WorldWideScience

Sample records for muscle area lma

  1. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests

    Science.gov (United States)

    Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo

    2011-01-01

    Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...

  2. Linear relations between leaf mass per area (LMA) and seasonal climate discovered through Linear Manifold Clustering (LMC)

    Science.gov (United States)

    Kiang, N. Y.; Haralick, R. M.; Diky, A.; Kattge, J.; Su, X.

    2016-12-01

    Leaf mass per area (LMA) is a critical variable in plant carbon allocation, correlates with leaf activity traits (photosynthetic activity, respiration), and is a controller of litterfall mass and hence carbon substrate for soil biogeochemistry. Recent advances in understanding the leaf economics spectrum (LES) show that LMA has a strong correlation with leaf life span, a trait that reflects ecological strategy, whereas physiological traits that control leaf activity scale with each other when mass-normalized (Osnas et al., 2013). These functional relations help reduce the number of independent variables in quantifying leaf traits. However, LMA is an independent variable that remains a challenge to specify in dynamic global vegetation models (DGVMs), when vegetation types are classified into a limited number of plant functional types (PFTs) without clear mechanistic drivers for LMA. LMA can range orders of magnitude across plant species, as well as vary within a single plant, both vertically and seasonally. As climate relations in combination with alternative ecological strategies have yet to be well identified for LMA, we have assembled 22,000 records of LMA spanning 0.004 - 33 mg/m2 from the numerous contributors to the TRY database (Kattge et al., 2011), with observations distributed over several climate zones and plant functional categories (growth form, leaf type, phenology). We present linear relations between LMA and climate variables, including seasonal temperature, precipitation, and radiation, as derived through Linear Manifold Clustering (LMC). LMC is a stochastic search technique for identifying linear dependencies between variables in high dimensional space. We identify a set of parsimonious classes of LMA-climate groups based on a metric of minimum description to identify structure in the data set, akin to data compression. The relations in each group are compared to Köppen-Geiger climate classes, with some groups revealing continuous linear relations

  3. A Limousin specific myostatin allele affects longissimus muscle area and fatty acid profiles in a Wagyu-Limousin F*2* population

    Science.gov (United States)

    A microsatellite-based genome scan of a Wagyu x Limousin F2 cross population previously demonstrated QTL affecting longissimus muscle area (LMA) and fatty acid composition were present in regions near the centromere of BTA 2. In this study we used 70 SNP markers to examine the centromeric 20 megabas...

  4. Comparison of LMA-ProSealTM with LMA ClassicTM in Anaesthetised Paralysed Children

    Directory of Open Access Journals (Sweden)

    Pravesh Kanthed

    2008-01-01

    Full Text Available The classic laryngeal mask airway (cLMA, though popular in anaesthesia practice provides low oropharyngeal seal pressure and there are concerns with its use during positive pressure ventilation for fear of gastric distension with subsequent gastric regurgitation and pulmonary aspiration. The ProSeal laryngeal mask airway (PLMA is a modified LMA with a larger, wedge shaped cuff and a drain tube. This modification improves the seal around glottis when compared to a cLMA and its drain tube prevents gastric distension and offers protection against aspiration when properly placed. We compared PLMA and cLMA in 100 anaesthetized, paralysed children with 50 patients in each group with respect to ease of insertion, oropharyngeal seal pressure and pharyngolaryngeal morbidity. Gastric tube insertion was also assessed for the PLMA. The ease of insertion and the number of attempts at insertion were found to be comparable in the two groups while the oropharyngeal seal pressure was significantly higher in the PLMA group (P < 0.001. The pharyngolaryngeal morbidity was comparable in both the groups. There was no incidence of regurgitation or aspiration in either group. The PLMA offered high reliability of gastric tube placement and significantly increased oropharyngeal seal pressure over the cLMA. This might have an important implication for use of this device for positive pressure ventilation in children.

  5. A COMPARISON OF CLINICAL PERFORMANCE OF I-GEL WITH PROSEAL LMA IN PATIENTS UNDERGOING MASTECTOMY

    Directory of Open Access Journals (Sweden)

    Basheer Padinhare Madathil

    2016-04-01

    Full Text Available AIM To assess the ease of insertion of I-gel and ProSeal LMA and incidence of post op complications. Study design-A prospective randomised controlled trial comparing the clinical performance of I-gel and ProSeal LMA. METHODS After induction and good muscle relaxation LMA/I-gel was introduced as per randomised computer allocation. After insertion, nasogastric tube was inserted through the gastric channel. Parameters monitored were heart rate, nubp, SpO2, ETCO2 at 1, 5 minutes after insertion of the device and thereafter every 5 minutes till the end of surgery. In case of failure, airway was secured with an endotracheal tube. Ease of gastric tube insertion was noted at the end of surgery; postop complications were noted. Blood staining of the device, injury to the lips, teeth, and tongue were noted. Incidence of sore throat 24 hrs. after surgery was also noted. Statistical analysis was done with SPSS software. RESULTS Age, height, weight and BMI were comparable in both groups. The airway characteristics was also comparable in both the groups. Ease of introduction was also the same for both the groups, but the time taken was much lesser for I-gel group. The ease of insertion of gastric tube was much easier for the I-gel group. Blood staining of the device was more with the ProSeal LMA group. There was no injury to any of the structures mentioned above. Postop sore throat was more in the ProSeal LMA group. CONCLUSION From our study, we conclude that the airway can be secured much faster with I-gel than ProSeal LMA. Postop sore throat was much less for I-gel than ProSeal LMA. Both were comparable in number of attempts of insertion, gastric tube introduction. Trauma to the airway structures was also minimum with both I-gel and ProSeal LMA.

  6. Laryngeal mask airway (LMA) artefact resulting in MRI misdiagnosis

    International Nuclear Information System (INIS)

    Schieble, Thomas; Patel, Anuradha; Davidson, Melissa

    2008-01-01

    We report a 7-year-old child who underwent brain MRI for a known seizure disorder. The technique used for general anesthesia included inhalation induction followed by placement of a laryngeal mask airway (LMA) for airway maintenance. Because the reviewing radiologist was unfamiliar with the use of an LMA during anesthesia, and because the attending anesthesiologist did not communicate his technique to the radiologist, an MRI misdiagnosis was reported because of artefact created by the in situ LMA. As a result of this misdiagnosis the child was subjected to unnecessary subsequent testing to rule out a reported anatomic abnormality induced by the LMA. Our case illustrates the need for coordination of patient care among hospital services. (orig.)

  7. Laryngeal mask airway (LMA) artefact resulting in MRI misdiagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Schieble, Thomas [University of Medicine and Dentistry of New Jersey, Department of Anesthesiology, New Jersey Medical School, Newark, NJ (United States); Maimonides Medical Center, Department of Anesthesiology, Brooklyn, NY (United States); Patel, Anuradha; Davidson, Melissa [University of Medicine and Dentistry of New Jersey, Department of Anesthesiology, New Jersey Medical School, Newark, NJ (United States)

    2008-03-15

    We report a 7-year-old child who underwent brain MRI for a known seizure disorder. The technique used for general anesthesia included inhalation induction followed by placement of a laryngeal mask airway (LMA) for airway maintenance. Because the reviewing radiologist was unfamiliar with the use of an LMA during anesthesia, and because the attending anesthesiologist did not communicate his technique to the radiologist, an MRI misdiagnosis was reported because of artefact created by the in situ LMA. As a result of this misdiagnosis the child was subjected to unnecessary subsequent testing to rule out a reported anatomic abnormality induced by the LMA. Our case illustrates the need for coordination of patient care among hospital services. (orig.)

  8. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    Science.gov (United States)

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  9. Comparisons of GLM and LMA Observations

    Science.gov (United States)

    Thomas, R. J.; Krehbiel, P. R.; Rison, W.; Stanley, M. A.; Attanasio, A.

    2017-12-01

    Observations from 3-dimensional VHF lightning mapping arrays (LMAs) provide a valuable basis for evaluating the spatial accuracy and detection efficiencies of observations from the recently launched, optical-based Geosynchronous Lightning Mapper (GLM). In this presentation, we describe results of comparing the LMA and GLM observations. First, the observations are compared spatially and temporally at the individual event (pixel) level for sets of individual discharges. For LMA networks in Florida, Colorado, and Oklahoma, the GLM observations are well correlated time-wise with LMA observations but are systematically offset by one- to two pixels ( 10 to 15 or 20 km) in a southwesterly direction from the actual lightning activity. The graphical comparisons show a similar location uncertainty depending on the altitude at which the scattered light is emitted from the parent cloud, due to being observed at slant ranges. Detection efficiencies (DEs) can be accurately determined graphically for intervals where individual flashes in a storm are resolved time-wise, and DEs and false alarm rates can be automated using flash sorting algorithms for overall and/or larger storms. This can be done as a function of flash size and duration, and generally shows high detection rates for larger flashes. Preliminary results during the May 1 2017 ER-2 overflight of Colorado storms indicate decreased detection efficiency if the storm is obscured by an overlying cloud layer.

  10. EXPANDED ROLE OF LMA IN MINOR OBSTETRIC PROCEDURE: A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Kousalya

    2015-05-01

    Full Text Available INTRODUCTION : The Laryngeal Mask Airway (LMA has been used extensively to provide a safe airway in spontaneously breathing patients who are not at risk from aspiration of gastric contents. The increased risk of aspiration in Obstetric population was initially considered as a relative contra indication for LMA usage. But LMA proved to be safe in this subgroup and in fact significantly decreased tidal volume was noted during IPPV with a decre ased the risk of aspiration. METHOD : This is a prospective study , performed in Niloufer Hospital for Children & Women from June 2011 – January 2014 over a period of 30months. We studied the ease of insertion of single use ILMA and associated complications in 35 ASA 1 obstetric patients. RESULTS : The mean age of the patients was 27.4 years. The mean BMI was 28.4 kg /m 2 . 21 patients were admitted for cerclage (60.0% , 5 Bartholin’s abscess (14.28% , 6 cases of manual removal of placenta (17.14% , 3 cases of vescicular mole for evacuation (8.57%. The duration of anesthesia ranged from 20 - 40 min with a mean duration of 19 minutes. The first time insertion rate was 88.57% , 31 out of 35 patients had the LMA inserted in first attempt. 4 patients needed reinsertio n. None of the patients had aspiration or other complications associated with LMA. There were no failed insertions. CONCLUSION : We conclude that the LMA is effective and safe for in carefully selected ASA 1 pregnant patients in the hands of experienced Ane sthesiologist.

  11. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    Science.gov (United States)

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  12. Troubleshooting ProSeal LMA

    Directory of Open Access Journals (Sweden)

    Bimla Sharma

    2009-01-01

    Full Text Available Supraglottic devices have changed the face of the airway management. These devices have contributed in a big way in airway management especially, in the difficult airway scenario significantly decreasing the pharyngolaryngeal morbidity. There is a plethora of these devices, which has been well matched by their wider acceptance in clinical practice. ProSeal laryngeal mask airway (PLMA is one such frequently used device employed for spontaneous as well as controlled ventilation. However, the use of PLMAat tunes maybe associated with certain problems. Some of the problems related with its use are unique while others are akin to the classic laryngeal mask airway (eLMA. However, expertise is needed for its safe and judicious use, correct placement, recognition and management of its various malpositions and complications. The present article describes the tests employed for proper confirmation of placementto assess the ventilatooy and the drain tube functions of the mask, diagnosis of various malpositions and the management of these aspects. All these areas have been highlighted under the heading of troubleshooting PLMA. Many problems can be solved by proper patient and procedure selection, maintaining adequate depth of anaesthesia, diagnosis and management of malpositions. Proper fixation of the device and monitoring cuff pressure intraopera-tively may bring down the incidence of airway morbidity.

  13. Sao Paulo Lightning Mapping Array (SP-LMA): Deployment and Plans

    Science.gov (United States)

    Bailey, J. C.; Carey, L. D.; Blakeslee, R. J.; Albrecht, R.; Morales, C. A.; Pinto, O., Jr.

    2011-01-01

    An 8-10 station Lightning Mapping Array (LMA) network is being deployed in the vicinity of Sao Paulo to create the SP-LMA for total lightning measurements in association with the international CHUVA [Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)] field campaign. Besides supporting CHUVA science/mission objectives and the Sao Luz Paraitinga intensive operation period (IOP) in December 2011-January 2012, the SP-LMA will support the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), both sensors on the NOAA Geostationary Operational Environmental Satellite-R (GOES-R), presently under development and scheduled for a 2015 launch. The proxy data will be used to develop and validate operational algorithms so that they will be ready for use on "day1" following the launch of GOES-R. A preliminary survey of potential sites in the vicinity of Sao Paulo was conducted in December 2009 and January 2010, followed up by a detailed survey in July 2010, with initial network deployment scheduled for October 2010. However, due to a delay in the Sa Luz Paraitinga IOP, the SP-LMA will now be installed in July 2011 and operated for one year. Spacing between stations is on the order of 15-30 km, with the network "diameter" being on the order of 30-40 km, which provides good 3-D lightning mapping 150 km from the network center. Optionally, 1-3 additional stations may be deployed in the vicinity of Sa Jos dos Campos.

  14. Low muscle attenuation is a prognostic factor for survival in metastatic breast cancer patients treated with first line palliative chemotherapy.

    Science.gov (United States)

    Rier, Hánah N; Jager, Agnes; Sleijfer, Stefan; van Rosmalen, Joost; Kock, Marc C J M; Levin, Mark-David

    2017-02-01

    Low muscle mass (LMM) and low muscle attenuation (LMA) reflect low muscle quantity and low muscle quality, respectively. Both are associated with a poor outcome in several types of solid malignancies. This study determined the association of skeletal muscle measures with overall survival (OS) and time to next treatment (TNT). A skeletal muscle index (SMI) in cm 2 /m 2 and muscle attenuation (MA) in Hounsfield units (HU) were measured using abdominal CT-images of 166 patients before start of first-line chemotherapy for metastatic breast cancer. Low muscle mass (SMI factor for OS and TNT in metastatic breast cancer patients receiving first-line palliative chemotherapy, whereas LMM and sarcopenic obesity are not. Further research is needed to establish what impact LMA should have in daily clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The North Alabama Lightning Mapping Array (LMA): A Network Overview

    Science.gov (United States)

    Blakeslee, R. J.; Bailey, J.; Buechler, D.; Goodman, S. J.; McCaul, E. W., Jr.; Hall, J.

    2005-01-01

    The North Alabama Lightning Mapping Array (LMA) is s a 3-D VHF regional lightning detection system that provides on-orbit algorithm validation and instrument performance assessments for the NASA Lightning Imaging Sensor, as well as information on storm kinematics and updraft evolution that offers the potential to improve severe storm warning lead time by up t o 50% and decrease te false alarm r a t e ( for non-tornado producing storms). In support of this latter function, the LMA serves as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. The LMA, which became operational i n November 2001, consists of VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center (NSSTC), which is on t h e campus of the University of Alabama in Huntsville. The LMA system locates the sources of impulsive VHF radio signals s from lightning by accurately measuring the time that the signals aririve at the different receiving stations. Each station's records the magnitude and time of the peak lightning radiation signal in successive 80 ms intervals within a local unused television channel (channel 5, 76-82 MHz in our case ) . Typically hundreds of sources per flash can be reconstructed, which i n t u r n produces accurate 3-dimensional lightning image maps (nominally network topology and the links have an effective data throughput rate ranging from 600 kbits s -1 t o 1.5 %its s -1. This presentation provides an overview of t h e North Alabama network, the data processing (both real-time and post processing) and network statistics.

  16. Negative pressure pulmonary oedema following use of ProSeal LMA

    Directory of Open Access Journals (Sweden)

    Richa Jain

    2013-01-01

    Full Text Available Negative pressure pulmonary oedema (NPPO is a life threatening condition, manifested due to upper airway obstruction in a spontaneously breathing patient. Upper airway obstruction caused by classic laryngeal mask airway (cLMA and ProSeal laryngeal mask airway (PLMA has been reported, and NPPO has also been reported following the use of cLMA. Search of literature did not confirm NPPO following the use of PLMA. We encountered a female patient of NPPO scheduled for incision and drainage of an abscess who had signs of airway obstruction following PLMA insertion. Multiple attempts were made to get patent airway without success. PLMA was replaced with endotracheal tube following which pink frothy secretion appeared in breathing circuit. Patient was managed successfully with ICU care.

  17. The Laryngeal Mask Airway (LMA) as an alternative to airway ...

    African Journals Online (AJOL)

    Adele

    patient dental procedures in the MR patient and in individuals ... The parameters assessed during the pilot study included ease of LMA insertion and its seal, inspiratory pressures with ... mouth opposite to that used for the surgical procedure.

  18. Improving LMA predictions with non standard interactions

    CERN Document Server

    Das, C R

    2010-01-01

    It has been known for some time that the well established LMA solution to the observed solar neutrino deficit fails to predict a flat energy spectrum for SuperKamiokande as opposed to what the data indicates. It also leads to a Chlorine rate which appears to be too high as compared to the data. We investigate the possible solution to these inconsistencies with non standard neutrino interactions, assuming that they come as extra contributions to the $\

  19. The Laryngeal Mask Airway (LMA) as an alternative to airway ...

    African Journals Online (AJOL)

    Background: To evaluate the possibility of airway management using a laryngeal mask airway (LMA) during dental procedures on mentally retarded (MR) patients and patients with genetic diseases. Design: A prospective pilot study. Setting: University Hospital. Methods: A pilot study was designed to induce general ...

  20. Sao Paulo Lightning Mapping Array (SP-LMA): Deployment, Operation and Initial Data Analysis

    Science.gov (United States)

    Blakeslee, R.; Bailey, J. C.; Carey, L. D.; Rudlosky, S.; Goodman, S. J.; Albrecht, R.; Morales, C. A.; Anseimo, E. M.; Pinto, O.

    2012-01-01

    An 8-10 station Lightning Mapping Array (LMA) network is being deployed in the vicinity of Sao Paulo to create the SP-LMA for total lightning measurements in association with the international CHUVA [Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the GPM (Global Precipitation Measurement)] field campaign. Besides supporting CHUVA science/mission objectives and the Sao Luiz do Paraitinga intensive operation period (IOP) in November-December 2011, the SP-LMA will support the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), both sensors on the NOAA Geostationary Operational Environmental Satellite-R (GOES-R), presently under development and scheduled for a 2015 launch. The proxy data will be used to develop and validate operational algorithms so that they will be ready for use on "day1" following the launch of GOES-R. A preliminary survey of potential sites in the vicinity of Sao Paulo was conducted in December 2009 and January 2010, followed up by a detailed survey in July 2010, with initial network deployment scheduled for October 2010. However, due to a delay in the Sao Luiz do Paraitinga IOP, the SP-LMA will now be installed in July 2011 and operated for one year. Spacing between stations is on the order of 15-30 km, with the network "diameter" being on the order of 30-40 km, which provides good 3-D lightning mapping 150 km from the network center. Optionally, 1-3 additional stations may be deployed in the vicinity of Sao Jos dos Campos.

  1. Amphiphilic HPMA-LMA copolymers increase the transport of Rhodamine 123 across a BBB model without harming its barrier integrity.

    Science.gov (United States)

    Hemmelmann, Mirjam; Metz, Verena V; Koynov, Kaloian; Blank, Kerstin; Postina, Rolf; Zentel, Rudolf

    2012-10-28

    The successful non-invasive treatment of diseases associated with the central nervous system (CNS) is generally limited by poor brain permeability of various developed drugs. The blood-brain barrier (BBB) prevents the passage of therapeutics to their site of action. Polymeric drug delivery systems are promising solutions to effectively transport drugs into the brain. We recently showed that amphiphilic random copolymers based on the hydrophilic p(N-(2-hydroxypropyl)-methacrylamide), pHPMA, possessing randomly distributed hydrophobic p(laurylmethacrylate), pLMA, are able to mediate delivery of domperidone into the brain of mice in vivo. To gain further insight into structure-property relations, a library of carefully designed polymers based on p(HPMA) and p(LMA) was synthesized and tested applying an in vitro BBB model which consisted of human brain microvascular endothelial cells (HBMEC). Our model drug Rhodamine 123 (Rh123) exhibits, like domperidone, a low brain permeability since both substances are recognized by efflux transporters at the BBB. Transport studies investigating the impact of the polymer architecture in relation to the content of hydrophobic LMA revealed that random p(HPMA)-co-p(LMA) having 10mol% LMA is the most auspicious system. The copolymer significantly increased the permeability of Rh123 across the HBMEC monolayer whereas transcytosis of the polymer was very low. Further investigations on the mechanism of transport showed that integrity and barrier function of the BBB model were not harmed by the polymer. According to our results, p(HPMA)-co-p(LMA) copolymers are a promising delivery system for neurological therapeutics and their application might open alternative treatment strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Photographic and LMA observations of a blue starter over a New Mexico thunderstorm

    Science.gov (United States)

    Edens, H. E.; Krehbiel, P. R.; Rison, W.; Hunyady, S. J.

    2010-12-01

    On the evening of August 3, 2010 we photographed a blue starter over an electrically active storm complex about 120 km to the WNW of Langmuir Laboratory in central New Mexico. The event occurred close to a broad overshooting top at an altitude of 15 km above MSL. It was also observed visually and detected by the Lightning Mapping Array (LMA) deployed around the mountaintop observatory. The blue starter appears as a white-blue leader channel propagating away from the storm top not straight upward but at a large angle from vertical, slightly curving upward and transitioning to an increasingly diffuse blue glow. In addition to this leader, a more diffuse glow of blue light from one or two additional leaders is seen in the background. The curved channel of the main leader and the fact that it did not propagate along a straight path upward indicates that a relatively strong local electric field near the storm top existed that dictated leader propagation and direction rather than the large-scale storm electric field. The visible part of the starter is estimated to have developed to about 1 km above the storm top. From the LMA data we infer that the blue starter was a screening layer discharge that initiated between upper positive charge and a negatively charged screening layer. A negative leader appears to initiate at 15 km altitude and propagates downward for 2 to 3 km, after which scattered and ill-defined activity occurred in the cloud between 10 to 15 km altitude. This indicates that the visible part of the blue starter emanating out of the storm top, which was photographed but not detected by the LMA, was positive breakdown. The event lasted for 100 ms in the LMA data. The storm where the starter occurred in was producing predominantly intracloud (IC) flashes at a rate of about 20 per minute. The starter itself occurred independently of other discharges in the storm about 4 seconds after a normal polarity IC flash. About 5 minutes after the first blue starter, a

  4. Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities

    Science.gov (United States)

    Bailey, J. C.; Blakeslee, R. J.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.; Buechler, D. E.

    2014-01-01

    A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011 in the vicinity of Sao Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012 during the Vale do Paraiba campaign. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to 150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. As the CHUVA Vale do Paraiba campaign opportunity was formulated, a broad community-based interest developed for a comprehensive Lightning Location System (LLS) intercomparison and assessment study, leading to the participation and/or deployment of eight other ground-based networks and the space-based Lightning Imaging Sensor (LIS). The SP-LMA data is being intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment including noise reduction criteria, detection efficiency estimates, and statistical and climatological (both temporal and spatially) analyses for intercomparison studies and GOES-R proxy activities.

  5. Psoas muscle cross-sectional area as a measure of whole body lean muscle mass in maintenance hemodialysis patients

    Science.gov (United States)

    Morrell, Glen R.; Ikizler, Talat A.; Chen, Xiaorui; Heilbrun, Marta E.; Wei, Guo; Boucher, Robert; Beddhu, Srinivasan

    2016-01-01

    Objective We investigate whether psoas or paraspinous muscle area measured on a single L4–5 image is a useful measure of whole lean body mass compared to dedicated mid-thigh magnetic resonance imaging (MRI). Design Observational study. Setting Outpatient dialysis units and a research clinic. Subjects 105 adult participants on maintenance hemodialysis. No control group was used. Exposure variables Psoas muscle area, paraspinous muscle area, and mid-thigh muscle area (MTMA) were measured by MRI. Main outcome measure Lean body mass was measured by dual-energy absorptiometry (DEXA) scan. Results In separate multivariable linear regression models, psoas, paraspinous, and mid-thigh muscle area were associated with increase in lean body mass. In separate multivariate logistic regression models, c-statistics for diagnosis of sarcopenia (defined as lean body mass) were 0.69 for paraspinous muscle area, 0.81 for psoas muscle area, and 0.89 for mid-thigh muscle area. With sarcopenia defined as lean body mass, the corresponding c-statistics were 0.71, 0.92, and 0.94. Conclusions We conclude that psoas muscle area provides a good measure of whole body muscle mass, better than paraspinous muscle area but slightly inferior to mid thigh measurement. Hence, in body composition studies a single axial MR image at the L4–L5 level can be used to provide information on both fat and muscle and may eliminate the need for time-consuming measurement of muscle area in the thigh. PMID:26994780

  6. Endotracheal Intubation in Patients with Unstable Cervical Spine Using LMA-Fastrach and Gum Elastic Bogie

    International Nuclear Information System (INIS)

    Khan, M. U.

    2014-01-01

    Objective: To evaluate the success of alternative technique of ET- intubation in patients with unstable cervical spine with Philadelphia collar around the neck. Study Design: Case series. Place and Duration of Study: The Department of Anaesthesia, College of Medicine, King Saud University, Riyadh, Saudi Arabia, from June 2009 to June 2012. Methodology: Adult patients of either gender with unstable cervical spine wearing Philadelphia collar electively scheduled for cervical spine decompression and fixation more than one level were included. Those with anticipated difficult intubation, mouth opening 27 kg/m2 were excluded. After induction of anaesthesia FT-LMA was inserted. Correct position of FT-LMA was confirmed then soft straight end of gum elastic bogie was passed through FTLMA into trachea. FT-ILMA was removed on bogie. Reinforced silicon ET- tube was rail road on bogie. The bogie was pulled out and position of ET- tube was confirmed with ETCO2, chest movement and auscultation on bag ventilation. The ease of insertion of FT-LMA, ET- intubation and maximum time taken for successful intubation was noted. Results: 26 patients were studied with mean age of 59.3 A +- 2.93 years and M: F ratio of 7:3. The mean time taken from the insertion of gum elastic bogie to the ET intubation was 38.9 A +- 1.20 seconds. The success rate of ET- intubation in the first attempt was 88.4% and 7.6% in two attempts. Intubation failed in one patient. The mean ease of insertion of FT-LMA and ET- intubation in all patients was 46.7 A +- 2.59 and 46.5 A +- 2.66 respectively on VAS ( 0-100). No complication was noted in any patient. Conclusion: This technique is safe and reliable for achieving adequate ventilation and intubation in patients with unstable cervical spine with Philadelphia collar in place. (author)

  7. Randomized comparison of the i-gel™, the LMA Supreme™, and the Laryngeal Tube Suction-D using clinical and fibreoptic assessments in elective patients

    Directory of Open Access Journals (Sweden)

    Russo Sebastian G

    2012-08-01

    Full Text Available Abstract Background The i-gel™, LMA-Supreme (LMA-S and Laryngeal Tube Suction-D (LTS-D are single-use supraglottic airway devices with an inbuilt drainage channel. We compared them with regard to their position in situ as well as to clinical performance data during elective surgery. Methods Prospective, randomized, comparative study of three groups of 40 elective surgical patients each. Speed of insertion and success rates, leak pressures (LP at different cuff pressures, dynamic airway compliance, and signs of postoperative airway morbidity were recorded. Fibreoptic evaluation was used to determine the devices’ position in situ. Results Leak pressures were similar (i-gel™ 25.9, LMA-S 27.1, LTS-D 24.0 cmH2O; the latter two at 60 cmH2O cuff pressure as were insertion times (i-gel™ 10, LMA-S 11, LTS-D 14 sec. LP of the LMA-S was higher than that of the LTS-D at lower cuff pressures (p p p 0.05. Airway morbidity was more pronounced with the LTS-D (p 0.01. Conclusion All devices were suitable for ventilating the patients’ lungs during elective surgery. Trial registration German Clinical Trial Register DRKS00000760

  8. lma sõja piirid Ida-Aasias ajaloolaste pilgu läbi / Jaanika Erne

    Index Scriptorium Estoniae

    Erne, Jaanika, 1967-

    2016-01-01

    Raamatuülevaade: The Cold War in East Asia 1945–1991. T. Hasegawa (Ed.). Washington D.C.: Woodrow Wilson Center Press 2011, Stanford: Stanford University Press 2011, viii + 340 lk. Külma sõja aegsetest poliitilistest sündmustest

  9. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode...... with a Mode-Field-Diameter (MFD) of 59 mu m. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm. (C) 2011 Optical...

  10. Psoas Muscle Cross-sectional Area as a Measure of Whole-body Lean Muscle Mass in Maintenance Hemodialysis Patients.

    Science.gov (United States)

    Morrell, Glen R; Ikizler, Talat A; Chen, Xiaorui; Heilbrun, Marta E; Wei, Guo; Boucher, Robert; Beddhu, Srinivasan

    2016-07-01

    We investigate whether psoas or paraspinous muscle area measured on a single L4-L5 image is a useful measure of whole lean body mass (LBM) compared to dedicated midthigh magnetic resonance imaging (MRI). Observational study. Outpatient dialysis units and a research clinic. One hundred five adult participants on maintenance hemodialysis. No control group was used. Psoas muscle area, paraspinous muscle area, and midthigh muscle area (MTMA) were measured by magnetic resonance imaging. LBM was measured by dual-energy absorptiometry scan. In separate multivariable linear regression models, psoas, paraspinous, and MTMA were associated with increase in LBM. In separate multivariate logistic regression models, C statistics for diagnosis of sarcopenia (defined as <25th percentile of LBM) were 0.69 for paraspinous muscle area, 0.81 for psoas muscle area, and 0.89 for MTMA. With sarcopenia defined as <10th percentile of LBM, the corresponding C statistics were 0.71, 0.92, and 0.94. We conclude that psoas muscle area provides a good measure of whole-body muscle mass, better than paraspinous muscle area but slightly inferior to midthigh measurement. Hence, in body composition studies a single axial MR image at the L4-L5 level can be used to provide information on both fat and muscle and may eliminate the need for time-consuming measurement of muscle area in the thigh. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. Eesti ja Venemaa uue külma sõja õhutamise avangardis / Herbert Vainu

    Index Scriptorium Estoniae

    Vainu, Herbert, 1929-2011

    2008-01-01

    Eesti ja Venemaa juhtide mängimine rahvustundel tõstab rahvusvahelist pinget, mis võib viia külma sõja taastekkimisele. Autor kritiseerib muuhulgas president Toomas Hendrik Ilvese poliitilist tegevust ja esinemist Hantõ-Manskiiskis toimunud soome-ugri maailmakongressil. Vabariigi President töövisiidil Venemaal 27.-30.06.2008

  12. Muscle area of knee O.A

    International Nuclear Information System (INIS)

    Suzuki, Nobuharu; Onozawa, Toshihiro; Shibata, Minoru; Yamasita, Izumi; Kitsunai, Isamu; Asano, Akira

    1983-01-01

    The cross sectional area of the thigh muscles were studied by means of C.T. scan. Twelve normal knees, twelve primary knee O.A. knees, and six R.A. knees were examined. The cross sectional area of the Quadriceps femoris decreased significantly in the patient of the knee O.A. although flexors did not decrease. We discussed the etiology of the knee O.A. from this result. (author)

  13. Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.

    Science.gov (United States)

    Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A

    2017-08-01

    Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P force and power are

  14. Improving LMA predictions with non-standard interactions: neutrino decay in solar matter?

    CERN Document Server

    Das, C R

    2010-01-01

    It has been known for some time that the well established LMA solution to the observed solar neutrino deficit fails to predict a flat energy spectrum for SuperKamiokande as opposed to what the data indicates. It also leads to a Chlorine rate which appears to be too high as compared to the data. We investigate the possible solution to these inconsistencies with non standard neutrino interactions, assuming that they come as extra contributions to the $\

  15. Effect of copper on performance, carcass characteristics, and muscle fatty acid composition of meat goat kids.

    Science.gov (United States)

    Huang, Y L; Wang, Y; Spears, J W; Lin, X; Guo, C H

    2013-10-01

    An experiment was conducted to determine the effects of dietary Cu on performance, carcass characteristics, and muscle fatty acid composition in meat goats. Thirty five Jianyang Big-ear goat (JYB) kids (average BW 20.3 ± 0.6 kg and age 3 to 4 mo) were stratified by weight and randomly assigned to 1 of 7 experimental treatments (n = 5 goats per treatment). Treatments consisted of: 1) control (no supplemental Cu; 14.3 mg Cu/kg DM), 2) 20 mg supplemental Cu/kg DM, 3) 40 mg supplemental Cu/kg DM, 4) 80 mg supplemental Cu/kg DM, 5) 160 mg supplemental Cu/kg DM, 6) 320 mg supplemental Cu/kg DM, and 7) 640 mg supplemental Cu/kg DM. Copper was supplemented from CuSO4•5H2O (25.2% Cu). Goats were individually fed a concentrate-hay based diet for 96 d. Performance was not affected by Cu concentration. Liver Cu concentration was increased (P Goats supplemented with 0 or 20 mg Cu/kg DM had lower (P goats had lower (P = 0.04) longissimus muscle area (LMA) compared with control. Dietary Cu supplementation increased the percentage of C14:0 (P 0.10). These results indicate that JYB goats can tolerate up to 640 mg Cu/kg DM for 96 d without adverse effects on performance, but fat deposition and fatty acid composition in the body could be altered by Cu supplementation as low as 20 mg/kg of diet with high concentrate-hay. Copper supplementation increased backfat depth, IMF, and percentage of polyunsaturated fatty acids in LM and decreased LMA in the carcass of JYB goats.

  16. Negative Pressure Pulmonary Edema Following use of Laryngeal Mask Airway (LMA

    Directory of Open Access Journals (Sweden)

    Yesim Bayraktar

    2013-06-01

    Full Text Available Negative pressure pulmonary edema (NPPE following upper airway obstruction is a non-cardiogenic pulmonary edema. The first cause in the etiology of NPPE is developed laryngospasm after intubation or extubation, while the other causes are epiglotitis, croup, hiccups, foreign body aspiration, pharyngeal hematoma and oropharyngeal tumors.The Late diagnosis and treatment causes high morbidity and mortality. The protection of the airway and maintainance of arterial oxygenation will be life saving.In this article we aimed to report  a case of negative pressure pulmonary edema, resolved succesfully after treatment, following use of laryngeal mask airway (LMA.

  17. Muscle area and muscle density of osteoarthritis of the knee joint studied by computerized tomography

    International Nuclear Information System (INIS)

    Suzuki, Nobuharu; Onosawa, Toshihiro; Shibata, Minoru; Yamashita, Izumi; Yoshimura, Shinichiro; Muraoka, Shunichi; Asano, Akira

    1985-01-01

    In order to investigate the etiology and pathology of osteoarthritis of the knee joints (OA), the areas and density of the muscle 10 cm above the knee were compared using computerized tomography (CT) in 26 knees from 19 normal persons, 30 knees from 17 patients with OA, and 14 knees from 7 patients with rheumatoid arthritis. The areas of the quadriceps musculi of thigh were remarkably decreased and the areas of the flexor musculi were comparatively maintained in the patients with OA. Muscle density was markedly lowered in the musculi semimembranosus and biceps femoris long head. Fatty tissues were seen in the whole area of the venter on CT in some of the patients with OA. These findings are considered to be of major importance when studying the etiology of OA. (Namekawa, K.)

  18. Lower limb muscle volume estimation from maximum cross-sectional area and muscle length in cerebral palsy and typically developing individuals.

    Science.gov (United States)

    Vanmechelen, Inti M; Shortland, Adam P; Noble, Jonathan J

    2018-01-01

    Deficits in muscle volume may be a significant contributor to physical disability in young people with cerebral palsy. However, 3D measurements of muscle volume using MRI or 3D ultrasound may be difficult to make routinely in the clinic. We wished to establish whether accurate estimates of muscle volume could be made from a combination of anatomical cross-sectional area and length measurements in samples of typically developing young people and young people with bilateral cerebral palsy. Lower limb MRI scans were obtained from the lower limbs of 21 individuals with cerebral palsy (14.7±3years, 17 male) and 23 typically developing individuals (16.8±3.3years, 16 male). The volume, length and anatomical cross-sectional area were estimated from six muscles of the left lower limb. Analysis of Covariance demonstrated that the relationship between the length*cross-sectional area and volume was not significantly different depending on the subject group. Linear regression analysis demonstrated that the product of anatomical cross-sectional area and length bore a strong and significant relationship to the measured muscle volume (R 2 values between 0.955 and 0.988) with low standard error of the estimates of 4.8 to 8.9%. This study demonstrates that muscle volume may be estimated accurately in typically developing individuals and individuals with cerebral palsy by a combination of anatomical cross-sectional area and muscle length. 2D ultrasound may be a convenient method of making these measurements routinely in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dorsiflexor muscle-group thickness in children with cerebral palsy: Relation to cross-sectional area

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Magnusson, Peter; Jensen, Bente Rona

    2009-01-01

    If the thickness and cross-sectional area of the dorsiflexor muscle group are related in children with cerebral palsy, measurements of muscle thickness may be used to monitor changes in muscle size due to training or immobilisation in these patients. We assessed the validity and reliability.......001), and the reliability of the muscle-thickness measurements was high in the healthy subjects (ICC_{2.1} = 0.94, standard error of measurement = 0.04 cm). The dorsiflexor muscle-thickness was 22% less in the affected compared to the non-affected leg in children with hemiplegic cerebral palsy (P ..., the dorsiflexor cross-sectional area was 32% less in the affected compared to the non-affected leg (P = 0.002). Measurements of dorsiflexor muscle-thickness can be reliably obtained, and they reflect dorsiflexor cross-sectional area in children with cerebral palsy....

  20. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients.

    Science.gov (United States)

    Weijs, Peter J M; Looijaard, Wilhelmus G P M; Dekker, Ingeborg M; Stapel, Sandra N; Girbes, Armand R; Oudemans-van Straaten, H M; Beishuizen, Albertus

    2014-01-13

    Higher body mass index (BMI) is associated with lower mortality in mechanically ventilated critically ill patients. However, it is yet unclear which body component is responsible for this relationship. This retrospective analysis in 240 mechanically ventilated critically ill patients included adult patients in whom a computed tomography (CT) scan of the abdomen was made on clinical indication between 1 day before and 4 days after admission to the intensive care unit. CT scans were analyzed at the L3 level for skeletal muscle area, expressed as square centimeters. Cutoff values were defined by receiver operating characteristic (ROC) curve analysis: 110 cm2 for females and 170 cm2 for males. Backward stepwise regression analysis was used to evaluate low-muscle area in relation to hospital mortality, with low-muscle area, sex, BMI, Acute Physiologic and Chronic Health Evaluation (APACHE) II score, and diagnosis category as independent variables. This study included 240 patients, 94 female and 146 male patients. Mean age was 57 years; mean BMI, 25.6 kg/m2. Muscle area for females was significantly lower than that for males (102 ± 23 cm2 versus 158 ± 33 cm2; P muscle area was observed in 63% of patients for both females and males. Mortality was 29%, significantly higher in females than in males (37% versus 23%; P = 0.028). Low-muscle area was associated with higher mortality compared with normal-muscle area in females (47.5% versus 20%; P = 0.008) and in males (32.3% versus 7.5%; P muscle area, sex, and APACHE II score, whereas BMI and admission diagnosis were not. Odds ratio for low-muscle area was 4.3 (95% confidence interval, 2.0 to 9.0, P muscle mass appeared as primary predictor, not sex. Low skeletal muscle area, as assessed by CT scan during the early stage of critical illness, is a risk factor for mortality in mechanically ventilated critically ill patients, independent of sex and APACHE II score. Further analysis suggests muscle mass as primary predictor, not

  1. Tracheal intubation in patients with cervical spine immobilization: a comparison of the Airwayscope, LMA CTrach, and the Macintosh laryngoscopes.

    LENUS (Irish Health Repository)

    Malik, M A

    2009-05-01

    The purpose of this study was to evaluate the effectiveness of the Pentax AWS, and the LMA CTrach, in comparison with the Macintosh laryngoscope, when performing tracheal intubation in patients with neck immobilization using manual in-line axial cervical spine stabilization.

  2. What is happening to health in the economic downturn? A view of the Lisbon Metropolitan Area, Portugal.

    Science.gov (United States)

    Nogueira, Helena

    2016-01-01

    The economic downturn has introduced new social risks in the most affected countries with foreseeable negative consequences for health. To analyse changes in health and its socioeconomic inequalities between 2001-2011 in the Lisbon Metropolitan Area (LMA), Portugal. This study, conducted in the LMA neighbourhoods (n = 207), examines the association between deprivation and premature mortality using standardised premature mortality ratios and a composite index of socioeconomic deprivation. The association was observed by analysing the whole range of values, quintiles and deciles of the LMA population. Pearson coefficients and ANOVA were used to assess associations and variability between quintiles/deciles. The findings show that people living in extreme deprivation conditions increased (5.45%) and that increasing deprivation is associated with health degradation in specific groups. Between 2001-2011, premature mortality became more unequally distributed, increasing in the richest (1%) and median (12%) areas, even though socioeconomic inequalities in mortality decreased. Health degradation is selective, affecting mainly the middle class living in LMA; these 'newly deprived' people experience an increased risk, while the 'traditionally deprived' show no decrease in premature mortality. Therefore, social inequalities in health tend to decrease, but without health gains.

  3. Lumbar paraspinal muscle transverse area and symmetry in dogs with and without degenerative lumbosacral stenosis.

    Science.gov (United States)

    Henderson, A L; Hecht, S; Millis, D L

    2015-10-01

    To investigate whether dogs with degenerative lumbosacral stenosis have decreased lumbar paraspinal muscle transverse area and symmetry compared with control dogs. Retrospective cross-sectional study comparing muscles in transverse T2-weighted magnetic resonance images for nine dogs with and nine dogs without degenerative -lumbosacral stenosis. Mean transverse area was measured for the lumbar multifidus and sacrocaudalis dorsalis lateralis muscles bilaterally and the L7 vertebral body at the level of the caudal endplate. Transverse areas of both muscle groups relative to L7 and asymmetry indices were compared between study populations using independent t tests. Mean muscle-to-L7 transverse area ratios were significantly smaller in the degenerative lumbosacral stenosis group compared with those in the control group in both lumbar multifidus (0·84 ±0·26 versus 1·09 ±0·25; P=0·027) and sacrocaudalis dorsalis lateralis (0·5 ±0·15 versus 0·68 ±0·12; P=0·005) muscles. Mean asymmetry indices were higher for both muscles in the group with degenerative lumbosacral stenosis than in the control group, but highly variable and the difference was not statistically significant. These findings suggest that dogs with degenerative lumbosacral stenosis have decreased lumbar paraspinal muscle mass that may be a cause or consequence of the -syndrome. Understanding altered paraspinal muscle characteristics may improve understanding of the -pathophysiology and management options for degenerative lumbosacral stenosis. © 2015 British Small Animal Veterinary Association.

  4. Heart size and mean muscle fibre cross-sectional area related to birth weight in pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available One of the aims in domestic pig breeding has been to increase the size of litters resulting in variation in birth weight of piglets. Pig breeding has also resulted in increased body muscle mass. Muscles with the same size can consist either of large number of thin muscle fibres or small number of thick muscle fibres. Larger body muscle content means that in living animal the heart must pump blood to larger muscle mass than earlier. Our interest in this study was to investigate the relationship between the pig’s birth weight and (i growth performance and carcass composition, (ii the size of organs, and (iii the mean muscle fibre cross-sectional area at slaughter. The study consisted of twenty pigs slaughtered at the age of 165±2 days. The day after the slaughter, the carcass composition was determined by dissecting the chilled carcass into lean, fat, bones, and skin and organs were weighed. The average cross sectional area of muscle fibres was determined from three fast-twitch muscles longissimus dorsi, semimembranosus, gluteus superficialis, and two slow-twitch muscles infraspinatus and masseter. The birth weight of pigs ranged from 0.9 to 2.2 kg. We found no clear relationships between the birth weight and the pig’s growth performance from birth to slaughter. When the birth weight increased the heart weight at slaughter increased as well (P < 0.01. The heart weight was higher in those pigs with high carcass weight (P < 0.05 and with the high weight of total muscle mass in the carcass (P < 0.001. The cross sectional area of muscle fibres in M. longissimus dorsi (P < 0.05, M. semimembranosus (P < 0.10, and M. gluteus superficialis (P < 0.05 was larger in those pigs with low birth weight compared to those found in pigs with high birth weight.;

  5. Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014).

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2014-10-01

    It has been recently proposed that leaf vein length per area (VLA) is the major determinant of leaf mass per area ( MA), and would thereby determine other traits of the leaf economic spectrum (LES), such as photosynthetic rate per mass (A(mass)), nitrogen concentration per mass (N(mass)) and leaf lifespan (LL). In a previous paper we argued that this 'vein origin' hypothesis was supported only by a mathematical model with predestined outcomes, and that we found no support for the 'vein origin' hypothesis in our analyses of compiled data. In contrast to the 'vein origin' hypothesis, empirical evidence indicated that VLA and LMA are independent mechanistically, and VLA (among other vein traits) contributes to a higher photosynthetic rate per area (A(area)), which scales up to driving a higher A(mass), all independently of LMA, N(mass) and LL. In their reply to our paper, Blonder et al. (2014) raised questions about our analysis of their model, but did not address our main point, that the data did not support their hypothesis. In this paper we provide further analysis of an extended data set, which again robustly demonstrates the mechanistic independence of LMA from VLA, and thus does not support the 'vein origin' hypothesis. We also address the four specific points raised by Blonder et al. (2014) regarding our analyses. We additionally show how this debate provides critical guidance for improved modelling of LES traits and other networks of phenotypic traits that determine plant performance under contrasting environments. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    Science.gov (United States)

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep

  7. Feasibility For Measuring Transverse Area Ratios And Asymmetry Of Lumbosacral Region Paraspinal Muscles In Working Dogs Using Computed Tomography

    Directory of Open Access Journals (Sweden)

    Bethany eCain

    2016-05-01

    Full Text Available Objectives: Describe computed tomographic (CT anatomy of canine lumbosacral paraspinal muscles, a method for measuring paraspinal muscle transverse area ratios and asymmetry using CT, and application of this method in a small sample of working dogs with versus without lumbosacral pain.Methods: Published anatomy references and atlases were reviewed and discrepancies resolved by examination of anatomic specimens and multi-planar reformatted images to describe transverse CT anatomy of lumbosacral region paraspinal muscles. Sixteen Belgian malinois military working dogs were retrospectively recruited and assigned to lumbosacral pain positive versus negative groups based on medical record entries. A single observer unaware of dog group measured CT transverse areas of paraspinal muscles and adjacent vertebral bodies, in triplicate, for L5-S1 vertebral locations. A statistician compared muscle transverse area ratios and asymmetry at each vertebral location between groups. Results: The relative co-efficient of variation for triplicate CT area measurements averaged 2.15% (N=16. Multifidus lumborum (L6-7, psoas/iliopsoas (L5-6, L6-7, and sacrocaudalis dorsalis lateralis (L6-7, L7-S1 transverse area ratios were significantly smaller in dogs with lumbosacral pain (n=11 vs. without lumbosacral pain (n=5 (p< 0.05. Muscle asymmetry values were not significantly greater in dogs with vs. without lumbosacral pain. Clinical relevance: Computed tomographic morphometry of lumbosacral region paraspinal muscles is a feasible objective method for use in future evidence-based research studies in working dogs. Potential future research applications include determining whether decreased paraspinal muscle area ratios and/or increased paraspinal muscle asymmetry could be used as markers for preclinical lumbosacral pain in stoic dogs or risk factors for other injuries in high performance canine athletes; or determining whether core muscle strengthening exercise prescriptions

  8. Relationship between paraspinal muscle cross-sectional area and relative proprioceptive weighting ratio of older persons with lumbar spondylosis.

    Science.gov (United States)

    Ito, Tadashi; Sakai, Yoshihito; Nakamura, Eishi; Yamazaki, Kazunori; Yamada, Ayaka; Sato, Noritaka; Morita, Yoshifumi

    2015-07-01

    [Purpose] The purpose of this study was to examine the relationship between the paraspinal muscle cross-sectional area and the relative proprioceptive weighting ratio during local vibratory stimulation of older persons with lumbar spondylosis in an upright position. [Subjects] In all, 74 older persons hospitalized for lumbar spondylosis were included. [Methods] We measured the relative proprioceptive weighting ratio of postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects' paraspinal or gastrocnemius muscles. Back strength, abdominal muscle strength, and erector spinae muscle (L1/L2, L4/L5) and lumbar multifidus (L1/L2, L4/L5) cross-sectional areas were evaluated. [Results] The erector spinae muscle (L1/L2) cross-sectional area was associated with the relative proprioceptive weighting ratio during 60Hz stimulation. [Conclusion] These findings show that the relative proprioceptive weighting ratio compared to the erector spinae muscle (L1/L2) cross-sectional area under 60Hz proprioceptive stimulation might be a good indicator of trunk proprioceptive sensitivity.

  9. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly.

    Science.gov (United States)

    Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S

    2018-03-01

    We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.

  10. Association of visceral fat area with abdominal skeletal muscle distribution in overweight Japanese adults.

    Science.gov (United States)

    Tanaka, Noriko I; Murakami, Haruka; Ohmori, Yumi; Aiba, Naomi; Morita, Akemi; Watanabe, Shaw; Miyachi, Motohiko

    2016-07-20

    Quantitative evaluation of visceral fat mass and skeletal muscle mass is important for health promotion. Recently, some studies suggested the existence of adipocyte-myocyte negative crosstalk. If so, abdominal skeletal muscles may easily and negatively affected not only by the age but also the visceral fat because age-related reduction in abdominal region is greater compared with limbs. We cross-sectionally examined the existence of quantitative associations between visceral fat area and abdominal skeletal muscle distribution in overweight people. A total of 230 Japanese males and females who aged 40-64 years and whose body mass index (BMI) was 28.0-44.8kg/m 2 participated in this study. The cross-sectional area (CSA) of the visceral fat, subcutaneous fat, and abdominal skeletal muscles, namely, the rectus abdominis, abdominal oblique, erector spinae, and iliopsoas muscles were measured by the computed tomography images. Stepwise regression analyses revealed the existence of sex difference in the relation between visceral fat CSA and other morphological variables. In males, BMI was a positive, and the iliopsoas muscle group CSA was a negative contributor of the visceral fat CSA. In females, both age and BMI were selected as positive contributors. These data suggested that the visceral fat CSA may negatively associated with iliopsoas muscle group CSA in males. In females, the visceral fat CSA was not significantly related to the distribution of the abdominal skeletal muscle groups. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  11. Force Per Active Area and Muscle Injury during Electrically Stimulated Contractions

    OpenAIRE

    BLACK, CHRISTOPHER D.; MCCULLY, KEVIN K.

    2008-01-01

    Multiple mechanical factors have been implicated in the initiation of exercise-induced muscle injury. Although high absolute force levels are associated with greater injury, the importance of high force per active area independent of absolute force remains to be determined, especially in humans.

  12. Association between leg strength and muscle cross-sectional area of the quadriceps femoris with the physical activity level in octogenarians.

    Science.gov (United States)

    Latorre-Román, Pedro Á; Arévalo-Arévalo, Juan Manuel; García-Pinillos, Felipe

    2016-06-03

    Aging is a complex physiological process whose main feature is the progressive loss of functionality, which may be delayed or attenuated by improving physical fitness.  To determine the association between leg strength and the muscle cross-sectional area of the quadriceps femoris in relation to physical activity level in the elderly.  Thirty-two functionally autonomous people over 80 years (men: 82.80±2.09 years; women: 83.77±4.09 years) participated in this study. The Barthel Index, the Yale Physical Activity Survey and the Chair Stand Test were the instruments used.  There were significant differences between sexes in muscle area (pmen. The muscle area and the Chair Stand Test correlated significantly with the walk index (r=0.445, pactivity index (r=0.430, pactivity index, muscle area and the Chair Stand Test, only the latter behaved as a predictor variable.  Muscle strength and muscle mass of quadriceps showed a significant association with the physical activity level in older people. Leg muscle strength was useful to reveal muscle mass and physical activity level in older people, which is relevant as a clinical practice indicator.

  13. Assessment of the Cross-Sectional Areas of the Psoas Major and Multifidus Muscles in Patients With Adult Spinal Deformity: A Case-Control Study.

    Science.gov (United States)

    Banno, Tomohiro; Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Togawa, Daisuke; Oe, Shin; Mihara, Yuki; Kurosu, Kenta; Yamamoto, Naoto; Matsuyama, Yukihiro

    2017-08-01

    This is a case-control study. The present study aimed to compare the cross-sectional areas of the psoas major and multifidus muscles between elderly patients with adult spinal deformity (ASD) and age-matched and body weight-matched controls, and to evaluate the associations between the cross-sectional areas of these muscles and the severity of spinal deformity. The study included 49 female kyphosis patients with mild scoliosis (Cobb angle muscles were calculated using preoperative L4/L5 axial computed tomography images. In group D, the following spinopelvic parameters were assessed: sagittal vertical axis, pelvic tilt, pelvic incidence, lumbar lordosis, and thoracic kyphosis. The relationships between the muscle cross-sectional areas and spinopelvic parameters were evaluated. The cross-sectional area of the multifidus muscle was lower in group D than in group C. However, the cross-sectional area of the psoas major muscle was not different between the 2 groups. In multiple regression analysis, the cross-sectional area of the multifidus muscle was significantly associated with all spinopelvic parameters. The cross-sectional area of the multifidus muscle might be lower in elderly patients with ASD than in controls. In the elderly population, the severity of sagittal spinal deformity might be correlated with the cross-sectional area of the multifidus muscle. Therefore, muscle imbalances between the flexors and extensors of the spine could participate in the pathology of ASD.

  14. Bursitis with severe tendom and muscle necrosis on the lateral stifle area in cattle

    International Nuclear Information System (INIS)

    Nuss, K.; Muggli, E.; Hässig, M.; Räber, M.; Sydler, T.; Guscetti, F.

