maintain outcomes before they deteriorate, e.g. reduced accuracy or velocity. The sensation of fatigue incorporates an elevated rating of perceived exertion (RPE) during submaximal tasks, due to a combination of peripheral and higher CNS inputs. Competition performance (sport symptoms) is affected more by decision-making and psychological aspects, since there are opponents and a greater importance on the result. Laboratory based decision making is generally faster or unimpaired. Motivation, self-efficacy and anxiety can change during exercise to modify RPE and, hence, alter physical performance. Symptoms of fatigue during racing, team-game or racquet sports are largely anecdotal, but sometimes assessed with time-motion analysis. Fatigue during brief all-out racing is described biomechanically as a decline of peak velocity, along with altered

  4. Shoulder muscle endurance: the development of a standardized and reliable protocol

    Directory of Open Access Journals (Sweden)

    Roy Jean-Sébastien

    2011-01-01

    Full Text Available Abstract Background Shoulder muscle fatigue has been proposed as a possible link to explain the association between repetitive arm use and the development of rotator cuff disorders. To our knowledge, no standardized clinical endurance protocol has been developed to evaluate the effects of muscle fatigue on shoulder function. Such a test could improve clinical examination of individuals with shoulder disorders. Therefore, the purpose of this study was to establish a reliable protocol for objective assessment of shoulder muscle endurance. Methods An endurance protocol was developed on a stationary dynamometer (Biodex System 3. The endurance protocol was performed in isotonic mode with the resistance set at 50% of each subject's peak torque as measured for shoulder external (ER and internal rotation (IR. Each subject performed 60 continuous repetitions of IR/ER rotation. The endurance protocol was performed by 36 healthy individuals on two separate occasions at least two days apart. Maximal isometric shoulder strength tests were performed before and after the fatigue protocol to evaluate the effects of the endurance protocol and its reliability. Paired t-tests were used to evaluate the reduction in shoulder strength due to the protocol, while intraclass correlation coefficients (ICC and minimal detectable change (MDC were used to evaluate its reliability. Results Maximal isometric strength was significantly decreased after the endurance protocol (P 0.84. Conclusions Changes in muscular performance observed during and after the muscular endurance protocol suggests that the protocol did result in muscular fatigue. Furthermore, this study established that the resultant effects of fatigue of the proposed isotonic protocol were reproducible over time. The protocol was performed without difficulty by all volunteers and took less than 10 minutes to perform, suggesting that it might be feasible for clinical practice. This protocol could be used to induce

  5. Study of interaction of fatigue damage and ratcheting. Effect of a tensile primary load on torsion fatigue resistance of stainless steel 304 L at ambient temperature

    International Nuclear Information System (INIS)

    Hakem, N.S.

    1987-01-01

    Effect of ratcheting on fatigue resistance of a stainless steel 304 L, used for reactor vessels, is studied experimentally. Lifetime of samples is reduced if a static constant tensile load (primary loading) is superimposed to cyclic torsion deformations (secondary loading). An equivalent deformation concept is developed to express a criterion of fatigue rupture under primary loading. No effect is noted on the curve of cyclic strain hardening. This fatigue analysis gives no information on cumulated axial deformation. Progressive elongation, observed during testing, is dependent of primary and secondary loading. Rupture is produced by fatigue because cumulated axial deformation is limited ( 4 cycles at rupture cumulated deformation is [fr

  6. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort.

    Science.gov (United States)

    Haddad, Monoem; Chaouachi, Anis; Wong, Del P; Castagna, Carlo; Hambli, Mourad; Hue, Olivier; Chamari, Karim

    2013-07-02

    The aim of this study was to assess the effects of the Hooper's Index variations (i.e., self-ratings of fatigue, stress, delayed onset muscle soreness (DOMS), and sleep) on rating of perceived exertion during a 10 min submaximal exercise training session (RPE-10 min) and then check the stability and the internal consistency of RPE-10 min. Seventeen junior soccer players took part in this study. The individual Hooper's indices taken before each training session were correlated with RPE-10 min during a constant intensity and duration effort (10 min) using Pearson product moment correlation. Intraclass correlation (ICC) was used to assess the internal consistency of the RPE-10 min. All individual correlations between RPE-10 min and quality of sleep and quantity of fatigue, stress, and DOMS were non-significant (p>0.05). No significant correlations were resulted between RPE-10 min and Hooper's Index in all athletes. The ICC of RPE-10 min was 0.77 thus demonstrating internal consistency. The results of the present study demonstrated the objectivity and utility of RPE as a psychological tool for monitoring training during traditional soccer training. Therefore, the results of the present study suggest that fatigue, stress, DOMS and sleep are not major contributors of perceived exertion during traditional soccer training without excessive training loads. It seems that psychobiological factors other than fatigue, stress, DOMS and sleep may have mediated the 10 min exercise perceptual intensity. © 2013.

  7. Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women.

    Science.gov (United States)

    Alway, Stephen E; McCrory, Jean L; Kearcher, Kalen; Vickers, Austen; Frear, Benjamin; Gilleland, Diana L; Bonner, Daniel E; Thomas, James M; Donley, David A; Lively, Mathew W; Mohamed, Junaith S

    2017-11-09

    Older men (n = 12) and women (n = 18) 65-80 years of age completed 12 weeks of exercise and took either a placebo or resveratrol (RSV) (500 mg/d) to test the hypothesis that RSV treatment combined with exercise would increase mitochondrial density, muscle fatigue resistance, and cardiovascular function more than exercise alone. Contrary to our hypothesis, aerobic and resistance exercise coupled with RSV treatment did not reduce cardiovascular risk further than exercise alone. However, exercise added to RSV treatment improved the indices of mitochondrial density, and muscle fatigue resistance more than placebo and exercise treatments. In addition, subjects that were treated with RSV had an increase in knee extensor muscle peak torque (8%), average peak torque (14%), and power (14%) after training, whereas exercise did not increase these parameters in the placebo-treated older subjects. Furthermore, exercise combined with RSV significantly improved mean fiber area and total myonuclei by 45.3% and 20%, respectively, in muscle fibers from the vastus lateralis of older subjects. Together, these data indicate a novel anabolic role of RSV in exercise-induced adaptations of older persons and this suggests that RSV combined with exercise might provide a better approach for reversing sarcopenia than exercise alone. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Cyclic fatigue resistance of newly manufactured rotary nickel titanium instruments used in different rotational directions.

    Science.gov (United States)

    Gambarini, Gianlucca; Gergi, Richard; Grande, Nicola Maria; Osta, Nada; Plotino, Gianluca; Testarelli, Luca

    2013-12-01

    The aim of this study was to investigate whether cyclic fatigue resistance is increased for nickel titanium instruments manufactured with improved heating processes in clockwise or counterclockwise continuous rotation. The instruments compared were produced either using the R-phase heat treatment (K3XF; SybronEndo, Orange, CA, USA) or the M-wire alloy (ProFile Vortex; DENTSPLY Tulsa Dental Specialties, Tulsa, OK, USA). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments in curved artificial canals. Results indicated no significant difference in resistance to cyclic fatigue when rotary nickel titanium instruments are used in clockwise or counterclockwise continuous rotation. In both directions of rotation, size 04-25 K3XF showed a significant increase (P < 0.05) in the mean number of cycles to failure when compared with size 04-25 ProFile Vortex. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  9. Cyclic fatigue resistance of R-Pilot, WaveOne Gold Glider, and ProGlider glide path instruments.

    Science.gov (United States)

    Keskin, Cangül; İnan, Uğur; Demiral, Murat; Keleş, Ali

    2018-02-17

    The aim of the present study was to compare the cyclic fatigue resistance of R-Pilot (VDW; Munich, Germany) with ProGlider (Denstply Sirona; Ballaigues, Switzerland) and WaveOne Gold Glider (Denstply Sirona; Ballaigues, Switzerland) glide path instruments. R-Pilot, ProGlider, and WaveOne Gold Glider instruments were collected (n = 15) and tested in a dynamic cyclic fatigue test device, which has an artificial canal with 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and both time to fracture (TF) and the lengths of the fractured fragments were recorded. Mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data and fractured fragment length data were subjected to one-way ANOVA and post-hoc Tukey tests (P  0.05). Weibull analysis revealed that WaveOne Gold Glider showed the highest predicted TF value for 99% survival rate, which was followed by R-Pilot and ProGlider. Regarding the length of the fractured tips, there were no significant differences among the instruments (P > 0.05). The reciprocating WaveOne Gold Glider and R-Pilot instruments had significantly higher cyclic fatigue resistance than rotary ProGlider instruments. This study reported that novel reciprocating glide path instruments exhibited higher cyclic fatigue resistance than rotating glide path instrument.

  10. The Effects of Shoulder- Girdle Muscles Fatigue on Ground Reaction Force, Elbow and Shoulder Joint Angle, and Accuracy of the Athletic Performance in Handball Penalty Throws

    Directory of Open Access Journals (Sweden)

    Mona Shiravand

    2017-09-01

    Discussion: As the subjects were professional, muscle fatigue did not have a significant effect on postural control, angles and angular velocity; but did affect the reaction force and accuracy of the throws before and after fatigue, which could ultimately affect the performance of athletes and competition results.

  11. Skeletal muscle lipid metabolism in exercise and insulin resistance

    DEFF Research Database (Denmark)

    Kiens, Bente

    2006-01-01

    Lipids as fuel for energy provision originate from different sources: albumin-bound long-chain fatty acids (LCFA) in the blood plasma, circulating very-low-density lipoproteins-triacylglycerols (VLDL-TG), fatty acids from triacylglycerol located in the muscle cell (IMTG), and possibly fatty acids...... of insulin resistance in skeletal muscle, including possible molecular mechanisms involved, is discussed....

  12. Evidence of significant central fatigue in patients with cancer-related fatigue during repetitive elbow flexions till perceived exhaustion.

    Directory of Open Access Journals (Sweden)

    Bin Cai

    Full Text Available To investigate whether fatigue induced by an intermittent motor task in patients with cancer-related fatigue (CRF is more central or peripheral.Ten patients with CRF who were off chemo and radiation therapies and 14 age-matched healthy controls were enrolled. Participants completed a Brief Fatigue Inventory (BFI and performed a fatigue task consisting of intermittent elbow-flexion contractions at submaximal (40% maximal voluntary contraction intensity till self-perceived exhaustion. Twitch force was elicited by an electrical stimulation applied to the biceps brachii muscle. The relative degree of peripheral (muscle vs. central contribution to fatigue induced by the intermittent motor task (IMT was assessed using twitch force ratio (TF ratio defined as post IMT twitch force to pre IMT twitch force. The total number of trials (intermittent contractions and total duration of all trials performed by each subject were also quantified.BFI scores were higher (p < 0.001 in CRF than controls, indicating greater feeling of fatigue in CRF patients than controls. A significantly smaller number of trials and shorter total duration of the trials (p < 0.05 were observed in CRF than control participants. The TF ratio (0.81 ± 0.05 in CRF was higher (p < 0.05 compared with that of controls (0.62 ± 0.05, suggesting CRF patients experienced a significantly lower degree of muscle (peripheral fatigue at the time of perceived exhaustion.Consistent with prior findings for fatigue under submaximal sustained contraction, our results indicate that motor fatigue in CRF is more of central than peripheral origin during IMT. Significant central fatigue in CRF patients limits their ability to prolong motor performance.

