WorldWideScience

Sample records for muscarinic receptor blockade

  1. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  2. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    Gutiérrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index. In addition, learned taste aversion in both short- and long-term memory tests was exclusively impa...

  3. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  4. Muscarinic receptor blockade in ventral hippocampus and prelimbic cortex impairs memory for socially transmitted food preference.

    Carballo-Márquez, Anna; Vale-Martínez, Anna; Guillazo-Blanch, Gemma; Martí-Nicolovius, Margarita

    2009-05-01

    Acetylcholine is involved in learning and memory and, particularly, in olfactory tasks, but reports on its specific role in consolidation processes are somewhat controversial. The present experiment sought to determine the effects of blocking muscarinic cholinergic receptors in the ventral hippocampus (vHPC) and the prelimbic cortex (PLC) on the consolidation of social transmission of food preference, an odor-guided relational task that depends on such brain areas. Adult male Wistar rats were bilaterally infused with scopolamine (20 microg/site) immediately after social training and showed impairment, relative to vehicle-injected controls, in the expression of the task measured 24 h after learning. Results indicated that scopolamine in the PLC completely abolished memory, suggesting that muscarinic transmission in this cortical region is crucial for consolidation of recent socially acquired information. Muscarinic receptors in the vHPC contribute in some way to task consolidation, as the rats injected with scopolamine in the vHPC showed significantly lower trained food preference than control rats, but higher than both chance level and that of the PLC-injected rats. Behavioral measures such as social interaction, motivation to eat, neophobia, or exploration did not differ between rats infused with scopolamine or vehicle. Such data suggest a possible differential role of muscarinic receptors in the PLC and the vHPC in the initial consolidation of a naturalistic form of nonspatial relational memory. Copyright 2008 Wiley-Liss, Inc.

  5. Blockade of muscarinic receptors impairs the retrieval of well-trained memory

    Shogo eSoma

    2014-04-01

    Full Text Available Acetylcholine (ACh is known to play an important role in memory functions, and its deficit has been proposed to cause the cognitive decline associated with advanced age and Alzheimer’s disease (the cholinergic hypothesis. Although many studies have tested the cholinergic hypothesis for recently acquired memory, only a few have investigated the role of ACh in the retrieval process of well-trained cognitive memory, which describes the memory established from repetition and daily routine. To examine this point, we trained rats to perform a two-alternative forced-choice visual detection task. Each trial was started by having the rats pull upward a central-lever, which triggered the presentation of a visual stimulus to the right or left side of the display monitor, and then pulling upward a stimulus-relevant choice-lever located on both sides. Rats learned the task within 10 days, and the task training was continued for a month. Task performance was measured with or without systemic administration of a muscarinic ACh receptor (mAChR antagonist, scopolamine (SCOP, prior to the test. After 30 min of SCOP administration, rats stopped manipulating any lever even though they explored the lever and surrounding environment, suggesting a loss of the task-related associative memory. Three hours later, rats were recovered to complete the trial, but the rats selected the levers irrespective of the visual stimulus, suggesting they remembered a series of lever-manipulations in association with a reward, but not association between the reward and visual stimulation. Furthermore, an m1-AChR, but not nicotinic AChR antagonist caused a similar deficit in the task execution. SCOP neither interfered with locomotor activity nor drinking behavior, while it influenced anxiety. These results suggest that the activation of mAChRs at basal ACh levels is essential for the recall of well-trained cognitive memory.

  6. Differential anti-ischaemic effects of muscarinic receptor blockade in patients with obstructive coronary artery disease; impaired vs normal left ventricular function.

    A.F. van den Heuvel; D.J. van Veldhuisen (Dirk); G.L. Bartels; M. van der Ent (Martin); W.J. Remme (Willem)

    1999-01-01

    textabstractAIMS: In patients with coronary artery disease acetylcholine (a muscarinic agonist) causes vasoconstriction. The effect of atropine (a muscarinic antagonist) on coronary vasotone in patients with normal or impaired left ventricular function is unknown.

  7. Muscarinic Receptor Agonists and Antagonists

    David R. Kelly

    2001-02-01

    Full Text Available A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes. Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted.

  8. Muscarinic Receptor Signaling in Colon Cancer

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  9. Muscarinic Receptor Signaling in Colon Cancer

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  10. Muscarinic Receptor Signaling in Colon Cancer

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  11. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  12. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Jakubík, Jan; El-Fakahany, E. E.

    2010-01-01

    Roč. 3, č. 9 (2010), s. 2838-2860 ISSN 1424-8247 R&D Projects: GA ČR GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic acetylcholine receptors * allosteric modulation * Alzheimer´s disease Subject RIV: CE - Biochemistry

  13. CHARACTERIZATION OF MUSCARINIC RECEPTORS IN GUINEA-PIG UTERUS

    DOODS, HN; WILLIM, KD; BODDEKE, HWGM; ENTZEROTH, M

    1993-01-01

    To characterize the muscarinic receptor present in guinea-pig uterus smooth muscle the affinities of a series of 27 muscarinic receptor antagonists for M1 (rat cortex), M2 (rat heart), M3 (rat submandibular gland), m4 (transfected in CHO cells) and muscarinic binding sites in guinea-pig uterus

  14. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short term memory task

    Sasha eDevore

    2012-09-01

    Full Text Available Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for tens to hundreds of seconds. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB.

  15. Effects of muscarinic blockade in perirhinal cortex during visual recognition

    Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.

    1997-01-01

    Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507

  16. Characterization of muscarinic receptor subtypes in human tissues

    Giraldo, E.; Martos, F.; Gomez, A.; Garcia, A.; Vigano, M.A.; Ladinsky, H.; Sanchez de La Cuesta, F.

    1988-01-01

    The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [ 3 H]Pirenzepine and [ 3 H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M 1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M 1 , the cardiac M 2 and the glandular M 3

  17. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P.

    1991-01-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 [11-2-[[2-[diethylaminomethyl]- 1-piperidinyl]acetyl]-5,11-dihydro-6H- pyrido[2,3-b][1,4]benzodiazepine-6-one], hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of [3H]quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of [3H]-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated

  18. Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis

    Large, T.H.; Cho, N.J.; De Mello, F.G.; Klein, W.L.

    1985-01-01

    Biochemical properties of the muscarinic acetylcholine receptor system of the avian retina were found to change during the period when synapses form in ovo. Comparison of ligand binding to membranes obtained before and after synaptogenesis showed a significant increase in the affinity, but not proportion, of the high affinity agonist-binding state. There was no change in receptor sensitivity to antagonists during this period. Pirenzepine binding, which can discriminate muscarinic receptor subtypes, showed the presence of a single population of low affinity sites (M2) before and after synaptogenesis. The change in agonist binding was not due to the late development of receptor function. However, detergent-solubilization of membranes eliminated differences in agonist binding between receptors from embryos and hatched chicks, suggesting a developmental change in interactions of the receptor with functionally related membrane components. A possible basis for altered interactions was obtained from isoelectric point data showing that the muscarinic receptor population underwent a transition from a predominantly low pI form (4.25) in 13 day embryos to a predominantly high pI form (4.50) in newly hatched chicks. The possibility that biochemical changes in the muscarinic receptor play a role in differentiation of the system by controlling receptor position on the surface of nerve cells is discussed

  19. Biochemical and immunological studies of the Muscarinic acetylcholine receptor

    Gainer, M.W.

    1985-01-01

    Muscarinic acetylcholine receptors were solubilized from bovine brain membranes with 3[3-cholamidopropyl)dimethylammonio]propanesulfonate (CHAPS). A combination of 10 mM CHAPS and 1 M NaCl solubilized 15-40% of the specific receptor binding sites from these membranes. The solubilized receptors displayed high affinity binding of the muscarinic antagonist, [ 3 H]quinuclidinyl benzilate with a K/sub D/ = 300 pM. In addition, the solubilized and retained guanyl nucleotide regulation of agonist binding characteristic of membrane bound receptors. Gel filtration experiments showed that solubilized receptors from cortex and cerebellum had different elution profiles. Analysis by sucrose density gradient centrifugation showed that receptors in the lower molecular weight peak sedimented with a coefficient of 5S. Receptors in the larger molecular weight peak sedimented to the bottom of the gradient. Attempts to purify receptors by chromatography on propylbenzilycholine Sepharose were unsuccessful. The technique used to attach the ligand to the solid support, however, was used to synthesize a PrBCM-BSA conjugate and the conjugate used as an antigen in the production of anti-ligand antibodies. Two anti-PrBCM monoclonal antibodies were isolated that recognize muscarinic but not nicotinic cholinergic ligands. The abilities of the antibodies to recognize other muscarinic ligands indicated the antibodies recognized a portion of PrBCM involved in binding to the receptor. Construction of an antibody affinity resin resulted in the purification of this fragment a minimum of 170 fold

  20. Muscarinic receptor compensation in hippocampus of alzheimer patients. [Autoradiography

    Nordberg, A; Larsson, C; Adolfsson, R; Alafuzoff, I; Winblad, B [Uppsala Univ. (Sweden)

    1983-01-01

    The activity of the acetylcholine synthesizing enzyme choline acetyltransferase (ChAT) (presynaptic marker) and number of muscarine-like receptor binding sites have been measured in the hippocampus from eight individuals with senile dementia of Alzheimer type (SDAT) and ten controls. A negative correlation (r=0.80; p<0.05) was found between the ChAT activity and the number of muscarine-like receptors in the SDAT group but not in the controls. The findings might indicate an ongoing compensatory receptor mechanism as a response to changes in presynaptic cholinergic activity.

  1. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.

  2. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    Gil, D.W.; Wolfe, B.B.

    1986-01-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands [ 3 H]quinuclidinyl benzilate or [ 3 H]PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of [ 3 H]quinuclidinyl benzilate in a biphasic manner

  3. Characterization of muscarinic receptor subtypes in primary cultures of cerebellar granule cells using specific muscarinic receptor antagonists

    McLeskey, S.W.

    1989-01-01

    In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinic receptive proteins were alkylated with 3 H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m 3 reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m 2 and/or m 4 receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI

  4. Constitutive overexpression of muscarinic receptors leads to vagal hyperreactivity.

    Angelo Livolsi

    Full Text Available BACKGROUND: Alterations in muscarinic receptor expression and acetylcholinesterase (AchE activity have been observed in tissues from Sudden Infant Death Syndrome (SIDS. Vagal overactivity has been proposed as a possible cause of SIDS as well as of vasovagal syncopes. The aim of the present study was to seek whether muscarinic receptor overexpression may be the underlying mechanism of vagal hyperreactivity. Rabbits with marked vagal pauses following injection of phenylephrine were selected and crossed to obtain a vagal hyperreactive strain. The density of cardiac muscarinic receptors and acetylcholinesterase (AchE gene expression were assessed. Blood markers of the observed cardiac abnormalities were also sought. METHODOLOGY/PRINCIPAL FINDINGS: Cardiac muscarinic M(2 and M(3 receptors were overexpressed in hyperreactive rabbits compared to control animals (2.3-fold and 2.5-fold, respectively and the severity of the phenylephrine-induced bradycardia was correlated with their densities. A similar overexpression of M(2 receptors was observed in peripheral mononuclear white blood cells, suggesting that cardiac M(2 receptor expression can be inferred with high confidence from measurements in blood cells. Sequencing of the coding fragment of the M(2 receptor gene revealed a single nucleotide mutation in 83% of hyperreactive animals, possibly contributing for the transcript overexpression. Significant increases in AchE expression and activity were also assessed (AchE mRNA amplification ratio of 3.6 versus normal rabbits. This phenomenon might represent a compensatory consequence of muscarinic receptors overexpression. Alterations in M(2 receptor and AchE expression occurred between the 5th and the 7th week of age, a critical period also characterized by a higher mortality rate of hyperreactive rabbits (52% in H rabbits versus 13% in normal rabbits and preceeded the appearance of functional disorders. CONCLUSIONS/SIGNIFICANCE: The results suggest that

  5. Muscarinic acetylcholine receptor expression in aganglionic bowel.

    Oue, T; Yoneda, A; Shima, H; Puri, P

    2000-01-01

    In Hirschsprung's disease (HD) there exists an overabundance of acetylcholine (ACh), which in turn stimulates excessive production of the enzyme acetylcholinesterase. Muscarinic ACh receptors (mAChRs) play an important role in smooth-muscle contraction. Recent studies have indicated five different subtypes of mAChRs encoded by five different genes, ml to m5. The purpose of this study was to investigate the expression of each mAChR subtype in aganglionic (AG) colon to further understand the pathophysiology of HD. Entire colon resected at the time of pull-through operation for HD was obtained from 14 patients. Specimens obtained at autopsy from 8 age-matched patients without gastrointestinal disease acted as controls. Frozen sections were used for indirect immunohistochemistry as well as in-situ hybridization. Immunohistochemistry was performed using specific antiserum against each mAChR subtype and in-situ hybridization was performed using specific oligonucleotide probes against ml to m5 subtypes. Messenger RNA (mRNA) was extracted from normoganglionic (NG) and AG bowel of HD patients and normal control bowel. Reverse transcription-polymerase chain reaction was performed to evaluate mRNA levels of each mAChR subtype. To adjust the levels of mRNA expression, a housekeeping gene G3PDH, known to be expressed normally, was used as an internal control. Strong m2 and m3 immunoreactivity was observed in the mucosal layer, smooth-muscle layers, and myenteric plexus of NG bowel, whereas ml immunoreactivity was only detected in the mucosal layer. The most striking finding was the abundance of m3-immunoreactive fibers in muscle layers of NG bowel while there was a total lack of m3 fibers in smooth-muscle of AG bowel. Intense mRNA signals encoding m2 and m3 and to a lesser degree ml were detected in NG bowel, and these signals were weak in AG bowel. Immunoreactivity and mRNA expression of m4 and m5 was not detected in NG or AG bowel. The lack of m3-immunoreactive fibers in the

  6. Cardiac muscarinic receptor overexpression in sudden infant death syndrome.

    Angelo Livolsi

    Full Text Available BACKGROUND: Sudden infant death syndrome (SIDS remains the leading cause of death among infants less than 1 year of age. Disturbed expression of some neurotransmitters and their receptors has been shown in the central nervous system of SIDS victims but no biological abnormality of the peripheral vago-cardiac system has been demonstrated to date. The present study aimed to seek vago-cardiac abnormalities in SIDS victims. The cardiac level of expression of muscarinic receptors, as well as acetylcholinesterase enzyme activity were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Left ventricular samples and blood samples were obtained from autopsies of SIDS and children deceased from non cardiac causes. Binding experiments performed with [(3H]NMS, a selective muscarinic ligand, in cardiac membrane preparations showed that the density of cardiac muscarinic receptors was increased as shown by a more than doubled B(max value in SIDS (n = 9 SIDS versus 8 controls. On average, the erythrocyte acetylcholinesterase enzyme activity was also significantly increased (n = 9 SIDS versus 11 controls. CONCLUSIONS: In the present study, it has been shown for the first time that cardiac muscarinic receptor overexpression is associated with SIDS. The increase of acetylcholinesterase enzyme activity appears as a possible regulatory mechanism.

  7. Muscarinic acetylcholine receptor subtypes: localization and structure/function

    Brann, M R; Ellis, J; Jørgensen, H

    1993-01-01

    Based on the sequence of the five cloned muscarinic receptor subtypes (m1-m5), subtype selective antibody and cDNA probes have been prepared. Use of these probes has demonstrated that each of the five subtypes has a markedly distinct distribution within the brain and among peripheral tissues...... are described, as well as the implied structures of these functional domains....

  8. Role of muscarinic receptor antagonists in urgency and nocturia

    Michel, Martin C.; de La Rosette, Jean J. M. C. H.

    2005-01-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms

  9. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task.

    Devore, Sasha; Manella, Laura C; Linster, Christiane

    2012-01-01

    Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB) can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for 10-100 s. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM) impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM) had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB.

  10. Alkylating derivative of oxotremorine interacts irreversibly with the muscarinic receptor

    Ehlert, F.J.; Jenden, D.J.; Ringdahl, B.

    1984-01-01

    A 2-chloroethylamine derivative of oxotremorine was studied in pharmacological experiments and muscarinic receptor binding assays. The compound, N-[4-(2-chloroethylmethylamino)-2-butynyl]-2-pyrrolidone (BM 123), forms an aziridinium ion in aqueous solution at neutral pH that stimulates contractions of guinea pig ileum with a potency similar to that of oxotremorine. Following the initial stimulation, there is a long lasting period of lack of sensitivity of the guinea pig ileum to muscarinic agonists. BM 123 also produces muscarinic effects in vivo. When homogenates of the rat cerebral cortex were incubated with BM 123 and assayed subsequently in muscarinic receptor binding assays, a loss of binding capacity for the muscarinic antagonist, [ 3 H]N-methylscopolamine ([ 3 H]NMS), was noted without a change in affinity. Similar observations were made in [ 3 H]1-3-quinuclidinyl benzilate ([ 3 H]-QNB) binding assays on the forebrains of mice that had been injected with BM 123 24 hr earlier. The loss in receptor capacity for both [ 3 H]NMS and [ 3 H]-QNB was prevented by atropine treatment. Kinetic studies of the interaction of BM 123 with homogenates of the rat cerebral cortex in vitro showed that the half-time for the loss of [ 3 H]-QNB binding sites increased from 10 to 45 min as the concentration of BM 123 decreased from 10 to 1 μM. In contrast to the aziridinium ion, the parent 2-chloroethylamine compound and the alcoholic hydrolysis product were largely devoid of pharmacological and binding activity

  11. Changes of muscarinic cholinergic receptors during aging process of primary cultured neutrons

    Fan Guohuang; Yi Ningyu; Xia Zongqin

    1996-01-01

    The dynamic changes of muscarinic receptor density and its reactivity during aging process in primary cultured neutrons were studied. Muscarinic receptor density was measured by 3 H-QNB binding assay, and muscarinic receptor reactivity was assessed by carbachol stimulation of cGMP formation, the latter was measured by RIA. After 2 weeks' incubation of neonatal rat brain cells, the nutrients began to rupture and the cell bodies shrank markedly showing senescent feature. The muscarinic receptor density reached peak at the 12th day in vitro (12 DIV), but the muscarinic receptor reactivity reached peak at 9 DIV and declined significantly at 12 DIV. The results demonstrated that during aging process of primary cultured neutrons, the decline of muscarinic receptor reactivity is likely prior to the decrease of receptor density

  12. Outline of therapeutic interventions with muscarinic receptor-mediated transmission

    Jakubík, Jan; Šantrůčková, Eva; Randáková, Alena; Janíčková, Helena; Zimčík, Pavel; Rudajev, Vladimír; Michal, Pavel; El-Fakahany, E. E.; Doležal, Vladimír

    2014-01-01

    Roč. 63, Suppl.1 (2014), S177-S189 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) 7E10060 Institutional support: RVO:67985823 Keywords : cholinergic transmission * muscarinic receptors * therapy * Alzheimer's disease, * schizophrenia Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  13. COLOCALIZATION OF MUSCARINIC AND NICOTINIC RECEPTORS IN CHOLINOCEPTIVE NEURONS OF THE SUPRACHIASMATIC REGION IN YOUNG AND AGED RATS

    VANDERZEE, EA; STREEFLAND, C; STROSBERG, AD; SCHRODER, H; LUITEN, PGM; Schröder, H.

    1991-01-01

    In the present study muscarinic and nicotinic cholinergic receptors in the SCN region were demonstrated and analyzed, employing monoclonal antibodies to purified muscarinic and nicotinic cholinergic receptor proteins. A near-total colocalization of the two acetylcholine receptor subclasses in

  14. Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine

    Dall, Camilla; Weikop, Pia; Dencker, Ditte

    2017-01-01

    BACKGROUND: Cocaine addiction is a chronic brain disease affecting neurotransmission. Muscarinic cholinergic receptors modulate dopaminergic signaling in the reward system, and muscarinic receptor stimulation can block direct reinforcing effects of cocaine. Here, we tested the hypothesis...... that specific muscarinic M4receptor stimulation can attenuate the discriminative stimulus effects and conditioned rewarding effects of cocaine, measures believed to predict the ability of cocaine and cocaine-associated cues to elicit relapse to drug taking. METHODS: We tested the M4-selective positive...

  15. Muscarinic receptor subtypes in porcine detrusor: comparison with humans and regulation by bladder augmentation

    Goepel, M.; Gronewald, A.; Krege, S.; Michel, M. C.

    1998-01-01

    The properties of muscarinic acetylcholine receptors of porcine and human bladder detrusor were compared in radioligand binding studies using [3H]quinuclidinylbenzylate as the radioligand. The receptor affinity for the radioligand and the density of muscarinic receptors was similar in male and

  16. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E.

    1990-01-01

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  17. Permanent alterations in muscarinic receptors and pupil size produced by chronic atropinization in kittens

    Smith, E.L.; Redburn, D.A.; Harwerth, R.S.; Maguire, G.W.

    1984-01-01

    Chronic mydriasis was induced in six kittens (four monocular, two binocular) and two adult cats (both monocular) by the daily topical application of atropine. Both the kittens and the adult cats were atropinized for a 13-week period with the treatment regimen beginning at the time of eye opening for the kittens. Pupil size measurements, obtained 1 year after the atropinization were discontinued, revealed that, although the pupils of the adult cats were normal, the pupils of the kittens' treated eyes were consistently smaller than pupils in control eyes. The status of the muscarinic receptors in the kittens' irides was investigated using 3 H-QNB binding assays. In comparison with iris muscle homogenates from the control eyes, those from the treated eyes demonstrated an eightfold increase in the number of receptor binding sites. The results indicate that pupil size can be altered permanently by chronic mydriasis initiated early in the life of a kitten and that the permanent change in pupil size may result, in part, from a type of permanent supersensitivity response in the muscle following chronic blockade of muscarinic transmission by atropine

  18. Visualization of cholinoceptive neurons in the rat neocortex : colocalization of muscarinic and nicotinic acetylcholine receptors

    Zee, E.A. van der; Streefland, C.; Strosberg, A.D.; Schröder, H.; Luiten, P.G.M.

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of

  19. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  1. Hypoxia increases exercise heart rate despite combined inhibition of β-adrenergic and muscarinic receptors

    Siebenmann, Christoph; Rasmussen, Peter; Sørensen, Henrik

    2015-01-01

    Hypoxia increases the heart rate (HR) response to exercise but the mechanism(s) remain unclear. We tested the hypothesis that the tachycardic effect of hypoxia persists during separate but not combined inhibition of β-adrenergic and muscarinic receptors. Nine subjects performed incremental exercise...... combined β-adrenergic and muscarinic receptor inhibition....

  2. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor

    Fink-Jensen, Anders; Schmidt, Lene S; Dencker, Ditte

    2011-01-01

    of the striatum, suggesting a role for muscarinic M4 receptors in the motor side effects of antipsychotics, and in the alleviation of these side effects by anticholinergics. Here we investigated the potential role of the muscarinic M4 receptor in catalepsy induced by antipsychotics (haloperidol and risperidone...

  3. Attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation

    Thomsen, Morgane; Conn, P Jeffrey; Lindsley, Craig

    2010-01-01

    Muscarinic cholinergic receptors modulate dopaminergic function in brain pathways thought to mediate cocaine's abuse-related effects. Here, we sought to confirm and extend in the mouse species findings that nonselective muscarinic receptor antagonists can enhance cocaine's discriminative stimulus...... for cocaine addiction....

  4. Decrease in the number of rat brain dopamine and muscarinic receptors after chronic alcohol intake

    Syvaelahti, E.K.G.; Hietala, J.; Roeyttae, M.; Groenroos, J.

    1988-01-01

    The effect of 32 weeks' alcohol treatment on the number and affinity of dopamine and muscarinic receptor sites in rat striatum were measured using 3 H-spiperone and 3 H-quinuclidinylbenzilate ( 3 H-QNB) as radioligans. The number of dopamine receptor sites was 38 per cent and the number of muscarinic receptor sites 36 per cent lower in the alcohol group than in control rats. The differences in receptor affinities were less marked. In conclusion, a long-term alcohol intake with rather moderate doses seems to induce a pronounced down-regulation in dopamine and muscarinic receptor systems in rat striatum. (author)

  5. Muscarinic receptors as targets for anti-inflammatory therapy.

    Sales, María Elena

    2010-11-01

    ACh, the main neurotransmitter in the neuronal cholinergic system, is synthesized by pre-ganglionic fibers of the sympathetic and parasympathetic autonomic nervous system and by post-ganglionic parasympathetic fibers. There is increasing experimental evidence that ACh is widely expressed in prokaryotic and eukaryotic non-neuronal cells. The neuronal and non-neuronal cholinergic systems comprise ACh, choline acetyltransferase and cholinesterase, enzymes that synthesize and catabolize ACh, and the nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively), which are the targets for ACh action. This review analyzes the participation of the cholinergic system, particularly through mAChRs, in inflammation, and discusses the role of the different mAChR antagonists that have been used to treat skin inflammatory disorders, asthma and COPD, as well as intestinal inflammation and systemic inflammatory diseases, to assess the potential application of these compounds as therapeutic tools.

  6. The allosteric site regulates the voltage sensitivity of muscarinic receptors.

    Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas

    2018-01-01

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Muscarinic receptor antagonists for overactive bladder treatment: does one fit all?

    Witte, Lambertus P. W.; Mulder, Wilhelmina M. C.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2009-01-01

    Purpose of review To review evidence and regulatory dosing recommendations for muscarinic receptor antagonists used in the treatment of overactive bladder symptom complex (darifenacin, fesoterodine oxybutynin propiverine solifenacin tolterodine trospium) in special patient populations. Recent

  8. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice

    Joseph, Lauren; Thomsen, Morgane

    2017-01-01

    Muscarinic M1/M4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (SD) effects, but the receptor subtypes mediating those...

  9. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-01-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45 Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45 Ca outflux. BPP was also capable of displacing the specific binding of [ 3 H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  10. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane...... (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects...

  11. Muscarinic acetylcholine receptors: location of the ligand binding site

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-01-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, 3 H-propylbenzilycholine mustard aziridinium ion ( 3 H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that 3 H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin

  12. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.

    Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T

    2015-04-08

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.

  13. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    Mak, J.C.; Barnes, P.J.

    1990-01-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using [3H](-)quinuclidinyl benzilate [( 3H]QNB) and selective muscarinic antagonists. [3H]QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with [3H]pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies

  14. M3 muscarinic receptor interaction with phospholipase C beta3 determines its signaling efficiency

    Kan, W.; Adjobo-Hermans, M.J.; Burroughs, M.; Faibis, G.; Malik, S.; Tall, G.G.; Smrcka, A.V.

    2014-01-01

    Phospholipase Cbeta (PLCbeta) enzymes are activated by G protein-coupled receptors through receptor-catalyzed guanine nucleotide exchange on Galphabetagamma heterotrimers containing Gq family G proteins. Here we report evidence for a direct interaction between M3 muscarinic receptor (M3R) and

  15. Muscarinic receptors in amygdala control trace fear conditioning.

    Amber N Baysinger

    Full Text Available Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA. The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  16. Muscarinic receptors in amygdala control trace fear conditioning.

    Baysinger, Amber N; Kent, Brianne A; Brown, Thomas H

    2012-01-01

    Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.

  17. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease.

    Ztaou, Samira; Maurice, Nicolas; Camon, Jeremy; Guiraudie-Capraz, Gaëlle; Kerkerian-Le Goff, Lydia; Beurrier, Corinne; Liberge, Martine; Amalric, Marianne

    2016-08-31

    Over the last decade, striatal cholinergic interneurons (ChIs) have reemerged as key actors in the pathophysiology of basal-ganglia-related movement disorders. However, the mechanisms involved are still unclear. In this study, we address the role of ChI activity in the expression of parkinsonian-like motor deficits in a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion model using optogenetic and pharmacological approaches. Dorsal striatal photoinhibition of ChIs in lesioned ChAT(cre/cre) mice expressing halorhodopsin in ChIs reduces akinesia, bradykinesia, and sensorimotor neglect. Muscarinic acetylcholine receptor (mAChR) blockade by scopolamine produces similar anti-parkinsonian effects. To decipher which of the mAChR subtypes provides these beneficial effects, systemic and intrastriatal administration of the selective M1 and M4 mAChR antagonists telenzepine and tropicamide, respectively, were tested in the same model of Parkinson's disease. The two compounds alleviate 6-OHDA lesion-induced motor deficits. Telenzepine produces its beneficial effects by blocking postsynaptic M1 mAChRs expressed on medium spiny neurons (MSNs) at the origin of the indirect striatopallidal and direct striatonigral pathways. The anti-parkinsonian effects of tropicamide were almost completely abolished in mutant lesioned mice that lack M4 mAChRs specifically in dopamine D1-receptor-expressing neurons, suggesting that postsynaptic M4 mAChRs expressed on direct MSNs mediate the antiakinetic action of tropicamide. The present results show that altered cholinergic transmission via M1 and M4 mAChRs of the dorsal striatum plays a pivotal role in the occurrence of motor symptoms in Parkinson's disease. The striatum, where dopaminergic and cholinergic systems interact, is the pivotal structure of basal ganglia involved in pathophysiological changes underlying Parkinson's disease. Here, using optogenetic and pharmacological approaches, we investigated the involvement of striatal

  18. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors.

    Greig, Nigel H; Reale, Marcella; Tata, Ada M

    2013-08-01

    The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer' and Sjogren's diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic

  19. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-01-01

    Highlights: ► Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. ► Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. ► Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers – this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding

  20. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States); Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng [Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  1. The pharmacological rationale for combining muscarinic receptor antagonists and beta-adrenoceptor agonists in the treatment of airway and bladder disease

    Dale, Philippa R.; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R.; Charlton, Steven J.; Pieper, Michael P.; Michel, Martin C.

    Muscarinic receptor antagonists and beta-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and beta-adrenoceptors are physiological antagonists for

  2. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na+ channel interaction

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-01

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na + channels is a coupled event mediated by guanine nucleotide binding protein(s) [G-protein(s)]. These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of [ 3 H] acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of [ 3 H]batrachotoxin to Na + channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced 22 Na + uptake in the presence and absence of tetrodotoxin, which blocks Na + channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na + channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na + channel-is such that at resting potential the muscarinic receptor induces opening of Na + channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues

  3. The binding of [3H]AF-DX 384 to rat ileal smooth muscle muscarinic receptors

    Entzeroth, M.; Mayer, N.