    2011-01-01

    In 21 animals, chronic swelling on the lateral aspect of the stifle also known as perigonitis, stable-syndrome or bursitis bicipitalis femoris were evaluated. Ultrasonography showed increased fluid in the distal subtendinous bursa of the biceps femoris muscle and structural changes in the tendons, muscles, subcutis and fasciae. Soft tissue swelling and an irregular contour of the lateral tibial condyle were typical signs on radiographs. Macroscopic changes were found at the insertion of the biceps femoris muscle, the distal subtendinous bursa of the biceps femoris muscle, the lateral collateral ligament of the stifle, the origin of muscles on the lateral femoral condyle and the lateral tibial condyle. They mainly consisted of tendon and muscle tissue necrosis with granulation tissue. Histology revealed areas of coagulation necrosis in tendons and ligaments, in which occasionally Onchocerca spp. were seen. The severity of lesions correlated well with the clinical signs, which were associated with a poor prognosis in advanced cases

  15. [Bursitis with severe tendon and muscle necrosis on the lateral stifle area in cattle].

    Science.gov (United States)

    Nuss, K; Räber, M; Sydler, T; Muggli, E; Hässig, M; Guscetti, F

    2011-11-01

    In 21 animals, chronic swelling on the lateral aspect of the stifle also known as «perigonitis», «stable-syndrome» or «bursitis bicipitalis femoris» were evaluated. Ultrasonography showed increased fluid in the distal subtendinous bursa of the biceps femoris muscle and structural changes in the tendons, muscles, subcutis and fasciae. Soft tissue swelling and an irregular contour of the lateral tibial condyle were typical signs on radiographs. Macroscopic changes were found at the insertion of the biceps femoris muscle, the distal subtendinous bursa of the biceps femoris muscle, the lateral collateral ligament of the stifle, the origin of muscles on the lateral femoral condyle and the lateral tibial condyle. They mainly consisted of tendon and muscle tissue necrosis with granulation tissue. Histology revealed areas of coagulation necrosis in tendons and ligaments, in which occasionally Onchocerca spp. were seen. The severity of lesions correlated well with the clinical signs, which were associated with a poor prognosis in advanced cases.

  16. Randomised Comparison of the AMBU AuraOnce Laryngeal Mask and the LMA Unique Laryngeal Mask Airway in Spontaneously Breathing Adults

    OpenAIRE

    Williams, Daryl Lindsay; Zeng, James M.; Alexander, Karl D.; Andrews, David T.

    2012-01-01

    We conducted a randomised single-blind controlled trial comparing the LMA-Unique (LMAU) and the AMBU AuraOnce (AMBU) disposable laryngeal mask in spontaneously breathing adult patients undergoing general anaesthesia. Eighty-two adult patients (ASA status I–IV) were randomly allocated to receive the LMAU or AMBU and were blinded to device selection. Patients received a standardized anesthetic and all airway devices were inserted by trained anaesthetists. Size selection was guided by manufactur...

  17. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  18. Cutaneous Sensory Block Area, Muscle-Relaxing Effect, and Block Duration of the Transversus Abdominis Plane Block

    DEFF Research Database (Denmark)

    Støving, Kion; Rothe, Christian; Rosenstock, Charlotte V

    2015-01-01

    BACKGROUND AND OBJECTIVES: The transversus abdominis plane (TAP) block is a widely used nerve block. However, basic block characteristics are poorly described. The purpose of this study was to assess the cutaneous sensory block area, muscle-relaxing effect, and block duration. METHODS: Sixteen...... healthy volunteers were randomized to receive an ultrasound-guided unilateral TAP block with 20 mL 7.5 mg/mL ropivacaine and placebo on the contralateral side. Measurements were performed at baseline and 90 minutes after performing the block. Cutaneous sensory block area was mapped and separated...... into a medial and lateral part by a vertical line through the anterior superior iliac spine. We measured muscle thickness of the 3 lateral abdominal muscle layers with ultrasound in the relaxed state and during maximal voluntary muscle contraction. The volunteers reported the duration of the sensory block...

  19. Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study.

    Science.gov (United States)

    Niskanen, Eini; Julkunen, Petro; Säisänen, Laura; Vanninen, Ritva; Karjalainen, Pasi; Könönen, Mervi

    2010-08-01

    Navigated transcranial magnetic stimulation (TMS) can be used to stimulate functional cortical areas at precise anatomical location to induce measurable responses. The stimulation has commonly been focused on anatomically predefined motor areas: TMS of that area elicits a measurable muscle response, the motor evoked potential. In clinical pathologies, however, the well-known homunculus somatotopy theory may not be straightforward, and the representation area of the muscle is not fixed. Traditionally, the anatomical locations of TMS stimulations have not been reported at the group level in standard space. This study describes a methodology for group-level analysis by investigating the normal representation areas of thenar and anterior tibial muscle in the primary motor cortex. The optimal representation area for these muscles was mapped in 59 healthy right-handed subjects using navigated TMS. The coordinates of the optimal stimulation sites were then normalized into standard space to determine the representation areas of these muscles at the group-level in healthy subjects. Furthermore, 95% confidence interval ellipsoids were fitted into the optimal stimulation site clusters to define the variation between subjects in optimal stimulation sites. The variation was found to be highest in the anteroposterior direction along the superior margin of the precentral gyrus. These results provide important normative information for clinical studies assessing changes in the functional cortical areas because of plasticity of the brain. Furthermore, it is proposed that the presented methodology to study TMS locations at the group level on standard space will be a suitable tool for research purposes in population studies. 2010 Wiley-Liss, Inc.

  20. Characteristics and Laser Performance of Yb3+-Doped Silica Large Mode Area Fibers Prepared by Sol–Gel Method

    Directory of Open Access Journals (Sweden)

    Shikai Wang

    2013-12-01

    Full Text Available Large-size 0.1 Yb2O3–1.0 Al2O3–98.9 SiO2 (mol% core glass was prepared by the sol–gel method. Its optical properties were evaluated. Both large mode area double cladding fiber (LMA DCF with core diameter of 48 µm and large mode area photonic crystal fiber (LMA PCF with core diameter of 90 µm were prepared from this core glass. Transmission loss at 1200 nm is 0.41 dB/m. Refractive index fluctuation is less than 2 × 10−4. Pumped by 976 nm laser diode LD pigtailed with silica fiber (NA 0.22, the slope efficiency of 54% and “light-to-light” conversion efficiency of 51% were realized in large mode area double cladding fiber, and 81 W laser power with a slope efficiency of 70.8% was achieved in the corresponding large mode area photonic crystal fiber.

  1. Assessment of anthropometric parameters including area of the psoas, area of the back muscle, and psoas-vertebra distance as indices for prediction of vertebral fracture

    International Nuclear Information System (INIS)

    Suzuki, Tamotsu; Morita, Masahumi; Mabuchi, Kiyoshi

    2005-01-01

    We assessed some anthropometric parameters as indices for the prediction of vertebral compression fracture. We measured the area of the total cross section, area of the back muscle, area of the psoas, area of subcutaneous fat tissue, ratio of the right and left area of the psoas, psoas-vertebra distance, the mediolateral length of the back muscle, anteroposterior length of the back muscle, the mediolateral length of the psoas, and anteroposterior length of the psoas, on computed tomography images. Logistic regression analysis was performed in order to test the correlation between each anthropometric parameter and the incidence of fracture. The odds ratio corresponding to one standard deviation of each parameter was calculated. The ratio of center and anterior vertebral heights and the ratio of center and posterior vertebral heights were measured from the positioning image. The smaller value of these was defined as the vertebral height ratio value. Vertebral height ratio was used as the parameter directly related to vertebral fracture. The subjects for research were 25 women with vertebral compression fracture and 36 women without fracture. Vertebral height ratio had a significant correlation with area of the psoas (correlation coefficient, r=0.609 p<0.001), area of the back muscle (r=0.547 p<0.001), and the psoas-vertebra distance (r=-0.523 p<0.001) in the anthropometric parameters. The odds ratios of the area of the psoas (odds ratio, OR:0.18, 95% confidence interval, CI:0.43 to 0.08), area of the back muscle (OR:0.13, 95% CI:0.37 to 0.05), and the psoas-vertebra distance (OR:3.01, 95% CI:6.22 to 1.46) were high. The odds ratio of the mediolateral length of the psoas (OR:0.34, 95% CI:0.67 to 0.18), and the left-to-right area ratio of the psoas (OR:0.41, 95% CI:0.76 to 0.22) were rather high. However, the vertebral height ratio had no significant correlation with the left-to-right area ratio of the psoas. It was considered that area of the psoas, area of the back

  2. Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers

    Science.gov (United States)

    Coscelli, Enrico; Cucinotta, Annamaria

    2014-02-01

    The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.

  3. Phylogenetic patterns and correlation of key structures for jumping: bone crests and cross-sectional areas of muscles in Leptodactylus (Anura, Leptodactylidae).

    Science.gov (United States)

    Ponssa, María Laura; Fratani, Jéssica; Abdala, Virginia

    2018-05-01

    Anurans are characterized by their saltatory mode of locomotion, which is associated with a specific morphology. The coordinated action of the muscles and bones of the pelvic girdle is key to the transmission of the force of the hindlimbs to the axial skeleton during jumping. Two features are critical for optimal locomotory performance: the cross-sectional area of muscle and the bone crest attachment sites. The first character is a proxy of the force exerted by the muscle, whereas the crests are muscle attachments sites related to muscle force. The provisory relationship between these features has previously been identified and bone crest size can be used to infer the magnitude and, therefore, muscle force in fossils records. In this work, we explore the correlation between the cross-sectional area of essential muscles to the jumping mechanism (longissimus dorsi, extensor iliotibialis B, tenuissimus, puboischiofemoralis internus B, coccygeo-sacralis and coccygeo-iliacus) and the bone crests where these muscles are inserted (dorsal tubercle, dorsal crest and urostylar crest) in species of the genus Leptodactylus. This genus, along with other leptodactylids, exhibits a diversity of locomotor modes, including jumping, hopping, swimming and burrowing. We therefore analyzed the morphometric variation in the two features, cross-sectional area and bone crest area, expecting a correlation with different locomotor types. Our results showed: (i) a correlation between the urostylar crest and the cross-sectional area of the related muscles; (ii) that the bone crest surface area of urostyle and ilium and the cross-sectional area of the corresponding muscles can be utilized to infer locomotor faculties in leptodactylid frogs; and (iii) that the evolution of both characters demonstrates a general tendency from lower values in leptodactylid ancestors to higher values in the Leptodactylus genus. The results attest to the importance of the comparison of current ecological and

  4. Effects of immunocastration and β-adrenergic agonists on the performance and carcass traits of feedlot finished Nellore cattle.

    Science.gov (United States)

    Antonelo, D S; Mazon, M R; Nubiato, K E Z; Gómez, J F M; Brigida, D J; Gomes, R C; Netto, A S; Leme, P R; Silva, S L

    2017-11-01

    β-Adrenergic agonists (β-AA) are non-hormonal growth promoters which promote muscle hypertrophy in supplemented animals. The effects of two β-AA in combination with the immunocastration technique on the performance and carcass traits were evaluated using 96 feedlot Nellore males in a randomized complete block design with two sex conditions (immunocastrated (IC) v. non-castrated (NC)) and three treatments: CON (no β-agonists added), RH (300 mg of ractopamine hydrochloride/day, for 33 days) or ZH (80 mg of zilpaterol·hydrochloride animal/day for 30 days, removed 3 days for required withdrawal period). The trial was carried for 100 days where in the first 70 days animals did not receive β-AA (phase 1) and during the last 30 days they were treated with β-AA (phase 2). The performance and ultrasound measurements of longissimus muscle area (LMA), backfat thickness (BFT) and rump fat thickness (RFT) were evaluated in both phases. No sex condition v. treatment interactions were observed for any trait. The NC animals had higher average daily gain (ADG) and final BW than the IC animals, but they did not differ in dry matter intake (DMI) and feed efficiency (gain to feed). The NC animals showed greater LMA (P=0.0001) and hot carcass weight (P=0.0006), and smaller BFT (P=0.0007), RFT (P=0.0039) and percentage of kidney, pelvic and heart fat (Panimals. The animals fed ZH showed greater ADG (P=0.0002), G : F (Panimals fed ZH diet showed greater LMA (Panimals fed RH and CON diets, whereas RH and CON diets did not differ. Immunocastration decreases muscle development and increases carcass finishing. In contrast, β-AA increases muscle and decreases fat deposition. The ZH has a higher action on the muscle metabolism than animals fed RH diet. However, RH diet achieves a better balance because it has an intermediary performance between non-supplemented and ZH animals and does not decrease the carcass fat.

  5. Coordinated increase in skeletal muscle fiber area and expression of IGF-I with resistance exercise in elderly post-operative patients

    DEFF Research Database (Denmark)

    Suetta, Charlotte; Clemmensen, Christoffer; Andersen, Jesper L

    2010-01-01

    Hypertrophy of developing skeletal muscle involves stimulation by insulin-like growth factor-I (IGF-I), however, the role of IGF-I in adult muscle is less clarified. In the present study, the mRNA splice variants of IGF-I (IGF-IEa and MGF) and the changes in muscle fiber cross sectional area after...... and in addition induces marked increases in the expression of IGF-I splice variants, supporting the idea that IGF-I is involved in regulating muscle hypertrophy.......-operated-side served as a within subject control. Muscle biopsies were obtained from the vastus lateralis of both limbs at +2d post-operative (baseline), at 5weeks and 12weeks post-surgery to analyze for changes in type 1 and type 2 muscle fiber area. Changes in expression levels of IGF-I mRNA isoforms were determined...

  6. Co-relations among ultrasound measurements and on carcass of the steers finished on pasture Correlações entre medidas ultra-sônicas e na carcaça de bovinos terminados em pastagem

    Directory of Open Access Journals (Sweden)

    Helen Fernanda Barros Gomes

    2009-03-01

    Full Text Available This study aimed to evaluate correlations between carcass and ultrasound measurements of steers finished in pasture. Twelve steers, Nellore e F1 Brangus x Nellore, averaging 22 months old and 464 kg of body weight were used. Longissimus muscle area (LMA and subcutaneous backfat thickness (SBT measured by ultrasound at the day before slaughter and in the carcass were measured. The perimeter (REP, depth (RED and width (REW of LMA in the carcass were measured. Significant correlation of 0.47 and 0.64 for REA and SBT, respectively were detected between the ultrasound and carcass measurements. A positive and significant correlation of 0.93 and 0.70 was obtained for REP and REW, respectively, both with carcass LMA. Ultrasound measurements are correlated to carcass measurements of steers finished in pasture. Longissimus muscle area perimeter and width are high correlated to the area and can be used to estimate LMA.Objetivou-se correlacionar medidas tomadas na carcaça e ultrassônicas em novilhos terminados em pastagem. Foram utilizados 12 bovinos castrados, Nelore e F1 Brangus × Nelore, com idade média de 22 meses e peso vivo de 464 kg. Foram mensuradas as áreas de olho de lombo (AOL e as espessuras de gordura subcutânea do dorso (EGSD, por meio de ultrassom, no dia anterior ao abate e nas carcaças. Também foram mensurados o perímetro (POL, a profundidade (HOL e a largura (LOL do AOL nas carcaças. Entre as medidas ultra-sônicas e na carcaça, observou-se correlação significativa de 0,47 e 0,64 para AOL e EGSD. Foi obtido índice de correlação positivo e significativo de 0,93 e 0,70, respectivamente, para POL e LOL, ambas com AOL da carcaça. Medidas tomadas por ultra-som são correlacionadas às realizadas na carcaça em animais terminados a pasto. O perímetro e a largura do olho de lombo estão altamente correlacionados à área e podem ser usados na estimativa da área de olho de lombo.

  7. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation

    International Nuclear Information System (INIS)

    Strandberg, Sören; Wretling, Marie-Louise; Wredmark, Torsten; Shalabi, Adel

    2010-01-01

    Advancement in technology of computer tomography (CT) and introduction of new medical imaging softwares enables easy and rapid assessment of muscle cross-sectional area (CSA) and attenuation. Before using these techniques in clinical studies there is a need for evaluation of the reliability of the measurements. The purpose of the study was to evaluate the inter- and intra-observer reliability of ImageJ in measuring thigh muscles CSA and attenuation in patients with anterior cruciate ligament (ACL) injury by computer tomography. 31 patients from an ongoing study of rehabilitation and muscle atrophy after ACL reconstruction were included in the study. Axial CT images with slice thickness of 10 mm at the level of 150 mm above the knee joint were analyzed by two investigators independently at two times with a minimum of 3 weeks between the two readings using NIH ImageJ. CSA and the mean attenuation of individual thigh muscles were analyzed for both legs. Mean CSA and mean attenuation values were in good agreement both when comparing the two observers and the two replicates. The inter- and intraclass correlation (ICC) was generally very high with values from 0.98 to 1.00 for all comparisons except for the area of semimembranosus. All the ICC values were significant (p < 0,001). Pearson correlation coefficients were also generally very high with values from 0.98 to 1.00 for all comparisons except for the area of semimembranosus (0.95 for intraobserver and 0.92 for interobserver). This study has presented ImageJ as a method to monitor and evaluate CSA and attenuation of different muscles in the thigh using CT-imaging. The method shows an overall excellent reliability with respect to both observer and replicate

  8. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  9. Tendon retraction with rotator cuff tear causes a decrease in cross-sectional area of the supraspinatus muscle on magnetic resonance imaging.

    Science.gov (United States)

    Fukuta, Shoji; Tsutsui, Takahiko; Amari, Rui; Wada, Keizo; Sairyo, Koichi

    2016-07-01

    Muscle atrophy and fatty degeneration of the rotator cuff muscles have been reported as negative prognostic indicators after rotator cuff repair. Although the Y-shaped view is widely used for measuring the cross-sectional area of the supraspinatus muscle, the contribution of retraction of the torn tendon as well as muscle atrophy must be considered. The purpose of this study was to clarify the relationship between cross-sectional area and tendon retraction or size of the tear. This study included 76 shoulders that were evaluated arthroscopically for the presence and size of tears. Cross-sectional areas of rotator cuff muscles were measured from the Y-shaped view to 3 more medial slices. The occupation ratio and tangent sign were evaluated on the Y-shaped view. The retraction of torn tendon was also measured on the oblique coronal images. On the Y-shaped view, the cross-sectional area of the supraspinatus and the occupation ratio decreased in conjunction with the increase in tear size. A significant decrease in cross-sectional area was noted only in large and massive tears on more medial slices from the Y-shaped view. Significant decreases in the cross-sectional area of the infraspinatus were observed in large and massive tears on all images. A negative correlation was found between tendon retraction and cross-sectional area, which was strongest on the Y-shaped view. To avoid the influence of retraction of the supraspinatus tendon, sufficient medial slices from the musculotendinous junction should be used for evaluation of muscle atrophy. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Muscle areas of lower limbs were determined by anthropometric and computed tomography in the adult of the masculine sex

    International Nuclear Information System (INIS)

    Fernandez Vieitez, Jorge Alberto; Alvarez Cuesta, Jose Alberto; Williams Wilson, Luis

    2000-01-01

    In a sample of 17 males (age 26 + - 5 years; weight 76.3 + - 7.1 kg and height 177.2 + - 3.9 cm) the differences, ratios and interchangeability among muscle areas (cm 2 ) of lower limbs (medial thigh and maximum leg) were determined by anthropometric (muscle area= [limb circumference (cm)- 0.31416 skinfold (mm)]2 /12.5664 and computed tomography. The anthropometric method overestimated muscle areas in both regions (thigh + 9.0 + - 12.8; p= 0.01 and leg: +8.5 + - 11.2; p=0.006). Relation between the two procedures was statistically significant (thigh r=0.9; p= 8.8 .10-7 and leg r=0.52; p=0.03). Both methods were interchangeable since neither the correlation coefficient (thigh r=0.42; leg r=0.38) nor the regression gradient (thigh b 0 .21 + - 0.12; leg b = -0.44 + - 0.28) between the differences (anthropometric ? TAC) and the averages (anthropometric + TAC/ 2) in both methods were statistically significant (p>0.05). It was concluded that the anthropometric method requires certain adjustments to be able to estimate more accurately the muscle areas of lower limbs

  11. The association of trunk muscle cross-sectional area and magnetic resonance image parameters with isokinetic and psychophysical lifting strength and static back muscle endurance in men.

    Science.gov (United States)

    Gibbons, L E; Latikka, P; Videman, T; Manninen, H; Battié, M C

    1997-10-01

    The relationship between trunk muscle morphology as measured on transverse magnetic resonance images and isokinetic lifting, psychophysical lifting, and static back muscle endurance testing was examined in 110 men, ages 35-67 years (mean, 48 years), who had been chosen based on their exposure to a wide variety of occupational and leisure-time physical activities. The computed T2-relaxation times and the T2-weighted and proton density-weighted signal intensities of the erector spinae, quadratus lumborum, and psoas major muscles had almost no association with any of the strength tests. The cross-sectional areas of the muscles had good correlations with isokinetic lifting strength (r = 0.46-0.53). They did not correlate well with psychophysical lifting and static back muscle endurance. Other characteristics or neurological or psychological factors may have more influence on those tests.

  12. Mean echogenicity and area of puborectalis muscle in women with stress urinary incontinence during pregnancy and after delivery.

    Science.gov (United States)

    van de Waarsenburg, Maria K; Withagen, Mariëlla I J; Grob, Anique T M; Schweitzer, Karlijn J; van Veelen, Greetje A; van der Vaart, Carl H

    2016-11-01

    Pregnancy and childbirth are risk factors for the development of stress urinary incontinence (SUI). Urinary continence depends on normal urethral support, which is provided by normal levator ani muscle function. Our objective was to compare mean echogenicity and the area of the puborectalis muscle between women with and those without SUI during and after their first pregnancy. We examined 280 nulliparous women at a gestational age of 12 weeks, 36 weeks, and 6 months after delivery. They filled out the validated Urogenital Distress Inventory and underwent perineal ultrasounds. SUI was considered present if the woman answered positively to the question "do you experience urine leakage related to physical activity, coughing, or sneezing?" Mean echogenicity of the puborectalis muscle (MEP) and puborectalis muscle area (PMA) were calculated. The MEP and PMA during pregnancy and after delivery in women with and without SUI were compared using independent Student's t test. After delivery the MEP was higher in women with SUI if the pelvic floor was at rest or in contraction, with effect sizes of 0.30 and 0.31 respectively. No difference was found in the area of the puborectalis muscle between women with and those without SUI. Women with SUI after delivery had a statistically significant higher mean echogenicity of the puborectalis muscle compared with non-SUI women when the pelvic floor was at rest and in contraction; the effect sizes were small. This higher MEP is indicative of a relatively higher intramuscular extracellular matrix component and could represent diminished contractile function.

  13. Distributed Group-Based Mobility Management Scheme in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Moneeb Gohar

    2017-01-01

    Full Text Available For group-based mobility management in 6LoWPAN-based wireless body area networks (WBAN, some schemes using the Proxy Mobile IPv6 (PMIP have been proposed. However, the existing PMIP-based mobility schemes tend to induce large registration delay and handover delay. To overcome such limitations, we propose a new distributed group-based mobility management scheme, in which the Local Mobility Anchor (LMA function is implemented by each Mobile Access Gateway (MAG and the handover operation is performed between two neighboring MAGs without the help of LMA. Besides, each MAG maintains the information of the group of mobile sensors and aggregates the Authentication-Authorization-Accounting (AAA query messages for a group of mobile sensors as a “single” message to decrease the control overhead. By numerical analysis, it is shown that the proposed scheme can reduce the registration and handover delays, compared to the existing PMIP-based mobility schemes.

  14. A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI

    NARCIS (Netherlands)

    van Spronsena, P. H.; van Ginkel, F. C.; van Schijndel, R. A.; Castelijns, J. A.; Tuinzing, D. B.

    Objective: In humans, the vertical craniofacial dimensions vary significantly with the size of the jaw muscles, which are regarded as important controlling factors of craniofacial growth. The functional relevance of the maximum cross-sectional area (CSA), indicating maximum muscle strength, is

  15. A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI

    NARCIS (Netherlands)

    Boom, H.P.W.; van Spronsen, P.H.; van Ginkel, F.C.; van Schijndel, R.A.; Castelijns, J.A.; Tuinzing, D.B.

    2008-01-01

    Objective In humans, the vertical craniofacial dimensions vary significantly with the size of the jaw muscles, which are regarded as important controlling factors of craniofacial growth. The functional relevance of the maximum cross-sectional area (CSA), indicating maximum muscle strength, is

  16. A comparison of human jaw muscle cross-sectional area and volume in long- and short-face subjects, using MRI

    NARCIS (Netherlands)

    Boom, H.P.; van Spronsen, P.H.; van Ginkel, F.C.; van Schijndel, R.A.; Castelijns, J.A.; Tuinzing, D.B.

    2008-01-01

    Objective: In humans, the vertical craniofacial dimensions vary significantly with the size of the jaw muscles, which are regarded as important controlling factors of craniofacial growth. The functional relevance of the maximum cross-sectional area (CSA), indicating maximum muscle strength, is

  17. Risk factors for worsened muscle strength after the surgical treatment of arteriovenous malformations of the eloquent motor area.

    Science.gov (United States)

    Lin, Fuxin; Zhao, Bing; Wu, Jun; Wang, Lijun; Jin, Zhen; Cao, Yong; Wang, Shuo

    2016-08-01

    OBJECT Case selection for the surgical treatment of arteriovenous malformations (AVMs) of the eloquent motor area remains challenging. The aim of this study was to determine the risk factors for worsened muscle strength after surgery in patients with this disorder. METHODS At their hospital the authors retrospectively studied 48 consecutive patients with AVMs involving motor cortex and/or the descending pathway. All patients had undergone preoperative functional MRI (fMRI) and diffusion tensor imaging (DTI), followed by resection. Both functional and angioarchitectural factors were analyzed with respect to the change in muscle strength. Functional factors included lesion-to-corticospinal tract distance (LCD) on DTI and lesion-to-activation area distance (LAD) and cortical reorganization on fMRI. Based on preoperative muscle strength, the changes in muscle strength at 1 week and 6 months after surgery were defined as short-term and long-term surgical outcomes, respectively. Statistical analysis was performed using the statistical package SPSS (version 20.0.0, IBM Corp.). RESULTS Twenty-one patients (43.8%) had worsened muscle strength 1 week after surgery. However, only 10 patients (20.8%) suffered from muscle strength worsening 6 months after surgery. The LCD was significantly correlated with short-term (p 0 mm (p = 0.009) and LCD > 5 mm (p 0 mm group and LCD > 5 mm group (p = 0.116). Nidus size was the other significant predictor of short-term (p = 0.021) and long-term (p = 0.016) outcomes. For long-term outcomes, the area under the ROC curve (AUC) was 0.728, and the cutoff point was 3.6 cm. Spetzler-Martin grade was not associated with short-term surgical outcomes (0.143), although it was correlated with long-term outcomes (0.038). CONCLUSIONS An AVM with a nidus in contact with tracked eloquent fibers (LCD = 0) and having a large size is more likely to be associated with worsened muscle strength after surgery in patients with eloquent motor area AVMs. Surgical

  18. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  19. Effects of oblique muscle surgery on the rectus muscle pulley

    International Nuclear Information System (INIS)

    Okanobu, Hirotaka; Kono, Reika; Ohtsuki, Hiroshi

    2011-01-01

    The purpose of this study was to determine the position of rectus muscle pulleys in Japanese eyes and to evaluate the effect of oblique muscle surgery on rectus muscle pulleys. Quasi-coronal plane MRI was used to determine area centroids of the 4 rectus muscles. The area centroids of the rectus muscles were transformed to 2-dimensional coordinates to represent pulley positions. The effects of oblique muscle surgery on the rectus muscle pulley positions in the coronal plane were evaluated in 10 subjects with cyclovertical strabismus and, as a control, pulley locations in 7 normal Japanese subjects were calculated. The mean positions of the rectus muscle pulleys in the coronal plane did not significantly differ from previous reports on normal populations, including Caucasians. There were significant positional shifts of the individual horizontal and vertical rectus muscle pulleys in 3 (100%) patients with inferior oblique advancement, but not in eyes with inferior oblique recession and superior oblique tendon advancement surgery. The surgical cyclorotatory effect was significantly correlated with the change in the angle of inclination formed by the line connecting the vertical rectus muscles (p=0.0234), but weakly correlated with that of the horizontal rectus muscles. The most important factor that affects the pulley position is the amount of ocular torsion, not the difference in surgical procedure induced by oblique muscle surgery. (author)

  20. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2017-10-01

    A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support

  1. Quantitative assessment of muscle in dogs using a vertebral epaxial muscle score.

    Science.gov (United States)

    Freeman, Lisa M; Sutherland-Smith, James; Prantil, Lori R; Sato, Amy F; Rush, John E; Barton, Bruce A

    2017-10-01

    Muscle loss associated with disease (cachexia) or with aging (sarcopenia) is common in dogs, but clinically relevant methods for quantifying muscle loss are needed. We previously validated an ultrasound method of quantifying muscle size in dogs in a single breed. The goal of this study was to assess the variability and reproducibility of the Vertebral Epaxial Muscle Score (VEMS) in other dog breeds. Static ultrasound images were obtained from 38 healthy, neutered dogs of 5 different breeds between 1- and 5-years-old. The maximal transverse right epaxial muscle height and area at the level of the 13th thoracic vertebra (T13) were measured. Length of the 4th thoracic vertebra (T4) was measured from thoracic radiography. Ratios of the muscle height and area to vertebral length (height/T4 and area/T4, respectively) were calculated to account for differences in body size among breeds. Reproducibility testing was performed on 2 dogs of each breed (26% of the total) to determine intra- and inter-investigator reproducibility, as well as intra-class correlation. Mean height/T4 = 1.02 ± 0.18 and mean area/T4 = 3.32 ± 1.68. There was no significant difference for height/T4 ( P = 0.10) among breeds, but breeds were significantly different in area/T4 ( P dogs of different sizes and body conformations. Studies assessing this technique in dogs with congestive heart failure and other diseases associated with muscle loss are warranted.

  2. Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly

    NARCIS (Netherlands)

    Neyret, Margot; Bentley, Lisa Patrick; Oliveras Menor, Imma; Marimon, Beatriz S.; Marimon-Junior, Ben Hur; Almeida de Oliveira, Edmar; Barbosa Passos, Fábio; Castro Ccoscco, Rosa; Santos, dos Josias; Matias Reis, Simone; Morandi, Paulo S.; Rayme Paucar, Gloria; Robles Cáceres, Arturo; Valdez Tejeira, Yolvi; Yllanes Choque, Yovana; Salinas, Norma; Shenkin, Alexander; Asner, Gregory P.; Díaz, Sandra; Enquist, Brian J.; Malhi, Yadvinder

    2016-01-01

    Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter- and intraspecific variation in leaf mass per area (LMA) of

  3. Bend-resistant large mode area fiber with novel segmented cladding

    Science.gov (United States)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  4. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

    Science.gov (United States)

    Mijwel, Sara; Cardinale, Daniele A; Norrbom, Jessica; Chapman, Mark; Ivarsson, Niklas; Wengström, Yvonne; Sundberg, Carl Johan; Rundqvist, Helene

    2018-05-11

    Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

  5. Concomitant changes in cross-sectional area and water content in skeletal muscle after resistance exercise

    DEFF Research Database (Denmark)

    Kristiansen, Maja Sofie; Uhrbrand, Anders; Hansen, Mette

    2014-01-01

    This study investigated how one bout (1EX) and three bouts (3EX) of strenuous resistance exercise affected the cross-sectional area (CSA) and water content (WC) of the quadriceps muscle and patella tendon (PT), 4 h and 52 h after the last exercise bout. Ten healthy untrained male subjects performed...... was significantly reduced at 52 h (3EX: 14 ± 2%) compared with baseline and (3EX: 13 ± 1%) compared with 4 h. Present data demonstrate that strenuous resistance exercise results in an acute increase in muscle WC and underlines the importance of ensuring sufficient time between the last exercise bout...

  6. Effects of filtering methods on muscle and fat cross-sectional area measurement by pQCT: a technical note

    International Nuclear Information System (INIS)

    Sherk, Vanessa D; Bemben, Michael G; Palmer, Ian J; Bemben, Debra A

    2011-01-01

    Peripheral quantitative computed tomography (pQCT) is most commonly used for bone density and morphology assessment of the limbs, but it can also be used for soft tissue area quantification by segmenting regions representing different tissues. Scanning and analyzing cross-sectional areas of larger thighs present a special challenge due to increased statistical noise created from fewer detected x-ray photons. The purpose of this technical note is to compare total, muscle and fat cross-sectional area (CSA) measurements of the midthigh with Stratec 3000 pQCT scans using no filter, a weak smoothing filter and a strong smoothing filter to CSA measurements of midthigh MRI scans analyzed by Image J, a public domain image processing program. Nine healthy men and women participated in this study. CSAs did not differ significantly between MRI and strongly filtered pQCT images with per cent differences ranging from −3.1% for muscle to +6.5% for fat. The per cent difference in muscle CSA values between MRI and pQCT with the weak filter (−24.0 ± 38.0%) or no filter (−44.9 ± 22.7%) was strongly related to total thigh CSA (r = 0.78–0.92, p < 0.05). We propose that the midthigh can be assessed for soft tissue area measurements with pQCT, provided that strong smoothing filter is utilized. (note)

  7. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology

    Directory of Open Access Journals (Sweden)

    Gomes A.R.S.

    2004-01-01

    Full Text Available We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002, in serial sarcomere number (23 ± 15% and in cross-sectional area of the fibers (37 ± 31%, P < 0.001 compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05. Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05. In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

  8. Effect of Low-dose Atracurium on Laryngeal Mask Airway Insertion Conditions: A Randomized Double-blind Clinical Trial

    Directory of Open Access Journals (Sweden)

    Karim Nasseri

    2017-01-01

    Full Text Available Background: The amount of sedation and muscle relaxation of the jaw may have an impact on complications caused by laryngeal mask airway (LMA. The aim of this study is to evaluate the effect of low-dose Atracurium on conditions of insertion, complications, and hemodynamic responses to LMA insertion following induction of anesthesia with propofol, in patients undergoing cataract surgery. Patients and Methods: In this double-blind randomized clinical trial study, 60 patients were randomly divided into two groups. Initially, the patients in the study group received 0.15 mg/kg intravenous injection of atracurium, and the patients in the control group received 2 ml of intravenous injection of normal saline, after which anesthesia in both groups were induced with midazolam, fentanyl, lidocaine, and propofol. The amount of jaw relaxation, ease of insertion, and the time needed for insertion, hemodynamic responses and complications of LMA insertion were evaluated. Results: Jaw relaxation and ease of LMA insertion in the study group was significantly better than that of the control group (P = 0.02. Average time needed for LMA placement in the study group (5/06 ± 0.52 second was significantly lower than the control group (5/76 ± 0.67 second (P = 0.001. Hemodynamic response to LMA insertion was similar in both groups. Sore throat at recovery and 24 h after surgery in the control group was significantly higher than that of the study group (3/30 vs. 10/30 (P = 0.01. Conclusions: Using low doses of atracurium decreases the time needed for LMA insertion and sore throat after the operation. Atracurium also increases jaw relaxation and facilitates the placement of LMA.

  9. Effects of Push-ups Plus Sling Exercise on Muscle Activation and Cross-sectional Area of the Multifidus Muscle in Patients with Low Back Pain.

    Science.gov (United States)

    Kim, Gye-Yeop; Kin, Se-Hun

    2013-12-01

    [Purpose] The purpose of this study was to examine the effect of lumbar stability exercises on chronic low back pain by using sling exercise and push-ups. [Subjects] Thirty adult subjects with chronic back pain participated, with 10 adults being assigned to each of 3 exercise groups: general physical therapy (PT), lumbar stability using sling exercises (Sling Ex), and sling exercise plus push-ups (Sling Ex+PU). Each group trained for 30 minutes 3 times a week for 6 weeks. The Oswestry Disability Index (ODI), surface electromyographic (sEMG) activity of the lumbar muscles, and cross-sectional area of the multifidus muscle on computed tomography (CT) were evaluated before and at 2, 4, and 6 weeks of therapy. [Results] A significant decrease in ODI was seen in all therapy groups, and this change was greater in the Sling Ex and Sling Ex+PU groups than in the PT group. No changes in sEMG activity were noted in the PT group, whereas significant increases in the sEMG activities of all lumbar muscles were found in the other 2 groups. The increases in the sEMG activities of the rectus abdominis and internal and external oblique muscles of the abdomen were greater in the Sling Ex+PU group than in the other 2 groups. [Conclusion] These findings demonstrate that Sling Ex+PU, similar to normal lumbar stabilization exercise, is effective in activating and improving the function of the lumbar muscles. These results suggest that Sling Ex+PU has a positive impact on stabilization of the lumbar region.

  10. Change in cross-sectional area of esophageal muscle does not correlate with the outcome of achalasia after pneumatic balloon dilatation.

    Science.gov (United States)

    Sinn, Dong Hyun; Choi, Yong Sung; Kim, Jeong Hwan; Kim, Eun Ran; Son, Hee Jung; Kim, Jae J; Rhee, Jong Chul; Rhee, Poong-Lyul

    2010-03-01

    Patients with achalasia have a thicker muscularis propria compared to normal patients. Because pneumatic balloon dilatation (PD) is an effective treatment for achalasia, the changes in the esophageal muscles after PD may predict treatment outcomes, if muscular change is of primary importance. In the present study, we aimed to observe the changes in esophageal muscle thickness following PD and assessed whether symptom relapse can be predicted on the basis of the esophageal muscle cross-sectional area (CSA), as measured by high-frequency intraluminal ultrasound (HFIUS). Fifteen patients treated by PD were studied and followed up for a median of 3.6 years. An HFIUS was done before PD and 6 months after PD. The esophageal muscle CSA measured at the lower esophageal sphincter (LES), and 3 and 6 cm above the LES, was used to see whether any association was present between symptom recurrence and the esophageal muscle CSA. A single PD resulted in a 2-year remission rate of 66%. A significance variance in change (-65%-248%) was noticed in the muscle CSA after PD. The predilation muscle CSA, post-dilation muscle CSA, and change in the muscle CSA after PD was not associated with symptom recurrence. Our findings suggest that measuring the muscle CSA does not help to predict treatment outcome. Muscular changes in achalasia might be just reactive changes.

  11. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). Conclusions: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  12. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Drakonaki, Eleni E. [University of Crete, Radiology Department, Heraklion (Greece); Allen, Gina M. [Green Templeton College, Oxford (United Kingdom)

    2010-04-15

    Congenital muscle dystrophy includes a range of genetic disorders characterized by muscle weakness and contractures. We report the magnetic resonance (MR), ultrasound (US) and real-time sonoelastography (RTE) imaging findings of the thigh muscles of a 15-year-old boy with Bethlem myopathy diagnosed with clinical, electromyographic and histopathological criteria. Ultrasound and MR showed hyperechoic appearance and high signal intensity on T1- and T2-weighted sequences respectively at the periphery of the vastus lateralis and the long head of the biceps femoris muscles, and at a central area within the rectus femoris muscles. RTE was employed to examine the elastic properties of the muscle. The elastograms were presented as colour-coded maps superimposed on the B-mode images and revealed that the elastographic pattern correlated with the MR and US pattern of involvement. The abnormal muscle areas were stiffer (blue) than the normal-appearing areas (green), a finding that probably correlates with the presence of dystrophic collagen at the affected areas. This report suggests that RTE could be used as an additional imaging tool to evaluate the pattern of muscle changes in congenital myopathy. Further studies are needed to investigate the specificity and clinical value of RTE in the diagnosis and monitoring of neuromuscular disease. (orig.)

  13. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy

    International Nuclear Information System (INIS)

    Drakonaki, Eleni E.; Allen, Gina M.

    2010-01-01

    Congenital muscle dystrophy includes a range of genetic disorders characterized by muscle weakness and contractures. We report the magnetic resonance (MR), ultrasound (US) and real-time sonoelastography (RTE) imaging findings of the thigh muscles of a 15-year-old boy with Bethlem myopathy diagnosed with clinical, electromyographic and histopathological criteria. Ultrasound and MR showed hyperechoic appearance and high signal intensity on T1- and T2-weighted sequences respectively at the periphery of the vastus lateralis and the long head of the biceps femoris muscles, and at a central area within the rectus femoris muscles. RTE was employed to examine the elastic properties of the muscle. The elastograms were presented as colour-coded maps superimposed on the B-mode images and revealed that the elastographic pattern correlated with the MR and US pattern of involvement. The abnormal muscle areas were stiffer (blue) than the normal-appearing areas (green), a finding that probably correlates with the presence of dystrophic collagen at the affected areas. This report suggests that RTE could be used as an additional imaging tool to evaluate the pattern of muscle changes in congenital myopathy. Further studies are needed to investigate the specificity and clinical value of RTE in the diagnosis and monitoring of neuromuscular disease. (orig.)

  14. Cross-sectional area of human trunk paraspinal muscles before and after posterior lumbar surgery using magnetic resonance imaging.

    Science.gov (United States)

    Ghiasi, Mohammad S; Arjmand, Navid; Shirazi-Adl, Aboulfazl; Farahmand, Farzam; Hashemi, Hassan; Bagheri, Sahar; Valizadeh, Mahsa

    2016-03-01

    Iatrogenic injuries to paraspinal muscles during the posterior lumbar surgery (PLS) cause a reduction in their cross-sectional areas (CSAs) and contractile densities over time post-surgery. This study aims to quantify such alterations. Pre- and postoperative CSAs (~6 months interval) of all paraspinal muscles were measured in six patients undergoing PLS using a 3-T magnetic resonance (MR) scanner to quantify the alterations in geometrical and tissue effective contractile (non-fatty) CSAs of these muscles at all lumbar levels. To examine the presence of any confounding effects on recorded changes within ~7-month period, measurements were also carried out on ten healthy volunteers. In the healthy population, an important (~22%) portion of CSA of the erector spinae (ES) was noncontractile at the lower lumbar levels. Negligible variations over time in both the total geometrical (<1.7% in average) and contractile (<1.2%) CSAs of muscles were observed in the healthy group (i.e., no confounding effect). Following PLS, significant reductions were observed in the geometrical CSA of only multifidus (MF) muscle by ~14 and 11% as well as in its contractile CSA by ~26 and 14% at the L5-S1 and L4-L5 levels, respectively. The total CSA of ES at lower lumbar levels shows substantial noncontractile contents in both healthy and patient populations. Biomechanical models of the spine should hence account for the noncontractile contents using only the effective contractile muscle CSAs. Postoperative variations in CSAs of paraspinal muscles may have profound effects on patterns of muscle activities, spinal loading, and stability.

  15. Brief Report: Loss of Muscle Strength Prior to Knee Replacement: A Question of Anatomic Cross-Sectional Area or Specific Strength?

    Science.gov (United States)

    Culvenor, Adam G; Hamler, Felix C; Kemnitz, Jana; Wirth, Wolfgang; Eckstein, Felix

    2018-02-01

    To determine whether loss in thigh muscle strength prior to knee replacement is caused by reductions of muscle strength in the anatomic cross-sectional area or by reductions of specific strength. All 100 of the participants in the Osteoarthritis Initiative who underwent knee replacement and whose medical records included data on thigh isometric muscle strength and magnetic resonance imaging (MRI) (58 women, and 42 men, mean ± SD age 65 ± 8 years, mean ± SD body mass index [BMI] 29 ± 5 kg/m 2 ) were matched with a control (no knee replacement) for age, sex, height, BMI, and radiographic severity. Thigh muscle anatomic cross-sectional area was determined by MRI at the research visit before knee replacement (time 0) and 2 years before time 0 (time -2). Specific strength (strength/anatomic cross-sectional area) was calculated, and the measures were compared by conditional logistic regression (i.e., odds ratio [OR] per standard deviation). ORs adjusted for pain (OR adj ) and 95% confidence intervals (95% CIs) were also calculated. Knee replacement cases had significantly smaller extensor (but not flexor) anatomic cross-sectional areas than controls at time 0 (women, OR adj 1.89 [95% CI 1.05-3.90]; men, OR adj 2.22 [95% CI 1.04-4.76]), whereas no significant differences were found at time -2. Women who had knee replacement showed lower levels of extensor specific strength than controls at time 0 (OR 1.59 [95% CI 1.02-2.50]), although this difference was not observed in men and did not maintain significance after adjustment for pain (OR adj 1.22 [95% CI 0.71-2.08]). Female cases lost significantly more extensor specific strength between time -2 and time 0 than controls (OR adj 3.76 [95% CI 1.04-13.60]), whereas no significant differences were noted at time -2, or in men. Prior to knee replacement, a significant reduction in knee extensor strength appears to occur in women through 2 mechanisms: one driven by pain (loss of specific strength) and one independent of pain

  16. Genetic parameters for carcass and ultrasound traits in Hereford and admixed Simmental beef cattle: Accuracy of evaluating carcass traits.

    Science.gov (United States)

    Su, H; Golden, B; Hyde, L; Sanders, S; Garrick, D

    2017-11-01

    Genetic parameters are required to evaluate carcass merit using correlated real-time ultrasound (RTU) measurements. Many registered bulls and heifers are measured using RTU before consideration for selection as parents, whereas few animals are recorded for carcass traits and those are often crossbred steers. The objective of this study was to estimate genetic parameters required for evaluating carcass merit in the American Hereford Association (AHA) and the American Simmental Association (ASA) using multivariate models and to assess accuracy of carcass trait estimated breeding values (EBV) for selection candidates. All available carcass data including carcass weight (CWT), fat thickness (FAT), longissimus muscle area (LMA), and marbling score (MRB) were provided by the AHA and the ASA along with RTU data including fat thickness (UFAT), longissimus muscle area (ULMA), and percentage of intramuscular fat (UIMF). Carcass data comprised 6,054 AHA and 9,056 ASA cattle, while RTU data in comparable numbers from close relatives comprised 6,074 AHA and 7,753 ASA cattle. Pedigrees included 33,226 AHA and 37,665 ASA animals. Fixed effects for carcass and RTU data included contemporary group, age at scan/slaughter, and major breed percentages. Restricted maximum likelihood procedures were applied to all the carcass and RTU measurements, along with birth weight to account for selection, fitting 8-trait multivariate models separately for each breed association. Heritability estimates for AHA and ASA carcass traits were 0.41 ± 0.04 and 0.25 ± 0.03 for FAT, 0.47 ± 0.04 and 0.32 ± 0.03 for LMA, 0.48 ± 0.04 and 0.43 ± 0.04 for MRB, 0.51 ± 0.04 and 0.34 ± 0.03 for CWT, and for RTU traits were 0.29 ± 0.04 and 0.37 ± 0.03 for UFAT, 0.31 ± 0.04 and 0.44 ± 0.03 for ULMA, and 0.45 ± 0.04 and 0.42 ± 0.03 for UIMF. Genetic correlations for AHA and ASA analyses between FAT and UFAT were 0.74 ± 0.08 and 0.28 ± 0.13, between LMA and ULMA were 0.81 ± 0.07 and 0.57 ± 0.10, and

  17. Muscle necrosis - computer tomography aspects

    International Nuclear Information System (INIS)

    Franze, I.; Goebel, N.; Stuckmann, G.

    1985-01-01

    In four patients muscle necroses were observed. In two patients these were caused by intraoperative positioning, in one by having worked with a pneumatic hammer and in one possibly by alcohol. CT showed hypodense areas in the affected muscles which were - in the state of subacute necroses - surrounded by hyperaemic borders. The diagnosis was confirmed by puncture or biopsy. After six months hypodense areas were still perceptible in the atrophic muscles of two patients. (orig.) [de

  18. Beef carcasses with larger eye muscle areas, lower ossification scores and improved nutrition have a lower incidence of dark cutting.

    Science.gov (United States)

    McGilchrist, P; Alston, C L; Gardner, G E; Thomson, K L; Pethick, D W

    2012-12-01

    This study evaluated the effect of eye muscle area (EMA), ossification, carcass weight, marbling and rib fat depth on the incidence of dark cutting (pH(u)>5.7) using routinely collected Meat Standards Australia (MSA) data. Data was obtained from 204,072 carcasses at a Western Australian processor between 2002 and 2008. Binomial data of pH(u) compliance was analysed using a logit model in a Bayesian framework. Increasing eye muscle area from 40 to 80 cm², increased pH(u) compliance by around 14% (Pcutting. Increasing musculature and growth combined with good nutrition will minimise dark cutting beef in Australia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Muscle areas of lower limbs were determined by anthropometric and computed tomography in the adult of the masculine sex; Areas musculares del muslo y la pierna estimadas por antropometria y tomografia axial computadorizada en varones adultos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Vieitez, Jorge Alberto; Alvarez Cuesta, Jose Alberto; Williams Wilson, Luis [Centro Provincial de Medicina del Deporte, Holguin (Cuba)

    2000-07-01

    In a sample of 17 males (age 26 {sup +}{sub -} 5 years; weight 76.3 {sup +}{sub -} 7.1 kg and height 177.2 {sup +}{sub -} 3.9 cm) the differences, ratios and interchangeability among muscle areas (cm{sup 2}) of lower limbs (medial thigh and maximum leg) were determined by anthropometric (muscle area= [limb circumference (cm)- 0.31416 skinfold (mm)]2 /12.5664 and computed tomography. The anthropometric method overestimated muscle areas in both regions (thigh + 9.0 {sup +}{sub -} 12.8; p= 0.01 and leg: +8.5 {sup +}{sub -} 11.2; p=0.006). Relation between the two procedures was statistically significant (thigh r=0.9; p= 8.8 .10-7 and leg r=0.52; p=0.03). Both methods were interchangeable since neither the correlation coefficient (thigh r=0.42; leg r=0.38) nor the regression gradient (thigh b {sub {sub 0.21}} {sup +}{sub -} 0.12; leg b = -0.44{sup +}{sub -} 0.28) between the differences (anthropometric ? TAC) and the averages (anthropometric + TAC/ 2) in both methods were statistically significant (p>0.05). It was concluded that the anthropometric method requires certain adjustments to be able to estimate more accurately the muscle areas of lower limbs.

  20. Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.

    Science.gov (United States)

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James

    2015-07-15

    Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in

  1. Estimation of Genetic Parameters for Real-time Ultrasound Measurements for Hanwoo Cows at Different Ages and Pregnancy Status

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2014-02-01

    Full Text Available The purpose of this study was to estimate genetic parameters of ultrasound measurements for longissimus dorsi muscle area (LMA, backfat thickness (BFT, and marbling score (MS in Hanwoo cows (N = 3,062 at the ages between 18 and 42 months. Data were collected from 100 Hanwoo breeding farms in Gyeongbuk province, Korea, in 2007 and 2008. The cows were classified into four different age groups, i.e. 18 to 22 months (the first pregnancy period, 23 to 27 (the first parturition, 28 to 32 (the second pregnancy, and 33 to 42 (the second parturition, respectively. For each age group, a multi-trait animal model was used to estimate variance components and heritabilities of the three traits. The averages of LMA, BFT, and MS measurements across the cows of all age groups were 50.1 cm2, 4.62 mm, and 3.04, respectively and heritability estimates were 0.09, 0.10, and 0.08 for the respective traits. However, when the data were analyzed in different age groups, heritability estimates of LMA and BFT were 0.24 and 0.47, respectively, for the cows of 18 to 22 months of age, and 0.21 for MS in the 28 to 32 months old cows. When the cows of all age groups were used, the estimates of genetic (phenotypic correlations were 0.43 (0.35, −0.06 (0.34 and 0.21 (0.32 between LMA and BFT, LMA and MS, and BFT and MS, respectively. However, in the cow age group between 28 and 32 (18 and 22 months, the estimates of genetic (phenotypic correlations were 0.05 (0.29, −0.15 (0.24 and 0.38 (0.24, for the respective pairs of traits. These results suggest that genetic, environmental, and phenotypic variations differ depending on cow age, such that care must be taken when ultrasound measurements are applied to selection of cows for meat quality.

  2. Mean echogenicity and area of puborectalis muscle in women with stress urinary incontinence during pregnancy and after delivery

    NARCIS (Netherlands)

    van de Waarsenburg, Maria K; Withagen, Mariëlla I J; Grob, Anique T M; Schweitzer, Karlijn J; van Veelen, Greetje A; van der Vaart, Carl H

    2016-01-01

    INTRODUCTION AND HYPOTHESIS: Pregnancy and childbirth are risk factors for the development of stress urinary incontinence (SUI). Urinary continence depends on normal urethral support, which is provided by normal levator ani muscle function. Our objective was to compare mean echogenicity and the area

  3. Muscle force depends on the amount of transversal muscle loading.

    Science.gov (United States)

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evolutionarily stable strategy of carbon and nitrogen investments in forest leaves and its application in vegetation dynamic modeling

    Science.gov (United States)

    Weng, E.; Farrior, C.; Dybzinski, R.; Pacala, S. W.

    2015-12-01

    Leaf mass per area (LMA) and leaf lifespan (LL) are two highly correlated plant traits that are key to plant physiological and ecological properties. Usually, low LMA means short LL, high nitrogen (N) content per unit mass, and fast turnover rates of nutrients; high LMA leads to long LL, low N content, and slow turnover rates. Deciduous trees with low LMA and short lifespan leaves have low carbon cost but high nitrogen demand; and evergreen trees, with high LMA and long lifespan leaves, have high carbon cost but low nitrogen demand. These relationships lead to: 1) evergreen trees have higher leaf area index than deciduous trees; 2) evergreen trees' carbon use efficiency is lower than the deciduous trees' because of their thick leaves and therefore high maintenance respiration; 3) the advantage of evergreens trees brought by their extra leaves over deciduous trees diminishes with increase N in ecosystem. These facts determine who will win when trees compete with each other in a N-limited ecosystem. In this study, we formulate a mathematical model according to the relationships between LMA, LL, leaf nitrogen, and leaf building and maintenance cost, where LMA is the fundamental variable determining the other three. We analyze the evolutionarily stable strategies (ESSs) of LMA with this mathematical model by examining the benefits of carbon and nitrogen investments to leaves in ecosystems with different N. The model shows the ESS converges to low LMA at high N and high LMA at low N. At intermediate N, there are two ESSs at low and high ends of LMA, respectively. The ESS also leads to low forest productivity by outcompeting the possible high productive strategies. We design a simulation scheme in an individual-based competition model (LM3-PPA) to simulate forest dynamics as results of the competition between deciduous and evergreen trees in three different biomes, which are temperate deciduous forest, deciduous-evergreen mixed forest, and boreal evergreen forest. The

  5. No difference in long-term trunk muscle strength, cross-sectional area, and density in patients with chronic low back pain 7 to 11 years after lumbar fusion versus cognitive intervention and exercises.