  13. Muscle Wasting and Resistance of Muscle Anabolism: The “Anabolic Threshold Concept” for Adapted Nutritional Strategies during Sarcopenia

    Directory of Open Access Journals (Sweden)

    Dominique Dardevet

    2012-01-01

    Full Text Available Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on muscle protein anabolism. However, on the long term, these nutritional strategies have often failed in improving muscle mass even if given for long periods of time in both humans and rodent models. Muscle mass loss situations have been often correlated to a resistance of muscle protein anabolism to food intake which may be explained by an increase of the anabolic threshold toward the stimulatory effect of amino acids. In this paper, we will emphasize how this anabolic resistance may affect the intensity and the duration of the muscle anabolic response at the postprandial state and how it may explain the negative results obtained on the long term in the prevention of muscle mass. Sarcopenia, the muscle mass loss observed during aging, has been chosen to illustrate this concept but it may be kept in mind that it could be extended to any other catabolic states or recovery situations.

  14. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating

    Directory of Open Access Journals (Sweden)

    Florentina Johanna Hettinga

    2016-12-01

    Full Text Available Due to the technical nature of speed skating, that is affecting physiological mechanisms such as oxygenation and blood flow, this sport provides a unique setting allowing us to uncover novel mechanistic insights of the physiological response to exercise in elite middle-distance and endurance sports. The present study aimed to examine the influence of skating mode (short-track vs. long-track on muscle oxygenation, perceived fatigue, and recovery in elite speed skating. Muscle oxygenation of twelve talented short-track speed skaters was continuously monitored during a long-track (LT and a short-track (ST skating time-trials of maximal effort using near-infrared spectroscopy (NIRS on the m. vastus lateralis for both legs. Video captures were made of each testing session for further interpretation of the muscle oxygenation. To determine recovery, perceived exertion was measured two and four hours after each testing sessions. Repeated measures ANOVA’s were used for statistical analysis (p<.05. After a rapid desaturation in both legs directly after the start, an asymmetry in muscle oxygenation between both legs was found during LT (tissue saturation-index (TSI%-slope: left=0.053±0.032; right=0.023±0.020, p<.05 and ST speed skating (TSI%-slope: left=0.050±0,052, right=0.001 ±0.053, p<.05. Re-Resaturation of the right leg was relatively lower in ST compared to LT. For the left leg, no difference was found between skating modes in muscle oxygenation. Respectively, two (ST=5.8±2.0; LT=4.2±1.5 and four hours (ST=4.6±1.9; LT=3.1±1.6 after the time-trials, a higher rate of perceived exertion was found for ST. Based on our results, ST seems more physiologically demanding, and longer periods of recovery are needed after training compared to LT. Technical aspects unique to the exercise mode seem to impact on oxygenation, affecting processes related to the regulation of exercise intensity such as fatigue and recovery.

  15. Effects of non-fatiguing respiratory muscle loading induced by expiratory flow limitation during strenuous incremental cycle exercise on metabolic stress and circulating natural killer cells.

    Science.gov (United States)

    Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio

    2017-12-01

    Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.

  16. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  17. Resistance training program for fatigue management in the workplace: exercise protocol in a cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Hélio Gustavo Santos

    2016-12-01

    Full Text Available Abstract Background Fatigue is a multifactorial condition that leads to disease and loss in production, and it affects a large number of workers worldwide. This study aims to demonstrate a resistance exercise protocol that individuals will perform during the work schedule, and to evaluate the effectiveness of this exercises program for fatigue control. Methods/Design This is a cluster randomized controlled trial with two arms and is assessor blinded. A total of 352 workers of both sexes, aged 18–65 years, from a medium-sized dairy plant were enrolled in this study. Participants will be recruited from 13 production sectors according to the eligibility criteria and will be randomized by clusters to either the Progressive Resistance Exercise (PRE intervention group or the Compensatory Workplace Exercise (CWE comparative group. A resistance exercise program will be implemented for both groups. The groups will receive instructions on self-management, breaks, adjustments to workstations, and the benefits of physical exercise. The PRE group will perform resistance exercises with gradual loads in an exercise room, and the CWE group will perform exercise at their workstations using elastic bands. The exercise sessions will be held 3 times a week for 20 min. The primary outcome measures will be symptoms of physical and mental fatigue, and muscular fatigue based on a one-repetition maximum (1RM. The secondary outcome measures will be level of physical activity, musculoskeletal symptoms, physical condition, perceived exposure, and productivity. The workers will be assessed at baseline and after a 4-month program. A linear mixed model will be applied on an intention-to-treat basis. Discussion This intervention is expected to reduce symptoms of fatigue in the workers. The exercise program is indicating in the workplace, although there are few studies describing the effects of exercise on the control of fatigue in the workplace. Emphasis will be placed on

  18. Resistance training program for fatigue management in the workplace: exercise protocol in a cluster randomized controlled trial.

    Science.gov (United States)

    Santos, Hélio Gustavo; Chiavegato, Luciana Dias; Valentim, Daniela Pereira; da Silva, Patricia Rodrigues; Padula, Rosimeire Simprini

    2016-12-22

    Fatigue is a multifactorial condition that leads to disease and loss in production, and it affects a large number of workers worldwide. This study aims to demonstrate a resistance exercise protocol that individuals will perform during the work schedule, and to evaluate the effectiveness of this exercises program for fatigue control. This is a cluster randomized controlled trial with two arms and is assessor blinded. A total of 352 workers of both sexes, aged 18-65 years, from a medium-sized dairy plant were enrolled in this study. Participants will be recruited from 13 production sectors according to the eligibility criteria and will be randomized by clusters to either the Progressive Resistance Exercise (PRE) intervention group or the Compensatory Workplace Exercise (CWE) comparative group. A resistance exercise program will be implemented for both groups. The groups will receive instructions on self-management, breaks, adjustments to workstations, and the benefits of physical exercise. The PRE group will perform resistance exercises with gradual loads in an exercise room, and the CWE group will perform exercise at their workstations using elastic bands. The exercise sessions will be held 3 times a week for 20 min. The primary outcome measures will be symptoms of physical and mental fatigue, and muscular fatigue based on a one-repetition maximum (1RM). The secondary outcome measures will be level of physical activity, musculoskeletal symptoms, physical condition, perceived exposure, and productivity. The workers will be assessed at baseline and after a 4-month program. A linear mixed model will be applied on an intention-to-treat basis. This intervention is expected to reduce symptoms of fatigue in the workers. The exercise program is indicating in the workplace, although there are few studies describing the effects of exercise on the control of fatigue in the workplace. Emphasis will be placed on adherence to the program, which may result in significant and

  19. Preventive and Regenerative Foam Rolling are Equally Effective in Reducing Fatigue-Related Impairments of Muscle Function following Exercise

    Directory of Open Access Journals (Sweden)

    Johannes Fleckenstein, Jan Wilke, Lutz Vogt, Winfried Banzer

    2017-12-01

    Full Text Available Objectives of the study were to compare the effects of a single bout of preventive or regenerative foam rolling (FR on exercise-induced neuromuscular exhaustion. Single-centre randomised-controlled study was designed. Forty-five healthy adults (22 female; 25±2 yrs were allocated to three groups: 1 FR of the lower limb muscles prior to induction of fatigue, 2 FR after induction of fatigue, 3 no-treatment control. Neuromuscular exhaustion was provoked using a standardized and validated functional agility short-term fatigue protocol. Main outcome measure was the maximal isometric voluntary force of the knee extensors (MIVF. Secondary outcomes included pain and reactive strength (RSI. Preventive (-16% and regenerative FR (-12% resulted in a decreased loss in MIVF compared to control (-21%; p 0.8, p < 0.1. Differences over time (p < 0.001 between groups regarding pain and RSI did not turn out to be clinically meaningful. A single bout of foam rolling reduces neuromuscular exhaustion with reference to maximal force production. Regenerative rather than preventive foam rolling seems sufficient to prevent further fatigue.

  20. Fatigue: Is it all neurochemistry?

    Science.gov (United States)

    Meeusen, Romain; Roelands, Bart

    2018-02-01

    Fatigue during exercise can be approached from different angles. Peripheral fatigue is usually described as an impairment located in the muscle and characterized by a metabolic end point, while central fatigue is defined as a failure of the central nervous system to adequately drive the muscle. The aim of the present narrative review paper is to look at the mechanisms involved in the occurrence of fatigue during prolonged exercise, predominantly from a brain neurochemical point of view. From studies in rodents it is clear that exercise increases the release of several neurotransmitters in different brain regions, and that the onset of fatigue can be manipulated when dopaminergic influx in the preoptic and anterior hypothalamus is increased, interfering with thermoregulation. This is however not as straightforward in humans, in which most studies manipulating brain neurotransmission failed to change the onset of fatigue in normal ambient temperatures. When the ambient temperature was increased, dopaminergic and combined dopaminergic and noradrenergic reuptake inhibition appeared to override a safety switch, allowing subjects to push harder and become much warmer, without changing their perception. In general, we can conclude that brain neurochemistry is clearly involved in the complex regulation of fatigue, but many other mediators also play a role.

  1. Impaired sarcoplasmic reticulum Ca(2+) release rate after fatiguing stimulation in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Sjøgaard, G; Madsen, Klavs

    2000-01-01

    during the first 0.5-1 h the metabolic state recovered to resting levels, and a slow phase from 1-3 h characterized by a rather slow recovery of the mechanical properties. The recovery of SR Ca(2+) release rate was closely correlated to +dF/dt during the slow phase of recovery (r(2) = 0.51; P ... to 66% that persisted for 1 h, followed by a gradual recovery to 87% of prefatigue release rate at 3 h recovery. Tetanic force and rate of force development (+dF/dt) and relaxation (-dF/dt) were depressed by approximately 80% after stimulation. Recovery occurred in two phases: an initial phase, in which......The purpose of the study was to characterize the sarcoplasmic reticulum (SR) function and contractile properties before and during recovery from fatigue in the rat extensor digitorum longus muscle. Fatiguing contractions (60 Hz, 150 ms/s for 4 min) induced a reduction of the SR Ca(2+) release rate...