    1991-01-01

    The tritiated cardioselective muscarinic antagonist AF-DX 384 (5,11-dihydro-11-[2-[-(8-dipropylamino)methyl]-1-piperidinyl-ethyl-amino-carbonyl]-6H-pyrido [2,3-b] [1,4]benzodiazepin-6-one) was used to label muscarinic receptors in the rat ileum. Saturation binding to membrane suspensions revealed a high affinity binding site with a Kd of 9.2 nM. The maximal number of binding sites labeled in this tissue (Bmax) is 237 fmol/mg protein. The association and dissociation kinetics were well represented by single exponential reactions, and the dissociation constant obtained from the ratio of rate constants was in agreement with that derived from saturation experiments. Specific binding was inhibited by muscarinic antagonists with a rank order of potencies of atropine (pKi: 8.80) greater than 4-DAMP (pKi: 8.23) = AF-DX 384 (pKi: 8.20) greater than AF-DX 116 (pKi: 7.09) = hexahydro-sila-difenidol (pKi: 6.97) greater than pirenzepine (pKi: 6.49) and is consistent with the interaction of [3H]AF-DX 384 with muscarinic receptors of the M2 subtype. It can be concluded that [3H]AF-DX 384 can be used to selectively label M2 muscarinic receptors in heterogeneous receptor populations

  4. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods

    Collin, Caitlin Alexis; Hauser, Frank; Gonzalez de Valdivia, Ernesto I

    2013-01-01

    Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5......). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M......) and muscarine (EC50, 6 × 10(-8) M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked...

  5. Effect of paraoxon on muscarinic, dopamine and γ-aminobutyric acid receptors of brain and sensitivity to muscarinic antagonists

    Fernando, J.C.R.; Hoskins, B.; Ho, I.K.

    1986-01-01

    Several acetylcholinesterase (AChE) inhibitors decrease muscarinic cholinergic (mACh) receptors in the brain, alteration of dopamine (DA) and γ-aminobutyric acid (GABA) receptors after AChE inhibition was also reported. In view of the important interactions among DA, GABA and ACh systems, whether this is a common effect of AChE inhibitors should be established. They report the effect of the AChE inhibitor, paraoxon, on DA, GABA and mACh receptors in the rat. The binding of 3 H-QNB (for mACh), 3 H-spiperone (for DA) and 3 H-muscimol (for GABA) to striatal and hippocampal membranes was analyzed. Also, behavioral sensitivity to atropine was studied. Twenty-four hr after a single dose (0.75 mg/kg, s.c.) of paraoxon, the density of mACh receptors in the striatum was decreased but, at 3 days, no change was seen. In the hippocampus, the mACh receptors were not affected. Repeated treatment with paraoxon (0.3 mg/kg, 48 hourly) for 2 weeks reduced the mACh receptor density in both regions. Neither single nor repeated paraoxon treatment had an effect on DA or GABA receptors. After single or repeated dosing with paraoxon, myoclonus induced by atropine (10 mg/kg, i.p.) was enhanced. The results show rapid downregulation of mACh receptors by paraoxon. DA or GABA, however, appear not to be affected under these treatment regimens

  6. Differential involvement of cortical muscarinic and NMDA receptors in short- and long-term taste aversion memory.

    Ferreira, G; Gutiérrez, R; De La Cruz, V; Bermúdez-Rattoni, F

    2002-09-01

    In conditioned taste aversion, an animal avoids a taste previously associated with toxic effects, and this aversive memory formation requires an intact insular cortex. In this paper, we investigated the possible differential involvement of cholinergic and glutamatergic receptors in the insular cortex in short-term memory (STM) and long-term memory (LTM) of taste aversion in rats. Taste aversion was induced by intraperitoneal administration of lithium chloride (a malaise-inducing drug) 15 min after experience with an unfamiliar taste. In order to test STM and LTM of taste aversion, taste stimulus was again presented 4 h and 72 h after lithium injection, respectively. During the acquisition, microinjection of the muscarinic antagonist, scopolamine, in the insular cortex before, but not after, the presentation of the new taste, abolished STM as well as LTM. Blockade of the NMDA receptor, in the insular cortex, by AP5 before, but not after, the presentation of the taste stimulus, impaired LTM but left STM intact. Moreover, when injected 1 h after malaise induction (i.e., during taste-illness association), AP5 disrupted both STM and LTM. These results suggest that activation of muscarinic receptors in the insular cortex is involved in the acquisition of taste memory, whereas NMDA receptors participate in taste memory consolidation. These data demonstrate that different neurochemical mechanisms subserve different memory phases. NMDA receptors are also probably involved in processing the visceral input, thus allowing subsequent taste-illness association. This indicates that in the same cortical area the same neurotransmitter system can be involved in distinct processes: taste memory consolidation vs. taste-illness association.

  7. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-01-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. ( 3 H)Quinuclidinyl-benzylate (( 3 H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of ( 3 H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells

  9. Attenuation of cocaine's reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation

    Thomsen, Morgane; Conn, P Jeffrey; Lindsley, Craig

    2010-01-01

    substituted for cocaine and enhanced its discriminative stimulus. Conversely, muscarinic agonists blunted cocaine discrimination and abolished cocaine self-administration with varying effects on food-maintained behavior. Specifically, increasing selectivity for the M(1) subtype (oxotremorine ...'s abuse-related effects, whereas non-M(1)/M(4) receptors probably contribute to undesirable effects of muscarinic stimulation. These data provide the first demonstration of anticocaine effects of systemically applied, M(1) receptor agonists and suggest the possibility of a new approach to pharmacotherapy...

  10. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    Mathew Jobin

    2009-04-01

    Full Text Available Abstract Acetylcholine (ACh, the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. Previous reports from our laboratory on streptozotocin (STZ induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax and affinity (Kd of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.

  11. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    Ritva Tikkanen

    2013-04-01

    Full Text Available Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.

  12. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit [ 3 H]-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M 1 subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M 2 subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memory task. Pirenzepine, the M 1 selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function

  13. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.

    Perry, E K; Smith, C J; Court, J A; Perry, R H

    1990-01-01

    Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.

  14. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  15. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    Crittenden Elizabeth L

    2004-07-01

    Full Text Available Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  16. Pet measurements of postsynaptic muscarinic and beta adrenergic receptors in the heart

    Syrota, A.

    1991-01-01

    There is ample evidence from both experimental and clinical studies that changes in β-adrenergic and muscarinic receptor density can be associated with such cardiac diseases as congestive heart failure, myocardial ischemia and infarction, cardiomyopathy, diabetes, or thyroid-induced muscle disease. Changes in B-adrenergic density also have been shown in the denervated transplanted heart. These alterations of cardiac receptors have been demonstrated in vitro on homogenates from samples collected mainly during surgery or post mortem. Recent developments of Positron Emission Tomography (PET) techniques and of radioligands suitable for cardiac receptor binding studies in vivo have made possible both the imaging and the measurement of receptor density. From these studies, important information is now available concerning physiologic and pathologic conditions, as well as alterations induced by treatment. For the investigation of myocardial B-adrenergic receptors we have used [ 11 C] CGP 12177, a potent hydrophilic antagonist of the 3-adrenergic receptor. The quantification of myocardial muscarinic receptors in vivo has been obtained with [ 11 C] MQNB, a nonmetabolized hydrophilic antagonist of the muscarinic receptor. Receptor density and affinity have been measured by a kinetic, nonequilibrium approach in an experimental protocol that provides sufficient data to determine values for all parameters from a single experiment

  17. Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice

    Schmidt, Lene Sørensen; Thomsen, Morgane; Weikop, Pia

    2011-01-01

    Rationale The reinforcing effects of cocaine are mediated by the mesolimbic dopamine system. Behavioral and neurochemical studies have shown that the cholinergic muscarinic M4 receptor subtype plays an important role in regulation of dopaminergic neurotransmission. Objectives Here we investigated...... of drug addiction...

  18. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  19. Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta

    Schlegel, J.R.; Kriegstein, A.R.

    1987-01-01

    The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM 3 H-quinuclidinyl benzilate ( 3 H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM 3 H-flunitrazepam ( 3 H-FLU). Autoradiograms generated on 3 H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure with no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; 3 H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas 3 H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites

  20. Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors

    Jakubík, Jan; Randáková, Alena; El-Fakahany, E. E.; Doležal, Vladimír

    2009-01-01

    Roč. 9, č. 15 (2009), s. 1-20 ISSN 1471-2210 R&D Projects: GA ČR GA305/09/0681; GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA500110703 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * allosteric modulation * rapacuronium Subject RIV: ED - Physiology

  1. Muscarinic Acetylcholine Receptors Act in Synergy to Facilitate Learning and Memory

    Leaderbrand, Katherine; Chen, Helen J.; Corcoran, Kevin A.; Guedea, Anita L.; Jovasevic, Vladimir; Wess, Jurgen; Radulovic, Jelena

    2016-01-01

    Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on…

  2. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, E. E.; Doležal, Vladimír

    2017-01-01

    Roč. 7, Jan 16 (2017), č. článku 40381. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * N-methylscopolamine * ligand binding * molecular dynamics Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 4.259, year: 2016

  3. Multiple promoters drive tissue-specific expression of the human M2 muscarinic acetylcholine receptor gene

    Krejčí, Alena; Bruce, A. W.; Doležal, Vladimír; Tuček, Stanislav; Buckley, N. J.

    2004-01-01

    Roč. 91, č. 1 (2004), s. 88-98 ISSN 0022-3042 R&D Projects: GA AV ČR IAA5011306 Institutional research plan: CEZ:AV0Z5011922 Keywords : M2 muscarinic receptor * neuron-restrictive silence factor * promoter Subject RIV: ED - Physiology Impact factor: 4.824, year: 2004

  4. GABAergic Neurons of the Rat Dorsal Hippocampus Express Muscarinic Acetylcholine Receptors

    van der Zee, E.A.; Luiten, P.G.M.

    1993-01-01

    The expression of muscarinic acetylcholine receptors (mAChRs) in glutamic acid decarboxylase (GAD)-positive cells in the different strata of CA1, CA3, and the dentate gyrus (DG) of the dorsal hippocampus is examined by way of quantitative immunofluorescent double labeling employing M35, the

  5. Loss of muscarinic receptors and of stimulated phospholipid labeling in ibotenate-treated hippocampus

    Fisher, S.K.; Frey, K.A.; Agranoff, B.W.

    1981-01-01

    The stimulation of phospholipid labeling by muscarinic agonists has been examined in nerve ending preparations from lesioned hippocampus in order to investigate the synaptic locus of the effect. Unilateral injections of the neurotoxin, ibotenic acid, into the hippocampus resulted in an extensive loss of nerve cells from both the dentate gyrus and hippocampus on the lesioned side and a parallel loss of muscarinic receptors as revealed by [ 3 H]quinuclidinyl benzilate autoradiography. Homogenates and nerve ending fractions prepared from the lesioned side of the hippocampus possessed a reduced specific activity (expressed per milligram of protein) of glutamic acid decarboxylase as well as a reduced number of muscarinic receptors compared with the control side. By contrast, choline acetyltransferase activity was either unchanged or slightly increased on the lesioned side. Although there was a reduced yield (25%) of nerve endings from the lesioned side, the specific activity of 32 Pi incorporation into phospholipids in the absence of added carbachol was comparable to that of the control side. There was, however, a marked reduction in the carbachol stimulation of phosphatidic acid and phosphatidylinositol labeling in nerve ending fractions obtained from he lesioned hippocampus. These results indicate that the muscarinic receptors present in nerve ending fractions from hippocampus and implicated in stimulated phospholipid turnover are derived from cholinoceptive intrinsic neurons

  6. Agonist and antagonist binding to rat brain muscarinic receptors: influence of aging

    Gurwitz, D.; Egozi, Y.; Henis, Y.I.; Kloog, Y.; Sokolovsky, M.

    1987-01-01

    The objective of the present study was to determine the binding properties of muscarinic receptors in six brain regions in mature and old rats of both sexes by employing direct binding of [ 3 H]-antagonist as well as of the labeled natural neurotransmitter, [ 3 H]-acetylcholine [( 3 H]-AcCh). In addition, age-related factors were evaluated in the modulation processes involved in agonist binding. The results indicate that as the rat ages the density of the muscarinic receptors is altered differently in the various brain regions: it is decreased in the cerebral cortex, hippocampus, striatum and olfactory bulb of both male and female rats, but is increased (58%) in the brain stem of senescent males while no significant change is observed for females. The use of the highly sensitive technique measuring direct binding of [ 3 H]-AcCh facilitated the separate detection of age-related changes in the two classes (high- and low-affinity) of muscarinic agonist binding sites. In old female rats the density of high-affinity [ 3 H]-AcCh binding sites was preserved in all tissues studied, indicating that the decreases in muscarinic receptor density observed with [ 3 H]-antagonist represent a loss of low-affinity agonist binding sites. In contrast, [ 3 H]-AcCh binding is decreased in the hypothalamus and increased in the brain stem of old male rats. These data imply sexual dimorphism of the aging process in central cholinergic mechanisms

  7. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, E. E.; Jakubík, Jan

    2018-01-01

    Roč. 133, May 1 (2018), s. 129-144 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA14-05696S; GA ČR(CZ) GA17-16182S Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * membrane cholesterol * xanomeline * receptor activation * molecular dynamics Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 5.012, year: 2016

  8. Regional distribution of muscarinic acetylcholine receptors in the telencephalon of the pigeon (Columba livia f. domestica)

    Waechtler, K.

    1985-01-01

    The distribution of muscarinic acetylcholine receptors was studied autoradiographically in croystat sections of the pigeon telencephalon using 3 H-quinuclidinylbenzylate as a ligand. Highest receptor density was observed in the hyperstriatum ventrale, palaeostriatum augmentatum, septum, and parts of the archistriatum. In sites of known sensory input of neostriatum (field L) and ectostriatum low receptor binding was observed. Acetylcholinesterase distribution is in good agreement with the receptor picture only in the basal telencephalon. In the pallium differences in the pattern of these two components can be seen. (author)

  9. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber).

    Jørgensen, Kristine B; Krogh-Jensen, Karen; Pickering, Darryl S; Kanui, Titus I; Abelson, Klas S P

    2016-01-01

    The present study investigated the cholinergic system in the African naked mole-rat (Heterocephalus glaber) with focus on the muscarinic acetylcholine receptor subtypes M1 and M4. The protein sequences for the subtypes m 1-5 of the naked mole-rat were compared to that of the house mouse (Mus musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies with [(3)H]-N-methylscopolamine. The BLAST test revealed 95 % protein sequence homology showing the naked mole-rat to have the genetic potential to express all five muscarinic acetylcholine receptor subtypes. A significant reduction in pain behavior was demonstrated after administration of 8.4 mg/kg in the formalin test. Administration of 50 mg/kg VU0152100 resulted in a non-significant tendency towards antinociception. The antinociceptive effects were reversed by the muscarinic acetylcholine receptor antagonist atropine. Binding studies indicated presence of muscarinic acetylcholine receptors with a radioligand affinity comparable to that reported in mice. In conclusion, muscarinic acetylcholine receptor subtypes are present in the naked mole-rat and contribute to antinociception in the naked mole-rat.

  10. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates.

    Maibritt B Andersen

    Full Text Available Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R-6-(3-butylthio-1,2,5-thiadiazol-4-yl-1-azabicyclo[3.2.1]octane (BuTAC exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia.

  11. Decreased ipsilateral [123I]iododexetimide binding to cortical muscarinic receptors in unilaterally 6-hydroxydopamine lesioned rats

    Knol, Remco J.J.; Bruin, Kora de; Opmeer, Brent; Voorn, Pieter; Jonker, Allert J.; Eck-Smit, Berthe L.F. van; Booij, Jan

    2014-01-01

    Introduction: Dysfunction of the cholinergic neurotransmitter system is present in Parkinson’s disease, Parkinson’s disease related dementia and dementia with Lewy bodies, and is thought to contribute to cognitive deficits in these patients. In vivo imaging of the cholinergic system in these diseases may be of value to monitor central cholinergic disturbances and to select cases in which treatment with cholinesterase inhibitors could be beneficial. The muscarinic receptor tracer [ 123 I]iododexetimide, predominantly reflecting M 1 receptor binding, may be an appropriate tool for imaging of the cholinergic system by means of SPECT. In this study, we used [ 123 I]iododexetimide to study the effects of a 6-hydroxydopamine lesion (an animal model of Parkinson’s disease) on the muscarinic receptor availability in the rat brain. Methods: Rats (n = 5) were injected in vivo at 10–13 days after a confirmed unilateral 6-hydroxydopamine lesion. Muscarinic receptor availability was measured bilaterally in multiple brain areas on storage phosphor images by region of interest analysis. Results: Autoradiography revealed a consistent and statistically significant lower [ 123 I]iododexetimide binding in all examined neocortical areas on the ipsilateral side of the lesion as compared to the contralateral side. In hippocampal and subcortical areas, such asymmetry was not detected. Conclusions: This study suggests that evaluation of muscarinic receptor availability in dopamine depleted brains using [ 123 I]iododexetimide is feasible. We conclude that 6-hydroxydopamine lesions induce a decrease of neocortical muscarinic receptor availability. We hypothesize that this arises from down regulation of muscarinic postsynaptic M 1 receptors due to hyperactivation of the cortical cholinergic system in response to dopamine depletion. Advances in knowledge: In rats, dopamine depletion provokes a decrease in neocortical muscarinic receptor availability, which is evaluable by [ 123 I

  12. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  13. Muscarinic Acetylcholine Receptor Subtypes as Potential Drug Targets for the Treatment of Schizophrenia, Drug Abuse and Parkinson's Disease

    Dencker, Ditte; Thomsen, Morgane; Wörtwein, Gitta

    2011-01-01

    's disease and drug abuse. Dopaminergic systems are regulated by cholinergic, especially muscarinic, input. Not surprisingly, increasing evidence implicates muscarinic acetylcholine receptor-mediated pathways as potential targets for the treatment of these disorders classically viewed as "dopamine based...... site. Such agents may lead to the development of novel classes of drugs useful for the treatment of psychosis, drug abuse and Parkinson's disease. The present review highlights recent studies carried out using muscarinic receptor knock-out mice and new subtype-selective allosteric ligands to assess...... the roles of M(1), M(4), and M(5) receptors in various central processes that are under strong dopaminergic control. The outcome of these studies opens new perspectives for the use of novel muscarinic drugs for several severe disorders of the CNS....

  14. Muscarinic receptors in separate populations of noradrenaline- and adrenaline-containing chromaffin cells

    Michelena, P.; Moro, M.A.; Castillo, C.J.; Garcia, A.G.

    1991-01-01

    We have performed binding experiments of (a)[3H]quinuclidinyl benzilate to partially purified membranes from noradrenaline- and adrenaline-containing chromaffin cells and (b) [3H]N-methyl-quinuclidinyl benzilate to acutely isolated, or 48-h cultured, chromaffin cells subpopulations. Using this approach, we obtained enough evidence to conclude (1st) that muscarinic receptors are present in both noradrenaline- and adrenaline containing cells; (2nd) that noradrenaline cells contain in fact 2-3 fold higher density of those receptors; and (3rd) that those receptors undergo plastic changes upon chronic culturing of the cells

  15. Uncoupling of M1 muscarinic receptor/G-protein interaction by amyloid beta(1-42)

    Janíčková, Helena; Rudajev, Vladimír; Zimčík, Pavel; Jakubík, Jan; Tanila, H.; El-Fakahany, E. E.; Doležal, Vladimír

    2013-01-01

    Roč. 67, April (2013), s. 272-283 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) 7E10060 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : Alzheimer ´s Disease * muscarinic receptors * G-proteins Subject RIV: ED - Physiology Impact factor: 4.819, year: 2013

  16. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, E. E.; Jakubík, Jan

    2015-01-01

    Roč. 97, Jul 2015 (2015), s. 27-39 ISSN 1043-6618 R&D Projects: GA ČR(CZ) GA305/09/0681; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * atypical agonists * xanomeline * activation mechanism Subject RIV: ED - Physiology Impact factor: 4.816, year: 2015

  17. Autoradiography of H-3-pirenzepine and H-3-AFDX-384 in Mouse Brain Regions: Possible Insights into M-1, M-2, and M-4 Muscarinic Receptors Distribution

    Valuskova, P.; Farar, V.; Forczek, Sándor; Křížová, I.; Mysliveček, J.

    2018-01-01

    Roč. 9, FEB 20 (2018), č. článku 124. ISSN 1663-9812 Institutional support: RVO:61389030 Keywords : 3 h-afdx-384 * 3 H-pirenzepine * 3 h-qnb * Autoradiography * M muscarinic receptor 1 * M muscarinic receptor 2 * M muscarinic receptor 4 Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.400, year: 2016

  18. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model

    Kang JY

    2013-10-01

    Full Text Available Ji Young Kang, Sook Young Lee, Chin Kook Rhee, Seung Joon Kim, Soon Seog Kwon, Young Kyoon KimDepartment of Internal Medicine, College of Medicine, Catholic University of Korea, Seoul, KoreaBackground and objectives: The influence of aging on the development of asthma has not been studied thoroughly. The aim of this study was to investigate age-related airway responses involving lung histology and expression of muscarinic receptors in a murine model of acute asthma. Methods: Female BALB/c mice at the ages of 6 weeks and 6, 9, and 12 months were sensitized and challenged with ovalbumin (OVA for 1 month (n = 8–12 per group. We analyzed inflammatory cells and T-helper (Th2 cytokines in bronchoalveolar lavage (BAL fluid and parameters of airway remodeling and expression of muscarinic receptors in lung tissue. Results: Among the OVA groups, total cell and eosinophil numbers in BAL fluid were significantly higher in the older (6-, 9-, and 12-month-old mice than in the young (6-week-old mice. Interleukin (IL 4 (IL-4 concentration increased, but IL-5 and IL-13 concentrations showed a decreased tendency, with age. IL-17 concentration tended to increase with age, which did not reach statistical significance. periodic acid-Schiff (PAS staining area, peribronchial collagen deposition, and area of α-smooth muscle staining were significantly higher in the 6-month older OVA group than in the young OVA group. The expression of the M3 and M2 muscarinic receptors tended to increase and decrease, respectively, with age. Conclusion: The aged mice showed an active and unique pattern not only on airway inflammation, but also on airway remodeling and expression of the muscarinic receptors during the development of acute asthma compared with the young mice. These findings suggest that the aging process affects the pathogenesis of acute asthma and age-specific approach might be more appropriate for better asthma control in a clinical practice.Keywords: aging, asthma

  19. Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods.

    Collin, Caitlin; Hauser, Frank; Gonzalez de Valdivia, Ernesto; de Valdivia, Ernesto Gonzalez; Li, Shizhong; Reisenberger, Julia; Carlsen, Eva M M; Khan, Zaid; Hansen, Niels O; Puhm, Florian; Søndergaard, Leif; Niemiec, Justyna; Heninger, Magdalena; Ren, Guilin R; Grimmelikhuijzen, Cornelis J P

    2013-09-01

    Muscarinic acetylcholine receptors (mAChRs) play a central role in the mammalian nervous system. These receptors are G protein-coupled receptors (GPCRs), which are activated by the agonists acetylcholine and muscarine, and blocked by a variety of antagonists. Mammals have five mAChRs (m1-m5). In this study, we cloned two structurally related GPCRs from the fruit fly Drosophila melanogaster, which, after expression in Chinese hamster ovary cells, proved to be muscarinic acetylcholine receptors. One mAChR (the A-type; encoded by gene CG4356) is activated by acetylcholine (EC50, 5 × 10(-8) M) and muscarine (EC50, 6 × 10(-8) M) and blocked by the classical mAChR antagonists atropine, scopolamine, and 3-quinuclidinyl-benzilate (QNB), while the other (the B-type; encoded by gene CG7918) is also activated by acetylcholine, but has a 1,000-fold lower sensitivity to muscarine, and is not blocked by the antagonists. A- and B-type mAChRs were also cloned and functionally characterized from the red flour beetle Tribolium castaneum. Recently, Haga et al. (Nature 2012, 482: 547-551) published the crystal structure of the human m2 mAChR, revealing 14 amino acid residues forming the binding pocket for QNB. These residues are identical between the human m2 and the D. melanogaster and T. castaneum A-type mAChRs, while many of them are different between the human m2 and the B-type receptors. Using bioinformatics, one orthologue of the A-type and one of the B-type mAChRs could also be found in all other arthropods with a sequenced genome. Protostomes, such as arthropods, and deuterostomes, such as mammals and other vertebrates, belong to two evolutionarily distinct lineages of animal evolution that split about 700 million years ago. We found that animals that originated before this split, such as cnidarians (Hydra), had two A-type mAChRs. From these data we propose a model for the evolution of mAChRs.

  20. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. New advances in pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors

    Greig, Nigel H.; Reale, Marcella; Tata, Ada Maria

    2016-01-01

    The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer’ and Sjogren’s diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic

  2. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth.

    Gautam, Dinesh; Jeon, Jongrye; Starost, Matthew F; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Parlow, Albert F; Gavrilova, Oksana; Szalayova, Ildiko; Mezey, Eva; Wess, Jürgen

    2009-04-14

    The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.

  3. Investigation of the presence and antinociceptive function of muscarinic acetylcholine receptors in the African naked mole-rat (Heterocephalus glaber)

    Jørgensen, Kristine B.; Krogh-Jensen, Karen; Pickering, Darryl S

    2016-01-01

    The present study investigated the cholinergic system in the African naked mole-rat (Heterocephalus glaber) with focus on the muscarinic acetylcholine receptor subtypes M1 and M4. The protein sequences for the subtypes m 1–5 of the naked mole-rat were compared to that of the house mouse (Mus...... musculus) using basic local alignment search tool (BLAST). The presence and function of M1 and M4 was investigated in vivo, using the formalin test with the muscarinic receptor agonists xanomeline and VU0152100. Spinal cord tissue from the naked mole-rat was used for receptor saturation binding studies...

  4. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  5. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

    Andersen, Maibritt B; Fink-Jensen, Anders; Peacock, Linda

    2003-01-01

    Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects ...

  6. An allosteric enhancer of M4muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

    Dencker, Ditte; Weikop, Pia; Sørensen, Gunnar

    2012-01-01

    The mesostriatal dopamine system plays a key role in mediating the reinforcing effects of psychostimulant drugs like cocaine. The muscarinic M4 acetylcholine receptor subtype is centrally involved in the regulation of dopamine release in striatal areas. Consequently, striatal M4 receptors could...

  7. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms.

    Becky J Proskocil

    Full Text Available BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.

  8. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.

    Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W

    2014-08-29

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Physiological roles of CNS muscarinic receptors gained from knockout mice

    Thomsen, Morgane; Sørensen, Gunnar; Dencker, Ditte

    2017-01-01

    receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains......, knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics...

  10. Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction.

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria Angel; Cilleros, Victor; Tomàs, Josep Maria

    2016-01-01

    The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity. Hebbian competition between axons with different activities leads to the loss of roughly half of the overproduced elements and this refines connectivity. We used quantitative immunohistochemistry to investigate, in the postnatal day 7 (P7) to P9 neuromuscular junctions, the involvement of muscarinic receptors (muscarinic acetylcholine autoreceptors and the M1, M2, and M4 subtypes) and adenosine receptors (A1 and A2A subtypes) in the control of axonal elimination after the mouse levator auris longus muscle had been exposed to selective antagonists in vivo. In a previous study we analyzed the role of each of the individual receptors. Here we investigate the additive or occlusive effects of their inhibitors and thus the existence of synergistic activity between the receptors. The main results show that the A2A, M1, M4, and A1 receptors (in this order of ability) delayed axonal elimination at P7. M4 produces some occlusion of the M1 pathway and some addition to the A1 pathway, which suggests that they cooperate. M2 receptors may modulate (by allowing a permissive action) the other receptors, mainly M4 and A1. The continued action of these receptors (now including M2 but not M4) finally promotes axonal loss at P9. All 4 receptors (M2, M1, A1, and A2A, in this order of ability) are necessary. The M4 receptor (which in itself does not affect axon loss) seems to modulate the other receptors. We found a synergistic action between the M1, A1, and A2A receptors, which show an additive effect, whereas the potent M2 effect is largely independent of the other receptors (though can be modulated by M4). At P9, there is a full mutual dependence between the A1 and A2A receptors in regulating axon loss. In summary, postnatal axonal elimination is a regulated multireceptor mechanism that involves the cooperation of several muscarinic and adenosine receptor subtypes.

  11. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Vitamin C Deficiency Reduces Muscarinic Receptor Coronary Artery Vasoconstriction and Plasma Tetrahydrobiopterin Concentration in Guinea Pigs

    Gry Freja Skovsted

    2017-07-01

    Full Text Available Vitamin C (vitC deficiency is associated with increased cardiovascular disease risk, but its specific interplay with arteriolar function is unclear. This study investigates the effect of vitC deficiency in guinea pigs on plasma biopterin status and the vasomotor responses in coronary arteries exposed to vasoconstrictor/-dilator agents. Dunkin Hartley female guinea pigs (n = 32 were randomized to high (1500 mg/kg diet or low (0 to 50 mg/kg diet vitC for 10–12 weeks. At euthanasia, coronary artery segments were dissected and mounted in a wire-myograph. Vasomotor responses to potassium, carbachol, sodium nitroprusside (SNP, U46619, sarafotoxin 6c (S6c and endothelin-1 (ET-1 were recorded. Plasma vitC and tetrahydrobiopterin were measured by HPLC. Plasma vitC status reflected the diets with deficient animals displaying reduced tetrahydrobiopterin. Vasoconstrictor responses to carbachol were significantly decreased in vitC deficient coronary arteries independent of their general vasoconstrictor/vasodilator capacity (p < 0.001. Moreover, in vitC deficient animals, carbachol-induced vasodilator responses correlated with coronary artery diameter (p < 0.001. Inhibition of cyclooxygenases with indomethacin increased carbachol-induced vasoconstriction, suggesting an augmented carbachol-induced release of vasodilator prostanoids. Atropine abolished carbachol-induced vasomotion, supporting a specific muscarinic receptor effect. Arterial responses to SNP, potassium, S6c, U46619 and ET-1 were unaffected by vitC status. The study shows that vitC deficiency decreases tetrahydrobiopterin concentrations and muscarinic receptor mediated contraction in coronary arteries. This attenuated vasoconstrictor response may be linked to altered production of vasoactive arachidonic acid metabolites and reduced muscarinic receptor expression/signaling.