    Science.gov (United States)

    Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I

    2011-08-01

    Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (parea was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Converging patterns of vertical variability in leaf morphology and nitrogen across seven Eucalyptus plantations in Brazil and Hawaii, USA

    Science.gov (United States)

    Adam P. Coble; Alisha Autio; Molly A. Cavaleri; Dan Binkley; Michael G. Ryan

    2014-01-01

    Across sites in Brazil and Hawaii, LMA and Nmass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations. Abstract Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (Narea) commonly increase with height. Previous research has suggested that these patterns...

  7. Magnetic resonance imaging of muscle tears

    International Nuclear Information System (INIS)

    De Smet, A.A.; Fisher, D.R.; Heiner, J.P.; Keene, J.S.

    1990-01-01

    Magnetic resonance scans were obtained on 17 patients with acute, subacute, or chronic muscle tears. These patients presented with complaints of persistent pain or a palpable mass. Magnetic resonance findings were characterized according to alterations in muscle shape and the presence of abnormal high signal within the injured muscle. These areas of high signal were noted on both T1-weighted and T2-weighted scans and were presumed to represent areas of intramuscular hemorrhage. (orig.)

  8. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  9. Variability of femoral muscle attachments.

    Science.gov (United States)

    Duda, G N; Brand, D; Freitag, S; Lierse, W; Schneider, E

    1996-09-01

    Analytical and experimental models of the musculoskeletal system often assume single values rather than ranges for anatomical input parameters. The hypothesis of the present study was that anatomical variability significantly influences the results of biomechanical analyses, specifically regarding the moment arms of the various thigh muscles. Insertions and origins of muscles crossing or attaching to the femur were digitized in six specimens. Muscle volumes were measured; muscle attachment area and centroid location were computed. To demonstrate the influence of inter-individual anatomic variability on a mechanical modeling parameter, the corresponding range of muscle moment arms were calculated. Standard deviations, as a percentage of the mean, were about 70% for attachment area and 80% for muscle volume and attachment centroid location. The resulting moment arms of the m. gluteus maximus and m. rectus femoris were especially sensitive to anatomical variations (SD 65%). The results indicate that sensitivity to anatomical variations should be analyzed in any investigation simulating musculoskeletal interactions. To avoid misinterpretations, investigators should consider using several anatomical configurations rather than relying on a mean data set.

  10. Çalışanların İş Güvencesizliğinin İşten Ayrılma Niyetleri Üzerindeki Etkisi: Alanya Bölgesindeki Beş Yıldızlı Otellerde Bir Araştırma

    OpenAIRE

    KARACAOĞLU, Korhan

    2018-01-01

    İş güvencesizliği, mevcut işin sürekliliğine engel olacak her türlü yasal veya yasal olmayan örgütsel değişimler sonucunda ortaya çıkan, işgörende, belirsizlik düşüncesine dayalı olarak işini kaybetme kaygısı doğuran durumlardır. Alan yazında iş güvencesizliğinin sonuçlarından biri olan işten ayrılma niyeti ise bir çalışanın yakın bir zamanda işine son verme isteğiyle ilgili düşüncesi olarak tanımlanmaktadır. Bu çalışmada iş güvencesizliği ile işten ayrılma niyeti arasındaki etkileşim Alanya ...

  11. CT assessment of muscle hypertrophy utilizing automatic contouring techniques

    International Nuclear Information System (INIS)

    Steinbach, L.S.; Block, J.; Steiger, P.W.; Ellis, W.; Morris, J.; Genant, H.K.

    1986-01-01

    Quantitative CT was one method used to assess changes in density and area of thigh muscles in paraplegics before and after aerobic leg training. Muscle density and area were measured from the CT image by an automatic contouring algorithm. In the first three patients, total muscle density increased from 11.5% to 18.3% and area increased from 18.3% to 31.3%. In one patient who did not comply with the exercise regimen, only a 10% increase in muscle density and area was detected. This CT program is valuable in the assessment of composition and alteration of limb musculature in the treatment and follow-up of muscular disorders

  12. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  13. [Difficult Ventilation Requiring Emergency Endotracheal Intubation during Awake Craniotomy Managed by Laryngeal Mask Airway].

    Science.gov (United States)

    Matsuda, Asako; Mizota, Toshiyuki; Tanaka, Tomoharu; Segawa, Hajime; Fukuda, Kazuhiko

    2016-04-01

    We report a case of difficult ventilation requiring emergency endotracheal intubation during awake craniotomy managed by laryngeal mask airway (LMA). A 45-year-old woman was scheduled to receive awake craniotomy for brain tumor in the frontal lobe. After anesthetic induction, airway was secured using ProSeal LMA and patient was mechanically ventilated in pressure-control mode. Patient's head was fixed with head-pins at anteflex position, and the operation started. About one hour after the start of the operation, tidal volume suddenly decreased. We immediately started manual ventilation, but the airway resistance was extremely high and we could not adequately ventilate the patient. We administered muscle relaxant for suspected laryngospasm, but ventilatory status did not improve; so we decided to conduct emergency endotracheal intubation. We tried to intubate using Airwayscope or LMA-Fastrach, but they were not effective in our case. Finally trachea was intubated using transnasal fiberoptic bronchoscopy. We discuss airway management during awake craniotomy, focusing on emergency endotracheal intubation during surgery.

  14. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    Directory of Open Access Journals (Sweden)

    Yüksel Korkmaz

    2010-01-01

    Full Text Available The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit.

  15. Regenerated rat skeletal muscle after periodic contusions

    Directory of Open Access Journals (Sweden)

    V.B. Minamoto

    2001-11-01

    Full Text Available In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8 and four (N = 9 months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively. Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003. Thus, we conclude that: a muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  16. Effect of toe-spread-out exercise on hallux valgus angle and cross-sectional area of abductor hallucis muscle in subjects with hallux valgus.

    Science.gov (United States)

    Kim, Moon-Hwan; Yi, Chung-Hwi; Weon, Jong-Hyuck; Cynn, Heon-Seock; Jung, Do-Young; Kwon, Oh-Yun

    2015-04-01

    [Purpose] This study investigated whether the toe-spread-out exercise affects the hallux valgus angle, the cross-sectional area of the abductor hallucis muscle, and the hallux valgus angle during active abduction. [Subjects and Methods] Twenty-four subjects with hallux valgus were randomly assigned to orthosis and orthosis plus toe-spread-out exercise groups. The orthosis group wore the orthosis for 8 weeks, while the orthosis plus toe-spread-out group also performed the toe-spread-out exercise. The hallux valgus angle, the cross-sectional area of the abductor hallucis muscle, and the hallux valgus angle during active abduction were measured initially and after 8 weeks by radiography and ultrasonography. [Results] While there were no significant changes in the three parameters in the orthosis group, there were significant differences in the orthosis plus toe-spread-out exercise group after 8 weeks. In addition there were significant differences in the three measures between the two groups. [Conclusion] The toe-spread-out exercise reduces the hallux valgus angle and hallux valgus angle during active abduction, and increases the cross-sectional area of the abductor hallucis muscle. The toe-spread-out exercise is recommended for patients with mild to moderate hallux valgus.

  17. Chronic exercise preserves lean muscle mass in masters athletes.

    Science.gov (United States)

    Wroblewski, Andrew P; Amati, Francesca; Smiley, Mark A; Goodpaster, Bret; Wright, Vonda

    2011-09-01

    Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.

  18. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    Science.gov (United States)

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  19. Evaluation of normal masseter muscles on ultrasonography

    International Nuclear Information System (INIS)

    Hwang, Hyoung Zoo; Kim, Gyu Tae; Choi, Yong Suk; Hwang, Eui Hwan

    2008-01-01

    To assess the internal echo intensity and morphological variability of masseter muscles on ultrasonography and to establish diagnostic criterion of estimation. Participants consisted of 50 young adults (male 25, female 25) without pathologic conditions and with full natural dentitions. Sonographic examinations were done with real time ultrasound equipment as Logiq 500 (GE Medical Systems, Seoul, Korea) at 3 parts according to lines paralleling with ala-tragus line as reference line. The thickness and area of masseter muscles according to reference line in cross-sectional images were measured at rest and at maximum contraction. The visibility and width of the internal echogenic intensity of the masseter muscles were also assessed and the muscle appearance was classified into 4 types. Data were statistically analyzed by paired t-test and x2-test. 1. When comparing the thickness and area of masseter muscles concerning with gender, there was few significant difference between right and left sides, however, there were significant differences between males and females except for the greatest thickness of left side. 2. The changes of the greatest thickness and the area between rest and maximum contraction showed that the part of the least thickness manifested more increase at maximum contraction. 3. Each part the manifestations of the internal echogenic intensity of the masseter muscles were different depending on the locations. But there was no statistically significance. Changes of muscles thickness with contraction and internal echogenic intensity with locations showed great disparity within the masseter muscles, which will be diagnostic criteria for pathophysiologic and anatomic changes of masseter muscles.

  20. Impaired macrophage and satellite cell infiltration occurs in a muscle-specific fashion following injury in diabetic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Matthew P Krause

    Full Text Available Systemic elevations in PAI-1 suppress the fibrinolytic pathway leading to poor collagen remodelling and delayed regeneration of tibialis anterior (TA muscles in type-1 diabetic Akita mice. However, how impaired collagen remodelling was specifically attenuating regeneration in Akita mice remained unknown. Furthermore, given intrinsic differences between muscle groups, it was unclear if the reparative responses between muscle groups were different.Here we reveal that diabetic Akita muscles display differential regenerative responses with the TA and gastrocnemius muscles exhibiting reduced regenerating myofiber area compared to wild-type mice, while soleus muscles displayed no difference between animal groups following injury. Collagen levels in TA and gastrocnemius, but not soleus, were significantly increased post-injury versus controls. At 5 days post-injury, when degenerating/necrotic regions were present in both animal groups, Akita TA and gastrocnemius muscles displayed reduced macrophage and satellite cell infiltration and poor myofiber formation. By 10 days post-injury, necrotic regions were absent in wild-type TA but persisted in Akita TA. In contrast, Akita soleus exhibited no impairment in any of these measures compared to wild-type soleus. In an effort to define how impaired collagen turnover was attenuating regeneration in Akita TA, a PAI-1 inhibitor (PAI-039 was orally administered to Akita mice following cardiotoxin injury. PAI-039 administration promoted macrophage and satellite cell infiltration into necrotic areas of the TA and gastrocnemius. Importantly, soleus muscles exhibit the highest inducible expression of MMP-9 following injury, providing a mechanism for normative collagen degradation and injury recovery in this muscle despite systemically elevated PAI-1.Our findings suggest the mechanism underlying how impaired collagen remodelling in type-1 diabetes results in delayed regeneration is an impairment in macrophage

  1. Respiratory muscle involvement in sarcoidosis.

    Science.gov (United States)

    Schreiber, Tina; Windisch, Wolfram

    2018-07-01

    In sarcoidosis, muscle involvement is common, but mostly asymptomatic. Currently, little is known about respiratory muscle and diaphragm involvement and function in patients with sarcoidosis. Reduced inspiratory muscle strength and/or a reduced diaphragm function may contribute to exertional dyspnea, fatigue and reduced health-related quality of life. Previous studies using volitional and non-volitional tests demonstrated a reduced inspiratory muscle strength in sarcoidosis compared to control subjects, and also showed that respiratory muscle function may even be significantly impaired in a subset of patients. Areas covered: This review examines the evidence on respiratory muscle involvement and its implications in sarcoidosis with emphasis on pathogenesis, diagnosis and treatment of respiratory muscle dysfunction. The presented evidence was identified by a literature search performed in PubMed and Medline for articles about respiratory and skeletal muscle function in sarcoidosis through to January 2018. Expert commentary: Respiratory muscle involvement in sarcoidosis is an underdiagnosed condition, which may have an important impact on dyspnea and health-related quality of life. Further studies are needed to understand the etiology, pathogenesis and extent of respiratory muscle involvement in sarcoidosis.

  2. The Effect of Commonly Performed Exercises on the Levator Hiatus Area and the Length and Strength of Pelvic Floor Muscles in Postpartum Women.

    Science.gov (United States)

    Siff, Lauren N; Hill, Audra J; Walters, Samantha J; Walters, Ginny; Walters, Mark D

    2018-05-02

    The aim oft his study was to compare the effects of 10 common exercises to traditional pelvic floor muscle (PFM) contractions (Kegel) on levator hiatus (LH) area and PFM length and strength. This is a cross-sectional study of 15 healthy postpartum women. Ten exercises were studied. These were common variations of leg, core, and back exercises used in yoga, Pilates, strength training, and physical therapy. Each participant performed all 10 exercises at a single visit in 2 examination settings: transperineal ultrasound and perineometry. Ultrasound measured the LH area and PFM length, and perineometry measured the muscle strength (peak squeeze pressure). Kegel generates an increase in squeeze pressure (24.3 cm H2O), shortens the muscles (-0.46 cm) and narrows the LH (-0.13 cm). The bird-dog and plank exercises were not different from Kegel in any measurement. While the leg-lift ultrasound dimensions are similar to Kegel, leg lifts generated peak squeeze pressures stronger than any other exercise (including Kegel). Whereas ultrasound dimensions were similar to Kegel, tucked and untucked squats and thigh adductions generated weaker contractions than Kegel. While crunch generated a squeeze pressure similar to Kegel, the ultrasound dimensions showed a significantly wider LH and longer muscle than Kegel. Bridge, clam, and plié exercises affected the PFMs differently than Kegel in all measures. Bird-dog, plank, and leg-lift exercises should be evaluated as alternative exercises to Kegel as they affect PFM strength and length and LH area similarly to Kegel, and leg lifts generate a stronger contraction than Kegel.

  3. Muscle hypertrophy: a narrative review on training principles for increasing muscle mass

    OpenAIRE

    Howe, Louis; Read, Paul; Waldron, Mark

    2017-01-01

    Developing muscle cross-sectional area has the potential to enhance performance for many athletes. Because emerging evidence challenges traditional beliefs regarding the prescription of hypertrophy-focused training programs, this review provides an overview of the current literature relating, specifically, to programming variables. Evidence-based recommendations are provided for the design of effective resistance-training programs, with the goal of increasing an athlete's skeletal muscle mass.

  4. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  5. Polonium-210 and radiocaesium in muscle tissue of fish from different Nordic marine areas

    International Nuclear Information System (INIS)

    Holm, E.

    1994-01-01

    210 Po and radiocaesium were analyzed in the muscle tissue of different species of fish from the Baltic Sea, the Norwegian Sea and Icelandic waters. On the basis of the results a dose assessment was made which demonstrates that the dose to the population from 210 Po originating from the consumption of fish from the Baltic Sea is similar so that from radiocaesium, even after the Chernobyl accident. For the other areas the dose from radiocaesium is smaller but of the same importance as that from 210 Po. Differences in salinity are of minor importance compared to the food chains with respect to 210 Po. (orig.)

  6. Magnetic resonance imaging of skeletal muscle in patients with Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Nagao, Hideo; Morimoto, Takehiko; Sano, Nozomi; Takahashi, Mitsugi; Nagai, Hironao; Tawa, Ritsuko; Yoshimatsu, Makoto; Woo Young-Jong; Matsuda, Hiroshi.

    1991-01-01

    Magnetic resonance imaging of skeletal muscles in thirteen patients with Duchenne muscular dystrophy was performed to estimate pathological changes. Serial axial and sagittal sections of the right lower extremity were recorded. In the early stage, the T 1 values of gastrocnemius and soleus muscles were slightly lower than the control values, and in the late stage, the values were much lower in all muscles examined. In sagittal sections, the gastrocnemius muscle in the early stage showed a high density area at the distal region adjacent to soleus muscle, and the soleus muscle showed a high density area adjacent to the gestrocnemius muscle. In serial axial sections, high density areas of the anterior and posterior tibialis muscles appeared first at their proximal and peripheral regions. It was concluded that the sequence of appearance of pathological changes was different not only among individual muscles but also among various regions of each muscle; the high density changes appeared first at myotendon junctions. (author)

  7. Detection of QTL for Carcass Quality on Chromosome 6 by Exploiting Linkage and Linkage Disequilibrium in Hanwoo

    Directory of Open Access Journals (Sweden)

    J.-H. Lee

    2012-01-01

    Full Text Available The purpose of this study was to improve mapping power and resolution for the QTL influencing carcass quality in Hanwoo, which was previously detected on the bovine chromosome (BTA 6. A sample of 427 steers were chosen, which were the progeny from 45 Korean proven sires in the Hanwoo Improvement Center, Seosan, Korea. The samples were genotyped with the set of 2,535 SNPs on BTA6 that were imbedded in the Illumina bovine 50 k chip. A linkage disequilibrium variance component mapping (LDVCM method, which exploited both linkage between sires and their steers and population-wide linkage disequilibrium, was applied to detect QTL for four carcass quality traits. Fifteen QTL were detected at 0.1% comparison-wise level, for which five, three, five, and two QTL were associated with carcass weight (CWT, backfat thickness (BFT, longissimus dorsi muscle area (LMA, and marbling score (Marb, respectively. The number of QTL was greater compared with our previous results, in which twelve QTL for carcass quality were detected on the BTA6 in the same population by applying other linkage disequilibrium mapping approaches. One QTL for LMA was detected on the distal region (110,285,672 to 110,633,096 bp with the most significant evidence for linkage (p<10−5. Another QTL that was detected on the proximal region (33,596,515 to 33,897,434 bp was pleiotrophic, i.e. influencing CWT, BFT, and LMA. Our results suggest that the LDVCM is a good alternative method for QTL fine-mapping in detection and characterization of QTL.

  8. Evaluating LMA and CLAMP: Using information criteria to choose a model for estimating elevation

    Science.gov (United States)

    Miller, I.; Green, W.; Zaitchik, B.; Brandon, M.; Hickey, L.

    2005-12-01

    The morphology of leaves and composition of the flora respond strongly to the moisture and temperature of their environment. Elevation and latitude correlate, at first order, to these atmospheric parameters. An obvious modern example of this relationship between leaf morphology and environment is the tree line, where boreal forests give way to artic (high latitude) or alpine (high elevation) tundra. Several quantitative methods, all of which rely on uniformitarianism, have been developed to estimate paleoelevation using fossil leaf morphology. These include 1) the univariate leaf-margin analysis (LMA), which estimates mean annual temperature (MAT) by the positive linear correlation between MAT and P, the proportion of entire or smooth to non-entire or toothed margined woody dicot angiosperm leaves within a flora and 2) the Climate Leaf Analysis Multivariate Program (CLAMP) which uses Canonical Correspondence Analysis (CCA) to estimate MAT, moist enthalpy, and other atmospheric parameters using 31 explanatory leaf characters from woody dicot angiosperms. Given a difference in leaf-estimated MAT or moist enthalpy between contemporaneous, synlatitudinal fossil floras-one at sea-level, the other at an unknown paleoelevation-paleoelevation may be estimated. These methods have been widely applied to orogenic settings and concentrate particularly in the Western US. We introduce the use of information criteria to compare different models for estimating elevation and show how the additional complexity of the CLAMP analytical methodology does not necessarily improve on the elevation estimates produced by simpler regression models. In addition, we discuss the signal-to-noise ratio in the data, give confidence intervals for detecting elevations, and address the problem of spatial autocorrelation and irregular sampling in the data.

  9. Paraspinal muscle hypotrophy and chronic discogenic low back pain

    Directory of Open Access Journals (Sweden)

    Truszczyńska-Baszak Aleksandra

    2018-01-01

    Full Text Available Study aim: Low back pain is accompanied by deconditioning of trunk muscles due to pain limiting patients’ physical activity, but so far it has not been explained whether the changes in the structure of muscles are the cause of disc disease or its result. The aim of the study was to analyze the prevalence of segmental paraspinal muscle hypotrophy in patients with chronic low back pain and sciatica. Material and methods: The study involved magnetic resonance imaging (MRI of 40 patients: 20 women and 20 men aged from 30 to 47, mean 39.51 ± 3.73 years, with single level disc extrusion at L4-L5. The entire cross-sectional area of the par­aspinal muscles, the adipose tissue area in the paraspinal muscles and the extensor muscle tissue area at the level of L4-L5 were measured and compared with the healthy L3-L4 level. T2-weighted axial slices were used to facilitate distinguishing between the muscle and the fat tissue. Results: Fat tissue ingrowth and paravertebral muscle tissue hypotrophy at the disc extrusion level were highly statistically significant (p < 0.001 compared to the healthy level. Conclusions: 1. Ingrowth of the adipose tissue into the muscle tissue occurs only at the level of disc extrusion. 2. It seems rea­sonable to introduce strengthening exercises after the resolution of pain in order to rebuild the muscles of the spine.

  10. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  11. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance.

    Science.gov (United States)

    Coble, Adam P; Fogel, Marilyn L; Parker, Geoffrey G

    2017-10-01

    In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in

  12. The muscle CT of thigh in chronic Werdnig-Hoffmann disease

    International Nuclear Information System (INIS)

    Horikawa, Hirosei; Konagaya, Masaaki; Takayanagi, Tetsuya; Otsuji, Hideaki

    1986-01-01

    In this paper, the muscle CT of thigh in chronic Werdnig-Hoffmann disease (chronic WH) was evaluated. The subjects were five cases of chronic WH (3 males and 2 females, ages ranging from 6 to 22 years) and four control males. All cases showed symmetrical muscular weakness. The proximal muscle were more affected than the distal in the upper limbs. But the muscle strength of hip adduction was relatively spared as compared with other strength of lower limbs. The CT scan was carried out at the upper quarter level between lesser trochanter and medial condyle of the femur. The muscle CT of cases aged 6 and 7 years showed the severely decreased cross-sectional area of muscle without significant decrease in density. The atrophic muscles were surrounded by a large amount of low density area. The hamstring muscles and the adductor muscles, especially adductor longus muscle (ALM), were less affected than the quadriceps femoris muscles. Spotty and moth-eaten low density areas were observed dominantly in the severely affected muscles. In the advanced cases, only ALM could be identified on the CT image. The other muscles were unable to be identified because of severe atrophy with extremely low density. These CT findings suggest the process of muscular wastings of chronic WH as follows; at first muscle fibers are atrophied due to denervation and sooner or later replaced with fat tissue. Moreover, the preservation of ALM suggests that loss of anterior horn cells does not always go on homogeneously. (author)

  13. Patterns of experimentally induced pain in pericranial muscles

    DEFF Research Database (Denmark)

    Schmidt-Hansen, Peter Thede; Svensson, Peter; Jensen, Troels Staehelin

    2006-01-01

    into the masseter muscle (anova: P pain areas (anova: P cervically innervated muscles had significantly different patterns of spread and referral of pain according to trigeminally vs....... cervically innervated dermatomes (P pain patterns and pain sensitivity in different craniofacial muscles in healthy volunteers, which may be of importance for further research on different craniofacial pain conditions.......Nociceptive mechanisms in the craniofacial muscle tissue are poorly understood. The pain pattern in individual pericranial muscles has not been described before. Experimental muscle pain was induced by standardized infusions of 0.2 ml 1 m hypertonic saline into six craniofacial muscles (masseter...

  14. On the global relationships between photosynthetic water-use efficiency, leaf mass per unit area and atmospheric demand in woody and herbaceous plants

    Science.gov (United States)

    Letts, M. G.; Fox, T. A.; Gulias, J.; Galmes, J.; Hikosaka, K.; Wright, I.; Flexas, J.; Awada, T.; Rodriguez-Calcerrada, J.; Tobita, H.

    2013-12-01

    A global dataset was compiled including woody and herbaceous C3 species from forest, Mediterranean and grassland-shrubland ecosystems, to elucidate the dependency of photosynthetic water-use efficiency on vapour pressure deficit (D) and leaf traits. Mean leaf mass per unit area (LMA) was lower and mass-based leaf nitrogen content (Nmass) was higher in herbaceous species. Higher mean stomatal conductance (gs), transpiration rate (E) and net CO2 assimilation rate under light saturating conditions (Amax) were observed in herbs, but photosynthetic and intrinsic water-use efficiencies (WUE = Amax/E and WUEi = Amax/gs) were lower than in woody plants. Woody species maintained stricter stomatal regulation of water loss at low D, resulting in a steeper positive and linear relationship between log D and log E. Herbaceous species possessed very high gs at low D, resulting in higher ratio of substomatal to atmospheric CO2 concentrations (ci/ca) and E, but lower WUE and WUEi than woody plants, despite higher Amax. The lower WUE and higher rates of gas exchange were most pronounced in herbs with low LMA and high Nmass. Photosynthetic water use also differed between species from grassland-shrubland and Mediterranean or forest environments. Water-use efficiency showed no relationship with either D or LMA in grassland-shrubland species, but showed a negative relationship with D in forest and chaparral. The distinct photosynthetic water-use of woody and herbaceous plants is consistent with the opportunistic growth strategy of herbs and the more conservative growth strategy of woody species. Further research is recommended to examine the implications of these functional group and ecosystem differences in the contexts of climate and atmospheric change.

  15. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  16. Ultrasonography to Measure Swallowing Muscle Mass and Quality in Older Patients With Sarcopenic Dysphagia.

    Science.gov (United States)

    Ogawa, Nami; Mori, Takashi; Fujishima, Ichiro; Wakabayashi, Hidetaka; Itoda, Masataka; Kunieda, Kenjiro; Shigematsu, Takashi; Nishioka, Shinta; Tohara, Haruka; Yamada, Minoru; Ogawa, Sumito

    2018-06-01

    Sarcopenic dysphagia is characterized by difficulty swallowing due to a loss of whole-body skeletal and swallowing muscle mass and function. However, no study has reported on swallowing muscle mass and quality in patients with sarcopenic dysphagia. To compare the differences in swallowing muscle mass and quality between sarcopenic and nonsarcopenic dysphagia. A cross-sectional study was performed in 55 older patients, who had been recommended to undergo dysphagia assessment and/or rehabilitation. Sarcopenic dysphagia was diagnosed using a diagnostic algorithm for sarcopenic dysphagia. The thickness and area of tongue muscle and geniohyoid muscle (coronal plane and sagittal plane), and the echo-intensity of the tongue and geniohyoid muscles were examined by ultrasound. The study participants included 31 males and 24 females (mean age of 82 ± 7 years), with 14 having possible sarcopenic dysphagia, 22 probable sarcopenic dysphagia, and 19 without sarcopenic dysphagia. The group with sarcopenic dysphagia had a significantly lower cross-sectional area and area of brightness of the tongue muscle than that observed in the group without sarcopenic dysphagia. The most specific factor for identifying the presence of sarcopenic dysphagia was tongue muscle area (sensitivity, 0.389; specificity, 0.947; cut-off value, 1536.0), while the factor with the highest sensitivity was geniohyoid muscle area brightness in sagittal sections (sensitivity, 0.806; specificity, 0.632; cut-off value, 20.1). Multivariate logistic regression analysis showed that the area of the tongue muscle and its area of brightness were independent risk factors for sarcopenic dysphagia. However, geniohyoid sagittal muscle area and area of brightness showed no significant independent association with sarcopenic dysphagia. Tongue muscle mass in patients with sarcopenic dysphagia was smaller than that in patients without the condition. Sarcopenic dysphagia was also associated with increased intensity of the

  17. Height is more important than light in determining leaf morphology in a tropical forest.

    Science.gov (United States)

    Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G

    2010-06-01

    Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.

  18. Age-related differences in the response of leg muscle cross-sectional area and water diffusivity measures to a period of supine rest.

    Science.gov (United States)

    Lorbergs, Amanda L; Noseworthy, Michael D; MacIntyre, Norma J

    2015-06-01

    The object was to assess whether cross-sectional area (CSA) and water diffusion properties of leg muscles in young and older women change with increased time spent in supine rest. Healthy young (n = 9, aged 20-30 years) and older (n = 9, aged 65-75 years) women underwent MRI scanning of the right leg at baseline, 30 and 60 min of supine rest. Muscle CSA was derived from proton density images. Water diffusion properties [apparent diffusion coefficient (ADC) and fractional anisotropy (FA)] of the tibialis anterior and posterior, soleus, and medial and lateral heads of the gastrocnemius were derived from diffusion tensor imaging (DTI). Repeated measures ANOVAs and Bonferroni post hoc tests determined the effects of time and group on each muscle outcome. In both groups, muscle CSA and FA did not significantly change over time, whereas ADC significantly decreased. A greater decline at 30 min for young women was only observed for ADC in the medial gastrocnemius. Regardless of age, ADC values decreased with fluid shift associated with time spent supine, whereas CSA and FA were not affected. For leg muscle assessment in young and older women, DTI scanning protocols should consider the amount of time spent in a recumbent position.

  19. Normalized STEAM-based diffusion tensor imaging provides a robust assessment of muscle tears in football players: preliminary results of a new approach to evaluate muscle injuries.

    Science.gov (United States)

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Karner, Manuela; Resinger, Christoph; Feiweier, Thorsten; Trattnig, Siegfried; Bogner, Wolfgang

    2018-02-08

    To assess acute muscle tears in professional football players by diffusion tensor imaging (DTI) and evaluate the impact of normalization of data. Eight football players with acute lower limb muscle tears were examined. DTI metrics of the injured muscle and corresponding healthy contralateral muscle and of ROIs drawn in muscle tears (ROI tear ) in the corresponding healthy contralateral muscle (ROI hc_t ) in a healthy area ipsilateral to the injury (ROI hi ) and in a corresponding contralateral area (ROI hc_i ) were compared. The same comparison was performed for ratios of the injured (ROI tear /ROI hi ) and contralateral sides (ROI hc_t /ROI hc_i ). ANOVA, Bonferroni-corrected post-hoc and Student's t-tests were used. Analyses of the entire muscle did not show any differences (p>0.05 each) except for axial diffusivity (AD; p=0.048). ROI tear showed higher mean diffusivity (MD) and AD than ROI hc_t (ptear than in ROI hi and ROI hc_t (ptear than in any other ROI (pmuscle tears in athletes especially after normalization to healthy muscle tissue. • STEAM-based DTI allows the investigation of muscle tears affecting professional football players. • Fractional anisotropy and mean diffusivity differ between injured and healthy muscle areas. • Only normalized data show differences of fibre tracking metrics in muscle tears. • The normalization of DTI-metrics enables a more robust characterization of muscle tears.

  20. Increased shedding of microvesicles from intimal smooth muscle cells in athero-prone areas of the human aorta: implications for understanding of the predisease stage.

    Science.gov (United States)

    Bobryshev, Yuri V; Killingsworth, Murray C; Orekhov, Alexander N

    2013-01-01

    This study evaluated whether a change in the content of matrix microvesicles might occur at the preatherosclerotic stage. Applying quantitative electron microscopic and immunohistochemical analyses, two areas of grossly normal segments of the thoracic aorta were compared: atherosclerosis-prone (AP) areas, situated at the dorsal aspect of the aorta along the rows of intercostal branch origins, and atherosclerosis-resistant (AR) areas, situated at the corresponding sites of the ventral aspect of the aorta. The electron microscopic analysis showed that there were 1.4 times more microvesicles in AP areas than AR areas (p = 0.019). It was found that matrix microvesicles originated as a result of blebbing and shedding of surface membranes of smooth muscle cells. A quantitative analysis of the expression of ADP-ribosylation factor 6 (ARF6), which is known to be involved in membrane trafficking and microvesicle formation, showed that ARF6 expression was 1.3 times higher in AP areas than that in AR areas (p = 0.006). There was a positive correlation between the content of matrix microparticles and the expression of ARF6 by intimal smooth muscle cells (r = 0.61; p < 0.0001). The present study supports the concept that alterations of the arterial intima occur at the predisease stage. Copyright © 2012 S. Karger AG, Basel.

  1. Skeletal muscle mechanics: questions, problems and possible solutions.

    Science.gov (United States)

    Herzog, Walter

    2017-09-16

    Skeletal muscle mechanics have been studied ever since people have shown an interest in human movement. However, our understanding of muscle contraction and muscle mechanical properties has changed fundamentally with the discovery of the sliding filament theory in 1954 and associated cross-bridge theory in 1957. Nevertheless, experimental evidence suggests that our knowledge of the mechanisms of contraction is far from complete, and muscle properties and muscle function in human movement remain largely unknown.In this manuscript, I am trying to identify some of the crucial challenges we are faced with in muscle mechanics, offer possible solutions to questions, and identify problems that might be worthwhile exploring in the future. Since it is impossible to tackle all (worthwhile) problems in a single manuscript, I identified three problems that are controversial, important, and close to my heart. They may be identified as follows: (i) mechanisms of muscle contraction, (ii) in vivo whole muscle mechanics and properties, and (iii) force-sharing among synergistic muscles. These topics are fundamental to our understanding of human movement and movement control, and they contain a series of unknowns and challenges to be explored in the future.It is my hope that this paper may serve as an inspiration for some, may challenge current beliefs in selected areas, tackle important problems in the area of muscle mechanics, physiology and movement control, and may guide and focus some of the thinking of future muscle mechanics research.

  2. MR muscle tractography study on VX2 soft-tissue tumor in rabbits

    International Nuclear Information System (INIS)

    Li Yonggang; Guo Liang; Xie Daohai; Hu Chunhogn; Guo Maofeng; Zhu Wei; Chen Jianhua; Xing Jianming; Wang Renfa

    2008-01-01

    Objective: To determine if diffusion tensor imaging (DTI) and muscle fiber tracts of muscle disease are feasible. Methods: Twenty Newzealand white rabbits were implanted with 0.2 ml VX 2 tumor tissue suspension in the right proximal thighs. MRI and DTI were performed on these rabbits and DTI of muscle fiber tracts in the muscles around the lesions were reconstructed. The fractional anisotropy(FA) and volume ratio anisotropy(VrA) of the tumor and the normal muscle were analyzed. The correlation study between MRI and pathological findings was done. Results: All experimental animal models of rabbit VX 2 soft tissue tumors were successfully established. The difference of FA between the central parenchyma area and the necrosis area, the peripheral area of the tumor, the adjacent and contralateral normal muscle was statistically significant (P 0.05). The difference of FA and VrA between the adjacent and contralateral normal muscle was not statistically significant (P>0.05). The arrangement of normal muscle was regular on DTI of muscle tract. The muscle around the tumor lesions was infiltrated and destructed, which demonstrated irregular and interrupted muscle fiber on muscle tractography. Conclusion: DTI is advantageous to demonstrate the structure of soft tissue tumors and its border, which should be helpful in the structure and function research of muscle, as well as in the diagnosis of muscle diseases. (authors)

  3. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Directory of Open Access Journals (Sweden)

    Kouki Nakagawa

    2017-01-01

    Full Text Available The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON, denervation (DN, and denervation with direct ES (DN + ES. Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA, and capillary-to-fiber (C/F ratio of the tibialis anterior (TA muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.

  4. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Science.gov (United States)

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  5. Effect of a Facial Muscle Exercise Device on Facial Rejuvenation.

    Science.gov (United States)

    Hwang, Ui-Jae; Kwon, Oh-Yun; Jung, Sung-Hoon; Ahn, Sun-Hee; Gwak, Gyeong-Tae

    2018-01-20

    The efficacy of facial muscle exercises (FMEs) for facial rejuvenation is controversial. In the majority of previous studies, nonquantitative assessment tools were used to assess the benefits of FMEs. This study examined the effectiveness of FMEs using a Pao (MTG, Nagoya, Japan) device to quantify facial rejuvenation. Fifty females were asked to perform FMEs using a Pao device for 30 seconds twice a day for 8 weeks. Facial muscle thickness and cross-sectional area were measured sonographically. Facial surface distance, surface area, and volumes were determined using a laser scanning system before and after FME. Facial muscle thickness, cross-sectional area, midfacial surface distances, jawline surface distance, and lower facial surface area and volume were compared bilaterally before and after FME using a paired Student t test. The cross-sectional areas of the zygomaticus major and digastric muscles increased significantly (right: P jawline surface distances (right: P = 0.004, left: P = 0.003) decreased significantly after FME using the Pao device. The lower facial surface areas (right: P = 0.005, left: P = 0.006) and volumes (right: P = 0.001, left: P = 0.002) were also significantly reduced after FME using the Pao device. FME using the Pao device can increase facial muscle thickness and cross-sectional area, thus contributing to facial rejuvenation. © 2018 The American Society for Aesthetic Plastic Surgery, Inc.

  6. The effect Mat Pilates practice on muscle mass in elderly women

    Directory of Open Access Journals (Sweden)

    Leliz Cristina Sampaio Queiroz

    2016-01-01

    Full Text Available Objective: to verify that the Mat Pilates practice increases muscle mass in elderly women. Methods: quasi-experimental study with primary data collection and with a convenience sample. The muscle mass of 43 elderly was evaluated for 11 weeks, by calculating the arm muscle area, before and after the intervention. Results:statistically significant difference was observed (p<0.002 between the average value of the arm muscle area, before (35.56cm2 and after the exercises (42.72cm2. Conclusion: mat Pilates program generates positive effect on increasing the muscle mass of elderly.

  7. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  8. Comparative study of patients suffering sore throat after general anesthesia using laryngeal mask airway and cuffed pharyngeal tube in adults

    Directory of Open Access Journals (Sweden)

    Hassani V

    2001-09-01

    Full Text Available Post-operative sore throat is one of the most common complications and complaints of patients after general anesthesia especially in operations that need endotracheal intubations. Its causes are: size of endotracheal tube and type of its cuff, inadequate airway humidification, trauma during intubation and suctioning, high flow of inspiratory gases, surgical manipulation of airway and adjacent organs, ect. Use of instruments with less invasion to upper respiratory tract, for example, face mask and airway, LMA or CPT are methods, used for decreasing the rate of post-operative sore throat. This study was performed to compare the rate of sore throat after general anesthesia between Laryngeal Mask Airway (LMA and Cuffed Pharyngeal Tube (CPT. From the patients, 120 ASA: PS-I cases, were selected, who were candidates for elective surgery of Orthopedics, Urology, General surgery and Gynecology in Hazrat Rasool-Akram Hospital Complex in the year 2000. Their operation were performed in supine position and did not need muscle relaxation and the patients had spontaneous breathing. Duration of surgery was less than 2 hours. The patients were randomly allocated into two groups: LMA was used for one group and CPT for others. Immediately after operation, in the recovery room and at 6, 12, 18 and 24 hours after removing the tube, the patients were asked about sore throat and the results were recorded in the related sheets. The results was 31.7 percent of patients in group LMA and 0 percent of patients in group CPT, had sore throat. There were significant difference between groups (LMA and CPT in presentation of sore throat (P<0.001.

  9. Morphometric analysis of somatotropic cells of the adenohypophysis and muscle fibers of the psoas muscle in the process of aging in humans.

    Science.gov (United States)

    Antić, Vladimir M; Stefanović, Natalija; Jovanović, Ivan; Antić, Milorad; Milić, Miroslav; Krstić, Miljan; Kundalić, Braca; Milošević, Verica

    2015-07-01

    The aim of this research was to quantify changes of the adenohypophyseal somatotropes and types 1 and 2 muscle fibers with aging, as well as to establish mutual interactions and correlations with age. Material was samples of hypophysis and psoas major muscle of 27 cadavers of both genders, aged from 30 to 90 years. Adenohypophyseal and psoas major tissue sections were immunohistochemically processed and stained by anti-human growth hormone and anti-fast myosin antibodies, respectively. Morphometric analysis was performed by ImageJ. Results of morphometric analysis showed a significant increase in the somatotrope area, and significant decrease in somatotrope volume density and nucleocytoplasmic ratio with age. Cross-sectional areas of types 1 and 2, and volume density of type 2 muscle fibers decreased significantly with age. One Way ANOVA showed that the latter cited changes in the somatotropes and types 1 and 2 muscle fibers mostly become significant after the age of 70. Significant positive correlation was observed between the area of the somatotropes and volume density of type 2 muscle fibers. A significant negative correlation was detected between the nucleocytoplasmic ratio of the somatotropes and cross-sectional areas of types 1 and 2 muscle fibers. So, it can be concluded that after the age of 70, there is significant loss of the anterior pituitary's somatotropes associated with hypertrophy and possible functional decline of the remained cells. Age-related changes in the somatotropes are correlated with the simultaneous atrophy of type 1, as well as with the atrophy and loss of type 2 muscle fibers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.

  11. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  12. Ultrasound assessment of hamstring muscle size using posterior thigh muscle thickness.

    Science.gov (United States)

    Abe, Takashi; Loenneke, Jeremy P; Thiebaud, Robert S

    2016-05-01

    Several studies have investigated the relationship between ultrasound-measured muscle thickness (MT) and individual muscle cross-sectional area (CSA) and muscle volume (MV) in extremity and trunk muscles; however, the hamstring muscle has not been studied. The purpose of this study was to examine the relationship between posterior thigh MT by ultrasound and the muscle CSA and MV of the hamstring obtained by magnetic resonance imaging (MRI). Ten young women aged 20-31 had MT measured by ultrasound at three sites on the medial anterior (50% of thigh length; TL) and posterior (50% and 70% of TL) aspects of the thigh. On the same day, a series of continuous muscle CSA along the thigh was measured by MRI. In each slice, the anatomical CSA of the hamstring (biceps femoris, semitendinosus and semimembranosus) and quadriceps muscle was analysed, and the CSAs at 50% and 70% of TL and maximal CSA of the hamstring (CSAmax ) were determined. MV was calculated by multiplying CSA by slice thickness. A significant correlation was observed between posterior 50% MT and 50% hamstring CSA (r = 0·848, P = 0·002) and between posterior 70% MT and 70% hamstring CSA (r = 0·679, P = 0·031). Posterior 50% MT (r = 0·732, P = 0·016) and 50% MTxTL (r = 0·873, P = 0·001) were also correlated to hamstring MV. Anterior:posterior 50% thigh MT ratio was correlated to MV ratio of quadriceps and hamstring muscles (r = 0·803, P = 0·005). Our results suggest that posterior thigh MT reflects hamstring muscle CSA and MV. The anterior:posterior MT ratio may serve as a surrogate for MV ratio of quadriceps and hamstring. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  13. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size.

    Directory of Open Access Journals (Sweden)

    Einar Eftestøl

    Full Text Available Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.

  14. Development of Human Muscle Protein Measurement with MRI

    Science.gov (United States)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  15. Comparative anatomy and muscle architecture of selected hind limb muscles in the Quarter Horse and Arab.

    Science.gov (United States)

    Crook, T C; Cruickshank, S E; McGowan, C M; Stubbs, N; Wakeling, J M; Wilson, A M; Payne, R C

    2008-02-01

    The Quarter Horse (bred for acceleration) and the Arab (bred for endurance) are situated at either end of the equine athletic spectrum. Studies into the form and function of the leg muscles in human sprint and endurance runners have demonstrated that differences exist in their muscle architecture. It is not known whether similar differences exist in the horse. Six Quarter Horse and six Arab fresh hind limb cadavers were dissected to gain information on the muscle mass and architecture of the following muscles: gluteus medius; biceps femoris; semitendinosus; vastus lateralis; gastrocnemius; tibialis cranialis and extensor digitorum longus. Specifically, muscle mass, fascicle length and pennation angle were quantified and physiological cross-sectional area (PCSA) and maximum isometric force were estimated. The hind limb muscles of the Quarter Horse were of a significantly greater mass, but had similar fascicle lengths and pennation angles when compared with those of the Arab; this resulted in the Quarter Horse hind limb muscles having greater PCSAs and hence greater isometric force potential. This study suggests that Quarter Horses as a breed inherently possess large strong hind limb muscles, with the potential to accelerate their body mass more rapidly than those of the Arab.

  16. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    If muscle force is a primary source for triggering bone adaptation, with disuse and reloading, bone changes should follow muscle changes. We examined the timing and magnitude of changes in muscle cross-sectional area (MCSA) and bone architecture in response to muscle inactivity following botulinum toxin (BTX) injection. We hypothesized that MCSA would return to baseline levels sooner than bone properties following BTX injection. Female BALB mice (15 weeks old) were injected with 20 muL of BTX (1 U/100 g body mass, n=18) or saline (SAL, n=18) into the posterior calf musculature of one limb. The contralateral limb (CON) served as an internal control. MCSA and bone properties were assessed at baseline, 2, 4, 8, 12, and 16 weeks post-injection using in vivo micro-CT at the tibia proximal metaphysis (bone only) and diaphysis. Muscles were dissected and weighed after sacrifice. Significant GroupxLegxTime interactions indicated that the maximal decrease in MCSA (56%), proximal metaphyseal BV/TV (38%) and proximal diaphyseal Ct.Ar (7%) occurred 4 weeks after injection. There was no delay prior to bone recovery as both muscle and bone properties began to recover after this time, but MCSA and BV/TV remained 15% and 20% lower, respectively, in the BTX-injected leg than the BTX-CON leg 16 weeks post-injection. Gastrocnemius mass (primarily fast-twitch) was 14% lower in the BTX-injected leg than the SAL-injected leg, while soleus mass (primarily slow-twitch) was 15% greater in the BTX group than the SAL group. Our finding that muscle size and bone began to recover at similar times after BTX injection was unexpected. This suggested that partial weight-bearing and/or return of slow-twitch muscle activity in the BTX leg may have been sufficient to stimulate bone recovery. Alternatively, muscle function may have recovered sooner than MCSA. Our results indicated that muscle cross-sectional area, while important, may not be the primary factor associated with bone loss and recovery

  17. Composition and cross-sectional area of muscle fibre types in relation to daily gain and lean and fat content of carcass in Landrace and Yorkshire pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available The muscle fibre-type properties of longissimus were compared between Landrace and Yorkshire breeds and between the sexes in an attempt to shed light on the relationship of these histochemical parameters to animal growth and carcass composition. Muscle fibres were classified into three groups, type I, type IIA and type IIB, using the myosin ATPase method. At a given live weight, the cross-sectional area of type I fibres (CSA I was smaller (p

  18. Skeletal muscle CT of lower extremities in myotonic dystrophy

    International Nuclear Information System (INIS)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirofumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya

    1988-01-01

    We evaluated the leg and thigh muscles of 4 control subjects and 10 patients with myotonic dystrophy using computed tomography. Taking previous reports about the skeletal muscle CT of myotonic dystrophy into account, we concluded that the following 5 features are characteristic of myotonic dystrophy: 1. The main change is the appearance of low-density areas in muscles; these areas reflect fat tissue. In addition, the muscle mass decreases in size. 2. The leg is more severely affected than the thigh. 3. In the thigh, although the m. quadriceps femoris, especially the vastus muscles, tends to be affected, the m. adductor longus and magnus tend to be preserved. 4. In the leg, although the m. tibialis anterior and m. triceps surae tend to be affected, the m. peroneus longus, brevis, and m. tibialis posterior tend to be preserved. 5. Compensatory hypertrophy is often observed in the m. rectus femoris, m. adductor longus, m. adductor magnus, m. peroneus longus, and m. peroneus brevis, accompanied by the involvement of their agonist muscles. (author)

  19. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Dalgas, Ulrik; Overgaard, Kristian

    2016-01-01

    by ATPase histochemistry. Enzymatic concentrations of citrate synthase (CS) and 3-Hydroxyacyl-coenzymeA-dehydrogenase (HAD) were determined using freeze-dried muscle tissue. Findings were correlated with clinical outcomes. RESULTS: In the paretic muscles the mean fiber area was smaller (P=0.......0004), and a lower proportion of type 1 fibers (P=0.0016) and a higher proportion of type 2X fibers (P=0.0002) were observed. The paretic muscle had lower CS (P=0.013) and HAD concentrations (P=0.037). Mean fiber area correlated with muscle strength (r=0.43, P=0.041), and CS concentration correlated with aerobic...

  20. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    Science.gov (United States)

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  1. A comparison of research into cachexia, wasting and related skeletal muscle syndromes in three chronic disease areas.

    Science.gov (United States)

    Stewart Coats, Andrew J; Shewan, Louise G

    2017-05-15

    We compared the frequency of cancer, heart and lung related cachexia and cachexia-related research articles in the specialist journal, Journal of Cachexia, Sarcopenia and Muscle (JCSM) to those seen in a leading European journal in each specialist area during 2015 and 2016 to assess whether work on cachexia and related fields is relatively over or under represented in each specialist area. In the dedicated journal, Journal of Cachexia, Sarcopenia and Muscle, there were 44 references related to cancer, 5 related to respiratory disease, 5 related to heart failure, and 21 related to more than one of these chronic diseases. Despite this cancer preponderance, in the European Journal of Cancer in the two publication years, there were only 5 relevant publications (0.67% of the journal output), compared to 16 (1.41%) in the European Respiratory Journal and 10 (2.19%) in the European Journal of Heart Failure. There is considerable under-representation of cancer cachexia-related papers in the major European Cancer journal despite a high proportion in the dedicated cachexia journal. The under-representation is even more marked when expressed as a percentage, 0.67%, compared to 1.41% and 2.19% of the lung and heart journals respectively. These results are consistent with a worrying lack of interest in, or publication of, cachexia and related syndromes research in the cancer literature in Europe compared to its importance as a clinical syndrome. Greater interest is shown in lung and cardiology journals. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting?

    Science.gov (United States)

    Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf

    2007-08-01

    Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer-related muscle wasting was not associated with increases in plasma MG or CK in this study.

  3. Association of cross-sectional area of the rectus capitis posterior minor muscle with active trigger points in chronic tension-type headache: a pilot study.

    Science.gov (United States)

    Fernández-de-Las-Peñas, César; Cuadrado, María Luz; Arendt-Nielsen, Lars; Ge, Hong-You; Pareja, Juan A

    2008-03-01

    To investigate whether cross-sectional area (CSA) of the suboccipital muscles was associated with active trigger points (TrPs) in chronic tension-type headache (CTTH). Magnetic resonance imaging (MRI) of the cervical spine was performed in 11 females with CTTH aged from 26 to 50 yrs old. CSA for both rectus capitis posterior minor (RCPmin) and rectus capitis posterior major (RCPmaj) muscles were measured from axial T1-weighted images, using axial MRI slices aligned parallel to the C2/3 intervertebral disc. A headache diary was kept for 4 wks to record the pain history. TrPs in the suboccipital muscle were identified by eliciting referred pain to palpation, and increased referred pain with muscle contraction. TrPs were considered active if the elicited referred pain reproduced the head pain pattern and features of the pattern seen during spontaneous headache attacks. Active TrPs were found in six patients (55%), whereas the remaining five patients showed latent TrPs. CSA of the RCPmin was significantly smaller (F = 13.843; P = 0.002) in the patients with active TrPs (right side: 55.9 +/- 4.4 mm; left side: 61.1 +/-: 3.8 mm) than in patients with latent TrPs (right side: 96.9 +/- 14.4 mm; left side: 88.7 +/- 9.7 mm). No significant differences were found for CSA of the RCPmaj between the patients with either active or latent TrP (P > 0.5). It seems that muscle atrophy in the RCPmin, but not in the RCPmaj, was associated with suboccipital active TrPs in CTTH, although studies with larger sample sizes are now required. It may be that nociceptive inputs in active TrPs could lead to muscle atrophy of the involved muscles. Muscle disuse or avoidance behavior can also be involved in atrophy.

  4. Electrically induced muscle cramps induce hypertrophy of calf muscles in healthy adults.

    Science.gov (United States)

    Behringer, M; Moser, M; Montag, J; McCourt, M; Tenner, D; Mester, J

    2015-06-01

    Skeletal muscles usually cramp at short lengths, where the tension that can be exerted by muscle fibers is low. Since high tension is an important anabolic stimulus, it is questionable if cramps can induce hypertrophy and strength gains. In the present study we investigated if electrically induced cramps (EIMCs) can elicit these adaptations. 15 healthy male adults were randomly assigned to an intervention (IG; n=10) and a control group (CG; n=5). The cramp protocol (CP) applied twice a week to one leg of the IG, consisted of 3x6 EIMCs, of 5 s each. Calf muscles of the opposite leg were stimulated equally, but were hindered from cramping by fixating the ankle at 0° plantar flexion (nCP). After six weeks, the cross sectional area of the triceps surae was similarly increased in both the CP (+9.0±3.4%) and the nCP (+6.8±3.7%). By contrast, force of maximal voluntary contractions, measured at 0° and 30° plantar flexion, increased significantly only in nCP (0°: +8.5±8.8%; 30°: 11.7±13.7%). The present data indicate that muscle cramps can induce hypertrophy in calf muscles, though lacking high tension as an important anabolic stimulus.

  5. Architectural differences between the hamstring muscles.

    Science.gov (United States)

    Kellis, Eleftherios; Galanis, Nikiforos; Kapetanos, George; Natsis, Konstantinos

    2012-08-01

    The purpose of this study was to understand the detailed architectural properties of the human hamstring muscles. The long (BFlh) and short (BFsh) head of biceps femoris, semimembranosus (SM) and semitendinosus (ST) muscles were dissected and removed from their origins in eight cadaveric specimens (age 67.8±4.3 years). Mean fiber length, sarcomere length, physiological cross-section area and pennation angle were measured. These data were then used to calculate a similarity index (δ) between pairs of muscles. The results indicated moderate similarity between BFlh and BFsh (δ=0.54) and between BFlh and SM (δ=0.35). In contrast, similarity was low between SM and ST (δ=0.98) and between BFlh and SM (δ=1.17). The fascicle length/muscle length ratio was higher for the ST (0.58) and BFsh (0.50) compared with the BFlh (0.27) and SM (0.22). There were, however, high inter-correlations between individual muscle architecture values, especially for muscle thickness and fascicle length data sets. Prediction of the whole hamstring architecture was achieved by combining data from all four muscles. These data show different designs of the hamstring muscles, especially between the SM and ST (medial) and BFlh and BFsh (lateral) muscles. Modeling the hamstrings as one muscle group by assuming uniform inter-muscular architecture yields less accurate representation of human hamstring muscle function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    skeletal muscle biopsies in patients with classic EDS (cEDS, n=5 (Denmark)+ 8 (The Netherlands)) and vascular EDS (vEDS, n=3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable...... isotope technique). RESULTS: The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared to c......EDS patients (fibronectin and MMP-2). DISCUSSION: The cEDS patients had surprisingly normal muscle morphology and protein synthesis, whereas vEDS patients demonstrated higher mRNA expression for extracellular matrix remodeling in skeletal musculature compared to cEDS patients....

  7. Effect of salbutamol on innervated and denervated rat soleus muscle

    Directory of Open Access Journals (Sweden)

    ?oic-Vranic T.