  2. Dynamic Penile Corpora Cavernosa Reconstruction Using Bilateral Innervated Gracilis Muscles: A Preclinical Investigation.

    Science.gov (United States)

    Yin, Zhuming; Liu, Liqiang; Xue, Bingjian; Fan, Jincai; Chen, Wenlin; Liu, Zheng

    2018-03-07

    Prosthesis-assisted penile reconstruction has been performed extensively to restore a cosmetically acceptable phallus. However, a large number of patients will undergo revision surgery for various prosthesis-related complications. To develop a 1-stage prosthesis-free dynamic cavernosa reconstruction method using bilateral innervated gracilis muscles and to investigate the feasibility and reliability of the surgical design. 10 fresh cadavers were dissected to assess the availability of bilateral gracilis muscles for functional cavernosa rebuilding. 11 mongrel female dogs were involved in the penile reconstruction surgery. The neophallus consisted of bilateral gracilis muscles as the neo-cavernosa, a right gracilis skin flap as the neourethra, and a lower abdominal flap with an anterior rectus sheath as the skin envelope and neo-tunica albuginea. The function and structure of the neo-phalli were assessed 7 months postoperatively. The neurovascular pedicle length of the gracilis muscles and the volume of the gracilis venter musculi were measured in the cadaveric investigation. The average dimensions of the canine neo-phalli at rest and during electrostimulated erection were obtained and the muscular fatigue-resistant curve was drawn. Histologic evaluations also were performed. The neurovascular pedicle length and volume of the gracilis muscles were sufficient to yield a nearly normal appearance of the neo-cavernosa in the cadaveric and animal studies. The muscular fatigue-resistant curve demonstrated adequate length, stiffness, and duration of erection of the neo-phalli to accomplish normal coitus. Histologic evaluations showed an intact neourethra and nearly normal muscle structure in the inner layer of the canine neo-cavernosa, except for significantly increased amount of collagen fibers and type I/III collagen ratio in the outer layer of the neo-cavernosa. The percentage of type II (fatigue-prone) muscle fibers did not change significantly. Our preclinical

  3. Elbow joint fatigue and bench-press training.

    Science.gov (United States)

    Huang, Yen-Po; Chou, You-Li; Chen, Feng-Chun; Wang, Rong-Tyai; Huang, Ming-Jer; Chou, Paul Pei-Hsi

    2014-01-01

    Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Controlled laboratory study. Motion research laboratory. A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Participants performed bench-press training until fatigued. Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions.

  4. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.

    Science.gov (United States)

    Knuth, S T; Dave, H; Peters, J R; Fitts, R H

    2006-09-15

    Historically, an increase in intracellular H(+) (decrease in cell pH) was thought to contribute to muscle fatigue by direct inhibition of the cross-bridge leading to a reduction in velocity and force. More recently, due to the observation that the effects were less at temperatures closer to those observed in vivo, the importance of H(+) as a fatigue agent has been questioned. The purpose of this work was to re-evaluate the role of H(+) in muscle fatigue by studying the effect of low pH (6.2) on force, velocity and peak power in rat fast- and slow-twitch muscle fibres at 15 degrees C and 30 degrees C. Skinned fast type IIa and slow type I fibres were prepared from the gastrocnemius and soleus, respectively, mounted between a force transducer and position motor, and studied at 15 degrees C and 30 degrees C and pH 7.0 and 6.2, and fibre force (P(0)), unloaded shortening velocity (V(0)), force-velocity, and force-power relationships determined. Consistent with previous observations, low pH depressed the P(0) of both fast and slow fibres, less at 30 degrees C (4-12%) than at 15 degrees C (30%). However, the low pH-induced depressions in slow type I fibre V(0) and peak power were both significantly greater at 30 degrees C (25% versus 9% for V(0) and 34% versus 17% for peak power). For the fast type IIa fibre type, the inhibitory effect of low pH on V(0) was unaltered by temperature, while for peak power the inhibition was reduced at 30 degrees C (37% versus 18%). The curvature of the force-velocity relationship was temperature sensitive, and showed a higher a/P(0) ratio (less curvature) at 30 degrees C. Importantly, at 30 degrees C low pH significantly depressed the ratio of the slow type I fibre, leading to less force and velocity at peak power. These data demonstrate that the direct effect of low pH on peak power in both slow- and fast-twitch fibres at near-in vivo temperatures (30 degrees C) is greater than would be predicted based on changes in P(0), and that the

  5. Genioglossus fatigue in obstructive sleep apnea.

    LENUS (Irish Health Repository)

    McSharry, David

    2012-08-15

    Obstructive sleep apnea (OSA) is a prevalent disorder that may cause cardiovascular disease and fatal traffic accidents but the pathophysiology remains incompletely understood. Increased fatigability of the genioglossus (the principal upper airway dilator muscle) might be important in OSA pathophysiology but the existing literature is uncertain. We hypothesized that the genioglossus in OSA subjects would fatigue more than in controls. In 9 OSA subjects and 9 controls during wakefulness we measured maximum voluntary tongue protrusion force (Tpmax). Using surface electromyography arrays we measured the rate of decline in muscle fiber conduction velocity (MFCV) during an isometric fatiguing contraction at 30% Tpmax. The rate of decline in MFCV provides an objective means of quantifying localized muscle fatigue. Linear regression analysis of individual subject data demonstrated a significantly greater decrease in MFCV in OSA subjects compared to control subjects (29.2 ± 20.8% [mean ± SD] versus 11.2 ± 20.8%; p=0.04). These data support increased fatigability of the genioglossus muscle in OSA subjects which may be important in the pathophysiology of OSA.

  6. Fatigue resistance of 2 different CAD/CAM glass-ceramic materials used for single-tooth implant crowns.

    Science.gov (United States)

    Çavuşoğlu, Yeliz; Sahin, Erdal; Gürbüz, Riza; Akça, Kivanç

    2011-10-01

    To evaluate the fatigue resistance of 2 different CAD/CAM in-office monoceramic materials with single-tooth implant-supported crowns in functional area. A metal experimental model with a dental implant was designed to receive in-office CAD/CAM-generated monoceramic crowns. Laterally positioned axial dynamic loading of 300 N at 2 Hz was applied to implant-supported crowns machined from 2 different glass materials for 100,000 cycle. Failures in terms of fracture, crack formation, and chipping were macroscopically recorded and microscopically evaluated. Four of 10 aluminasilicate glass-ceramic crowns fractured at early loading cycles, the rest completed loading with a visible crack formation. Crack formation was recorded for 2 of 10 leucite glass-ceramic crowns. Others completed test without visible damage but fractured upon removal. Lack in chemical adhesion between titanium abutment and dental cement likely reduces the fatigue resistance of machinable glass-ceramic materials. However, relatively better fractural strength of leucite glass-ceramics could be taken into consideration. Accordingly, progress on developmental changes in filler composition of glass-ceramics may be promising. Machinable glass-ceramics do not possess sufficient fatigue resistance for single-tooth implant crowns in functional area.

  7. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    Science.gov (United States)

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  8. Clinical neurophysiology of fatigue.

    Science.gov (United States)

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  9. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles......The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  10. A comparison of fatigue resistance of three materials for cusp-replacing adhesive restorations.

    NARCIS (Netherlands)

    Kuijs, R.H.; Fennis, W.M.M.; Kreulen, C.M.; Roeters, F.J.M.; Verdonschot, N.J.J.; Creugers, N.H.J.

    2006-01-01

    OBJECTIVES: To investigate the fatigue resistance and failure behaviour of cusp-replacing restorations in premolars using different types of adhesive restorative materials. METHODS: A class 2 cavity was prepared and the buccal cusp was removed in an extracted sound human upper premolar. By using a

  11. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength

    DEFF Research Database (Denmark)

    Andersen, L.L.; Tufekovic, G.; Zebis, M.K.

    2005-01-01

    of resistance training combined with timed ingestion of isoenergetic protein vs carbohydrate supplementation on muscle fiber hypertrophy and mechanical muscle performance. Supplementation was administered before and immediately after each training bout and, in addition, in the morning on nontraining days...

  12. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.

    Science.gov (United States)

    Kassem, Amr S; Atta, Osama; El-Mowafy, Omar

    2012-01-01

    The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.

  13. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

    NARCIS (Netherlands)

    de Ruiter, C J; Jones, D A; Sargeant, A J; de Haan, A

    1999-01-01

    The purpose of the present study was to investigate the effect of temperature on the rates of isometric force development and relaxation in electrically activated fresh and fatigued human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different

  14. A comparison of nickel-titanium rotary instruments manufactured using different methods and cross-sectional areas: ability to resist cyclic fatigue.

    Science.gov (United States)

    Oh, So-Ram; Chang, Seok-Woo; Lee, Yoon; Gu, Yu; Son, Won-Jun; Lee, Woocheol; Baek, Seung-Ho; Bae, Kwang-Shik; Choi, Gi-Woon; Lim, Sang-Min; Kum, Kee-Yeon

    2010-04-01

    This study examined the effect of the manufacturing methods (ground, electropolished, and twisted) and the cross-sectional area (CSA) of nickel-titanium (NiTi) rotary instruments on their cyclic fatigue resistance. A total of 80 NiTi rotary instruments (ISO 25/.06 taper) from 4 brands (K3, ProFile, RaCe, and TF) were rotated in a simulated root canal with pecking motion until fracture. The number of cycles to failure (NCF) was calculated. The CSA at 3 mm from the tip of new instruments of each brand was calculated. The correlation between the CSA and NCF was evaluated. All fractured surfaces were analyzed using a scanning electron microscope to determine the fracture mode. The TF instruments were the most resistant to fatigue failure. The resistance to cyclic failure increased with decreasing CSA. All fractured surfaces showed the coexistence of ductile and brittle properties. The CSA had a significant effect on the fatigue resistance of NiTi rotary instruments. Copyright 2010 Mosby, Inc. All rights reserved.

  15. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Michalsik, L B; Madsen, Klavs

    2008-01-01

    The purpose of the present study was to determine the acute fatigue development in muscle mechanical properties and neuromuscular activity in response to handball match play. Male elite handball players (n = 10) were tested before and after a simulated handball match for maximal isometric strength...... work (6.8%, P handball match play, which...

  16. Tissue-specific Role of the Na,K-ATPase α2 Isozyme in Skeletal Muscle*

    Science.gov (United States)

    Radzyukevich, Tatiana L.; Neumann, Jonathon C.; Rindler, Tara N.; Oshiro, Naomi; Goldhamer, David J.; Lingrel, Jerry B.; Heiny, Judith A.