  13. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

    Zhao, Lan-Xue; Ge, Yan-Hui; Xiong, Cai-Hong; Tang, Ling; Yan, Ying-Hui; Law, Ping-Yee; Qiu, Yu; Chen, Hong-Zhuan

    2018-03-06

    M1 muscarinic acetylcholine receptors (M1 mAChRs) are the most abundant muscarinic receptors in the hippocampus and have been shown to have procognitive effects. AMPA receptors (AMPARs), an important subtype of ionotropic glutamate receptors, are key components in neurocognitive networks. However, the role of AMPARs in procognitive effects of M1 mAChRs and how M1 mAChRs affect the function of AMPARs remain poorly understood. Here, we found that basal expression of GluA1, a subunit of AMPARs, and its phosphorylation at Ser845 were maintained by M1 mAChR activity. Activation of M1 mAChRs promoted membrane insertion of GluA1, especially to postsynaptic densities. Impairment of hippocampus-dependent learning and memory by antagonism of M1 mAChRs paralleled the reduction of GluA1 expression, and improvement of learning and memory by activation of M1 mAChRs was accompanied by the synaptic insertion of GluA1 and its increased phosphorylation at Ser845. Furthermore, abrogation of phosphorylation of Ser845 residue of GluA1 ablated M1 mAChR-mediated improvement of learning and memory. Taken together, these results show a functional correlation of M1 mAChRs and GluA1 and the essential role of GluA1 in M1 mAChR-mediated cognitive improvement.-Zhao, L.-X., Ge, Y.-H., Xiong, C.-H., Tang, L., Yan, Y.-H., Law, P.-Y., Qiu, Y., Chen, H.-Z. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

  14. The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways

    Ren, Guilin Robin; Folke, Jonas; Hauser, Frank

    2015-01-01

    Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the agonists acetylcholine and muscarine and blocked by several antagonists, among them atropine. In mammals five mAChRs (m1-m5) exist of which m1, m3, and m5 are coupled to members of the Gq...

  15. Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome.

    Weber, Stefanie; Thiele, Holger; Mir, Sevgi; Toliat, Mohammad Reza; Sozeri, Betül; Reutter, Heiko; Draaken, Markus; Ludwig, Michael; Altmüller, Janine; Frommolt, Peter; Stuart, Helen M; Ranjzad, Parisa; Hanley, Neil A; Jennings, Rachel; Newman, William G; Wilcox, Duncan T; Thiel, Uwe; Schlingmann, Karl Peter; Beetz, Rolf; Hoyer, Peter F; Konrad, Martin; Schaefer, Franz; Nürnberg, Peter; Woolf, Adrian S

    2011-11-11

    Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Activation of multiple G-proteins by muscarinic M1 and M2 receptors

    Michal, Pavel; El-Fakahany, E. E.; Doležal, Vladimír

    2006-01-01

    Roč. 27, č. S1 (2006), s. 404-404 ISSN 1671-4083. [World Congress of Pharmacology /15./. 02.07.2006-07.07.2006, Beijing] R&D Projects: GA ČR(CZ) GP305/05/P209; GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Grant - others:NIH(US) NS25743 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * multiple G-protein coupling Subject RIV: ED - Physiology

  17. Differentiation-associated decrease in muscarinic receptor sensitivity in human neuroblastoma cells

    Heikkilae, J.E.; Scott, J.G.; Suominen, L.A.; Akerman, K.E.O.

    1987-01-01

    Muscarinic receptor-linked increases in intracellular free Ca 2+ as measured with quin-2 and Ca 2+ release from monolayers of cells have been measured in the human neuroblastoma cell line SH-SY5Y. Induction of differentiation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a decrease in the sensitivity of the cells to low concentrations of agonists with respect to the induced increase in cytosolic free Ca 2+ and stimulation of Ca 2+ efflux. No decrease in agonist binding affinity was observed when the displacement of a labelled antagonist, 3 H-NMS, by a non-labelled agonist was studied

  18. Presynaptic muscarinic receptors: Change of sensitivity during long-term drug treatment

    Marchi, M.; Raiteri, M.

    1986-01-01

    The authors investigate some of the characteristics of auto- and heteroreceptors from different brain areas in male rats; their alteration in sensitivity following chronic drug treatment is monitored. The synaptosomes were prelabeled with tritium-choline or tritium-dopamine and the release of tritium-acetylcholine and tritium-DA was studied in superfusion. It is shown that the difference in susceptibility between auto- and heteroreceptors with respect to changes of sensitivity may represent a further criterion to discriminate between muscarinic receptor subtypes

  19. Connexins and M3 Muscarinic Receptors Contribute to Heterogeneous Ca2+ Signaling in Mouse Aortic Endothelium

    François-Xavier Boittin

    2013-02-01

    Full Text Available Background/Aims: Smooth muscle tone is controlled by Ca2+ signaling in the endothelial layer. Mouse endothelial cells are interconnected by gap junctions made of Connexin40 (Cx40 and Cx37, which allow the exchange of signaling molecules to coordinate their activity. Here, we investigated the role of Cx40 in the endothelial Ca2+ signaling of the mouse aorta. Methods: Ca2+ imaging was performed on intact aortic endothelium from both wild type (Cx40+/+ and Connexin40-deficient (Cx40 -/- mice. Results: Acetylcholine (ACh induced early fast and high amplitude Ca2+ transients in a fraction of endothelial cells expressing the M3 muscarinic receptors. Inhibition of intercellular communication using carbenoxolone or octanol fully blocked the propagation of ACh-induced Ca2+ transients toward adjacent cells in WT and Cx40-/- mice. As compared to WT, Cx40-/- mice displayed a reduced propagation of ACh-induced Ca2+ waves, indicating that Cx40 contributes to the spreading of Ca2+ signals. The propagation of those Ca2+ responses was not blocked by suramin, a blocker of purinergic ATP receptors, indicating that there is no paracrine effect of ATP release on the Ca2+ waves. Conclusions: Altogether our data show that Cx40 and Cx37 contribute to the propagation and amplification of the Ca2+ signaling triggered by ACh in endothelial cells expressing the M3 muscarinic receptors.

  20. Current status of muscarinic M1 and M4 receptors as drug targets for neurodegenerative diseases.

    Felder, Christian C; Goldsmith, Paul J; Jackson, Kimberley; Sanger, Helen E; Evans, David A; Mogg, Adrian J; Broad, Lisa M

    2018-01-25

    The cholinergic signalling system has been an attractive pathway to seek targets for modulation of arousal, cognition, and attention which are compromised in neurodegenerative and neuropsychiatric diseases. The acetylcholine muscarinic receptor M1 and M4 subtypes which are highly expressed in the central nervous system, in cortex, hippocampus and striatum, key areas of cognitive and neuropsychiatric control, have received particular attention. Historical muscarinic drug development yielded first generation agonists with modest selectivity for these two receptor targets over M2 and M3 receptors, the major peripheral sub-types hypothesised to underlie the dose-limiting clinical side effects. More recent compound screening and medicinal chemistry optimization of orthosteric and allosteric agonists, and positive allosteric modulators binding to sites distinct from the highly homologous acetylcholine binding pocket have yielded a collection of highly selective tool compounds for preclinical validation studies. Several M1 selective ligands have progressed to early clinical development and in time will hopefully lead to useful therapeutics for treating symptoms of Alzheimer's disease and related disorders. Copyright © 2018. Published by Elsevier Ltd.

  1. The modulatory role of M2 muscarinic receptor on apomorphine-induced yawning and genital grooming.

    Gamberini, Maria Thereza; Bolognesi, Maria Laura; Nasello, Antonia Gladys

    2012-12-07

    The interaction between dopaminergic and cholinergic pathways in the induction of behavioral responses has been previously established. In the brain, M2 receptors are found predominantly in presynaptic cholinergic neurons as autoreceptors, and in dopaminergic neurons as heteroceptors, suggesting a control role of acetylcholine and dopamine release, respectively. Our aim was to investigate the role of M2 receptors on the yawning and genital grooming of rats induced by apomorphine, a dopaminergic receptor agonist, focusing on the interaction between cholinergic and dopaminergic pathways. Initially, the effect of atropine, a non-selective muscarinic antagonist, on yawning and genital grooming induced by apomorphine (100 μg/kg s.c.) was analyzed. Atropine doses of 0.5, 1 and 2 mg/kg i.p. were administered to Wistar rats 30 min before induction of the behavioral responses by apomorphine. Number of yawns and time spent genital grooming were quantified over a 60 min period. Apomorphine-induced yawning was increased by low dose (0.5 mg/kg i.p.) but not by high doses (1 and 2 mg/kg, i.p.) of atropine. Genital grooming was antagonized by 2 mg/kg i.p. of atropine and showed no changes at the other doses tested. Tripitramine, a selective M2 cholinergic antagonist, was used as a tool for distinguishing between M2 and all other muscarinic receptor subtypes in yawning and genital grooming. Tripitramine doses of 0.01, 0.02 and 0.04 μmol/kg i.p. were administered to Wistar rats 30 min before apomorphine (100 μg/kg s.c.). Number of yawns and time spent genital grooming were also quantified over a 60 min period. Tripitramine 0.01 μmol/kg increased all parameters. Higher doses, which possibly block all subtypes of muscarinic receptor, did not modify the response of apomorphine, suggesting a non-selective effect of tripitramine at these doses. Given that low doses of tripitramine increased the behavioral responses induced by apomorphine and that the main distribution of the M2

  2. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  3. Dual effects of muscarinic M2 acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists

    Michal, Pavel; Lysíková, Michaela; Tuček, Stanislav

    2001-01-01

    Roč. 132, č. 6 (2001), s. 1217-1228 ISSN 0007-1188 R&D Projects: GA ČR GA309/99/0214; GA AV ČR IAA7011910 Institutional research plan: CEZ:AV0Z5011922 Keywords : cyclic AMP * muscarinic receptors * CHO cells Subject RIV: ED - Physiology Impact factor: 3.502, year: 2001

  4. Effects of selective activation of M1 and M4 muscarinic receptors on object recognition memory performance in rats.

    Galloway, Claire R; Lebois, Evan P; Shagarabi, Shezza L; Hernandez, Norma A; Manns, Joseph R

    2014-01-01

    Acetylcholine signaling through muscarinic receptors has been shown to benefit memory performance in some conditions, but pan-muscarinic activation also frequently leads to peripheral side effects. Drug therapies that selectively target M1 or M4 muscarinic receptors could potentially improve memory while minimizing side effects mediated by the other muscarinic receptor subtypes. The ability of three recently developed drugs that selectively activate M1 or M4 receptors to improve recognition memory was tested by giving Long-Evans rats subcutaneous injections of three different doses of the M1 agonist VU0364572, the M1 positive allosteric modulator BQCA or the M4 positive allosteric modulator VU0152100 before performing an object recognition memory task. VU0364572 at 0.1 mg/kg, BQCA at 1.0 mg/kg and VU0152100 at 3.0 and 30.0 mg/kg improved the memory performance of rats that performed poorly at baseline, yet the improvements in memory performance were the most statistically robust for VU0152100 at 3.0 mg/kg. The results suggested that selective M1 and M4 receptor activation each improved memory but that the likelihood of obtaining behavioral efficacy at a given dose might vary between subjects even in healthy groups depending on baseline performance. These results also highlighted the potential of drug therapies that selectively target M1 or M4 receptors to improve memory performance in individuals with impaired memory.

  5. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection.

    Matthew Darby

    2015-01-01

    Full Text Available Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.

  6. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  7. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    Luis Segu

    Full Text Available Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4, but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4 knock-out (KO and wild-type (WT mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4 control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4. Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4 KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT, the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4 KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4 KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4 to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4 aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4 mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  8. SPET imaging of central muscarinic receptors with (R,R)[123I]-I-QNB: methodological considerations

    Norbury, R.; Travis, M.J.; Erlandsson, K.; Waddington, W.; Owens, J.; Ell, P.J.; Murphy, D.G.

    2004-01-01

    Investigations on the effect of normal healthy ageing on the muscarinic system have shown conflicting results. Also, in vivo determination of muscarinic receptor binding has been hampered by a lack of subtype selective ligands and differences in methods used for quantification of receptor densities. Recent in vitro and in vivo work with the muscarinic antagonist (R,R)-I-QNB indicates this ligand has selectivity for m 1 and m 4 muscarinic receptor subtypes. Therefore, we used (R,R)[ 123 I]-I-QNB and single photon emission tomography to study brain m 1 and m 4 muscarinic receptors in 25 healthy female subjects (11 younger subjects, age range 26-32 years and 14 older subjects, age range 57-82 years). Our aims were to ascertain the viability of tracer administration and imaging within the same day, and to evaluate whether normalization to whole brain, compared to normalization to cerebellum, could alter the clinical interpretation of results. Images were analyzed using the simplified reference tissue model and by two ratio methods: normalization to whole brain and normalization to cerebellum. Significant correlations were observed between kinetic analysis and normalization to cerebellum, but not to whole brain. Both the kinetic analysis and normalization to cerebellum showed age-related reductions in muscarinic binding in frontal, orbitofrontal, and parietal regions. Normalization to whole brain, however, failed to detect age-related changes in any region. Here we show that, for this radiotracer, normalizing to a region of negligible specific binding (cerebellum) significantly improves sensitivity when compared to global normalization

  9. Costimulation of N-methyl-d-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes

    Rouach, N.; Tencé, M.; Glowinski, J.; Giaume, C.

    2002-01-01

    Cocultures of neurons and astrocytes from the rat striatum were used to determine whether the stimulation of neuronal receptors could affect the level of intercellular communication mediated by gap junctions in astrocytes. The costimulation of N-methyl-D-asparte (NMDA) and muscarinic receptors led to a prominent reduction of astrocyte gap junctional communication (GJC) in coculture. This treatment was not effective in astrocyte cultures, these cells being devoid of NMDA receptors. Both types ...

  10. Synthesis of dibenzodioxazocines and their effects on cholinesterases and muscarinic cholinergic receptors.

    Gaál, J; Batke, J; Borsodi, A; Rózsa, L; Somogyi, G

    1989-01-01

    A new family of tricyclic compounds, the dibenzodioxazocines were synthesized. These compounds were the following: 2-chloro-12-(2-piperidino-ethyl)-dibenzo d,g 1,3,6 dioxazocine hydrochloride: EGYT-2347, 2-chloro-12-(3-dimethylamino-2-methyl-propyl)-dibenzo [d,g] [1,3,6]-dibenzodioxazocine hydrochloride: EGYT-2509, 2-chloro-12-(3-dimethylamino-propyl)-dibenzo [d,g] [1,3,6] dioxazocine-maleate: EGYT-2474 and 2-chloro-12-2-(4-methyl-piperazino)-ethyl-dibenzo [d,g] [1,3,6]-dioxazocine-dihydrochloride: EGYT-2541. These compounds are inhibitors of both butyryl- and acetylcholinesterase to and they exhibited relatively good anticholinergic properties in receptor binding experiments. The most selective inhibitor of butyrylcholinesterase is the compound EGYT-2347 (Ki = 1.5 x 10(-7) M) which strongly binds to rat brain muscarinic cholinergic receptor (KD = 4.1 x 10(-8) M).

  11. Differential receptor dependencies: expression and significance of muscarinic M1 receptors in the biology of prostate cancer.

    Mannan Baig, Abdul; Khan, Naveed A; Effendi, Vardah; Rana, Zohaib; Ahmad, H R; Abbas, Farhat

    2017-01-01

    Recent reports on acetylcholine muscarinic receptor subtype 3 (CHRM3) have shown its growth-promoting role in prostate cancer. Additional studies report the proliferative effect of the cholinergic agonist carbachol on prostate cancer by its agonistic action on CHRM3. This study shows that the type 1 acetylcholine muscarinic receptor (CHRM1) contributes toward the proliferation and growth of prostate cancer. We used growth and cytotoxic assays, the prostate cancer microarray database and CHRM downstream pathways' homology of CHRM subtypes to uncover multiple signals leading to the growth of prostate cancer. Growth assays showed that pilocarpine stimulates the proliferation of prostate cancer. Moreover, it shows that carbachol exerts an additional agonistic action on nicotinic cholinergic receptor of prostate cancer cells that can be blocked by tubocurarine. With the use of selective CHRM1 antagonists such as pirenzepine and dicyclomine, a considerable inhibition of proliferation of prostate cancer cell lines was observed in dose ranging from 15-60 µg/ml of dicyclomine. The microarray database of prostate cancer shows a dominant expression of CHRM1 in prostate cancer compared with other cholinergic subtypes. The bioinformatics of prostate cancer and CHRM pathways show that the downstream signalling include PIP3-AKT-CaM-mediated growth in LNCaP and PC3 cells. Our study suggests that antagonism of CHRM1 may be a potential therapeutic target against prostate cancer.

  12. The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles

    Mysliveček, J.; Klein, M.; Nováková, M.; Říčný, Jan

    2008-01-01

    Roč. 378, č. 1 (2008), s. 103-116 ISSN 0028-1298 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA304/08/0256 Institutional research plan: CEZ:AV0Z50110509 Keywords : heart * muscarinic receptors * PLC activity Subject RIV: FH - Neuro logy Impact factor: 2.830, year: 2008

  13. Immunocytochemical demonstration of M1 muscarinic acetylcholine receptors at the presynaptic and postsynaptic membranes of rat diaphragm endplates

    Malomouzh, A. I.; Arkhipova, S. S.; Nikolsky, E. E.; Vyskočil, František

    2011-01-01

    Roč. 60, č. 1 (2011), s. 185-188 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA500110905; GA ČR GA202/09/0806 Institutional research plan: CEZ:AV0Z50110509 Keywords : skeletal muscle * M1 muscarinic receptor Subject RIV: ED - Physiology Impact factor: 1.555, year: 2011

  14. Allosteric modulation by persistent binding of xanomeline of the interaction of competitive ligands with the M1 muscarinic acetylcholine receptor

    Jakubík, Jan; Tuček, Stanislav; El-Fakahany, E. E.

    2002-01-01

    Roč. 301, č. 3 (2002), s. 1033-1041 ISSN 0022-3565 R&D Projects: GA ČR GP305/01/D119 Grant - others:NIH(US) NS25743 Institutional research plan: CEZ:AV0Z5011922 Keywords : xanomeline * M(1) muscarinic acetylcholine receptor Subject RIV: FH - Neurology Impact factor: 3.991, year: 2002

  15. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Douglas A Schober

    Full Text Available Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S. Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  16. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Schober, Douglas A; Croy, Carrie H; Ruble, Cara L; Tao, Ran; Felder, Christian C

    2017-01-01

    Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon) that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S). Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine) demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  17. Altered trafficking and unfolded protein response induction as a result of M3 muscarinic receptor impaired N-glycosylation.

    Romero-Fernandez, Wilber; Borroto-Escuela, Dasiel O; Alea, Mileidys Perez; Garcia-Mesa, Yoelvis; Garriga, Pere

    2011-12-01

    The human M(3) muscarinic acetylcholine receptor is present in both the central and peripheral nervous system, and it is involved in the pathophysiology of several neurodegenerative and autoimmune diseases. We suggested a possible N-glycosylation map for the M(3) muscarinic receptor expressed in COS-7 cells. Here, we examined the role that N-linked glycans play in the folding and in the cell surface trafficking of this receptor. The five potential asparagine-linked glycosylation sites in the muscarinic receptor were mutated and transiently expressed in COS-7 cells. The elimination of N-glycan attachment sites did not affect the cellular expression levels of the receptor. However, proper receptor localization to the plasma membrane was affected as suggested by reduced [(3)H]-N-methylscopolamine binding. Confocal microscopy confirmed this observation and showed that the nonglycosylated receptor was primarily localized in the intracellular compartments. The mutant variant showed an increase in phosphorylation of the α-subunit of eukaryote initiation factor 2, and other well-known endoplasmic reticulum stress markers of the unfolded protein response pathway, which further supports the proposal of the improper intracellular accumulation of the nonglycosylated receptor. The receptor devoid of glycans showed more susceptibility to events that culminate in apoptosis reducing cell viability. Our findings suggest up-regulation of pro-apoptotic Bax protein, down-regulation of anti-apoptotic Bcl-2, and cleavage of caspase-3 effectors. Collectively, our data provide experimental evidence of the critical role that N-glycan chains play in determining muscarinic receptor distribution, localization, as well as cell integrity. © The Author 2011. Published by Oxford University Press. All rights reserved.

  18. Muscarinic receptor-mediated inositol tetrakisphosphate response in bovine adrenal chromaffin cells

    Sanborn, B.B.; Schneider, A.S.

    1990-01-01

    Inositol trisphosphate (IP 3 ), a product of the phosphoinositide cycle, mobilizes intracellular Ca 2+ in many cell types. New evidence suggests that inositol tetrakisphosphate (IP 4 ), an IP 3 derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP 4 are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP 4 in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine stimulated an increase in [ 3 H]IP 4 and [ 3 H]IP 3 accumulation in chromaffin cells and this effect was completely blocked by atropine. [ 3 H]IP 4 accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP 3 and IP 4 hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP 4 and calcium homeostasis

  19. Activation of muscarinic receptors protects against retinal neurons damage and optic nerve degeneration in vitro and in vivo models.

    Tan, Pan-Pan; Yuan, Hai-Hong; Zhu, Xu; Cui, Yong-Yao; Li, Hui; Feng, Xue-Mei; Qiu, Yu; Chen, Hong-Zhuan; Zhou, Wei

    2014-03-01

    Muscarinic acetylcholine receptor agonist pilocarpine reduces intraocular pressure (IOP) of glaucoma mainly by stimulating ciliary muscle contraction and then increasing aqueous outflow. It is of our great interest to know whether pilocarpine has the additional properties of retinal neuroprotection independent of IOP lowering in vitro and in vivo models. In rat primary retinal cultures, cell viability was measured using an MTT assay and the trypan blue exclusion method, respectively. Retinal ganglion cells (RGCs) were identified by immunofluorescence and quantified by flow cytometry. For the in vivo study, the retinal damage after retinal ischemia/reperfusion injury in rats was evaluated by histopathological study using hematoxylin and eosin staining, transmission electron microscopy, and immunohistochemical study on cleaved caspase-3, caspase-3, and ChAT. Pretreatment of pilocarpine attenuated glutamate-induced neurotoxicity of primary retinal neurons in a dose-dependent manner. Protection of pilocarpine in both retinal neurons and RGCs was largely abolished by the nonselective muscarinic receptor antagonist atropine and the M1-selective muscarinic receptor antagonist pirenzepine. After ischemia/reperfusion injury in retina, the inner retinal degeneration occurred including ganglion cell layer thinning and neuron lost, and the optic nerve underwent vacuolar changes. These degenerative changes were significantly lessened by topical application of 2% pilocarpine. In addition, the protective effect of pilocarpine on the ischemic rat retina was favorably reflected by downregulating the expression of activated apoptosis marker cleaved caspase-3 and caspase-3 and upregulating the expression of cholinergic cell marker ChAT. Taken together, this highlights pilocarpine through the activation of muscarinic receptors appear to afford significant protection against retinal neurons damage and optic nerve degeneration at clinically relevant concentrations. These data also

  20. Identification of four areas each enriched in a unique muscarinic receptor subtype

    Hoss, W.; Ellerbrock, B.R.; Goldman, P.S.; Collins, D.A.; Messer, W.S. Jr.

    1990-01-01

    The affinities of muscarinic agonists and antagonists were determined by autoradiography and image analysis in selected areas of the rat brain. IC 50 values and Hill coefficients for the inhibition of the binding of 0.2 nM [ 3 H]-QNB to dentate gyrus, superior colliculus, rhomboid thalamus and substantia nigra were measured in coronal sections. Pirenzepine displayed a high affinity for receptors in the dentate gyrus and AF-DX 116, the superior colliculus. Both pirenzepine and AF-DX 116 had high affinities for the substantia nigra and low affinities for the rhomboid thalamus. Gallamine displayed a 50-fold preference for superior colliculus over dentate gyrus receptors. Amitriptyline was less selective, showing a modest preference for substantia nigra receptors and 4-DAMP was essentially nonselective. Carbachol was the most selective agonist with a 4000-fold preference for superior colliculus over dentate gyrus receptors. Other agonists except RS 86 were also selective for superior colliculus receptors in the order carbachol >> arecoline > bethanechol > McN A343 = oxotremorine = pilocarpine

  1. Muscarinic and alpha 1-adrenergic receptor binding characteristics of saw palmetto extract in rat lower urinary tract.

    Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo

    2007-06-01

    To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.

  2. Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline

    Dencker, Ditte; Wörtwein, Gitta; Weikop, Pia

    2011-01-01

    Disturbances in central dopaminergic neurotransmission are believed to be centrally involved in the pathogenesis of schizophrenia. Central dopaminergic and cholinergic systems interact and the cholinergic muscarinic agonist xanomeline has shown antipsychotic effects in clinical studies. Preclinic...

  3. The Effects of Nicotinic and Muscarinic Receptor Activation on Patch-Clamped Cells in the Optic Tectum of Rana Pipiens

    Yu, C.-J.; Debski, E. A.

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 μM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in sponta...

  4. Activation of muscarinic receptors by a hydroalcoholic extract of Dicksonia sellowiana Presl. HooK (Dicksoniaceae) induces vascular relaxation and hypotension in rats.

    Rattmann, Yanna D; Crestani, Sandra; Lapa, Fernanda R; Miguel, Obdúlio G; Marques, Maria C A; da Silva-Santos, J Eduardo; Santos, Adair R S

    2009-01-01

    Dicksonia sellowiana (Presl.) Hook is a native plant from the Central and South Americas that contain high levels of polyphenols, antioxidant compounds involved in protection against inflammation, cancer and cardiovascular risk. A phytomedicinal preparation obtained from aerial parts of D. sellowiana is currently under clinical evaluation in Brazil against asthma, and has been associated with several other beneficial effects. This study demonstrates that a hydroalcoholic extract obtained from D. sellowiana leaves (HEDS) fully relax, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine. Moreover, administration of HEDS (10, 20 and 40 mg/kg, i.v.) in anaesthetized rats resulted in a strong but reversible hypotension. Aortic relaxation induced by HEDS was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylate cyclase inhibitor ODQ. In addition, this effect was partially inhibited by indomethacin (a cyclooxygenase inhibitor) and KT 5730 (a PKA inhibitor). The potassium channels blockade by either tetraethylammonium or charybdotoxin also resulted in a potent inhibition of HEDS-induced aortic relaxation, whereas apamine only slightly reduced it. In addition HEDS-induced relaxation was unchanged by 4-amynopiridine and glibenclamide. The selective muscarinic receptor antagonist atropine counteracted both aortic relaxation and blood pressure reduction generated by HEDS. Experiments using HPLC revealed the presence of high amounts of phenolic compounds in this extract. Taken together, our results reveal that the D. sellowiana possess substances with both in vivo and in vitro activities and that the vascular effect of HEDS involves activation of muscarinic receptors, stimulation of the nitric oxide pathway and opening of calcium-activated potassium channels.

  5. Differential expression of muscarinic acetylcholine receptor subtypes in Jurkat cells and their signaling.

    Alea, Mileidys Perez; Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Fuxe, Kjell; Garriga, Pere

    2011-08-15

    Muscarinic acetylcholine receptors expression and signaling in the human Jurkat T cell line were investigated. Semiquantitative real-time PCR and radioligand binding studies, using a wide set of antagonist compounds, showed the co-existence of M(3), M(4), and M(5) subtypes. Stimulation of these subpopulations caused a concentration and time- dependent activation of second messengers and ERK signaling pathways, with a major contribution of the M(3) subtype in a G(q/11)-mediated response. In addition, we found that T-cell stimulation leads to increased expression of M(3) and M(5) both at transcriptional and protein levels in a PLC/PKCθ dependent manner. Our data clarifies the functional role of AChR subtypes in Jurkat cells and pave the way to future studies on the potential cross-talk among these subpopulations and their regulation of T lymphocytes immune function. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Molecular basis of the functional heterogeneity of the muscarinic acetylcholine receptor

    Numa, S.; Fukuda, K.; Kubo, T.; Maeda, A.; Akiba, I.; Bujo, H.; Nakai, J.; Mishina, M.; Higashida, H.

    1988-01-01

    The muscarinic acetylcholine receptor (mAChR) mediates a variety of cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides, and modulation of potassium channels, through the action of guanine-nucleotide-binding regulatory proteins (G proteins). The question then arises as to whether multiple mAChR species exist that are responsible for the various biochemical and physiological effects. In fact, pharmacologically distinguishable forms of the mAChR occur in different tissues and have been provisionally classified into M 1 (I), M 2 cardiac (II), and M 2 glandular (III) subtypes on the basis of their difference in apparent affinity for antagonists. Here, the authors have made attempts to understand the molecular basis of the functional heterogeneity of the mAChR, using recombinant DNA technology

  7. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5 degree C) or kept (controls) at room temperature (24 degree C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of [ 3 H](-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system

  8. Vitamin C deficiency reduces muscarinic receptor coronary artery vasoconstriction and plasma tetrahydrobiopterin concentration in guinea pigs

    Skovsted, Gry Freja; Tveden-Nyborg, Pernille; Lindblad, Maiken Marie

    2017-01-01

    Vitamin C (vitC) deficiency is associated with increased cardiovascular disease risk, but its specific interplay with arteriolar function is unclear. This study investigates the effect of vitC deficiency in guinea pigs on plasma biopterin status and the vasomotor responses in coronary arteries...... exposed to vasoconstrictor/-dilator agents. Dunkin Hartley female guinea pigs (n = 32) were randomized to high (1500 mg/kg diet) or low (0 to 50 mg/kg diet) vitC for 10-12 weeks. At euthanasia, coronary artery segments were dissected and mounted in a wire-myograph. Vasomotor responses to potassium......-1 were unaffected by vitC status. The study shows that vitC deficiency decreases tetrahydrobiopterin concentrations and muscarinic receptor mediated contraction in coronary arteries. This attenuated vasoconstrictor response may be linked to altered production of vasoactive arachidonic acid...