    2005-01-01

    Full Text Available The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10, treated with salbutamol (N = 30, denervated (N = 30, and treated with salbutamol after denervation (N = 30. Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21% in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  8. Motor cortical representation of the pelvic floor muscles.

    Science.gov (United States)

    Schrum, A; Wolff, S; van der Horst, C; Kuhtz-Buschbeck, J P

    2011-07-01

    Pelvic floor muscle training involves rhythmical voluntary contractions of the external urethral sphincter and ancillary pelvic floor muscles. The representation of these muscles in the motor cortex has not been located precisely and unambiguously. We used functional magnetic resonance imaging to determine brain activity during slow and fast pelvic floor contractions. Cerebral responses were recorded in 17 healthy male volunteers, 21 to 47 years old, with normal bladder control. Functional magnetic resonance imaging was performed during metronome paced slow (0.25 Hertz) and fast (0.7 Hertz) contractions of the pelvic floor that mimicked the interruption of voiding. To study the somatotopy of the cortical representations, flexion-extension movements of the right toes were performed as a control task. Functional magnetic resonance imaging during pelvic floor contractions detected activity of the supplementary motor area in the medial wall and of the midcingulate cortex, insula, posterior parietal cortex, putamen, thalamus, cerebellar vermis and upper ventral pons. There were no significant differences in activation between slow and fast contractions. Toe movements involved significantly stronger activity of the paracentral lobule (ie the medial primary motor cortex) than did the pelvic floor contractions. Otherwise the areas active during pelvic floor and leg muscle contractions overlapped considerably. The motor cortical representation of pelvic floor muscles is located mostly in the supplementary motor area. It extends further ventrally and anteriorly than the representation of distal leg muscles. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  10. Skeletal muscle weakness in osteogenesis imperfecta mice.

    Science.gov (United States)

    Gentry, Bettina A; Ferreira, J Andries; McCambridge, Amanda J; Brown, Marybeth; Phillips, Charlotte L

    2010-09-01

    Exercise intolerance, muscle fatigue and weakness are often-reported, little-investigated concerns of patients with osteogenesis imperfecta (OI). OI is a heritable connective tissue disorder hallmarked by bone fragility resulting primarily from dominant mutations in the proα1(I) or proα2(I) collagen genes and the recently discovered recessive mutations in post-translational modifying proteins of type I collagen. In this study we examined the soleus (S), plantaris (P), gastrocnemius (G), tibialis anterior (TA) and quadriceps (Q) muscles of mice expressing mild (+/oim) and moderately severe (oim/oim) OI for evidence of inherent muscle pathology. In particular, muscle weight, fiber cross-sectional area (CSA), fiber type, fiber histomorphology, fibrillar collagen content, absolute, relative and specific peak tetanic force (P(o), P(o)/mg and P(o)/CSA respectively) of individual muscles were evaluated. Oim/oim mouse muscles were generally smaller, contained less fibrillar collagen, had decreased P(o) and an inability to sustain P(o) for the 300-ms testing duration for specific muscles; +/oim mice had a similar but milder skeletal muscle phenotype. +/oim mice had mild weakness of specific muscles but were less affected than their oim/oim counterparts which demonstrated readily apparent skeletal muscle pathology. Therefore muscle weakness in oim mice reflects inherent skeletal muscle pathology. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Jaw muscles in older overdenture patients.

    Science.gov (United States)

    Newton, James P; McManus, Frank C; Menhenick, Stephen

    2004-03-01

    To determine, using computer tomography (CT), whether the retention of a small number of teeth in the older adult used to support overdentures could affect the cross-sectional area (CSA) and X-ray density of two jaw closing muscles. Cross-sectional study of a group of older patients subdivided into dentate, edentulous and those wearing overdentures supported by two to five teeth. The sample consisted of 24 subjects aged 55-68 years. CSA and X-ray density of two jaw closing muscles, masseter and medial pterygoid were measured and evaluated using CT. There were no significant differences between left and right jaw muscles, but the CSA of the masseter muscles were significantly larger than the medial pterygoid muscles. The CSA of the masseter and medial pterygoid muscles was significantly smaller in edentulous subjects compared with dentate subjects but no significant difference was observed between subjects wearing overdentures and those with a natural dentition. No significant differences were observed with the X-ray density between different muscles or dental states. The retention of a small number of teeth in the older adult used to support overdentures appears to sustain the CSA of two jaw closing muscles and therefore could enhance these patients' masticatory ability compared with those who were edentulous.

  12. Measurement of skeletal muscle area: Comparison of CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinelnikov, Andrey, E-mail: sinelnikovas@upmc.edu [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Qu, Chuanxing [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Fetzer, David T. [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Pelletier, Jean-Sébastien [Department of Surgery, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Dunn, Michael A. [Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tsung, Allan [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Furlan, Alessandro [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-10-15

    Objective: To investigate the intra- and inter-observer agreement and correlation between CT and MR measurements of skeletal muscle area (SMA) in the abdomen. Methods: CT and MR images from twelve patients were analyzed by two blinded observers using segmentation software (MITK-3M3, Mint Medical and Slice-O-Matic, Tomovision) to quantify SMA. MR images included T1w “in-phase”, T1w “out-of-phase”, and T2w sequences. Inter- and intra-observer agreement was assessed using the intraclass correlation coefficient (ICC). Pearson correlation coefficient (r) was used to correlate measurements obtained on MR with CT. CT and MR measurements were compared with Bland-Altman plots. Results: Intra- and inter-observer agreement for SMA was high for CT and MR. For MR, the measurements on T2w images showed the highest inter-observer agreement (ICC = 0.96). CT SMA correlated closely with MR, with T2w images showing the highest correlation (r = 0.98; P < 0.01). Bland-Altman plots showed a 1.7%–3.9% bias between CT and MR measurements, lowest for T2w images. Conclusions: MR SMA measurements are reproducible and correlate closely with CT. The T2w sequence is recommended to quantify SMA on MR images.

  13. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    Science.gov (United States)

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  14. Reliability of Ultrasonographic Measurement of Cervical Multifidus Muscle Dimensions during Isometric Contraction of Neck Muscles

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri Arimi

    2012-07-01

    Full Text Available Background and Aim: Cervical multifidus is considered as one of the most important neck stabilizers. Weakness and muscular atrophy of this muscle were seen in patients with chronic neck pain. Ultrasonographic imaging is a non-invasive and feasible technique that commonly used to record such changes and measure muscle dimensions. Therefore, the aim of this study was to evaluate the reliability of ultrasonographic measurement of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles. Materials and Method: Ten subjects (5 patients with chronic neck pain and 5 healthy subjects were recruited in this study. Cervical multifidus muscle’s dimensions were measured at the level of forth cervical vertebrae. Ultrasonographic measurement of cervical multifidus muscle at rest, 50% and 100% of maximal voluntary contraction (MVC were performed by one examiner within 1 week interval. The dimensions of cervical multifidus muscle including cross-sectional area (CSA, anterior posterior dimension (APD, and lateral dimension (LD were measured. Intraclass correlation coefficients (ICC, standard error of measurement (SEM and minimal detectable change (MDC were computed for data analysis.Results: The between days reliability of maximum strength of neck muscles and multifidus muscle dimensions at rest, 50% and 100% of MVC of neck muscles were good to excellent (ICC=0.75-0.99.Conclusion: The results of this study showed that ultrasonographic measuring of cervical multifidus muscle’s dimensions during isometric contraction of neck muscles at the level of C4 in females with chronic neck pain and healthy subjects is a reliable and repeatable method.

  15. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.

    Science.gov (United States)

    Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p run in the training group (r = 0.61, p running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.

  16. Neuromuscular organization of avian flight muscle: architecture of single muscle fibres in muscle units of the pectoralis (pars thoracicus) of pigeon (Columba livia)

    Science.gov (United States)

    Sokoloff, A. J.

    1999-01-01

    The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap 'in-series'. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.

  17. Artificial Muscles: Mechanisms, Applications, and Challenges.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2018-02-01

    The area of artificial muscle is a highly interdisciplinary field of research that has evolved rapidly in the last 30 years. Recent advances in nanomaterial fabrication and characterization, specifically carbon nanotubes and nanowires, have had major contributions in the development of artificial muscles. However, what can artificial muscles really do for humans? This question is considered here by first examining nature's solutions to this design problem and then discussing the structure, actuation mechanism, applications, and limitations of recently developed artificial muscles, including highly oriented semicrystalline polymer fibers; nanocomposite actuators; twisted nanofiber yarns; thermally activated shape-memory alloys; ionic-polymer/metal composites; dielectric-elastomer actuators; conducting polymers; stimuli-responsive gels; piezoelectric, electrostrictive, magnetostrictive, and photostrictive actuators; photoexcited actuators; electrostatic actuators; and pneumatic actuators. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.

    Science.gov (United States)

    Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E

    2014-05-01

    The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Induction and modulation of referred muscle pain in humans

    DEFF Research Database (Denmark)

    Laursen, René Johannes

    correlated to pain intensity, and LP and RP thresholds were reproducible within and between sessions. Experimentally (electrical stimulation and infusion of hypertonic saline) induced muscle pain seems to be mediated by myelinated and unmyelinated afferents and the peripheral component of RP by myelinated...... afferents. Furthermore, cutaneous anesthesia of the RP area resulted in a reduction of RP intensity of 22%, while a complete nerve block of afferents from the RP area resulted in a 40% reduction. In summary, observations from the presented experiments suggest that elicitation of referred muscle pain...... is depending on and correlated to local muscle pain. Peripheral input from the RP area is involved, but is not a necessary condition for RP to appear. The present studies as well as others suggest that central hyperexcitability is involved in the generation of RP, but further investigations on mechanisms of RP...

  20. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-09-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing.  However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  1. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-08-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing. However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  2. Muscle Research and Gene Ontology: New standards for improved data integration.

    Science.gov (United States)

    Feltrin, Erika; Campanaro, Stefano; Diehl, Alexander D; Ehler, Elisabeth; Faulkner, Georgine; Fordham, Jennifer; Gardin, Chiara; Harris, Midori; Hill, David; Knoell, Ralph; Laveder, Paolo; Mittempergher, Lorenza; Nori, Alessandra; Reggiani, Carlo; Sorrentino, Vincenzo; Volpe, Pompeo; Zara, Ivano; Valle, Giorgio; Deegan, Jennifer

    2009-01-29

    The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic) experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.

  3. Muscle Research and Gene Ontology: New standards for improved data integration

    Directory of Open Access Journals (Sweden)

    Nori Alessandra

    2009-01-01

    Full Text Available Abstract Background The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. Results The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. Conclusion The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.

  4. Trunk Muscle Size and Composition Assessment in Older Adults with Chronic Low Back Pain: An Intra-Examiner and Inter-Examiner Reliability Study.

    Science.gov (United States)

    Sions, Jaclyn Megan; Smith, Andrew Craig; Hicks, Gregory Evan; Elliott, James Matthew

    2016-08-01

     To evaluate intra- and inter-examiner reliability for the assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area, i.e., total cross-sectional area minus intramuscular fat, from T1-weighted magnetic resonance images obtained in older adults with chronic low back pain.  Reliability study.  n = 13 (69.3 ± 8.2 years old)  After lumbar magnetic resonance imaging, two examiners produced relative cross-sectional area measurements of multifidi, erector spinae, psoas, and quadratus lumborum by tracing regions of interest just inside fascial borders. Pixel-intensity summaries were used to determine muscle-to-fat infiltration indices; relative muscle cross-sectional area was calculated. Intraclass correlation coefficients were used to estimate intra- and inter-examiner reliability; standard error of measurement was calculated.  Intra-examiner intraclass correlation coefficient point estimates for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area were excellent for multifidi and erector spinae across levels L2-L5 (ICC = 0.77-0.99). At L3, intra-examiner reliability was excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area for both psoas and quadratus lumborum (ICC = 0.81-0.99). Inter-examiner intraclass correlation coefficients ranged from poor to excellent for relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area.  Assessment of relative cross-sectional area, muscle-to-fat infiltration indices, and relative muscle cross-sectional area in older adults with chronic low back pain can be reliably determined by one examiner from T1-weighted images. Such assessments provide valuable information, as muscle-to-fat infiltration indices and relative muscle cross-sectional area indicate that a substantial amount of

  5. Repeated blood flow restriction induces muscle fiber hypertrophy.

    Science.gov (United States)

    Sudo, Mizuki; Ando, Soichi; Kano, Yutaka

    2017-02-01

    We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P muscle fiber hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.

  6. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    Science.gov (United States)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  7. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.

    Science.gov (United States)

    Lee, David E; Brown, Jacob L; Rosa-Caldwell, Megan E; Blackwell, Thomas A; Perry, Richard A; Brown, Lemuel A; Khatri, Bhuwan; Seo, Dongwon; Bottje, Walter G; Washington, Tyrone A; Wiggs, Michael P; Kong, Byung-Whi; Greene, Nicholas P

    2017-05-01

    Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia. Copyright © 2017 the American Physiological Society.

  8. Convergent production and tolerance among 107 woody species and divergent production between shrubs and trees.

    Science.gov (United States)

    He, Wei-Ming; Sun, Zhen-Kai

    2016-02-08

    Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.

  9. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    Science.gov (United States)

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  10. Extraocular muscle architecture in hawks and owls.

    Science.gov (United States)

    Plochocki, Jeffrey H; Segev, Tamar; Grow, Wade; Hall, Margaret I

    2018-02-06

    A complete and accurate understanding of extraocular muscle function is important to the veterinary care of the avian eye. This is especially true for birds of prey, which rely heavily on vision for survival and yet are prone to ocular injury and disease. To better understand the function of extraocular muscles in birds of prey, we studied extraocular muscle architecture grossly and histologically. This sample was composed of two each of the following species: red-tailed hawk (Buteo jamaicensis), Harris's hawk (Parabuteo unicinctus), great horned owl (Bubo virginianus), and barn owl (Tyto alba). All extraocular muscles were dissected and weighed. To analyze muscle fiber architecture, the superior oblique and quadratus muscles were dissected, weighed, and sectioned at 5 μm thickness in the transverse plane. We calculated the physiologic cross-sectional area and the ratio of muscle mass to predicted effective maximum tetanic tension. Hawk and owl extraocular muscles exhibit significant physiological differences that play roles in ocular movements and closure of the nictitating membrane. Owls, which do not exhibit extraocular movement, have muscle architecture suited to stabilize the position of a massive, tubular eye that protrudes significantly from the orbit. Hawks, which have a more globose eye that is largely contained within the orbit, do not require as much muscular stability and instead have muscle architecture that facilitates rapid eye movement. © 2018 American College of Veterinary Ophthalmologists.

  11. Muscle MRI in neutral lipid storage disease (NLSD).

    Science.gov (United States)

    Garibaldi, Matteo; Tasca, Giorgio; Diaz-Manera, Jordi; Ottaviani, Pierfancesco; Laschena, Francesco; Pantoli, Donatella; Gerevini, Simonetta; Fiorillo, Chiara; Maggi, Lorenzo; Tasca, Elisabetta; D'Amico, Adele; Musumeci, Olimpia; Toscano, Antonio; Bruno, Claudio; Massa, Roberto; Angelini, Corrado; Bertini, Enrico; Antonini, Giovanni; Pennisi, Elena Maria

    2017-07-01

    Neutral lipid storage disease (NLSD) is a rare inherited disorder of lipid metabolism resulting in lipid droplets accumulation in different tissues. Skeletal muscle could be affected in both two different form of disease: NLSD with myopathy (NLSD-M) and NLSD with ichthyosis (NLSD-I). We present the muscle imaging data of 12 patients from the Italian Network for NLSD: ten patients presenting NLSD-M and two patients with NLSD-I. In NLSD-M gluteus minimus, semimembranosus, soleus and gastrocnemius medialis in the lower limbs and infraspinatus in the upper limbs were the most affected muscles. Gracilis, sartorius, subscapularis, pectoralis, triceps brachii and sternocleidomastoid were spared. Muscle involvement was not homogenous and characteristic "patchy" replacement was observed in at least one muscle in all the patients. Half of the patients showed one or more STIR positive muscles. In both NLSD-I cases muscle involvement was not observed by T1-TSE sequences, but one of them showed positive STIR images in more than one muscle in the leg. Our data provides evidence that muscle imaging can identify characteristic alterations in NLSD-M, characterized by a specific pattern of muscle involvement with "patchy" areas of fatty replacement. Larger cohorts are needed to assess if a distinct pattern of muscle involvement exists also for NLSD-I.

  12. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study.

    Science.gov (United States)

    Goubert, Dorien; De Pauw, Robby; Meeus, Mira; Willems, Tine; Cagnie, Barbara; Schouppe, Stijn; Van Oosterwijck, Jessica; Dhondt, Evy; Danneels, Lieven

    2017-09-01

    Heterogeneity exists within the low back pain (LBP) population. Some patients recover after every pain episode, whereas others suffer daily from LBP complaints. Until now, studies rarely make a distinction between recurrent low back pain (RLBP) and chronic low back pain (CLBP), although both are characterized by a different clinical picture. Clinical experiences also indicate that heterogeneity exists within the CLBP population. Muscle degeneration, like atrophy, fat infiltration, alterations in muscle fiber type, and altered muscle activity, compromises proper biomechanics and motion of the spinal units in LBP patients. The amount of alterations in muscle structure and muscle function of the paraspinal muscles might be related to the recurrence or chronicity of LBP. The aim of this experimental study is to evaluate differences in muscle structure (cross-sectional area and lean muscle fat index) and muscle activity of the multifidus (MF) and erector spinae (ES) during trunk extension, in patients with RLBP, non-continuous CLBP, and continuous CLBP. This cross-sectional study took place in the university hospital of Ghent, Belgium. Muscle structure characteristics and muscle activity were assessed by magnetic resonance imaging (MRI). Fifty-five adults with non-specific LBP (24 RLBP in remission, 15 non-continuous CLBP, 16 continuous CLBP) participated in this study. Total cross-sectional area, muscle cross-sectional area, fat cross-sectional area, lean muscle fat index, T2-rest and T2-shift were assessed. A T1-weighted Dixon MRI scan was used to evaluate spinal muscle cross-sectional area and fat infiltration in the lumbar MF and ES. Muscle functional MRI was used to evaluate the muscle activity of the lumbar MF and ES during a lumbar extension exercise. Before and after the exercise, a pain assessment was performed. This study was supported by grants from the Special Research Fund of Ghent University (DEF12/AOP/022) without potential conflict of interest

  13. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    Science.gov (United States)

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  14. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  15. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial.

    Science.gov (United States)

    Filippi, Guido M; Brunetti, Orazio; Botti, Fabio M; Panichi, Roberto; Roscini, Mauro; Camerota, Filippo; Cesari, Matteo; Pettorossi, Vito E

    2009-12-01

    Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. To determine the effect of a particular protocol of mechanical vibration, applied focally and repeatedly (repeated muscle vibration [rMV]) on the quadriceps muscles, on stance and lower-extremity muscle power of young-elderly women. Double-blind randomized controlled trial; 3-month follow-up after intervention. Human Physiology Laboratories, University of Perugia, Italy. Sedentary women volunteers (N=60), randomized in 3 groups (mean age +/- SD, 65.3+/-4.2y; range, 60-72). rMV (100Hz, 300-500microm, in three 10-minute sessions a day for 3 consecutive days) was applied to voluntary contracted quadriceps (vibrated and contracted group) and relaxed quadriceps (vibrated and relaxed group). A third group received placebo stimulation (nonvibrated group). Area of sway of the center of pressure, vertical jump height, and leg power. Twenty-four hours after the end of the complete series of applications, the area of sway of the center of pressure decreased significantly by approximately 20%, vertical jump increased by approximately 55%, and leg power increased by approximately 35%. These effects were maintained for at least 90 days after treatment. rMV is a short-lasting and noninvasive protocol that can significantly and persistently improve muscle performance in sedentary young-elderly women.

  16. Evaluation of muscle MRI in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Baba, Yuri; Kuroiwa, Yoshiyuki

    2005-01-01

    Various objective measurements can be used to diagnose amyotrophic lateral sclerosis (ALS). T2-weighted brain MRI images revealed high signal areas at the posterior limb of the internal capsules in ALS patients. Recently, muscle MRI proved useful to evaluate abnormalities of the muscle in myositis patients. Therefore, in the present study, we examined muscle MRI of leg muscles in ALS patients, and correlated MRI with functional measurements, such as muscle strength, and compound muscle action potential amplitude of the tibialis anterior (TA) after stimulation of the peroneal nerve. The subjects consisted of 10 ALS patients (7 males and 3 females), ranging in age from 49 to 87. Neurologic symptoms at the onset of ALS consisted of bulbar dysfunction in one patient, upper extremity involvement in three patients, and lower extremity involvement in six patients. Muscle MRI of the legs was performed in 9 (ALS patients. A peripheral nerve conduction study was performed on the peroneal nerve, with the recording electrode over the TA. The T2-weighted muscle MRI images revealed high signal aeras in the muscle in six ALS patients, whose muscle weakness existed predominantly in the lower extremities. Extracellular fluid accumulation has been proposed to be responsible for the signal increase of denervated muscles on T2-weighted muscle MRI images. We assume that muscle MRI is useful to demonstrate the distribution of muscle involvement in ALS patients and to assess the disease's stage. (author)

  17. Magnetic resonance imaging of skeletal muscle in patients with Duchenne muscular dystrophy; Serial axial and sagittal section studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Hideo (Ehime Univ., Matsuyama (Japan). Faculty of Education); Morimoto, Takehiko; Sano, Nozomi; Takahashi, Mitsugi; Nagai, Hironao; Tawa, Ritsuko; Yoshimatsu, Makoto; Woo Young-Jong; Matsuda, Hiroshi

    1991-01-01

    Magnetic resonance imaging of skeletal muscles in thirteen patients with Duchenne muscular dystrophy was performed to estimate pathological changes. Serial axial and sagittal sections of the right lower extremity were recorded. In the early stage, the T{sub 1} values of gastrocnemius and soleus muscles were slightly lower than the control values, and in the late stage, the values were much lower in all muscles examined. In sagittal sections, the gastrocnemius muscle in the early stage showed a high density area at the distal region adjacent to soleus muscle, and the soleus muscle showed a high density area adjacent to the gestrocnemius muscle. In serial axial sections, high density areas of the anterior and posterior tibialis muscles appeared first at their proximal and peripheral regions. It was concluded that the sequence of appearance of pathological changes was different not only among individual muscles but also among various regions of each muscle; the high density changes appeared first at myotendon junctions. (author).

  18. Trunk muscle quality assessed by computed tomography: Association with adiposity indices and glucose tolerance in men.

    Science.gov (United States)

    Maltais, Alexandre; Alméras, Natalie; Lemieux, Isabelle; Tremblay, Angelo; Bergeron, Jean; Poirier, Paul; Després, Jean-Pierre

    2018-04-12

    Thigh muscle attenuation measured by computed tomography (CT) has been shown to be a reliable and useful index of skeletal muscle fat infiltration. Thigh muscle fat content assessed by CT has been linked to obesity and type 2 diabetes and is a correlate of insulin resistance in sedentary individuals. However, as measurement of mid-thigh fat content requires the assessment of another region of interest beyond the usual abdominal scan required to measure levels of visceral and subcutaneous abdominal adipose tissue, this study aimed at testing the hypothesis that skeletal muscle fat measured from a single abdominal scan (L 4 -L 5 ) would also provide information relevant to the estimation of muscle fat infiltration as it relates to cardiometabolic risk. Abdominal (L 4 -L 5 ) and mid-thigh CT scans were performed in a sample of 221 sedentary men covering a wide range of adiposity values. Trunk muscles on the L 4 -L 5 scan were classified into 2 groups: 1) psoas and 2) core muscles. The two scans were segmented to calculate muscle areas, mean attenuation values as well as low-attenuation muscle (LAM) areas, the latter being considered as an index of skeletal muscle fat infiltration. Body mass index (BMI), body composition and waist circumference were assessed and a 75 g oral glucose tolerance test (OGTT) was performed. Mid-thigh, psoas and core LAM areas were all significantly associated with body composition indices (0.46 ≤ r ≤ 0.71, p < 0.0001) whereas trunk muscle indices were more strongly associated with visceral adiposity and waist circumference (0.54 ≤ r ≤ 0.79, p < 0.0001) than were mid-thigh muscle variables (0.44 ≤ r ≤ 0.62, p < 0.0001). Mid-thigh LAM area as well as psoas and core LAM areas were significantly associated with fasting glucose, 2-h plasma glucose levels, the glucose area under the curve and with the HOMA-IR index (mid-thigh LAM area: 0.18 ≤ r ≤ 0.25, p < 0.01; psoas LAM area: 0

  19. Impact of Weight Loss on Physical Function with Changes in Strength, Muscle Mass, and Muscle Fat Infiltration in Overweight to Moderately Obese Older Adults: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Adam J. Santanasto

    2011-01-01

    Full Text Available Purpose. Evaluate the effects of weight loss on muscle mass and area, muscle fat infiltration, strength, and their association with physical function. Methods. Thirty-six overweight to moderately obese, sedentary older adults were randomized into either a physical activity plus weight loss (PA+WL or physical activity plus successful aging health education (PA+SA program. Measurements included body composition by dual-energy X-ray absorptiometry, computerized tomography, knee extensor strength, and short physical performance battery (SPPB. Results. At 6 months, PA+WL lost greater thigh fat and muscle area compared to PA+SA. PA+WL lost 12.4% strength; PA+SA lost 1.0%. Muscle fat infiltration decreased significantly in PA+WL and PA+SA. Thigh fat area decreased 6-fold in comparison to lean area in PA+WL. Change in total SPPB score was strongly inversely correlated with change in fat but not with change in lean or strength. Conclusion. Weight loss resulted in additional improvements in function over exercise alone, primarily due to loss of body fat.

  20. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  1. Muscle biopsies off-set normal cellular signaling in surrounding musculature

    DEFF Research Database (Denmark)

    Krag, Thomas O; Hauerslev, Simon; Dahlqvist, Julia R

    2013-01-01

    muscle tissue for at least 3 weeks after the biopsy was performed and magnetic resonance imaging suggests that an effect of a biopsy may persist for at least 5 months. Cellular signaling after a biopsy resembles what is seen in severe limb-girdle muscular dystrophy type 2I with respect to protein......Studies of muscle physiology and muscular disorders often require muscle biopsies to answer questions about muscle biology. In this context, we have often wondered if muscle biopsies, especially if performed repeatedly, would affect interpretation of muscle morphology and cellular signaling. We...... hypothesized that muscle morphology and cellular signaling involved in myogenesis/regeneration and protein turnover can be changed by a previous muscle biopsy in close proximity to the area under investigation. Here we report a case where a past biopsy or biopsies affect cellular signaling of the surrounding...

  2. Stem cell antigen-1 in skeletal muscle function.

    Science.gov (United States)

    Bernstein, Harold S; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-08-15

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age.

  3. Increased skeletal muscle 11βHSD1 mRNA is associated with lower muscle strength in ageing.

    Directory of Open Access Journals (Sweden)

    Alixe H M Kilgour

    Full Text Available Sarcopenia, the loss of muscle mass and function with age, is associated with increased morbidity and mortality. Current understanding of the underlying mechanisms is limited. Glucocorticoids (GC in excess cause muscle weakness and atrophy. We hypothesized that GC may contribute to sarcopenia through elevated circulating levels or increased glucocorticoid receptor (GR signaling by increased expression of either GR or the GC-amplifying enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11βHSD1 in muscle.There were 82 participants; group 1 comprised 33 older men (mean age 70.2 years, SD 4.4 and 19 younger men (22.2 years, 1.7 and group 2 comprised 16 older men (79.1 years, 3.4 and 14 older women (80.1 years, 3.7. We measured muscle strength, mid-thigh cross-sectional area, fasting morning plasma cortisol, quadriceps muscle GR and 11βHSD1 mRNA, and urinary glucocorticoid metabolites. Data were analysed using multiple linear regression adjusting for age, gender and body size.Muscle strength and size were not associated with plasma cortisol, total urinary glucocorticoids or the ratio of urinary 5β-tetrahydrocortisol +5α-tetrahydrocortisol to tetrahydrocortisone (an index of systemic 11βHSD activity. Muscle strength was associated with 11βHSD1 mRNA levels (β -0.35, p = 0.04, but GR mRNA levels were not significantly associated with muscle strength or size.Although circulating levels of GC are not associated with muscle strength or size in either gender, increased cortisol generation within muscle by 11βHSD1 may contribute to loss of muscle strength with age, a key component of sarcopenia. Inhibition of 11βHSD1 may have therapeutic potential in sarcopenia.

  4. Creatine Supplementation and Skeletal Muscle Metabolism for Building Muscle Mass- Review of the Potential Mechanisms of Action.

    Science.gov (United States)

    Farshidfar, Farnaz; Pinder, Mark A; Myrie, Semone B

    2017-01-01

    Creatine, a very popular supplement among athletic populations, is of growing interest for clinical applications. Since over 90% of creatine is stored in skeletal muscle, the effect of creatine supplementation on muscle metabolism is a widely studied area. While numerous studies over the past few decades have shown that creatine supplementation has many favorable effects on skeletal muscle physiology and metabolism, including enhancing muscle mass (growth/hypertrophy); the underlying mechanisms are poorly understood. This report reviews studies addressing the mechanisms of action of creatine supplementation on skeletal muscle growth/hypertrophy. Early research proposed that the osmotic effect of creatine supplementation serves as a cellular stressor (osmosensing) that acts as an anabolic stimulus for protein synthesis signal pathways. Other reports indicated that creatine directly affects muscle protein synthesis via modulations of components in the mammalian target of rapamycin (mTOR) pathway. Creatine may also directly affect the myogenic process (formation of muscle tissue), by altering secretions of myokines, such as myostatin and insulin-like growth factor-1, and expressions of myogenic regulatory factors, resulting in enhanced satellite cells mitotic activities and differentiation into myofiber. Overall, there is still no clear understanding of the mechanisms of action regarding how creatine affects muscle mass/growth, but current evidence suggests it may exert its effects through multiple approaches, with converging impacts on protein synthesis and myogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A study of the masticatory muscles morphology and function on asymmetric prognathism

    International Nuclear Information System (INIS)

    Kondoh, Hirotoshi

    1991-01-01

    Each case was measured to analyze the cross sectional area of muscle and mandibular malposition amount using Computed Tomography (CT) photos and P-A cephalogram. At the same time, the relation of morphology and function between the cross sectional area of muscle and mandibular malposition amount was analyzed to examine the function of masseter using electromyography. To determine the relation between morphology and function of masseter in asymmetric prognathism, 23 cases were chosen for the study from among 11 male and 12 female patients who were diagnosed as asymmetric prognathism. In asymmetric prognathism, both morphology and function in the mandibular malposition side were recognized to be larger than that in the cross sectional area of muscle side, on the examination of the cross sectional area of muscle and the activity of masseter. A highly significant and positive correlation was recognized in the left and right difference between the masseteric and medial pterygoid section areas and the CT mandibular malposition amount which were examined by the CT photos. In the left and right difference between the masseteric and medial pterygoid section areas and in the left and right difference of the activity of masseter, there was also a highly positive and significant correlation. (author) 58 refs

  6. Effects of neuromuscular joint facilitation on bridging exercises with respect to deep muscle changes.

    Science.gov (United States)

    Zhou, Bin; Huang, QiuChen; Zheng, Tao; Huo, Ming; Maruyama, Hitoshi

    2015-05-01

    [Purpose] This study examined the effects of neuromuscular joint facilitation on bridging exercises by assessing the cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis. [Subjects] Twelve healthy men. [Methods] Four exercises were evaluated: (a) supine resting, (b) bridging resistance exercise involving posterior pelvic tilting, (c) bridging resistance exercise involving anterior pelvic tilting, and (d) bridging resistance exercise involving neuromuscular joint facilitation. The cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis were measured during each exercise. [Results] The cross-sectional area of the multifidus muscle and thickness of the musculus transversus abdominis were significantly greater in the neuromuscular joint facilitation group than the others. [Conclusion] Neuromuscular joint facilitation intervention improves the function of deep muscles such as the multifidus muscle and musculus transversus abdominis. Therefore, it can be recommended for application in clinical treatments such as that for back pain.

  7. Frailty syndrome and skeletal muscle: results from the Invecchiare in Chianti study.

    Science.gov (United States)

    Cesari, Matteo; Leeuwenburgh, Christiaan; Lauretani, Fulvio; Onder, Graziano; Bandinelli, Stefania; Maraldi, Cinzia; Guralnik, Jack M; Pahor, Marco; Ferrucci, Luigi

    2006-05-01

    Frailty is a common condition in elders and identifies a state of vulnerability for adverse health outcomes. Our objective was to provide a biological face validity to the well-established definition of frailty proposed by Fried et al. Data are from the baseline evaluation of 923 participants aged > or =65 y enrolled in the Invecchiare in Chianti study. Frailty was defined by the presence of > or =3 of the following criteria: weight loss, exhaustion, low walking speed, low hand grip strength, and physical inactivity. Muscle density and the ratios of muscle area and fat area to total calf area were measured by using a peripheral quantitative computerized tomography (pQCT) scan. Analyses of covariance and logistic regressions were performed to evaluate the relations between frailty and pQCT measures. The mean age (+/-SD) of the study sample was 74.8 +/- 6.8 y, and 81 participants (8.8%) had > or =3 frailty criteria. Participants with no frailty criteria had significantly higher muscle density (71.1 mg/cm(3), SE = 0.2) and muscle area (71.2%, SE = 0.4) than did frail participants (69.8 mg/cm(3), SE = 0.4; and 68.7%, SE = 1.1, respectively). Fat area was significantly higher in frail participants (22.0%, SE = 0.9) than in participants with no frailty criteria (20.3%, SE = 0.4). Physical inactivity and low walking speed were the frailty criteria that showed the strongest associations with pQCT measures. Frail subjects, identified by an easy and inexpensive frailty score, have lower muscle density and muscle mass and higher fat mass than do nonfrail persons.

  8. Muscle development in healthy children evaluated by bioelectrical impedance analysis.

    Science.gov (United States)

    Uchiyama, Tomoka; Nakayama, Takahiro; Kuru, Satoshi

    2017-02-01

    This study aimed to use bioelectrical impedance analysis (BIA) to generate a new muscle density index (MDI), the MDI_BIA, to evaluate muscle development, and to demonstrate the changes that occur in the BIA-based muscle cross-sectional area index (MCAI_BIA) that accompany growth. We also sought to determine the traceability of chronological changes in the MDI_BIA and MCAI_BIA. Healthy children (n=112) aged 8.68±3.16years (0.33-14.00years) underwent bioelectrical impedance (BI) measurements of their upper arms, thighs, and lower legs. The MDI_BIA and MCAI_BIA were calculated, and cross-sectional investigations were conducted into the changes in these indices that accompanied growth. Data collected after 1.10±0.08years from 45 participants determined the traceability of the chronological changes in the MDI_BIA and MCAI_BIA. The MDI_BIA and MCAI_BIA were significantly positively correlated with age and height at all locations (Pchildren, and they showed significant chronological increases. Hence, these indices could be used to represent muscle development and muscle mass increases. BIA is non-invasive, convenient, and economical and it may be useful in evaluating muscle development and muscle cross-sectional areas in children. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Vascular recruitment in forearm muscles during exercise

    DEFF Research Database (Denmark)

    Palm, T; Nielsen, S L; Lassen, N A

    1983-01-01

    a more massive recruitment of exchange area during exercise (a factor 12) than suspected on the basis of ultrafiltration in animals made with the prolonged venous stasis technique (showing a factor 2-5). The estimated variability in exchange surface area indicates, that animal studies of muscle...

  10. Fat Replacement of Paraspinal Muscles with Aging in Healthy Adults

    DEFF Research Database (Denmark)

    Dahlqvist, Julia R; Vissing, Christoffer R; Hedermann, Gitte

    2017-01-01

    also tested for association with sex, body mass index (BMI), physical activity, and lower back pain. RESULTS: Both paraspinal and leg fat fractions correlated directly with age (P ages, fat fraction was higher in paraspinal than leg muscles. The age-related increase in fat fraction...... was associated with lumbar paraspinal fat fraction (P activity or lower back pain. CONCLUSION: The paraspinal muscles were more susceptible to age-related changes than leg muscles. Further, men had......PURPOSE: The aims of this study were to investigate the age-related changes in fatty replacement and cross-sectional area (CSA) of cervical, thoracic, and lumbar paraspinal muscles versus leg muscles in healthy adults and to test for association between muscle fat fraction and lifestyle factors...

  11. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  12. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    Science.gov (United States)

    Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.

    2014-01-01

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324

  13. Comparison of Lateral Abdominal Muscle Thickness and Cross Sectional Area of Multifidus in Adolescent Soccer Players with and without Low Back Pain: A Case Control Study.

    Science.gov (United States)

    Noormohammadpour, Pardis; Hosseini Khezri, Alireza; Linek, Paweł; Mansournia, Mohammad Ali; Hassannejad, Alireza; Younesian, Ali; Farahbakhsh, Farzin; Kordi, Ramin

    2016-12-01

    Low back pain (LBP) is a common complaint amongst adolescent athletes. While different studies have shown association between LBP and trunk muscle thickness in the general population, few articles have studied it in adolescent athletes. The aim of this study is to compare lateral abdominal muscle thickness and function, and cross sectional area (CSA) of lumbar multifidus (LM) in adolescent soccer players with and without LBP. In total, 28 adolescent soccer players with and without LBP, from the premier league participated in this study. The thickness of external oblique, internal oblique and transversus abdominis and the CSA of the LM muscles at L4 level on both sides were measured at rest and contraction via ultrasound imaging (USI). In addition, leg length discrepancy, hamstring flexibility, active lumbar forward flexion, and isometric muscle endurance of trunk extensors were measured in both groups. (study design/setting: case control study). The mean (SD) age in LBP group and non-LBP group were 14.0 (1.1) and 14.1 (0.9) years, respectively. There was no significant difference in baseline characteristics of participants between groups. Findings showed no significant difference between LBP and non-LBP groups comparing all measured variables. The data obtained support that there is not a correlation between abdominal muscle thickness and CSA of the lumbar multifidi and LBP in adolescent soccer players. These findings suggest that other factors rather than the thickness of deep trunk muscles may play a more significant role in the etiology of LBP in adolescent soccer players.

  14. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia.

    NARCIS (Netherlands)

    Wust, R.C.; Jaspers, R.T.; Heyst, A.F.J. van; Hopman, M.T.E.; Hoofd, L.J.C.; Laarse, W.J. van der; Degens, H.

    2009-01-01

    Chronic exposure to hypoxia is associated with muscle atrophy (i.e., a reduction in muscle fiber cross-sectional area), reduced oxidative capacity, and capillary growth. It is controversial whether these changes are muscle and fiber type specific. We hypothesized that different regions of the same

  15. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  16. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury.

    Science.gov (United States)

    Finnerty, Celeste C; McKenna, Colleen F; Cambias, Lauren A; Brightwell, Camille R; Prasai, Anesh; Wang, Ye; El Ayadi, Amina; Herndon, David N; Suman, Oscar E; Fry, Christopher S

    2017-11-01

    Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7 CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P satellite cells in the aetiology of lean

  17. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Bellamy, Leeann; Parise, Gianni; Baker, Steven K; Phillips, Stuart M

    2013-01-01

    To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  18. Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.

    Science.gov (United States)

    Ruggiero, Marissa; Cless, Daniel; Infantolino, Benjamin

    2016-01-01

    Muscle architecture is an important component to typical musculoskeletal models. Previous studies of human muscle architecture have focused on a single joint, two adjacent joints, or an entire limb. To date, no study has presented muscle architecture for the upper and lower limbs of a single cadaver. Additionally, muscle architectural parameters from elderly cadavers are lacking, making it difficult to accurately model elderly populations. Therefore, the purpose of this study was to present muscle architecture of the upper and lower limbs of a 104 year old female cadaver. The major muscles of the upper and lower limbs were removed and the musculotendon mass, tendon mass, musculotendon length, tendon length, pennation angle, optimal fascicle length, physiological cross-sectional area, and tendon cross-sectional area were determined for each muscle. Data from this complete cadaver are presented in table format. The data from this study can be used to construct a musculoskeletal model of a specific individual who was ambulatory, something which has not been possible to date. This should increase the accuracy of the model output as the model will be representing a specific individual, not a synthesis of measurements from multiple individuals. Additionally, an elderly individual can be modeled which will provide insight into muscle function as we age.

  19. New Insights into Muscle Fibre Types in Casertana Pig

    Directory of Open Access Journals (Sweden)

    Salvatore Velotto

    2010-01-01

    Full Text Available Little is known about the Casertana pig. The aim of this study was to evaluate the effect of sex on histochemical and morphometrical characteristics of muscle fibres (myocytes in this pure breed and to verify the presence of giant fibres as well as vascularity of the muscle. Finally, maximum shortening velocity and isometric tension were measured in single muscle fibres. Sixteen Casertana pigs (8 males, 8 females from a farm in Campania (Italy were slaughtered at one year of age. Muscle tissues were obtained from psoas minor, rhomboideus and longissimus dorsi. Myofibres were stained for myosin adenosine triphosphatase, succinic dehydrogenase, and α-amylase-periodic acid schiff. For all fibre types, the area and perimeter were measured. Slowtwitch oxidative fibres, fast-twitch glycolytic fibres and fast-twitch oxidative-glycolytic fibres were histochemically differentiated; an image-analyzing system was used. The results showed significant differences between the sexes in the size of all three fibre types. The psoas minor muscle had a high percentage of slow-twitch oxidative fibres and contained more capillaries per fibre and per mm2 than rhomboideus and longissimus dorsi, in which fast-twitch glycolytic fibres dominated. The cross-sectional area of all fibre types was larger in longissimus dorsi than in rhomboideus and psoas minor muscles; the giant fibres were present in the longissimus dorsi muscle only. Besides, isometric tension values were higher in fast-twitch glycolytic fibres than in the other ones. Variations in fibre type composition may contribute to meat quality.

  20. Skin displacement analysis (SDA: a tool for the quantitative evaluation of skin movements elicited by underlying muscles in the face and neck area

    Directory of Open Access Journals (Sweden)

    Proebstle TM

    2011-04-01

    Full Text Available Thomas M ProebstleDepartment of Dermatology, University Clinic of Mainz, Mainz, GermanyBackground: Quantitative numerical analysis of skin displacement triggered by muscles inserting the overlaying skin would be useful for monitoring the inhibition of mimetic muscles.Methods: By using removable grid markings and digital photographs, skin displacement analysis (SDA was performed on 13 patients pre-treatment and on Days 1, 2, 3, and 7 after injection of 18 units of botulinum toxin type A (BoNT/A in the fronto-glabellar area.Results: At baseline, amplitudes of horizontal skin displacement with fronto-glabellar contraction showed a linear increase along the eyebrow laterally from the midline; mean values (±standard deviation [SD] 15 and 30 mm lateral to the midline were 3.2 ± 1.0 mm (range, 1.9–4.9 mm and 6.5 ± 1.4 mm (range 4.0–8.5 mm, respectively. After injection of BoNT/A, maximum horizontal skin displacement 30 mm lateral to the midline showed a mean reduction (±SD to 62% ± 23% at Day 2 and to 17% ± 16% at Day 7; corresponding values 15 mm lateral to the midline were 62% ± 29% and 15% ± 20%, respectively. In all cases, the reduction in horizontal skin displacement compared with pre-injection levels was statistically significant (P < 0.001.Conclusion: SDA is a feasible method for the quantitative evaluation of skin movements elicited by muscles inserting the overlaying skin in the face and neck area.Keywords: botulinum toxin type A, fronto-glabellar contraction, skin displacement analysis, glabellar lines

  1. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  2. Direct measurement of skeletal muscle fatigue in patients with chronic heart failure.

    OpenAIRE

    Buller, N P; Jones, D; Poole-Wilson, P A

    1991-01-01

    Skeletal muscle function was measured as force production and fatigue in both the quadriceps (a large locomotive muscle) and adductor pollicis (a small intrinsic hand muscle) in five healthy volunteers, five patients with mild chronic heart failure, and five patients with severe chronic heart failure. The quadriceps of patients with chronic heart failure had a reduced muscle cross sectional area, a reduced maximum isometric force production, and an increased tendency to fatigue. Isometric for...

  3. Hypoxia Aggravates Inactivity-Related Muscle Wasting

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    2018-05-01

    Full Text Available Poor musculoskeletal state is commonly observed in numerous clinical populations such as chronic obstructive pulmonary disease (COPD and heart failure patients. It, however, remains unresolved whether systemic hypoxemia, typically associated with such clinical conditions, directly contributes to muscle deterioration. We aimed to experimentally elucidate the effects of systemic environmental hypoxia upon inactivity-related muscle wasting. For this purpose, fourteen healthy, male participants underwent three 21-day long interventions in a randomized, cross-over designed manner: (i bed rest in normoxia (NBR; PiO2 = 133.1 ± 0.3 mmHg, (ii bed rest in normobaric hypoxia (HBR; PiO2 = 90.0 ± 0.4 mmHg and ambulatory confinement in normobaric hypoxia (HAmb; PiO2 = 90.0 ± 0.4 mmHg. Peripheral quantitative computed tomography and vastus lateralis muscle biopsies were performed before and after the interventions to obtain thigh and calf muscle cross-sectional areas and muscle fiber phenotype changes, respectively. A significant reduction of thigh muscle size following NBR (-6.9%, SE 0.8%; P < 0.001 was further aggravated following HBR (-9.7%, SE 1.2%; P = 0.027. Bed rest-induced muscle wasting in the calf was, by contrast, not exacerbated by hypoxic conditions (P = 0.47. Reductions in both thigh (-2.7%, SE 1.1%, P = 0.017 and calf (-3.3%, SE 0.7%, P < 0.001 muscle size were noted following HAmb. A significant and comparable increase in type 2× fiber percentage of the vastus lateralis muscle was noted following both bed rest interventions (NBR = +3.1%, SE 2.6%, HBR = +3.9%, SE 2.7%, P < 0.05. Collectively, these data indicate that hypoxia can exacerbate inactivity-related muscle wasting in healthy active participants and moreover suggest that the combination of both, hypoxemia and lack of activity, as seen in COPD patients, might be particularly harmful for muscle tissue.

  4. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  5. Comparisons of predictive values of sarcopenia with different muscle mass indices in Korean rural older adults: a longitudinal analysis of the Aging Study of PyeongChang Rural Area

    Directory of Open Access Journals (Sweden)

    Jang IY

    2018-01-01

    Full Text Available Il-Young Jang,1,2,* Hee-Won Jung,3,4,* Chang Ki Lee,5 Sang Soo Yu,2 Young Soo Lee,1 Eunju Lee1 1Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 2PyeongChang Health Center & County Hospital, Gangwon-Do, 3Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST, Daejeon, 4Geriatric Center, Seoul National University Bundang Hospital, Gyeonggi-Do, 5Goldman Urology Clinic, Seoul, Republic of Korea *These authors contributed equally to this work Purpose: It is important to define lean muscle mass when diagnosing sarcopenia, but there is still controversy on the clinical implication of sarcopenia derived by height, weight, and body mass index (BMI adjusted muscle mass indices. We aimed to evaluate the longitudinal clinical relevance of 3 sarcopenia definitions in the Korean population. Patients and methods: We conducted comprehensive geriatric assessments for 1,379 community-dwelling older participants in the Aging Study of PyeongChang Rural Area (ASPRA cohort and followed them up prospectively for death, institutionalization, and disability every 3 months. Sarcopenia was defined using the Asian Working Group consensus algorithm, combining grip strength, gait speed, and muscle mass.Results: Among 1,343 participants (mean age: 76 years, 741 women analyzed, there were 29 deaths and 89 institutionalizations during 22.0 ± 8.3 months follow-up (mean ± SD. All three muscle indices correlated to age and sex. All sarcopenia criteria with muscle mass indices of height, weight, and body mass index (BMI adjustment significantly predicted death or institutionalization. However, when adjusted for age and sex, only the sarcopenia criteria with muscle mass index of height adjustment were significantly associated with major adverse health outcomes.Conclusion: Adjusting age and gender, the sarcopenia definition from the quintile-based muscle index of height

  6. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  7. Skeletal Muscle Cell Induction from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yusaku Kodaka

    2017-01-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD. Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.

  8. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.

    Science.gov (United States)

    Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon

    2017-09-01

    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.

  9. Levator claviculae muscle presenting as a hard clavicular mass: imaging study

    International Nuclear Information System (INIS)

    Ruiz Santiago, F.; Lopez Milena, G.; Tristan Fernandez, J.M.; Chamorro Santos, C.

    2001-01-01

    We report a case of levator claviculae muscle presenting clinically as a hard mass in the clavicular area due to angular deformity of this bone. To our knowledge, this is the first report where the anomalous muscle shows this clinical presentation. (orig.)

  10. Intramuscular degeneration process in Duchenne muscular dystrophy; Investigation by longitudinal MR imaging of the skeletal muscles

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Takeshi; Matsumra, Kiichiro (Shimoshizu National Hospital, Yotsukaido, Chiba (Japan)); Hashimoto, Takahiro; Ikehira, Hiroo; Fukuda, Hiroshi; Tateno, Yukio

    1992-03-01

    Intramuscular degeneration process of Duchenne dystrophy skeletal muscles was investigated by longitudinal skeletal muscle imaging with high-field-strength NMR-CT of 1.5 Tesla. Thigh muscles in 10 cases ranging in age from 4 to 19 years were examined by T{sub 1}-weighted longitudinal images (TR=215{approx}505 ms, TE=19{approx}20 ms). The following results were obtained. Skeletal muscle degeneration was depicted as high signal intensity area reflecting its high fat contents. These high signal intensity areas had a longitudinally streaky appearance in parallel direction with myofibers. These findings were more prominent toward myotendon junction than muscle bellies. Skeletal muscle degeneration progressed rapidly between 7 to 10 years of age, and reached a plateau after that. (author).

  11. Magnetic resonance findings in skeletal muscle tears

    International Nuclear Information System (INIS)

    De Smet, A.A.

    1993-01-01

    Magnetic resonance (MR) images of skeletal muscle tears can clearly delineate the severity of muscle injury. Although MR imaging is seldom necessary in patients with acute musle trauma, it can be helpful in deciding on clinical management. The two major MR findings in acute muscle tears are deformity of the muscle and the presence of abnormal signal reflecting hemorrhage and edema. In acute tears, methemoglobin within the extravascular blood causes high-signal areas on both T1- and T2-weighted images. With partial tears, the blood may dissect in a distinctive linear pattern along the muscle bundles and fibers. As healing begins, the muscle signal diminishes, first on the T1-weighted images and then on the T2-weighted images. When there is residual abnormal signal on images obtained more than several months after the injury, it is presumed to represent hemorrhage from recurrent tears. In patients with a questionable history of a remote injury, the clinical presentation may be that of persistent pain or a soft tissue mass. In these cases MR imaging may identify the cause of the pain and can exclude a neoplasm by proving that the mass is a hypertrophied or retracted musle. Thus, MR imaging has a limited, but occasionally important role in selected patients with skeletal muscle tears. (orig.)

  12. Impact of Skeletal Muscle Mass Index, Intramuscular Adipose Tissue Content, and Visceral to Subcutaneous Adipose Tissue Area Ratio on Early Mortality of Living Donor Liver Transplantation.

    Science.gov (United States)

    Hamaguchi, Yuhei; Kaido, Toshimi; Okumura, Shinya; Kobayashi, Atsushi; Shirai, Hisaya; Yagi, Shintaro; Kamo, Naoko; Okajima, Hideaki; Uemoto, Shinji

    2017-03-01

    Skeletal muscle depletion has been shown to be an independent risk factor for poor survival in various diseases. However, in surgery, the significance of other body components including visceral and subcutaneous adipose tissue remains unclear. This retrospective study included 250 adult patients undergoing living donor liver transplantation (LDLT) between January 2008 and April 2015. Using preoperative plain computed tomography imaging at the third lumbar vertebra level, skeletal muscle mass, muscle quality, and visceral adiposity were evaluated by the skeletal muscle mass index (SMI), intramuscular adipose tissue content (IMAC), and visceral to subcutaneous adipose tissue area ratio (VSR), respectively. The cutoff values of these parameters were determined for men and women separately using the data of 657 healthy donors for LDLT between 2005 and 2016. Impact of these parameters on outcomes after LDLT was analyzed. VSR was significantly correlated with patient age (P = 0.041), neutrophil-lymphocyte ratio (P mass index (P normal group. On multivariate analysis, low SMI (hazard ratio [HR], 2.367, P = 0.002), high IMAC (HR, 2.096, P = 0.004), and high VSR (HR, 2.213, P = 0.003) were identified as independent risk factors for death after LDLT. Preoperative visceral adiposity, as well as low muscularity, was closely involved with posttransplant mortality.

  13. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.