    2013-01-01

    The Na,K-ATPase α2 isozyme is the major Na,K-ATPase of mammalian skeletal muscle. This distribution is unique compared with most other cells, which express mainly the Na,K-ATPase α1 isoform, but its functional significance is not known. We developed a gene-targeted mouse (skα2−/−) in which the α2 gene (Atp1a2) is knocked out in the skeletal muscles, and examined the consequences for exercise performance, membrane potentials, contractility, and muscle fatigue. Targeted knockout was confirmed by genotyping, Western blot, and immunohistochemistry. Skeletal muscle cells of skα2−/− mice completely lack α2 protein and have no α2 in the transverse tubules, where its expression is normally enhanced. The α1 isoform, which is normally enhanced on the outer sarcolemma, is up-regulated 2.5-fold without change in subcellular targeting. skα2−/− mice are apparently normal under basal conditions but show significantly reduced exercise capacity when challenged to run. Their skeletal muscles produce less force, are unable to increase force to match demand, and show significantly increased susceptibility to fatigue. The impairments affect both fast and slow muscle types. The subcellular targeting of α2 to the transverse tubules is important for this role. Increasing Na,K-ATPase α1 content cannot fully compensate for the loss of α2. The increased fatigability of skα2−/− muscles is reproduced in control extensor digitorum longus muscles by selectively inhibiting α2 enzyme activity with ouabain. These results demonstrate that the Na,K-ATPase α2 isoform performs an acute, isoform-specific role in skeletal muscle. Its activity is regulated by muscle use and enables working muscles to maintain contraction and resist fatigue. PMID:23192345

  17. Cyclic Fatigue Resistance of 3 Proprietary Rotary File Brands and their Analogous EdgeEndo Counterparts.

    Science.gov (United States)

    2018-04-26

    Resistance of 3 Proprietary Rotary File Brands and their Analogous EdgeEndo Counterparts. 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd...Endodontics 14. ABSTRACT Cyclic Fatigue Resistance of 3 Proprietary Rotary File Brands and their Analogous EdgeEndo Counterparts. David J. Weyh DDS...Resistance of 3 Proprietary Rotary File Brands and their Analogous EdgeEndo Counterparts. David J. Weyh DDS Jarom J. Ray DDS Introduction: The aim of this

  18. Development of fatigue resistance evaluation method for socket-weld-jointed pipes

    International Nuclear Information System (INIS)

    Noguchi, Shinji; Shibayama, Motoaki; Iwata, Masazumi; Matsuura, Masayuki

    2003-01-01

    Vent line, drain line and sampling line in nuclear power station have many socket welded-joints made of austenitic stainless steel. Their slenderness and stagnation yield some potential of vibration-induced cracking and stress corrosion cracking. For the joints under vibration, the authors firstly elucidated their welding-defect-related fatigue strength by using fracture mechanics. It could define the allowable sets of stress amplitude and defect size. Secondly, authors developed an ultra-sonic detecting apparatus by using a focus-type probe and its programmed crawl on socket part. The authors finally measured the stress amplitude and frequency by sticking strain gage on suspected joints, then evaluated the fatigue resistance of the joints. For more efficient procedure, the method of stress amplitude analysis through vibration measurement is being developed. (author)

  19. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments.

    Science.gov (United States)

    Pirani, C; Iacono, F; Generali, L; Sassatelli, P; Nucci, C; Lusvarghi, L; Gandolfi, M G; Prati, C

    2016-05-01

    To evaluate the surface and microstructural alterations of new and used HyFlex EDM prototypes and to test their fatigue resistance. Fifteen HyFlex EDM prototypes were used for in vitro instrumentation of severely curved root canals. Surface and microstructural characteristics of new and used files were compared by ESEM analysis equipped with energy dispersive X-ray spectrophotometry (EDS) and optical metallographic imaging. Usage-induced degradation was assessed. Thirty additional HyFlex EDM prototypes and 20 standard manufactured HyFlex CM files were subjected to cyclic fatigue tests. Time to fracture was recorded, and results were validated using the Kruskal-Wallis test (α-level 0.05). Fatigued files were analysed by ESEM for fractographic evaluation. Surface and microstructural characterization of EDM prototypes revealed the typical spark-machined surface of a NiTi EDM alloy. No fractures were registered during root canal instrumentation. No evident surface alterations and minor degradation were observed between new and used instruments. The metallographic analysis of new and used files disclosed a homogeneous structure, mostly composed of lenticular martensite grains, and some residual austenite. The cyclic fatigue test showed an increase of fatigue resistance up to 700% on the EDM compared to CM files. Spark-machined peculiar surface is the main feature of HyFlex EDM. Low degradation was observed after multiple canal instrumentations. Prototypes exhibited surprising high values of cyclic fatigue resistance and a safe in vitro use in severely curved canals. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Adipocyte-myocyte crosstalk in skeletal muscle insulin resistance; is there a role for thyroid hormone?

    Science.gov (United States)

    Havekes, Bas; Sauerwein, Hans P

    2010-11-01

    To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.

  1. Discerning Primary and Secondary Factors Responsible for Clinical Fatigue in Multisystem Diseases

    Directory of Open Access Journals (Sweden)

    David Maughan

    2014-09-01

    Full Text Available Fatigue is a common symptom of numerous acute and chronic diseases, including myalgic encephalomyelitis/chronic fatigue syndrome, multiple sclerosis, heart failure, cancer, and many others. In these multi-system diseases the physiological determinants of enhanced fatigue encompass a combination of metabolic, neurological, and myofibrillar adaptations. Previous research studies have focused on adaptations specific to skeletal muscle and their role in fatigue. However, most have neglected the contribution of physical inactivity in assessing disease syndromes, which, through deconditioning, likely contributes to symptomatic fatigue. In this commentary, we briefly review disease-related muscle phenotypes in the context of whether they relate to the primary disease or whether they develop secondary to reduced physical activity. Knowledge of the etiology of the skeletal muscle adaptations in these conditions and their contribution to fatigue symptoms is important for understanding the utility of exercise rehabilitation as an intervention to alleviate the physiological precipitants of fatigue.

  2. Evidence for Reduced Fatigue Resistance of Contemporary Rotary Instruments Exposed to Body Temperature.

    Science.gov (United States)

    de Vasconcelos, Rafaela Andrade; Murphy, Sarah; Carvalho, Claudio Antonio Talge; Govindjee, Rajiv G; Govindjee, Sanjay; Peters, Ove A

    2016-05-01

    The purpose of this study was to evaluate the effect of 2 different temperatures (20°C and 37°C) on the cyclic fatigue life of rotary instruments and correlate the results with martensitic transformation temperatures. Contemporary nickel-titanium rotary instruments (n = 20 each and tip size #25, including Hyflex CM [Coltene, Cuyahoga Falls, OH], TRUShape [Dentsply Tulsa Dental Specialties, Tulsa, OK], Vortex Blue [Dentsply Tulsa Dental Specialties], and ProTaper Universal [Dentsply Tulsa Dental Specialties]) were tested for cyclic fatigue at room temperature (20°C ± 1°C) and at body temperature (37°C ± 1°C). Instruments were rotated until fracture occurred in a simulated canal with an angle curvature of about 60° and a radius curvature of 3 mm; the center of the curvature was 4.5 mm from the instrument tip. The number of cycles to fracture was measured. Phase transformation temperatures for 2 instruments of each brand were analyzed by differential scanning calorimetry. Data were analyzed using the t test and 1-way analysis of variance with the significance level set at 0.05. For the tested size and at 20°C, Hyflex CM showed the highest resistance to fracture; no significant difference was found between TRUShape and Vortex Blue, whereas ProTaper Universal showed the lowest resistance to fracture. At 37°C, resistance to fatigue fracture was significantly reduced, up to 85%, for the tested instruments (P rotary instruments tested. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  4. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity

    DEFF Research Database (Denmark)

    Holm, Lars; Reitelseder, Søren; Pedersen, T.G.

    2008-01-01

    Muscle mass accretion is accomplished by heavy-load resistance training. The effect of light-load resistance exercise has been far more sparsely investigated with regard to potential effect on muscle size and contractile strength. We applied a resistance exercise protocol in which the same indivi...... in healthy young men. However, LL resistance training was inferior to HL training in evoking adaptive changes in muscle size and contractile strength and was insufficient to induce changes in MHC composition.......Muscle mass accretion is accomplished by heavy-load resistance training. The effect of light-load resistance exercise has been far more sparsely investigated with regard to potential effect on muscle size and contractile strength. We applied a resistance exercise protocol in which the same.......05) in HL but remained unchanged in LL (4 +/- 5%, not significant). Finally, MHC IIX protein expression was decreased with HL but not LL, despite identical total workload in HL and LL. Our main finding was that LL resistance training was sufficient to induce a small but significant muscle hypertrophy...

  5. Peroxynitrite mediates muscle insulin resistance in mice via nitration of IRβ/IRS-1 and Akt

    International Nuclear Information System (INIS)

    Zhou Jun; Huang Kaixun

    2009-01-01

    Accumulating evidence suggests that peroxynitrite (ONOO - ) is involved in the pathogenesis of insulin resistance. In the current study, we investigated whether insulin resistance in vivo could be mediated by nitration of proteins involved in the early steps of the insulin signal transduction pathway. Exogenous peroxynitrite donated by 3-morpholinosydnonimine hydrochloride (SIN-1) induced in vivo nitration of the insulin receptor β subunit (IRβ), insulin receptor substrate (IRS)-1, and protein kinase B/Akt (Akt) in skeletal muscle of mice and dramatically reduced whole-body insulin sensitivity and muscle insulin signaling. Moreover, in high-fat diet (HFD)-fed insulin-resistant mice, we observed enhanced nitration of IRβ and IRS-1 in skeletal muscle, in parallel with impaired whole-body insulin sensitivity and muscle insulin signaling. Reversal of nitration of these proteins by treatment with the peroxynitrite decomposition catalyst FeTPPS yielded an improvement in whole-body insulin sensitivity and muscle insulin signaling in HFD-fed mice. Taken together, these findings provide new mechanistic insights for the involvement of peroxynitrite in the development of insulin resistance and suggest that nitration of proteins involved in the early steps of insulin signal transduction is a novel molecular mechanism of HFD-induced muscle insulin resistance.

  6. Muscle fatigue resistance during stimulated contractions is reduced in young male smokers.

    NARCIS (Netherlands)

    Morse, C.I.; Wust, R.C.I.; Jones, D.A.; de Haan, A.; Degens, H.

    2007-01-01

    Aim: To determine whether muscle function is compromised in healthy smokers in comparison with activity-matched non-smokers. Methods: Nine male smokers (aged 22.2 ± 2.5 years: mean ± SD) with a smoking history of 2.5 ± 3.1 pack years, and ten male control participants (25.4 ± 2.9 years) matched for

  7. Intramuscular pressure and EMG relate during static contractions but dissociate with movement and fatigue

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Jensen, Bente R.; Hargens, Allan R.