  9. Functional Characterization of CCHamide and Muscarinic Acetylcholine Receptor Signalling in Drosophila melanogaster

    Ren, Guilin Robin

    G-protein coupled receptors (GPCRs) constitute a large and ancient superfamily of membraneproteins responsible for the transduction of extracellular signals to the inside of the cells. In thisPh.D. thesis, Drosophila melanogaster (Dm) was used as a model organism to investigate a numberof topics...... is a newly discovered insect peptide hormone. The function of this novel peptide hasnot been well characterised. In this Ph.D. thesis, I identified CCHamide-2 peptides in endocrinecells of the gut and neurones of the brain of larvae and endocrine cells of the gut of adultDrosophila. Behavioural assays...... little is known about muscarinic acetylcholine receptorsignalling in insects. In this study, I found that two types of mAChRs occur in D. melanogaster, onecoupling to Gq (A-type) and the other to Gi (B-type). Both A- and B-type Dm-mAChRs can beactivated by acetylcholine (ACh), but the classical...

  10. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  11. Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart

    Delforge, J.; Janier, M.; Syrota, A.; Crouzel, C.; Vallois, J.M.; Cayla, J.; Lancon, J.P.; Mazoyer, B.M.

    1990-01-01

    The in vivo quantification of myocardial muscarinic receptors has been obtained in six closed-chest dogs by using positron emission tomography. The dogs were injected with a trace amount of 11C-labeled methylquinuclidinyl benzilate (MQNB), a nonmetabolized antagonist of the muscarinic receptor. This was followed 30 minutes later by an injection of an excess of unlabeled MQNB (displacement experiment). Two additional injections of unlabeled MQNB with [11C]MQNB and without [11C]MQNB (second displacement experiment) were administered after 70 and 120 minutes, respectively. This protocol allowed a separate evaluation of the quantity of available receptors (B'max) as well as the association and dissociation rate constants (k+1 and k-1) in each dog. The parameters were calculated by using a nonlinear mathematical model in regions of interest over the left ventricle and the interventricular septum. The average value of B'max was 42 +/- 11 pmol/ml tissue, the rate constants k+1, k-1, and Kd were 0.6 +/- 0.1 ml.pmol-1.min-1, 0.27 +/- 0.03 ml.pmol-1.min-1, and 0.49 +/- 0.14 pmol.ml-1, respectively, taking into account the MQNB reaction volume estimated to 0.15 ml/ml tissue. Although [11C]MQNB binding would appear irreversible, our findings indicate that the association of the antagonist is very rapid and that the dissociation is far from negligible. The dissociated ligand, however, has a high probability of rebinding to a free receptor site instead of escaping into the microcirculation. We deduce that the positron emission tomographic images obtained after injecting a trace amount of [11C]MQNB are more representative of blood flow than of receptor density or affinity. We also suggest a simplified protocol consisting of a tracer injection of [11C]MQNB and a second injection of an excess of cold MQNB, which is sufficient to measure B'max and Kd in humans

  12. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor

    Wan, Min; Zhang, Wenhua; Tian, Yangli; Xu, Chanjuan; Xu, Tao; Liu, Jianfeng; Zhang, Rongying

    2015-01-01

    Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors (mAChRs), the M4 mAChR undergoes CDE and recycling, whereas the M2 mAChR is internalized through CIE and targeted to lysosomes. Here we investigated the endocytosis and postendocytic trafficking of M2 mAChR based on a comparative analysis of the third cytoplasmic domain in M2 and M4 mAChRs. For the first time, we identified that the sequence 374KKKPPPS380 servers as a sorting signal for the clathrin-independent internalization of M2 mAChR. Switching 374KKKPPPS380 to the i3 loop of the M4 mAChR shifted the receptor into lysosomes through the CIE pathway; and therefore away from CDE and recycling. We also found another previously unidentified sequence that guides CDE of the M2 mAChR, 361VARKIVKMTKQPA373, which is normally masked in the presence of the downstream sequence 374KKKPPPS380. Taken together, our data indicate that endocytosis and postendocytic sorting of GPCRs that undergo CIE could be sequence-dependent. PMID:26094760

  13. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Marlet Martinez-Archundia

    2012-01-01

    Full Text Available The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS. Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.

  14. Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development.

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Cilleros, Victor; Tomàs, Josep

    2017-01-01

    The development of the nervous system involves the overproduction of synapses but connectivity is refined by Hebbian activity-dependent axonal competition. The newborn skeletal muscle fibers are polyinnervated but, at the end of the competition process, some days later, become innervated by a single axon. We used quantitative confocal imaging of the autofluorescent axons from transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice to investigate the possible cooperation of the muscarinic autoreceptors (mAChR, M 1 -, M 2 - and M 4 -subtypes) and the tyrosine kinase B (TrkB) receptor in the control of axonal elimination after the mice Levator auris longus (LAL) muscle had been exposed to several selective antagonist of the corresponding receptor pathways in vivo . Our previous results show that M 1 , M 2 and TrkB signaling individually increase axonal loss rate around P9. Here we show that although the M 1 and TrkB receptors cooperate and add their respective individual effects to increase axonal elimination rate even more, the effect of the M 2 receptor is largely independent of both M 1 and TrkB receptors. Thus both, cooperative and non-cooperative signaling mechanisms contribute to developmental synapse elimination.

  15. Ventricular, but not atrial, M2-muscarinic receptors increase in the canine pacing-overdrive model of heart failure.

    Wilkinson, M; Giles, A; Armour, J A; Cardinal, R

    1996-01-01

    To investigate the effects of heart failure induced by chronic rapid ventricular pacing (six weeks) on canine atrial and ventricular muscarinic receptors. Dogs (n = 4) were fitted with a bipolar pacing electrode connected to a Medtronic pacemaker set at 240 stimuli/min. Pacing was maintained for six weeks. Tissue samples obtained from the left atrium and ventral wall of the left ventricle were frozen at -70 degrees C. Control tissue was obtained from normal dogs (n = 6) following anesthesia and thoracotomy. M2-muscarinic receptors were characterized and quantified in tissue micropunches using the hydrophilic ligand [3H] N-methyl-scopolamine (NMS). Cardiac tissue bound [3H] NMS with the specificity of an M2 subtype. Tachycardia-induced heart failure did not affect atrial muscarinic receptors but signify left ventricular myocytes (control 160.0 +/- 10.0 fmol/mg protein versus heart failure 245.0 +/- 25.0 fmol/mg protein; P failure was accompanied by an increase (+ 53%) in ventricular, but not atrial, M2 receptors compared with normal dogs.

  16. Effects of presynaptic muscarinic cholinoreceptor blockade on neuromuscular transmission as assessed by the train-of-four and the tetanic fade response to rocuronium.

    Kim, Yong Beom; Lee, Sangseok; Lee, Kyeong Chun; Kim, Ha Jung; Ro, Young Jin; Yang, Hong-Seuk

    2017-07-01

    This study investigated the effect of muscarinic M 1 and M 2 receptor antagonists on the rocuronium-induced train of four (TOF) fade and tetanic fade, respectively. Ex-vivo phrenic nerves and diaphragms were obtained from adult Sprague-Dawley rats and stabilized in Krebs buffer; the nerve-stimulated muscle TOF fade was observed at 20 s intervals. For the TOF study, phrenic nerves and diaphragms were incubated with pirenzepine (an M 1 blocker) at concentrations of 0 nmol L -1 (control), 10 nmol L -1 (PZP10), or 100 nmol L -1 (PZP100). Rocuronium was then administered incrementally until the first twitch tension had depressed by >95% during TOF stimulation. The mean TOF ratios were compared when the first twitch tensions were depressed by 40%-50%. For the tetanic fade study, 50 Hz/5 s tetani was applied initially, 30 min after the administration of a loading dose of rocuronium and methoctramine (an M 2 receptor blocker, loaded at 0 μmol L -1 [control], 1 μmol L -1 [MET1], or 10 μmol L -1 [MET10]). The EC 95 of rocuronium was significantly lower in the PZP10 group than in the control group. In the PZP10 group, the TOF ratios at 50% and first twitch tension depression were significantly lower than those in the control group (P=.02). During tetanic stimulation, the tetanic fade was significantly enhanced in the MET10 group compared to the other groups. This study shows that antagonists of muscarinic M 1 and M 2 receptors affect the rocuronium-induced neuromuscular block as demonstrated by the reduced EC 95 and TOF ratios (M 1 antagonist, pirenzepine) or the enhanced 50-Hz tetanic fade (M 2 antagonist, methoctramine). © 2017 The Authors. Clinical and Experimental Pharmacology and Physiology Published by John Wiley & Sons Australia, Ltd.

  17. Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation

    Jan Svoboda

    2017-11-01

    Full Text Available Muscarinic acetylcholine receptors (mAChRs have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.

  18. Determinants of positive cooperativity between strychnine-like allosteric modulators and N-methylscopolamine at muscarinic receptors

    Jakubík, Jan; Doležal, Vladimír

    2006-01-01

    Roč. 30, č. 1-2 (2006), s. 111-112 ISSN 0895-8696 R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * strychnine -like allosteric modulators * cooperativity Subject RIV: ED - Physiology Impact factor: 2.965, year: 2006

  19. Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells.

    Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang

    2017-06-01

    Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.

  20. Muscarinic cholinergic and alpha 2-adrenergic receptors in the epithelium and muscularis of the human ileum

    Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W.

    1990-01-01

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greater in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments

  1. ZMS regulation of M2 muscarinic receptor mRNA stability requires protein factor

    Zhang Yongfang; Xia Zongqin; Hu Ya'er

    2010-01-01

    Aim The aim of this work is to study the elevation mechanism of ZMS on muscarinic M2 receptor mRNA expression. Methods Actinomycin D was added to cultured CHOm2 cells to stop the de novo synthesis of M2 receptor mRNA and samples were taken at various times to determine the time course of mRNA of M2 receptor with real-time quantitative RT-PCR. Half-life of M2 receptor mRNA and the effect of ZMS on the half-life was obtained from the slope of the exponential curves. Cycloheximide was added at 4 h prior to and 24 h after the addition of ZMS to examine the effect of de novo protein synthesis on the action of ZMS. Results The half-life of m2 mRNA was prolonged by ZMS treatment without cycloheximide (4.75±0.54 h and 2.13 h±0.23 h for ZMS and vehicle treated groups, respectively, P<0.05). When cycloheximide was added to the culture medium 4h prior to the addition of ZMS, the effect of ZMS in prolonging the half-life of m2 mRNA disappeared (3.06 h±0.23 h and 3.00 h±l.20 h for cells with and without ZMS, respectively). However, when the ZMS was added to the medium 24h prior to the addition of cycloheximide, the action of ZMS was not abolished by cycloheximide (half-life was 5.43 h±1.13 h and 2.46 h±0.09 h for cells with and without ZMS, respectively). Conclusion These data suggest that de novo protein synthesis was required for the increase in M2 mRNA stability induced by ZMS. (authors)

  2. Characterization of muscarinic and P2X receptors in the urothelium and detrusor muscle of the rat bladder

    Masaki Ogoda

    2016-05-01

    Full Text Available Muscarinic and purinergic (P2X receptors play critical roles in bladder urothelium under physiological and pathological conditions. Aim of present study was to characterize these receptors in rat bladder urothelium and detrusor muscle using selective radioligands of [N-methyl-3H]scopolamine methyl chloride ([3H]NMS and αβ-methylene ATP [2,8-3H]tetrasodium salt ([3H]αβ-MeATP. Similar binding parameters for each radioligand were observed in urothelium and detrusor muscle. Pretreatment with N-(2-chloroethyl-4-piperidinyl diphenylacetate (4-DAMP mustard mustard revealed co-existence of M2 and M3 receptors, with the number of M2 receptors being larger in the urothelium and detrusor muscle. Intravesical administration of imidafenacin and Dpr-P-4 (N → O (active metabolite of propiverine displayed significant binding of muscarinic receptors in the urothelium and detrusor muscle. The treatment with cyclophosphamide (CYP or resiniferatoxin (RTX resulted in a significant decrease in maximal number of binding sites (Bmax for [3H]NMS and/or [3H]αβ-MeATP in the urothelium and detrusor muscle. These results demonstrated that 1 pharmacological characteristics of muscarinic and P2X receptors in rat bladder urothelium were similar to those in the detrusor muscle, 2 that densities of these receptors were significantly altered by pretreatments with CYP and RTX, and 3 that these receptors may be pharmacologically affected by imidafenacin and Dpr-P-4 (N → O which are excreted in the urine.

  3. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  4. Muscarinic receptor subtype mRNA expression in the human prostate: association with age, pathological diagnosis, prostate size, or potentially interfering medications?

    Witte, Lambertus P. W.; Teitsma, Christine A.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2014-01-01

    As the prostate abundantly expresses muscarinic receptors and antagonists for such receptors are increasingly used in the treatment of men with voiding function and large prostates, we have explored an association of the mRNA expression of human M1, M2, M3, M4, and M5 receptors in human prostate

  5. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice.

    Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S

    2013-09-01

    Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Topographical distribution of decrements and recovery in muscarinic receptors from rat brains repeatedly exposed to sublethal doses of soman

    Churchill, L.; Pazdernik, T.L.; Jackson, J.L.; Nelson, S.R.; Samson, F.E.; McDonough, J.H. Jr.

    1984-01-01

    [3H]Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturation curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration

  7. Topographical distribution of decrements and recovery in muscarinic receptors from rat brains repeatedly exposed to sublethal doses of soman

    Churchill, L.; Pazdernik, T.L.; Jackson, J.L.; Nelson, S.R.; Samson, F.E.; McDonough, J.H. Jr.

    1984-08-01

    (3H)Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturation curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration.

  8. Z-(-,-)-[76Br]BrQNP: a high affinity PET radiotracer for central and cardiac muscarinic receptors

    Strijckmans, V.; Coulon, C.; Loc'h, C.; Maziere, B.; Luo, H.; McPherson, D.W.; Knapp, F.F.

    1996-01-01

    Racemic E-1-azabicyclo[2.2.2]oct-3-yl α-(1-bromo-1-1-propen-3-yl)-α -hydroxy-α-phenylacetate (BrQNP) was prepared and evaluated in vivo as a potential candidate for imaging muscarinic acetylcholinergic receptors by Positron Emission Tomography. Initial in vivo blocking studies utilizing Z-(-,-)-[ 125 I]IQNP as a radiolabelled muscarinic probe demonstrated that a preinjection of cold E-BrQNP effectively blocks the uptake of the radiolabelled probe in the brain and heart, by 71% and 86% respectively. Z-(-,-)-[ 76 Br]BrQNP was prepared by electrophilic substitution from a tributylstannyl precursor. Peracetic acid and chloramine T was evaluated as oxidizing agents. After purification by SPE and RP-HPLC, radiolabelling yields of 85% and 95% were obtained with peracetic acid and chloramine T, respectively. The final radiochemical yield was 70% for both oxidizing agents. (author)

  9. The muscarinic M1/M4 receptor agonist xanomeline exhibits antipsychotic-like activity in Cebus apella monkeys

    Andersen, Maibritt B; Fink-Jensen, Anders; Peacock, Linda

    2003-01-01

    (EPS) at therapeutically relevant doses. In the present study, we examined whether the xanomeline-induced functional dopamine antagonism found in rodent studies could also be observed in nonhuman primates. In addition, we studied whether the lack of EPS observed in rodents also applies to primates......Xanomeline is a muscarinic M(1)/M(4) preferring receptor agonist with little or no affinity for dopamine receptors. The compound reduces psychotic-like symptoms in patients with Alzheimer's disease and exhibits an antipsychotic-like profile in rodents without inducing extrapyramidal side effects...

  10. Biological sex influences learning strategy preference and muscarinic receptor binding in specific brain regions of prepubertal rats.

    Grissom, Elin M; Hawley, Wayne R; Hodges, Kelly S; Fawcett-Patel, Jessica M; Dohanich, Gary P

    2013-04-01

    According to the theory of multiple memory systems, specific brain regions interact to determine how the locations of goals are learned when rodents navigate a spatial environment. A number of factors influence the type of strategy used by rodents to remember the location of a given goal in space, including the biological sex of the learner. We recently found that prior to puberty male rats preferred a striatum-dependent stimulus-response strategy over a hippocampus-dependent place strategy when solving a dual-solution task, while age-matched females showed no strategy preference. Because the cholinergic system has been implicated in learning strategy and is known to be sexually dimorphic prior to puberty, we explored the relationship between learning strategy and muscarinic receptor binding in specific brain regions of prepubertal males and female rats. We confirmed our previous finding that at 28 days of age a significantly higher proportion of prepubertal males preferred a stimulus-response learning strategy than a place strategy to solve a dual-solution visible platform water maze task. Equal proportions of prepubertal females preferred stimulus-response or place strategies. Profiles of muscarinic receptor binding as assessed by autoradiography varied according to strategy preference. Regardless of biological sex, prepubertal rats that preferred stimulus-response strategy exhibited lower ratios of muscarinic receptor binding in the hippocampus relative to the dorsolateral striatum compared to rats that preferred place strategy. Importantly, much of the variance in this ratio was related to differences in the ventral hippocampus to a greater extent than the dorsal hippocampus. The ratios of muscarinic receptors in the hippocampus relative to the basolateral amygdala also were lower in rats that preferred stimulus-response strategy over place strategy. Results confirm that learning strategy preference varies with biological sex in prepubertal rats with males

  11. Autoantibodies against Muscarinic Type 3 Receptor in Sjögren's Syndrome Inhibit Aquaporin 5 Trafficking

    Lee, Byung Ha; Gauna, Adrienne E.; Perez, Geidys; Park, Yun-jong; Pauley, Kaleb M.; Kawai, Toshihisa; Cha, Seunghee

    2013-01-01

    Sjögren's syndrome (SjS) is a chronic autoimmune disease that mainly targets the salivary and lacrimal glands. It has been controversial whether anti-muscarinic type 3 receptor (α-M3R) autoantibodies in patients with SjS inhibit intracellular trafficking of aquaporin-5 (AQP5), water transport protein, leading to secretory dysfunction. To address this issue, GFP-tagged human AQP5 was overexpressed in human salivary gland cells (HSG-hAQP5) and monitored AQP5 trafficking to the plasma membrane following carbachol (CCh, M3R agonist) stimulation. AQP5 trafficking was indeed mediated by M3R stimulation, shown in partial blockage of trafficking by M3R-antagonist 4-DAMP. HSG-hAQP5 pre-incubated with SjS plasma for 24 hours significantly reduced AQP5 trafficking with CCh, compared with HSG-hAQP5 pre-incubated with healthy control (HC) plasma. This inhibition was confirmed by monoclonal α-M3R antibody and pre-absorbed plasma. Interestingly, HSG-hAQP5 pre-incubated with SjS plasma showed no change in cell volume, compared to the cells incubated with HC plasma showing shrinkage by twenty percent after CCh-stimulation. Our findings clearly indicate that binding of anti-M3R autoantibodies to the receptor, which was verified by immunoprecipitation, suppresses AQP5 trafficking to the membrane and contribute to impaired fluid secretion in SjS. Our current study urges further investigations of clinical associations between SjS symptoms, such as degree of secretory dysfunction, cognitive impairment, and/or bladder irritation, and different profiles (titers, isotypes, and/or specificity) of anti-M3R autoantibodies in individuals with SjS. PMID:23382834

  12. Exposure to Gulf War Illness chemicals induces functional muscarinic receptor maladaptations in muscle nociceptors.

    Cooper, B Y; Johnson, R D; Nutter, T J

    2016-05-01

    Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

    Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S

    2017-06-05

    Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Evaluation of stereoisomers of 4-fluoroalkyl analogues of 3-quinuclidinyl benzilate in in vivo competition studies for the M1, M2, and M3 muscarinic receptor subtypes in brain

    Kiesewetter, Dale O.; Eckelman, William C.; Jaetae, Lee; Paik, Chang H.; Park, Seok G.

    1995-01-01

    To develop a subtype selective muscarinic acetylcholine receptor (mAChR) antagonist for PET, fluorine-19 labeled alkyl analogues of quinuclidinyl benzilate (QNB) were synthesized by stereoselective reactions. To investigate these analogues for tissue subtype specificity, in vivo competitive binding studies were performed in rat brain using (R)-3-quinuclidinyl (R)-4-[ 125 I]Iodobenzilate (IQNB). Five, fifty, or five-hundred nmol of the non-radioactive ligands were coinjected intravenously with 8 pmol of the radioligand. Cold (R,R)-IQNB blocked (R,R)-[ 125 I]IQNB in a dose-dependent manner, without showing regional specificity. For the (R,S)-fluoromethyl, -fluoroethyl, and -fluoropropyl derivatives, a higher percent blockade was seen at 5 and 50 nmol levels in M2 predominant tissues (medulla, pons, and cerebellum) than in M1 predominant tissues (cortex, striatum and hippocampus). The blockade pattern of the radioligand also correlated qualitatively with the percentage of M2 receptors in the region. The S-quinuclidinyl analogues showed M2 selectivity but less efficient blockade of the radioligand, indicating lower affinities. Radioligand bound to the medulla was inversely correlated to the M2 relative binding affinity of the fluoroalkyl analogues. These results indicate that the nonradioactive ligand blocks the radioligand based on the affinity of the nonradioactive ligand for a particular receptor subtype compared to the affinity of the radioligand for the same receptor subtype. Of the seven compounds evaluated, (R,S)-fluoromethyl-QNB appears to show the most selectivity for the M2 subtypes in competition studies in vivo

  15. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    Balduini, W.; Murphy, S.D.; Costa, L.G.

    1990-01-01

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of [3H] inositol phosphates in [3H]inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats. Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of [3H]QNB (r2 = 0.627) and, particularly, with [3H]pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%

  16. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.; Poremba, A.; Jensen, E.L.; Kubota, Y.; Kang, E.

    1991-01-01

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  17. Acetylcholine muscarinic receptors and response to anti-cholinesterase therapy in patients with Alzheimer's disease

    Brown, Derek; Chisholm, Jennifer A.; Patterson, Jim; Wyper, David; Owens, Jonathan; Pimlott, Sally

    2003-01-01

    An acetylcholine deficit remains the most consistent neurotransmitter abnormality found in Alzheimer's disease and various therapeutic agents have been targeted at this. In this study we investigated the action of Donepezil, a cholinesterase inhibitor that has few side-effects. In particular we set out to investigate whether muscarinic acetylcholine receptor (mAChR) availability influences the response to this therapy. We used the novel single-photon emission tomography (SPET) tracer (R,R)[ 123 I]I-quinuclidinyl benzilate (R,R[ 123 I]I-QNB), which has high affinity for the M1 subtype of mAChR. Regional cerebral perfusion was also assessed using technetium-99m hexamethylpropylene amine oxime. We investigated 20 patients on Donepezil treatment and ten age-matched controls. The results showed a reduction in (R,R)[ 123 I]I-QNB binding in the caudal anterior cingulate in patients compared with controls and relatively high binding in the putamen and rostral anterior cingulate, suggesting a relative sparing of mAChR in these regions. The main finding of the study was that mAChR availability as assessed by (R,R)[ 123 I]I-QNB binding did not distinguish responders from non-responders. Interestingly, we found that the extent of cognitive improvement showed no positive correlation with (R,R)[ 123 I]I-QNB binding in any brain region but was inversely related to binding in the insular cortex. This suggests that, within the advised cognitive performance band for use of Donepezil, response is greater in those patients with evidence of a more marked cholinergic deficit. A larger study should investigate this. (orig.)

  18. Mercury Vapour Long-Lasting Exposure: Lymphocyte Muscarinic Receptors as Neurochemical Markers of Accidental Intoxication

    E. Roda

    2016-01-01

    Full Text Available Introduction. Chronic poisoning may result in home setting after mercury (Hg vapours inhalation from damaged devices. We report a chronic, nonoccupational Hg poisoning due to 10-year indoor exposure to mercury spillage. Case Report. A 72-year-old man with polyneuropathy of suspected toxic origin. At hospitalization, toxicological clinical evaluations confirmed the altered neurological picture documented across the last decade. Periodic blood and urine Hg levels (BHg, UHg monitoring were performed from admission (t0, until 1 year later (t2, paralleled by blood neurochemical markers assessment, that is, lymphocytes muscarinic receptors (l-MRs. At t0: BHg and UHg were 27 and 1.4 microg/L, respectively (normal values: BHg 1–4.5; UHg 0.1–4.5, associated with l-MRs increase, 185.82 femtomoL/million lymphocytes (normal range: 8.0–16.0. At t1 (two days after DMSA-mobilization test, BHg weak reduction, paralleled by UHg 3.7-fold increase, was measured together with further l-MRs enhancement (205.43 femtomoL/million lymphocytes. At t2 (eight months after two cycles of DMSA chelating therapy ending, gradual improving of clinical manifestations was accompanied by progressive decrease of BHg and UHg (4.0 and 2.8 microg/L, resp. and peripheral l-MRs neurochemical marker (24.89 femtomoL/million lymphocytes. Conclusion. l-MRs modulatory effect supports their use as peripheral neurochemical marker in Hg poisoning diagnosis and chelation therapy monitoring.

  19. Selective expression of muscarinic acetylcholine receptor subtype M3 by mouse type III taste bud cells.

    Mori, Yusuke; Eguchi, Kohgaku; Yoshii, Kiyonori; Ohtubo, Yoshitaka

    2016-11-01

    Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca 2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca 2+ imaging, we supravitally labeled type II cells (phospholipase C β2 [PLCβ2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca 2+ in the bathing solution. The addition of 1 μM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 μM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca 2+ from intracellular stores. We also discuss the underlying mechanism of the Ca 2+ response and the role of M3 in type III cells.

  20. Muscarinic M1 receptor inhibition reduces gastroduodenal bicarbonate secretion and promotes gastric prostaglandin E2 synthesis in healthy volunteers

    Mertz-Nielsen, A; Hillingsø, Jens; Eskerod, O

    1995-01-01

    stimulated gastric and basal duodenal bicarbonate secretion by about 50% (p basal and vagally stimulated PGE2 output increased significantly (p ...The selective muscarinic M1 receptor antagonist, pirenzepine, considerably stimulates duodenal mucosal bicarbonate secretion in the rat and increases gastric luminal release of prostaglandin E2 (PGE2) in humans. This study, therefore, looked at the effect of pirenzepine on bicarbonate secretion...... sham feeding and acid exposure (HCl 0.1 M; 20 ml; 5 min) of the duodenal bulb increased mucosal bicarbonate secretion from 191 (14) mumol/cm x h to 266 (27) mumol/cm x h (p basal and vagally...

  1. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways

    Michal, Pavel; Rudajev, Vladimír; El-Fakahany, E. E.; Doležal, Vladimír

    2009-01-01

    Roč. 606, 1-3 (2009), s. 50-60 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA305/05/0452; GA AV ČR(CZ) IAA500110703; GA MŠk(CZ) LC554 Grant - others:National Institutes of Health(US) NS25743; EC(XE) LipiDiDiet Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic * cholesterol * receptors Subject RIV: ED - Physiology Impact factor: 2.585, year: 2009

  2. Role of protein glycosylation on the expression of muscarinic receptors of N4TG1 neuroblastoma cells

    Ahmad, A.; Chiang, P.K.

    1986-01-01

    Muscarinic acetylcholine receptors (mAChR) are glycoproteins. Experiments were conducted to determine whether active glycosylation of proteins in N4TG1 neuroblastoma cells could affect the expression of muscarinic receptors on the cell surface. The binding of radioactive N-methylscopolamine, a membrane impermeable ligand, to intact cells was used as a measure of mAChR. In the presence of the inhibitors of glycosylation, such as tunicamycin, monensin and amphomycin, N-linked glycosylation of proteins in the N4TG1 cells was inhibited, as measured by the incorporation of radioactive glucosamine or mannose in proteins. At the concentrations of tunicamycin and monensin used, the glycosylation of proteins after 3 hours were drastically reduced, but the number of mAChR in the cells was not altered. The apparent lack of effect within a short incubation period could be attributed to the presence of preformed oligosaccharide dolichol readily available for N-glycosylation. However, after 24 hours, tunicamycin (0.05 μg/ml) caused a decrease in the number of mAChR by 17% without having any effect on protein synthesis. Therefore, de novo glycosylation of proteins may be required for the expression of mAChR receptors in the N4TG1 neuroblastoma cell surface

  3. Distinct muscarinic acetylcholine receptor subtypes mediate pre- and postsynaptic effects in rat neocortex

    Gigout Sylvain

    2012-04-01

    Full Text Available Abstract Background Cholinergic transmission has been implicated in learning, memory and cognition. However, the cellular effects induced by muscarinic acetylcholine receptors (mAChRs activation are poorly understood in the neocortex. We investigated the effects of the cholinergic agonist carbachol (CCh and various agonists and antagonists on neuronal activity in rat neocortical slices using intracellular (sharp microelectrode and field potential recordings. Results CCh increased neuronal firing but reduced synaptic transmission. The increase of neuronal firing was antagonized by pirenzepine (M1/M4 mAChRs antagonist but not by AF-DX 116 (M2/M4 mAChRs antagonist. Pirenzepine reversed the depressant effect of CCh on excitatory postsynaptic potential (EPSP but had marginal effects when applied before CCh. AF-DX 116 antagonized the depression of EPSP when applied before or during CCh. CCh also decreased the paired-pulse inhibition of field potentials and the inhibitory conductances mediated by GABAA and GABAB receptors. The depression of paired-pulse inhibition was antagonized or prevented by AF-DX 116 or atropine but only marginally by pirenzepine. The inhibitory conductances were unaltered by xanomeline (M1/M4 mAChRs agonist, yet the CCh-induced depression was antagonized by AF-DX 116. Linopirdine, a selective M-current blocker, mimicked the effect of CCh on neuronal firing. However, linopirdine had no effect on the amplitude of EPSP or on the paired-pulse inhibition, indicating that M-current is involved in the increase of neuronal excitability but neither in the depression of EPSP nor paired-pulse inhibition. Conclusions These data indicate that the three effects are mediated by different mAChRs, the increase in firing being mediated by M1 mAChR, decrease of inhibition by M2 mAChR and depression of excitatory transmission by M4 mAChR. The depression of EPSP and increase of neuronal firing might enhance the signal-to-noise ratio, whereas the

  4. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear con...