    Science.gov (United States)

    Callister, Robert J; Pierce, Patricia A; McDonagh, Jennifer C; Stuart, Douglas G

    2005-04-01

    A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC-SO, 9%; FOG, 20%; Fg, 71% vs. TeC4-SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (4-47%) paralleled that of the SO fibers (9-58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each

  14. Patterns of Age-Associated Degeneration Differ in Shoulder Muscles

    Science.gov (United States)

    Raz, Yotam; Henseler, Jan F.; Kolk, Arjen; Riaz, Muhammad; van der Zwaal, Peer; Nagels, Jochem; Nelissen, Rob G. H. H.; Raz, Vered

    2015-01-01

    Shoulder complaints are common in the elderly and hamper daily functioning. These complaints are often caused by tears in the muscle-tendon units of the rotator cuff (RC). The four RC muscles stabilize the shoulder joint. While some RC muscles are frequently torn in shoulder complaints others remain intact. The pathological changes in RC muscles are poorly understood. We investigated changes in RC muscle pathology combining radiological and histological procedures. We measured cross sectional area (CSA) and fatty infiltration from Magnetic Resonance Imaging with Arthrography (MRA) in subjects without (N = 294) and with (N = 109) RC-tears. Normalized muscle CSA of the four RC muscles and the deltoid shoulder muscle were compared and age-associated patterns of muscle atrophy and fatty infiltration were constructed. We identified two distinct age-associated patterns: in the supraspinatus and subscapularis RC muscles CSAs continuously declined throughout adulthood, whereas in the infraspinatus and deltoid reduced CSA was prominent from midlife onwards. In the teres minor, CSA was unchanged with age. Most importantly, age-associated patterns were highly similar between subjects without RC tear and those with RC-tears. This suggests that extensive RC muscle atrophy during aging could contribute to RC pathology. We compared muscle pathology between torn infraspinatus and non-torn teres minor and the deltoid in two patients with a massive RC-tear. In the torn infraspinatus we found pronounced fatty droplets, an increase in extracellular collagen-1, a loss of myosin heavy chain-1 expression in myofibers and an increase in Pax7-positive cells. However, the adjacent intact teres minor and deltoid exhibited healthy muscle features. This suggests that satellite cells and the extracellular matrix may contribute to extensive muscle fibrosis in torn RC. We suggest that torn RC muscles display hallmarks of muscle aging whereas the teres minor could represent an aging

  15. Patterns of age-associated degeneration differ in shoulder muscles

    Directory of Open Access Journals (Sweden)

    Yotam eRaz

    2015-12-01

    Full Text Available Shoulder complaints are common in the elderly and hamper daily functioning. These complaints are often caused by tears in the muscle-tendon units of the rotator cuff (RC. The four RC muscles stabilize the shoulder joint. While some RC muscles are frequently torn in shoulder complaints others remain intact. The pathological changes in RC muscles are poorly understood. We investigated changes in RC muscle pathology combining radiological and histological procedures. We measured cross sectional area (CSA and fatty infiltration from Magnetic Resonance Imaging with Arthrography in subjects without (N=294 and with (N=109 RC-tears. Normalized muscle CSA of the four RC muscles and the deltoid shoulder muscle were compared and age-associated patterns of muscle atrophy and fatty infiltration were constructed. We identified two distinct age-associated patterns: in the supraspinatus and subscapularis RC muscles CSAs continuously declined throughout adulthood, whereas in the infraspinatus and deltoid reduced CSA was prominent from midlife onwards. In the teres minor, CSA was unchanged with age. Most importantly, age-associated patterns were highly similar between subjects without RC tear and those with RC-tears. This suggests that extensive RC muscle atrophy during aging could contribute to RC pathology. We compared muscle pathology between torn infraspinatus and non-torn teres minor and the deltoid in two patients with a massive RC-tear. In the torn infraspinatus we found pronounced fatty droplets, an increase in extracellular collagen-1, a loss of myosin heavy chain-1 expression in myofibers and an increase in Pax7-positive cells. However, the adjacent intact teres minor and deltoid exhibited healthy muscle features. This suggests that satellite cells and the extracellular matrix may contribute to extensive muscle fibrosis in torn RC. We suggest that torn RC muscles display hallmarks of muscle aging whereas the teres minor could represent an aging

  16. Simultaneous bilateral contracture of the infraspinatus muscle.

    Science.gov (United States)

    Franch, J; Bertran, J; Remolins, G; Fontecha, P; Díaz-Bertrana, M C; Durall, I

    2009-01-01

    A case of bilateral fibrotic contracture of the infraspinatus muscles in a five-year-old Belgian Shepherd dog is described. The dog was presented with progressive forelimb lameness with postural and gait abnormalities three months after an episode of overexertion. When walking, the lower part of both forelimbs swung in a lateral arc causing a circumduction movement and in the standing position, the dog showed elbow adduction with external rotation of the distal part of both front limbs. Orthopaedic examination revealed bilateral atrophy of both infraspinatus and supraspinatus muscles and restriction in the range of motion of both shoulders, especially when attempting abduction and flexion. No specific findings were observed in the shoulder or elbow radiographs but hyperechogenic areas were evident in the ultrasonographic examination of both infraspinatus muscles. A diagnosis of fibrotic contracture of both infraspinatus muscles was established and bilateral tenectomy of the insertion tendons of the infraspinatus muscles was performed. Complete recovery of the animal was achieved after the surgery, which was confirmed in a long-term follow-up (10 months). In conclusion, physical examination and ultrasonography allowed a proper diagnosis of the condition, and tenectomy of the infraspinatus muscles resulted in a complete recovery of the patient even with bilateral involvement.

  17. CORRELATIONS BETWEEN MUSCLE MASS, MUSCLE STRENGTH, PHYSICAL PERFORMANCE, AND MUSCLE FATIGUE RESISTANCE IN COMMUNITY-DWELLING ELDERLY SUBJECTS

    Directory of Open Access Journals (Sweden)

    Elizabeth

    2016-03-01

    Full Text Available Objective: To determine the correlations between muscle mass, muscle strength, physical performance, and muscle fatigue resistance in community-dwelling elderly people in order to elucidate factors which contribute to elderly’s performance of daily activities. Methods: A cross-sectional study was conducted on community-dwelling elderly in Bandung from September to December 2014. One hundred and thirty elderly, 60 years old or above, were evaluated using bioelectrical impedance analysis to measure muscle mass; grip strength to measure muscle strength and muscle fatigue resistance; habitual gait speed to measure physical performance; and Global Physical Activity Questionnaire (GPAQ to assess physical activity. Results: There were significant positive correlations between muscle mass (r=0,27, p=0,0019, muscle strength (r=0,26, p=0,0024, and physical performance (r=0,32, p=0,0002 with muscle fatigue resistance. Physical performance has the highest correlation based on multiple regression test (p=0,0025. In association with muscle mass, the physical activity showed a significant positive correlation (r=0,42, p=0,0000. Sarcopenia was identified in 19 (14.61% of 130 subjects. Conclusions: It is suggested that muscle mass, muscle strength, and physical performance influence muscle fatigue resistance.

  18. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  19. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  20. Grafting of a Single Donor Myofibre Promotes Hypertrophy in Dystrophic Mouse Muscle

    Science.gov (United States)

    Boldrin, Luisa; Morgan, Jennifer E.

    2013-01-01

    Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment. PMID:23349935

  1. Morphology of lesions in striated muscle fibres from the beige mouse

    DEFF Research Database (Denmark)

    Kirkeby, S

    1982-01-01

    Lesions in striated muscle fibres from the beige mouse are described at both the light- and electronmicroscopical levels. The muscles have two types of lesions, one is well defined cores in the fibres and the other is diffusely enlarged intermyofibrillar spaces (IMS). The cores can be filled...... with membrane-like structures or a fluffy unstructured material. In the areas with enlarged IMS comparatively few organelles are present and the muscle fibres seem to be fragmented....

  2. Muscle activity pattern dependent pain development and alleviation.

    Science.gov (United States)

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of

  3. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    Science.gov (United States)

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  4. Muscle contracture diagnosis: the role of sonoelastography.

    Science.gov (United States)

    Bruschetta, Daniele; Milardi, Demetrio; Trimarchi, Fabio; DI Mauro, Debora; Valenti, Andrea; Arrigo, Alessandro; Valenti, Barbara; Santoro, Giuseppe; Cascio, Filippo; Vaccarino, Gianluigi; Cacciola, Alberto

    2016-12-01

    Sonoelastography plays today a major role in musculoskeletal disease, showing minor muscle injuries not well appreciable in conventional B-mode ultrasonography and integrating it in major muscle injuries diagnosis. The aim of this study was to demonstrate the ability of elastosonography in the diagnosis of muscular contracture in football players presenting negative basic echography. We examined twenty-two football players using basic echography and elastosonography approximately 24-48 hours after the traumatic event and we subsequently re-evaluated them after two weeks. Conventional echography showed, in the early stage, no muscle injuries; in twenty-two out of twenty-two patients, sonoelastography had instead underlined a heterogeneous colorimetric map, related to decreased elasticity in the area of the muscle contracture. An evaluation effected 1-2 weeks later showed a clear improvement of the sonoelastographic appearance. This information will be useful for prognostication, post-traumatic monitoring and to detect subclinical changes in MIs even before there are changes on the routine B-mode ultrasound.

  5. Respiratory muscle function and exercise limitation in patients with chronic obstructive pulmonary disease: a review.

    Science.gov (United States)

    Charususin, Noppawan; Dacha, Sauwaluk; Gosselink, Rik; Decramer, Marc; Von Leupoldt, Andreas; Reijnders, Thomas; Louvaris, Zafeiris; Langer, Daniel

    2018-01-01

    Respiratory muscle dysfunction is common and contributes to dyspnea and exercise limitation in patients with chronic obstructive pulmonary disease (COPD). Improving dynamic function of respiratory muscles during exercise might help to reduce symptoms and improve exercise capacity. Areas covered: The aims of this review are to 1) summarize physiological mechanisms linking respiratory muscle dysfunction to dyspnea and exercise limitation; 2) provide an overview of available therapeutic approaches to better maintain load-capacity balance of respiratory muscles during exercise; and 3) to summarize current knowledge on potential mechanisms explaining effects of interventions aimed at optimizing dynamic respiratory muscle function with a special focus on inspiratory muscle training. Expert commentary: Several mechanisms which are potentially linking improvements in dynamic respiratory muscle function to symptomatic and functional benefits have not been studied so far in COPD patients. Examples of underexplored areas include the study of neural processes related to the relief of acute dyspnea and the competition between respiratory and peripheral muscles for limited energy supplies during exercise. Novel methodologies are available to non-invasively study these mechanisms. Better insights into the consequences of dynamic respiratory muscle dysfunction will hopefully contribute to further refine and individualize therapeutic approaches in patients with COPD.

  6. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  7. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available PURPOSE: To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH, insulin like grow factor 1 (IGF-1 and interleukin 6 (IL-6], or intramuscular [skeletal muscle androgen receptor (AR protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. METHODS: Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. RESULTS: Mean fiber area increased by 20% (range: -7 to 80%; P<0.001. Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19; however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023. Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007. There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019. CONCLUSION: Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  8. Appropriate slice location to assess maximal cross-sectional area of individual rotator cuff muscles in normal adults and athletes

    International Nuclear Information System (INIS)

    Yanagisawa, Osamu; Dohi, Michiko; Okuwaki, Toru; Tawara, Noriyuki; Takahashi, Hideyuki; Niitsu, Mamoru

    2009-01-01

    We investigated appropriate slice locations for magnetic resonance (MR) imaging evaluation of the maximal cross-sectional area (CSA) of individual rotator cuff (RC) muscles in normal adults and athletes. We used a 1.5-tesla MR system with body-array and spine coils to obtain oblique sagittal T 1 -weighted shoulder images of 29 normal adults (16 men, 13 women); 6 national-level competitive swimmers (4 men, 2 women); 10 collegiate-level female badminton players; and 7 collegiate-level male rowers. We calculated the supraspinatus, infraspinatus, teres minor, and subscapularis CSAs at the 0-1 locations on the scapula (dividing scapula width into 11 locations), 0 representing the medial border of the scapula and 1, the glenoid fossa surface. We evaluated the differences in CSAs at relative locations on the scapula for each muscle in normal adults, swimmers, badminton players, and rowers using a one-way analysis of variance followed by the Tukey test (P<0.05). The supraspinatus CSAs were maximal at 0.7 for all groups. The infraspinatus CSAs were maximal at 0.5 for normal men and women and badminton players, 0.4- and 0.5 locations for swimmers, and 0.4 for rowers. The teres minor CSAs were maximal at 0.9 for all groups except the swimmers (1 location). The subscapularis CSAs were maximal at 0.7 in men, swimmers, and badminton players and 0.6 in women and rowers. The appropriate slice locations for evaluating maximal CSAs are slightly lateral to the center of the scapula for the supraspinatus and subscapularis, at approximately the center of the scapula for the infraspinatus, and near the glenoid fossa for the teres minor. These slice locations should be clinically useful for morphological and/or function-related assessments of shoulder RC muscles. (author)

  9. Association of expression levels in skeletal muscle and a SNP in the ...

    Indian Academy of Sciences (India)

    dicted breeding value for rib eye area in two experiments using 100 sires (P ... In the real-time PCR-based analysis, we used skeletal muscle tissues of eight JB .... mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem.

  10. Evaluation of muscle hyperactivity of the grimacing muscles by unilateral tight eyelid closure and stapedius muscle tone.

    Science.gov (United States)

    Shiba, Masato; Matsuo, Kiyoshi; Ban, Ryokuya; Nagai, Fumio

    2012-10-01

    Muscle hyperactivity of grimacing muscles, including the orbicularis oculi and corrugator supercilii muscles that cause crow's feet and a glabellar frown line with ageing, cannot be accurately evaluated by surface observation. In 71 subjects, this study investigated the extent to which grimacing muscles are innervated by the bilateral motor cortices, whether the corticofacial projection to the grimacing muscles affects the facially innervated stapedius muscle tone by measuring static compliance of the tympanic membrane, and whether unilateral tight eyelid closure with contraction of the grimacing muscles changes static compliance. Unilateral tight eyelid closure and its subsequent change in the contralateral vertical medial eyebrow position revealed that motor neurons of the orbicularis oculi and corrugator supercilii muscles were innervated by the bilateral motor cortices with weak-to-strong contralateral dominance. The orbicularis oculi, corrugator supercilii, and stapedius muscles innervated by the bilateral motor cortices had increased muscle hyperactivity, which lowered the vertical medial eyebrow position and decreased the static compliance of the tympanic membrane more than those innervated by the unilateral motor cortex. Unilateral enhanced tight eyelid closure with contraction of the grimacing muscles in certain subjects ipsilaterally decreased the static compliance with increased contraction of the stapedius muscle, which probably occurs to immobilise the tympanic membrane and protect the inner ear from loud sound. Evaluation of unilateral tight eyelid closure and the subsequent change in the contralateral vertical medial eyebrow position as well as a measurement of the static compliance for the stapedius muscle tone has revealed muscle hyperactivity of grimacing muscles.

  11. Evaluation of Columbia, USMARC Composite, Suffolk, and Texel rams as terminal sires in an extensive rangeland production system: VII. Accuracy of ultrasound predictors and their association with carcass weight, yield, and value.

    Science.gov (United States)

    Notter, D R; Mousel, M R; Leeds, T D; Zerby, H N; Moeller, S J; Lewis, G S; Taylor, J B

    2014-06-01

    Use of lamb BW or chilled carcass weights (CCW), live-animal ultrasound or direct carcass measurements of backfat thickness (BF; mm) and LM area (LMA; cm(2)), and carcass body wall thickness (BWall; mm) to predict carcass yield and value was evaluated using 512 crossbred lambs produced over 3 yr by mating Columbia, U.S. Meat Animal Research Center Composite, Suffolk, and Texel rams to adult Rambouillet ewes. Lambs were harvested at 3 BW endpoints within each year. The predictive value of 3 to 5 additional linear measurements of live-animal or carcass size and shape was also evaluated. Residual correlations (adjusted for effects of year, breed, and harvest group) between ultrasound and direct measurements were 0.69 for BF and 0.65 for LMA. Increasing ultrasound or carcass LMA had positive effects (P carcass (i.e., on dressing percentage) and, at comparable CCW, on weight of high-value cuts (rack, loin, leg, and sirloin) before trimming (HVW), weight of trimmed high-value cuts (trimmed rack and loin and trimmed boneless leg and sirloin; TrHVW), and carcass value before (CVal) and after (TrCVal) trimming of high-value cuts. By contrast, ultrasound and direct measures of BF had positive effects on yields of CCW and on HVW and CVal but large negative effects on TrHVW and TrCVal. After adjusting for BW at scanning, increases of 1 mm in ultrasound BF or 1 cm(2) in ultrasound LMA were associated with changes of US$-0.32 (P Carcass BWall was generally superior to carcass BF as a predictor of TrHVW and TrCVal. Carcass LMA was superior to ultrasound LMA but carcass BF was inferior to ultrasound BF for prediction of carcass yield and value. Increasing LMA thus would be expected to improve carcass yield and value. Addition of linear measurements of live-animal or carcass size and shape to the prediction model reduced residual SD (RSD) for TrHVW and TrCVal by 0.4 to 2.2%, but subsequent removal of ultrasound or direct measures of BF and LMA from the prediction model increased

  12. Diseases and disorders of muscle.

    Science.gov (United States)

    Pearson, A M; Young, R B

    1993-01-01

    Muscle may suffer from a number of diseases or disorders, some being fatal to humans and animals. Their management or treatment depends on correct diagnosis. Although no single method may be used to identify all diseases, recognition depends on the following diagnostic procedures: (1) history and clinical examination, (2) blood biochemistry, (3) electromyography, (4) muscle biopsy, (5) nuclear magnetic resonance, (6) measurement of muscle cross-sectional area, (7) tests of muscle function, (8) provocation tests, and (9) studies on protein turnover. One or all of these procedures may prove helpful in diagnosis, but even then identification of the disorder may not be possible. Nevertheless, each of these procedures can provide useful information. Among the most common diseases in muscle are the muscular dystrophies, in which the newly identified muscle protein dystrophin is either absent or present at less than normal amounts in both Duchenne and Becker's muscular dystrophy. Although the identification of dystrophin represents a major breakthrough, treatment has not progressed to the experimental stage. Other major diseases of muscle include the inflammatory myopathies and neuropathies. Atrophy and hypertrophy of muscle and the relationship of aging, exercise, and fatigue all add to our understanding of the behavior of normal and abnormal muscle. Some other interesting related diseases and disorders of muscle include myasthenia gravis, muscular dysgenesis, and myclonus. Disorders of energy metabolism include those caused by abnormal glycolysis (Von Gierke's, Pompe's, Cori-Forbes, Andersen's, McArdle's, Hers', and Tauri's diseases) and by the acquired diseases of glycolysis (disorders of mitochondrial oxidation). Still other diseases associated with abnormal energy metabolism include lipid-related disorders (carnitine and carnitine palmitoyl-transferase deficiencies) and myotonic syndromes (myotonia congenita, paramyotonia congenita, hypokalemic and hyperkalemic

  13. Reliability of Rehabilitative Ultrasonography to Measure Transverse Abdominis and Multifidus Muscle Dimensions

    International Nuclear Information System (INIS)

    Nabavi, Narjes; Mosallanezhad, Zahra; Haghighatkhah, Hamid Reza; Mohseni Bandpeid, Mohammad Ali

    2014-01-01

    Lumbar paraspinal muscles play an important role in providing both mobility and stability during dynamic tasks. Among paraspinal muscles, transverse abdominis and lumbar multifidus have been of particular interest as active stabilizers of the lumbar spine. These muscles may become dysfunctional in chronic low back pain (CLBP). Low back injury can result in muscle inhibition and control loss that cannot recover spontaneously, and specific exercises are required to stimulate their recovery. The purpose of this study was to test the reliability of ultrasonography to measure muscle dimensions and to present a reliable method for measuring transverse abdominis and lumbar multifidus as stabilizing muscles of the lumbar spine. Fifteen healthy participants (18-55 year olds) were evaluated by a radiologist using ultrasonography (ES500) with two probes (50mm linear 7.5 MHZ and 70 mm curvilinear 3.5 MHz). The muscle thickness of transverse abdominis and the anterior-posterior diameter and cross sectional area of the LMF were measured. To determine within and between days reliabilities, second and third measurements were repeated with half an hour and one week intervals, respectively. Intraclass correlation coefficient for left and right showed good to high reliability for the cross sectional area of lumbar multifidi (0.74 and 0.88, respectively) as well as the anterior-posterior dimensions of lumbar multifidi (0.89 and 0.91, respectively) and transverse abdomini thickness (0.73 and 0.85, respectively). Rehabilitative ultrasonography is a reliable and non-invasive instrument to measure muscle thickness. The method used in this study is a reliable way to measure lumbar stabilizing muscles

  14. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability.

    Science.gov (United States)

    Ward, Samuel R; Kim, Choll W; Eng, Carolyn M; Gottschalk, Lionel J; Tomiya, Akihito; Garfin, Steven R; Lieber, Richard L

    2009-01-01

    Muscular instability is an important risk factor for lumbar spine injury and chronic low-back pain. Although the lumbar multifidus muscle is considered an important paraspinal muscle, its design features are not completely understood. The purpose of the present study was to determine the architectural properties, in vivo sarcomere length operating range, and passive mechanical properties of the human multifidus muscle. We hypothesized that its architecture would be characterized by short fibers and a large physiological cross-sectional area and that it would operate over a relatively wide range of sarcomere lengths but would have very stiff passive material properties. The lumbar spines of eight cadaver specimens were excised en bloc from T12 to the sacrum. Multifidus muscles were isolated from each vertebral level, permitting the architectural measurements of mass, sarcomere length, normalized fiber length, physiological cross-sectional area, and fiber length-to-muscle length ratio. To determine the sarcomere length operating range of the muscle, sarcomere lengths were measured from intraoperative biopsy specimens that were obtained with the spine in the flexed and extended positions. The material properties of single muscle fibers were obtained from passive stress-strain tests of excised biopsy specimens. The average muscle mass (and standard error) was 146 +/- 8.7 g, and the average sarcomere length was 2.27 +/- 0.06 microm, yielding an average normalized fiber length of 5.66 +/- 0.65 cm, an average physiological cross-sectional area of 23.9 +/- 3.0 cm(2), and an average fiber length-to-muscle length ratio of 0.21 +/- 0.03. Intraoperative sarcomere length measurements revealed that the muscle operates from 1.98 +/- 0.15 microm in extension to 2.70 +/- 0.11 microm in flexion. Passive mechanical data suggested that the material properties of the muscle are comparable with those of muscles of the arm or leg. The architectural design (a high cross-sectional area and

  15. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. [Diagnosis and treatment of unilateral gluteal muscle contracture].

    Science.gov (United States)

    Chen, Xiaoliang; Tang, Xueyang; Jiang, Xin; Wang, Daoxi; Peng, Mingxing; Liu, Lijun

    2011-05-01

    To investigate the pathogenesis, diagnosis, and treatment of unilateral gluteal muscle contracture. Between January 1990 and September 2009, 41 patients with unilateral gluteal muscle contracture were treated and the clinical data were retrospectively analysed. Among them, 24 were male and 17 were female with an age range from 6 to 29 years (mean, 12 years). Thirty-nine patients had a definite history of repeat intragluteal injection. The locations were the left side in 9 cases and the right side in 32 cases. The main clinical manifestations included lameness and abnormal gait. The medical examination showed pelvic oblique and relative inequality of lower limbs with a mean difference of 2.1 cm (range, 1.2-3.8 cm) in the distance form navel to malleolus medials. The X-ray films of pelvis showed outpouching trochanter of femur and pelvic oblique. The CT scans showed no abnormal finding except pelvic oblique and gluteal muscle contracture. The arc longitudinal incision was made into the posterolateral area nearby the greater trochanter and then lysis of the gluteal muscles was performed, followed by the skin traction of both legs and rehabilitation exercise. All incisions healed by first intention. Forty-one patients were followed up 1-20 years (mean, 5 years), and the signs of gluteal muscle contracture disappeared. After 1 year of operation, 34 patients had equal leg length, 5 patients had mild pelvic oblique, and 2 patients had obvious pelvic oblique. According to LIU Guohui et al. evaluation standard, the results were excellent in 33 cases, good in 6 cases, and poor in 2 cases with an excellent and good rate of 95.12% at 1 year after operation. Unilateral gluteal muscle contracture leads to pelvic oblique and inequality of lower limbs, and it can be cured with the surgical release of the gluteal muscle contracture by the arc longitudinal incision into the posterolateral area nearby the greater trochanter, combined with postoperative skin traction and

  17. Genetic parameter estimates for carcass traits and visual scores including or not genomic information.

    Science.gov (United States)

    Gordo, D G M; Espigolan, R; Tonussi, R L; Júnior, G A F; Bresolin, T; Magalhães, A F Braga; Feitosa, F L; Baldi, F; Carvalheiro, R; Tonhati, H; de Oliveira, H N; Chardulo, L A L; de Albuquerque, L G

    2016-05-01

    The objective of this study was to determine whether visual scores used as selection criteria in Nellore breeding programs are effective indicators of carcass traits measured after slaughter. Additionally, this study evaluated the effect of different structures of the relationship matrix ( and ) on the estimation of genetic parameters and on the prediction accuracy of breeding values. There were 13,524 animals for visual scores of conformation (CS), finishing precocity (FP), and muscling (MS) and 1,753, 1,747, and 1,564 for LM area (LMA), backfat thickness (BF), and HCW, respectively. Of these, 1,566 animals were genotyped using a high-density panel containing 777,962 SNP. Six analyses were performed using multitrait animal models, each including the 3 visual scores and 1 carcass trait. For the visual scores, the model included direct additive genetic and residual random effects and the fixed effects of contemporary group (defined by year of birth, management group at yearling, and farm) and the linear effect of age of animal at yearling. The same model was used for the carcass traits, replacing the effect of age of animal at yearling with the linear effect of age of animal at slaughter. The variance and covariance components were estimated by the REML method in analyses using the numerator relationship matrix () or combining the genomic and the numerator relationship matrices (). The heritability estimates for the visual scores obtained with the 2 methods were similar and of moderate magnitude (0.23-0.34), indicating that these traits should response to direct selection. The heritabilities for LMA, BF, and HCW were 0.13, 0.07, and 0.17, respectively, using matrix and 0.29, 0.16, and 0.23, respectively, using matrix . The genetic correlations between the visual scores and carcass traits were positive, and higher correlations were generally obtained when matrix was used. Considering the difficulties and cost of measuring carcass traits postmortem, visual scores of

  18. Stretching skeletal muscle: chronic muscle lengthening through sarcomerogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander M Zöllner

    Full Text Available Skeletal muscle responds to passive overstretch through sarcomerogenesis, the creation and serial deposition of new sarcomere units. Sarcomerogenesis is critical to muscle function: It gradually re-positions the muscle back into its optimal operating regime. Animal models of immobilization, limb lengthening, and tendon transfer have provided significant insight into muscle adaptation in vivo. Yet, to date, there is no mathematical model that allows us to predict how skeletal muscle adapts to mechanical stretch in silico. Here we propose a novel mechanistic model for chronic longitudinal muscle growth in response to passive mechanical stretch. We characterize growth through a single scalar-valued internal variable, the serial sarcomere number. Sarcomerogenesis, the evolution of this variable, is driven by the elastic mechanical stretch. To analyze realistic three-dimensional muscle geometries, we embed our model into a nonlinear finite element framework. In a chronic limb lengthening study with a muscle stretch of 1.14, the model predicts an acute sarcomere lengthening from 3.09[Formula: see text]m to 3.51[Formula: see text]m, and a chronic gradual return to the initial sarcomere length within two weeks. Compared to the experiment, the acute model error was 0.00% by design of the model; the chronic model error was 2.13%, which lies within the rage of the experimental standard deviation. Our model explains, from a mechanistic point of view, why gradual multi-step muscle lengthening is less invasive than single-step lengthening. It also explains regional variations in sarcomere length, shorter close to and longer away from the muscle-tendon interface. Once calibrated with a richer data set, our model may help surgeons to prevent muscle overstretch and make informed decisions about optimal stretch increments, stretch timing, and stretch amplitudes. We anticipate our study to open new avenues in orthopedic and reconstructive surgery and enhance

  19. Atrophy of foot muscles in diabetic patients can be detected with ultrasonography

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Obel, Annette; Jakobsen, Johannes

    2007-01-01

    OBJECTIVE: To establish a bedside test with ultrasonography for evaluation of foot muscle atrophy in diabetic patients. RESEARCH DESIGN AND METHODS: Thickness and cross-sectional area (CSA) of the extensor digitorum brevis muscle (EDB) and of the muscles of the first interstitium (MILs) were...... determined in 26 diabetic patients and in 26 matched control subjects using ultrasonography. To estimate the validity, findings were related to the total volume of all foot muscles determined at magnetic resonance imaging (MRI-FM(vol)). Furthermore, the relations of ultrasonographic estimates to nerve...... than in nonneuropathic diabetic patients (5.8 +/- 2.1 vs. 7.5 +/- 1.7 mm [P foot muscles determined at ultrasonography is directly related to foot muscle volume determined by MRI and to various...

  20. Effects of botulinum toxin type A on healing of injured skeletal muscles

    Directory of Open Access Journals (Sweden)

    Shokravi Ramin

    2007-01-01

    Full Text Available Objectives: (1 Evaluation of microscopic healing of skeletal muscle fibers after injuries, especially the arrangement of new muscle fibers and scar tissue diameter in the injury region. (2 Evaluation of alterations in microscopy of the healing procedure within skeletal muscles after injury following botulinum toxin type A (BTX -A induced muscle immobilization. Materials and Methods: The study was done on 12 white lab rabbits of either sex in a 6-month period. Results: The immobilization of skeletal muscle fibers as a result of the use of BTX-A after injury caused a qualitative increase in fibrous tissue formation in the area of injury, and the BTX-A-induced immobilization for a period of 6 months led to muscle atrophy.

  1. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  2. A three-dimensional study of the musculotendinous and neurovascular architecture of the gracilis muscle: application to functional muscle transfer.

    Science.gov (United States)

    Fattah, A Y; Ravichandiran, K; Zuker, R M; Agur, A M R

    2013-09-01

    Muscle transfer is used to restore function typically using a single vector of contraction. Although its use with two independently functional muscular units has been employed, in order to refine this concept we endeavoured to detail the intramuscular anatomy of gracilis, a muscle commonly used for transfer. A novel method to capture intramuscular fibre bundle and neurovascular arrangement was used to create a three-dimensional (3D) digital model that allowed for accurate representation of the relationships between all the intramuscular structures to facilitate flap planning. Twenty gracilis muscles were harvested from 15 cadavers. All components of the muscle were digitised using a Microscribe G2 Digitiser. The data were exported to the 3D animation software Autodesk(®) Maya(®) 2012 whereupon it was rendered into a 3D model that can be exported as static images or videos. Neurovascular anatomy and muscle architecture were analysed from these models, and fibre bundle length, pennation angle and physiological cross-sectional area were calculated from digitised data. The muscle is composed of a variable number of distinct longitudinal segments with muscle fibres spiralling onto the tendon. The main artery to the muscle has three main intramuscular patterns of distribution. The venae comitantes drain discrete zones without intramuscular macroscopic anastomoses. The minor pedicles form an anastomotic chain along the anterior border of the muscle and all vessels were biased to the deep surface. The nerve is related to the vessels in a variable manner and both run between longitudinal muscular compartments. The digitisation technique may be used to advance knowledge of intramuscular architecture and it demonstrated that the gracilis muscle is comprised of four to seven muscular compartments, each representing a functional unit that may theoretically be differentially activated and could be harnessed for more sophisticated muscle transfers. Copyright © 2013 British

  3. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  4. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    Science.gov (United States)

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  5. Histological study of rat masseter muscle following experimental occlusal alteration.

    Science.gov (United States)

    Nishide, N; Baba, S; Hori, N; Nishikawa, H

    2001-03-01

    It has been suggested that occlusal interference results in masticatory muscle dysfunction. In our previous study, occlusal interference reduced the rat masseter energy level during masticatory movements. The purpose of this study was to investigate the histological alterations of rat masseter muscles following experimental occlusal alteration with unilateral bite-raising. A total of eight male adult Wistar rats were equally divided into control and experimental groups. The experimental rats wore bite-raising splints on the unilateral upper molar. However, 4 weeks after the operation, the anterior deep masseter muscles were removed and then stained for succinic acid dehydrogenase (SDH), haematoxylin eosin (HE) and myofibrillar ATPase. Most of the muscle fibres in experimental rats remained intact, although partial histological changes were observed, such as extended connective tissue, appearance of inflammatory cells in the muscle fibres and existence of muscle fibres with central nuclei and central cores. Moreover, the fibre area-fibre frequency histograms of experimental muscle indicated a broad pattern than that of controls. These results indicated that occlusal interference caused histological changes in masseter muscles and that this may be related to the fact that the masseter energy level was reduced during masticatory movements in unilateral bite-raised rats.

  6. A Rat Model for Muscle Regeneration in the Soft Palate

    Science.gov (United States)

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne M.; Helmich, Maria P. A. C.; Ulrich, Dietmar J. O.; Von den Hoff, Johannes W.; Wagener, Frank A. D. T. G.

    2013-01-01

    Background Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Methods Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. Results The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. Conclusions This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery. PMID:23554995

  7. Muscle fibre type composition and body composition in hammer throwers.

    Science.gov (United States)

    Terzis, Gerasimos; Spengos, Konstantinos; Kavouras, Stavros; Manta, Panagiota; Georgiadis, Giorgos

    2010-01-01

    Aim of the present study was to describe the muscle fibre type composition and body composition of well-trained hammer throwers. Six experienced hammer throwers underwent the following measurements: one repetition maximum in squat, snatch, and clean, standing broad jump, backward overhead shot throw and the hammer throw. Dual x-ray absorptiometry was used for body composition analysis. Fibre type composition and cross sectional area was determined in muscle biopsy samples of the right vastus lateralis. Eight physical education students served as a control group. One repetition maximum in squat, snatch and clean for the hammer throwers was 245 ± 21, 132 ± 13 and 165 ± 12kg, respectively. Lean body mass was higher in hammer throwers (85.9 ± 3. 9kg vs. 62.7 ± 5.1kg (p hammer throwers and 51 ± 8% in the control group (p Hammer throwers had significantly larger type IIA fibres (7703 ± 1171 vs. 5676 ± 1270μm(2), p Hammer throwing performance correlated significantly with lean body mass (r = 0.81, p hammer throwers have larger lean body mass and larger muscular areas occupied by type II fibres, compared with relatively untrained subjects. Moreover, it seems that the enlarged muscle mass of the hammer throwers contributes significantly to the hammer throwing performance. Key pointsWell-trained hammer throwers had increased lean body mass, higher type IIA muscle fibres cross sectional areas, as well as higher bone mineral density, compared to controls.Increased lean body mass was closely related with hammer throwing performance.The relative high percentage of type IIX muscle fibres in vastus lateralis in hammer throwers warrants further investigation.

  8. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture

    OpenAIRE

    Payne, RC; Crompton, RH; Isler, K; Savage, R; Vereecke, Evie; Gunther, MM; Thorpe, SKS; D'Aout, K

    2006-01-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mas...

  9. Effects of Streptomycin Administration on Increases in Skeletal Muscle Fiber Permeability and Size Following Eccentric Muscle Contractions.

    Science.gov (United States)

    Hayao, Keishi; Tamaki, Hiroyuki; Nakagawa, Kouki; Tamakoshi, Keigo; Takahashi, Hideaki; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2018-06-01

    The purpose of this study was to investigate the preventive effect of streptomycin (Str) administration on changes in membrane permeability and the histomorphological characteristics of damaged muscle fibers following eccentric contraction (ECC ). Eighteen 7-week-old male Fischer 344 rats were randomly assigned to three groups: control (Cont), ECC, and ECC with Str (ECC + Str). The tibialis anterior (TA) muscles in both ECC groups were stimulated electrically and exhibited ECC. Evans blue dye (EBD), a marker of muscle fiber damage associated with increased membrane permeability, was injected 24 hr before TA muscle sampling. The number of EBD-positive fibers, muscle fiber cross-sectional area (CSA), and roundness were determined via histomorphological analysis. The ECC intervention resulted in an increased fraction of EBD-positive fibers, a larger CSA, and decreased roundness. The fraction of EBD-positive fibers was 79% lower in the ECC + Str group than in the ECC group. However, there was no difference in the CSA and roundness of the EBD-positive fibers between the two ECC groups. These results suggest that Str administration can reduce the number of myofibers that increase membrane permeability following ECC, but does not ameliorate the extent of fiber swelling in extant EBD-positive fibers. Anat Rec, 301:1096-1102, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Automated image segmentation of haematoxylin and eosin stained skeletal muscle cross-sections

    DEFF Research Database (Denmark)

    Liu, F; Mackey, AL; Srikuea, R

    2013-01-01

    of two major steps: (1) A learning-based seed detection method to find the geometric centres of the muscle fibres, and (2) a colour gradient repulsive balloon snake deformable model that adopts colour gradient in Luv colour space. Automatic quantification of muscle fibre cross-sectional areas using...

  11. Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique.

    Science.gov (United States)

    Kurihara, Toshiyuki; Yamauchi, Junichiro; Otsuka, Mitsuo; Tottori, Nobuaki; Hashimoto, Takeshi; Isaka, Tadao

    2014-01-01

    The aims of this study were to investigate the relationships between the maximum isometric toe flexor muscle strength (TFS) and cross-sectional area (CSA) of the plantar intrinsic and extrinsic muscles and to identify the major determinant of maximum TFS among CSA of the plantar intrinsic and extrinsic muscles. Twenty six young healthy participants (14 men, 12 women; age, 20.4 ± 1.6 years) volunteered for the study. TFS was measured by a specific designed dynamometer, and CSA of plantar intrinsic and extrinsic muscles were measured using magnetic resonance imaging (MRI). To measure TFS, seated participants optimally gripped the bar with their toes and exerted maximum force on the dynamometer. For each participant, the highest force produced among three trials was used for further analysis. To measure CSA, serial T1-weighted images were acquired. TFS was significantly correlated with CSA of the plantar intrinsic and extrinsic muscles. Stepwise multiple linear regression analyses identified that the major determinant of TFS was CSA of medial parts of plantar intrinsic muscles (flexor hallucis brevis, flexor digitorum brevis, quadratus plantae, lumbricals and abductor hallucis). There was no significant difference between men and women in TFS/CSA. CSA of the plantar intrinsic and extrinsic muscles is one of important factors for determining the maximum TFS in humans.

  12. Muscle Senescence in Short-Lived Wild Mammals, the Soricine Shrews Blarina brevicauda and Sorex palustris

    Science.gov (United States)

    HINDLE, ALLYSON G.; LAWLER, JOHN M.; CAMPBELL, KEVIN L.; HORNING, MARKUS

    2015-01-01

    Red-toothed (soricine) shrews are consummate predators exhibiting the highest energy turnovers and shortest life spans (ca. 18 months) of any mammal, yet virtually nothing is known regarding their physiological aging. We assessed the emerging pattern of skeletal muscle senescence (contractile/connective tissue components) in sympatric species, the semi-aquatic water shrew (WS), Sorex palustris, and the terrestrial short-tailed shrew (STS), Blarina brevicauda, to determine if muscle aging occurs in wild, short-lived mammals (H0: shrews do not survive to an age where senescence occurs), and if so, whether these alterations are species-specific. Gracilis muscles were collected from first-year (n = 17) and second-year (n = 17) field-caught shrews. Consistent with typical mammalian aging, collagen content (% area) increased with age in both species (S. palustris: ~50%; B. brevicauda: ~60%). Muscle was dominated by stiffer Type I collagen, and the ratio of collagen Type I:Type III more than doubled with age. The area ratio of muscle:collagen decreased with age in both species, but was considerably lower in adult STS, suggesting species-specificity of senescence. Extracellular space was age-elevated in B. brevicauda, but was preserved in S. palustris (~50 vs. 10% elevation). Though juvenile interspecific comparisons revealed no significance, adult WS myocytes had 68% larger cross-sectional area and occurred at 28% lower fibers/area than those of adult STS. We demonstrate that age-related muscle senescence does occur in wild-caught, short-lived mammals, and we therefore reject this classic aging theory tenet. Our findings moreover illustrate that differential age adjustments in contractile/connective tissue components of muscle occur in the two species of wild-caught shrews. PMID:19296507

  13. Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix

    2014-08-01

    Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.

  14. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Naffaa, Lena [American University of Beirut, Department of Diagnostic Radiology, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon); Moukaddam, Hicham [Saint Rita Medical Center, Lima, OH (United States); Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Lemieux, Aaron [University of California, San Diego School of Medicine, La Jolla, CA (United States); Smitaman, Edward [University of California, San Diego, Teleradiology and Education Center, San Diego, CA (United States)

    2017-03-15

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  15. Semimembranosus muscle herniation: a rare case with emphasis on muscle biomechanics

    International Nuclear Information System (INIS)

    Naffaa, Lena; Moukaddam, Hicham; Samim, Mohammad; Lemieux, Aaron; Smitaman, Edward

    2017-01-01

    Muscle herniations are rare and most reported cases involve muscles of the lower leg. We use a case of muscle herniation involving the semimembranosus muscle, presenting as a painful mass in an adolescent male after an unspecified American football injury, to highlight a simple concept of muscle biomechanics as it pertains to muscle hernia(s): decreased traction upon muscle fibers can increase conspicuity of muscle herniation(s) - this allows a better understanding of the apt provocative maneuvers to employ, during dynamic ultrasound or magnetic resonance imaging, in order to maximize diagnostic yield and, thereby, limit patient morbidity related to any muscle herniation. Our patient subsequently underwent successful decompressive fasciotomy and has since returned to his normal daily activities. (orig.)

  16. Muscle sonography in six patients with hereditary inclusion body myopathy

    International Nuclear Information System (INIS)

    Adler, Ronald S.; Garolfalo, Giovanna; Paget, Stephen; Kagen, Lawrence

    2008-01-01

    To evaluate the morphological changes of muscle with sonography in six patients affected by hereditary inclusion body myopathy (HIBM). We studied a group of six Persian Jews diagnosed with HIBM. All were homozygous for the GNE mutation M712T. Ultrasonographic examinations of the quadriceps femoris and hamstring muscle groups were performed. A follow-up ultrasound examination was performed, after an interval of 3 years, in four of these patients. Muscles were assessed subjectively as to echogenicity, determined by gray-scale assessment, and loss of normal muscle morphology. Power Doppler sonography (PDS) was used to assess vascularity. A sonographic finding of central atrophy and peripheral sparing resulting in a target-like appearance was noted in the hamstring compartment of all six patients. The quadriceps compartment also showed involvement of the rectus femoris of all patients, which, in some cases, was the only muscle involved in the quadriceps. Vascularity was markedly reduced in the affected areas, with blood flow demonstrated in the peripherally spared areas. The severity of atrophy increased with disease duration. In this case series, we describe a new sonographic finding as well as document progression of HIBM disease, which has generally been described as quadriceps sparing. The myopathic target lesion, as well as isolated rectus femoris atrophy, may provide a useful adjunct to disease diagnosis. (orig.)

  17. Muscle Contraction.

    Science.gov (United States)

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. MALDI imaging mass spectrometry: discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures.

    Science.gov (United States)

    Klein, Oliver; Strohschein, Kristin; Nebrich, Grit; Oetjen, Janina; Trede, Dennis; Thiele, Herbert; Alexandrov, Theodore; Giavalisco, Patrick; Duda, Georg N; von Roth, Philipp; Geissler, Sven; Klose, Joachim; Winkler, Tobias

    2014-10-01

    Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. EFFECTS OF VOLUNTARY WHEEL RUNNING ON SATELLITE CELLS IN THE RAT PLANTARIS MUSCLE

    Directory of Open Access Journals (Sweden)

    Atsushi Kojima

    2009-03-01

    Full Text Available This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5 or training (n = 12 group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p < 0.05. The percentage of satellite cells was also positively correlated with distance run in the training group (r = 0.61, p < 0.05. Voluntary running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run

  20. Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape

    Science.gov (United States)

    Taylor, Andrea B.; Vinyard, Christopher J.

    2009-01-01

    Cebus apella is renowned for its dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between the tufted capuchin (C. apella; n = 12 ) and two “untufted” capuchins (C. capuchinus, n = 3; C. albifrons, n = 5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that C. apella exhibits architectural properties of their jaw muscles that facilitate relatively large forces, including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P0). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter, whole masseter, and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P0. As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in C. apella primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear

  1. Aging is associated with diminished muscle re-growth and myogenic precursor cell expansion in the early recovery phase after immobility-induced atrophy in human skeletal muscle

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Mackey, Abigail L

    2013-01-01

    Recovery of skeletal muscle mass from immobilisation-induced atrophy is faster in young than older individuals, yet the cellular mechanisms remain unknown. We examined the cellular and molecular regulation of muscle recovery in young and old human subjects subsequent to 2 weeks of immobility...... expression analysis of key growth and transcription factors associated with local skeletal muscle milieu were performed after 2 weeks immobility (Imm) and following 3 days (+3d) and 4 weeks (+4wks) of re-training. OM demonstrated no detectable gains in MFA (VL muscle) and no increases in number of Pax7......-induced muscle atrophy. Re-training consisted of 4 weeks of supervised resistive exercise in 9 older (OM: 67.3yrs, range 61-74) and 11 young (YM: 24.4yrs, range 21-30) males. Measures of myofiber area (MFA), Pax7-positive satellite cells (SC) associated with type I and type II muscle fibres, as well as gene...

  2. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  3. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  4. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    Science.gov (United States)

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  5. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  6. Muscle dysmorphia in male weightlifters: a case-control study.

    Science.gov (United States)

    Olivardia, R; Pope, H G; Hudson, J I

    2000-08-01

    Muscle dysmorphia is a form of body dysmorphic disorder in which individuals develop a pathological preoccupation with their muscularity. The authors interviewed 24 men with muscle dysmorphia and 30 normal comparison weightlifters, recruited from gymnasiums in the Boston area, using a battery of demographic, psychiatric, and physical measures. The men with muscle dysmorphia differed significantly from the normal comparison weightlifters on numerous measures, including body dissatisfaction, eating attitudes, prevalence of anabolic steroid use, and lifetime prevalence of DSM-IV mood, anxiety, and eating disorders. The men with muscle dysmorphia frequently described shame, embarrassment, and impairment of social and occupational functioning in association with their condition. By contrast, normal weightlifters displayed little pathology. Indeed, in an a posteriori analysis, the normal weightlifters proved closely comparable to a group of male college students recruited as a normal comparison group in an earlier study. Muscle dysmorphia appears to be a valid diagnostic entity, possibly related to a larger group of disorders, and is associated with striking and stereotypical features. Men with muscle dysmorphia differ sharply from normal weightlifters, most of whom display little psychopathology. Further research is necessary to characterize the nosology and potential treatment of this syndrome.

  7. Abductor tendon tears are associated with hypertrophy of the tensor fasciae latae muscle.

    Science.gov (United States)

    Sutter, Reto; Kalberer, Fabian; Binkert, Christoph A; Graf, Nicole; Pfirrmann, Christian W A; Gutzeit, Andreas

    2013-05-01

    To evaluate the association between hypertrophy of the tensor fasciae latae muscle and abductor tendon tears. Thirty-five patients who underwent MRI of the abductor tendons of the hip were included in this retrospective study. A subgroup of 18 patients was examined bilaterally. The area of the tensor fasciae latae muscle and the area of the sartorius muscle (size reference) were quantified at the level of the femoral head, and a ratio was calculated. Two radiologists assessed the integrity of the gluteus medius and minimus tendon in consensus. Data were analyzed with a Mann-Whitney U test. Sixteen out of 35 patients (46 %) had a tear of the gluteus medius or minimus tendon. The ratio of the area of the tensor fasciae latae to the sartorius muscle was significantly higher (p = .028) in the group with an abductor tendon tear (median 2.25; Interquartile Range [IQR] = 1.97-3.21) compared to the group without any tears (median 1.91; IQR = 1.52-2.26). The bilateral subanalysis showed that in patients without a tear, the ratio of the two areas did not differ between each side (p = .966), with a median of 1.54 (primary side) and 1.76 (contralateral side). In patients with an abductor tendon tear the ratio was significantly higher (p = .031) on the side with a tear (median 2.81) compared to the contralateral healthy side (1.67). Patients with abductor tendon tears showed hypertrophy of the tensor fasciae latae muscle when compared to the contralateral healthy side and to patients without a tear.

  8. Relationship between physical exercise, muscle damage and delayed-onset muscle soreness

    Directory of Open Access Journals (Sweden)

    Denis Foschini

    2007-03-01

    Full Text Available The objective of the present study was to investigate the relationship between physical exercise involving muscle damage and delayed-onset muscle soreness (DOMS. A literature review of national and international periodicals was carried out. Muscle structures (membranes, Z-line, sarcomeres, T tubules and myofi brils can become damaged as a result of an imposed mechanical overload. Of greatest note are exercises requiring strength, particularly when muscular action is eccentric. Damage to skeletal musculature can be analyzed by direct methods (muscle biopsy or magnetic resonance or by indirect methods (maximum voluntary movement, subjective pain perception scales, analysis of enzyme and protein concentrations in blood. Creatine kinase (CK, lactate dehydrogenase (LDH, myosin heavy chain fragments, troponin-I and myoglobin can be used as indirect markers of muscle damage. Both DOMS and muscle damage can be infl uenced by the type of activity, with emphasis on eccentric muscle movements, type of exercise, velocity of the movement, interval period between series, the level of individual fi tness, this last primarily affecting beginners. When myotrauma occurs, muscle damage repair is initiated by leukocytes migrating to the injured area, although, the histamines, prostaglandins, kinins and K+ produced by neutrophils and macrophages stimulate free nerve endings in the muscle, causing the DOMS. Despite this apparent relationship between muscle damage and DOMS, it is not possible toestablish a linear relationship between these two variables, since published data are divergent. RESUMO O objetivo desse estudo foi investigar as relações do exercício físico com o dano muscular e dor muscular de início tardio (DMIT. Para tanto, foi realizada uma revisão de literatura de periódicos nacionais e internacionais. O dano muscular pode ocorrer em estruturas musculares (membranas, linha Z, sarcolema, túbulos T e miofi brilas em função da sobrecarga mec

  9. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  10. Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities.

    Science.gov (United States)

    Pavlath, G K; Thaloor, D; Rando, T A; Cheong, M; English, A W; Zheng, B

    1998-08-01

    Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.

  11. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  12. Lipomatous muscle atrophy caused by irradiation exposure

    International Nuclear Information System (INIS)

    Rhomberg, W.; Hergan, K.

    1990-01-01

    As compared to other organs and tissues liable to sustain delayed injury from radiotherapy, the musculature seems to be a hard-wearing, radiation-resistant organ. Apart from the possibility of inducing Myodegeneratio cordis, muscles are merely threatened, as far as is known today, by possible fibrosis in the surrounding area. Certainly, extremely high doses of more than 100 Gy occasionally may trigger necrosis and atrophies in tissues. The article reports on a patient suffering from carcinoma of the bladder who developed muscle and tendon degeneration following telecobalt irradiation after a latency period of eight years, forcing him ultimately to quit work. (orig.) [de

  13. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  14. Identification of mastication organ muscle forces in the biocybernetic perspective.

    Science.gov (United States)

    Kijak, Edward; Margielewicz, Jerzy; Gąska, Damian; Lietz-Kijak, Danuta; Więckiewicz, Włodzimierz

    2015-01-01

    PURPOSE OF THE PAPER: This paper is an attempt to mathematically describe the mastication organ muscle functioning, taking into consideration the impact of the central nervous system. To conduct model tests, three types of craniums were prepared: short, normal, and long. The necessary numeric data, required to prepare the final calculation models of different craniofacial types, were used to identify muscle and occlusion forces generated by muscles in the area of incisors and molars. The mandible in model tests was treated as a nondeformable stiff form. The formal basis for the formulated research problem was reached using the laws and principles of mechanics and control theory. The proposed method treats muscles as "black boxes," whose properties automatically adapt to the nature of the occlusion load. The identified values of occlusion forces referred to measurements made in clinical conditions. The conducted verification demonstrated a very good consistency of model and clinical tests' results. The proposed method is an alternative approach to the so far applied methods of muscle force identification. Identification of muscle forces without taking into account the impact of the nervous system does not fully reflect the conditions of mastication organ muscle functioning.

  15. Favorable effects of skeletal muscle on bone are distinguished according to gender and skeletal sites

    Directory of Open Access Journals (Sweden)

    Kyoung Min Kim

    2017-03-01

    Conclusions: Higher RASM was significantly associated with lower risk for osteoporosis and the areas at the femur neck and total hip appeared to more likely be affected positively by muscle. Moreover, because males showed faster muscle loss with aging than females, the bones of males may be more prone to favorable effects of muscle.

  16. Muscle senescence in short-lived wild mammals, the soricine shrews Blarina brevicauda and Sorex palustris.

    Science.gov (United States)

    Hindle, Allyson G; Lawler, John M; Campbell, Kevin L; Horning, Markus

    2009-06-01

    Red-toothed (soricine) shrews are consummate predators exhibiting the highest energy turnovers and shortest life spans (ca. 18 months) of any mammal, yet virtually nothing is known regarding their physiological aging. We assessed the emerging pattern of skeletal muscle senescence (contractile/connective tissue components) in sympatric species, the semi-aquatic water shrew (WS), Sorex palustris, and the terrestrial short-tailed shrew (STS), Blarina brevicauda, to determine if muscle aging occurs in wild, short-lived mammals (H(0): shrews do not survive to an age where senescence occurs), and if so, whether these alterations are species-specific. Gracilis muscles were collected from first-year (n=17) and second-year (n=17) field-caught shrews. Consistent with typical mammalian aging, collagen content (% area) increased with age in both species (S. palustris: approximately 50%; B. brevicauda: approximately 60%). Muscle was dominated by stiffer Type I collagen, and the ratio of collagen Type I:Type III more than doubled with age. The area ratio of muscle:collagen decreased with age in both species, but was considerably lower in adult STS, suggesting species-specificity of senescence. Extracellular space was age-elevated in B. brevicauda, but was preserved in S. palustris ( approximately 50 vs. 10% elevation). Though juvenile interspecific comparisons revealed no significance, adult WS myocytes had 68% larger cross-sectional area and occurred at 28% lower fibers/area than those of adult STS. We demonstrate that age-related muscle senescence does occur in wild-caught, short-lived mammals, and we therefore reject this classic aging theory tenet. Our findings moreover illustrate that differential age adjustments in contractile/connective tissue components of muscle occur in the two species of wild-caught shrews. (c) 2009 Wiley-Liss, Inc.

  17. An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue

    Science.gov (United States)

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG) of an athlete during isometric contractions. Various signal analysis methods are used illustrating their applicability in real-time settings. This demonstrated system can be used in sports scenarios to promote muscle growth/performance or prevent injury. To date, research on localised muscle fatigue focuses on the clinical side and lacks the implementation for detecting/predicting localised muscle fatigue using an autonomous system. Results show that automating the process of localised muscle fatigue detection/prediction is promising. The autonomous fatigue system was tested on five individuals showing 90.37% accuracy on average of correct classification and an error of 4.35% in predicting the time to when fatigue will onset. PMID:22319367

  18. An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Martin Colley

    2011-01-01

    Full Text Available Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG of an athlete during isometric contractions. Various signal analysis methods are used illustrating their applicability in real-time settings. This demonstrated system can be used in sports scenarios to promote muscle growth/performance or prevent injury. To date, research on localised muscle fatigue focuses on the clinical side and lacks the implementation for detecting/predicting localised muscle fatigue using an autonomous system. Results show that automating the process of localised muscle fatigue detection/prediction is promising. The autonomous fatigue system was tested on five individuals showing 90.37% accuracy on average of correct classification and an error of 4.35% in predicting the time to when fatigue will onset.