    2004-01-01

    Intramuscular pressure (IMP) and electromyography (EMG) mirror muscle force in the nonfatigued muscle during static contractions. The present study explores whether the constant IMP-EMG relationship with increased force may be extended to dynamic contractions and to fatigued muscle. IMP and EMG...... with speed of abduction. In the nonfatigued supraspinatus muscle, a linear relationship was found between IMP and EMG; in contrast, during fatigue and recovery, significant timewise changes of the IMP-to-EMG ratio occurred. The results indicate that IMP should be included along with EMG when mechanical load...... sharing between muscles is evaluated during dynamic and fatiguing contractions....

  8. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  9. Mechanomyography versus Electromyography, in monitoring the muscular fatigue

    Directory of Open Access Journals (Sweden)

    Tarata Mihai T

    2003-02-01

    Full Text Available Abstract Background The use of the mechanomyogram (MMG which detects muscular vibrations generated by fused individual fiber twitches has been refined. The study addresses a comparison of the MMG and surface electromyogram (SEMG in monitoring muscle fatigue. Methods The SEMG and MMG were recorded simultaneously from the same territory of motor units in two muscles (Biceps, Brachioradialis of the human (n = 18, during sustained contraction at 25 % MVC (maximal voluntary contraction. Results The RMS (root mean square of the SEMG and MMG increased with advancing fatigue; MF (median frequency of the PSD (power density spectra progressively decreased from the onset of the contraction. These findings (both muscles, all subjects, demonstrate both through the SEMG and MMG a central component of the fatigue. The MF regression slopes of MMG were closer to each other between men and women (Biceps 1.55%; Brachialis 13.2% than were the SEMG MF slopes (Biceps 25.32%; Brachialis 17.72%, which shows a smaller inter-sex variability for the MMG vs. SEMG. Conclusion The study presents another quantitative comparison (MF, RMS of MMG and SEMG, showing that MMG signal can be used for indication of the degree of muscle activation and for monitoring the muscle fatigue when the application of SEMG is not feasible (chronical implants, adverse environments contaminated by electrical noise.

  10. Fatigue reduction during aggregated and distributed sequential stimulation.

    Science.gov (United States)

    Bergquist, Austin J; Babbar, Vishvek; Ali, Saima; Popovic, Milos R; Masani, Kei

    2017-08-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017. © 2016 Wiley Periodicals, Inc.

  11. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats.

    Science.gov (United States)

    Zhuang, Cheng-Le; Mao, Xiang-Yu; Liu, Shu; Chen, Wei-Zhe; Huang, Dong-Dong; Zhang, Chang-Jing; Chen, Bi-Cheng; Shen, Xian; Yu, Zhen

    2014-10-05

    Ginsenoside Rb1 is reported to possess anti-fatigue activity, but the mechanisms remain unknown. The aim of this study was to investigate the molecular mechanisms responsible for the anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection (MSIR) in aged rat. Aged rats with MSIR were administrated with ginsenoside Rb1 (15 mg/kg) once a day from 3 days before surgery to the day of sacrifice, or with saline as corresponding controls. Rats without MSIR but going through the same surgery procedure were administrated with saline as blank controls. Anti-fatigue effect was assessed by an open field test; superoxide dismutase, reactive oxygen species and malondialdehyde in skeletal muscle were determined. The mRNA levels of Akt2 and Nrf2 in skeletal muscle were measured by real-time quantitative PCR. The activation of Akt and Nrf2 was examined by western blot and immunohistofluorescence. Our results revealed that ginsenoside Rb1 significantly increased the journey and the rearing frequency, decreased the time of rest in aged rats with MSIR. In addition, ginsenoside Rb1 significantly reduced reactive oxygen species and malondialdehyde release and increased the superoxide dismutase activity of skeletal muscle in aged rats with MSIR. Ginsenoside Rb1 also increased the expression of Akt2 and Nrf2 mRNA, up-regulated Akt phosphorylation and Nrf2 nuclear translocation. These findings indicate that ginsenoside Rb1 has an anti-fatigue effect on postoperative fatigue syndrome in aged rat, and the mechanism possibly involves activation of the PI3K/Akt pathway with subsequent Nrf2 nuclear translocation and induction of antioxidant enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    Science.gov (United States)

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.

  13. Lactate and force production in skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Albertsen, Janni; Rentsch, Maria

    2005-01-01

    Lactic acid accumulation is generally believed to be involved in muscle fatigue. However, one study reported that in rat soleus muscle (in vitro), with force depressed by high external K+ concentrations a subsequent incubation with lactic acid restores force and thereby protects against fatigue...

  14. [The influence of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 nickel-titanium rotary instruments].

    Science.gov (United States)

    Li, Xiang-fen; Zheng, Ping; Xu, Li; Su, Qin

    2015-12-01

    To investigate the effects of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 types of nickel-titanium rotary instruments (K3, Mtwo, ProTaper). Three brands of NiTi rotary endodontic instruments of the same size (tip diameter 0.25 mm and constant 0.06 taper) were selected: K3, Mtwo and Protaper (F2). 24 instruments for each brand were used to evaluate the effects of autoclave sterilization on inner character in the as-received condition and after subjection to 0, 1, 5, and 10 sterilization cycles (6 for each group). Time to fracture (TtF) from the start of the test to the moment of file breakage and the length of the fractured fragment were recorded. Means and standard deviations of TtF and fragment length were calculated. The data was analyzed with SPSS13.0 software package. Another 12 NiTi rotary instruments for each brand were used, 6 subjected to 10 autoclave sterilization cycles and the other as control. Scanning electron microscope was used to observe the changes in surface topography and inner character. For cyclic fatigue resistance, when sterilization was not performed, K3 showed the highest value of TtF means and ProTaper the lowest. The differences between each brand were statistically significant (Pinstruments were intensified greatly after 10 cycles of sterilization. Cycle fatigue resistance is different among instruments of different brands. Autoclave sterilization may increase fatigue resistance of the 3 brands. Autoclave sterilization may increase the surface roughness and inner defects in cross section.

  15. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  16. The optimal stimulation pattern for skeletal muscle is dependent on muscle length

    NARCIS (Netherlands)

    Mela, P.; Veltink, Petrus H.; Huijing, P.A.J.B.M.; Salmons, S.; Jarvis, J.C.

    2002-01-01

    elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator

  17. Effects of local fatigue on myoelectrical activity of erector spine muscles and the center for pressure displacement of the feet during balance recovery following postural perturbation in kyphotic subjects

    Directory of Open Access Journals (Sweden)

    Rooholah Rezaee

    2014-07-01

    Full Text Available Background: kyphosis deformity affects postural control. Muscular fatigue is one of the factors that can impair the mechanism of body balance. The aim of this study was to determine the effects of local fatigue on the myoelectrical activity of erector spine muscles and the center for pressure displacement of the feet during balance recovery following postural perturbation in kyphotic subjects. Methods: In this quasi-experimental study, 12 male students with>40 degrees thoracic kyphosis and 12 controls were selected to participate in the study. A flexible ruler was used to measure thoracic kyphosis. For postural control assessment, each subject underwent unexpected, forward-backward perturbations while standing on a foot scan mounted on a movable plate triggered by a weight equivalent to 10% of the subjects’ body weight. Experimental procedure was measured before (3 trails and after (3 trials the fatigue protocol. The myoelectric activity of the erector spine and multi fidus was compared in the groups using repeated measures of ANOVA and independent t-test (P<0.05. Results: There was no significant difference in the foot center of pressure displacement in both groups after muscular fatigue. After fatigue, there was an increase in the activity of longissimus thoracis (P=0.001 and iliocostalis thoracis (P= 0.001 in control group, while no significant difference was reported for the muscular activity of multifidus (p=0.084. The activity of langisimus thoracis was significantly increased (P=0.028 in kyphtic group after fatigue. Conclusion: erector spine muscles fatigue could not significantly affect the postural control in both groups, but the electrical activity of erector spine muscles during balance recovery following postural perturbation in kyphotic subjects was different than the controls.

  18. Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue.

    Science.gov (United States)

    Hunt, Michael A; Hatfield, Gillian L

    2017-08-01

    The purpose of this study was to investigate the immediate effects of unilateral ankle plantarflexor fatigue on bilateral knee and ankle biomechanics during gait. Lower leg kinematics, kinetics, and muscle activation were assessed before and after an ankle plantarflexor fatiguing protocol in 31 healthy individuals. Fatigue (defined as >10% reduction in maximal isometric ankle plantarflexor torque production and a downward shift in the median power frequency of both heads of the gastrocnemius muscle of the fatigued limb) was achieved in 18 individuals, and only their data were used for analysis purposes. Compared to pre-fatigue walking trials, medial gastrocnemius activity was significantly reduced in the study (fatigued) limb. Other main changes following fatigue included significantly more knee flexion during loading, and an associated larger external knee flexion moment in the study limb. At the ankle joint, participants exhibited significantly less peak plantarflexion (occurring at toe-off) with fatigue. No significant differences were observed in the contralateral (non-fatigued) limb. Findings from this study indicate that fatigue of the ankle plantarflexor muscle does not produce widespread changes in gait biomechanics, suggesting that small to moderate changes in maximal ankle plantarflexor force production capacity (either an increase or decrease) will not have a substantial impact on normal lower limb functioning during gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of Light-Emitting Diode Therapy on Muscle Hypertrophy, Gene Expression, Performance, Damage, and Delayed-Onset Muscle Soreness: Case-control Study with a Pair of Identical Twins.

    Science.gov (United States)

    Ferraresi, Cleber; Bertucci, Danilo; Schiavinato, Josiane; Reiff, Rodrigo; Araújo, Amélia; Panepucci, Rodrigo; Matheucci, Euclides; Cunha, Anderson Ferreira; Arakelian, Vivian Maria; Hamblin, Michael R; Parizotto, Nivaldo; Bagnato, Vanderlei

    2016-10-01

    The aim of this study was to verify how a pair of monozygotic twins would respond to light-emitting diode therapy (LEDT) or placebo combined with a strength-training program during 12 weeks. This case-control study enrolled a pair of male monozygotic twins, allocated randomly to LEDT or placebo therapies. Light-emitting diode therapy or placebo was applied from a flexible light-emitting diode array (λ = 850 nm, total energy = 75 J, t = 15 seconds) to both quadriceps femoris muscles of each twin immediately after each strength training session (3 times/wk for 12 weeks) consisting of leg press and leg extension exercises with load of 80% and 50% of the 1-repetition maximum test, respectively. Muscle biopsies, magnetic resonance imaging, maximal load, and fatigue resistance tests were conducted before and after the training program to assess gene expression, muscle hypertrophy and performance, respectively. Creatine kinase levels in blood and visual analog scale assessed muscle damage and delayed-onset muscle soreness, respectively, during the training program. Compared with placebo, LEDT increased the maximal load in exercise and reduced fatigue, creatine kinase, and visual analog scale. Gene expression analyses showed decreases in markers of inflammation (interleukin 1β) and muscle atrophy (myostatin) with LEDT. Protein synthesis (mammalian target of rapamycin) and oxidative stress defense (SOD2 [mitochondrial superoxide dismutase]) were up-regulated with LEDT, together with increases in thigh muscle hypertrophy. Light-emitting diode therapy can be useful to reduce muscle damage, pain, and atrophy, as well as to increase muscle mass, recovery, and athletic performance in rehabilitation programs and sports medicine.