  5. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

  6. Evaluation of the Interaction between NMDA Receptors of Nucleus Accumbens and Muscarinic Receptors in Memory

    Saba Taheri

    2013-02-01

    Full Text Available Background and Objectives: Whereas studies have indicated the interaction between NMDA and cholinergic systems, this study was performed with the aim of determining the role of NMDA receptors in the nucleus accumbens (NAc in scopolamine-induced amnesia.Methods: In this study, at first rats were anesthetized with intra-peritoneal injection of ketamine hydrochloride plus xylazine, and then placed in a stereotaxic apparatus. Two stainless-steel cannulas were placed 2mm above nucleus accumbens shell. All animals were allowed to recover for one week, before beginning the behavioral testing. Then, animals were trained in a step-through type inhibitory avoidance task. The drugs were injected after successful training and before testing. The animals were tested 24h after training, and the step-through latency time was measured as the memory criterion in male Wistar rats. One-way analysis of variance and Tukey’s test were used for analysis of the data. p<0.05 was considered statistically significant.Results: Intra-nucleus accumbens (intra-NAc injection of scopolamine or NMDA caused impairment in memory in rats. Although, co-administration of an ineffective dose of NMDA with an ineffective dose of scopolamine had no significant effect on memory performance, effective doses of NMDA prevented the amnesic effect of scopolamine on inhibitory avoidance memory. On the other hand, intra-NAc injection of NMDA receptor antagonist, i.e., MK-801 caused no change in memory performance by itself, and its co-administration with an effective dose of scopolamine could not prevent the impairing effect of the latter drug. Conclusion: The finding of this study indicated that NMDA receptors in the nucleus accumbens are involved in the modulation of scopolamine-induced amnesia.

  7. Muscarinic receptor plasticity in the brain of senescent rats: down-regulation after repeated administration of diisopropyl fluorophosphate

    Pintor, A.; Fortuna, S.; Volpe, M.T.; Michalek, H.

    1988-01-01

    Potential age-related differences in the response of Fischer 344 rats to subchronic treatment with diisopropylfluorophosphate (DFP) were evaluated in terms of brain cholinesterase (ChE) inhibition and muscarinic receptor sites. Male 3- and 24-month old rats were sc injected with sublethal doses of DFP for 2 weeks and killed 48 hrs after the last treatment. In the cerebral cortex, hippocampus and striatum of control rats a significant age-related reduction of ChE and of maximum number of 3 H-QNB binding sites (Bmax) was observed. The administration of DFP to senescent rats resulted in more pronounced and longer lasting syndrome of cholinergic stimulation, with marked body weight loss and 60% mortality. The percentage inhibition of brain ChE induced by DFP did not differ between young and senescent rats. As expected, in young rats DFP caused a significant decrease of Bmax, which in the cerebral cortex reached about 40%. In the surviving senescent rats, the percentage decrease of Bmax due to DFP with respect to age-matched controls was very similar to that of young animals, especially in the cerebral cortex. Thus there is great variability in the response of aged rats to DFP treatment, from total failure of adaptive mechanisms resulting in death to considerable muscarinic receptor plasticity

  8. Muscarinic receptor plasticity in the brain of senescent rats: down-regulation after repeated administration of diisopropyl fluorophosphate

    Pintor, A.; Fortuna, S.; Volpe, M.T.; Michalek, H.

    1988-01-01

    Potential age-related differences in the response of Fischer 344 rats to subchronic treatment with diisopropylfluorophosphate (DFP) were evaluated in terms of brain cholinesterase (ChE) inhibition and muscarinic receptor sites. Male 3- and 24-month old rats were sc injected with sublethal doses of DFP for 2 weeks and killed 48 hrs after the last treatment. In the cerebral cortex, hippocampus and striatum of control rats a significant age-related reduction of ChE and of maximum number of /sup 3/H-QNB binding sites (Bmax) was observed. The administration of DFP to senescent rats resulted in more pronounced and longer lasting syndrome of cholinergic stimulation, with marked body weight loss and 60% mortality. The percentage inhibition of brain ChE induced by DFP did not differ between young and senescent rats. As expected, in young rats DFP caused a significant decrease of Bmax, which in the cerebral cortex reached about 40%. In the surviving senescent rats, the percentage decrease of Bmax due to DFP with respect to age-matched controls was very similar to that of young animals, especially in the cerebral cortex. Thus there is great variability in the response of aged rats to DFP treatment, from total failure of adaptive mechanisms resulting in death to considerable muscarinic receptor plasticity.

  9. Autoantibodies Enhance Agonist Action and Binding to Cardiac Muscarinic Receptors in Chronic Chagas’ Disease

    Hernández, Ciria C.; Nascimento, José H.; Chaves, Elen A.; Costa, Patrícia C.; Masuda, Masako O.; Kurtenbach, Eleonora; Campos de Carvalho, Antônio C.; Giménez, Luis E.

    2009-01-01

    Chronic Chagasic patient immunoglobulins (CChP-IgGs) recognize an acidic amino acid cluster at the second extracellular loop (el2) of cardiac M2-muscarinic acetylcholine receptors (M2AChRs). These residues correspond to a common binding site for various allosteric agents. We characterized the nature of the M2AChR/CChP-IgG interaction in functional and radioligand binding experiments applying the same mainstream strategies previously used for the characterization of other allosteric agents. Dose-response curves of acetylcholine effect on heart rate were constructed with data from isolated heart experiments in the presence of CChP or normal blood donor (NBD) sera. In these experiments, CChP sera but not NBD sera increased the efficacy of agonist action by augmenting the onset of bradyarrhythmias and inducing a Hill slope of 2.5. This effect was blocked by gallamine, an M2AChR allosteric antagonist. Correspondingly, CChP-IgGs increased acetylcholine affinity twofold and showed negative cooperativity for [3H]-N-methyl scopolamine ([3H]-NMS) in allosterism binding assays. A peptide corresponding to the M2AChR-el2 blocked this effect. Furthermore, dissociation assays showed that the effect of gallamine on the [3H]-NMS off-rate was reverted by CChP-IgGs. Finally, concentration-effect curves for the allosteric delay of W84 on [3H]-NMS dissociation right shifted from an IC50 of 33 nmol/L to 78 nmol/L, 992 nmol/L, and 1670 nmol/L in the presence of 6.7 × 10−8, 1.33 × 10−7, and 2.0 × 10−7 mol/L of anti-el2 affinity-purified CChP-IgGs. Taken together, these findings confirmed a competitive interplay of these ligands at the common allosteric site and revealed the novel allosteric nature of the interaction of CChP-IgGs at the M2AChRs as a positive cooperativity effect on acetylcholine action. PMID:18702010

  10. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  11. Why does the agonist [18F]FP-TZTP bind preferentially to the M2 muscarinic receptor?

    Ravasi, L.; Kiesewetter, D.O.; Shimoji, K.; Lucignani, G.; Eckelman, W.C.

    2006-01-01

    Preferential binding of FP-TZTP at the M 2 receptor in vivo led to investigation of [ 18 F]FP-TZTP as a potential PET tracer for Alzheimer's disease, in which a substantial reduction of M 2 receptors has been observed in autopsy studies. We hereby investigated in vitro the FP-TZTP behavior to further elucidate the properties of FP-TZTP that lead to its M 2 selectivity. Chinese hamster ovarian cells expressing the five subtypes of human muscarinic receptor as well as the wild type were harvested in culture to assess equilibrium binding. Specific binding was calculated by subtraction of non-specific binding from total binding. Internal specific binding was calculated by subtraction of external specific binding from the total specific binding. Saturation assays were also performed to calculate B max , K i , and IC 50 . In addition, equilibrium binding and dissociation kinetic studies were performed on rat brain tissue. Selected regions of interest were drawn on the digital autoradiograms and [ 18 F]FP-TZTP off-rates were determined by measurement of the rate of release into a buffer solution of [ 18 F]FP-TZTP from slide-bound cells that had been preincubated with [ 18 F]FP-TZTP. At equilibrium in vitro, M 2 subtype selectivity of [ 18 F]FP-TZTP was not evident. We demonstrated that ATP-dependent mechanisms are not responsible for FP-TZTP M 2 selectivity. In vitro off-rate studies from rat brain tissue showed that the off-rate of FP-TZTP varied with the percentage of M 2 subtype in the tissue region. The slower dissociation kinetics of FP-TZTP from M 2 receptors compared with the four other muscarinic receptor subtypes may be a factor in its M 2 selectivity. (orig.)

  12. The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography

    Weinberger, D.R.; Gibson, R.; Coppola, R.; Jones, D.W.; Molchan, S.; Sunderland, T.; Berman, K.F.; Reba, R.C.

    1991-01-01

    A high-affinity muscarinic receptor antagonist, 123IQNB (3-quinuclidinyl-4-iodobenzilate labeled with iodine 123), was used with single photon emission computed tomography to image muscarinic acetylcholine receptors in 14 patients with dementia and in 11 healthy controls. High-resolution single photon emission computed tomographic scanning was performed 21 hours after the intravenous administration of approximately 5 mCi of IQNB. In normal subjects, the images of retained ligand showed a consistent regional pattern that correlated with postmortem studies of the relative distribution of muscarinic receptors in the normal human brain, having high radioactivity counts in the basal ganglia, occipital cortex, and insular cortex, low counts in the thalamus, and virtually no counts in the cerebellum. Eight of 12 patients with a clinical diagnosis of Alzheimer's disease had obvious focal cortical defects in either frontal or posterior temporal cortex. Both patients with a clinical diagnosis of Pick's disease had obvious frontal and anterior temporal defects. A region of interest statistical analysis of relative regional activity revealed a significant reduction bilaterally in the posterior temporal cortex of the patients with Alzheimer's disease compared with controls. This study demonstrates the practicability of acetylcholine receptor imaging with 123IQNB and single photon emission computed tomography. The data suggest that focal abnormalities in muscarinic binding in vivo may characterize some patients with Alzheimer's disease and Pick's disease, but further studies are needed to address questions about partial volume artifacts and receptor quantification

  13. Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors.

    Latusz, Joachim; Radaszkiewicz, Aleksandra; Bator, Ewelina; Wędzony, Krzysztof; Maćkowiak, Marzena

    2017-02-01

    Epidemiological data have indicated that memory impairment is observed during adolescence in groups at high risk for schizophrenia and might precede the appearance of schizophrenia symptoms in adulthood. In the present study, we used a neurodevelopmental model of schizophrenia based on the postnatal blockade of N-methyl-d-aspartate (NMDA) receptors in rats to investigate fear memory in adolescence and adulthood. The rats were treated with increasing doses of CGP 37849 (CGP), a competitive antagonist of the NMDA receptor (1.25mg/kg on days 1, 3, 6, 9; 2.5mg/kg on days 12, 15, 18 and 5mg/kg on day 21). Fear memory was analysed in delay and trace fear conditioning. Sensorimotor gating deficit, which is another cognitive symptom of schizophrenia, was also determined in adolescent and adult CGP-treated rats. Postnatal CGP administration disrupted cue- and context-dependent fear memory in adolescent rats in both delay and trace conditioning. In contrast, CGP administration evoked impairment only in cue-dependent fear memory in rats exposed to trace but not delay fear conditioning. The postnatal blockade of NMDA receptors induced sensorimotor gating deficits in adult rats but not in adolescent rats. The postnatal blockade of NMDA receptors induced fear memory impairment in adolescent rats before the onset of neurobehavioral deficits associated with schizophrenia. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  14. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  15. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  16. PASSIVE-AVOIDANCE TRAINING INDUCES ENHANCED LEVELS OF IMMUNOREACTIVITY FOR MUSCARINIC ACETYLCHOLINE-RECEPTOR AND COEXPRESSED PKC-GAMMA AND MAP-2 IN RAT CORTICAL-NEURONS

    VANDERZEE, EA; DOUMA, BRK; BOHUS, B; LUITEN, PGM

    1994-01-01

    Changes in neocortical immunoreactivity (ir) for muscarinic acetylcholine receptors (mAChRs), protein kinase C gamma (PKC gamma), microtubule-associated protein 2 (MAP-2), and the calcium-binding protein parvalbumin (PARV) induced by the performance of a one-trial passive shock avoidance (PSA) task

  17. Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M(3) receptors

    Krejčí, Alena; Tuček, Stanislav

    2001-01-01

    Roč. 60, č. 4 (2001), s. 761-767 ISSN 0026-895X R&D Projects: GA ČR GA309/99/0214 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * allosteric modulators Subject RIV: FH - Neurology Impact factor: 5.297, year: 2001

  18. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  19. Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins

    Michal, Pavel; El-Fakahany, E. E.; Doležal, Vladimír

    2007-01-01

    Roč. 320, č. 2 (2007), s. 607-614 ISSN 0022-3565 R&D Projects: GA ČR GP305/05/P209; GA ČR GA305/05/0452; GA MŠk(CZ) LC554 Grant - others:NIH(US) NS25743 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic * siRNA * G-proteins Subject RIV: CE - Biochemistry Impact factor: 4.003, year: 2007

  20. Effects of agonist efficacy on desensitization of phosphoinositide hydrolysis mediated by m1 and m3 muscarinic receptors expressed in Chinese hamster ovary cells

    Hu, J.; Wang, S.Z.; el-Fakahany, E.E.

    1991-01-01

    Muscarinic receptor agonist-induced desensitization of phosphoinositide (PI) hydrolysis and loss of receptors were studied in Chinese hamster ovary (CHO) cells transfected with the m1 and m3 muscarinic receptor genes. Long-term exposure to the full agonist carbamylcholine (CBC) resulted in a time-dependent attenuation of the maximal PI response and a decrease in agonist potency. This desensitization was accompanied by a parallel loss of maximal ligand binding without an alteration of the binding affinity. The time course of both receptor desensitization and down-regulation was similar in m1 and m3 CHO cells. The PI response to the partial agonist McN-A-343 (McN) in m1 cells was more sensitive to desensitization by CBC than the response to the latter agonist, and this desensitization was faster than receptor down-regulation. Desensitization of the PI response to McN was reflected as a decrease in the maximal response without a marked change in potency. McN induced slow desensitization of the PI response to CBC but a much faster desensitization of its own response. Our data provide evidence that although muscarinic agonist-induced desensitization of PI hydrolysis in CHO cells is due mainly to loss of receptors, there are other important factors which play a role in this process, e.g., receptor-effector uncoupling. The relative contribution of these different mechanisms depends on the efficacy of the agonists used for the receptor desensitization and activation steps

  1. Effect of {beta}{sub 1} adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity

    Boettcher, M.; Czernin, J.; Sun, K. [Univ. of California, Los Angeles, CA (United States)] [and others

    1997-03-01

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807) and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.

  2. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis.

    Wallon, Conny; Persborn, Mats; Jönsson, Maria; Wang, Arthur; Phan, Van; Lampinen, Maria; Vicario, Maria; Santos, Javier; Sherman, Philip M; Carlson, Marie; Ericson, Ann-Charlott; McKay, Derek M; Söderholm, Johan D

    2011-05-01

    Altered intestinal barrier function has been implicated in the pathophysiology of ulcerative colitis (UC) in genetic, functional, and epidemiological studies. Mast cells and corticotropin-releasing factor (CRF) regulate the mucosal barrier in human colon. Because eosinophils are often increased in colon tissues of patients with UC, we assessed interactions among mast cells, CRF, and eosinophils in the mucosal barrier of these patients. Transmucosal fluxes of protein antigens (horseradish peroxidase) and paracellular markers ((51)Cr-EDTA, fluorescein isothiocyanate-dextran 4000) were studied in noninflamed, colonic mucosal biopsy samples collected from 26 patients with UC and 53 healthy volunteers (controls); samples were mounted in Ussing chambers. We also performed fluorescence and electron microscopy of human tissue samples, assessed isolated eosinophils, and performed mechanistic studies using in vitro cocultured eosinophils (15HL-60), mast cells (HMC-1), and a colonic epithelial cell line (T84). Colon tissues from patients with UC had significant increases in permeability to protein antigens compared with controls. Permeability was blocked by atropine (a muscarinic receptor antagonist), α-helical CRF(9-41) (a CRF receptor antagonist), and lodoxamide (a mast-cell stabilizer). Eosinophils were increased in number in UC tissues (compared with controls), expressed the most M2 and M3 muscarinic receptors of any mucosal cell type, and had immunoreactivity to CRF. In coculture studies, carbachol activation of eosinophils caused production of CRF and activation of mast cells, which increased permeability of T84 epithelial cells to macromolecules. We identified a neuroimmune intercellular circuit (from cholinergic nerves, via eosinophils to mast cells) that mediates colonic mucosal barrier dysfunction in patients with UC. This circuit might exacerbate mucosal inflammation. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Prevention of atherosclerosis by specific AT1-receptor blockade with candesartan cilexetil

    Vasilios Papademetriou

    2001-03-01

    Full Text Available Several studies indicate that blockade of the renin-angiotensin-aldosterone system (RAAS can prevent atherosclerosis and vascular events, but the precise mechanisms involved are still unclear. In this study, we investigated the effect of the AT 1-receptor blocker, candesartan, in the prevention of atherosclerosis in Watanabe heritable hyperlipidaemic (WHHL rabbits and also the effect of AT1-receptor blockade in the uptake of oxidised LDL by macrophage cell cultures. In the first set of experiments, 12 WHHL rabbits were randomly assigned to three groups: placebo, atenolol 5 mg/kg daily or candesartan 2 mg/kg daily for six months. Compared with controls and atenolol-treated rabbits, candesartan treatment resulted in a significant 50—60% reduction of atherosclerotic plaque formation and a 66% reduction in cholesterol accumulation in the thoracic aorta.Studies in macrophage cultures indicated that candesartan prevented uptake of oxidised LDL-(oxLDL-cholesterol by cultured macrophages. Candesartan inhibited the uptake of oxLDL in a dose-dependent manner, reaching a maximum inhibition of 70% at concentrations of 5.6 µg/ml. Further studies in other animal models and well-designed trials in humans are warranted to further explore the role of AT1-receptor blockade in the prevention of atherosclerosis.

  4. Iodine-123 N-methyl-4-iododexetimide: a new radioligand for single-photon emission tomographic imaging of myocardial muscarinic receptors

    Hicks, R.J.; Kassiou, M.; Eu, P.; Katsifis, A.G.; Garra, M.; Power, J.; Najdovski, L.; Lambrecht, R.M.

    1995-01-01

    Cardiac muscarinic receptor ligands suitable for positron emission tomography have previously been characterised. Attempts to develop radioligands of these receptors suitable for single-photon emission tomographic (SPET) imaging have not been successful due to high lung retention and high non-specific binding of previously investigated potential tracers. The purpose of this study was to evaluate the biodistribution and in vivo imaging characteristics of a new radiopharmaceutical, [ 123 I]N-methyl-4-iododexetimide. Biodistribution studies performed in rats showed high cardiac uptake (2.4% ID/g) 10 min after injection with a heart to lung activity ratio of 5:1. Specificity and stereoselectivity of cardiac binding were demonstrated using blocking experiments in rats. Dynamic imaging studies in anaesthetised greyhounds demonstrated rapid and high myocardial uptake and low lung binding with stable heart to lung activity ratios of >2.5:1 between 10 and 30 min, making SPET imaging feasible. Administration of an excess of an unlabelled muscarinic antagonist, methyl-quinuclidinyl benzylate rapidly displaced myocardial activity to background levels and the pharmacologically inactive enantiomer, [ 123 I]N-methyl-4-iodolevetimide, had no detectable cardiac uptake, indicating specific and stereoselective muscarinic receptor binding. SPET revealed higher activity in the inferior than in the anterior wall, this being consistent with previously described regional variation of cardiac parasympathetic innervation. [ 123 I]N-methyl-4-iododexetimide shows promise as an imaging agent for muscarinic receptor distribution in the heart and may be helpful in evaluating diverse cardiac diseases associated with altered muscarinic receptor function, including heart failure and diabetic heart disease. (orig.)

  5. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  6. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  7. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  8. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the

  9. Effects of trihexyphenidyl and L-dopa on brain muscarinic cholinergic receptor binding measured by positron emission tomography

    Shinotoh, H; Asahina, M; Hirayama, K [Dept. of Neurology, School of Medicine, Chiba Univ., Chiba (Japan); Inoue, O; Suhara, T; Tateno, Y [Division of Clinical Research, National Inst. of Radiological Sciences, Chiba (Japan)

    1994-01-01

    The effects of pharmacological intervention on brain muscarinic cholinergic receptor (mAChR) binding were assessed in seven patients with Parkinson's disease by positron emission tomography and carbon-11 labelled N-methyl-4-piperidyl benzilate ([[sup 11]C]NMPB). [[sup 11]C]NMPB was injected twice, approximately 2 hours apart, in each patient, to assess the effect of single doses of 4 mg of trihexyphenidyl (n=5) or 400 mg of L-dopa with 57 mg of benserazide (n=2) on the binding parameter of mAChRs (K[sub 3]). There was a mean 28% inhibition of K[sub 3] values in the brain in the presence of trihexyphenidyl, which was assumed to reflect mAChR occupancy. No significant change in K[sub 3] was observed in the presence of L-dopa. This study demonstrates the feasibility of measuring mAChR occupancy by an anticholinergic medication with PET.

  10. Preparation of an imaging agent for cerebral muscarinic acetylcholine receptor, (R,S)131I-QNB

    Ding Shiyu; Chen Zhengping; Ji Shuren; Lu Chunxiong; Zhou Xiang; Fang Ping; Wu Chunying; Wang Bocheng; Xiang Jingde; Lin Yansong

    2003-01-01

    The method to synthesize a high affinity muscarinic receptor antagonist (R,S)I-QNB[(R)-(-)-l-azabicyclo [2,2,2]oct-3-yl-(S)-(+)-α-hydroxy-α-(4-[127I]iodophenyl)-α-phenyl acetate] from 4-nitrobenzophenone with improvement compared to literatures was reported in this article. IR, MS and 1 HNMR characterized the final product. (R,S) 131 I-QNB was prepared using Cu(I) assisted iodine exchange labeling, and showed by TLC that the radiolabeling yield (RLY) was over 80%, and radiochemical purity (RCP) was over 95%. Stability of the labelled compound was also determined. It was found that (R,S) 131 I-QNB dried by nitrogen blowing can stay at 4-10 degree C for a week without change of RCP

  11. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder.

    Somogyi, G T; de Groat, W C

    1992-02-01

    Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

  12. An interspecies comparison of mercury inhibition on muscarinic acetylcholine receptor binding in the cerebral cortex and cerebellum

    Basu, Niladri; Stamler, Christopher J.; Loua, Kovana Marcel; Chan, H.M.

    2005-01-01

    Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl 2 ) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl 2 and MeHg on [ 3 H]-quinuclidinyl benzilate ([ 3 H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse, mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B max ) and ligand affinity (K d ). Subsequently, samples were exposed to HgCl 2 or MeHg to derive IC50 values and inhibition constants (K i ). Results demonstrate that HgCl 2 is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [ 3 H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies

  13. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  14. Characterization of the effect of penehyclidine hydrochloride on muscarinic receptor subtypes mediating the contraction of guinea-pig isolated gastrointestinal smooth muscle.

    Xiao, Hong-Tao; Liao, Zhi; Meng, Xian-Min; Yan, Xiao-Yan; Chen, Shu-Jie; Mo, Zheng-Ji

    2009-07-01

    The aim was to characterize the effect of penehyclidine hydrochloride, which mediates the relaxation of guinea-pig isolated gastrointestinal smooth muscle, on muscarinic receptor subtypes. Radioimmune assay was used to determine cAMP levels in isolated guinea-pig gastrointestinal smooth muscle to compare the selective effects of penehyclidine hydrochloride on muscarinic receptor subtypes. The results indicated that the relaxing effect of penehyclidine hydrochloride on isolated gastrointestinal smooth muscle contraction induced by acetylcholine was stronger than that of atropine (based on PA2 values). In the radioimmune assay, penehyclidine hydrochloride increased the cAMP content in isolated guinea-pig stomach smooth muscle and decreased the cAMP content in isolated guinea-pig intestinal smooth muscle, but the difference was not statistically significant at a dose of 10 mumol/l. The results suggest that penehyclidine hydrochloride has little or no effect on M2 receptor subtypes in guinea-pig gastrointestinal smooth muscle.

  15. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  16. Regional distribution of muscarinic acetylcholine receptors in the telencephalon of the pigeon (Columba livia f. domestica). [Use of TH-quinuclidinylbenzylate

    Waechtler, K.

    1985-01-01

    The distribution of muscarinic acetylcholine receptors was studied autoradiographically in croystat sections of the pigeon telencephalon using TH-quinuclidinylbenzylate as a ligand. Highest receptor density was observed in the hyperstriatum ventrale, palaeostriatum augmentatum, septum, and parts of the archistriatum. In sites of known sensory input of neostriatum (field L) and ectostriatum low receptor binding was observed. Acetylcholinesterase distribution is in good agreement with the receptor picture only in the basal telencephalon. In the pallium differences in the pattern of these two components can be seen.

  17. Muscarinic receptors, nitric oxide formation and cyclooxygenase pathway involved in tracheal smooth muscle relaxant effect of hydro-ethanolic extract of Lavandula angustifolia flowers.

    Naghdi, Farzaneh; Gholamnezhad, Zahra; Boskabady, Mohammad Hossein; Bakhshesh, Morteza

    2018-06-01

    Lavandula angustifolia (L. angustifolia) Mill. (Common name Lavender) is used in traditional and folk medicines for the treatment of various diseases including respiratory disorders worldwide. The relaxant effect of the plant on the smooth muscle of some tissues was shown previously. The present study has investigated the role of different receptors and pathways in the relaxant effect of L. angustifolia on tracheal smooth muscle. Cumulative concentrations of the hydro-ethanolic extract of L. angustifolia flowers (0.5, 1, 2 and 4 mg/ml) were added on pre-contracted tracheal smooth muscle by methacholine (10 μM) or KCl (60 mM) on non-preincubated or preincubated tissues with atropine, chlorpheniramine, propranolol, diltiazem, glibenclamide, indomethacin, ω-nitro-L-arginine methyl ester (L-NAME) and papaverine. The results compared with of theophylline (0.2, 0.4, 0.6 and 0.8 mM) as positive control and saline (1 ml) as negative control. The extract showed concentration-dependent relaxant effects in non-preincubated tracheal smooth muscle contracted by KCl and methacholine (p effect ofL. angustifolia was not significantly different between non-preincubated and preincubated tissues with chlorpheniramine, propranolol, diltiazem, glibenclamide, and papaverine. However, two higher concentrations of L. angustifolia in preincubated tissues with L-NAME (p effects than non-preincubated tissues. The EC 50 values of L. angustifolia in tissues preincubated with indomethacin was significantly higher than non-preincubated trachea (p effects of three first concentrations of the extract on KCl and methacholine-induced muscle contraction were significantly lower than those of theophylline (p effect ofL. angustifolia that was lower than the effect of theophylline. The possible mechanisms of relaxant effect of this plant on tracheal smooth muscle are muscarinic receptors blockade, inhibition of cyclooxygenase pathways and/or involvement of nitric oxide production

  18. Comparison of the pharmacokinetics of different analogs of 11C-labeled TZTP for imaging muscarinic M2 receptors with PET

    Reid, Alicia E.; Ding Yushin; Eckelman, William C.; Logan, Jean; Alexoff, David; Shea, Colleen; Xu Youwen; Fowler, Joanna S.

    2008-01-01

    Introduction: The only radiotracer available for the selective imaging of muscarinic M2 receptors in vivo is 3-(3-{3-[ 18 F]fluoropropyl)thio}-1,2,5-thiadiazol-4-yl) -1,2,5,6-tetrahydro-1-methylpyridine) ([ 18 F]FP-TZTP). We have prepared and labeled 3-(3-(3-fluoropropylthio)-1,2,5-thiadiazol-4-yl) -1,2,5,6-tetrahydro-1-methylpyridne (FP-TZTP, 3) and two other TZTP derivatives with 11 C at the methylpyridine moiety to explore the potential of using 11 C-labeled FP-TZTP for positron emission tomography imaging of M2 receptors and to compare the effect of small structural changes on tracer pharmacokinetics (PK) in brain and peripheral organs. Methods: 11 C-radiolabeled FP-TZTP, 3-(3-propylthio)-TZTP (6) and 3,3,3-(3-(3-trifluoropropyl)-TZTP (10) were prepared, and log D, plasma protein binding (PPB), affinity constants, time-activity curves (TACs), area under the curve (AUC) for arterial plasma, distribution volumes (DV) and pharmacological blockade in baboons were compared. Results: Values for log D, PPB and affinity constants were similar for 3, 6 and 10. The fraction of parent radiotracer in the plasma was higher and the AUC lower for 10 than for 3 and 6. TACs for brain regions were similar for 3 and 6, which showed PK similar to the 18 F tracer, while 10 showed slower uptake and little clearance over 90 min. DVs for 3 and 6 were similar to the 18 F tracer but higher for 10. Uptake of the three tracers was significantly reduced by coinjection of unlabeled 3 and 6. Conclusion: Small structural variations on the TZTP structure greatly altered the PK in brain and behavior in blood with little change in the log D, PPB or affinity. The study suggests that 11 C-radiolabeled 3 will be a suitable alternative to [ 18 F]FP-TZTP for translational studies in humans

  19. Comparison of the pharmacokinetics of different analogs of {sup 11}C-labeled TZTP for imaging muscarinic M2 receptors with PET

    Reid, Alicia E. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: areid@bnl.gov; Ding Yushin [Radiology Department, Yale University School of Medicine, New Haven, CT 06510 (United States); Eckelman, William C. [Molecular Tracer LLC, Bethesda, MD 20892 (United States); Logan, Jean; Alexoff, David; Shea, Colleen; Xu Youwen; Fowler, Joanna S. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2008-04-15

    Introduction: The only radiotracer available for the selective imaging of muscarinic M2 receptors in vivo is 3-(3-{l_brace}3-[{sup 18}F]fluoropropyl)thio{r_brace}-1,2,5-thiadiazol-4-yl) -1,2,5,6-tetrahydro-1-methylpyridine) ([{sup 18}F]FP-TZTP). We have prepared and labeled 3-(3-(3-fluoropropylthio)-1,2,5-thiadiazol-4-yl) -1,2,5,6-tetrahydro-1-methylpyridne (FP-TZTP, 3) and two other TZTP derivatives with {sup 11}C at the methylpyridine moiety to explore the potential of using {sup 11}C-labeled FP-TZTP for positron emission tomography imaging of M2 receptors and to compare the effect of small structural changes on tracer pharmacokinetics (PK) in brain and peripheral organs. Methods: {sup 11}C-radiolabeled FP-TZTP, 3-(3-propylthio)-TZTP (6) and 3,3,3-(3-(3-trifluoropropyl)-TZTP (10) were prepared, and log D, plasma protein binding (PPB), affinity constants, time-activity curves (TACs), area under the curve (AUC) for arterial plasma, distribution volumes (DV) and pharmacological blockade in baboons were compared. Results: Values for log D, PPB and affinity constants were similar for 3, 6 and 10. The fraction of parent radiotracer in the plasma was higher and the AUC lower for 10 than for 3 and 6. TACs for brain regions were similar for 3 and 6, which showed PK similar to the {sup 18}F tracer, while 10 showed slower uptake and little clearance over 90 min. DVs for 3 and 6 were similar to the {sup 18}F tracer but higher for 10. Uptake of the three tracers was significantly reduced by coinjection of unlabeled 3 and 6. Conclusion: Small structural variations on the TZTP structure greatly altered the PK in brain and behavior in blood with little change in the log D, PPB or affinity. The study suggests that {sup 11}C-radiolabeled 3 will be a suitable alternative to [{sup 18}F]FP-TZTP for translational studies in humans.