  19. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A [Hijiyanna Park, Hiroshima JP; Nakashima, N; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction; (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically; and apparently is not associated with any cardiac abnormality; and (3) focal cardiac myocytolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by non-bacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  20. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Nakashima, T; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction, (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically, and apparently is not associated with any cardiac abnormality, and (3) focal cardiac myochtolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by nonbacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  1. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    Science.gov (United States)

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  2. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    Science.gov (United States)

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  3. Hypertrophic changes of the teres minor muscle in rotator cuff tears: quantitative evaluation by magnetic resonance imaging.

    Science.gov (United States)

    Kikukawa, Kenshi; Ide, Junji; Kikuchi, Ken; Morita, Makoto; Mizuta, Hiroshi; Ogata, Hiroomi

    2014-12-01

    Few reports have assessed the teres minor (TM) muscle in rotator cuff tears. This study aimed to quantitatively analyze the morphologic changes of the TM muscle in patients with or without rotator cuff tears by magnetic resonance imaging (MRI). This retrospective study consisted of 279 subjects classified on the basis of interpretations of conventional MRI observations into 6 groups: no cuff tear; partial-thickness supraspinatus (SSP) tear; full-thickness SSP tear; SSP and subscapularis tears; SSP and infraspinatus (ISP) tears; and SSP, ISP, and subscapularis tears. With use of ImageJ software (National Institutes of Health, Bethesda, MD, USA) for oblique sagittal MRI, we measured the areas of ISP, TM, and anatomic external rotation (ISP + TM) muscles on the most lateral side in which the scapular spine was in contact with the scapular body. The occupational ratios of the TM muscle area to the anatomic external rotation muscle area were calculated. Ratios above the maximum of the 95% confidence intervals of the occupational ratio in the no-tear group were defined as hypertrophy of the TM muscle. Occupational ratios of the TM muscle in the no-tear group followed a normal distribution, and ratios >0.288 were defined as hypertrophic. Hypertrophic changes of the TM muscle were confirmed in rotator cuff tears involving the ISP tendon. A negative correlation was found between the occupational ratios of TM and ISP (P muscle appeared hypertrophic in rotator cuff tears involving the ISP, and the progression of ISP muscle atrophy seemed to induce the development of this compensatory hypertrophy. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  5. Activation of respiratory muscles during respiratory muscle training.

    Science.gov (United States)

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Specific fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle

    Science.gov (United States)

    2010-01-01

    Background An important variability of contractile and metabolic properties between muscles has been highlighted. In the literature, the majority of studies on beef sensorial quality concerns M. longissimus thoracis. M. rectus abdominis (RA) is easy to sample without huge carcass depreciation and may appear as an alternative to M. longissimus thoracis for fast and routine physicochemical analysis. It was considered interesting to assess the muscle fibres of M. rectus abdominis in comparison with M. longissimus thoracis (LT) and M. triceps brachii (TB) on the basis of metabolic and contractile properties, area and myosin heavy chain isoforms (MyHC) proportions. Immuno-histochemical, histochemical, histological and enzymological techniques were used. This research concerned two populations of Charolais cattle: RA was compared to TB in a population of 19 steers while RA was compared to LT in a population of 153 heifers. Results RA muscle had higher mean fibre areas (3350 μm2 vs 2142 to 2639 μm2) than the two other muscles. In RA muscle, the slow-oxidative fibres were the largest (3957 μm2) and the fast-glycolytic the smallest (2868 μm2). The reverse was observed in TB muscle (1725 and 2436 μm2 respectively). In RA muscle, the distinction between fast-oxidative-glycolytic and fast-glycolytic fibres appeared difficult or impossible to establish, unlike in the other muscles. Consequently the classification based on ATPase and SDH activities seemed inappropriate, since the FOG fibres presented rather low SDH activity in this muscle in comparison to the other muscles of the carcass. RA muscle had a higher proportion of I fibres than TB and LT muscles, balanced by a lower proportion either of IIX fibres (in comparison to TB muscle) or of IIA fibres (in comparison to LT muscle). However, both oxidative and glycolytic enzyme activities were lower in RA than in TB muscle, although the LDH/ICDH ratio was higher in RA muscle (522 vs 340). Oxidative enzyme activities were

  7. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  8. Idiopathic and diabetic skeletal muscle necrosis: evaluation by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kattapuram, Taj M.; Suri, Rajeev; Kattapuram, Susan V.; Rosol, Michael S.; Rosenberg, Andrew E.

    2005-01-01

    Idiopathic and diabetic-associated muscle necrosis are similar, uncommon clinical entities requiring conservative management and minimal intervention to avoid complications and prolonged hospitalization. An early noninvasive diagnosis is therefore essential. We evaluated the magnetic resonance imaging (MRI) characteristics of muscle necrosis in 14 patients, in eight of whom the diagnoses were confirmed histologically. Two experienced musculoskeletal radiologists performed retrospective evaluations of the MRI studies of 14 patients with the diagnoses of skeletal muscle infarction. In 10 cases gadolinium-enhanced (T1-weighted fat-suppressed) sequences were available along with T1-weighted, T2-weighted images and STIR sequences, while in four cases contrast-enhanced images were not available. Eight patients had underlying diabetes and in six patients the cause of the myonecrosis was considered idiopathic. T1-weighted images demonstrated isointense swelling of the involved muscle, with mildly displaced fascial planes. There was effacement of the fat signal intensity within the muscle. Fat-suppressed T2-weighted images showed diffuse heterogeneous high signal intensity in the muscles suggestive of edema. Perifascial fluid collection was seen in eight cases. Subcutaneous edema was present in seven patients. Following intravenous gadolinium administration, MRI demonstrated a focal area of heterogeneously enhancing mass with peripheral enhancement. Within this focal lesion, linear dark areas were seen with serpentine enhancing streaks separating them in eight cases. In two cases, a central relatively nonenhancing mass with irregular margins and peripheral enhancement was noted. The peripheral enhancement involved a significant part of the muscle. No focal fluid collection was noted. We believe that the constellation of imaging findings on T1- and T2-weighted images and post-gadolinium sequences is highly suggestive of muscle necrosis. We consider certain specific findings

  9. Accurate tissue area measurements with considerably reduced radiation dose achieved by patient-specific CT scan parameters

    DEFF Research Database (Denmark)

    Brandberg, J.; Bergelin, E.; Sjostrom, L.

    2008-01-01

    A low-dose technique was compared with a standard diagnostic technique for measuring areas of adipose and muscle tissue and CT numbers for muscles in a body composition application. The low-dose technique was intended to keep the expected deviation in the measured area of adipose and muscle tissu...

  10. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: individual and sex differences.

    Science.gov (United States)

    Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki

    2018-05-29

    Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.

  11. CT evaluation of the damaged upper limb muscle in patients with Duchenne type progressive muscular dystrophy (DMD)

    International Nuclear Information System (INIS)

    Saito, Hiroshi; Matsuke, Yutaka.

    1992-01-01

    In order to evaluate the changes of CT numbers and cross sectional areas of the muscles, we determined CT scores of the muscle. In twelve patients with Duchenne type progressive muscular dystrophy (DMD), we assessed the difference of CT scores of the muscle and the correlation between CT score of the muscle and 9-stage classification of upper extremities. CT scores of the subscapularis muscle and infraspinatus muscle were significantly lower than deltoideus muscle at the level of the shoulder, and flexor muscles showed also significantly lower than extensor muscles at the level of the upper extremity. Good correlations between CT score of the muscle and 9-stage classification of upper extremities were observed in the muscles of shoulder and upper arm. (author)

  12. CT evaluation of the damaged upper limb muscle in patients with Duchenne type progressive muscular dystrophy (DMD)

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Hiroshi (Anan Central Hospital, Tokushima (Japan)); Matsuke, Yutaka

    1992-04-01

    In order to evaluate the changes of CT numbers and cross sectional areas of the muscles, we determined CT scores of the muscle. In twelve patients with Duchenne type progressive muscular dystrophy (DMD), we assessed the difference of CT scores of the muscle and the correlation between CT score of the muscle and 9-stage classification of upper extremities. CT scores of the subscapularis muscle and infraspinatus muscle were significantly lower than deltoideus muscle at the level of the shoulder, and flexor muscles showed also significantly lower than extensor muscles at the level of the upper extremity. Good correlations between CT score of the muscle and 9-stage classification of upper extremities were observed in the muscles of shoulder and upper arm. (author).

  13. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    Science.gov (United States)

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  14. Muscle enzyme release does not predict muscle function impairment after triathlon.

    Science.gov (United States)

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  15. The solar neutrino problem after the first results from KamLAND

    Science.gov (United States)

    Bandyopadhyay, Abhijit; Choubey, Sandhya; Gandhi, Raj; Goswami, Srubabati; Roy, D. P.

    2003-05-01

    The first results from the KamLAND experiment have provided confirmational evidence for the Large Mixing Angle (LMA) Mikheyev-Smirnov-Wolfenstein (MSW) solution to the solar neutrino problem. We do a global analysis of solar and the recently announced KamLAND data (both rate and spectrum) and investigate its effect on the allowed region in the Δm2-tan2θ plane. The best-fit from a combined analysis which uses the KamLAND rate plus global solar data comes at Δm2=6.06×10-5 eV2 and tan2θ=0.42, very close to the global solar best-fit, leaving a large allowed region within the global solar LMA contour. The inclusion of the KamLAND spectral data in the global fit gives a best-fit Δm2=7.17×10-5 eV2 and tan2θ=0.43 and constrains the allowed areas within LMA, leaving essentially two allowed zones. Maximal mixing though allowed by the KamLAND data alone is disfavored by the global solar data and remains disallowed at about /3σ. The low Δm2 solution (LOW) is now ruled out at about 5/σ with respect to the LMA solution.

  16. The influence of training status on the drop in muscle strength after acute exercise

    DEFF Research Database (Denmark)

    Pingel, Jessica; Moerch, L; Kjaer, M

    2009-01-01

    to running exercise immediately after immobilization, the muscle strength of the triceps-surae muscles dropped even further, but just in the immobilized leg (41%; P importance of determining the muscle endurance when evaluating the effect of immobilization on muscle......Skeletal muscles fatigue after exercise, and reductions in maximal force appear. A difference in training status between the legs was introduced by unilateral immobilization of the calf muscles for 2 weeks in young men, who were randomly assigned to two groups, either a RUN group (n = 8......) that was exposed to prolonged exercise (1-h running: individual pace) or a REST group (n = 12) that did no exercise after immobilization. Cross-sectional area (CSA) of the triceps-surae muscles was calculated by magnetic resonance imaging (MRI), and maximal voluntary contraction (MVC) force of the plantar flexors...

  17. Women at Altitude: Voluntary Muscle Exercise Performance with and Without a-Adrenergic Receptor Blockage

    Science.gov (United States)

    1999-02-01

    proportion of active muscle volume occupied by slow - twitch fibers (a consequence of women having a smaller, fast - twitch fiber cross-sectional area (11,27...oxidative metabolism and in the ratio of slow -to- fast twitch fiber area must be considered with caution, however, since the proportion of slow fatiguing...ventilatory acclimatization to 4300m. Respir.Physiol. 70: 195-204,1987. 27. Nygaard, E. Skeletal muscle fibre characteristics in young women. Acta

  18. Muscle stiffness at different force levels measured with two myotonometric devices

    International Nuclear Information System (INIS)

    Jarocka, Ewa; Marusiak, Jarosław; Kumorek, Martyna; Jaskólska, Anna; Jaskólski, Artur

    2012-01-01

    Myotonometric measurements are quantitative methods of muscle tone assessment and may be used as an alternative for palpation evaluation. The objective of the study was to compare the measurements of brachioradialis muscle tone and stiffness using the Myoton-3 and the Myotonometer. The participants were young males (N = 17, mean age 21 ± 1 years). The skeletal muscle state was expressed by the Myoton-3 parameters stiffness (N m −1 ), frequency (Hz) and decrement (no unit) and the Myotonometer's area under the curve (AUC) parameter (area under the curve, no unit), when muscle was at rest and during activity at 25%, 50%, 80% and 100% of maximal voluntary contraction for elbow flexors. Pearson's correlation between AUC and stiffness is r = −0.89, AUC and frequency r = −0.84 and AUC and decrement r = 0.79, p < 0.01. When comparing the results from each experimental condition separately for frequency and AUC, the correlation was from −0.63 to −0.80, for stiffness and AUC it ranged from −0.25 to −0.75 and for decrement and AUC from 0.27 to 0.74. The degree of correlation between myotonometric measurements depends on whether the measured muscle is at rest or during contraction. The correlation is diverse among related parameters. (paper)

  19. A Dynamic Bayesian Approach to Computational Laban Shape Quality Analysis

    Directory of Open Access Journals (Sweden)

    Dilip Swaminathan

    2009-01-01

    kinesiology. LMA (especially Effort/Shape emphasizes how internal feelings and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world. We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data in real time. The method uses a dynamic Bayesian network (DBN to fuse movement features across the body and across time and as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback, with applications to kinesiology training, Parkinson's patient rehabilitation, interactive dance, and many other areas.

  20. Could a functional artificial skeletal muscle be useful in muscle wasting?

    Science.gov (United States)

    Fuoco, Claudia; Cannata, Stefano; Gargioli, Cesare

    2016-05-01

    Regardless of the underlying cause, skeletal muscle wasting is detrimental for a person's life quality, leading to impaired strength, locomotion, and physiological activity. Here, we propose a series of studies presenting tissue engineering-based approaches to reconstruct artificial muscle in vitro and in vivo. Skeletal muscle tissue engineering is attracting more and more attention from scientists, clinicians, patients, and media, thanks to the promising results obtained in the last decade with animal models of muscle wasting. The use of novel and refined biomimetic scaffolds mimicking three-dimensional muscle environment, thus supporting cell survival and differentiation, in combination with well characterized myogenic stem/progenitor cells, revealed the noteworthy potential of these technologies for creating artificial skeletal muscle tissue. In vitro, the production of three-dimensional muscle structures offer the possibility to generate a drug-screening platform for patient-specific pharmacological treatment, opening new frontiers in the development of new compounds with specific therapeutic actions. In vivo, three-dimensional artificial muscle biomimetic constructs offer the possibility to replace, in part or entirely, wasted muscle by means of straight reconstruction and/or by enhancing endogenous regeneration. Reports of tissue engineering approaches for artificial muscle building appeared in large numbers in the specialized press lately, advocating the suitability of this technology for human application upon scaling up and a near future applicability for medical care of muscle wasting. http://links.lww.com/COCN/A9

  1. ADC histogram analysis of muscle lymphoma - Correlation with histopathology in a rare entity.

    Science.gov (United States)

    Meyer, Hans-Jonas; Pazaitis, Nikolaos; Surov, Alexey

    2018-06-21

    Diffusion weighted imaging (DWI) is able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize lesion on MRI. The purpose of this study is to correlate histogram parameters derived from apparent diffusion coefficient- (ADC) maps with histopathology parameters in muscle lymphoma. Eight patients (mean age 64.8 years, range 45-72 years) with histopathologically confirmed muscle lymphoma were retrospectively identified. Cell count, total nucleic and average nucleic areas were estimated using ImageJ. Additionally, Ki67-index was calculated. DWI was obtained on a 1.5T scanner by using the b values of 0 and 1000 s/mm2. Histogram analysis was performed as a whole lesion measurement by using a custom-made Matlabbased application. The correlation analysis revealed statistically significant correlation between cell count and ADCmean (p=-0.76, P=0.03) as well with ADCp75 (p=-0.79, P=0.02). Kurtosis and entropy correlated with average nucleic area (p=-0.81, P=0.02, p=0.88, P=0.007, respectively). None of the analyzed ADC parameters correlated with total nucleic area and with Ki67-index. This study identified significant correlations between cellularity and histogram parameters derived from ADC maps in muscle lymphoma. Thus, histogram analysis parameters reflect histopathology in muscle tumors. Advances in knowledge: Whole lesion ADC histogram analysis is able to reflect histopathology parameters in muscle lymphomas.

  2. Muscle dysmorphia: methodological issues, implications for research.

    Science.gov (United States)

    Suffolk, Mark T; Dovey, Terence M; Goodwin, Huw; Meyer, Caroline

    2013-01-01

    Muscle dysmorphia is a male-dominated, body image-related psychological condition. Despite continued investigation, contention surrounds the nosological status of this disorder. The aim of this article was to review the literature on muscle dysmorphia to provide a qualitative account of methodological issues that may inhibit our understanding. Key areas relating to non-standardized participant groups, measuring instruments, and terminology were identified as potentially inhibiting symptom coherence and diagnostic reliability. New measuring instruments validated with clinical samples and carefully described participant groups, standardized terminology, and a greater emphasis on prospective longitudinal research with specific sub groups of the weight training community would be of interest to the field.

  3. Influence of muscle geometry on shortening speed of fibre, aponeurosis and muscle

    NARCIS (Netherlands)

    Zuurbier, C. J.; Huijing, P. A.

    1992-01-01

    The influence of muscle geometry on muscle shortening of the gastrocnemius medialis muscle (GM) of the rat was studied. Using cinematography, GM geometry was studied during isokinetic concentric activity at muscle lengths ranging from 85 to 105% of the optimum muscle length. The shortening speed of

  4. Cross-Sectional Area of the Rotator Cuff Muscles in MRI - Is there Evidence for a Biomechanical Balanced Shoulder?

    Directory of Open Access Journals (Sweden)

    Samy Bouaicha

    Full Text Available To provide in-vivo evidence for the common biomechanical concept of transverse and craniocaudal force couples in the shoulder that are yielded by both the rotator cuff muscles (RCM and the deltoid and to quantitatively evaluate and correlate the cross-sectional areas (CSA of the corresponding RCM as a surrogate marker for muscle strength using MRI.Fifty patients (mean age, 36 years; age range, 18-57 years; 41 male, 9 female without rotator cuff tears were included in this retrospective study. Data were assessed by two readers. The CSA (mm2 of all rotator cuff muscles was measured on parasagittal T1-weighted FSE sequence at two different positions (at the established "y-position" and at a more medial slice in the presumably maximal CSA for each muscle, i.e., the "set position". The CSA of the deltoid was measured on axial intermediate-weighted FSE sequences at three positions. CSA measurements were obtained using 1.5 Tesla MR-arthrographic shoulder. Pearson's correlation for the corresponding CSA of the force couple as well as was the intraclass correlation coefficient for the inter- and intra-reader agreement was calculated.The mean CSA was 770 mm2 (±167 and 841 mm2 (±191 for the supraspinatus (in the y- and set-positions, respectively and 984 mm2 (±241 and 1568 mm2 (±338 for the infraspinatus. The mean CSA was 446 mm2 (±129 and 438 mm2 (±128 for the teres minor (in the y- and set-positions, respectively and 1953 mm2 (±553 and 2343 mm2 (±587 for the subscapularis. The three measurements of the deltoid revealed a CSA of 3063 mm2 (±839 for the upper edge, 3829 mm2 (±836 for the lower edge and 4069 mm2 (±937 for the middle of the glenoid. At the set position Pearson's correlation of the transverse force couple (subscapularis/infraspinatus showed a moderate positive correlation of r = 0.583 (p<0.0001 and a strong correlation when the CSA of the teres minor was added to the infraspinatus CSA (r = 0.665, p = 0.0008 and a strong positive

  5. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.

  6. The motor cortex drives the muscles during walking in human subjects

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Willerslev-Olsen, Maria; Conway, B A

    2012-01-01

    Indirect evidence that the motor cortex and the corticospinal tract contribute to the control of walking in human subjects has been provided in previous studies. In the present study we used coherence analysis of the coupling between EEG and EMG from active leg muscles during human walking...... area and EMG from the anterior tibial muscle was found in the frequency band 24–40 Hz prior to heel strike during the swing phase of walking. This signifies that rhythmic cortical activity in the 24–40 Hz frequency band is transmitted via the corticospinal tract to the active muscles during walking...

  7. Predictors of muscle protein synthesis after severe pediatric burns.

    Science.gov (United States)

    Diaz, Eva C; Herndon, David N; Lee, Jinhyung; Porter, Craig; Cotter, Matthew; Suman, Oscar E; Sidossis, Labros S; Børsheim, Elisabet

    2015-04-01

    Following a major burn, skeletal muscle protein synthesis rate increases but is often insufficient to compensate for massively elevated muscle protein breakdown rates. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that muscle protein synthesis rate would be chronically elevated in severely burned children. The objectives of this study were to characterize muscle protein synthesis rate of burned children over a period of 24 months after injury and to identify predictors that influence this response. A total of 87 children with 40% or greater total body surface area (TBSA) burned were included. Patients participated in stable isotope infusion studies at 1, 2, and approximately 4 weeks after burn and at 6, 12, and 24 months after injury to determine skeletal muscle protein fractional synthesis rate. Generalized estimating equations with log link normal distribution were applied to account for clustering of patients and control for patient characteristics. Patients (8 ± 6 years) had large (62, 51-72% TBSA) and deep (47% ± 21% TBSA third degree) burns. Muscle protein fractional synthesis rate was elevated throughout the first 12 months after burn compared with established values from healthy young adults. Muscle protein fractional synthesis rate was lower in boys, in children older than 3 years, and when burns were greater than 80% TBSA. Muscle protein synthesis is elevated for at least 1 year after injury, suggesting that greater muscle protein turnover is a component of the long-term pathophysiologic response to burn trauma. Muscle protein synthesis is highly affected by sex, age, and burn size in severely burned children. These findings may explain the divergence in net protein balance and lean body mass in different populations of burn patients. Prognostic study, level III.

  8. Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy

    Science.gov (United States)

    Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2012-01-01

    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172

  9. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Bashir M Rezk

    Full Text Available Advanced congestive heart failure (CHF and chronic kidney disease (CKD are characterized by increased angiotensin II (Ang II levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1 and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase and of the satellite cell marker M-cadherin (59.2±22.2% increase. Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase, those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD.

  10. Muscle atrophy as pre-sarcopenia in Japanese patients with chronic liver disease: computed tomography is useful for evaluation

    OpenAIRE

    Hiraoka, Atsushi; Aibiki, Toshihiko; Okudaira, Tomonari; Toshimori, Akiko; Kawamura, Tomoe; Nakahara, Hiromasa; Suga, Yoshifumi; Azemoto, Nobuaki; Miyata, Hideki; Miyamoto, Yasunao; Ninomiya, Tomoyuki; Hirooka, Masashi; Abe, Masanori; Matsuura, Bunzo; Hiasa, Yoichi

    2015-01-01

    Background/Aim The definition of muscle atrophy (pre-sarcopenia) and its diagnostic criteria have not been well reported. To elucidate the frequency of pre-sarcopenia in chronic liver disease (CLD), we examined clinical features of Japanese CLD patients using abdominal computed tomography (CT) findings. Methods We enrolled 988 CLD (736 with na?ve hepatocellular carcinoma) and 372 normal control subjects (NCs). The psoas muscle area index [PI, psoas muscle area at the mid-L3 level in CT (cm2)/...

  11. High-Energy Four-Wave Mixing, with Large-Mode-Area Higher-Order Modes in Optical Fibres

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Steinvurzel, P. E.; Chen, Y.

    2012-01-01

    We demonstrate, for the first time, four-wave mixing, in the 1-μm spectral regime, in an LMA silica fiber. Pumping a 618-μm2 LP07 mode (λo = 1038.4 nm) with a 1064.6-nm Nd:YAG laser results in the generation of modulation instability, and multiple Stokes/anti-Stokes lines, opening up the prospect...

  12. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer.

    Science.gov (United States)

    van Dijk, David P J; Bakens, Maikel J A M; Coolsen, Mariëlle M E; Rensen, Sander S; van Dam, Ronald M; Bours, Martijn J L; Weijenberg, Matty P; Dejong, Cornelis H C; Olde Damink, Steven W M

    2017-04-01

    Cancer cachexia and skeletal muscle wasting are related to poor survival. In this study, quantitative body composition measurements using computed tomography (CT) were investigated in relation to survival, post-operative complications, and surgical site infections in surgical patients with cancer of the head of the pancreas. A prospective cohort of 199 patients with cancer of the head of the pancreas was analysed by CT imaging at the L3 level to determine (i) muscle radiation attenuation (average Hounsfield units of total L3 skeletal muscle); (ii) visceral adipose tissue area; (iii) subcutaneous adipose tissue area; (iv) intermuscular adipose tissue area; and (v) skeletal muscle area. Sex-specific cut-offs were determined at the lower tertile for muscle radiation attenuation and skeletal muscle area and the higher tertile for adipose tissues. These variables of body composition were related to overall survival, severe post-operative complications (Dindo-Clavien ≥ 3), and surgical site infections (wounds inspected daily by an independent trial nurse) using Cox-regression analysis and multivariable logistic regression analysis, respectively. Low muscle radiation attenuation was associated with shorter survival in comparison with moderate and high muscle radiation attenuation [median survival 10.8 (95% CI: 8.8-12.8) vs. 17.4 (95% CI: 14.7-20.1), and 18.5 (95% CI: 9.2-27.8) months, respectively; P site infection rate, OR: 2.4 (95% CI: 1.1-5.3; P = 0.027). Low muscle radiation attenuation was associated with reduced survival, and high visceral adiposity was associated with an increase in surgical site infections. The strong correlation between muscle radiation attenuation and intermuscular adipose tissue suggests the presence of ectopic fat in muscle, warranting further investigation. CT image analysis could be implemented in pre-operative risk assessment to assist in treatment decision-making. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  13. Leucine Supplementation Accelerates Connective Tissue Repair of Injured Tibialis Anterior Muscle

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2014-09-01

    Full Text Available This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA. Young male Wistar rats were supplemented with leucine (1.35 g/kg per day; then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA of regenerating myofibers (p > 0.05 from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I and Smad2/3 in regenerating muscles (p < 0.05. Leucine also reduced neonatal myosin heavy chain (MyHC-n (p < 0.05, increased adult MyHC-II expression (p < 0.05 and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05. Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.

  14. Evidence for ACTN3 as a Speed Gene in Isolated Human Muscle Fibers.

    Directory of Open Access Journals (Sweden)

    Siacia Broos

    Full Text Available To examine the effect of α-actinin-3 deficiency due to homozygosity for the ACTN3 577X-allele on contractile and morphological properties of fast muscle fibers in non-athletic young men.A biopsy was taken from the vastus lateralis of 4 RR and 4 XX individuals to test for differences in morphologic and contractile properties of single muscle fibers. The cross-sectional area of the fiber and muscle fiber composition was determined using standard immunohistochemistry analyses. Skinned single muscle fibers were subjected to active tests to determine peak normalized force (P0, maximal unloading velocity (V0 and peak power. A passive stretch test was performed to calculate Young's Modulus and hysteresis to assess fiber visco-elasticity.No differences were found in muscle fiber composition. The cross-sectional area of type IIa and IIx fibers was larger in RR compared to XX individuals (P<0.001. P0 was similar in both groups over all fiber types. A higher V0 was observed in type IIa fibers of RR genotypes (P<0.001 but not in type I fibers. The visco-elasticity as determined by Young's Modulus and hysteresis was unaffected by fiber type or genotype.The greater V0 and the larger fast fiber CSA in RR compared to XX genotypes likely contribute to enhanced whole muscle performance during high velocity contractions.

  15. Comparison of trapezius squeeze test and jaw thrust as clinical indicators for laryngeal mask airway insertion in spontaneously breathing children

    Science.gov (United States)

    Dinesh Kumar, K. K.; Bhardwaj, Neerja; Yaddanapudi, Sandhya

    2017-01-01

    Background and Aims: It is not known whether trapezius squeeze test (TPZ) is a better clinical test than jaw thrust (JT) to assess laryngeal mask airway (LMA) insertion conditions in children under sevoflurane anesthesia. Material and Methods: After the Institutional Ethics Committee approval and written informed parental consent, 124 American Society of Anesthesiologists I and II children of 2–8 years of age undergoing minor surgical procedures were randomized into TPZ and JT groups. The children were induced with 8% sevoflurane in oxygen at a fresh gas flow of 4 L/min. TPZ or JT was performed after 1 min of start of sevoflurane and then every 20 s till the test was negative, when end-tidal (ET) sevoflurane concentration was noted. Classic LMA of requisite size was inserted by a blinded anesthetist and conditions at the insertion of LMA, insertion time, and the number of attempts of LMA insertion were recorded. Results: The mean LMA insertion time was significantly longer (P < 0.001) for TPZ (145 ± 28.7 sec) compared to JT group (111.8 ± 31.0 sec). ET sevoflurane concentration at the time of LMA insertion was comparable in the two groups. LMA insertion conditions were similar in the two groups. There was no difference between the two groups regarding total number of attempts of LMA insertion. Heart rate (HR) decreased in both groups after LMA insertion (P < 0.001) but TPZ group had significantly lower HR compared with the JT group up to 5 min after LMA insertion (P = 0.03). Conclusion: Both JT and TPZ are equivalent clinical indicators in predicting the optimal conditions of LMA insertion in spontaneously breathing children; however, it takes a longer time to achieve a negative TPZ squeeze test. PMID:28413275

  16. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    Science.gov (United States)

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  17. 99mTc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle

    International Nuclear Information System (INIS)

    Pekindil, Y.; Sarikaya, A.; Birtane, M.; Pekindil, G.; Salan, A.

    2001-01-01

    Neuromuscular electrical stimulation (NMES) is widely used for improving muscle strength by simultaneous contraction in the prevention of muscle atrophy. Although there exist many clinical methods for evaluating the therapeutic response of muscles, 99m Tc-sestamibi which is a skeletal muscle perfusion and metabolism agent has not previously been used for this purpose. The aim of our work was to ascertain whether 99m Tc-sestamibi muscle scintigraphy is useful in the monitoring of therapeutic response to NMES in healthy women. The study included 16 women aged between 21 and 45, with a mean age of 32.7±6.4. Both quadriceps femoris muscles (QFM) of each patient were studied. After randomization to remove the effect of the dominant side, one QFM of each patient was subjected to the NMES procedure for a period of 20 days. NMES was performed with an alternating biphasic rectangular current, from a computed electrical stimulator daily for 23 minutes. After measurement of skinfold thickness over the thigh, pre- and post-NMES girth measurements were assessed in centimeters. Sixty minutes after injections of 555 MBq 99m Tc-sestamibi, static images of the thigh were obtained for 5 minutes. The thigh-to-knee uptake ratio was calculated by semiquantitative analysis and normalized to body surface area (NUR=normalized uptake ratio). The difference between the pre and post NMES NUR values was significant (1.76±0.31 versus 2.25±0.38, p=0.0000). The percentage (%) increase in NUR values also well correlated with the % increase in thigh girth measurements (r=0.89, p=0.0000). These results indicated that 99m Tc-sestamibi muscle scintigraphy as a new tool may be useful in evaluating therapeutic response to NMES. (author)

  18. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    Science.gov (United States)

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (Pflow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Serial Changes in 3-Dimensional Supraspinatus Muscle Volume After Rotator Cuff Repair.

    Science.gov (United States)

    Chung, Seok Won; Oh, Kyung-Soo; Moon, Sung Gyu; Kim, Na Ra; Lee, Ji Whan; Shim, Eungjune; Park, Sehyung; Kim, Youngjun

    2017-08-01

    There is considerable debate on the recovery of rotator cuff muscle atrophy after rotator cuff repair. To evaluate the serial changes in supraspinatus muscle volume after rotator cuff repair by using semiautomatic segmentation software and to determine the relationship with functional outcomes. Case series; Level of evidence, 4. Seventy-four patients (mean age, 62.8 ± 8.8 years) who underwent arthroscopic rotator cuff repair and obtained 3 consecutive (preoperatively, immediately postoperatively, and later postoperatively [≥1 year postoperatively]) magnetic resonance imaging (MRI) scans having complete Y-views were included. We generated a 3-dimensional (3D) reconstructed model of the supraspinatus muscle by using in-house semiautomatic segmentation software (ITK-SNAP) and calculated both the 2-dimensional (2D) cross-sectional area and 3D volume of the muscle in 3 different views (Y-view, 1 cm medial to the Y-view [Y+1 view], and 2 cm medial to the Y-view [Y+2 view]) at the 3 time points. The area and volume changes at each time point were evaluated according to repair integrity. Later postoperative volumes were compared with immediately postoperative volumes, and their relationship with various clinical factors and the effect of higher volume increases on range of motion, muscle power, and visual analog scale pain and American Shoulder and Elbow Surgeons scores were evaluated. The interrater reliabilities were excellent for all measurements. Areas and volumes increased immediately postoperatively as compared with preoperatively; however, only volumes on the Y+1 view and Y+2 view significantly increased later postoperatively as compared with immediately postoperatively ( P < .05). There were 9 patients with healing failure, and area and volume changes were significantly less later postoperatively compared with immediately postoperatively at all measurement points in these patients ( P < .05). After omitting the patients with healing failure, volume increases

  20. New perspectives on the development of muscle contractures following central motor lesions.

    Science.gov (United States)

    Pingel, J; Bartels, E M; Nielsen, J B

    2017-02-15

    Muscle contractures are common in patients with central motor lesions, but the mechanisms responsible for the development of contractures are still unclear. Increased or decreased neural activation, protracted placement of a joint with the muscle in a short position and muscle atrophy have been suggested to be involved, but none of these mechanisms are sufficient to explain the development of muscle contractures alone. Here we propose that changes in tissue homeostasis in the neuromuscular-tendon-connective tissue complex is at the heart of the development of contractures, and that an integrated physiological understanding of the interaction between neural, mechanical and metabolic factors, as well as genetic and epigenetic factors, is necessary in order to unravel the mechanisms that result in muscle contractures. We hope thereby to contribute to a reconsideration of how and why muscle contractures develop in a way which will open a window towards new insight in this area in the future. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  1. The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle.

    Science.gov (United States)

    Galle, Sabina; Yanze, Nathalie; Seipel, Katja

    2005-01-01

    Bilaterian Msx homeobox genes are generally expressed in areas of cell proliferation and in association with multipotent progenitor cells. Likewise, jellyfish Msx is expressed in progenitor cells of the developing entocodon, a cell layer giving rise to the striated and smooth muscles of the medusa. However, in contrast to the bilaterian homologs, Msx gene expression is maintained at high levels in the differentiated striated muscle of the medusa in vivo and in vitro. This tissue exhibits reprogramming competence. Upon induction, the Msx gene is immediately switched off in the isolated striated muscle undergoing transdifferentiation, to be upregulated again in the emerging smooth muscle cells which, in a stem cell like manner, undergo quantal cell divisions producing two cell types, a proliferating smooth muscle cell and a differentiating nerve cell. This study indicates that the Msx protein may be a key component of the reprogramming machinery responsible for the extraordinary transdifferentation and regeneration potential of striated muscle in the hydrozoan jellyfish.

  2. Recovery of atrophic leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1988-01-01

    Thirty-five patients with hemiplegia due to cerebrovascular accidents were studied with regared to the muscle wastings before and after rehabilitation training. Hemiplegics were composed of 12 improved and 23 non-improved patients. The CT scan was carried out at the midportion of the thigh and largest-diameter section of the calf. Muscle size of each cross-sectional area was measured on CT image and the increase of size (ΔS) in each muscle after training was calculated. The ΔS of quadriceps femoris was correlated with that of whole cross-section of the thigh. The gracilis in non-affected side was not correlated with that of whole muscles. In both legs, there was an increase in leg muscle size after training. These changes were nost marked in the non-affected side of the improved patients. After training the difference between the two limbs remained unchanged. Recovery of muscle wasting in both legs was seen first in the quadriceps in thigh and flexors in calf. Gracilis was relatively unchanged in comparison with other muscles. Remarkable increase of muscle size in non-affected side was worthwhile to note. (author)

  3. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Structure–function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    International Nuclear Information System (INIS)

    Gao, Yingxin; Zhang, Chi

    2015-01-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure–function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure–function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure–function relationship of skeletal muscle into the design of artificial muscle. (topical review)

  5. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    Science.gov (United States)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  6. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    Science.gov (United States)

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  7. T2 mapping of muscle activity using ultrafast imaging

    International Nuclear Information System (INIS)

    Tawara, Noriyuki; Nitta, Osamu; Kuruma, Hironobu; Niitsu, Mamoru; Itoh, Akiyoshi

    2011-01-01

    Measuring exercise-induced muscle activity is essential in sports medicine. Previous studies proposed measuring transverse relaxation time (T 2 ) using muscle functional magnetic resonance imaging (mfMRI) to map muscle activity. However, mfMRI uses a spin-echo (SE) sequence that requires several minutes for acquisition. We evaluated the feasibility of T 2 mapping of muscle activity using ultrafast imaging, called fast-acquired mfMRI (fast-mfMRI), to reduce image acquisition time. The current method uses 2 pulse sequences, spin-echo echo-planar imaging (SE-EPI) and true fast imaging with steady precession (TrueFISP). SE-EPI images are used to calculate T 2 , and TrueFISP images are used to obtain morphological information. The functional image is produced by subtracting the image of muscle activity obtained using T 2 at rest from that produced after exercise. Final fast-mfMRI images are produced by fusing the functional images with the morphologic images. Ten subjects repeated ankle plantar flexion 200 times. In the fused images, the areas of activated muscle in the fast-mfMRI and SE-EPI images were identical. The geometric location of the fast-mfMRI did not differ between the morphologic and functional images. Morphological and functional information from fast-mfMRI can be applied to the human trunk, which requires limited scan duration. The difference obtained by subtracting T 2 at rest from T 2 after exercise can be used as a functional image of muscle activity. (author)

  8. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    , the results show that increased BF during one-leg exercise in moderate hypoxia is confined only to the contracting muscles, and the working muscle hyperemia appears not to be directly mediated by adenosine. Increased flow heterogeneity in noncontracting muscles likely reflects sympathetic nervous constraints...... healthy young men using positron emission tomography during one-leg dynamic knee extension exercise in normoxia and moderate physiological systemic hypoxia (14% O(2) corresponding to approximately 3,400 m of altitude) without and with local adenosine receptor inhibition with femoral artery infusion...... to curtail BF increments in areas other than working skeletal muscles, but this effect is not potentiated in moderate systemic hypoxia during small muscle mass exercise....

  9. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3.

    Directory of Open Access Journals (Sweden)

    Ligen Lin

    Full Text Available We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the establishment of a transgenic mouse model with muscle-specific expression of the murine SIRT3 short isoform (SIRT3M3. Calorimetry study revealed that the transgenic mice had increased energy expenditure and lower respiratory exchange rate (RER, indicating a shift towards lipid oxidation for fuel usage, compared to control mice. The transgenic mice exhibited better exercise performance on treadmills, running 45% further than control animals. Moreover, the transgenic mice displayed higher proportion of slow oxidative muscle fibers, with increased muscle AMPK activation and PPARδ expression, both of which are known regulators promoting type I muscle fiber specification. Surprisingly, transgenic expression of SIRT3M3 reduced muscle mass up to 30%, likely through an up-regulation of FOXO1 transcription factor and its downstream atrophy gene MuRF-1. In summary, these results suggest that SIRT3 regulates the formation of oxidative muscle fiber, improves muscle metabolic function, and reduces muscle mass, changes that mimic the effects of caloric restriction.

  10. Leukocyte migration activity and proteolysis in malignant lymphomas during radiation and detoxication therapy

    International Nuclear Information System (INIS)

    Klimov, I.A.; Yakhontov, N.E.; Serdyukov, A.S.; Pugachev, V.F.; Elistratova, N.B.; Sedova, L.A.; Mikhajlova, L.G.

    1987-01-01

    Study on changes in leukocyte migration activity (LMA) in malignant lymphomas during manifestation of body reactions to gamma-therapy has shown a considerable decrease of LMA. Detoxication therapy combined with antiproteolytic drugs (polydes + aminocapronic acid) during continued gamma-therapy has helped a considerable restoration of LMA. Study of LMA changes during radiotherapy may be used as an integral test for radiation toxemia, and for assessment of the therapy efficacy

  11. Performances in extreme environments: effects of hyper/hypobarism and hypogravity on skeletal muscle

    Directory of Open Access Journals (Sweden)

    Gerardo Bosco

    2010-09-01

    Full Text Available Many environmental factors may affect muscle plasticity but some have exclusive characteristics that allow them to play a key role to maintain the muscle capacity to generate force; these factors are: i the oxygen availability and ii the load applied to muscle fibres. Hyperbarism is a condition that occurs when a man is subjected to pressure increases. To keep the lungs from collapsing, the air is supplied to him under high pressure which exposes the blood in the lungs to high alveolar gas pressures. Under this condition, the PO2 become sufficiently increased, serious disorders may occur, such as modification of oxygen delivery and/or oxygen availability to permit regular muscle contraction. Also altitude hypobaric hypoxia induces modification of muscle capacity to generate work. Prolonged exposure to high altitude leads significant loss in body mass, thigh muscle mass, muscle fiber area and volume density of muscle mitochondria. Spaceflight results in a number of adaptations to skeletal muscle, including atrophy and early muscle fatigue. Muscle atrophy is observed in a wide range of muscles, with the most extensive loss occurring in the legs, because astronauts are no longer needed to support the body's weight. This review will describe the background on these topics suggesting the strategies to correct the specific muscle changes in presence of environmental stresses, such as the alteration in oxygen-derived signaling pathways or the metabolic consequence of microgravity that may indicate rational interventions to maintain muscle mass and function.

  12. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  13. Leaf nitrogen from first principles: field evidence for adaptive variation with climate

    Science.gov (United States)

    Dong, Ning; Prentice, Iain Colin; Evans, Bradley J.; Caddy-Retalic, Stefan; Lowe, Andrew J.; Wright, Ian J.

    2017-01-01

    Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with increases in ci : ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with increases in both. We tested these predictions using LMA, leaf δ13C, and leaf N measurements on complete species assemblages sampled at sites on a north-south transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature, and ci : ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), and the other to Rubisco capacity as predicted by the co-ordination hypothesis. Trait gradient analysis revealed ci : ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Coupled carbon-nitrogen models require a method to predict Narea that is more realistic than the widespread assumptions that Narea is proportional to photosynthetic capacity, and/or that Narea (and photosynthetic capacity) are determined by N supply from the soil. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci : ca - themselves in part environmentally determined - with Rubisco activity

  14. Forearm Flexor Muscles in Children with Cerebral Palsy Are Weak, Thin and Stiff

    Directory of Open Access Journals (Sweden)

    Eva Pontén

    2017-04-01

    Full Text Available Children with cerebral palsy (CP often develop reduced passive range of motion with age. The determining factor underlying this process is believed to be progressive development of contracture in skeletal muscle that likely changes the biomechanics of the joints. Consequently, to identify the underlying mechanisms, we modeled the mechanical characteristics of the forearm flexors acting across the wrist joint. We investigated skeletal muscle strength (Grippit® and passive stiffness and viscosity of the forearm flexors in 15 typically developing (TD children (10 boys/5 girls, mean age 12 years, range 8–18 yrs and nine children with CP Nine children (6 boys/3 girls, mean age 11 ± 3 years (yrs, range 7–15 yrs using the NeuroFlexor® apparatus. The muscle stiffness we estimate and report is the instantaneous mechanical response of the tissue that is independent of reflex activity. Furthermore, we assessed cross-sectional area of the flexor carpi radialis (FCR muscle using ultrasound. Age and body weight did not differ significantly between the two groups. Children with CP had a significantly weaker (−65%, p < 0.01 grip and had smaller cross-sectional area (−43%, p < 0.01 of the FCR muscle. Passive stiffness of the forearm muscles in children with CP was increased 2-fold (p < 0.05 whereas viscosity did not differ significantly between CP and TD children. FCR cross-sectional area correlated to age (R2 = 0.58, p < 0.01, body weight (R2 = 0.92, p < 0.0001 and grip strength (R2 = 0.82, p < 0.0001 in TD children but only to grip strength (R2 = 0.60, p < 0.05 in children with CP. We conclude that children with CP have weaker, thinner, and stiffer forearm flexors as compared to typically developing children.

  15. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joachim, E-mail: Joachim.Berger@Monash.edu [Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton (Australia); Sztal, Tamar; Currie, Peter D. [Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton (Australia)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  16. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    International Nuclear Information System (INIS)

    Berger, Joachim; Sztal, Tamar; Currie, Peter D.

    2012-01-01

    Highlights: ► Report of an unbiased quantification of the birefringence of muscle of fish larvae. ► Quantification method readily identifies level of overall muscle damage. ► Compare zebrafish muscle mutants for level of phenotype severity. ► Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  17. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation.

    Science.gov (United States)

    Gay, André; Aimonetti, Jean-Marc; Roll, Jean-Pierre; Ribot-Ciscar, Edith

    2015-07-30

    In the present study, muscle pain was induced experimentally in healthy subjects by administrating hypertonic saline injections into the tibialis anterior (TA) muscle. We first aimed at comparing the analgesic effects of mechanical vibration applied to either cutaneous or muscle receptors of the TA or to both types simultaneously. Secondly, pain alleviation was compared in subjects in whom muscle tendon vibration evoked kinesthetic illusions of the ankle joint. Muscle tendon vibration, which primarily activated muscle receptors, reduced pain intensity by 30% (p<0.01). In addition, tangential skin vibration reduced pain intensity by 33% (p<0.01), primarily by activating cutaneous receptors. Concurrently stimulating both sensory channels induced stronger analgesic effects (-51%, p<0.01), as shown by the lower levels of electrodermal activity. The strongest analgesic effects of the vibration-induced muscle inputs occurred when illusory movements were perceived (-38%, p=0.01). The results suggest that both cutaneous and muscle sensory feedback reduce muscle pain, most likely via segmental and supraspinal processes. Further clinical trials are needed to investigate these new methods of muscle pain relief. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles.

    Science.gov (United States)

    Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua

    2014-07-01

    The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm(2)), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm(2)). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18-0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the 'design' of their

  19. Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles

    Science.gov (United States)

    Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua

    2014-01-01

    The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm2), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm2). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18–0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the ‘design’ of their

  20. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report

    Directory of Open Access Journals (Sweden)

    Chen Carl PC

    2009-06-01

    Full Text Available Abstract Introduction Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius, also known as "tennis leg", can be readily examined using a soft tissue ultrasound. Loss of muscle fiber continuity and the occurrence of bloody fluid accumulation can be observed using ultrasound with the patient in the prone position; however, some cases may have normal ultrasound findings in this conventional position. We report a case of a middle-aged man with tennis leg. Ultrasound examination had normal findings during the first two attempts. During the third attempt, with the patient's calf muscles examined in an unconventional knee flexed position, sonographic findings resembling tennis leg were detected. Case presentation A 60-year-old man in good health visited our rehabilitation clinic complaining of left calf muscle pain. On suspicion of a ruptured left medial head gastrocnemius muscle, a soft tissue ultrasound examination was performed. An ultrasound examination revealed symmetrical findings of bilateral calf muscles without evidence of muscle rupture. A roentgenogram of the left lower limb did not reveal any bony lesions. An ultrasound examination one week later also revealed negative sonographic findings. However, he still complained of persistent pain in his left calf area. A different ultrasound examination approach was then performed with the patient lying in the supine position with his knee flexed at 90 degrees. The transducer was then placed pointing upwards to examine the muscles and well-defined anechoic fluid collections with areas of hypoechoic surroundings were observed. Conclusion For patients suffering from calf muscle area pain and suspicion of tennis leg, a soft tissue ultrasound is a simple tool to confirm the diagnosis. However, in the case of negative sonographic findings, we recommend trying a different positional approach to examine the calf muscles by ultrasound before the diagnosis of tennis leg can

  1. A novel approach to sonographic examination in a patient with a calf muscle tear: a case report.

    Science.gov (United States)

    Chen, Carl Pc; Tang, Simon Ft; Hsu, Chih-Chin; Chen, Ruo Li; Hsu, Rex Ch; Wu, Chin-Wen; Chen, Max Jl

    2009-06-25

    Rupture of the distal musculotendinous junction of the medial head of the gastrocnemius, also known as "tennis leg", can be readily examined using a soft tissue ultrasound. Loss of muscle fiber continuity and the occurrence of bloody fluid accumulation can be observed using ultrasound with the patient in the prone position; however, some cases may have normal ultrasound findings in this conventional position. We report a case of a middle-aged man with tennis leg. Ultrasound examination had normal findings during the first two attempts. During the third attempt, with the patient's calf muscles examined in an unconventional knee flexed position, sonographic findings resembling tennis leg were detected. A 60-year-old man in good health visited our rehabilitation clinic complaining of left calf muscle pain. On suspicion of a ruptured left medial head gastrocnemius muscle, a soft tissue ultrasound examination was performed. An ultrasound examination revealed symmetrical findings of bilateral calf muscles without evidence of muscle rupture. A roentgenogram of the left lower limb did not reveal any bony lesions. An ultrasound examination one week later also revealed negative sonographic findings. However, he still complained of persistent pain in his left calf area. A different ultrasound examination approach was then performed with the patient lying in the supine position with his knee flexed at 90 degrees. The transducer was then placed pointing upwards to examine the muscles and well-defined anechoic fluid collections with areas of hypoechoic surroundings were observed. For patients suffering from calf muscle area pain and suspicion of tennis leg, a soft tissue ultrasound is a simple tool to confirm the diagnosis. However, in the case of negative sonographic findings, we recommend trying a different positional approach to examine the calf muscles by ultrasound before the diagnosis of tennis leg can be ruled out.

  2. Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women

    DEFF Research Database (Denmark)

    Suetta, C; Aagaard, P; Magnusson, S P

    2007-01-01

    quadriceps muscle cross-sectional area (LCSA), contractile rate of force development (RFD, Delta force/Delta time), impulse (integral force dt), muscle activation deficit (interpolated twitch technique), maximal neuromuscular activity [electromyogram (EMG)], and antagonist muscle coactivation in elderly men......%), contractile RFD (W: 17-26%; M: 15-24%), impulse (W: 10-19%, M: 19-20%), maximal EMG amplitude (W: 22-25%, M: 22-28%), and an increased muscle activation deficit (-18%) compared with UN. Furthermore, women were less strong (AF: 40%; UN: 39%), had less muscle mass (AF: 33%; UN: 34%), and had a lower RFD (AF: 38......-50%; UN: 41-48%) compared with men. Similarly, maximum EMG amplitude was smaller for both agonists (AF: 51-63%; UN: 35-61%) and antagonist (AF: 49-64%; UN: 36-56%) muscles in women compared with men. However, when MVC and RFD were normalized to LCSA, there were no differences between genders. The present...

  3. Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila

    Science.gov (United States)

    Roy, Sudipto; VijayRaghavan, K.

    1998-01-01

    Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved. PMID:9606206

  4. Ultrastructural pathological study on skeletal muscle injury in rabbit after a high-dose radiation

    International Nuclear Information System (INIS)

    Sun Wei; Ni Xinchu; Sun Suping; Cai Leiming; Yu Jingping; Wang Jian; Nie Bin; Sun Zhiqiang; Ni Xinye; Cao Xiufeng

    2012-01-01

    Objective: To establish a rabbit model of radiation-induced skeletal muscle injury in order to study the ultrastructural pathological changes and underlying mechanism. Methods: 28 New Zealand rabbits were randomly divided into 2 groups with 16 rabbits in experimental group and 12 rabbits in control group. The experimental rabbits were irradiated on hip with a single dose of 80 Gy of 9 MeV electrons from a linear accelerator. 1 month and 6 months after irradiation the pathological changes were respectively observed under light microscope and electron microscope. Results: One month after irradiation, the morphologic changes including degeneration, necrosis of muscle cells, and hemorrhage between the muscle cells were observed under light microscope and the swelling of myofibrillae, blurring of light and shade band, vacuolar degeneration of mitochondria and amorphous areas of necrosis were observed under electron microscope. Six months after irradiation, the morphologic changes of nucleolus chips, fibrous connective tissue, thickening of vascular wall and vascular congestion between the muscle cells and the amorphous areas of necrosis in the experimental group were much more serious than those of 1 month after irradiation. In addition, the myofilaments were lost in degeneration areas and the sarcomere became shorten. Observation with electron microscope showed that the mitochondrial size and its morphological changes were varied and the amounts of collagen between myofibrillaes were increased 6 months after irradiation. Conclusions: A rabbit model of high-dose irradiated skeleton muscle injury was successfully established with a single dose of 80 Gy of 9 MeV electrons from a linear accelerator. The degeneration and necrosis of muscle cells may be promoted by mitochondrial and vascular injury, degeneration of vessel and nerve fiber. (authors)

  5. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    Science.gov (United States)

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these muscles is such that it might be difficult (particularly in the older animals) to cut a transverse section through all the fibres contained in the muscle; some fibres might not enter the plane of section. Results on muscle fibre number in these muscles at different ages may therefore be misleading.

  6. A morphological study of the masseter muscle using magnetic resonance imaging in patients with jaw deformities. Cases demonstrating mandibular deviation

    International Nuclear Information System (INIS)

    Higashi, Katsuhiko; Goto, Tazuko K.; Kanda, Shigenobu; Shiratsuchi, Yuji; Nakashima, Akihiko; Horinouchi, Yasufumi

    2006-01-01

    Numerous studies on the cross-sectional area of masticatory muscles, which are correlated to the facial shape, have been reported for normal subjects in previous articles. However to date, there have been no such studies on masseter muscles at jaw-closing and jaw-opening in patients with jaw deformities involving mandibular deviation. The MRI data sets of the masseter muscles at jaw-closing and jaw-opening in 14 female patients with mandibular deviation, who demonstrated a more than 3-mm deviation in the median line in the lower first incisors in comparison to the upper ones, were utilized. The cross-sectional areas from the origin to the insertion at jaw-closing and jaw-opening which were reconstructed perpendicular to the three-dimensional long axis of each masseter muscle, each maximum cross-sectional area (MCSA) and the ratio of the change in MCSA after jaw-opening were analyzed. As a result, a significant difference was observed between the MCSA at jaw-closing and jaw-opening on the same side. However, no difference in MCSA was seen between the deviated and non-deviated side of the mandible. The line chart patterns of the masseter muscles from the origin to the insertion could be classified into four types. Our results suggest that it is important to analyze cross-sectional areas of the masseter muscles in each subject while considering the three-dimensional axis of each muscle. (author)

  7. Evaluation for computerized axial tomography to three anthropomorphic methods to estimate the thigh muscle area

    International Nuclear Information System (INIS)

    Fernandez Vieitez, Jorge Alberto; Alvarez Cuesta, Jose Alberto; Williams Wilson, Luis

    2001-01-01

    Three anthropometric methods to estimate the thigh muscle area (TMA, cm) were evaluated. Seventeen young males were taken as a sample. The TMA was estimated by using the formulas of Gurney-Jellife, Jones-Pearson, Housh, and others. In the same place where the measurements of circumferences and skinfolds were made, the TAM was determined by computerized axial tomography. It was used as a reference criterion with which the anthropometric values were compared. The methods of Gurney-Jellife and Jones-Pearson significantly overestimated the TAM obtained by CAT (9.0 + - 12.8 cm 2 [4.4 %]; p = 0.01 and 22.0 + - 14.9 cm 2 [10.9 %]; p = 1.6 . 10-5, respectively), whereas that of Housh and others underestimated the values of CAT (-48.8 + - 11.7 cm 2 [24.1 %]; p = 9.4 . 10-12). The Gurney-Jellife equation was the only one that proved to be interchangeable with CAT, on obtaining a coefficient of correlation (r) and a slope of regression (b) for the difference and the average between both methods that were not statistically significant (r 0,421; b = 0,21 + - 0.12, p = 0.09). It was concluded that of the 3 studied anthropometric methods, the Gurney-Jellife method offers the most accurate TAM values

  8. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    Science.gov (United States)

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  9. Ultrastructural and Energy dispersive analysis of inorganic inclusions in a muscle biopsy

    International Nuclear Information System (INIS)

    Dodson, R.F.; Castillo-Mozun, P.; Hieger, L.R.; Williams, M.G. Jr.