  20. Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.

    Science.gov (United States)

    Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat

    2016-06-01

    To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  1. Effects of mental fatigue on the development of physical fatigue: a neuroergonomic approach.

    Science.gov (United States)

    Mehta, Ranjana K; Parasuraman, Raja

    2014-06-01

    The present study used a neuroergonomic approach to examine the interaction of mental and physical fatigue by assessing prefrontal cortex activation during submaximal fatiguing handgrip exercises. Mental fatigue is known to influence muscle function and motor performance, but its contribution to the development of voluntary physical fatigue is not well understood. A total of 12 participants performed separate physical (control) and physical and mental fatigue (concurrent) conditions at 30% of their maximal handgrip strength until exhaustion. Functional near infrared spectroscopy was employed to measure prefrontal cortex activation, whereas electromyography and joint steadiness were used simultaneously to quantify muscular effort. Compared to the control condition, blood oxygenation in the bilateral prefrontal cortex was significantly lower during submaximal fatiguing contractions associated with mental fatigue at exhaustion, despite comparable muscular responses. The findings suggest that interference in the prefrontal cortex may influence motor output during tasks that require both physical and cognitive processing. A neuroergonomic approach involving simultaneous monitoring of brain and body functions can provide critical information on fatigue development that may be overlooked during traditional fatigue assessments.

  2. The effect of exercise on skeletal muscle fibre type distribution in obesity: From cellular levels to clinical application.

    Science.gov (United States)

    Pattanakuhar, Sintip; Pongchaidecha, Anchalee; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    Skeletal muscles play important roles in metabolism, energy expenditure, physical strength, and locomotive activity. Skeletal muscle fibre types in the body are heterogeneous. They can be classified as oxidative types and glycolytic types with oxidative-type are fatigue-resistant and use oxidative metabolism, while fibres with glycolytic-type are fatigue-sensitive and prefer glycolytic metabolism. Several studies demonstrated that an obese condition with abnormal metabolic parameters has been negatively correlated with the distribution of oxidative-type skeletal muscle fibres, but positively associated with that of glycolytic-type muscle fibres. However, some studies demonstrated otherwise. In addition, several studies demonstrated that an exercise training programme caused the redistribution of oxidative-type skeletal muscle fibres in obesity. In contrast, some studies showed inconsistent findings. Therefore, the present review comprehensively summarizes and discusses those consistent and inconsistent findings from clinical studies, regarding the association among the distribution of skeletal muscle fibre types, obese condition, and exercise training programmes. Furthermore, the possible underlying mechanisms and clinical application of the alterations in muscle fibre type following obesity are presented and discussed. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  3. Contactless measurement of muscles fatigue by tracking facial feature points in a video

    DEFF Research Database (Denmark)

    Irani, Ramin; Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    their exercises when the level of the fatigue might be dangerous for the patients. The current technology for measuring tiredness, like Electromyography (EMG), requires installing some sensors on the body. In some applications, like remote patient monitoring, this however might not be possible. To deal...... with such cases, in this paper we present a contactless method based on computer vision techniques to measure tiredness by detecting, tracking, and analyzing some facial feature points during the exercise. Experimental results on several test subjects and comparing them against ground truth data show...... that the proposed system can properly find the temporal point of tiredness of the muscles when the test subjects are doing physical exercises....

  4. Mitochondrial adaptations in insulin resistant muscle

    OpenAIRE

    Broek, van den, N.M.A.

    2010-01-01

    Diabetes has reached epidemic proportions worldwide. Type 2 diabetes (T2D) accounts for about 90% of all diabetes cases and is characterized by insulin resistance (IR) in major metabolic tissues. The dramatic rise in T2D is associated with the increased occurrence of obesity and excessive ectopic lipid accumulation, in particular in skeletal muscle, due to excessive caloric intake and decreased physical activity. However, the exact processes leading to IR remain unresolved. One of the leading...

  5. Low back pain characterized by muscle resistance and occupational factors associated with nursing

    Directory of Open Access Journals (Sweden)

    Rafael de Souza Petersen

    2014-06-01

    Full Text Available OBJECTIVE: to identify the occupational factors associated with low back pain using a surveillance tool and to characterize the low back pain by the resistance of the extensor muscles of the vertebral column among nursing professionals at an Intensive Care Unit.METHODS: Cross-sectional study. The workers answered a questionnaire about occupational factors and participated in a resistance test of the extensor muscles of the vertebral column. Associations were established through Student's T-test or Mann-Whitney's U-test and correlations using Pearson's test.RESULTS: Out of 48 participants, 32 (67% suffered from low pain. For the resistance test, the subjects suffering from low back pain endured less time in comparison with asymptomatic subjects, but without significant differences (p=0.147. The duration of the pain episode showed a significant negative correlation (p=0.016 with the results of the resistance test though. The main factors identified as causes of low back pain were biomechanical and postural elements, conditions of the muscle structure and physical and organizational conditions.CONCLUSIONS: the main occupational factors associated with the low back pain were the posture and the characteristics of the physical and organizational conditions. In addition, the extensor muscles of the column showed a trend towards lesser resistance for workers in pain. This evidence is important when considering prevention and treatment strategies.

  6. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.

    Science.gov (United States)

    Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas

    2008-10-01

    OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.

  7. [Analysis of fatigue associated to periodic limb movement during sleep in former poliomyelitis patients].

    Science.gov (United States)

    Oliveira, A R; Correa, F I; Correa, J C F; Oliveira, L V F

    2012-01-01

    Following poliomyelitis, patients may experience sleep disorders stemming from periodic limb movement, leading to fatigue and compromised muscle function the following day. To establish the presence or absence of muscle fatigue in these patients using electromyography and relating the data to polysomnographic findings. An analytical cross-sectional study was carried out involving 19 individuals with motor sequelae in the lower limbs stemming from poliomyelitis. Quantitative tests for the assessment of neurophysiological aspects (knee-jerk/Achilles reflexes and peripheral muscle strength of rectus femoris) and a sleep study (standard, level I polysomnography) were administered. A statistically significant difference was detected (p fatigue associated to sleep disorder. Individuals with sequelae from poliomyelitis exhibit sleep disorders that may lead to muscle fatigue. Periodic limb movement may contribute to this phenomenon.

  8. A study of fatigue in rabbit skeletal muscle by in vivo 31P MRS

    International Nuclear Information System (INIS)

    Koga, Keiko; Miura, Iwao

    1989-01-01

    Energy metabolism during exercise and recovery process of rabbit skeletal muscle was obserbed by in vivo 31 P MRS. The small value of the ratio of the intensities between inorganic phosphate and phosphocreatine at rest indicated that the observed moiety of muscle had high fast-twitch fiber content. More than half of ATP and almost all of phosphocreatine were depleted by electric stimulation at 4Hz. The extreme intracellular pH was 5.9. The recovery from this metabolic state was very slow, and only a small amount of ATP was resynthesized after 40 minutes of recovery. These phenomena show the characteristic features of the energy metabolism in the fatigue of fast-twitch muscle. The metabolic state as indicated by the intensity of phosphocreatine and intracellular pH during exercise was not always parallel to contraction power measured by straingauge. Two inorganic phosphate peaks were observed, which are regarded as the signals from fast-twitch fiber and slow-twitch fiber from their pH values. The ratios of these two peaks were different between 1Hz, 2Hz, and 4Hz electric stimulation. We conclude that we are observing the different recruitment of fiber types at different exercise level in vivo. (author)

  9. Superior Inhibitory Control and Resistance to Mental Fatigue in Professional Road Cyclists.

    Directory of Open Access Journals (Sweden)

    Kristy Martin

    Full Text Available Given the important role of the brain in regulating endurance performance, this comparative study sought to determine whether professional road cyclists have superior inhibitory control and resistance to mental fatigue compared to recreational road cyclists.After preliminary testing and familiarization, eleven professional and nine recreational road cyclists visited the lab on two occasions to complete a modified incongruent colour-word Stroop task (a cognitive task requiring inhibitory control for 30 min (mental exertion condition, or an easy cognitive task for 10 min (control condition in a randomized, counterbalanced cross-over order. After each cognitive task, participants completed a 20-min time trial on a cycle ergometer. During the time trial, heart rate, blood lactate concentration, and rating of perceived exertion (RPE were recorded.The professional cyclists completed more correct responses during the Stroop task than the recreational cyclists (705±68 vs 576±74, p = 0.001. During the time trial, the recreational cyclists produced a lower mean power output in the mental exertion condition compared to the control condition (216±33 vs 226±25 W, p = 0.014. There was no difference between conditions for the professional cyclists (323±42 vs 326±35 W, p = 0.502. Heart rate, blood lactate concentration, and RPE were not significantly different between the mental exertion and control conditions in both groups.The professional cyclists exhibited superior performance during the Stroop task which is indicative of stronger inhibitory control than the recreational cyclists. The professional cyclists also displayed a greater resistance to the negative effects of mental fatigue as demonstrated by no significant differences in perception of effort and time trial performance between the mental exertion and control conditions. These findings suggest that inhibitory control and resistance to mental fatigue may contribute to successful road cycling

  10. Superior Inhibitory Control and Resistance to Mental Fatigue in Professional Road Cyclists.

    Science.gov (United States)

    Martin, Kristy; Staiano, Walter; Menaspà, Paolo; Hennessey, Tom; Marcora, Samuele; Keegan, Richard; Thompson, Kevin G; Martin, David; Halson, Shona; Rattray, Ben

    2016-01-01

    Given the important role of the brain in regulating endurance performance, this comparative study sought to determine whether professional road cyclists have superior inhibitory control and resistance to mental fatigue compared to recreational road cyclists. After preliminary testing and familiarization, eleven professional and nine recreational road cyclists visited the lab on two occasions to complete a modified incongruent colour-word Stroop task (a cognitive task requiring inhibitory control) for 30 min (mental exertion condition), or an easy cognitive task for 10 min (control condition) in a randomized, counterbalanced cross-over order. After each cognitive task, participants completed a 20-min time trial on a cycle ergometer. During the time trial, heart rate, blood lactate concentration, and rating of perceived exertion (RPE) were recorded. The professional cyclists completed more correct responses during the Stroop task than the recreational cyclists (705±68 vs 576±74, p = 0.001). During the time trial, the recreational cyclists produced a lower mean power output in the mental exertion condition compared to the control condition (216±33 vs 226±25 W, p = 0.014). There was no difference between conditions for the professional cyclists (323±42 vs 326±35 W, p = 0.502). Heart rate, blood lactate concentration, and RPE were not significantly different between the mental exertion and control conditions in both groups. The professional cyclists exhibited superior performance during the Stroop task which is indicative of stronger inhibitory control than the recreational cyclists. The professional cyclists also displayed a greater resistance to the negative effects of mental fatigue as demonstrated by no significant differences in perception of effort and time trial performance between the mental exertion and control conditions. These findings suggest that inhibitory control and resistance to mental fatigue may contribute to successful road cycling performance

  11. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohy......In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  12. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    Directory of Open Access Journals (Sweden)

    Phillips Stuart M

    2011-10-01

    Full Text Available Abstract Age-related muscle wasting (sarcopenia is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i elevated basal-fasted rates of muscle protein breakdown, ii a reduction in basal muscle protein synthesis (MPS, or iii a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise.