  20. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  1. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Long-term activation upon brief exposure to xanomleline is unique to M1 and M4 subtypes of muscarinic acetylcholine receptors.

    Eva Šantrůčková

    Full Text Available Xanomeline is an agonist endowed with functional preference for M1/M4 muscarinic acetylcholine receptors. It also exhibits both reversible and wash-resistant binding to and activation of these receptors. So far the mechanisms of xanomeline selectivity remain unknown. To address this question we employed microfluorometric measurements of intracellular calcium levels and radioligand binding to investigate differences in the short- and long-term effects of xanomeline among muscarinic receptors expressed individually in Chinese hamster ovary cells. 1/One-min exposure of cells to xanomeline markedly increased intracellular calcium at hM1 and hM4, and to a lesser extent at hM2 and hM3 muscarinic receptors for more than 1 hour. 2/Unlike the classic agonists carbachol, oxotremorine, and pilocarpine 10-min exposure to xanomeline did not cause internalization of any receptor subtype. 3/Wash-resistant xanomeline selectively prevented further increase in intracellular calcium by carbachol at hM1 and hM4 receptors. 4/After transient activation xanomeline behaved as a long-term antagonist at hM5 receptors. 5/The antagonist N-methylscopolamine (NMS reversibly blocked activation of hM1 through hM4 receptors by xanomeline. 6/NMS prevented formation of xanomeline wash-resistant binding and activation at hM2 and hM4 receptors and slowed them at hM1, hM3 and hM5 receptors. Our results show commonalities of xanomeline reversible and wash-resistant binding and short-time activation among the five muscarinic receptor subtypes. However long-term receptor activation takes place in full only at hM1 and hM4 receptors. Moreover xanomeline displays higher efficacy at hM1 and hM4 receptors in primary phasic intracellular calcium release. These findings suggest the existence of particular activation mechanisms specific to these two receptors.

  4. Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta.

    Clark, Julie; Meisner, Shannon; Torkkeli, Päivi H

    2005-04-01

    Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4-5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4-9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4-5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4-9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.

  5. Brain regional acetylcholinesterase activity and muscarinic acetylcholine receptors in rats after repeated administration of cholinesterase inhibitors and its withdrawal

    Kobayashi, Haruo; Suzuki, Tadahiko; Sakamoto, Maki; Hashimoto, Wataru; Kashiwada, Keiko; Sato, Itaru; Akahori, Fumiaki; Satoh, Tetsuo

    2007-01-01

    Activity of acetylcholinesterase (AChE) and specific binding of [ 3 H]quinuclidinyl benzilate (QNB), [ 3 H]pirenzepine (PZP) and [ 3 H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 and 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [ 3 H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [ 3 H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected

  6. Toll-like receptor 3 blockade in rhinovirus-induced experimental asthma exacerbations

    Silkoff, Philip E; Flavin, Susan; Gordon, Robert

    2017-01-01

    BACKGROUND: Human rhinoviruses (HRVs) commonly precipitate asthma exacerbations. Toll-like receptor 3, an innate pattern recognition receptor, is triggered by HRV, driving inflammation that can worsen asthma. OBJECTIVE: We sought to evaluate an inhibitory mAb to Toll-like receptor 3, CNTO3157......, respectively, and were then inoculated with HRV-16 within 72 hours. All subjects were monitored for respiratory symptoms, lung function, and nasal viral load. The primary end point was maximal decrease in FEV1 during 10 days after inoculation. RESULTS: In asthmatic patients (n = 63) CNTO3157 provided......: In summary, CNTO3157 was ineffective in attenuating the effect of HRV-16 challenge on lung function, asthma control, and symptoms in asthmatic patients but suppressed cold symptoms in healthy subjects. Other approaches, including blockade of multiple pathways or antiviral agents, need to be sought...

  7. Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy.

    Roderick J Tan

    Full Text Available Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA and endothelin receptor B (ETB. Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p. or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p., atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios. Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.

  8. The M1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated [ 3 H]IP 1 accumulation in the SH-SY5Y cells was decreased in the presence of 1μg/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M 1 mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m 1 gene. The transfected B82 cells (cTB10) showed specific [ 3 H](-)QNB binding activity. The mAChRs in these cells are of the M 1 type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M 1 mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M 1 mAChR densities in these cells characterized by [ 3 H](-)MQNB binding ranged from 12 fmol/10 6 cells in LK3-1 cells to 260 fmol/10 6 cells in the LK3-8 cells

  9. Mutations in the third extracellular loop of M3 muscarinic receptor induce positive cooperativity between N-Methylscopolamine and Wieland-Gumlich aldehyde

    Jakubík, Jan; Doležal, Vladimír

    2005-01-01

    Roč. 272, č. S1 (2005), s. 221-221 ISSN 1474-3833. [FEBS Congress /30./ and IUBMB Conference /9./. 02.07.2005-07.07.2005, Budapest] R&D Projects: GA AV ČR(CZ) IAA5011306; GA ČR(CZ) GP305/02/D090 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * allosteric interaction * strychnine -like modulators * mutations * extracellular loop Subject RIV: ED - Physiology

  10. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Changes in Membrane Cholesterol Differentially Influence Preferential and Non-preferential Signaling of the M1 and M3 Muscarinic Acetylcholine Receptors

    Michal, Pavel; El-Fakahany, E. E.; Doležal, Vladimír

    2015-01-01

    Roč. 40, č. 10 (2015), s. 2068-2070 ISSN 0364-3190 R&D Projects: GA ČR(CZ) GA14-05696S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) 7E10060 Institutional support: RVO:67985823 Keywords : muscarinic receptors * agonist binding * cholesterol * G-proteins * signal transduction * cAMP synthesis Subject RIV: FH - Neurology Impact factor: 2.472, year: 2015

  12. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors

    Jakubík, Jan; El-Fakahany, E. E.; Doležal, Vladimír

    2006-01-01

    Roč. 70, č. 2 (2006), s. 656-666 ISSN 0026-895X R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Grant - others:NIH(US) NS25743 Institutional research plan: CEZ:AV0Z5011922 Keywords : xanomeline * muscarinic receptors * G-protein activation Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 4.469, year: 2006

  13. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators

    Jakubík, Jan; Krejčí, Alena; Doležal, Vladimír

    2005-01-01

    Roč. 313, č. 2 (2005), s. 688-696 ISSN 0022-3565 R&D Projects: GA ČR(CZ) GA309/02/1331; GA ČR(CZ) GP305/02/D090; GA AV ČR(CZ) IAA5011306; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * positive cooperativity * mutation Subject RIV: ED - Physiology Impact factor: 4.098, year: 2005

  14. Muscarinic M1 acetylcholine receptors regulate the non-quantal release of acetylcholine in the rat neuromuscular junction via NO-dependent mechanism

    Malomouzh, A. I.; Mukhtarov, M. R.; Nikolsky, E. E.; Vyskočil, František

    2007-01-01

    Roč. 102, č. 6 (2007), s. 2110-2117 ISSN 0022-3042 R&D Projects: GA AV ČR(CZ) IAA5011411; GA MŠk(CZ) LC554 Grant - others:-(RU) 112.0/001/481 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * NO synthese Subject RIV: ED - Physiology Impact factor: 4.451, year: 2007

  15. A comparison of β-adrenoceptors and muscarinic cholinergic receptors in tissues of brown bullhead catfish (Ameiurus nebulosus) from the black river and old woman creek, Ohio

    Steevens, Jeffery A.; Baumann, Paul C.; Jones, Susan B.

    1996-01-01

    β-Adrenoceptors (βARs) and muscarinic cholinergic receptors were measured in brain, gill, and heart tissues of brown bullhead catfish exposed to polycyclic aromatic hydrocarbons in the Black River, Ohio, USA, and were compared to values from Old Woman Creek, Ohio, a reference site. A decreased number of βARs were found in the gill from Black River fish, possibly indicating a compensatory response subsequent to chemical stress.

  16. Wash-Resistantly Bound Xanomeline Inhibits Acetylcholine Release by Persistent Activation of Presynaptic M2 and M4 Muscarinic Receptors in Rat Brain

    Machová, Eva; Jakubík, Jan; El-Fakahany, E. E.; Doležal, Vladimír

    2007-01-01

    Roč. 322, č. 1 (2007), s. 316-323 ISSN 0022-3565 R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Grant - others:-(US) NS25743 Institutional research plan: CEZ:AV0Z50110509 Keywords : acetylcholine * xanomeline * muscarinic receptor Subject RIV: ED - Physiology Impact factor: 4.003, year: 2007

  17. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity

    Anna M. Klawonn

    2018-04-01

    Full Text Available The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs in dopamine D1 receptor (D1R expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT, during various reward-enforced behaviors and in a “waiting”-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs in the 5-choice-serial-reaction-time-task (5CSRTT than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG expression (cFos and FosB induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  18. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity.

    Klawonn, Anna M; Wilhelms, Daniel B; Lindström, Sarah H; Singh, Anand Kumar; Jaarola, Maarit; Wess, Jürgen; Fritz, Michael; Engblom, David

    2018-01-01

    The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression ( cFos and FosB ) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  19. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model.

    Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M

    2015-01-01

    We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy

    Weckesser, M.; Ziemons, K.; Griessmeier, M.; Sonnenberg, F.; Langen, K.J.; Mueller-Gaertner, H.W.; Hufnagel, A.; Elger, C.E.; Hacklaender, T.; Holschbach, M.

    1997-01-01

    Animal experiments and preliminary results in humans have indicated alterations of hippocampal muscarinic acetylcholine receptors (mAChR) in temporal lobe epilepsy. Patients with temporal lobe epilepsy often present with a reduction in hippocampal volume. The aim of this study was to investigate the influence of hippocampal atrophy on the quantification of mAChR with single photon emission tomography (SPET) in patients with temporal lobe epilepsy. Cerebral uptake of the muscarinic cholinergic antagonist [ 123 I]4-iododexetimide (IDex) was investigated by SPET in patients suffering from temporal lobe epilepsy of unilateral (n=6) or predominantly unilateral (n=1) onset. Regions of interest were drawn on co-registered magnetic resonance images. Hippocampal volume was determined in these regions and was used to correct the SPET results for partial volume effects. A ratio of hippocampal IDex binding on the affected side to that on the unaffected side was used to detect changes in muscarinic cholinergic receptor density. Before partial volume correction a decrease in hippocampal IDex binding on the focus side was found in each patient. After partial volume no convincing differences remained. Our results indicate that the reduction in hippocampal IDex binding in patients with epilepsy is due to a decrease in hippocampal volume rather than to a decrease in receptor concentration. (orig.). With 2 figs., 2 tabs

  1. In vivo and in vitro studies on the potentiation of muscarinic receptor stimulation by alaproclate, a selective 5-HT uptake blocker

    Oegren, S.O.; Nordstroem, Oe.; Danielsson, E.; Peterson, L.-L.; Bartfai, T.

    1985-01-01

    Alaproclate (10-60 mg/kg) injected i.p. into male mice potentiated and prolonged the oxotremorine and physostigmine-induced tremor in a dosedependent manner. Atropine completely blocked the tremor caused by oxotremorine or physostigmine both in the presence and absence of alaproclate. Pretreatment with the 5-HT receptor antagonist metitepine completely blocked the enhancement of oxotremorine-induced tremor caused by alaproclate. Biochemical studies indicated that the above effects cannot be explained by assuming that alaproclate a) acts as a cholinergic agonist, b) inhibits the acetylcholine esterase, c) interferes with choline uptake or acetylcholine synthesis, or d) directly potentiates the release of acetylcholine. In ligand binding studies alaproclate was found to be a weak competitive inhibitor of muscarinic antagonist binding to membranes from the rat cerebral cortex, rat striatum, human cerebral cortex and human striatum. (Ksub(i) approximately 28-40 μM in all four tissues). The present results suggest that alaproclate may potentiate muscarinic responses by a mechanism involving serotonergic receptor mechanisms rather than by a direct interaction with the muscarinic cholinergic receptors. (Author)

  2. In vivo and in vitro studies on the potentiation of muscarinic receptor stimulation by alaproclate, a selective 5-HT uptake blocker

    Oegren, S.O. (Astra Pharmaceuticals AB, Soedertaelje (Sweden)); Nordstroem, Oe.; Danielsson, E.; Peterson, L.L.; Bartfai, T.

    1985-01-01

    Alaproclate (10-60 mg/kg) injected i.p. into male mice potentiated and prolonged the oxotremorine and physostigmine-induced tremor in a dose dependent manner. Atropine completely blocked the tremor caused by oxotremorine or physostigmine both in the presence and absence of alaproclate. Pretreatment with the 5-HT receptor antagonist metitepine completely blocked the enhancement of oxotremorine-induced tremor caused by alaproclate. Biochemical studies indicated that the above effects cannot be explained by assuming that alaproclate a) acts as a cholinergic agonist, b) inhibits the acetylcholine esterase, c) interferes with choline uptake or acetylcholine synthesis, or d) directly potentiates the release of acetylcholine. In ligand binding studies alaproclate was found to be a weak competitive inhibitor of muscarinic antagonist binding to membranes from the rat cerebral cortex, rat striatum, human cerebral cortex and human striatum. (Ksub(i) approximately 28-40 ..mu..M in all four tissues). The present results suggest that alaproclate may potentiate muscarinic responses by a mechanism involving serotonergic receptor mechanisms rather than by a direct interaction with the muscarinic cholinergic receptors.

  3. A novel muscarinic receptor ligand which penetrates the blood brain barrier and displays in vivo selectivity for the m2 subtype

    Gitler, M.S.; Cohen, V.I.; De La Cruz, R.; Boulay, S.F.; Jin, B.; Zeeberg, B.R.; Reba, R.C.

    1993-01-01

    Alzheimer's disease (AD) involves selective loss of muscarinic m2, but not m1, subtype neuroreceptors in the posterior parietal cortex of the human brain. Emission tomographic study of the loss of m2 receptors in AD is limited by the fact that there is currently no available m2-selective radioligand which can penetrate the blood-brain barrier. In our efforts to prepare such a radioligand, the authors have used competition studies against currently existing muscarinic receptor radioligands to infer the in vitro and in vivo properties of a novel muscarinic receptor ligand, 5-[[4-[4-(diisobutylamino)butyl]-1-phenyl]acetyl]-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepin-11-one (DIBD). In vitro competition studies against [ 3 H](R)-3-quinuclidinylbenzilate ([ 3 H]QNB) and [ 3 H]N-methylscopolamine ([ 3 H]NMS), using membranes derived from transfected cells expressing only m1, m2, m3, or m4 receptor subtypes, indicate that DIBD is selective for m2/m4 over m1/m3. In vivo competition studies against (R,R)-[ 125 I]IQNB indicate that DIBD crosses the blood brain barrier (BBB). The relationship of the regional percentage decrease in (R,R)-[ 125 I]IQNB versus the percentage of each of the receptor subtypes indicates that DIBD competes more effectively in those brain regions which are known to be enriched in the m2, relative to the m1, m3, and m4, receptor subtype; however, analysis of the data using a mathematical model shows that caution is required when interpreting the in vivo results. The authors conclude that a suitably radiolabeled derivative of DIBD may be of potential use in emission tomographic study of changes in m2 receptors in the central nervous system

  4. Angiotensin II potentiates adrenergic and muscarinic modulation of guinea pig intracardiac neurons.

    Girasole, Allison E; Palmer, Christopher P; Corrado, Samantha L; Marie Southerland, E; Ardell, Jeffrey L; Hardwick, Jean C

    2011-11-01

    The intrinsic cardiac plexus represents a major peripheral integration site for neuronal, hormonal, and locally produced neuromodulators controlling efferent neuronal output to the heart. This study examined the interdependence of norepinephrine, muscarinic agonists, and ANG II, to modulate intrinsic cardiac neuronal activity. Intracellular voltage recordings from whole-mount preparations of the guinea pig cardiac plexus were used to determine changes in active and passive electrical properties of individual intrinsic cardiac neurons. Application of either adrenergic or muscarinic agonists induced changes in neuronal resting membrane potentials, decreased afterhyperpolarization duration of single action potentials, and increased neuronal excitability. Adrenergic responses were inhibited by removal of extracellular calcium ions, while muscarinic responses were inhibited by application of TEA. The adrenergic responses were heterogeneous, responding to a variety of receptor-specific agonists (phenylephrine, clonidine, dobutamine, and terbutaline), although α-receptor agonists produced the most frequent responses. Application of ANG II alone produced a significant increase in excitability, while application of ANG II in combination with either adrenergic or muscarinic agonists produced a much larger potentiation of excitability. The ANG II-induced modulation of firing was blocked by the angiotensin type 2 (AT(2)) receptor inhibitor PD 123319 and was mimicked by the AT(2) receptor agonist CGP-42112A. AT(1) receptor blockade with telmasartin did not alter neuronal responses to ANG II. These data demonstrate that ANG II potentiates both muscarinically and adrenergically mediated activation of intrinsic cardiac neurons, doing so primarily via AT(2) receptor-dependent mechanisms. These neurohumoral interactions may be fundamental to regulation of neuronal excitability within the intrinsic cardiac nervous system.

  5. A crosstalk between muscarinic and CRF2 receptors regulates cellular adhesion properties of human colon cancer cells.

    Pelissier-Rota, M; Chartier, N T; Bonaz, B; Jacquier-Sarlin, M R

    2017-07-01

    Patients with inflammatory bowel disease often suffer from chronic and relapsing intestinal inflammation that favor the development of colitis associated cancer. An alteration of the epithelial intestinal barrier function observed in IBD is supposed to be a consequence of stress. It has been proposed that corticotrophin-releasing factor receptor (CRF2), one of the two receptors of CRF, the principal neuromediator of stress, acts on cholinergic nerves to induce stress-mediated epithelial barrier dysfunction. Non-neuronal acetylcholine (Ach) and muscarinic receptors (mAchR) also contribute to alterations of epithelial cell functions. In this study, we investigated the mechanisms through which stress and Ach modulate epithelial cell adhesive properties. We show that Ach-induced activation of mAchR in HT-29 cells results in cell dissociation together with changes in cell-matrix contacts, which correlates with the acquisition of invasive potential consistent with a matrix metalloproteinase (MMP) mode of invasion. These processes result from mAchR subsequent stimulation of the cascade of src/Erk and FAK activation. Ach-induced secretion of laminin 332 leads to α3β1 integrin activation and RhoA-dependent reorganization of the actin cytoskeleton. We show that Ach-mediated effects on cell adhesion are blocked by astressin 2b, a CRF2 antagonist, suggesting that Ach action depends partly on CRF2 signaling. This is reinforced by the fact that Ach-mediated activation of mAchR stimulates both the synthesis and the release of CRF2 ligands in HT-29 cells (effects blocked by atropine). In summary, our data provides evidence for a novel intracellular circuit involving mAchR acting on CRF2-signaling that could mediate colonic mucosal barrier dysfunction and exacerbate mucosal inflammation. Copyright © 2017. Published by Elsevier B.V.

  6. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  7. Blockade of NMDA receptors blocks the acquisition of cocaine conditioned approach in rats.

    Galaj, Ewa; Seepersad, Neal; Dakmak, Zena; Ranaldi, Robert

    2018-01-05

    Conditioned stimuli (CSs) exert motivational effects on both adaptive and pathological reward-related behaviors, including drug taking and seeking. We developed a paradigm that allows us to investigate the neuropharmacology by which previously neutral stimuli acquire the capacity to function as CSs and elicit (intravenous) cocaine conditioned approach and used this paradigm to test the role of NMDA receptor stimulation in the acquisition of cocaine conditioned approach. Rats were injected systemically with the NMDA receptor antagonist, MK-801, before the start of 4 consecutive conditioning sessions, each of which consisted of 20 randomly presented light/tone (CS) presentations paired with cocaine infusion contingent upon nose pokes. Rats later were subjected to a CS-only test. To test the role of NMDA receptor stimulation in the already established conditioned approach, rats were injected with MK-801 prior to the CS-only test that occurred after 18 CS-cocaine conditioning sessions. Blockade of NMDA receptors significantly impaired the acquisition of cocaine-conditioned approach as indicated by the emission of significantly fewer nose pokes and significantly longer latencies to nose poke during CS presentations. When MK-801 treatment was applied after the acquisition of conditioned approach responding it had no effect on these measures. These results suggest that NMDA receptor stimulation plays an important role in the acquisition of reward-related conditioned responses driven by intravenous cocaine-associated CSs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody

    Sophie E. Broughton

    2014-07-01

    Full Text Available Interleukin-3 (IL-3 is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD, a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF, IL-5, and IL-13 receptors, adopting unique “open” and classical “closed” conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas “open-like” IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a “double hit” cytokine receptor blockade.

  9. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus.

    Hájos, N; Papp, E C; Acsády, L; Levey, A I; Freund, T F

    1998-01-01

    In previous studies m2 muscarinic acetylcholine receptor-immunoreactive interneurons and various types of m2-positive axon terminals have been described in the hippocampal formation. The aim of the present study was to identify the types of interneurons expressing m2 receptor and to examine whether the somadendritic and axonal m2 immunostaining labels the same or distinct cell populations. In the CA1 subfield, neurons immunoreactive for m2 have horizontal dendrites, they are located at the stratum oriens/alveus border and have an axon that project to the dendritic region of pyramidal cells. In the CA3 subfield and the hilus, m2-positive neurons are multipolar and are scattered in all layers except stratum lacunosum-moleculare. In stratum pyramidale of the CA1 and CA3 regions, striking axon terminal staining for m2 was observed, surrounding the somata and axon initial segments of pyramidal cells in a basket-like manner. The co-localization of m2 with neurochemical markers and GABA was studied using the "mirror" technique and fluorescent double-immunostaining at the light microscopic level and with double-labelling using colloidal gold-conjugated antisera and immunoperoxidase reaction (diaminobenzidine) at the electron microscopic level. GABA was shown to be present in the somata of most m2-immunoreactive interneurons, as well as in the majority of m2-positive terminals in all layers. The calcium-binding protein parvalbumin was absent from practically all m2-immunoreactive cell bodies and dendrites. In contrast, many of the terminals synapsing on pyramidal cell somata and axon initial segments co-localized parvalbumin and m2, suggesting a differential distribution of m2 receptor immunoreactivity on the axonal and somadendritic membrane of parvalbumin-containing basket and axo-axonic cells. The co-existence of m2 receptors with the calcium-binding protein calbindin and the neuropeptides cholecystokinin and vasoactive intestinal polypeptide was rare throughout the

  10. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice

    Watson, M.; Ming, X.; McArdle, J.J.

    1989-01-01

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p 3 H](-) quinuclidinylbenzilate ([ 3 H](-)QNB), a specific but nonsubtype selective mAChR antagonist, [ 3 H]pirenzepine ([ 3 H]PZ), a specific M1 mAChR antagonist and [ 3 H]11-2-[[2-[(diethylamino) methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, ([ 3 H]AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (K d ) and density (B max ) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) [ 3 H](-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity

  11. Sex-related differences in the muscarinic acetylcholinergic receptor in the healthy human brain. A positron emission tomography study

    Yoshida, Tsuyoshi; Kuwabara, Yasuo; Sasaki, Masayuki; Ichimiya, Atsushi; Takita, Masashi; Ogomori, Koji; Masuda, Kouji [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences; Fukumura, Toshimitsu; Ichiya, Yuichi

    2000-04-01

    We evaluated the sex-related differences in the decline of the cerebral muscarinic acetylcholinergic receptor (mACh-R) due to aging by using {sup 11}C-N-methyl-4-piperidyl benzilate ({sup 11}C-NMPB) and positron emission tomography (PET). The subjects consisted of 37 (20 males and 17 females) healthy volunteers. The {sup 11}C-NMPB uptake was evaluated by the ratio method (regional {sup 11}C-NMPB uptake/Cerebellar {sup 11}C-NMPB uptake; rNMPB ratio). The correlation between sex, aging, and the rNMPB ratio in normal aging was evaluated by a multiple regression analysis. The rNMPB ratio was higher in females than in males throughout the entire cerebral region (p<0.01-p<0.0001) and the rNMPB ratio might thus possibly decline with age more rapidly in females. Our study therefore revealed the existence of sex-related differences in the cerebral mACh-R. (author)

  12. Sex-related differences in the muscarinic acetylcholinergic receptor in the healthy human brain. A positron emission tomography study

    Yoshida, Tsuyoshi; Kuwabara, Yasuo; Sasaki, Masayuki; Ichimiya, Atsushi; Takita, Masashi; Ogomori, Koji; Masuda, Kouji; Fukumura, Toshimitsu; Ichiya, Yuichi

    2000-01-01

    We evaluated the sex-related differences in the decline of the cerebral muscarinic acetylcholinergic receptor (mACh-R) due to aging by using 11 C-N-methyl-4-piperidyl benzilate ( 11 C-NMPB) and positron emission tomography (PET). The subjects consisted of 37 (20 males and 17 females) healthy volunteers. The 11 C-NMPB uptake was evaluated by the ratio method (regional 11 C-NMPB uptake/Cerebellar 11 C-NMPB uptake; rNMPB ratio). The correlation between sex, aging, and the rNMPB ratio in normal aging was evaluated by a multiple regression analysis. The rNMPB ratio was higher in females than in males throughout the entire cerebral region (p<0.01-p<0.0001) and the rNMPB ratio might thus possibly decline with age more rapidly in females. Our study therefore revealed the existence of sex-related differences in the cerebral mACh-R. (author)

  13. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  14. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  15. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  16. Alpha1-adrenergic receptor blockade in the VTA modulates fear memories and stress responses.

    Solecki, Wojciech B; Szklarczyk, Klaudia; Klasa, Adam; Pradel, Kamil; Dobrzański, Grzegorz; Przewłocki, Ryszard

    2017-08-01

    Activity of the ventral tegmental area (VTA) and its terminals has been implicated in the Pavlovian associative learning of both stressful and rewarding stimuli. However, the role of the VTA noradrenergic signaling in fear responses remains unclear. We aimed to examine how alpha 1 -adrenergic receptor (α 1 -AR) signaling in the VTA affects conditioned fear. The role of α 1 -AR was assessed using the micro-infusions into the VTA of the selective antagonists (0.1-1µg/0.5µl prazosin and 1µg/0.5µl terazosin) in acquisition and expression of fear memory. In addition, we performed control experiments with α 1 -AR blockade in the mammillary bodies (MB) - a brain region with α 1 -AR expression adjacent to the VTA. Intra-VTA but not intra-MB α 1 -AR blockade prevented formation and retrieval of fear memories. Importantly, local administration of α 1 -AR antagonists did not influence footshock sensitivity, locomotion or anxiety-like behaviors. Similarly, α 1 -AR blockade in the VTA had no effects on negative affect measured as number of 22kHz ultrasonic vocalizations during fear conditioning training. We propose that noradrenergic signaling in the VTA via α 1 -AR regulates formation and retrieval of fear memories but not other behavioral responses to stressful environmental stimuli. It enhances the encoding of environmental stimuli by the VTA to form and retrieve conditioned fear memories and to predict future behavioral outcomes. Our results provide novel insight into the role of the VTA α 1 -AR signaling in the regulation of stress responsiveness and fear memory. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  17. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Muscarinic, adenosine and tropomyosin-related kinase B receptors modulate the neuromuscular developmental synapse elimination process

    Nadal Magriñà, Laura

    2017-01-01

    El desarrollo del sistema nervioso periférico implica una inicial exuberante producción de neuronas y, una posterior reducción dependiente de actividad del número de sinapsis en las uniones neuromusculares (NMJ). Este proceso se denomina eliminación sináptica. Al final de la segunda semana postnatal, cada fibra muscular esta inervadas por una solo motoneurona. Los receptores muscarínicos de acetilcolina (mAChR), los receptores de adenosina (AR) y el receptor quinasa de tropomiosina B (TrkB) p...

  20. Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist.