    1981-01-01

    A muscle biopsy that, by light microscopy, exhibited mild atrophy consistent with chronic denervating disease was submitted for ultrastructural analysis. Inorganic structures within the tissue were defined by energy dispersive analysis as aluminosilicates, magnesium silicates, and iron deposits. These structures were localized in the interstitial (intercollagenous) area and in high concentrations within degenerated muscle bundles. An alteration of the blood/muscle barrier has obviously occurred; however, the extent to which the end result commonly occurs in humans is unknown. Clarification of the question raised by this observation will have to be derived from animal studies, and clinicians must have an awareness of the need for electron microscopy/energy-dispersive x-ray analysis in muscle biopsies from patients with similar therapeutic backgrounds

  10. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  11. Effect of Body Mass Index on Postural Balance and Muscle Strength in Children Aged 8-10 years

    Directory of Open Access Journals (Sweden)

    Lucky Prasetiowati

    2017-04-01

    Full Text Available Background:Childhood overweight and obesity, which are considered as global epidemic, can be assessed using Body Mass Index (BMI. BMI difference can lead to anatomic changes due to an increased body load. This increase might also affect motor performance, including changes in postural balance and muscle strength. Aims and Objectives: to explain the influence of BMI on postural balance and lower limb muscle strength and to assess the correlation between those two variables in children aged 8-10 years. Material and methods:The sample consisted of 63 children aged 8-10 years, which were divided in 3 groups: BMI-normal, BMI-overweight, and BMI-obese. The postural balance was assessed using single leg balance test on MatScan and the Center Of Pressure (COP area was recorded. Isometric muscle strength of hip extensor and knee extensor were measured using a hand-held dynamometer. Results: Obese children had significantly largerCOP area than overweight (p = 0.004 and normal weight children (p = 0.000.There were no significant differences in hip extensor muscle strength between obese children with overweight and normal weight children (p=0.527. The absolute knee extensor muscle strength in obese group was significantly higher than the overweight and normal group (p = 0.003. However the relative muscle strength of lower limb for obese children was significantly lower than for normal weight. There was no significant correlation between absolute hip extensor and knee extensor muscles strength with COP area. Conclusion: Obese children have decreased postural balance and increased absolute knee extensormuscle strength significantly when compared to overweight and normal children. There is no significant correlation between postural balance and muscle strength.

  12. Prioritization of skeletal muscle growth for emergence from hibernation.

    Science.gov (United States)

    Hindle, Allyson G; Otis, Jessica P; Epperson, L Elaine; Hornberger, Troy A; Goodman, Craig A; Carey, Hannah V; Martin, Sandra L

    2015-01-15

    Mammalian hibernators provide an extreme example of naturally occurring challenges to muscle homeostasis. The annual hibernation cycle is characterized by shifts between summer euthermy with tissue anabolism and accumulation of body fat reserves, and winter heterothermy with fasting and tissue catabolism. The circannual patterns of skeletal muscle remodelling must accommodate extended inactivity during winter torpor, the motor requirements of transient winter active periods, and sustained activity following spring emergence. Muscle volume in thirteen-lined ground squirrels (Ictidomys tridecemlineatus) calculated from MRI upper hindlimb images (n=6 squirrels, n=10 serial scans) declined from hibernation onset, reaching a nadir in early February. Paradoxically, mean muscle volume rose sharply after February despite ongoing hibernation, and continued total body mass decline until April. Correspondingly, the ratio of muscle volume to body mass was steady during winter atrophy (October-February) but increased (+70%) from February to May, which significantly outpaced changes in liver or kidney examined by the same method. Generally stable myocyte cross-sectional area and density indicated that muscle remodelling is well regulated in this hibernator, despite vastly altered seasonal fuel and activity levels. Body composition analysis by echo MRI showed lean tissue preservation throughout hibernation amid declining fat mass by the end of winter. Muscle protein synthesis was 66% depressed in early but not late winter compared with a summer fasted baseline, while no significant changes were observed in the heart, liver or intestine, providing evidence that could support a transition in skeletal muscle regulation between early and late winter, prior to spring emergence and re-feeding. © 2015. Published by The Company of Biologists Ltd.

  13. {sup 99m}Tc-sestamibi muscle scintigraphy to assess the response to neuromuscular electrical stimulation of normal quadriceps femoris muscle

    Energy Technology Data Exchange (ETDEWEB)

    Pekindil, Y.; Sarikaya, A.; Birtane, M.; Pekindil, G.; Salan, A. [Trakya Univ., Edirne (Turkey). Hospital

    2001-08-01

    Neuromuscular electrical stimulation (NMES) is widely used for improving muscle strength by simultaneous contraction in the prevention of muscle atrophy. Although there exist many clinical methods for evaluating the therapeutic response of muscles, {sup 99m}Tc-sestamibi which is a skeletal muscle perfusion and metabolism agent has not previously been used for this purpose. The aim of our work was to ascertain whether {sup 99m}Tc-sestamibi muscle scintigraphy is useful in the monitoring of therapeutic response to NMES in healthy women. The study included 16 women aged between 21 and 45, with a mean age of 32.7{+-}6.4. Both quadriceps femoris muscles (QFM) of each patient were studied. After randomization to remove the effect of the dominant side, one QFM of each patient was subjected to the NMES procedure for a period of 20 days. NMES was performed with an alternating biphasic rectangular current, from a computed electrical stimulator daily for 23 minutes. After measurement of skinfold thickness over the thigh, pre- and post-NMES girth measurements were assessed in centimeters. Sixty minutes after injections of 555 MBq {sup 99m}Tc-sestamibi, static images of the thigh were obtained for 5 minutes. The thigh-to-knee uptake ratio was calculated by semiquantitative analysis and normalized to body surface area (NUR=normalized uptake ratio). The difference between the pre and post NMES NUR values was significant (1.76{+-}0.31 versus 2.25{+-}0.38, p=0.0000). The percentage (%) increase in NUR values also well correlated with the % increase in thigh girth measurements (r=0.89, p=0.0000). These results indicated that {sup 99m}Tc-sestamibi muscle scintigraphy as a new tool may be useful in evaluating therapeutic response to NMES. (author)

  14. Studies of cytotoxic antibodies against eye muscle antigens in patients with thyroid-associated ophthalmopathy

    International Nuclear Information System (INIS)

    Zhang, Z.-G.; Hiromatsu, Y.; Salvi, M.; Triller, H.; Bernard, N.; Wall, J.R.; Medeiros-Neto, G.; Iacona, A.; Lima, N.

    1989-01-01

    We have studied the prevalence and significance of cytotoxic antibodies against human eye muscle cells, as detected in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated antibody-dependent cytotoxicity (CMAC) in 51 Cr release assays, in patients with Graves' ophthalmopathy or Hashimoto's thyroiditis. A high prevalence of positive ADCC tests was found in all groups of patients with ophthalmopathy tested. Tests were positive in 64% of patients with Graves' ophthalmopathy from an area of severe iodine deficiency (Sao Paulo) and in 64% of such patients from an iodine replete area (Montreal). In patients with so-called ''euthyroid ophthalmopathy'', i.e. eye disease associated with thyroiditis, ADCC tests were positive in 75 and 38% of patients from the two areas, respectively, while tests were positive in 40 and 22%, respectively, of patients with Graves' hyperthyroidism without evident eye disease. In normal subjects, levels of 51 Cr release was always at background levels. In a group of patients from the high-iodine area, levels of antibodies in ADCC correlated positively with the intraocular pressure (mmHg) in primary position as a parameter of eye muscle dysfunction. In patients with ophthalmopathy, positive ADCC tests were assciated with antibodies to eye muscle membrane antigens of 55,65 and 95 kD as detected by immunoblotting, although the correlation was not close for any antigen. in contrast, CMAC tests were negative in all patients with ophthalmopathy. We also tested 9 mouse and 10 human monoclonal antibodies, reactive with orbital antigens in an enzyme-linked immunosorbent assay, for cytotoxic activity, in ADCC and CMAC, against eye muscle and thyroid cells. All monoclonal antibodies were of the IgM class and negative in ADCC assays. When tested in CMAC against eye muscle cells, one of 9 mouse and 5 of 8 human monoclonal antibodies showed significant activity while tests were positive in one of 9 and one of 10 monoclonal antibodies

  15. Effects of different rearing temperatures on muscle development and stress response in the early larval stages of Acipenser baerii

    Directory of Open Access Journals (Sweden)

    Lucia Aidos

    2017-11-01

    Full Text Available The present study aims at investigating muscle development and stress response in early stages of Siberian sturgeon when subjected to different rearing temperatures, by analysing growth and development of the muscle and by assessing the stress response of yolk-sac larvae. Siberian sturgeon larvae were reared at 16°C, 19°C and 22°C until the yolk-sac was completely absorbed. Sampling timepoints were: hatching, schooling and complete yolk-sac absorption stage. Histometrical, histochemical and immunohistochemical analyses were performed in order to characterize muscle growth (total muscle area, TMA; slow muscle area, SMA; fast muscle area, FMA, development (anti-proliferating cell nuclear antigen -PCNA or anticaspase as well as stress conditions by specific stress biomarkers (heat shock protein 70 or 90, HSP70 or HSP90. Larvae subjected to the highest water temperature showed a faster yolk-sac absorption. Histometry revealed that both TMA and FMA were larger in the schooling stage at 19°C while no differences were observed in the SMA at any of the tested rearing temperatures. PCNA quantification revealed a significantly higher number of proliferating cells in the yolk-sac absorption phase at 22°C than at 16°C. HSP90 immunopositivity seems to be particularly evident at 19°C. HPS70 immunopositivity was never observed in the developing lateral muscle.

  16. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    Science.gov (United States)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  17. Maintenance of the paraspinal muscles may protect against radiographic knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Azuma K

    2017-08-01

    Full Text Available Koichiro Azuma,1 Yasushi Sera,1 Takuma Shinjo,1 Michiyo Takayama,2 Eisuke Shiomi,2 Suketaka Momoshima,2 Yasushi Iwao,2 Hiroyuki Ishida,3 Hideo Matsumoto1 1Institute for Integrated Sports Medicine, Keio University School of Medicine, 2Center for Preventive Medicine, Keio University Hospital, Shinjuku-ku, Tokyo, 3Sports Medicine Research Center, Keio University, Kohoku-ku, Yokohama, Kanagawa, Japan Background: Knee osteoarthritis (OA is an increasing health problem worldwide. So far, only obesity and quadriceps weakness are identified as modifiable risk factors for knee OA. Core muscle strengthening is becoming increasingly popular among older adults because of its ability to enhance the activities of daily living during old age. This study investigated the associations of the size and quality of the abdominal trunk muscles with radiographic knee osteoarthritis (RKOA. Methods: From 2012 to 2016, data were collected from 146 males and 135 females (age 63.9±13.4 years, BMI 23.2±3.8 kg/m2 at annual musculoskeletal examinations, including knee radiographs and body composition analyses, by dual-energy X-ray absorptiometry. Cross-sectional areas of abdominal trunk muscles were measured using a single-slice computed tomography scan image obtained at the level of the umbilicus. Results: The prevalence of RKOA was 21.2% in males and 28.1% in females. Compared to subjects without RKOA, subjects with RKOA were ~6 years older and had smaller paraspinal muscle (38.4±8.7 vs 33.1±10.1 cm2, p<0.01 in males; 24.1±7.1 vs 20.7±7.5 cm2, p<0.05 in females. In contrast, there was no decrease in appendicular or total lean mass, and only in females, BMI and total fat mass (FM were higher in subjects with RKOA (21.5±3.5 vs 24.5±4.4 kg/m2, 16.7±7.0 vs 20.5±7.7 kg, respectively, both p<0.01. After adjusting for age and sex, smaller cross-sectional area/lower attenuation value of the paraspinal muscles was associated with RKOA (both p<0.05, while greater

  18. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    Science.gov (United States)

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

  19. Muscle fatigue in fibromyalgia is in the brain, not in the muscles

    DEFF Research Database (Denmark)

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning

    2013-01-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC).......To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC)....

  20. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, B. M. [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States); Frye, G. S.; Ahn, B.; Ferreira, L. F. [1864 Stadium Road, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610 (United States); Judge, A.R., E-mail: arjudge@phhp.ufl.edu [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States)

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  1. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    International Nuclear Information System (INIS)

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-01-01

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  2. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  3. Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile.

    Science.gov (United States)

    Fajardo, Alex; Piper, Frida I

    2011-01-01

    • The focus of the trait-based approach to study community ecology has mostly been on trait comparisons at the interspecific level. Here we quantified intraspecific variation and covariation of leaf mass per area (LMA) and wood density (WD) in monospecific forests of the widespread tree species Nothofagus pumilio to determine its magnitude and whether it is related to environmental conditions and ontogeny. We also discuss probable mechanisms controlling the trait variation found. • We collected leaf and stem woody tissues from 30-50 trees of different ages (ontogeny) from each of four populations at differing elevations (i.e. temperatures) and placed at each of three locations differing in soil moisture. • The total variation in LMA (coefficient of variation (CV) = 21.14%) was twice that of WD (CV = 10.52%). The total variation in traits was never less than 23% when compared with interspecific studies. Differences in elevation (temperature) for the most part explained variation in LMA, while differences in soil moisture and ontogeny explained the variation in WD. Traits covaried similarly in the altitudinal gradient only. • Functional traits of N. pumilio exhibited nonnegligible variation; LMA varied for the most part with temperature, while WD mostly varied with moisture and ontogeny. We demonstrate that environmental variation can cause important trait variation without species turnover. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  4. Architectural design of the pelvic floor is consistent with muscle functional subspecialization.

    Science.gov (United States)

    Tuttle, Lori J; Nguyen, Olivia T; Cook, Mark S; Alperin, Marianna; Shah, Sameer B; Ward, Samuel R; Lieber, Richard L

    2014-02-01

    Skeletal muscle architecture is the strongest predictor of a muscle's functional capacity. The purpose of this study was to define the architectural properties of the deep muscles of the female pelvic floor (PFMs) to elucidate their structure-function relationships. PFMs coccygeus (C), iliococcygeus (IC), and pubovisceral (PV) were harvested en bloc from ten fixed human cadavers (mean age 85 years, range 55-102). Fundamental architectural parameters of skeletal muscles [physiological cross-sectional area (PCSA), normalized fiber length, and sarcomere length (L(s))] were determined using validated methods. PCSA predicts muscle-force production, and normalized fiber length is related to muscle excursion. These parameters were compared using repeated measures analysis of variance (ANOVA) with post hoc t tests, as appropriate. Significance was set to α = 0.05. PFMs were thinner than expected based on data reported from imaging studies and in vivo palpation. Significant differences in fiber length were observed across PFMs: C = 5.29 ± 0.32 cm, IC = 7.55 ± 0.46 cm, PV = 10.45 ± 0.67 cm (p design shows individual muscles demonstrating differential architecture, corresponding to specialized function in the pelvic floor.

  5. Lumbar paraspinal muscle morphometry and its correlations with demographic and radiological factors in adult isthmic spondylolisthesis: a retrospective review of 120 surgically managed cases.

    Science.gov (United States)

    Thakar, Sumit; Sivaraju, Laxminadh; Aryan, Saritha; Mohan, Dilip; Sai Kiran, Narayanam Anantha; Hegde, Alangar S

    2016-05-01

    OBJECTIVE The objective of this study was to assess the cross-sectional areas (CSAs) of lumbar paraspinal muscles in adults with isthmic spondylolisthesis (IS), to compare them with those in the normative population, and to evaluate their correlations with demographic factors and MRI changes in various spinal elements. METHODS The authors conducted a retrospective study of patients who had undergone posterior lumbar interbody fusion for IS, and 2 of the authors acting as independent observers calculated the CSAs of various lumbar paraspinal muscles (psoas, erector spinae [ES], multifidus [MF]) on preoperative axial T2-weighted MR images from the L-3 to L-5 vertebral levels and computed the CSAs as ratios with respect to the corresponding vertebral body areas. These values were then compared with those in an age- and sex-matched normative population and were analyzed with respect to age, sex, duration of symptoms, grade of listhesis, and various MRI changes at the level of the listhesis (pedicle signal change, disc degeneration, and facetal arthropathy). RESULTS Compared with values in normative controls, the mean CSA value for the ES muscle was significantly higher in the study cohort of 120 patients (p = 0.002), whereas that for the MF muscle was significantly lower (p = 0.009), and more so in the patients with PSC (p = 0.002). Magnetic resonance imaging signal change in the pedicle was seen in half of the patients, all of whom demonstrated a Type 2 change. Of the variables tested in a multivariate analysis, age independently predicted lower area values for all 3 muscles (p ≤ 0.001), whereas female sex predicted a lower mean psoas area value (p < 0.001). None of the other variables significantly predicted any of the muscle area values. A decrease in the mean MF muscle area value alone was associated with a significantly increased likelihood of a PSC (p = 0.039). CONCLUSIONS Compared with normative controls, patients with IS suffer selective atrophy of their MF

  6. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  7. Autologous orbicularis muscle for filling facial folds-an experimental and clinical study.

    Science.gov (United States)

    Schellini, Silvana Artioli; Hirai, Flavio Eduardo; Hoyama, Erika; Mattos, Maila Karina; Chaves, Fernando Rodrigo; Pellizon, Claudia Helena; Padovani, Carlos Roberto

    2009-01-01

    To present a technique for filling facial folds by using autologous orbicularis oculi muscle, based on an experimental model. two studies are presented: (1) an experimental study using 15 albino guinea-pigs from which a strip of the sural triceps muscle was removed and implanted in the subcutaneous tissue of the dorsal area. The animals were sacrificed 7, 30 and 60 days after the implantation, and the material was histologically evaluated. And (2) an interventional prospective clinical trial carried out on 20 patients referred to blepharoplasty surgery. They received autologous preseptal orbicularis muscle for filling facial folds. The results where evaluated by patients satisfaction and clinical exam. the sural tricep muscle, when implanted in the subcutaneous tissue, resulted in fibrosis. The patients whom received autologous orbicularis muscle implanted for filling facial folds showed that the procedure can be successfully carried out. autologous preseptal orbicularis muscle is a good material for filling facial folds. Cicatricial tissue will be formed on its implantation site, filling the tissue gap that forms the folds on the skin.

  8. The number and choice of muscles impact the results of muscle synergy analyses

    Directory of Open Access Journals (Sweden)

    Katherine Muterspaugh Steele

    2013-08-01

    Full Text Available One theory for how humans control movement is that muscles are activated in weighted groups or synergies. Studies have shown that electromyography (EMG from a variety of tasks can be described by a low-dimensional space thought to reflect synergies. These studies use algorithms, such as nonnegative matrix factorization, to identify synergies from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles involved in a task. However, it is unclear if the choice of muscles included in the analysis impacts estimated synergies. The aim of our study was to evaluate the impact of the number and choice of muscles on synergy analyses. We used a musculoskeletal model to calculate muscle activations required to perform an isometric upper-extremity task. Synergies calculated from the activations from the musculoskeletal model were similar to a prior experimental study. To evaluate the impact of the number of muscles included in the analysis, we randomly selected subsets of between 5 and 29 muscles and compared the similarity of the synergies calculated from each subset to a master set of synergies calculated from all muscles. We determined that the structure of synergies is dependent upon the number and choice of muscles included in the analysis. When five muscles were included in the analysis, the similarity of the synergies to the master set was only 0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles. We identified two methods, selecting dominant muscles from the master set or selecting muscles with the largest maximum isometric force, which significantly improved similarity to the master set and can help guide future experimental design. Analyses that included a small subset of muscles also over-estimated the variance accounted for (VAF by the synergies compared to an analysis with all muscles. Thus, researchers should use caution using VAF to evaluate synergies when EMG is measured from a small

  9. Onset of rigor mortis is earlier in red muscle than in white muscle.

    Science.gov (United States)

    Kobayashi, M; Takatori, T; Nakajima, M; Sakurada, K; Hatanaka, K; Ikegaya, H; Matsuda, Y; Iwase, H

    2000-01-01

    Rigor mortis is thought to be related to falling ATP levels in muscles postmortem. We measured rigor mortis as tension determined isometrically in three rat leg muscles in liquid paraffin kept at 37 degrees C or 25 degrees C--two red muscles, red gastrocnemius (RG) and soleus (SO) and one white muscle, white gastrocnemius (WG). Onset, half and full rigor mortis occurred earlier in RG and SO than in WG both at 37 degrees C and at 25 degrees C even though RG and WG were portions of the same muscle. This suggests that rigor mortis directly reflects the postmortem intramuscular ATP level, which decreases more rapidly in red muscle than in white muscle after death. Rigor mortis was more retarded at 25 degrees C than at 37 degrees C in each type of muscle.

  10. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Pearson, William G.; Hindson, David F.; Langmore, Susan E.; Zumwalt, Ann C.

    2013-01-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  11. Evaluating Swallowing Muscles Essential for Hyolaryngeal Elevation by Using Muscle Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, William G., E-mail: bp1@bu.edu [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States); Hindson, David F. [Department of Radiology, Boston Medical Center, Boston, Massachusetts (United States); Langmore, Susan E. [Department of Otolaryngology, Boston Medical Center, Boston, Massachusetts (United States); Speech and Hearing Sciences, Boston University, Boston, Massachusetts (United States); Zumwalt, Ann C. [Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts (United States)

    2013-03-01

    Purpose: Reduced hyolaryngeal elevation, a critical event in swallowing, is associated with radiation therapy. Two muscle groups that suspend the hyoid, larynx, and pharynx have been proposed to elevate the hyolaryngeal complex: the suprahyoid and longitudinal pharyngeal muscles. Thought to assist both groups is the thyrohyoid, a muscle intrinsic to the hyolaryngeal complex. Intensity modulated radiation therapy guidelines designed to preserve structures important to swallowing currently exclude the suprahyoid and thyrohyoid muscles. This study used muscle functional magnetic resonance imaging (mfMRI) in normal healthy adults to determine whether both muscle groups are active in swallowing and to test therapeutic exercises thought to be specific to hyolaryngeal elevation. Methods and Materials: mfMRI data were acquired from 11 healthy subjects before and after normal swallowing and after swallowing exercise regimens (the Mendelsohn maneuver and effortful pitch glide). Whole-muscle transverse relaxation time (T2 signal, measured in milliseconds) profiles of 7 test muscles were used to evaluate the physiologic response of each muscle to each condition. Changes in effect size (using the Cohen d measure) of whole-muscle T2 profiles were used to determine which muscles underlie swallowing and swallowing exercises. Results: Post-swallowing effect size changes (where a d value of >0.20 indicates significant activity during swallowing) for the T2 signal profile of the thyrohyoid was a d value of 0.09; a d value of 0.40 for the mylohyoid, 0.80 for the geniohyoid, 0.04 for the anterior digastric, and 0.25 for the posterior digastric-stylohyoid in the suprahyoid muscle group; and d values of 0.47 for the palatopharyngeus and 0.28 for the stylopharyngeus muscles in the longitudinal pharyngeal muscle group. The Mendelsohn maneuver and effortful pitch glide swallowing exercises showed significant effect size changes for all muscles tested, except for the thyrohyoid. Conclusions

  12. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle.

    Science.gov (United States)

    Yao, Li-Hua; Meng, Wei; Song, Rong-Feng; Xiong, Qiu-Ping; Sun, Wei; Luo, Zhi-Qiang; Yan, Wen-Wen; Li, Yu-Ping; Li, Xin-Ping; Li, Hai-Hang; Xiao, Peng

    2014-03-05

    Isolated toad gastrocnemius muscle is a typical skeletal muscle tissue that is frequently used to study the motor system because it is an important component of the motor system. This study investigates the effects of cordycepin on the skeletal muscle contractile function of isolated toad gastrocnemius muscles by electrical field stimulation. Results showed that cordycepin (20 mg/l to 100 mg/l) significantly decreased the contractile responses in a concentration-dependent manner. Cordycepin (50 mg/l) also produced a rightward shift of the contractile amplitude-stimulation intensity relationship, as indicated by the increases in the threshold stimulation intensity and the saturation stimulation intensity. However, the most notable result was that the maximum amplitude of the muscle contractile force was significantly increased under cordycepin application (122±3.4% of control). This result suggests that the skeletal muscle contractile function and muscle physical fitness to the external stimulation were improved by the decreased response sensitivity in the presence of cordycepin. Moreover, cordycepin also prevented the repetitive stimulation-induced decrease in muscle contractile force and increased the recovery amplitude and recovery ratio of muscle contraction. However, these anti-fatigue effects of cordycepin on muscle contraction during long-lasting muscle activity were absent in Ca2+-free medium or in the presence of all Ca2+ channels blocker (0.4 mM CdCl2). These results suggest that cordycepin can positively affect muscle performance and provide ergogenic and prophylactic benefits in decreasing skeletal muscle fatigue. The mechanisms involving excitation-coupled Ca2+ influxes are strongly recommended.

  13. Transvaginal Pelvic Floor Muscle Injection Technique: A Cadaver Study.

    Science.gov (United States)

    Gupta, Priyanka; Ehlert, Michael; Sirls, Larry T; Peters, Kenneth

    Women with pelvic floor dysfunction can have tender areas on vaginal examination, which can be treated with trigger-point injections. There are no publications to evaluate the accuracy of pelvic floor muscle injections. Trigger-point injections were performed on 2 fresh cadaveric pelvises using a curved nasal cannula guide and 7-in spinal needle. This was performed using our standard template of 2 sets of injections at the 1-, 3-, and 5-o'clock positions distally and proximally. The first pelvis was dissected to examine dye penetration. Based on these results, we modified our technique and repeated the injections on the second cadaver. We dissected the second pelvis and compared our findings. The 1-o'clock proximal and distal injections stained the obturator internus and externus near the insertion at the ischiopubic ramus. The 3-o'clock injections stained the midbody of the pubococcygeus and puborectalis. The distal 5-o'clock position was too deep and stained the fat of the ischiorectal space. The proximal 5-o'clock injection stained the area of the pudendal nerve. Our goal at the distal 5-o'clock position was to infuse the iliococcygeus muscle, so we shortened the needle depth from 2 to 1 cm beyond the cannula tip. In our second dissection, the distal 5-o'clock injection again stained only the fat of the ischiorectal space. This is the first study to characterize the distribution of pelvic floor muscle injections in a cadaver model and confirms the ability to deliver medications effectively to the pelvic floor muscles.

  14. Detection of muscle gap by L-BIA in muscle injuries: clinical prognosis.

    Science.gov (United States)

    Nescolarde, L; Yanguas, J; Terricabras, J; Lukaski, H; Alomar, X; Rosell-Ferrer, J; Rodas, G

    2017-06-21

    Sport-related muscle injury classifications are based basically on imaging criteria such as ultrasound (US) and magnetic resonance imaging (MRI) without consensus because of a lack of clinical prognostics for return-to-play (RTP), which is conditioned upon the severity of the injury, and this in turn with the muscle gap (muscular fibers retraction). Recently, Futbol Club Barcelona's medical department proposed a new muscle injury classification in which muscle gap plays an important role, with the drawback that it is not always possible to identify by MRI. Localized bioimpedance measurement (L-BIA) has emerged as a non-invasive technique for supporting US and MRI to quantify the disrupted soft tissue structure in injured muscles. To correlate the severity of the injury according to the gap with the RTP, through the percent of change in resistance (R), reactance (Xc) and phase-angle (PA) by L-BIA measurements in 22 muscle injuries. After grouping the data according to the muscle gap (by MRI exam), there were significant differences in R between grade 1 and grade 2f (myotendinous or myofascial muscle injury with feather-like appearance), as well as between grade 2f and grade 2g (myotendinous or myofascial muscle injury with feather and gap). The Xc and PA values decrease significantly between each grade (i.e. 1 versus 2f, 1 versus 2g and 2f versus 2g). In addition, the severity of the muscle gap adversely affected the RTP with significant differences observed between 1 and 2g as well as between 2f and 2g. These results show that L-BIA could aid MRI and US in identifying the severity of an injured muscle according to muscle gap and therefore to accurately predict the RTP.

  15. Intramuscular temperature modulates glutamate-evoked masseter muscle pain intensity in humans.

    Science.gov (United States)

    Sato, Hitoshi; Castrillon, Eduardo E; Cairns, Brian E; Bendixen, Karina H; Wang, Kelun; Nakagawa, Taneaki; Wajima, Koichi; Svensson, Peter

    2015-01-01

    To determine whether glutamate-evoked jaw muscle pain is altered by the temperature of the solution injected. Sixteen healthy volunteers participated and received injections of hot (48°C), neutral (36°C), or cold (3°C) solutions (0.5 mL) of glutamate or isotonic saline into the masseter muscle. Pain intensity was assessed with an electronic visual analog scale (eVAS). Numeric rating scale (NRS) scores of unpleasantness and temperature perception, pain-drawing areas, and pressure pain thresholds (PPTs) were also measured. Participants filled out the McGill Pain Questionnaire (MPQ). Two-way or three-way repeated measures ANOVA were used for data analyses. Injection of hot glutamate and cold glutamate solutions significantly increased and decreased, respectively, the peak pain intensity compared with injection of neutral glutamate solution. The duration of glutamate-evoked pain was significantly longer when hot glutamate was injected than when cold glutamate was injected. No significant effect of temperature on pain intensity was observed when isotonic saline was injected. No effect of solution temperature was detected on unpleasantness, heat perception, cold perception, area of pain drawings, or PPTs. There was a significantly greater use of the "numb" term in the MPQ to describe the injection of cold solutions compared to the injection of both neutral and hot solutions. Glutamate-evoked jaw muscle pain was significantly altered by the temperature of the injection solution. Although temperature perception in the jaw muscle is poor, pain intensity is increased when the muscle tissue temperature is elevated.

  16. Reversibility of Supraspinatus Muscle Atrophy in Tendon-Bone Healing After Arthroscopic Rotator Cuff Repair.

    Science.gov (United States)

    Park, Yong Bok; Ryu, Ho Young; Hong, Jin Ho; Ko, Young Hoo; Yoo, Jae Chul

    2016-04-01

    To date, there are few reports of the definite reversibility of rotator cuff muscle atrophy after repair. To evaluate the reversibility of rotator cuff muscle atrophy after successful arthroscopic repair. Case series; Level of evidence, 4. Included in this study were 47 patients (mean age, 61.2 ± 7.3 years; range, 49-73 years) who underwent arthroscopic rotator cuff repair as well as magnetic resonance imaging (MRI) preoperatively and at 6-month and last follow-up. Patients who had confirmed rotator cuff healing (grades 1-3 according to the Sugaya classification) on both series of postoperative MRI were enrolled in the study. The mean time from the onset of symptoms to surgery was 24.7 ± 25.6 months (range, 3-120 months). The minimum follow-up was 2 years, and the mean follow-up duration was 41.8 ± 14.4 months. Serial changes in the supraspinatus muscle area on the most matching MRI scans (sagittal-oblique view) were evaluated. The area was measured by 2 independent observers. Both independent observers reported no significant difference in the area of the supraspinatus muscle between the preoperative time point and 6-month follow-up (observer 1: P = .135; observer 2: P = .189). However, there was a significant difference between the 6-month and last follow-up (mean, 41.8 months; observers 1 and 2: P .999) or from 6-month to final follow-up (P = .077). After successful arthroscopic rotator cuff repair, there was a slight (11.3%-13.9%) increase in muscle volume from preoperatively to final follow-up, as seen on serial MRI. Fatty infiltration according to the Goutallier grade was not reversed (P = .077). Some reversibility of supraspinatus muscle atrophy may exist in tendon-bone healing after arthroscopic rotator cuff repair; further follow-up is needed to better elucidate this result. © 2016 The Author(s).

  17. Sağlık Kurumlarında Çalışanların Kurumda Kalma ya da Ayrılma Kararlarının Belirlenmesinde Örgütsel Bağlılığın Etkisi: İzmir İlinde Bir Araştırma

    Directory of Open Access Journals (Sweden)

    Suna AKÇA

    2017-12-01

    Full Text Available Sağlık hizmetlerinde hastalara güvenli ve kaliteli sağlık hizmeti sunmak kadar sağlık hizmet sunucularının memnuniyeti ve kuruma bağlılıkları da o kadar önemlidir. Daha verimli ve performansı yüksek çalışmayı amaç edinen sağlık kurum ve kuruluşları, çalışanlarının örgütsel bağlılıklarını artırmak için çeşitli politikalar geliştirmek zorundadırlar. Bu çalışma İzmir’de bulunan bir kamu diş merkezinde sağlık çalışanlarının örgütsel bağlılıkları ve işten ayrılma eğilimleri arasındaki ilişkiyi test etmek için yapılmıştır. Araştırma konularının arasındaki ilişkiyi test etmek için Allen ve Mayer tarafından geliştirilen “Örgütsel Bağlılık Ölçeği” kullanılmıştır. Araştırma sonuçları; sağlık çalışanlarının örgütsel bağlılıklarının düzeylerinin düşük olduğuna, örgütsel bağlılık faktörleri arasında pozitif bir ilişkinin mevcut olduğuna ve işten ayrılma düzeyleri ile negatif orantı gösterdiğine işaret etmektedir. Anahtar Kelimeler: Sağlık Kurumları, Örgütsel Bağlılık, İşten Ayrılma JEL Sınıflandırma Kodları: I19, M19

  18. Muscle as a secretory organ

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2013-01-01

    Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent e...... proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.......Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent...... evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists...

  19. Correlations between the cross-sectional area and moment arm length of the erector spinae muscle and the thickness of the psoas major muscle as measured by MRI and the body mass index in lumbar degenerative kyphosis patients

    International Nuclear Information System (INIS)

    Lee, Hyun; Lee, Sang Jin; Lee, Sang Ho

    2006-01-01

    Lumbar degenerative kyphosis (LDK) is a subgroup of the flatback syndrome, which is a condition caused by spinal degeneration. LDK is reported to be the most frequent cause of lumbar spine deformity in the farming districts of the 'oriental' countries. We investigated the relationship between the cross-sectional area (CSA) and the moment arm length (MAL) of the erector spinae muscle and the thickness of the psoas major muscle (PT) and the body mass index (BMI) by performing statistical analysis, and we tried to show the crucial role of these variables for diagnosing LDK. From July 2004 to April 2005, we retrospectively reviewed 17 LDK patients who had undergone anterior lumbar interbody fusion (ALIF) with posterior stabilization. We measured both the CSA and MAL on the transverse cross-sectional MR image of the trunk at the fourth to fifth vertebrae (L4/5). The MAL was defined as the anterior-posterior distance between the center of the erector spinae muscle and that of the vertebral body. A comparative study was undertaken between the LDK group and the matched (according to age and gender) control group with regard to the CSA, MAL, PT and BMI. The 17 LDK patients were all females [age: 62.5 ± 4.93 years, height: 157 ± 6.19 cm, weight: 55.59 ± 4.7 kg, and BMI: 22.58 ± 2.08 kg/m 2 ]. The control group patients were all female [age: 63.6 ± 2.27 years, height: 156 ± 5.05 cm, weight: 59.65 ± 7.39 kg and BMI: 24.38 ± 2.94 kg/m 2 ]. Spearman's rho indicated a positive association between the CSA and BMI (rho = 0.49, ρ = 0.046), between the MAL and BMI (rho = 0.808, ρ = 0.000) and between the CSA and PT (rho = 0.566, ρ = 0.018) in the LDK patients. In terms of the CSA versus MAL, there was a positive association in both groups (rho = 0.67, ρ = 0.000, MAL = 0.023CSA + 5.454 in the LDK group; rho = 0.564, ρ 0.018, MAL = 0.02CSA + 5.832 in the control group with using linear regression analysis). Independent t-tests revealed that both groups had statistically

  20. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    Science.gov (United States)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  1. The arrangement of muscle fibers and tendons in two muscles used for growth studies.

    OpenAIRE

    Stickland, N C

    1983-01-01

    The arrangement of muscle fibres and tendons was examined in the soleus muscle of rats from 6 to 175 days post partum. The muscle was seen to change from a simple structure, with mean fibre length of approximately 90% of complete muscle length, to a unipennate structure, with mean fibre length of only about 60% of muscle length. The dog pectineus muscle was also investigated and found to have a bipennate structure throughout postnatal growth. The arrangement of muscle fibres in both these mus...

  2. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  3. Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans.

    Science.gov (United States)

    Vrablik, Tracy L; Wang, Wenqing; Upadhyay, Awani; Hanna-Rose, Wendy

    2011-01-15

    Salvage biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) from nicotinamide (NAM) lowers NAM levels and replenishes the critical molecule NAD(+) after it is hydrolyzed. This pathway is emerging as a regulator of multiple biological processes. Here we probe the contribution of the NAM-NAD(+) salvage pathway to muscle development and function using Caenorhabditis elegans. C. elegans males with mutations in the nicotinamidase pnc-1, which catalyzes the first step of this NAD(+) salvage pathway, cannot mate due to a spicule muscle defect. Multiple muscle types are impaired in the hermaphrodites, including body wall muscles, pharyngeal muscles and vulval muscles. An active NAD(+) salvage pathway is required for optimal function of each muscle cell type. However, we found surprising muscle-cell-type specificity in terms of both the timing and relative sensitivity to perturbation of NAD(+) production or NAM levels. Active NAD(+) biosynthesis during development is critical for function of the male spicule protractor muscles during adulthood, but these muscles can surprisingly do without salvage biosynthesis in adulthood under the conditions examined. The body wall muscles require ongoing NAD(+) salvage biosynthesis both during development and adulthood for maximum function. The vulval muscles do not function in the presence of elevated NAM concentrations, but NAM supplementation is only slightly deleterious to body wall muscles during development or upon acute application in adults. Thus, the pathway plays distinct roles in different tissues. As NAM-NAD(+) biosynthesis also impacts muscle differentiation in vertebrates, we propose that similar complexities may be found among vertebrate muscle cell types. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model

    Directory of Open Access Journals (Sweden)

    Ariadna Bargiela

    2015-07-01

    Full Text Available Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1 disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor or muscleblind, or by RNA interference (RNAi-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis.

  5. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  6. Effects of physical activity and inactivity on muscle fatigue

    Directory of Open Access Journals (Sweden)

    Gregory C. Bogdanis

    2012-05-01

    Full Text Available The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fibre composition, neuromuscular characteristics high energy metabolite stores, buffering capacity, ionic regulation, capillarization and mitochondrial density. Muscle fiber type transformation during exercise training is usually towards the intermediate type IIA at the expense of both type I and type IIx myosin heavy chain isoforms. High intensity training results in increases of both glycolyic and oxidative enzymes, muscle capilarization, improved phosphocreatine resynthesis and regulation of K+, H+ and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fibre cross-sectional area, decreased oxidative capacity and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high intensity exercise training in patients with different health conditions to demonstrate the powerful effect exercise on health and well

  7. Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity

    Directory of Open Access Journals (Sweden)

    Eiichi Yoshimura

    2014-01-01

    Full Text Available Objective: To evaluate the effects of energy restriction with or without aerobic exercise on thigh muscle mass and quality in adults with visceral adiposity. Methods: 75 males and females were randomly assigned to the groups ‘diet only' (DO; n = 42 or ‘diet plus aerobic exercise' (D/Ex; n = 33 for 12 weeks. The target energy intake in both groups was 25 kcal/kg of ideal body weight. Subjects in the D/Ex group were instructed to exercise for ≥300 min/week at lactate threshold. Computed tomography was used to measure thigh muscle cross-sectional area (CSA, normal-density muscle area (NDMA, and visceral fat area. Results: Total body weight (DO: -6.6 ± 3.6%; D/Ex: -7.3 ± 4.6% and visceral fat (DO: -16.0 ± 13.8%; D/Ex: -23.1 ± 14.7% decreased significantly in both groups; however, the changes were not significantly different between the two groups. The decrease in muscle CSA was significantly greater in the DO group (-5.1 ± 4.5% compared with the D/Ex group (-2.5 ± 5.0%. NDMA decreased significantly in the DO (-4.9 ± 4.9% but not in the D/Ex group (-1.4 ± 5.0%. Conclusion: Aerobic exercise attenuated the loss of skeletal muscle during energy restriction in adults with visceral adiposity.

  8. Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity

    Science.gov (United States)

    Yoshimura, Eiichi; Kumahara, Hideaki; Tobina, Takuro; Matsuda, Takuro; Watabe, Kiwa; Matono, Sakiko; Ayabe, Makoto; Kiyonaga, Akira; Anzai, Keizo; Higaki, Yasuki; Tanaka, Hiroaki

    2014-01-01

    Objective To evaluate the effects of energy restriction with or without aerobic exercise on thigh muscle mass and quality in adults with visceral adiposity. Methods 75 males and females were randomly assigned to the groups ‘diet only’ (DO; n = 42) or ‘diet plus aerobic exercise’ (D/Ex; n = 33) for 12 weeks. The target energy intake in both groups was 25 kcal/kg of ideal body weight. Subjects in the D/Ex group were instructed to exercise for ≥300 min/week at lactate threshold. Computed tomography was used to measure thigh muscle cross-sectional area (CSA), normal-density muscle area (NDMA), and visceral fat area. Results Total body weight (DO: −6.6 ± 3.6%; D/Ex: −7.3 ± 4.6%) and visceral fat (DO: −16.0 ± 13.8%; D/Ex: −23.1 ± 14.7%) decreased significantly in both groups; however, the changes were not significantly different between the two groups. The decrease in muscle CSA was significantly greater in the DO group (-5.1 ± 4.5%) compared with the D/Ex group (-2.5 ± 5.0%). NDMA decreased significantly in the DO (-4.9 ± 4.9%) but not in the D/Ex group (-1.4 ± 5.0%). Conclusion Aerobic exercise attenuated the loss of skeletal muscle during energy restriction in adults with visceral adiposity. PMID:24457527

  9. Sodium Chloride Diffusion during Muscle Salting Evidenced by Energy-Dispersive X-ray Spectroscopy Imaging.

    Science.gov (United States)

    Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry

    2016-01-27

    To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.

  10. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  11. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Science.gov (United States)

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  12. Muscle fiber population and biochemical properties of whole body muscles in Thoroughbred horses.

    Science.gov (United States)

    Kawai, Minako; Minami, Yoshio; Sayama, Yukiko; Kuwano, Atsutoshi; Hiraga, Atsushi; Miyata, Hirofumi

    2009-10-01

    We examine the muscle fiber population and metabolic properties of skeletal muscles from the whole body in Thoroughbred horses. Postmortem samples were taken from 46 sites in six Thoroughbred horses aged between 3 and 6 years. Fiber type population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform and metabolic enzyme activities were determined spectrophotometrically. Histochemical analysis demonstrated that most of the muscles had a high percentage of Type IIa fibers. In terms of the muscle characteristic in several parts of the horse body, the forelimb muscles had a higher percentage of Type IIa fiber and a significantly lower percentage of Type IIx fiber than the hindlimb muscles. The muscle fiber type populations in the thoracic and trunk portion were similar to those in the hindlimb portion. Biochemical analysis indicated high succinate dehydrogenase activity in respiratory-related muscle and high phosphofructokinase activity in hindlimbs. We suggested that the higher percentage of Type IIa fibers in Thoroughbred racehorses is attributed to training effects. To consider further the physiological significance of each part of the body, data for the recruitment pattern of each muscle fiber type during exercise are needed. The muscle fiber properties in this study combined with the recruitment data would provide fundamental information for physiological and pathological studies in Thoroughbred horses.

  13. Resistance to rocuronium of rat diaphragm as compared with limb muscles.

    Science.gov (United States)

    Huang, Lina; Yang, Meirong; Chen, Lianhua; Li, Shitong

    2014-12-01

    Skeletal muscles are composed of different muscle fiber types. We investigated the different potency to rocuronium among diaphragm (DIA), extensor digitorum longus (EDL), and soleus (SOL) in vitro as well as to investigate the differences of acetylcholine receptors (AChRs) among these three typical kinds of muscles. The isolated left hemidiaphragm nerve-muscle preparations, the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations were established to evaluate the potency to rocuronium. Concentration-response curves were constructed and the values of IC50 were obtained. The density of AChRs at the end plate and the number of AChRs per unit fiber cross fiber area (CSA), AChR affinity for muscle relaxants were evaluated. The concentration-twitch tension curves of rocuronium were significantly different. The curves demonstrated a shift to the right of the DIA compared with the EDL and SOL (P  0.05). IC50 was significantly largest in DIA, second largest in SOL, and smallest in EDL (P rocuronium of DIA compared with EDL and SOL was verified. The DIA was characterized by the largest number of AChRs per unit fiber CSA and the lowest affinity of the AChRs. Although compared with SOL, EDL was proved to have larger number of AChRs per unit fiber CSA and the lower affinity of the AChRs. These findings may be the mechanisms of different potency to rocuronium in DIA, EDL, and SOL. The results of the study could help to explain the relationship between different composition of muscle fibers and the potency to muscle relaxants. Extra caution should be taken in clinical practice when monitoring muscle relaxation in anesthetic management using different muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles.

    Science.gov (United States)

    Alperin, Marianna; Cook, Mark; Tuttle, Lori J; Esparza, Mary C; Lieber, Richard L

    2016-09-01

    Vaginal delivery and aging are key risk factors for pelvic floor muscle dysfunction, which is a critical component of pelvic floor disorders. However, alterations in the pelvic floor muscle intrinsic structure that lead to muscle dysfunction because of childbirth and aging remain elusive. The purpose of this study was to determine the impact of vaginal deliveries and aging on human cadaveric pelvic floor muscle architecture, which is the strongest predictor of active muscle function. Coccygeus, iliococcygeus, and pubovisceralis were obtained from younger donors who were ≤51 years old, vaginally nulliparous (n = 5) and vaginally parous (n = 6) and older donors who were >51 years old, vaginally nulliparous (n = 6) and vaginally parous (n = 6), all of whom had no history of pelvic floor disorders. Architectural parameters, which are predictive of muscle's excursion and force-generating capacity, were determined with the use of validated methods. Intramuscular collagen content was quantified by hydroxyproline assay. Main effects of parity and aging and the interactions were determined with the use of 2-way analysis of variance, with Tukey's post-hoc testing and a significance level of .05. The mean age of younger and older donors differed by approximately 40 years (P = .001) but was similar between nulliparous and parous donors within each age group (P > .9). The median parity was 2 (range, 1-3) in younger and older vaginally parous groups (P = .7). The main impact of parity was increased fiber length in the more proximal coccygeus (P = .03) and iliococcygeus (P = .04). Aging changes manifested as decreased physiologic cross-sectional area across all pelvic floor muscles (P < .05), which substantially exceeded the age-related decline in muscle mass. The physiologic cross-sectional area was lower in younger vaginally parous, compared with younger vaginally nulliparous, pelvic floor muscles; however, the differences did not reach statistical significance

  15. Muscle synergy space: learning model to create an optimal muscle synergy.

    Science.gov (United States)

    Alnajjar, Fady; Wojtara, Tytus; Kimura, Hidenori; Shimoda, Shingo

    2013-01-01

    Muscle redundancy allows the central nervous system (CNS) to choose a suitable combination of muscles from a number of options. This flexibility in muscle combinations allows for efficient behaviors to be generated in daily life. The computational mechanism of choosing muscle combinations, however, remains a long-standing challenge. One effective method of choosing muscle combinations is to create a set containing the muscle combinations of only efficient behaviors, and then to choose combinations from that set. The notion of muscle synergy, which was introduced to divide muscle activations into a lower-dimensional synergy space and time-dependent variables, is a suitable tool relevant to the discussion of this issue. The synergy space defines the suitable combinations of muscles, and time-dependent variables vary in lower-dimensional space to control behaviors. In this study, we investigated the mechanism the CNS may use to define the appropriate region and size of the synergy space when performing skilled behavior. Two indices were introduced in this study, one is the synergy stability index (SSI) that indicates the region of the synergy space, the other is the synergy coordination index (SCI) that indicates the size of the synergy space. The results on automatic posture response experiments show that SSI and SCI are positively correlated with the balance skill of the participants, and they are tunable by behavior training. These results suggest that the CNS has the ability to create optimal sets of efficient behaviors by optimizing the size of the synergy space at the appropriate region through interacting with the environment.

  16. Effects of extracts of denervated muscles on the morphology of cultured muscle cells

    NARCIS (Netherlands)

    Hooisma, J.; Krijger, J.de; Groot, D.M.G. de

    1981-01-01

    Previously tropic effects of extracts from whole chick embryos and from innervated muscles on cultured muscle cells were described. The present study demonstrated similar effects of extracts from 10-days denervated chick muscles. Extracts from innervated as well as from denervated muscles

  17. Influence of temperature on muscle recruitment and muscle function in vivo.

    Science.gov (United States)

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  18. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury.

    Directory of Open Access Journals (Sweden)

    Stephen M Goldman

    Full Text Available Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML. A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1 functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2 The capacity for VML therapies to augment regeneration and repair within the

  19. HIV Infection Is Associated with Increased Fatty Infiltration of the Thigh Muscle with Aging Independent of Fat Distribution.

    Directory of Open Access Journals (Sweden)

    Javzandulam Natsag

    Full Text Available Lower muscle density on computed tomography (CT provides a measure of fatty infiltration of muscle, an aspect of muscle quality that has been associated with metabolic abnormalities, weakness, decreased mobility, and increased fracture risk in older adults. We assessed the cross-sectional relationship between HIV serostatus, age, thigh muscle attenuation, and thigh muscle cross-sectional area (CSA.Mean CT-quantified Hounsfield units (HU of the thigh muscle bundle and CSA were evaluated in 368 HIV-infected and 145 HIV-uninfected men enrolled in the Multicenter AIDS Cohort Study (MACS Cardiovascular Substudy using multivariable linear regression. Models all were adjusted for HIV serostatus, age, race, and body mass index (BMI; each model was further adjusted for covariates that differed by HIV serostatus, including insulin resistance, hepatitis C, malignancy, smoking, alcohol use, and self-reported limitation in physical activity.HIV-infected men had greater thigh muscle CSA (p<0.001 but lower muscle density (p<0.001 compared to HIV-uninfected men. Muscle density remained lower in HIV-infected men (p = 0.001 when abdominal visceral adiposity, and thigh subcutaneous adipose tissue area were substituted for BMI in a multivariable model. Muscle density decreased by 0.16 HU per year (p<0.001 of increasing age among the HIV-infected men, but not in the HIV-uninfected men (HIV x age interaction -0.20 HU; p = 0.002.HIV-infected men had lower thigh muscle density compared to HIV-uninfected men, and a more pronounced decline with increasing age, indicative of greater fatty infiltration. These findings suggest that lower muscle quality among HIV-infected persons may be a risk factor for impairments in physical function with aging.

  20. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  1. On the anatomy and histology of the pubovisceral muscle enthesis in women.

    Science.gov (United States)

    Kim, Jinyong; Ramanah, Rajeev; DeLancey, John O L; Ashton-Miller, James A

    2011-09-01

    The origin of the pubovisceral muscle (PVM) from the pubic bone is known to be at elevated risk for injury during difficult vaginal births. We examined the anatomy and histology of its enthesial origin to classify its type and see if it differs from appendicular entheses. Parasagittal sections of the pubic bone, PVM enthesis, myotendinous junction, and muscle proper were harvested from five female cadavers (51-98 years). Histological sections were prepared with hematoxylin and eosin, Masson's trichrome, and Verhoeff-Van Gieson stains. The type of enthesis was identified according to a published enthesial classification scheme. Quantitative imaging analysis was performed in sampling bands 2 mm apart along the enthesis to determine its cross-sectional area and composition. The PVM enthesis can be classified as a fibrous enthesis. The PVM muscle fibers terminated in collagenous fibers that insert tangentially onto the periosteum of the pubic bone for the most part. Sharpey's fibers were not observed. In a longitudinal cross-section, the area of the connective tissue and muscle becomes equal approximately 8 mm from the pubic bone. The PVM originates bilaterally from the pubic bone via fibrous entheses whose collagen fibers arise tangentially from the periosteum of the pubic bone. Copyright © 2010 Wiley-Liss, Inc.

  2. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    Science.gov (United States)

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  3. Repeated Muscle Injury as a Presumptive Trigger for Chronic Masticatory Muscle Pain

    Directory of Open Access Journals (Sweden)

    Dean Dessem

    2011-01-01

    Full Text Available skeletal muscles sustain a significant loss of maximal contractile force after injury, but terminally damaged fibers can eventually be replaced by the growth of new muscle (regeneration, with full restoration of contractile force over time. After a second injury, limb muscles exhibit a smaller reduction in maximal force and reduced inflammation compared with that after the initial injury (i.e., repeated bout effect. In contrast, masticatory muscles exhibit diminished regeneration and persistent fibrosis, after a single injury; following a second injury, plasma extravasation is greater than after a single injury and maximal force is decreased more than after the initial injury. Thus, masticatory muscles do not exhibit a repeated bout effect and are instead increasingly damaged by repeated injury. We propose that the impaired ability of masticatory muscles to regenerate contributes to chronic muscle pain by leading to an accumulation of tissue damage, fibrosis, and a persistent elevation and prolonged membrane translocation of nociceptive channels such as P2X3 as well as enhanced expression of neuropeptides including CGRP within primary afferent neurons. These transformations prime primary afferent neurons for enhanced responsiveness upon subsequent injury thus triggering and/or exacerbating chronic muscle pain.