  13. Resistance training improves muscle strength and functional capacity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dalgas, U; Stenager, E; Jakobsen, J

    2009-01-01

    strength and functional capacity in patients with multiple sclerosis, the effects persisting after 12 weeks of self-guided physical activity. Level of evidence: The present study provides level III evidence supporting the hypothesis that lower extremity progressive resistance training can improve muscle......OBJECTIVE: To test the hypothesis that lower extremity progressive resistance training (PRT) can improve muscle strength and functional capacity in patients with multiple sclerosis (MS) and to evaluate whether the improvements are maintained after the trial. METHODS: The present study was a 2-arm...... and was afterward encouraged to continue training. After the trial, the control group completed the PRT intervention. Both groups were tested before and after 12 weeks of the trial and at 24 weeks (follow-up), where isometric muscle strength of the knee extensors (KE MVC) and functional capacity (FS; combined score...

  14. Hand Fatigue Analysis Using Quantitative Evaluation of Variability in Drawing Patterns

    Directory of Open Access Journals (Sweden)

    mohamadali Sanjari

    2015-02-01

    Full Text Available Background & aim: Muscle fatigue is defined as the reduced power generation capacity of a muscle or muscle group after activity which can lead to a variety of lesions. The purpose of the present study was to define the fatigue analysis by quantitative analysis using drawing patterns. Methods: the present cross-sectional study was conducted on 37 healthy volunteers (6 men and 31 women aged 18-30 years. Before & immediately after a fatigue protocol, quantitative assessment of hand drawing skills was performed by drawing repeated, overlapping, and concentric circles. The test was conducted in three sessions with an interval of 48-72 hours. Drawing was recorded by a digital tablet. Data were statistically analyzed using paired t-test and repeated measure ANOVA. Result: In drawing time series data analysis, at fatigue level of 100%, the variables standard deviation along x axis (SDx, standard deviation of velocity on both x and y axis (SDVx and SDVy and resultant vector velocity standard deviation (SDVR, showed significant differences after fatigue (P<0.05. In comparison of variables after the three fatigue levels, SDx showed significant difference (P<0.05. Conclusions: structurally full fatigue showed significant differences with other levels of fatigue, so it contributed to significant variability in drawing parameters. The method used in the present study recognized the fatigue in high frequency motion as well.

  15. A PGC-1α- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Skov, Vibe; Petersson, Stine Juhl

    2014-01-01

    Insulin resistance in obesity and type 2 diabetes is related to abnormalities in mitochondrial oxidative phosphorylation (OxPhos) in skeletal muscle. We tested the hypothesis that mitochondrial oxidative metabolism is impaired in muscle of patients with inherited insulin resistance and defective...

  16. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

    Science.gov (United States)

    2018-01-01

    Objectives To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal (60° angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase. PMID:29765904

  17. Single-fiber electromyography analysis of botulinum toxin diffusion in patients with fatigue and pseudobotulism.

    Science.gov (United States)

    Ruet, Alexis; Durand, Marie Christine; Denys, Pierre; Lofaso, Frederic; Genet, François; Schnitzler, Alexis

    2015-06-01

    To characterize electromyographic abnormalities according to symptoms (asymptomatic, fatigue, pseudobotulism) reported 1 month after botulinum toxin injection. Retrospective, single-center study comparing single-fiber electromyography (SFEMG) in the extensor digitorum communis (EDC) or orbicularis oculi (OO) muscles. Hospital. Four groups of adults treated for spasticity or neurologic bladder hyperactivity (N=55): control group (asymptomatic patients: n=17), fatigue group (unusual fatigue with no weakness: n=15), pseudobotulism group (muscle weakness and/or visual disturbance: n=20), and botulism group (from intensive care unit of the same hospital: n=3). Not applicable. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers were compared between groups. SFEMG was abnormal for 17.6% of control patients and 75% of patients in the pseudobotulism group. There were no differences between the control and fatigue groups. Mean jitter, percentage of pathologic fibers, and percentage of blocked fibers of the EDC muscle were significantly higher in the pseudobotulism group than in the fatigue and control groups. There were no differences between groups for the OO muscle. The SFEMG results in the botulism group were qualitatively similar to those of the pseudobotulism group. SFEMG of the EDC muscle confirmed diffusion of the toxin into muscles distant from the injection site in the pseudobotulism group. SFEMG in the OO muscle is not useful for the diagnosis of diffusion. No major signs of diffusion of botulinum toxin type A were found away from the injection site in patients with fatigue but no motor weakness. Such fatigue may be related to other mechanisms. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohamad Hafizi Abu Bakar

    2015-05-01

    Full Text Available Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.

  19. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    Science.gov (United States)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  20. Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy.

    Science.gov (United States)

    Cholewa, Jason; Guimarães-Ferreira, Lucas; da Silva Teixeira, Tamiris; Naimo, Marshall Alan; Zhi, Xia; de Sá, Rafaele Bis Dal Ponte; Lodetti, Alice; Cardozo, Mayara Quadros; Zanchi, Nelo Eidy

    2014-09-01

    Human muscle hypertrophy brought about by voluntary exercise in laboratorial conditions is the most common way to study resistance exercise training, especially because of its reliability, stimulus control and easy application to resistance training exercise sessions at fitness centers. However, because of the complexity of blood factors and organs involved, invasive data is difficult to obtain in human exercise training studies due to the integration of several organs, including adipose tissue, liver, brain and skeletal muscle. In contrast, studying skeletal muscle remodeling in animal models are easier to perform as the organs can be easily obtained after euthanasia; however, not all models of resistance training in animals displays a robust capacity to hypertrophy the desired muscle. Moreover, some models of resistance training rely on voluntary effort, which complicates the results observed when animal models are employed since voluntary capacity is something theoretically impossible to measure in rodents. With this information in mind, we will review the modalities used to simulate resistance training in animals in order to present to investigators the benefits and risks of different animal models capable to provoke skeletal muscle hypertrophy. Our second objective is to help investigators analyze and select the experimental resistance training model that best promotes the research question and desired endpoints. © 2013 Wiley Periodicals, Inc.

  1. Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing

    International Nuclear Information System (INIS)

    Yang, Y.S.; Bae, J.G.; Park, C.G.

    2008-01-01

    In this study, the effects of annealing at a low temperature on the bending fatigue resistance have been investigated in the hyper-eutectoid steel wires drawn to an extreme strain of 4.12. The annealing temperature was varied from 100 to 500 deg. C. The bending fatigue resistance of the steel wires was measured by a Hunter rotating beam tester specially designed for thin-sized steel wires. The results showed that fatigue resistance as well as tensile strength improved as the annealing temperature increased up to 200 deg. C (Region I) and gradually decreased after annealing above 200 deg. C (Region II). In order to elucidate this behavior, residual stress was measured by dual beam FIB, surface defects observed by an optical 3D profiler and the microstructure in terms of lamellar spacing (λ p ) and cementite thickness (t c ) was observed by TEM

  2. Evaluation of fatigue crack growth and fracture resistance of SA350 LF2 material

    International Nuclear Information System (INIS)

    Singh, P.K.; Dubey, J.S.; Chakrabarty, J.K.; Vaze, K.K.; Kushwaha, H.S.

    2003-01-01

    The aim of the present paper is to evaluate the tensile and fracture mechanics properties of the SA350 LF2 carbon steel material used as the Header material in the primary heat transport (PHT) system piping of the Indian pressurized heavy water reactors (PHWR). Tensile, fatigue crack growth rate and fracture toughness tests have been carried out on specimens machined from the Header of the actual PHT pipes. The effect of temperature on tensile properties has been discussed. The effect of temperature and notch orientation on fracture resistance behavior of the material and fatigue crack growth rate dependence on the notch orientation and stress ratio has also been discussed. (author)

  3. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  4. Comparação da fadiga eletromiográfica dos músculos paraespinhais e da cinemática angular da coluna entre indivíduos com e sem dor lombar Comparison of electromyographic fatigue of erector spinae muscles and angular kinematic of spine between individuals with and without low back pain

    Directory of Open Access Journals (Sweden)

    Marcio Massao Kawano

    2008-06-01

    Full Text Available Indivíduos com dor lombar têm redução na força e na resistência dos músculos paraespinhais. A avaliação da fadiga e da resistência dos músculos paraespinhais é importante, uma vez que tem sido reportado que indivíduos com lombalgia desenvolvem um déficit no condicionamento físico que influencia na força e na função do tronco. Além disso, ainda é incerto a relação da fadiga dos paraespinhais e o ângulo de flexão anterior de tronco. Os objetivos deste estudo foram comparar a fadiga em indivíduos com e sem dor lombar e correlacionar a fadiga com o ângulo de flexão anterior de tronco. O grupo lombalgia foi composto por dez indivíduos com diagnóstico médico exclusivo de lombalgia. O grupo controle foi composto por dez indivíduos que possuíam características físicas semelhantes. Inicialmente avaliou-se a flexão anterior de tronco dos indivíduos pelo método angular de Whistance. A fadiga dos músculos paraespinhais foi avaliada nas alturas de L1 e L5 por meio da eletromiografia de superfície em duas cargas: 50 e 75% da contração isométrica voluntária máxima. Os resultados do estudo indicaram que o grupo lombalgia apresentou menor força durante os testes de contração isométrica voluntária máxima (P Subjects with low back pain have reduction in strength and endurance of the erector spinae muscles. The assessment of the fatigue and the endurance of these muscles is important, once it has been reported that individuals with low back pain develop a deficit in physical conditioning which influences on trunk strength and function. Moreover, the relationship between back muscles fatigue and trunk forward flexion is still unclear. The aims of this study were to compare fatigue between individuals with and without low back pain and to correlate the muscles fatigue with the angle of trunk forward flexion. The low back pain group consisted of ten low back pain subjects. The control group was composed by ten subjects