    Nutt, David J; Besson, Marie; Wilson, Susan J; Dawson, Gerard R; Lingford-Hughes, Anne R

    2007-12-01

    Alcohol produces many subjective and objective effects in man including pleasure, sedation, anxiolysis, plus impaired eye movements and memory. In human volunteers we have used a newly available GABA-A/benzodiazepine receptor inverse agonist that is selective for the alpha5 subtype (a5IA) to evaluate the role of this subtype in mediating these effects of alcohol on the brain. After pre-treatment with a5IA, we found almost complete blockade of the marked impairment caused by alcohol (mean breath concentration 150mg/100ml) of word list learning and partial but non-significant reversal of subjective sedation without effects on other measures such as intoxication, liking, and slowing of eye movements. This action was not due to alterations in alcohol kinetics and so provides the first proof of concept that selectively decreasing GABA-A receptor function at a specific receptor subtype can offset some actions of alcohol in humans. It also supports growing evidence for a key role of the alpha5 subtype in memory. Inverse agonists at other GABA-A receptor subtypes may prove able to reverse other actions of alcohol, and so offer a new approach to understanding the actions of alcohol in the human brain and in the treatment of alcohol related disorders in humans.

  1. Reduced muscarinic receptors in the cingulate cortex in mild Alzheimer's disease demonstrated with 123I iodo-dexetamide SPECT

    Rowe, C.C.; Barnden, L.R.; Nicholas, C.; Nowakowski, K.; Boundy, K.

    2000-01-01

    Full text: Parietal hypoperfusion/hypometabolism is a feature of Alzheimer's disease (AD). In early AD this may be preceded by changes in the posterior cingulate cortex, part of the cortico-limbic circuit with connections to the medial temporal lobes. Because cholinergic function is affected in early AD, we aimed to investigate the binding of the muscarinic receptor label, I-123 iodo-dexetamide (IDEX). We recruited 11 mild (MiniMental State Examination 27-24) and 11 moderate (MMSE 23-16) Alzheimer's patients and 10 age and sex-matched normal subjects. SPECT was performed six hours after injection of 185 MBq IDEX. Sections were reconstructed with attenuation correction using an iterative algorithm (OSEM). Statistical Parametric Mapping (SPM 99) was used to analyse the data. Because there is very little IDEX uptake in the cerebellum and thalamus it was necessary to edit them from the SPM PET template. Facial and scalp activity was also edited. Global scaling relative to the basal ganglia was used. Significant areas of decreased IDEX binding were found in the mild Alzheimer's group in the cingulate cortex with pvoxel = .08 and pcluster < 0.001, (particularly the posterior cingulate), left parietotemporal junction (pcluster = 0.01) and posteromedial left temporal lobe (pcluster = 0.03). In moderate AD extensive areas of decreased binding were found in the posterior cingulate, parietal and temporal lobes. The difference between the group-means at the posterior cingulate was 14% (mild AD) and 22% (moderate AD). Hypoperfusion, hypometabolism and now reduced cholinergic receptors have been demonstrated in the posterior cingulate in mild AD. Greater attention to this area may enhance the diagnostic value of functional imaging in early AD. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  2. Effects of Mineralocorticoid Receptors Blockade on FearMemory Reconsolidation in Rats

    Abbas Ali Vafaei

    2011-08-01

    Full Text Available Reconsolidation memory is defined as a process in which the retrieval of a previously consolidated memory returns to a labile state which is then subject to stabilization. Previous studies have shown that mineralocorticoid receptors (MRs modulate distinct phases of learning and memory, which display a high concentration and distinct distribution in the hippocampus. Moreover, we found no studies that examined the role of hippocampal MRs in fear memory reconsolidation. Here, we investigated the effect of MRs blockade on fear memory reconsolidation in rats. Additionally, to test whether blockade of protein synthesis would disrupt fear memory reconsolidation in our paradigm, we tested the effect of cycloheximide, an inhibitor of protein synthesis after memory reactivation. Results indicated that systemic as well as intra-hippocampal administrations of the MR antagonist spironolactone immediately following memory reactivation did not affect on post-retrieval long-term memory. Cycloheximide given after the reactivation treatment produced a strong impairment that persisted over test sessions. These findings indicate that MRs are not required for reconsolidation of fear-based memory.

  3. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  4. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with [ 3 H]yohimbine, whereas [ 3 H]clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, [ 3 H] clonidine and [ 3 H]yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of [ 3 H]clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations

  5. Studies for transitional changes of the muscarinic acetylcholine receptor and mRNA distribution by focal ischemia using nuclear medicine

    Kuji, Ichiei [Kanazawa Univ. (Japan). School of Medicine

    1994-04-01

    Assessing stress-induced brain receptor responses is important in understanding clinical brain receptor images for nuclear medicine. It is known that cholinergic neurons are decreased by Alzheimer`s disease and that there is a close relationship between cholinergic neurons and muscarinic acetylcholine receptors (mAchR). Thus, this study assessed the response of mAchR to focal ischemia using infarction model rats (prepared by middle cerebral artery occlusion) and sham-operated rats. In the same rats, three kinds of images -- ex vivo regional cerebral blood flow (rCBF) images with {sup 99m}Tc-hexametyl-propyleneamine oxime ({sup 99m}Tc-HMPAO), in vitro mAchR binding images with [{sup 3}H] quinuclidinyl benzilate ({sup 3}H-QNB), and mAchR-mRNA images by in situ hybridization method using {sup 35}S-labeled-oligonucleotide probes specific for mAchR gene subtypes of m1 to m5 -- were obtained in acute and chronic phases. Each image datum was digitalized and assessed semi-quantitatively. There were significant changes in global distribution among rCBF, mAchR and mAchR-mRNAs. In the acute phase, there was no significant change in mAchR in the infarcted area, although rCBF markedly decreased. In the chronic phase, there was a significant decrease in mAchR in the infarct-sided thalamus, although there was no change in rCBF; and there was a significant decrease in mAchR of the infarct-sided substantia nigra in spite of increase in rCBF. In the acute phase, mAchR-mRNAs of the infarct-sided caudate-putamen was decreased, suggesting that the ability of cholinergic neuron to synthesize receptor protein had decreased in the acute phase. Because mAchR was not decreased in the acute phase, some viable neurons with no normal function may be preserved in the acute phase. These results were encouraging in understanding mAchR brain images of patients with memory disturbances such as cerebrovascular dementia and Alzheimer`s disease. (N.K.).

  6. SPET imaging of central muscarinic acetylcholine receptors with iodine-123 labelled E-IQNP and Z-IQNP

    Nobuhara, K.; Farde, L.; Halldin, C.; Karlsson, P.; Swahn, C.G.; Olsson, H.; Sedvall, G. [Dept. of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Stockholm (Sweden); Bergstroem, K.A. [Dept. of Clinical Physiology, Kuopio University Hospital, Kuopio (Finland); Larsson, S.A.; Schnell, P.-O. [Dept. of Radiation Physics, Karolinska Hospital, Stockholm (Sweden); McPherson, D.W. [Oak Ridge National Laboratory (ORNL), Nuclear Medicine Group, TN (United States); Savonen, A.; Hiltunen, J. [MAP Medical Technologies Oy, Tikkakoski (Finland)

    2001-01-01

    1-Azabicyclo[2.2.2]oct-3-yl {alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP) is a muscarinic acetylcholine receptor (mAChR) antagonist and the racemic ligand contains eight stereoisomers. In a single-photon emission tomography (SPET) study in monkeys we recently confirmed that [{sup 123}I]E-(R,R)-IQNP ([{sup 123}I]E-IQNP) is a radioligand with modest selectivity for the M{sub 1} and M{sub 4} subtypes, whereas [{sup 123}I]Z-(R,R)-IQNP ([{sup 123}I]Z-IQNP) is non-subtype selective. In the present SPET study, E- and Z-IQNP were examined in human subjects. SPET examination was performed on three male subjects after i.v. injection of [{sup 123}I]E-IQNP and in another three after i.v. injection of [{sup 123}I]Z-IQNP. The binding potential (BP) for [{sup 123}I]E-IQNP was calculated using several quantitative approaches with the cerebellum as a reference region. High-performance liquid chromatography was used to measure radioligand metabolism in plasma. Following [{sup 123}I]E-IQNP, the radioactivity was high in the neocortex and striatum, intermediate in the thalamus and low in the pons and cerebellum, which is consistent with the rank order for the regional density of M{sub 1} and M{sub 4} subtypes in vitro. For all regions, peak equilibrium was identified within the 48-h data acquisition. The simplified reference tissue approach using SPET data from 0 to 48 h was the most reliable in this limited series of subjects. Following injection of [{sup 123}I]Z-IQNP, radioactivity was high in the neocortex and striatum, intermediate in the thalamus and pons and low in the cerebellum, which is in agreement with the density of M{sub 1}, M{sub 2} and M{sub 4} subtypes as measured in vitro. Quantitative analyses provided indirect support for specific M{sub 2} binding of Z-IQNP in the cerebellum. The high selectivity of [{sup 123}I]E-IQNP for M{sub 1} and M{sub 4} receptors allowed the use of cerebellum as a reference region devoid of specific binding, and

  7. Normotensive sodium loading in normal man: Regulation of renin secretion during beta-receptor blockade

    Mølstrøm, Simon; Larsen, Nils Heden; Simonsen, Jane Angel

    2008-01-01

    and renal excretion during slow saline loading at constant plasma sodium con-centration (Na-loading: 12 micromol Na(+) kg(-1) min(-1) for 4 h). Normal subjects were studied on low-sodium intake with and without beta1-adrenergic blockade by metoprolol. Metoprolol per se reduced RAAS activity as expected. Na......Saline administration may change renin system (RAAS) activity and sodium excretion at constant mean arterial pressure (MAP). We hypothesized that such responses are elicited mainly by renal sympathetic nerve activity by beta1-receptors (beta1-RSNA), and tested the hypothesis by studying RAAS......-loading decreased plasma renin (PRC) by 1/3, AngII by 1/2, and aldosterone (pAldo) by 2/3, (all psodium excretion increased indistinguishably with and without metoprolol (16+/-2 to 71...

  8. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy

    Andersen, S; Tarnow, L; Rossing, P

    2000-01-01

    BACKGROUND: Angiotensin I-converting enzyme (ACE) inhibitors reduce angiotensin II formation and induce bradykinin accumulation. Animal studies suggest that bradykinin may play a role for the effects of ACE inhibition on blood pressure and kidney function. Therefore, we compared the renal and hem...... inhibition is primarily caused by interference in the renin-angiotensin system. Our study suggest that losartan represents a valuable new drug in the treatment of hypertension and proteinuria in type 1 diabetic patients with diabetic nephropathy....... and hemodynamic effects of specific intervention in the renin-angiotensin system by blockade of the angiotensin II subtype-1 receptor to the effect of ACE inhibition. METHODS: A randomized, double-blind, cross-over trial was performed in 16 type 1 diabetic patients (10 men), age 42 +/- 2 years (mean +/- SEM...

  9. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  10. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    Lin, Xinchun; Bernloehr, Christian; Hildebrandt, Tobias; Stadler, Florian J.; Doods, Henri; Wu, Dongmei

    2016-01-01

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  11. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    Lin, Xinchun [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Bernloehr, Christian; Hildebrandt, Tobias [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Stadler, Florian J., E-mail: fjstadler@szu.edu.cn [Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Shenzhen 518060 (China); Doods, Henri [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Wu, Dongmei, E-mail: dongmeiwu@bellsouth.net [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Department of BIN Convergence Technology, Chonbuk National University (Korea, Republic of)

    2016-08-15

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  12. Muscle-type nicotinic receptor blockade by diethylamine, the hydrophilic moiety of lidocaine

    Armando eAlberola-Die

    2016-02-01

    Full Text Available Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs, this work was aimed to determine the inhibitory effects of diethylamine (DEA, a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh in a dose-dependent manner (IC50 close to 70 μM, but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3 and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and

  13. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    Kentaro Fukunaga

    2016-09-01

    Full Text Available Long-acting muscarinic antagonists (LAMAs and short-acting β2-adrenoceptor agonists (SABAs play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM, a LAMA, modestly reduced methacholine (1 μM-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC, significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.

  14. BLOCKADE OF PGE2, PGD2 RECEPTORS CONFERS PROTECTION AGAINST PREPATENT SCHISTOSOMIASIS MANSONI IN MICE.

    Abdel-Ghany, Rasha; Rabia, Ibrahim; El-Ahwany, Eman; Saber, Sameh; Gamal, Rasha; Nagy, Faten; Mahmoud, Olaa; Hamad, Rabab Salem; Barakat, Walled

    2015-12-01

    Schistosomiasis is a chronic disease with considerable social impact. Despite the availability of affordable chemotherapy, drug treatment has not significantly reduced the overall number of disease cases. Among other mechanisms, the parasite produces PGE2 and PGD2 to evade host immune defenses. To investigate the role of PGE2 and PGD2 in schistosomiasis, we evaluated the effects of L-161,982, Ah6809 (PGE2 receptor antagonists alone of combined with each other) and MK-0524 (PGD2 receptor antagonist) during prepatent Schistosoma mansoni infection. Drugs were administered intraperitoneally an hour before and 24 hours after infection of C57BL/6 mice with 100 Schistosoma mansoni cercariae. L-161,982, Ah6809, their combination and MK-0524 caused partial protection against pre-patent S. mansoni infection which was mediated by biasing the immune response towards Th1 phenotype. These results showed that blockade of PGE2 and PGD2 receptors confers partial protection against pre-patent S. mansoni infection in mice and that they may be useful as adjunctive therapy to current anti-schistosomal drugs or vaccines.

  15. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  16. Normotensive sodium loading in conscious dogs: Regulation of renin secretion during beta receptor blockade

    Bie, Peter; Mølstrøm, Simon; Wamberg, Søren

    2009-01-01

    Cl (20 micromol/kg/min for 180 min, NaLoad) during regular or low-sodium diet (0.03 mmol/kg/d, LowNa) with and without metoprolol (2 mg/kg plus 0.9 mg/kg/h). Vasopressin V2 receptors were blocked by Otsuka compound OPC31260 to facilitate clearance measurements. Body fluid volume was maintained by servo-controlled...... that in this setting, renin secretion and renin-dependent sodium excretion are controlled by via the renal nerves and therefore eliminated or reduced by blocking the action of norepinephrine on the juxtaglomerular cells with the beta1-receptor antagonist metoprolol. This was tested in conscious dogs by infusion of Na...... irrespective of diet. In conclusion, PRC depended on dietary sodium and beta1-adrenergic control as expected; however, the acute sodium-driven decrease in PRC at constant MAP and GFR was unaffected by beta1-receptor blockade demonstrating that renin may be regulated without changes in MAP, GFR, or beta1...

  17. Weak toxin WTX from Naja kaouthia cobra venom interacts with both nicotinic and muscarinic acetylcholine receptors

    Mordvintsev, D.Y.; Polyak, Y.L.; Rodionov, D.I.; Jakubík, Jan; Doležal, Vladimír; Karlsson, E.; Tsetlin, V.I.; Utkin, Y.N.

    2009-01-01

    Roč. 276, č. 18 (2009), s. 5065-5075 ISSN 1742-464X R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA500110703 Institutional research plan: CEZ:AV0Z50110509 Keywords : acetylcholine receptors * allosteric interaction * toxins Subject RIV: ED - Physiology Impact factor: 3.042, year: 2009

  18. Annulated heterocyclic bioisosteres of norarecoline. Synthesis and molecular pharmacology at five recombinant human muscarinic acetylcholine receptors

    Bräuner-Osborne, Hans; Ebert, B; Brann, M R

    1995-01-01

    = 0.011 microM), and 4d (IC50 = 0.0008 microM). Pharmacological effects (EC50 or Ki values) and intrinsic activities (per cent of maximal carbachol responses) were determined using five recombinant human mAChRs (m1-m5) and the functional assay, receptor selection and amplification technology (R...... inhibitors of the binding of tritiated quinuclidinyl benzilate (QNB), pirenzepine (PZ), and oxotremorine-M (Oxo-M) to tissue membrane preparations. In the [3H]-Oxo-M binding assay, receptor affinities in the low nanomolar range were measured for 4a (IC50 = 0.010 microM), 4b (IC50 = 0.003 microM), 4c (IC50...

  19. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-01-01

    Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and musc...

  20. Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats.

    Yoshizawa, Tsuyoshi; Hayashi, Yukio; Yoshida, Akira; Yoshida, Shohei; Ito, Yoshihiko; Yamaguchi, Kenya; Yamada, Shizuo; Takahashi, Satoru

    2018-03-01

    To investigate time course of bladder dysfunction and concurrent changes in number and affinity of the muscarinic and P 2 X receptor in the early stage of streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by the intraperitoneal injection of 50 mg/kg of STZ to 7-week-old female Wistar rats. We performed recording of 24-h voiding behavior and cystometry at 1, 4, 8, and 12 weeks after the induction of diabetes. A muscle strip experiments with electrical field stimulation (EFS), carbachol, and α,β-methylene adenosine 5'-triphosphate (α,β-MeATP) were also performed at the same time-points. Additionally, concurrent changes in number and affinity of bladder muscarinic and P 2 X receptor were measured by a radioreceptor assay using [N-methyl- 3 H] scopolamine methyl chloride ([ 3 H]NMS) and α,β-methylene-ATP (2,8- 3 H) tetrasodium salt ([ 3 H]α,β-MeATP). In STZ-induced diabetic rats, polydipsic polyuric pollakiuria were noted on recording of 24-h voiding behavior from early stage. Also, the residual urine volume markedly increased in diabetic rats on cystometry. In the muscle strip experiment, the detrusor contractions induced by EFS, carbachol, and α,β-MeATP were enhanced in STZ-induced diabetic rats. Based on the radioreceptor assay, the maximum number of sites (Bmax) for the specific binding of [ 3 H]NMS and [ 3 H]α,β-MeATP was concurrently increased in the bladder from diabetic rats. Increased bladder contractility is found in early stage of diabetic rats. Then, bladder dysfunction is associated with increased number of muscarinic and P 2 X receptors in STZ-induced diabetic rats.

  1. The interaction between tropomyosin-related kinase B receptors and presynaptic muscarinic receptors modulates transmitter release in adult rodent motor nerve terminals.

    Garcia, Neus; Tomàs, Marta; Santafé, Manel M; Besalduch, Nuria; Lanuza, Maria A; Tomàs, Josep

    2010-12-08

    The neurotrophin brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase B (trkB) and p75(NTR) are present in the nerve terminals on the neuromuscular junctions (NMJs) of the levator auris longus muscle of the adult mouse. Exogenously added BDNF or NT-4 increased evoked ACh release after 3 h. This presynaptic effect (the size of the spontaneous potentials is not affected) is specific because it is not produced by neurotrophin-3 (NT-3) and is prevented by preincubation with trkB-IgG chimera or by pharmacological block of trkB [K-252a (C₂₇H₂₁N₃O₅)] or p75(NTR) [Pep5 (C₈₆H₁₁₁N₂₅O₁₉S₂] signaling. The effect of BDNF depends on the M₁ and M₂ muscarinic acetylcholine autoreceptors (mAChRs) because it is prevented by atropine, pirenzepine and methoctramine. We found that K-252a incubation reduces ACh release (~50%) in a short time (1 h), but the p75(NTR) signaling inhibitor Pep5 does not have this effect. The specificity of the K-252a blocking effect on trkB was confirmed with the anti-trkB antibody 47/trkB, which reduces evoked ACh release, like K-252a, whereas the nonpermeant tyrosine kinase blocker K-252b does not. Neither does incubation with the fusion protein trkB-IgG (to chelate endogenous BDNF/NT-4), anti-BDNF or anti-NT-4 change ACh release. Thus, the trkB receptor normally seems to be coupled to ACh release when there is no short-term local effect of neurotrophins at the NMJ. The normal function of the mAChR mechanism is a permissive prerequisite for the trkB pathway to couple to ACh release. Reciprocally, the normal function of trkB modulates M₁- and M₂-subtype muscarinic pathways.

  2. Drugs interfering with Muscarinic Acetylcholine Receptors and Their effects on Place Navigation

    Svoboda, Jan; Popelíková, Anna; Stuchlík, Aleš

    2017-01-01

    Roč. 8, Nov 9 (2017), č. článku 215. ISSN 1664-0640 R&D Projects: GA ČR(CZ) GA17-04047S; GA ČR NV17-30833A; GA MŠk(CZ) LM2015062 Grant - others:AV ČR(CZ) PAN-17-07 Program:Bilaterální spolupráce Institutional support: RVO:67985823 Keywords : scopolamine * biperiden * acetylcholine * receptor * behavior * learning Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.532, year: 2016

  3. Nicotinic and muscarinic cholinergic receptors are recruited by acetylcholine-mediated neurotransmission within the locus coeruleus during the organisation of post-ictal antinociception.

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Franceschi; Falconi-Sobrinho, Luiz Luciano; Dos Anjos-Garcia, Tayllon; Coimbra, Norberto Cysne

    2016-10-01

    Post-ictal antinociception is characterised by an increase in the nociceptive threshold that accompanies tonic and tonic-clonic seizures (TCS). The locus coeruleus (LC) receives profuse cholinergic inputs from the pedunculopontine tegmental nucleus. Different concentrations (1μg, 3μg and 5μg/0.2μL) of the muscarinic cholinergic receptor antagonist atropine and the nicotinic cholinergic receptor antagonist mecamylamine were microinjected into the LC of Wistar rats to investigate the role of cholinergic mechanisms in the severity of TCS and the post-ictal antinociceptive response. Five minutes later, TCS were induced by systemic administration of pentylenetetrazole (PTZ) (64mg/kg). Seizures were recorded inside the open field apparatus for an average of 10min. Immediately after seizures, the nociceptive threshold was recorded for 130min using the tail-flick test. Pre-treatment of the LC with 1μg, 3μg and 5μg/0.2μL concentrations of both atropine and mecamylamine did not cause a significant effect on seizure severity. However, the same treatments decreased the post-ictal antinociceptive phenomenon. In addition, mecamylamine caused an earlier decrease in the post-ictal antinociception compared to atropine. These results suggest that muscarinic and mainly nicotinic cholinergic receptors of the LC are recruited to organise tonic-clonic seizure-induced antinociception. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Demonstration of a reduction in muscarinic receptor binding in early Alzheimer's disease using iodine-123 dexetimide single-photon emission tomography

    Claus, J.J.; Dubois, E.A.; Booij, J.; Habraken, J.; Munck, J.C. van; Herk, M. van; Verbeeten, B. Jr.; Royen, E.A. van

    1997-01-01

    Decreased muscarinic receptor binding has been suggested in single-photon emission tomography (SPET) studies of Alzheimer's disease. However, it remains unclear whether these changes are present in mildly demented patients, and the role of cortical atrophy in receptor binding assessment has not been investigated. We studied muscarinic receptor binding normalized to neostriatum with SPET using [ 123 I[4-iododexetimide in five mildly affected patients with probable Alzheimer's disease and in five age-matched control subjects. Region of interest (ROI) analysis was performed in a consensus procedure blind to clinical diagnosis using matched magnetic resonance (MRI) images. Cortical atrophy was assessed by calculating percentages of cerebrospinal fluid in each ROI. An observer study with three observers was conducted to validate this method. Alzheimer patients showed statistically significantly less [ 123 I[4-iododexetimide binding in left temporal and right temporo-parietal cortex compared with controls, independent of age, sex and cortical atrophy. Mean intra-observer variability was 3.6% and inter-observer results showed consistent differences in [ 123 I[4-iododexetimide binding between observers. However, differences between patients and controls were comparable among observers and statistically significant in the same regions as in the consensus procedure. Using an MRI-SPET matching technique, we conclude that [ 123 I[4-iododexetimide binding is reduced in patients with mild probable Alzheimer's disease in areas of temporal and temporo-parietal cortex. (orig.). With 1 fig., 4 tabs

  5. The effect of opioid receptor blockade on the neural processing of thermal stimuli.

    Eszter D Schoell

    Full Text Available The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.

  6. In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]- and 4-[18F]-fluorodexetimide

    Wilson, A.A.; Scheffel, U.A.; Dannals, R.F.; Stathis, M.; Ravert, H.T.; Wagner, H.N. Jr.

    1991-01-01

    Two [ 18 F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[ 18 F]- or 4-[ 18 F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies

  7. Guanosine 5'-triphosphate binding protein (G/sub i/) and two additional pertussis toxin substrates associated with muscarinic receptors in rat heart myocytes: characterization and age dependency

    Moscona-Amir, E.; Henis, Y.I.; Sokolovsky, M.

    1988-01-01

    The coupling of muscarinic receptors with G-proteins was investigated in cultured myocytes prepared from the hearts of newborn rats. The coupling was investigated in both young (5 days after plating) and aged (14 days after plating) cultures, in view of the completely different effects of 5'-guanylyl imidodiphosphate [Gpp(NH)p] on muscarinic agonist binding to homogenates from young vs aged cultures. Pretreatment of cultures from both ages by Bordetella pertussis toxin (IAP) was found to eliminate any Gpp(NH)p effect on carbamylcholine binding. IAP by itself induced a rightward shift in the carbamylcholine competition curve in homogenates from aged cultures, but no such effect was observed in homogenates from young cultures. IAP-catalyzed [ 32 P]ADP-ribosylation of membrane preparations from young and aged cultures revealed major differences between them. Young cultures exhibited a major IAP substrate at 40 kDa, which was also recognized by anti-α/sub i/ antibodies, and two novel IAP substrates at 28 and 42 kDa, which were weakly ADP-ribosylated by the toxin and were not recognized with either anti-α/sub i/ or anti-α 0 antibodies. In aged cultures, only the 40-kDa band (ribosylated to a lower degree) was detected. The parallel age-dependent changes in the three IAP substrates (28, 40, and 42 kDa) and in the interactions of the G-protein(s) with the muscarinic receptors strongly suggest close association between the two phenomena. All of these age-dependent changes in the G-protein related parameters were prevented by phosphatidylcholine-liposome treatment of the aged cultures. The role of the membrane lipid composition in these phenomena is discussed

  8. Assessment of dopamine receptor blockade by neuroleptic drugs in the living human brain

    Wong, D.F.; Wagner, H.N. Jr.; Coyle, J.

    1985-01-01

    Positron emission tomography (PET) makes it possible to attempt to relate directly the antipsychotic effect of neuroleptic drugs and their blocking effect on dopamine receptors (D2) in vivo. The authors have examined the ability of haloperidol (HAL) and molindone (MOL) to block the binding of C-11 n-methylspiperone (NMSP) in 6 normal subjects. A dose of 0.05 mg/kg of HAL resulted in a 68% drop in the slope of the caudate/cerebellum (Ca/Cb) vs. time. This slope is related to the rate of specific binding of NMSP to the receptor. A dose response was seen with both drugs. With increasing doses of HAL from .05 to 0.082 mg/kg, CA/Cb vs. time slope fell from .235 to .156/min. (N=4), progressively. Similarly with increasing doses of MOL of .16-.44 mg/kg slopes decreased from .0335 to .0155/min. (N=4). Similar degrees of post injection Ca/Cb ratio were produced with quantities of MOL and HAL administered in the oral dose ratio of doses 3-5:1 times greater than HAL. This is also the dose ratio at which we found similar dopamine receptor blockade by PET in vivo. A question that arises is why the in vitro affinity of HAL for D2 is 30 times greater than that of MOL in the human brain. The results raise the possibility that MOL metabolites are not only active in blocking D2 but indeed may possibly be more potent than MOL itself. It also helps confirm the site of action of MOL and its in vivo metabolites

  9. Reversal of propranolol blockade of adrenergic receptors and related toxicity with drugs that increase cyclic AMP.

    Whitehurst, V E; Vick, J A; Alleva, F R; Zhang, J; Joseph, X; Balazs, T

    1999-09-01

    An overdose of propranolol, a widely used nonselective beta-adrenergic receptor blocking agent, can result in hypotension and bradycardia leading to irreversible shock and death. In addition, the blockade of adrenergic receptors can lead to alterations in neurotransmitter receptors resulting in the interruption of the activity of other second messengers and the ultimate cellular responses. In the present experiment, three agents, aminophylline, amrinone, and forskolin were tested in an attempt to reverse the potential lethal effects of a propranolol overdose in dogs. Twenty-two anesthetized beagle dogs were given a 10-min infusion of propranolol at a dose of 1 mg/kg/min. Six of the dogs, treated only with intravenous saline, served as controls. Within 15-30 min all six control dogs exhibited profound hypotension and severe bradycardia that led to cardiogenic shock and death. Seven dogs were treated with intravenous aminophylline 20 mg/kg 5 min after the end of the propranolol infusion. Within 10-15 min heart rate and systemic arterial blood pressure returned to near control levels, and all seven dogs survived. Intravenous amrinone (2-3 mg/kg) given to five dogs, and forskolin (1-2 mg/kg) given to four dogs, also increased heart rate and systemic arterial blood pressure but the recovery of these parameters was appreciably slower than that seen with aminophylline. All of these animals also survived with no apparent adverse effects. Histopathologic evaluation of the hearts of the dogs treated with aminophylline showed less damage (vacuolization, inflammation, hemorrhage) than the hearts from animals given propranolol alone. Results of this study showed that these three drugs, all of which increase cyclic AMP, are capable of reversing the otherwise lethal effects of a propranolol overdose in dogs.

  10. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    -induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB receptor function. In contrast, blockade of CB, but not CB, receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA...... a critical involvement of CB receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo....

  11. The Beneficial Effect of Fesoterodine, a Competitive Muscarinic Receptor Antagonist on Erectile Dysfunction in Streptozotocin-induced Diabetic Rats.