  4. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  5. Ultrasound evaluation of the abductor hallucis muscle: Reliability study

    Directory of Open Access Journals (Sweden)

    Hing Wayne A

    2008-09-01

    Full Text Available Abstract Background The Abductor hallucis muscle (AbdH plays an integral role during gait and is often affected in pathological foot conditions. The aim of this study was to evaluate the within and between-session intra-tester reliability using diagnostic ultrasound of the dorso-plantar thickness, medio-lateral width and cross-sectional area, of the AbdH in asymptomatic adults. Methods The AbdH muscles of thirty asymptomatic subjects were imaged and then measured using a Philips HD11 Ultrasound machine. Interclass correlation coefficients (ICC with 95% confidence intervals (CI were used to calculate both within and between session intra-tester reliability. Results The within-session reliability results demonstrated for dorso-plantar thickness an ICC of 0.97 (95% CI: 0.99–0.99; medio-lateral width an ICC: of 0.97 (95% CI: 0.92–0.97 and cross-sectional area an ICC of 0.98 (95% CI: 0.98–0.99. Between-session reliability results demonstrated for dorso-plantar thickness an ICC of 0.97 (95% CI: 0.95 to 0.98; medio-lateral width an ICC of 0.94 (95% CI 0.90 to 0.96 and for cross-sectional area an ICC of 0.79 (95% CI 0.65 to 0.88. Conclusion Diagnostic ultrasound has the potential to be a reliable tool for evaluating the AbdH muscle in asymptomatic subjects. Subsequent studies may be conducted to provide a better understanding of the AbdH function in foot and ankle pathologies.

  6. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Directory of Open Access Journals (Sweden)

    Ulrich Lindemann

    Full Text Available The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628, leg push power (r = 0.550, isometric quadriceps strength (r = 0.442, hand grip strength (r = 0.367, fast gait speed (r = 0.291, habitual gait speed (r = 0.256, body mass index (r = 0.411 and age (r = -0.392. Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  7. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P contraction, subjects dropping in force showed lower ATP economy compared with those maintaining the force (3.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P contraction could be due to an increase in the ATP economy of contracting muscle fibers offsetting the effects of increased temperature and low ATP economy...

  8. The Promotion of a Functional Fibrosis in Skeletal Muscle with Volumetric Muscle Loss Injury Following the Transplantation of Muscle-ECM

    Science.gov (United States)

    2013-02-04

    Zou K, Boppart MD. Eccentric exercise facil- itates mesenchymal stem cell appearance in skeletal muscle. PLoS One 2012; 7:e29760. [40] Matziolis G...remaining muscle mass leading to additional improvements in functional capacity; how- ever, no study has explicitly studied these effects . The purpose of...muscles were isolated from donor Lewis rats. The tendon and fascia were removed and TA muscle decellularization was performed using an enzymatic and

  9. Muscle trade-offs in a power-amplified prey capture system.

    Science.gov (United States)

    Blanco, M Mendoza; Patek, S N

    2014-05-01

    Should animals operating at great speeds and accelerations use fast or slow muscles? The answer hinges on a fundamental trade-off: muscles can be maximally fast or forceful, but not both. Direct lever systems offer a straightforward manifestation of this trade-off, yet the fastest organisms use power amplification, not direct lever action. Power-amplified systems typically use slow, forceful muscles to preload springs, which then rapidly release elastic potential energy to generate high speeds and accelerations. However, a fast response to a stimulus may necessitate fast spring-loading. Across 22 mantis shrimp species (Stomatopoda), this study examined how muscle anatomy correlates with spring mechanics and appendage type. We found that muscle force is maximized through physiological cross-sectional area, but not through sarcomere length. Sit-and-wait predators (spearers) had the shortest sarcomere lengths (fastest contractions) and the slowest strike speeds. The species that crush shells (smashers) had the fastest speeds, most forceful springs, and longest sarcomeres. The origin of the smasher clade yielded dazzlingly high accelerations, perhaps due to the release from fast spring-loading for evasive prey capture. This study offers a new window into the dynamics of force-speed trade-offs in muscles in the biomechanical, comparative evolutionary framework of power-amplified systems. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  10. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  11. Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration.

    Science.gov (United States)

    Attia, Mohamed; Maurer, Marie; Robinet, Marieke; Le Grand, Fabien; Fadel, Elie; Le Panse, Rozen; Butler-Browne, Gillian; Berrih-Aknin, Sonia

    2017-12-01

    Myasthenia gravis (MG) is a neuromuscular disease caused in most cases by anti-acetyl-choline receptor (AChR) autoantibodies that impair neuromuscular signal transmission and affect skeletal muscle homeostasis. Myogenesis is carried out by muscle stem cells called satellite cells (SCs). However, myogenesis in MG had never been explored. The aim of this study was to characterise the functional properties of myasthenic SCs as well as their abilities in muscle regeneration. SCs were isolated from muscle biopsies of MG patients and age-matched controls. We first showed that the number of Pax7+ SCs was increased in muscle sections from MG and its experimental autoimmune myasthenia gravis (EAMG) mouse model. Myoblasts isolated from MG muscles proliferate and differentiate more actively than myoblasts from control muscles. MyoD and MyoG were expressed at a higher level in MG myoblasts as well as in MG muscle biopsies compared to controls. We found that treatment of control myoblasts with MG sera or monoclonal anti-AChR antibodies increased the differentiation and MyoG mRNA expression compared to control sera. To investigate the functional ability of SCs from MG muscle to regenerate, we induced muscle regeneration using acute cardiotoxin injury in the EAMG mouse model. We observed a delay in maturation evidenced by a decrease in fibre size and MyoG mRNA expression as well as an increase in fibre number and embryonic myosin heavy-chain mRNA expression. These findings demonstrate for the first time the altered function of SCs from MG compared to control muscles. These alterations could be due to the anti-AChR antibodies via the modulation of myogenic markers resulting in muscle regeneration impairment. In conclusion, the autoimmune attack in MG appears to have unsuspected pathogenic effects on SCs and muscle regeneration, with potential consequences on myogenic signalling pathways, and subsequently on clinical outcome, especially in the case of muscle stress.

  12. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    Science.gov (United States)

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic

  13. Cs-137 concentrations in the muscles of Walleye Pollack

    International Nuclear Information System (INIS)

    Morita, T.; Yoshida, K.

    2003-01-01

    High concentrations of Cs-137 were detected in the muscles of Walleye Pollack (Theragra chalcogramm) collected from Kitamiyamato banks (sampling on 25 Jul. 2000), Kamui area (16 Oct. 2000) and Niigata coasts (31 Jan. 2001). The concentrations were 0.35 ± 0.01, 0.41 ± 0.01, and 0.63 ± 0.02 Bq/kg-wet, respectively. The average concentration in our past investigations was about 0.25 ± 0.01 Bq/kg-wet. Samples from other areas, the coat of Kushiro (8 May 2001), North Tishima (13 Nov. 2000) and the Sea of Okhotsk (6 May 2001), had the average concentrations. There were no such high concentrations of Cs-137 in other fish species collected from Kitamiyamato banks, Kamui area, and Niigata coasts. Fish samples with high concentrations all make the migration in the north of Japan sea. These results would indicated that samples took in Cs-137 elements from sea-water or foods on the migration route. Cs-137 concentrations in muscles of walleye pollack does not increase with the body lengths unlike other marine fishes, which enables the comparison of Cs-137 concentrations between areas without considering the body lengths. Walleye Pollac migrates in the large area in the sea of Japan and draws near other country except Japan. These habits make Walleye Pollac the excellent bio indicators to monitor oceanic radioactive pollution

  14. Muscle activation during selected strength exercises in women with chronic neck muscle pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Kjaer, Michael; Andersen, Christoffer H

    2008-01-01

    selected strengthening exercises in women undergoing rehabilitation for chronic neck muscle pain (defined as a clinical diagnosis of trapezius myalgia). SUBJECTS: The subjects were 12 female workers (age=30-60 years) with a clinical diagnosis of trapezius myalgia and a mean baseline pain intensity of 5......BACKGROUND AND PURPOSE: Muscle-specific strength training has previously been shown to be effective in the rehabilitation of chronic neck muscle pain in women. The aim of this study was to determine the level of activation of the neck and shoulder muscles using surface electromyography (EMG) during...... muscle pain. Several of the strength exercises had high activation of neck and shoulder muscles in women with chronic neck pain. These exercises can be used equally in the attempt to achieve a beneficial treatment effect on chronic neck muscle pain....

  15. Bone geometry, strength, and muscle size in runners with a history of stress fracture.

    Science.gov (United States)

    Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A

    2009-12-01

    Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P stress fracture. However, the lower strength was appropriate for the smaller muscle size, suggesting that interventions to reduce stress fracture risk might be aimed at improving muscle size and strength.

  16. Modeling of the energy savings of variable recruitment McKibben muscle bundles

    Science.gov (United States)

    Meller, Michael A.; Chipka, Jordan B.; Bryant, Matthew J.; Garcia, Ephrahim

    2015-03-01

    McKibben artificial muscles are often utilized in mobile robotic applications that require compliant and light weight actuation capable of producing large forces. In order to increase the endurance of these mobile robotic platforms, actuation efficiency must be addressed. Since pneumatic systems are rarely more than 30% efficient due to the compressibility of the working fluid, the McKibben muscles are hydraulically powered. Additionally, these McKibben artificial muscles utilize an inelastic bladder to reduce the energy losses associated with elastic energy storage in the usual rubber tube bladders. The largest energy losses in traditional valve-controlled hydraulic systems are found in the valving implementation to match the required loads. This is performed by throttling, which results in large pressure drops over the control valves and significant fluid power being wasted as heat. This paper discusses how these throttling losses are reduced by grouping multiple artificial muscles to form a muscle bundle where, like in skeletal muscle, more elements that make up the muscle bundle are recruited to match the load. This greatly lessens the pressure drops by effectively changing the actuator area, leading to much higher efficiencies over a broader operation envelope. Simulations of several different loading scenarios are discussed that reveal the benefits of such an actuation scheme.

  17. Structural Changes of Lumbar Muscles in Non-specific Low Back Pain: A Systematic Review.

    Science.gov (United States)

    Goubert, Dorien; Oosterwijck, Jessica Van; Meeus, Mira; Danneels, Lieven

    2016-01-01

    Lumbar muscle dysfunction due to pain might be related to altered lumbar muscle structure. Macroscopically, muscle degeneration in low back pain (LBP) is characterized by a decrease in cross-sectional area and an increase in fat infiltration in the lumbar paraspinal muscles. In addition microscopic changes, such as changes in fiber distribution, might occur. Inconsistencies in results from different studies make it difficult to draw firm conclusions on which structural changes are present in the different types of non-specific LBP. Insights regarding structural muscle alterations in LBP are, however, important for prevention and treatment of non-specific LBP. The goal of this article is to review which macro- and/or microscopic structural alterations of the lumbar muscles occur in case of non-specific chronic low back pain (CLBP), recurrent low back pain (RLBP), and acute low back pain (ALBP). Systematic review. All selected studies were case-control studies. A systematic literature search was conducted in the databases PubMed and Web of Science. Only full texts of original studies regarding structural alterations (atrophy, fat infiltration, and fiber type distribution) in lumbar muscles of patients with non-specific LBP compared to healthy controls were included. All included articles were scored on methodological quality. Fifteen studies were found eligible after screening title, abstract, and full text for inclusion and exclusion criteria. In CLBP, moderate evidence of atrophy was found in the multifidus; whereas, results in the paraspinal and the erector spinae muscle remain inconclusive. Also moderate evidence occurred in RLBP and ALBP, where no atrophy was shown in any lumbar muscle. Conflicting results were seen in undefined LBP groups. Results concerning fat infiltration were inconsistent in CLBP. On the other hand, there is moderate evidence in RLBP that fat infiltration does not occur, although a larger muscle fat index was found in the erector spinae

  18. Type and intensity of activity and risk of mobility limitation: the mediating role of muscle parameters

    NARCIS (Netherlands)

    Visser, M.; Simonsick, E.M.; Colbert, L.H.; Brach, J.S.; Rubin, S.M.; Kritchevsky, S.B.; Newman, A.B.; Harris, T.B.

    2005-01-01

    2,719 kcal/wk of total physical activity). The study outcome, incident mobility limitation, was defined as two consecutive, semiannual self-reports of any difficulty walking one quarter of a mile or climbing 10 steps. Thigh muscle area, thigh muscle attenuation (a marker of fat infiltration in

  19. The effect of radiation dose on mouse skeletal muscle remodeling

    International Nuclear Information System (INIS)

    Hardee, Justin P.; Puppa, Melissa J.; Fix, Dennis K.; Gao, Song; Hetzler, Kimbell L.; Bateman, Ted A.; Carson, James A.

    2014-01-01

    The purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling. Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure. The 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism. Collectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism

  20. Evaluation of atrophy of foot muscles in diabetic neuropathy -- a comparative study of nerve conduction studies and ultrasonography

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Andersen, Henning

    2007-01-01

    OBJECTIVE: To evaluate the relation between the findings at nerve conduction studies and the size of small foot muscles determined by ultrasonography. METHODS: In 26 diabetic patients the size of the extensor digitorum brevis muscle (EDB) and of the muscles between the first and second metatarsal...... related to the size of the small foot muscles as determined by ultrasonography. SIGNIFICANCE: In diabetic patients motor nerve conduction studies can reliably determine the size of small foot muscles. Udgivelsesdato: 2007-Oct....... RESULTS: Seventeen patients fulfilled the criteria for diabetic neuropathy. The cross-sectional area of the EDB muscle and the thickness of the MIL muscle were 116 +/- 65 mm2 and 29.6 +/- 8.2 mm, respectively. Close relations were established between muscle size and the amplitude of the CMAP...

  1. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  2. Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: a study of structure and function of hind limb muscle in the spiny mouse.

    Science.gov (United States)

    LaRosa, Domenic A; Ellery, Stacey J; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-12-01

    Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine's potential to prevent damage to axial skeletal muscles. Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis. Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance. This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.

  3. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  4. İş Özellikleri, İş-Yaşam Dengesi ve Meslekten Ayrılma Niyeti Arasındaki İlişkilerin Aday Öğretmen Görüşlerine Göre İncelenmesi

    OpenAIRE

    Polat, Şule; Özdemir, Murat

    2017-01-01

    Bu araştırmada aday öğretmenlerin görüşlerine bağlı olarak öğretmenlik mesleği iş özellikleri, iş yaşam dengesi ve meslekten ayrılma niyeti arasındaki ilişki incelenmiştir. Araştırmanın çalışma grubunu, 2016-2017 eğitim öğretim yılının birinci döneminde Ankara ilinin dokuz ilçesindeki (Çankaya, Mamak, Altındağ, Keçiören, Yenimahalle, Sincan, Etimesgut, Gölbaşı ve Pursaklar) resmi ortaöğretim kurumlarında görev yapan 225 aday öğretmen oluşturmaktadır. Araştırma verileri “Öğretmenlik Mesleği İş...

  5. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  6. Effectiveness of muscle coverage to manage osteomyelitis of very late onset in the irradiated chest wall

    International Nuclear Information System (INIS)

    Funayama, Emi; Minakawa, Hidehiko; Otani, Hidekazu; Saito, Noriko; Oyama, Akihiko; Furukawa, Hiroshi; Hayashi, Toshihiko; Saito, Akira; Yamamoto, Yuhei

    2012-01-01

    Radiation therapy for breast cancer has improved survival rates; however, a consequence of this is treatment-induced complications in longer-living patients. Decades after chest wall irradiation, very late onset radiation-induced osteomyelitis can develop, caused by osteoradionecrosis. This may lead to the development of small, but very refractory, skin ulcers. Many reports recommend well-vascularized tissue coverage after appropriate debridement for irradiation ulcers; however, when the ulcers are of very late onset, this sometimes causes recurrence of ulceration in non-muscle-covered areas after flap transfer. Thus, for very late onset cases, we propose treatment with an absolute muscle flap to cover both the obviously infected focus and the surrounding irradiated area. A muscle flap consisting of the entire latissimus dorsi, the shape of which is very large in the horizontal direction, satisfies this requirement. Latissimus dorsi muscle coverage for the treatment of very late onset osteomyelitis should be reappraised. (author)

  7. Inter- and intramuscular differences in training-induced hypertrophy of the quadriceps femoris: association with muscle activation during the first training session.

    Science.gov (United States)

    Wakahara, Taku; Ema, Ryoichi; Miyamoto, Naokazu; Kawakami, Yasuo

    2017-07-01

    The purpose of this study was to examine whether inter- and intramuscular differences in hypertrophy induced by resistance training correspond to differences in muscle activation during the first training session. Eleven young men completed 12 weeks of training intervention for knee extension. Before and after the intervention, T1-weighted magnetic resonance (MR) images were recorded to determine the volume and anatomical cross-sectional area (CSA) along the length of the individual muscles of the quadriceps femoris. The T2-weighted MR images were also acquired before and immediately after the first training session. The T2 was calculated for each pixel within the quadriceps femoris, from which the muscle activation was evaluated as %activated volume and area. The results showed that the %activated volume after the first training session was significantly higher in the vastus intermedius than the vastus medialis. However, the relative change in muscle volume after the training intervention was significantly greater in the rectus femoris than the vasti muscles (vastus lateralis, intermedius and medialis). Within the rectus femoris, both the %activated area and relative increase in CSA were significantly greater in the distal region than the proximal region. In contrast, the %activated area and relative increase in CSA of the vasti were nearly uniform along each muscle. These results suggest that the muscle activation during the first training session is associated with the intramuscular difference in hypertrophy induced by training intervention, but not with the intermuscular difference. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  8. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Directory of Open Access Journals (Sweden)

    Martin Flück

    2014-01-01

    Full Text Available We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL and soleus (SOL muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS and subjected to fibre typing and measures for costameric (FAK and FRNK, mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1, and MHCI protein and RNA content. Mean cross-sectional area (MCSA of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05≤P<0.10. FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P=0.029. SOL muscle demonstrated a specific reduction in UCP3 content (-23%; P = 0.012. Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading.

  9. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    Science.gov (United States)

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  10. Muscle changes can account for bone loss after botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-12-01

    Studies to date have assumed that botulinum toxin type A (BTX) affects bone indirectly, through its action on muscle. We hypothesized that BTX has no discernable effect on bone morphometry, independent of its effect on muscle. Therefore, we investigated whether BTX had an additional effect on bone when combined with tenotomy compared to tenotomy in isolation. Female BALB/c mice (n = 73) underwent one of the following procedures in the left leg: BTX injection and Achilles tenotomy (BTX-TEN), BTX injection and sham surgery (BTX-sham), Achilles tenotomy (TEN), or sham surgery (sham). BTX groups were injected with 20 μL of BTX (1 U/100 g) in the posterior lower hindlimb. At 4 weeks, muscle cross-sectional area (MCSA) and tibial bone morphometry were assessed using micro-CT. Each treatment, other than sham, resulted in significant muscle and bone loss (P properties. We found that BTX injection resulted in more adverse muscle and bone effects than tenotomy and that effects were amplified when the procedures were combined. However, between-group differences in bone could be accounted for by MCSA. We conclude that any independent effect of BTX on bone morphometry is likely small or negligible compared with the effect on muscle.

  11. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  12. CT findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1987-01-01

    Muscle wastings in hemiplegics due to cerebrovascular accidents were studied with CT scanning in the mid-portion of the thigh and largest-diameter section of the calf bilaterally. Muscle size and average CT density of muscle were measured. The 80 patients were classified into one of the following three stages of disability, i.e. stage 1, severely disabled (wheel-chair-bound but capable of self care [20 patients]); stage 2, moderately disabled (poorly ambulatory [41 patients]); and stage 3, mildly disabled (well ambulatory [19 patients]). Muscle cross-sectional area and CT density in both legs of non-ambulatory patients were smaller and lower than those of other groups. The atrophic change was marked in the affected side, but it was also noticeable in the non-affected side. Gracilis muscle was relatively well spared in all 3 stages. These CT findings of hemiplegics were similar to those of disuse atropy in patients with knee or hip joint lesions. Atrophy was seen first in the quadriceps in thigh and flexor muscle group in calf. These findings were similar to the systemic myogenic or neurogenic atrophies. Although gracilis and sartorius muscles were spared in these systemic deseases, only gracilis muscle was spared in hemiplegics and in patients with disuse atrophy. The ratios of the size of quadriceps, adductor group and sartorius muscle of thigh in affected side to that of non-affected side were smaller in more severely disabled group. Those of the other muscles showed no differences among each stages. In stage 3, there was significant negative correlation between the ratio of quadriceps muscle and periods from the attack. There was no relationship between the severity of the muscle atrophy and parietal lobe lesion. The atrophy is considered to be the result of disuse from immobilization. (author)

  13. Muscle Mass Depletion Associated with Poor Outcome of Sepsis in the Emergency Department.

    Science.gov (United States)

    Lee, YoonJe; Park, Hyun Kyung; Kim, Won Young; Kim, Myung Chun; Jung, Woong; Ko, Byuk Sung

    2018-05-08

    Muscle mass depletion has been suggested to predict morbidity and mortality in various diseases. However, it is not well known whether muscle mass depletion is associated with poor outcome in sepsis. We hypothesized that muscle mass depletion is associated with poor outcome in sepsis. Retrospective observational study was conducted in an emergency department during a 9-year period. Medical records of 627 patients with sepsis were reviewed. We divided the patients into 2 groups according to 28-day mortality and compared the presence of muscle mass depletion assessed by the cross-sectional area of the psoas muscle at the level of the third lumbar vertebra on abdomen CT scans. Univariate and multivariate logistic regression analyses were conducted to examine the association of scarcopenia on the outcome of sepsis. A total of 274 patients with sepsis were finally included in the study: 45 (16.4%) did not survive on 28 days and 77 patients (28.1%) were identified as having muscle mass depletion. The presence of muscle mass depletion was independently associated with 28-day mortality on multivariate logistic analysis (OR 2.79; 95% CI 1.35-5.74, p = 0.01). Muscle mass depletion evaluated by CT scan was associated with poor outcome of sepsis patients. Further studies on the appropriateness of specific treatment for muscle mass depletion with sepsis are needed. © 2018 S. Karger AG, Basel.

  14. Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.

    Science.gov (United States)

    Bawa, P; Hamm, J D; Dhillon, P; Gross, P A

    2004-10-01

    Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.

  15. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    Science.gov (United States)

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  16. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    . Unlike economy, maximum efficiency of work production varies little across the animal kingdom. There are difficulties associated with the measurement of maximum efficiency of contraction, and it has yet to be determined unequivocally if the maximum efficiency of contraction varies in different fiber types. The intrinsic properties of force per cross-sectional area, economy, and Vmax determine the basic energetic properties of skeletal muscles. Nonetheless, the mechanics and energetics of skeletal muscles in the body are profoundly influenced by muscle architecture, attachment of muscles to the skeleton, and motor unit organization.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats.

    Science.gov (United States)

    Camargo, Mariana Zingari; Siqueira, Cláudia Patrícia Cardoso Martins; Preti, Maria Carla Perozim; Nakamura, Fábio Yuzo; de Lima, Franciele Mendes; Dias, Ivan Frederico Lupiano; Toginho Filho, Dari de Oliveira; Ramos, Solange de Paula

    2012-09-01

    The aim of this work is to analyze the effects of LED therapy at 940 nm or cold water immersion therapy (CWI) after an acute bout of exercise on markers of muscle damage and inflammation. Thirty-two male Wistar rats were allocated into four groups: animals kept at rest (control), exercised animals (E), exercised + CWI (CWI), and exercised + LED therapy (LED). The animals swam for 100 min, after which blood samples were collected for lactate analysis. Animals in the E group were returned to their cages without treatment, the CWI group was placed in cold water (10°C) for 10 min and the LED group received LED irradiation on both gastrocnemius muscles (4 J/cm(2) each). After 24 h, the animals were killed and the soleus muscles were submitted to histological analysis. Blood samples were used for hematological and CK analyses. The results demonstrated that the LED group presented fewer areas of muscle damage and inflammatory cell infiltration and lower levels of CK activity than the E group. Fewer areas of damaged muscle fiber were observed in the LED group than in CWI. CWI and LED did not reduce edema areas. Hematological analysis showed no significant effect of either treatment on leukocyte counts. The results suggest that LED therapy is more efficient than CWI in preventing muscle damage and local inflammation after exercise.

  18. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  19. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  20. Effect of Pneumoperitoneum and Lateral Position on Oropharyngeal Seal Pressures of Proseal LMA in Laparoscopic Urological Procedures.

    Science.gov (United States)

    Rustagi, Preeti; Patkar, Geeta A; Ourasang, Anil Kumar; Tendolkar, Bharati A

    2017-02-01

    A sustained and effective oropharyngeal sealing with supraglottic airway is required to maintain the ventilation during laparoscopic surgery. Previous studies have observed the Oropharyngeal Seal Pressure (OSP) for Proseal Laryngeal Mask Airway (PLMA) after pneumoperitoneum in supine and trendelenburg position, where PLMA was found to be an effective airway device. This study was conducted with ProSeal LMA, for laparoscopic Urologic procedures done in lateral position. To measure OSP in supine and lateral position and to observe the effect of pneumoperitoneum in lateral position on OSP. Secondary objectives were to assess adequacy of ventilation and incidence of adverse events. A total number of 25 patients of American Society of Anaesthesiologists (ASA) physical status II and I were enrolled. After induction of anaesthesia using a standardized protocol, PLMA was inserted. Ryle's tube was inserted through drain tube. The position of PLMA was confirmed with ease of insertion of Ryle's tube and fibreoptic grading of vocal cords. Patients were then put in lateral position. The OSP was measured in supine position. This value was baseline comparison for OSP in lateral position and that after pneumoperitoneum. We assessed the efficacy of PLMA for ventilation, after carboperitoneum in lateral position (peak airway pressure, End Tidal Carbon dioxide (EtCO 2 ), SPO 2 ). Incidence of adverse effects (displacement of device, gastric insufflation, regurgitation, coughing, sore throat, blood on device, trauma) was also noted. The OSP was above Peak Airway Pressure (PAP) in supine (22.1±5.4 and 15.4±4.49cm of H 2 O) and lateral position (22.6±5.3 and 16.1±4.6). After pneumoperitoneum, which was in lateral position, there was statistically significant (p-value <0.05) increase in both PAP (19.96±4.015) and OSP (24.32±4.98, p-value 0.03). There was no intraoperative displacement of PLMA. There was no event of suboptimal oxygenation. EtCO 2 was always within normal limits

  1. Failed obstetric tracheal intubation and postoperative respiratory support with the ProSeal laryngeal mask airway

    NARCIS (Netherlands)

    Keller, Christian; Brimacombe, Joseph; Lirk, Philipp; Pühringer, Fritz

    2004-01-01

    The ProSeal laryngeal mask airway (ProSeal LMA) provides a better seal and probably better airway protection than the classic laryngeal mask airway (classic LMA). We report the use of the ProSeal LMA in a 26-yr-old female with HELLP syndrome for failed obstetric intubation and postoperative

  2. Impaired growth of denervated muscle contributes to contracture formation following neonatal brachial plexus injury.

    Science.gov (United States)

    Nikolaou, Sia; Peterson, Elizabeth; Kim, Annie; Wylie, Christopher; Cornwall, Roger

    2011-03-02

    The etiology of shoulder and elbow contractures following neonatal brachial plexus injury is incompletely understood. With use of a mouse model, the current study tests the novel hypothesis that reduced growth of denervated muscle contributes to contractures following neonatal brachial plexus injury. Unilateral brachial plexus injuries were created in neonatal mice by supraclavicular C5-C6 nerve root excision. Shoulder and elbow range of motion was measured four weeks after injury. Fibrosis, cross-sectional area, and functional length of the biceps, brachialis, and subscapularis muscles were measured over four weeks following injury. Muscle satellite cells were cultured from denervated and control biceps muscles to assess myogenic capability. In a comparison group, shoulder motion and subscapularis length were assessed following surgical excision of external rotator muscles. Shoulder internal rotation and elbow flexion contractures developed on the involved side within four weeks following brachial plexus injury. Excision of the biceps and brachialis muscles relieved the elbow flexion contractures. The biceps muscles were histologically fibrotic, whereas fatty infiltration predominated in the brachialis and rotator cuff muscles. The biceps and brachialis muscles displayed reduced cross-sectional and longitudinal growth compared with the contralateral muscles. The upper subscapularis muscle similarly displayed reduced longitudinal growth, with the subscapularis shortening correlating with internal rotation contracture. However, excision of the external rotators without brachial plexus injury caused no contractures or subscapularis shortening. Myogenically capable satellite cells were present in denervated biceps muscles despite impaired muscle growth in vivo. Injury of the upper trunk of the brachial plexus leads to impaired growth of the biceps and brachialis muscles, which are responsible for elbow flexion contractures, and impaired growth of the subscapularis

  3. [EVALUATION OF GYM USERS' DIET WITH MUSCLE DYSMORPHIA (BIGOREXIA)].

    Science.gov (United States)

    Martínez Segura, Asier; Cortés Castell, Ernesto; Rizo Baeza, María Mercedes; Gil Guillén, Vicente F

    2015-07-01

    it is an innovative study where has been analyzed the diet among gym users with Muscle Dysmorphia (MD) of gyms in the province of Alicante. it have been analyzed 141 male gymnasts of several gyms of Alicante (urban area of southeastern Spanish) aged between 18-45 years old, who purpose increasing their muscle mass. Were considered BMI (kg/m2) and 24 hour diet. And it has been determined whether or not suffer MD trough Muscle Appearance Satisfaction Scale. the sample consisted of 141 men, of whom 45 are MD and 96 are not according to Muscle Appearance Satisfaction. Protein intake was calculated and was greater than 1.5 g/kg/day in patients without MD and greater than 2 g/kg/day in the MD group. Analyzing the other nutrients, results show that the proportion of carbohydrates and fats and their percentages by degree of instauration are within the recommendations except cholesterol which exceeds and the amount of dietary fiber that is slightly lower. In relation to micronutrients are within the recommendations in all cases except iodine which is slightly lower in MD. individuals with MD do a balanced energy and adequate carbohydrate and fat diet, however protein intake values exceed the limits proposed according to the scientific evidence for muscle mass development in strength sports. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Accessory piriformis muscle

    Directory of Open Access Journals (Sweden)

    Sedat Develi

    2017-03-01

    Full Text Available Piriformis muscle originates from facies pelvica of sacrum and inserts on the trochanter major. It is one of the lateral rotator muscles of the hip and a landmark point in the gluteal region since n. ischiadicus descends to the thigh by passing close to the muscle. This contiguity may be associated with the irritation of the nerve which is known as piriformis syndrome. A rare anatomic variation of the muscle which observed on 74 years old male cadaver is discussed in this case report. [Cukurova Med J 2017; 42(1.000: 182-183

  5. Concentration Limits in the Cement Based Swiss Repository for Long-lived, Intermediate-level Radioactive Wastes (LMA)

    International Nuclear Information System (INIS)

    Berner, Urs

    1999-12-01

    The Swiss repository concept for long-lived, intermediate-level radioactive wastes (LMA), in Swiss terminology) foresees cylindrical concrete silos surrounded by a ring of granulated bentonite to deposit the waste. As one of the possible options and similar to the repository for high level wastes, the silos will be located in a deep crystalline host rock. Solidified with concrete in steel drums, the waste is stacked into a silo and the silo is then backfilled with a porous mortar. To characterize the release of radionuclides from the repository, the safety assessment considers first the dissolution into the pore water of the concrete, and then diffusion through the outer bentonite ring into the deep crystalline groundwater. For 19 safety relevant radionuclides (isotopes of U, Th, Pa, Np, Pu, Am, Ni, Zr, Mo, Nb, Se, Sr, Ra, Tc, Sn, I, C, Cs, Cl) the report recommends maximum elemental concentrations to be expected in the cement pore water of the particularly considered repository. These limits will form the parameter base for subsequent release model chains. Concentration limits in a geochemical environment are usually obtained from thermodynamic equilibrium calculations performed with geochemical speciation codes. However, earlier studies revealed that this procedure does not always lead to reliable results. Main reasons for this are the complexity of the systems considered, as well as the lacking completeness of, and the uncertainty associated with the thermodynamic data. To improve the recommended maximum concentrations for a distinct repository design, this work includes additional design- and system-dependent criteria. The following processes, inventories and properties are considered in particular: a) recent experimental investigations, particularly from cement systems, b) thermodynamic model calculations when reliable data are available, c) total inventories of radionuclides, d) sorption- and co-precipitation processes, e) dilution with stable isotopes, f

  6. Aerobic exercise and respiratory muscle strength in patients with cystic fibrosis.

    Science.gov (United States)

    Dassios, Theodore; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel

    2013-05-01

    The beneficial role of exercise in maintaining health in patients with cystic fibrosis (CF) is well described. Few data exist on the effect of exercise on respiratory muscle function in patients with CF. Our objective was to compare respiratory muscle function indices in CF patients that regularly exercise with those CF patients that do not. This cross-sectional study assessed nutrition, pulmonary function and respiratory muscle function in 37 CF patients that undertook regular aerobic exercise and in a control group matched for age and gender which consisted of 44 CF patients that did not undertake regular exercise. Respiratory muscle function in CF was assessed by maximal inspiratory pressure (Pimax), maximal expiratory pressure (Pemax) and pressure-time index of the respiratory muscles (PTImus). Median Pimax and Pemax were significantly higher in the exercise group compared to the control group (92 vs. 63 cm H2O and 94 vs. 64 cm H2O respectively). PTImus was significantly lower in the exercise group compared to the control group (0.089 vs. 0.121). Upper arm muscle area (UAMA) and mid-arm muscle circumference were significantly increased in the exercise group compared to the control group (2608 vs. 2178 mm2 and 23 vs. 21 cm respectively). UAMA was significantly related to Pimax in the exercising group. These results suggest that CF patients that undertake regular aerobic exercise maintain higher indices of respiratory muscle strength and lower PTImus values, while increased UAMA values in exercising patients highlight the importance of muscular competence in respiratory muscle function in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle

    DEFF Research Database (Denmark)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per

    2018-01-01

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports re......, which may aid to clarify the thinking of coaches and sports scientists in this area....

  8. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk.

    Science.gov (United States)

    Chun, Kyoung-Yong; Hyeong Kim, Shi; Kyoon Shin, Min; Hoon Kwon, Cheong; Park, Jihwang; Tae Kim, Youn; Spinks, Geoffrey M; Lima, Márcio D; Haines, Carter S; Baughman, Ray H; Jeong Kim, Seon

    2014-01-01

    Torsional artificial muscles generating fast, large-angle rotation have been recently demonstrated, which exploit the helical configuration of twist-spun carbon nanotube yarns. These wax-infiltrated, electrothermally powered artificial muscles are torsionally underdamped, thereby experiencing dynamic oscillations that complicate positional control. Here, using the strategy spiders deploy to eliminate uncontrolled spinning at the end of dragline silk, we have developed ultrafast hybrid carbon nanotube yarn muscles that generated a 9,800 r.p.m. rotation without noticeable oscillation. A high-loss viscoelastic material, comprising paraffin wax and polystyrene-poly(ethylene-butylene)-polystyrene copolymer, was used as yarn guest to give an overdamped dynamic response. Using more than 10-fold decrease in mechanical stabilization time, compared with previous nanotube yarn torsional muscles, dynamic mirror positioning that is both fast and accurate is demonstrated. Scalability to provide constant volumetric torsional work capacity is demonstrated over a 10-fold change in yarn cross-sectional area, which is important for upscaled applications.

  9. Comparison of muscle fibre characteristics and production traits among offspring from Meishan dams mated to different sires

    Directory of Open Access Journals (Sweden)

    Ki-Chang Hong

    2010-01-01

    Full Text Available This study evaluated how various porcine sires affected muscle fibre characteristics, with respect to production traits. Sires from Berkshire, Duroc, Meishan, and Yorkshire pigs were mated to Meishan dams (BM, DM, MM, and YM offspring, respectively. A total of 96 pigs were evaluated for muscle fibre characteristics and production traits. The progeny from Duroc and Yorkshire sires had the greatest number of total fibres (P<0.05 and exhibited less backfat thickness (P<0.001 and larger loin muscle areas (P<0.05 than BM pigs. The DM and BM crossbreds showed higher marbling (P<0.01, and colour scores (P<0.05, as well as lower shear force scores (P<0.001. The MM pigs had greater proportional area of type IIb muscle fibres (P<0.05, and also displayed higher drip loss (P<0.01, higher lightness (P<0.001, and a greater incidence of PSE pork (pale, soft, and exudative; 25% than DM, BM, and YM. These results showed that a greater number of total muscle fibres without increasing the cross sectional area of fibres improved lean meat production, and that a lower proportion of type IIb fibres was associated with better meat quality. For these reasons, the Duroc sire × Meishan dam crossbreed emerged as the most appropriate mating type examined herein to simultaneously enhance both lean meat production and meat quality.

  10. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency.

    Science.gov (United States)

    Dubinskii, M; Zhang, J; Ter-Mikirtychev, V

    2009-05-15

    We report the performance of a resonantly cladding-pumped, Yb-free, Er-doped fiber laser. We believe this is the first reported resonantly cladding-pumped fiber-Bragg-grating-based, Er-doped, large-mode-area (LMA) fiber laser. The laser, pumped by fiber-coupled InGaAsP/InP laser diode modules at 1,532.5 nm, delivers approximately 48 W of cw output at 1,590 nm. It is believed to be the highest power ever reported from a Yb-free Er-doped LMA fiber. This fully integrated laser also has the optical-to-optical efficiency of approximately 57%, to the best of our knowledge, the highest efficiency reported for cladding-pumped unidirectionally emitting Er-doped laser.

  12. Skeletal muscle metabolism in hypokinetic rats

    Science.gov (United States)

    Tischler, Marc E.

    1993-01-01

    This grant focused on the mechanisms of metabolic changes associated with unweighting atrophy and reduced growth of hind limb muscles of juvenile rats. Metabolic studies included a number of different areas. Amino acid metabolic studies placed particular emphasis on glutamine and branched-chain amino acid metabolism. These studies were an outgrowth of understanding stress effects and the role of glucocorticoids in these animals. Investigations on protein metabolism were largely concerned with selective loss of myofibrillar proteins and the role of muscle proteolysis. These investigations lead to finding important differences from denervation and atrophy and to define the roles of cytosolic versus lysosomal proteolysis in these atrophy models. A major outgrowth of these studies was demonstrating an ability to prevent atrophy of the unweighted muscle for at least 24 hours. A large amount of work concentrated on carbohydrate metabolism and its regulation by insulin and catecholamines. Measurements focused on glucose transport, glycogen metabolism, and glucose oxidation. The grant was used to develop an important new in situ approach for studying protein metabolism, glucose transport, and hormonal effects which involves intramuscular injection of various agents for up to 24 hours. Another important consequence of this project was the development and flight of Physiological-Anatomical Rodent Experiment-1 (PARE-1), which was launched aboard Space Shuttle Discovery in September 1991. Detailed descriptions of these studies can be found in the 30 peer-reviewed publications, 15 non-reviewed publications, 4 reviews and 33 abstracts (total 82 publications) which were or are scheduled to be published as a result of this project. A listing of these publications grouped by area (i.e. amino acid metabolism, protein metabolism, carbohydrate metabolism, and space flight studies) are included.

  13. Morphological changes after pelvic floor muscle training measured by 3-dimensional ultrasonography: a randomized controlled trial.

    Science.gov (United States)

    Braekken, Ingeborg Hoff; Hoff Braekken, Ingeborg; Majida, Memona; Engh, Marie Ellström; Bø, Kari

    2010-02-01

    To investigate morphological and functional changes after pelvic floor muscle training in women with pelvic organ prolapse. This randomized controlled trial was conducted at a university hospital and a physical therapy clinic. One hundred nine women with pelvic organ prolapse stages I, II, and III were randomly allocated by a computer-generated random number system to pelvic floor muscle training (n=59) or control (n=50). Both groups received lifestyle advice and learned to contract the pelvic floor muscles before and during increases in intraabdominal pressure. In addition the pelvic floor muscle training group did individual strength training with a physical therapist and daily home exercise for 6 months. Primary outcome measures were pelvic floor muscle (pubovisceral muscle) thickness, levator hiatus area, pubovisceral muscle length at rest and Valsalva, and resting position of bladder and rectum, measured by three-dimensional ultrasonography. Seventy-nine percent of women in the pelvic floor muscle training group adhered to at least 80% of the training protocol. Compared with women in the control group, women in the pelvic floor muscle training group increased muscle thickness (difference between groups: 1.9 mm, 95% confidence interval [CI] 1.1-2.7, Ppelvic floor muscle stiffness. Supervised pelvic floor muscle training can increase muscle volume, close the levator hiatus, shorten muscle length, and elevate the resting position of the bladder and rectum. www.clinicaltrials.gov, NCT00271297. I.

  14. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2011-03-01

    Full Text Available Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.

  15. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    Science.gov (United States)

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  16. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Arrivabene, Hiulana Pereira [Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, 29075-910 Vitória, Espírito Santo (Brazil); Souza, Iara [Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, 13565-905 São Carlos (Brazil); Có, Walter Luiz Oliveira [Associação Educational de Vitória, Departamento de Biologia, 29053-360 Vitória (Brazil); Rodella, Roberto Antônio [Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Botucatu, Instituto de Biociências, Departamento de Botânica, C. Postal 510, 18618-000 Botucatu, São Paulo (Brazil); Wunderlin, Daniel Alberto, E-mail: dwunder@fcq.unc.edu.ar [Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET, Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba (Argentina); and others

    2014-04-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf and Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (− 0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. - Highlights: • We investigated adaptive modifications in plants in response to differences among three estuaries. • We used

  17. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions

    International Nuclear Information System (INIS)

    Arrivabene, Hiulana Pereira; Souza, Iara; Có, Walter Luiz Oliveira; Rodella, Roberto Antônio; Wunderlin, Daniel Alberto

    2014-01-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf and Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (− 0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. - Highlights: • We investigated adaptive modifications in plants in response to differences among three estuaries. • We used

  18. Early weaning of calves after different dietary regimens affects later rumen development, growth, and carcass traits in Hanwoo cattle

    Directory of Open Access Journals (Sweden)

    Kondreddy Eswar Reddy

    2017-10-01

    Full Text Available Objective The main objective of this study was to determine the effect of different diets for early-weaned (EW calves on rumen development, and how this affects fat deposition in the longissimus dorsi of adult Korean Hanwoo beef cattle. Methods Three EW groups were established (each n = 12 in which two- week-old Hanwoo calves were fed for ten weeks with milk replacer+concentrate (T1, milk replacer+concentrate+ roughage (T2, or milk replacer+concentrate+30% starch (T3; a control group (n = 12 was weaned as normal. At six months, 5 calves of each group were slaughtered and their organs were assessed and rumen papillae growth rates were measured. The remaining calves (n = 7 in each group were raised to 20 months for further analysis. Results Twenty-month-old EW calves had a higher body weight (BW, backfat thickness (BF, longissimus dorsi muscle area (LMA and intramuscular fat (IMF than the control (p<0.05. Organ growth, rumen histology, and gene expression patterns in the 6-month-old calves were positively related to the development of marbling in the loin, as assessed by ultrasound analysis (p<0.05. In the group fed the starch-enriched diet (T3, higher BW, BF, LMA, and IMF were present. The IMF beef quality score of 20-month-old cattle was 1+ for the T2 and T3 diets and 1 for the T1 diet (p<0.05. Conclusion Papillae development was significantly greater in calves fed on high-concentrate diets and this may have resulted in the improved beef quality in the EW dietary groups compared to the control.

  19. Central representation of muscle pain and mechanical hyperesthesia in the orofacial region: a positron emission tomography study

    DEFF Research Database (Denmark)

    Kupers, Rron; Svensson, Peter; Jensen, Troels Staehlin

    2004-01-01

    Functional neuroimaging studies of the human brain have revealed a network of brain regions involved in the processing of nociceptive information. However, little is known of the cerebral processing of pain originating from muscles. The aim of this study was to investigate the cerebral activation...... pattern evoked by experimental jaw-muscle pain and its interference by simultaneous mechanical stimuli, which has been shown to evoke hyperesthesia. Ten healthy subjects participated in a PET study and jaw-muscle pain was induced by bolus injections of 5% hypertonic saline into the right masseter muscle....... Repeated von Frey hair stimulation (0.5 Hz) of the skin above the masseter muscle was used as the mechanical stimulus. Hypertonic saline injections caused strong muscle pain spreading to adjacent areas. von Frey stimulation was rated as non-painful but produced hyperesthesia during jaw-muscle pain. Jaw...

  20. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2016-06-01

    Full Text Available The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM has never been investigated. We investigated the effects of resistance training (RT and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP or high protein diet (HP (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1. One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA, body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001, whole muscle CSA (p = 0.024, and single muscle fibers CSA (p < 0.05 of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005 and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  1. Extraocular muscle function testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003397.htm Extraocular muscle function testing To use the sharing features on this page, please enable JavaScript. Extraocular muscle function testing examines the function of the eye muscles. ...

  2. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  3. MRI appearances of the anterior fibulocalcaneus muscle: a rare anterior compartment muscle

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Bhavin [Basildon and Thurrock University Hospitals NHS Foundation Trust, Imaging Department, Essex (United Kingdom); Amiras, Dimitri [Imperial College Health Care NHS Trust, Imaging Department, London (United Kingdom)

    2015-05-01

    MRI of a 62-year-old female presenting with ankle pain demonstrated an accessory muscle within the anterior compartment of the lower leg. The muscle originated from the fibula and anterior crural septum. The tendon passed anterior to the lateral malleolus and inserted at the critical angle of Gissane on the calcaneus. This muscle was initially described in the anatomic literature by Lambert and Atsas in 2010. To our knowledge, this is the first time the MRI appearances of this muscle has been described in the radiological literature. Awareness of the fibulocalcaneal muscle is important as it may represent a cause of ankle pain. In addition, the tendon could potentially be harvested for use in reconstructive procedures. (orig.)

  4. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Somik [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yin, Hongshan [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei (China); Nam, Deokhwa [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Li, Yong [Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Ma, Ke, E-mail: kma@houstonmethodist.org [Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030 (United States)

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  5. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    International Nuclear Information System (INIS)

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-01-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1 −/− mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation

  6. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging.

    Science.gov (United States)

    Heemskerk, Anneriet M; Strijkers, Gustav J; Vilanova, Anna; Drost, Maarten R; Nicolay, Klaas

    2005-06-01

    Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.

  7. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  8. The optimal stimulation pattern for skeletal muscle is dependent on muscle length

    NARCIS (Netherlands)

    Mela, P.; Veltink, Petrus H.; Huijing, P.A.J.B.M.; Salmons, S.; Jarvis, J.C.

    2002-01-01

    elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator

  9. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  10. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  11. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    Directory of Open Access Journals (Sweden)

    Richard T. Jaspers

    2014-07-01

    Full Text Available Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH (10% air/90%N2 saturated water. We analyzed cross-sectional area (CSA, succinate dehydrogenase (SDH activity, capillarization, myonuclear density, myoglobin (Mb concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001. Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001. In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  12. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    Science.gov (United States)

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  13. Morphological changes in the cervical muscles of women with chronic whiplash can be modified with exercise-A pilot study.

    Science.gov (United States)

    O'leary, Shaun; Jull, Gwendolen; Van Wyk, Luke; Pedler, Ashley; Elliott, James

    2015-11-01

    In this preliminary study we determined whether MRI markers of cervical muscle degeneration [elevated muscle fatty infiltration (MFI), cross-sectional area (CSA), and reduced relative muscle CSA (rmCSA)] could be modified with exercise in patients with chronic whiplash. Five women with chronic whiplash undertook 10 weeks of neck exercise. MRI measures of the cervical multifidus (posterior) and longus capitus/colli (anterior) muscles, neck muscle strength, and self-reported neck disability were recorded at baseline and at completion of the exercise program. Overall significant increases in CSA and rmCSA were observed for both muscles, but significant reductions in MFI were only evident in the cervical multifidus muscle. These changes coincided with increased muscle strength and reduced neck disability. MRI markers of muscle morphology in individuals with chronic whiplash appear to be modifiable with exercise. © 2015 Wiley Periodicals, Inc.

  14. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    Science.gov (United States)

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cross-sectional area measurements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Magda [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); University Hospital Udine, Department of Radiology, Udine (Italy); Ciritsis, Bernhard; Laux, Christoph [University Hospital Zurich, Department of Traumatology, Zurich (Switzerland); Nanz, Daniel; Nguyen-Kim, Thi Dan Linh; Fischer, Michael A.; Andreisek, Gustav; Ulbrich, Erika J. [University Hospital Zurich, Department of Radiology, Zurich (Switzerland)

    2014-10-31

    Our aim was to validate the use of cross-sectional area (CSA) measurements at multiple quadriceps muscle levels for estimating the total muscle volume (TMV), and to define the best correlating measurement level. Prospective institutional review board (IRB)-approved study with written informed patient consent. Thighs of thirty-four consecutive patients with ACL-reconstructions (men, 22; women, 12) were imaged at 1.5-T using three-dimensional (3D) spoiled dual gradient-echo sequences. CSA was measured at three levels: 15, 20, and 25 cm above the knee joint line. TMV was determined using dedicated volumetry software with semiautomatic segmentation. Pearson's correlation and regression analysis (including standard error of the estimate, SEE) was used to compare CSA and TMV. The mean ± standard deviation (SD) for the CSA was 60.6 ± 12.8 cm{sup 2} (range, 35.6-93.4 cm{sup 2}), 71.1 ± 15.1 cm{sup 2} (range, 42.5-108.9 cm{sup 2}) and 74.2 ± 17.1 cm{sup 2} (range, 40.9-115.9 cm{sup 2}) for CSA-15, CSA-20 and CSA-25, respectively. The mean ± SD quadriceps' TMV was 1949 ± 533.7 cm{sup 3} (range, 964.0-3283.0 cm{sup 3}). Pearson correlation coefficient was r = 0.835 (p < 0.01), r = 0.906 (p < 0.01), and r = 0.956 (p < 0.01) for CSA-15, CSA-20 and CSA-25, respectively. Corresponding SEE, expressed as percentage of the TMV, were 15.2 %, 11.6 % and 8.1 %, respectively. The best correlation coefficient between quadriceps CSA and TMV was found for CSA-25, but its clinical application to estimate the TMV is limited by a relatively large SEE. (orig.)

  16. Deltoid muscle shape analysis with magnetic resonance imaging in patients with chronic rotator cuff tears.

    Science.gov (United States)

    Meyer, Dominik C; Rahm, Stefan; Farshad, Mazda; Lajtai, Georg; Wieser, Karl

    2013-08-19

    It seems appropriate to assume, that for a full and strong global shoulder function a normally innervated and active deltoid muscle is indispensable. We set out to analyse the size and shape of the deltoid muscle on MR-arthrographies, and analyse its influence on shoulder function and its adaption (i.e. atrophy) for reduced shoulder function. The fatty infiltration (Goutallier stages), atrophy (tangent sign) and selective myotendinous retraction of the rotator cuff, as well as the thickness and the area of seven anatomically defined segments of the deltoid muscle were measured on MR-arthrographies and correlated with shoulder function (i.e. active abduction). Included were 116 patients, suffering of a rotator cuff tear with shoulder mobility ranging from pseudoparalysis to free mobility. Kolmogorov-Smirnov test was used to determine the distribution of the data before either Spearman or Pearson correlation and a multiple regression was applied to reveal the correlations. Our developed method for measuring deltoid area and thickness showed to be reproducible with excellent interobserver correlations (r = 0.814-0.982).The analysis of influencing factors on active abduction revealed a weak influence of the amount of SSP tendon (r = -0.25; p muscle retraction (r = -0.27; p muscle infiltration (GFDI: r = -0.36; p muscle shape with the degree of active glenohumeral abduction. Furthermore, long-standing rotator cuff tears did not appear to influence the deltoid shape, i.e. did not lead to muscle atrophy. Our data support that in chronic rotator cuff tears, there seems to be no disadvantage to exhausting conservative treatment and to delay implantation of reverse total shoulder arthroplasty, as the shape of deltoid muscle seems only to be influenced by natural aging, but to be independent of reduced shoulder motion.

  17. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  18. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat.

    Science.gov (United States)

    Ichinose, Tsuyoshi; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Iizuka, Haku; Koibuchi, Noriyuki; Takagishi, Kenji

    2016-02-01

    Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Oxidative metabolism in muscle.

    OpenAIRE

    Ferrari, M; Binzoni, T; Quaresima, V

    1997-01-01

    Oxidative metabolism is the dominant source of energy for skeletal muscle. Near-infrared spectroscopy allows the non-invasive measurement of local oxygenation, blood flow and oxygen consumption. Although several muscle studies have been made using various near-infrared optical techniques, it is still difficult to interpret the local muscle metabolism properly. The main findings of near-infrared spectroscopy muscle studies in human physiology and clinical medicine are summarized. The advantage...

  20. Major vault protein in cardiac and smooth muscle.

    Science.gov (United States)

    Shults, Nataliia V; Das, Dividutta; Suzuki, Yuichiro J

    Major vault protein (MVP) is the major component of the vault particle whose functions are not well understood. One proposed function of the vault is to serve as a mechanism of drug transport, which confers drug resistance in cancer cells. We show that MVP can be found in cardiac and smooth muscle. In human airway smooth muscle cells, knocking down MVP was found to cause cell death, suggesting that MVP serves as a cell survival factor. Further, our laboratory found that MVP is S-glutathionylated in response to ligand/receptor-mediated cell signaling. The S-glutathionylation of MVP appears to regulate protein-protein interactions between MVP and a protein called myosin heavy chain 9 (MYH9). Through MYH9 and Vsp34, MVP may form a complex with Beclin-1 that regulates autophagic cell death. In pulmonary vascular smooth muscle, proteasome inhibition promotes the ubiquitination of MVP, which may function as a mechanism of proteasome inhibition-mediated cell death. Investigating the functions and the regulatory mechanisms of MVP and vault particles is an exciting new area of research in cardiovascular/pulmonary pathophysiology.