  5. Effects of photobiomodulation therapy (pulsed LASER 904 nm) on muscle oxygenation and performance in exercise-induced skeletal muscle fatigue in young women: a pilot study

    Science.gov (United States)

    Oliveira, Murilo X.; Toma, Renata L.; Jones, Brett J. L.; Cyprien, Thomas P.; Tier, Matthew R.; Wallace, Cameron A.; Renno, Ana C. M.; Sabapathy, Surendran; Laakso, E.-Liisa

    2017-02-01

    Photobiomodulation therapy (PBMt) has been used to increase muscle performance and improve recovery when applied before exercise. We aimed to evaluate the effects of PBMt using LASER on muscle oxygenation and performance. The study was a randomized, participant and assessor-blinded, within-subject crossover trial with placebo control to test the viability of the methods. Five physically active young women were randomly assigned to either placebo, or active PBMt (12 diode cluster probe; 904 nm; 60 mW; 250 Hz; 43.2 J per site, 129.6 J total) in contact over rectus femoris (RF) muscle of the dominant limb immediately before an isokinetic fatigue protocol. A one-week wash-out period preceded cross-over. Electromyography and isokinetic performance measures were evaluated. Absolute concentrations of deoxygenated haemoglobin and myoglobin (deoxy[Hb + Mb]) of the RF, an index of local microvascular fractional O2 extraction, was monitored continuously by near-infrared spectroscopy (NIRS). Total haemoglobin concentration as an indicator of microvascular haematocrit was calculated as the sum of the deoxy[Hb + Mb] and oxy[Hb + Mb] signals. PBMt pre-conditioning reduced time to peak torque when compared to placebo (P0.05). PBMt before exercise improves indicators of muscle performance, potentially by increasing local matching of bulk and microvascular O2 delivery relative to skeletal muscle O2 utilisation. Further work is required to understand the effect of PBMt on haemodynamic and metabolic characteristics of muscle.

  6. [Chronic fatigue syndrome--exercise and physical activity].

    Science.gov (United States)

    Greenberg, Shai; Frid, Mordechai

    2006-04-01

    One of the major symptoms of chronic fatigue syndrome (CFS) is reduced exercise and functional capacity and increased fatigue symptoms following physical effort. A review of the literature indicates that patients that suffer from CFS are characterized by: low aerobic capacity, higher heart rate during sub-maximal exercise, higher subjective effort prescription, reduced muscle strength, and prolonged recovery period. Although several symptoms are a result of lack of physical activity, several mechanisms were suggested to explain those symptoms: pathological heart rate control, reduced aerobic metabolic capacity, reduced blood supply to the working muscles and nerve system dysfunction. Participating in guided exercise programs was found to be the most effective treatment in improving exercise and functional capacity, reducing fatigue syndromes and improving patients' daily function.

  7. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    Science.gov (United States)

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  8. Chronic Fatigue Syndrome (CFS) and Cancer Related Fatigue (CRF): two "fatigue" syndromes with overlapping symptoms and possibly related aetiologies.

    Science.gov (United States)

    Rovigatti, Ugo

    2012-12-01

    In July 2010, at the Muscle Fatigue Meeting, I presented an overview of Chronic Fatigue Syndrome and Cancer Related Fatigue, emphasizing a critical interpretation of the potential association between Chronic Fatigue Syndrome and Cancer Related Fatigue and a newly discovered retrovirus: Xenotropic Murine Related Virus. Since this association was hotly debated at that time, I suggested at the Meeting that it was wrong and most likely due to the identification of the wrong virus culprit. Today, 20 months after the Meeting, the first part of our prediction has turned out to be correct, as Xenotropic Murine Related Virus was shown to be a laboratory-created artefact. Still, the potential association of fatigue-syndromes with an infection (most likely viral) is sustained by a plethora of evidence and this overview will initially summarize data suggesting prior viral infection(s). The principal hypothesized mechanisms for both peripheral and central Chronic Fatigue Syndrome/Cancer Related Fatigue will be then summarized, also indicating plausible associations and triggering factors. All evidence accrued so far suggests that further research work should be performed in this interesting area and in order to identify an infectious agent for Chronic Fatigue Syndrome/Cancer Related Fatigue. One candidate RNA virus, Micro-Foci inducing Virus, will be described in this overview. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.

    Science.gov (United States)

    Stock, Matt S; Beck, Travis W; Defreitas, Jason M

    2012-01-01

    The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.

  10. Effect of Polysaccharide from Cordyceps militaris (Ascomycetes) on Physical Fatigue Induced by Forced Swimming.

    Science.gov (United States)

    Xu, Yan-Feng

    2016-01-01

    Cordyceps militaris is the one of the most important medicinal mushrooms, widely used in East Asian countries. Polysaccharide is considered to be the principal active component in C. militaris and has a wide range of biological and pharmacological properties. This study was undertaken to investigate the effect of polysaccharide from C. militaris (PCM) on physical fatigue induced in animals through a forced swimming test. The mice were divided into 4 groups receiving 28 days' treatment with drinking water (exercise control) or low-, medium-, and high-dose PCM (40, 80, and 160 mg/kg/day, respectively). After 28 days, the mice were subjected to the forced swimming test; the exhaustive swimming time was measured and fatigue-related biochemical parameters, including serum lactic acid, urea nitrogen, creatine kinase, alanine aminotransferase, aspartate aminotransferase, superoxide dismutase, glutathi- one peroxidase, catalase, malondialdehyde, liver glycogen, and muscle glycogen, were analyzed. The results showed that PCM could significantly prolong the exhaustive swimming time of mice; decrease concentrations of serum lactic acid, urea nitrogen, creatine kinase, aspartate aminotransferase, alanine aminotransferase, and malondialdehyde; and increase liver and muscle glycogen contents and the concentrations of serum superoxide dismutase, glutathione per- oxidase, and catalase. The data suggest that PCM has an antifatigue effect, and it might become a new functional food or medicine for fatigue resistance.

  11. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Bellamy, Leeann; Parise, Gianni; Baker, Steven K; Phillips, Stuart M

    2013-01-01

    To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  12. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    Science.gov (United States)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  13. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions

    Science.gov (United States)

    Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K

    2014-01-01

    The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [15O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min−1; old men: 25.1 ± 15.4 ml min−1; age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min−1 (100 g)−1) than the younger (8.6 ± 3.6 ml min−1 (100 g)−1) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia. Key points The results of previous studies that attempted to demonstrate the effects of ageing on skeletal muscle blood flow are controversial because these studies used indirect assessments of skeletal muscle blood flow obtained via whole limb blood flow measurements that provide no information on the distribution of blood flow within particular muscles. We used positron emission tomography to measure blood flow per gram of muscle in old and young men with similar levels of physical activity

  14. Enterovirus related metabolic myopathy: a postviral fatigue syndrome

    OpenAIRE

    Lane, R; Soteriou, B; Zhang, H; Archard, L

    2003-01-01

    Objective: To detect and characterise enterovirus RNA in skeletal muscle from patients with chronic fatigue syndrome (CFS) and to compare efficiency of muscle energy metabolism in enterovirus positive and negative CFS patients.

  15. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    Science.gov (United States)

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  16. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    Science.gov (United States)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  17. Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue.

    Science.gov (United States)

    Dougherty, John P; Wolff, Brian S; Cullen, Mary J; Saligan, Leorey N; Gershengorn, Marvin C

    2017-10-01

    Fatigue affects most cancer patients and has numerous potential causes, including cancer itself and cancer treatment. Cancer-related fatigue (CRF) is not relieved by rest, can decrease quality of life, and has no FDA-approved therapy. Thyrotropin-releasing hormone (TRH) has been proposed as a potential novel treatment for CRF, but its efficacy against CRF remains largely untested. Thus, we tested the TRH analog, taltirelin (TAL), in mouse models of CRF. To model fatigue, we used a mouse model of chemotherapy, a mouse model of radiation therapy, and mice bearing colon 26 carcinoma tumors. We used the treadmill fatigue test to assess fatigue-like behavior after treatment with TAL. Additionally, we used wild-type and TRH receptor knockout mice to determine which TRH receptor was necessary for the actions of TAL. Tumor-bearing mice displayed muscle wasting and all models caused fatigue-like behavior, with mice running a shorter distance in the treadmill fatigue test than controls. TAL reversed fatigue-like behavior in all three models and the mouse TRH 1 receptor was necessary for the effects of TAL. These data suggest that TAL may be useful in alleviating fatigue in all cancer patients and provide further support for evaluating TAL as a potential therapy for CRF in humans. Published by Elsevier Ltd.

  18. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    Science.gov (United States)

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  19. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    Directory of Open Access Journals (Sweden)

    Peng-Tao Xu

    2015-01-01

    Full Text Available Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  20. Cyclic fatigue resistances of several nickel-titanium glide path rotary and reciprocating instruments at body temperature.

    Science.gov (United States)

    Yılmaz, K; Uslu, G; Gündoğar, M; Özyürek, T; Grande, N M; Plotino, G

    2018-01-31

    To compare the cyclic fatigue resistance of the One G, ProGlider, HyFlex EDM and R-Pilot glide path NiTi files at body temperature. Twenty One G (size 14, .03 taper), 20 ProGlider (size 16, .02 taper), 20 HyFlex EDM (size 10, .05 taper) and 20 R-Pilot (size 12.5, .04 taper) instruments were operated in rotation at 300 rpm (One G, ProGlider and HyFlex) or in reciprocation (R-Pilot) at 35 °C in artificial canals that were manufactured by reproducing the size and taper of the instrument until fracture occurred. The time to fracture was recorded in seconds using a digital chronometer, and the length of the fractured fragments was registered. Mean data were analysed statistically using the Kruskal-Wallis test and post hoc Tukey tests via SPSS 21.0 software. The statistical significance level was set at 5%. The cyclic fatigue resistance of the R-Pilot files was significantly greater than the other instruments, and the One G was significantly lower (P EDM and the ProGlider (P > 0.05). No significant difference (P > 0.05) was evident in the mean length of the fractured fragments of the various instruments. The cyclic fatigue resistance of the R-Pilot reciprocating glide path file was significantly greater than that of the rotary HyFlex EDM, ProGlider and One G glide path files. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.