    Yilmaz-Oral, Didem; Bayatli, Nur; Gur, Serap

    2017-09-01

    To investigate the possible role of fesoterodine (a competitive muscarinic receptor antagonist) on erectile dysfunction in streptozotocin-induced diabetic rats. A total of 16 adult male Sprague-Dawley rats were equally divided into control and diabetic groups. Diabetes was induced by a single intravenous injection of streptozotocin (25-35 mg/kg). In vivo erectile responses were evaluated by the stimulation of cavernosal nerves, and measurements were repeated after the intracavernosal injection of fesoterodine (1 µM) in rats. The relaxation responses to fesoterodine were examined via incubation with various inhibitors. The relaxant responses of corpus cavernosum (CC) strips were observed in the presence or the absence of fesoterodine (10 µM). Intracavernous administration of fesoterodine restored in vivo erectile response at 5.0- and 7.5-V levels, except for 2.5 V in diabetic rats. Basal intracavernosal pressure (5.4 ± 0.9 mm Hg) in diabetic rats was markedly increased after injection of fesoterodine (33.9 ± 7.9 mm Hg, P <.001). In bath studies, fesoterodine resulted in a relaxation of CC in a concentration-dependent manner, which was reduced in diabetic rats. Nifedipine (l-type Ca 2+ channel blocker) inhibited maximum fesoterodine-induced relaxation by 58%. The nonselective K + channel blocker tetraethylammonium and glibenclamide incubation did not change the relaxant response to fesoterodine. The relaxant responses to acetylcholine (10 µM), electrical field stimulation (10 Hz), and sodium nitroprusside (0.01 µM) in diabetic rats were increased after incubation with fesoterodine (10 µM). Fesoterodine improved erectile function and relaxation of isolated strips of rat CC. The underlying mechanism of fesoterodine is likely due to the blocking of l-type calcium channels independent of the nitric oxide-cyclic guanosine monophosphate pathway. Further investigations are warranted to fully elucidate the restorative effects of

  12. Differences between proximal and distal portions of the male rabbit posterior urethra in the physiological role of muscarinic cholinergic receptors

    Nagahama, Katsushi; Tsujii, Toshihiko; Morita, Takashi; Azuma, Hiroshi; Oshima, Hiroyuki

    1998-01-01

    The aim of the present study was to elucidate functional differences between embryologically different portions of the posterior urethra of male rabbits in response to muscarinic acetylcholine receptor (mAChR) stimulation using in vitro isometric tension experiments and radioligand binding studies. In the in vitro isometric tension experiments, carbachol, produced a dose-dependent contraction of the proximal portion under the resting state, but did not change the basal tone of the distal portion. Contraction of the proximal portion by 10−5 M noradrenaline (NA) was dose-dependently enhanced by carbachol either in the presence or absence of NG-nitro-L-arginine (NOARG). In contrast, carbachol induced relaxation of the distal portion contracted by 10−5 M NA, which was reversed to dose-dependent contraction in the presence of NOARG. Both portions of the urethra had a similar number of [3H]-quinuclidinyl benzilate ([3H]-QNB) binding sites (195.3±74.1 fmols mg−1 protein for the proximal portion and 146.5±8.5 fmols mg−1 protein for the distal portion) with similar affinities (115.0±45.4 pM for the proximal portion and 79.9± 2.9 pM for the distal portion). The concentration-response curves to carbachol in both portions were shifted to the right in a parallel manner in the presence of pirenzepine (an M1 antagonist), 11-[[2-[(diethylamino)methyl]-1-piperidinyl] acetyl]-5, 11-dihydro-6H-pyrido-2,3-b)-(1,4)-benzodiazepin-6-one (AFDX-116, an M2 antgonist) and 4-diphenyl-acetoxy-N-methyl-piperidine (4-DAMP, an M1/M3 antagonist). The pA2 values for pirenzepine, AFDX-116 and 4-DAMP were 7.5±0.1, 7.2±0.02 and 9.3±0.1 respectively for the contraction of the proximal portion, and 7.2±0.1, 7.1±0.2 and 9.1±0.2, respectively for the relaxation of the distal portion. In conclusion mAChR subtypes distribute in a similar fashion throughout the length of the male rabbit posterior urethra with the discrepant responses to carbachol attributable to the

  13. Ligand binding and functional characterization of muscarinic acetylcholine receptors on the TE671/RD human cell line

    Bencherif, M.; Lukas, R.J.

    1991-01-01

    Cells of the TE671/RD human clonal line express a finite number ((Bmax) of about 350 fmol/mg of membrane protein) of apparently noninteracting, high-affinity binding sites (KD of 0.07 nM and a Hill coefficient close to unity, nH = 0.94) for the muscarinic acetylcholine receptor (mAChR) radio antagonist, tritium-labeled quinuclidinyl benzilate [ 3 H-QNB]. The rank order potency of selective antagonists that inhibit specific 3 HQNB binding is: atropine greater than 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) greater than pirenzepine greater than methoctramine greater than AFDx-116 (11-2[2-[(diethylamino)methyl]-1-[piperidinyl] acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one). Functional studies indicate that phosphoinositide (PIns) hydrolysis in TE671/RD cells is increased by carbachol (EC50 of 10 microM), but not by nicotine (to concentrations as high as 1 mM). Agonist-stimulated PIns metabolism is inhibited by antagonists with the same rank order potency as for inhibition of 3 HQNB binding. Functional responses are augmented in the presence of a nonhydrolyzable GTP analog, are strongly inhibited after 24-hr exposure to cholera toxin, but are only slightly inhibited after long-term exposure to pertussis toxin or forskolin. These studies identify a pharmacologically-defined M3-subtype of mAChR strongly coupled via a cholera toxin-sensitive mechanism to PIns hydrolysis in these cells. Within 1 hr of treatment of TE671/RD cells with 1 mM dibutyryl cyclic AMP or with 10 microM phorbol-12-myristate-13-acetate (PMA), there is a 30 to 50% decrease in carbachol-stimulated PIns responsiveness that recovers to control values after 5 days of continued drug treatment. However, a comparable and more persistent inhibition of mAChR function is observed on cell treatment with 20 nM PMA

  14. Ligand binding and functional characterization of muscarinic acetylcholine receptors on the TE671/RD human cell line

    Bencherif, M.; Lukas, R.J. (Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona (USA))

    1991-06-01

    Cells of the TE671/RD human clonal line express a finite number ((Bmax) of about 350 fmol/mg of membrane protein) of apparently noninteracting, high-affinity binding sites (KD of 0.07 nM and a Hill coefficient close to unity, nH = 0.94) for the muscarinic acetylcholine receptor (mAChR) radio antagonist, tritium-labeled quinuclidinyl benzilate ({sup 3}H-QNB). The rank order potency of selective antagonists that inhibit specific {sup 3}HQNB binding is: atropine greater than 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) greater than pirenzepine greater than methoctramine greater than AFDx-116 (11-2(2-((diethylamino)methyl)-1-(piperidinyl) acetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)benzodiazepin-6-one). Functional studies indicate that phosphoinositide (PIns) hydrolysis in TE671/RD cells is increased by carbachol (EC50 of 10 microM), but not by nicotine (to concentrations as high as 1 mM). Agonist-stimulated PIns metabolism is inhibited by antagonists with the same rank order potency as for inhibition of {sup 3}HQNB binding. Functional responses are augmented in the presence of a nonhydrolyzable GTP analog, are strongly inhibited after 24-hr exposure to cholera toxin, but are only slightly inhibited after long-term exposure to pertussis toxin or forskolin. These studies identify a pharmacologically-defined M3-subtype of mAChR strongly coupled via a cholera toxin-sensitive mechanism to PIns hydrolysis in these cells. Within 1 hr of treatment of TE671/RD cells with 1 mM dibutyryl cyclic AMP or with 10 microM phorbol-12-myristate-13-acetate (PMA), there is a 30 to 50% decrease in carbachol-stimulated PIns responsiveness that recovers to control values after 5 days of continued drug treatment. However, a comparable and more persistent inhibition of mAChR function is observed on cell treatment with 20 nM PMA.

  15. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  16. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  17. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  19. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. C5a receptor (CD88) blockade protects against MPO-ANCA GN.

    Xiao, Hong; Dairaghi, Daniel J; Powers, Jay P; Ertl, Linda S; Baumgart, Trageen; Wang, Yu; Seitz, Lisa C; Penfold, Mark E T; Gan, Lin; Hu, Peiqi; Lu, Bao; Gerard, Norma P; Gerard, Craig; Schall, Thomas J; Jaen, Juan C; Falk, Ronald J; Jennette, J Charles

    2014-02-01

    Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.

  1. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  2. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  3. Highly specific detection of muscarinic M3 receptor, G protein interaction and intracellular trafficking in human detrusor using Proximity Ligation Assay (PLA).

    Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2018-05-01

    Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (G αq/11 , G αs , G αi ) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor ® 488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP

  4. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis

    Willis Cynthia R

    2012-10-01

    Full Text Available Abstract Background Interleukin-7 (IL-7 acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development

  5. Effects of Saw Palmetto Extract on Urodynamic Parameters, Bladder Muscarinic and Purinergic Receptors and Urinary Cytokines in Rats with Cyclophosphamide-Induced Cystitis.

    Nasrin, Sweety; Masuda, Eiji; Kugaya, Haruna; Osano, Ayaka; Ito, Yoshihiko; Yamada, Shizuo

    2014-01-01

    To clarify the effect of saw palmetto extract (SPE), a phytotherapeutic agent, on urodynamic parameters, bladder muscarinic and purinergic receptors, and urinary cytokines in rats with cystitis induced by cyclophosphamide (CYP). Saw palmetto extract (60 mg/kg per day) was administered orally twice a day for 7 days to rats. The urodynamic parameters in CYP (150 mg/kg i.p.)-treated rats were monitored by a cystometric method under anesthesia. The muscarinic and purinergic receptors in the bladder and submaxillary gland were measured by radioreceptor assays using [N-methyl-(3) H] scopolamine chloride([(3) H]NMS) and αβ-methylene-ATP [2,8-(3) H] tetrasodium salt ([(3) H]αβ-MeATP), respectively. Urinary cytokines (interleukin-1β [IL-1β], IL-6 and L-17) were measured with enzyme linked immunosorbent assay kits. Micturition interval and micturition volume were significantly decreased and the frequency of micturition and basal pressure were significantly increased in the CYP-treated rats compared with sham-operated rats. Orally administered SPE significantly increased the micturition interval and micturition volume and decreased the frequency of micturition and basal pressure. The maximal number of sites (Bmax ) for the specific binding of [(3) H]NMS and [(3) H]αβ-MeATP was significantly decreased in the bladder. The decrease in receptors was attenuated by repeated treatment with SPE. An elevation in urinary cytokine (IL-1β and IL-17) levels were seen, and this increase was effectively suppressed by SPE treatment. Saw palmetto extract attenuates the alteration of urodynamic parameters, pharmacologically relevant receptors, and urinary cytokines in CYP-treated rats. Therefore, SPE may be a potential therapeutic agent for improving the clinical symptoms of cystitis. © 2013 Wiley Publishing Asia Pty Ltd.

  6. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. Copyright © 2015 the American Physiological Society.

  7. Interactions between allosteric modulators and 4-DAMP and other antagonists at muscarinic receptors: potential significance of the distance between the N and Carboxyl C atoms in the molecules of antagonists

    Lysíková, Michaela; Havlas, Zdeněk; Tuček, Stanislav

    2001-01-01

    Roč. 26, č. 4 (2001), s. 383-394 ISSN 0364-3190 R&D Projects: GA ČR GA309/99/0214; GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * allosteric modulation * 4-DAMP Subject RIV: ED - Physiology Impact factor: 1.638, year: 2001

  8. Interactions of alaproclate, a selective 5HT-uptake blocker, with muscarinic receptors: in vivo and in vitro studies

    Danielsson, E.; Bartfai, T.; Nordstrom, O.; Ogren, S.O.; Unden, A.

    1986-01-01

    Cholinergic mechanisms play an important role in higher brain functions such as learning or memory. It is hoped that drugs which improve cholinergic transmission would be therapeutically effective in senile dementia. The results of biochemical studies on the interaction of alaproclate with the muscarinic system are summarized. Tritium-4-N-methylpiperidinylbenzilate and methyl tritium-choline chloride were used in the studies. Salivation and hypothermia were studied in adult male mice following injection of alaproclate preceding the injection of oxotremorine by 30 min. Salivation, tremor and hypothermia caused by oxotremorine were found to be centrally mediated muscarinic responses. Tritium-ACh release was studied from synaptosomes. The metabolites of alaproclate, alanine and 2(4 chlorophenyl) 1-1 dimethylethanol, do not produce tremor

  9. Differential Effects of Systemic Cholinergic Receptor Blockade on Pavlovian Incentive Motivation and Goal-Directed Action Selection

    Ostlund, Sean B; Kosheleff, Alisa R; Maidment, Nigel T

    2014-01-01

    Reward-seeking actions can be guided by external cues that signal reward availability. For instance, when confronted with a stimulus that signals sugar, rats will prefer an action that produces sugar over a second action that produces grain pellets. Action selection is also sensitive to changes in the incentive value of potential rewards. Thus, rats that have been prefed a large meal of sucrose will prefer a grain-seeking action to a sucrose-seeking action. The current study investigated the dependence of these different aspects of action selection on cholinergic transmission. Hungry rats were given differential training with two unique stimulus-outcome (S1-O1 and S2-O2) and action-outcome (A1-O1 and A2-O2) contingencies during separate training phases. Rats were then given a series of Pavlovian-to-instrumental transfer tests, an assay of cue-triggered responding. Before each test, rats were injected with scopolamine (0, 0.03, or 0.1 mg/kg, intraperitoneally), a muscarinic receptor antagonist, or mecamylamine (0, 0.75, or 2.25 mg/kg, intraperitoneally), a nicotinic receptor antagonist. Although the reward-paired cues were capable of biasing action selection when rats were tested off-drug, both anticholinergic treatments were effective in disrupting this effect. During a subsequent round of outcome devaluation testing—used to assess the sensitivity of action selection to a change in reward value—we found no effect of either scopolamine or mecamylamine. These results reveal that cholinergic signaling at both muscarinic and nicotinic receptors mediates action selection based on Pavlovian reward expectations, but is not critical for flexibly selecting actions using current reward values. PMID:24370780

  10. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia

  11. Evidence for cholinergic participation in the control of bird song; acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain

    Ryan, S.M.; Arnold, A.P.

    1981-01-01

    Brain regions thought to be involved in the control of song in the zebra finch (Poephila guttata), were examined histochemically using the Karnovsky and Roots direct-coloring method for the detection of acetylcholinesterase (AChE) and the autoradiographic method for the localization of muscarinic cholinergic receptors following injection of tritiated quinuclidinyl benzilate (3H QNB). All presently identified vocal control nuclei in both males and females contain AChE. These nuclei include Area X, magnocellular nucleus of the anterior neostriatum (MAN), nucleus interface (NIF), caudal nucleus of the hyperstriatum ventrale (HVc), intercollicular nucleus (ICo), nucleus uva, robust nucleus of the archistriatum (RA), and tracheosyringeal portion of the hypoglossal nerve nucleus (nXIIts). All nuclei except Area X contain mostly AChE-synthesizing cell bodies. All of these nuclei contain some AChE in the neuropil, with particularly intense staining in Area X, the surrounding LPO, and the dorsomedial portion of ICo. In agreement with this description are very high concentrations of 3H QNB in both Area X and the dorsomedial ICo. HVc also appears specifically labeled. Evidence from these two histological technique suggests that efferent projections of most vocal control area may utilize acetylcholine, and that several of the vocal control nuclei may themselves receive muscarinic cholinergic projection. In Area X, there are sex differences of AChE neuropil staining. This evidence suggesting that sexually dimorphic projections to or within Area X are cholinergic or cholinoceptive

  12. Cholinergic blockade under working memory demands encountered by increased rehearsal strategies: evidence from fMRI in healthy subjects.

    Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J

    2012-06-01

    The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.

  13. Effect of aqueous extract of mango kernel (Mangifera Indica on basal activity of virgin rat uterine smooth muscle: role of muscarinic receptors

    Mehdi Noureddini

    2017-04-01

    Full Text Available Background: Mango belongs to the Anacardiaceae and the extracts from its stems, leaves, fruit and kernel are reported to affect smooth muscle contractility. We studied the role of cholinergic muscarinic receptors for the effects of aqueous extract of mango kernel (Mangifera indica on the basal activity of virgin rat uterine smooth muscle. Materials and Methods: In this experimental study, mid-sections (n=24 of the uterine of healthy virgin rats were placed in an organ bath containing carbonated Tyrode’s solution under 1 g tension. The cumulative effects of the aqueous extracts of mango kernel (0.002, 0.02, 0.2, 2, 20, 200, and 2000 μg/mL or extract vehicle (Tyrode’s solution in the presence or absence of atropine were examined by isometric method using the strength, frequency and contractile activity of uterine smooth muscle. Results: The cumulative concentrations (0.002-20 µg/ml of mango kernel aqueous extract was significantly decreased the strength, frequency and contractile activity of uterine smooth muscle, but the contractile activity was returned to the basal level at the concentrations of 200 and 2000 µg/ml. Atropine (1 µM could not significantly change the effects of cumulative use of extract on the strength and contractile activity of uterine smooth muscle, but it significantly enhanced the contractile frequency at low concentrations. Conclusion: The effects of aqueous extract of mango kernel on the activity of the uterine smooth muscle might not be through cholinergic muscarinic receptors and atropine could enhance the effects of the extract on frequency through other receptors.

  14. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells

    Hasebe, Masaharu

    2016-01-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  15. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    ABSTRACT BODY:Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  16. Triazolam-induced modulation of muscarinic acetylcholine receptor in living brain slices as revealed by a new positron-based imaging technique

    Murata, T.; Matsumura, K.; Onoe, H.; Watanabe, Y.; Sihver, S.; Sihver, W.; Langstroem, B.; Bergstroem, M.; Yonekura, Y.

    1997-01-01

    The effect of triazolam, a potent benzodiazepine (BZ) agonist, on muscarinic acetylcholinergic receptor (mAChR) binding was investigated in living brain slices by use of a novel positron-based imaging technique. Fresh rat brain slices were incubated with [ 11 C]N-methyl-4-piperidylbenzilate ([ 11 C]NMPB), a mAChR antagonist, in oxygenated Krebs-Ringer solution at 37 degree C. During incubation, time-resolved imaging of [ 11 C]NMPB binding in the slices was constructed on the storage phosphor screens. Addition of triazolam (1 μM) plus muscimol (30 μM), a GABA A receptor agonist, to the incubation mixture decreased the specific binding of [ 11 C]NMPB. Ro15-1788, a BZ receptor antagonist, prevented this effect, indicating that the effect was exerted through the GABA A /BZ receptor complex. These results demonstrated that stimulation of the GABA A /BZ receptor lowers the affinity of the mAChR for its ligand, which may underlie the BZ-induced amnesia, a serious clinical side effect of BZ. No such effect in the P2-fraction instead implies that the integrity of the neuronal cells and/or their environment is prerequisite for the modulation of mAChR by GABA A /BZ stimulation. (author)

  17. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man

    Galbo, H; Holst, Janett; Christensen, N J

    1976-01-01

    Seven men ran at 60% of individual maximal oxygen uptake to exhaustion during beta-adrenergic blockade with propranolol (P), during lipolytic blockade with nicotinic acid (N), or without drugs (C). The total work times (83 +/- 9 (P), 122 +/- 8 (N), 166 +/- 10 (C) min, mean and SE) differed signif...... determinants for the exercise-induced glucagon secretion in man. It is suggested that decreased glucose availability enhances the secretion of glucagon and epinephrine during prolonged exercise....

  18. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-01-01

    Highlights: → Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. → Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. → VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. → LPA-LPAR1/3 signaling regulated TGFβ1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. → LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGFβ1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the

  19. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Gan, Lu [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Xue, Jian-Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu (China); Li, Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Liu, De-Song [Department of Pediatrics, Sichuan Provincial Hospital of Women and Children, Chengdu (China); Ge, Yan; Ni, Pei-Yan; Deng, Lin [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Lu, You, E-mail: radyoulu@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Jiang, Wei, E-mail: wcumsjw72@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu (China)

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  20. Combined treatment with a β3 -adrenergic receptor agonist and a muscarinic receptor antagonist inhibits detrusor overactivity induced by cold stress in spontaneously hypertensive rats.

    Imamura, Tetsuya; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Suzuki, Toshiro; Saito, Tetsuichi; Yokoyama, Hitoshi; Nakazawa, Masaki; Ishizuka, Osamu

    2017-04-01

    This study determined if combined treatment with the muscarinic receptor (MR) antagonist solifenacin and the β 3 -adrenergic receptor (AR) agonist mirabegron could inhibit detrusor overactivity induced by cold stress in spontaneously hypertensive rats (SHRs). Thirty-two female 10-week-old SHRs were fed an 8% NaCl-supplemented diet for 4 weeks. Cystometric measurements of the unanesthetized, unrestricted rats were performed at room temperature (RT, 27 ± 2°C) for 20 min. The rats were then intravenously administered vehicle, 0.1 mg/kg solifenacin alone, 0.1 mg/kg mirabegron alone, or the combination of 0.1 mg/kg mirabegron and 0.1 mg/kg solifenacin (n = 8 each group). Five minutes later, the treated rats were exposed to low temperature (LT, 4 ± 2°C) for 40 min. Finally, the rats were returned to RT. After the cystometric investigations, the β 3 -ARs and M 3 -MRs expressed within the urinary bladders were analyzed. Just after transfer from RT to LT, vehicle-, solifenacin-, and mirabegron-treated SHRs exhibited detrusor overactivity that significantly decreased voiding interval and bladder capacity. However, treatment with the combination of solifenacin and mirabegron partially inhibited the cold stress-induced detrusor overactivity patterns. The decreases of voiding interval and bladder capacity in the combination-treated rats were significantly inhibited compared to other groups. Within the urinary bladders, there were no differences between expression levels of M 3 -MR and β 3 -AR mRNA. The tissue distribution of M 3 -MRs was similar to that of the β 3 -ARs. This study suggested that the combination of solifenacin and mirabegron act synergistically to inhibit the cold stress-induced detrusor overactivity in SHRs. Neurourol. Urodynam. 36:1026-1033, 2017. © 2016 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc. © 2016 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc.

  1. Effects of muscarinic M1 and M4 acetylcholine receptor stimulation on extinction and reinstatement of cocaine seeking in male mice, independent of extinction learning.

    Stoll, Kevin; Hart, Rachel; Lindsley, Craig W; Thomsen, Morgane

    2018-03-01

    Stimulating muscarinic M 1 /M 4 receptors can blunt reinforcing and other effects of cocaine. A hallmark of addiction is continued drug seeking/craving after abstinence and relapse. We tested whether stimulating M 1 and/or M 4 receptors could facilitate extinction of cocaine seeking, and whether this was mediated via memory consolidation. Experimentally naïve C57BL/6J mice were allowed to acquire self-administration of intravenous cocaine (1 mg/kg/infusion) under a fixed-ratio 1 schedule of reinforcement. Then, saline was substituted for cocaine until responding extinguished to ≤30% of cocaine-reinforced responding. Immediately after each extinction session, mice received saline, the M 1 /M 4 receptor-preferring agonist xanomeline, the M 1 receptor-selective allosteric agonist VU0357017, the M 4 receptor-selective positive allosteric modulator VU0152100, or VU0357017 + VU0152100. In additional experiments, xanomeline was administered delayed after the session or in the home cage before extinction training began. In the latter group, reinstatement of responding by a 10-mg/kg cocaine injection was also tested. Stimulating M 1  + M 4 receptors significantly expedited extinction from 17.2 sessions to 8.3 using xanomeline or 7.8 using VU0357017 + VU0152100. VU0357017 alone and VU0152100 alone did not significantly modify rates of extinction (12.6 and 14.6 sessions). The effect of xanomeline was fully preserved when administered delayed after or unpaired from extinction sessions (7.5 and 6.4 sessions). Xanomeline-treated mice showed no cocaine-induced reinstatement. These findings show that M 1 /M 4 receptor stimulation can decrease cocaine seeking in mice. The effect lasted beyond treatment duration and was not dependent upon extinction learning. This suggests that M 1 /M 4 receptor stimulation modulated or reversed some neurochemical effects of cocaine exposure.

  2. Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus

    Wu Long-Jun

    2009-06-01

    Full Text Available Abstract The molecular mechanism underlying muscarinic acetylcholine receptor-dependent LTD (mAChR-LTD in the hippocampus is less studied. In a recent study, a novel mechanism is described. The induction of mAChR-LTD required the activation of protein tyrosine phosphatase (PTP, and the expression was mediated by AMPA receptor endocytosis via interactions between GluA2, GRIP and liprin-α. The hook-up of these proteins may result in the recruitment of leukocyte common antigen-related receptor (LAR, a PTP that is known to be involved in AMPA receptor trafficking. Interestingly, the similar molecular interaction cannot be applied to mGluR-LTD, despite the fact that the same G-protein involved in LTD is activated by both mAChR and mGluR. This discovery provides key molecular insights for cholinergic dependent cognitive function, and mAChR-LTD can serve as a useful cellular model for studying the roles of cholinergic mechanism in learning and memory.

  3. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  4. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.

    McDonald, Robert J; Hong, Nancy S; Craig, Laura A; Holahan, Matthew R; Louis, Meira; Muller, Robert U

    2005-09-01

    Recent evidence suggests that N-methyl-D-aspartate (NMDA)-receptor mediated plasticity in hippocampus has a more subtle role in memory-based behaviours than originally thought. One idea is that NMDA-based plasticity is essential for the consolidation of post-training memory but not for the initial encoding or for short-term memory. To further test this idea we used a three-phase variant of the hidden goal water maze task. In the first phase, rats were pre-trained to an initial location. Next, intense, massed training was done in a 2-h interval to teach the rats to go to a new location after either an injection of the NMDA receptor antagonist (6)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or of vehicle. Finally, under drug-free conditions 24 h after new location training, a competition test was done between the original and new locations. We find that N-methyl-D-aspartate (NMDA)-receptor blockade has little or no effect on new location training. In contrast, when tested 24 h later, the strength of the trace for the new location learned during NMDA-receptor blockade was much weaker compared with the trace for the new location learned after saline injection. Further experiments showed similar effects when NMDA-receptors were blocked immediately after the new location training, suggesting that this is a memory consolidation effect. Our results therefore reinforce the notion that hippocampal NMDA-receptors participate in post-training memory consolidation but are not essential for the processes necessary to learn or retain navigational information in the short term.

  5. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  6. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis.

    Delgado, María Gabriela; Gracia-Sancho, Jordi; Marrone, Giusi; Rodríguez-Vilarrupla, Aina; Deulofeu, Ramon; Abraldes, Juan G; Bosch, Jaume; García-Pagán, Juan Carlos

    2013-10-01

    Increased hepatic vascular resistance mainly due to elevated vascular tone and to fibrosis is the primary factor in the development of portal hypertension in cirrhosis. Leptin, a hormone associated with reduction in nitric oxide bioavailability, vascular dysfunction, and liver fibrosis, is increased in patients with cirrhosis. We aimed at evaluating whether leptin influences the increased hepatic resistance in portal hypertension. CCl4-cirrhotic rats received the leptin receptor-blocker ObR antibody, or its vehicle, every other day for 1 wk. Hepatic and systemic hemodynamics were measured in both groups. Hepatic nitric oxide production and bioavailability, together with oxidative stress, nitrotyrosinated proteins, and liver fibrosis, were evaluated. In cirrhotic rats, leptin-receptor blockade significantly reduced portal pressure without modifying portal blood flow, suggesting a reduction in the intrahepatic resistance. Portal pressure reduction was associated with increased nitric oxide bioavailability and with decreased O2(-) levels and nitrotyrosinated proteins. No changes in systemic hemodynamics and liver fibrosis were observed. In conclusion, the present study shows that blockade of the leptin signaling pathway in cirrhosis significantly reduces portal pressure. This effect is probably due to a nitric oxide-mediated reduction in the hepatic vascular tone.

  7. Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice.

    Benes, Jan; Novakova, Martina; Rotkova, Jana; Farar, Vladimir; Kvetnansky, Richard; Riljak, Vladimir; Myslivecek, Jaromir

    2012-07-01

    We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.

  8. Sexual dimorphism in the volume of song control nuclei in European starlings: assessment by a Nissl stain and autoradiography for muscarinic cholinergic receptors.

    Bernard, D J; Casto, J M; Ball, G F

    1993-08-22

    Previous studies have found that the volume of several song control nuclei is larger in male songbirds than in female songbirds. The degree of this volumetric sex difference within a given species appears to be systematically related to the degree of the behavioral sex difference. The largest volumetric differences have been reported in species in which the male sings and the female sings little, if at all, and the smallest sex differences in volume have been reported in species in which males and females both sing in nearly equal amounts. We compared the volume of three song control nuclei in male and female European starlings (Sturnus vulgaris), a species in which females are known to sing, though at a much lower rate than males. We investigated the volume of hyperstriatum ventrale, pars caudale, nucleus robustus archistriatalis, and area X of the lobus parolfactorius as defined with the use of a Nissl stain. In addition, we measured the volume of area X as defined by the density of muscarinic cholinergic receptors visualized by in vitro receptor autoradiographic methods. The volumes of all three of the song nuclei, as defined by Nissl staining, are significantly larger in males than in females. For area X, Nissl staining and receptor autoradiography indicate the same significant volumetric sex difference. The three nuclei are approximately one and one half to two times larger in males than in females, a degree of dimorphism that is intermediate to those reported for other species. Previous investigations of sex differences in the avian vocal control system have used only Nissl stains to define nuclear volumes. We demonstrate in this paper that receptor autoradiography can be used to assess dimorphisms in nuclear volume. Broad application of this approach to a number of neurotransmitter receptor systems will better characterize the dimorphisms in the song system, and therefore will provide greater insight into the neuroanatomical and neurochemical control of

  9. THE EFFECTS OF ACUTE AND CHRONIC STRESS ON ERYTHROCYTE DYNAMIC IN COMBINATION WITH ß–ADRENERGIC RECEPTORS BLOCKADE IN RATS

    Lucian Hritcu

    2005-08-01

    Full Text Available : 3 consecutive days propranolol hydrochloride administration (5 mg/kg b.w., subcutaneous injections under acute and chronic stress conditions causes changes of peripheral erythrocyte distribution in rats. The effects of acute stress and its combination with ȕ-adrenergic receptor blockade on erythrocyte dynamic were more pregnant beside the effects of chronic stress and its combination with ȕ-adrenergic receptor blockade, respectively. ȕ-adrenergic mechanisms were shown to be involved in regulation of erythrocyte dynamic in acute and chronic stress response.

  10. Beta amyloid differently modulate nicotinic and muscarinic receptor subtypes which regulate in vitro and in vivo the release of glycine in the rat hippocampus

    Stefania eZappettini

    2012-07-01

    Full Text Available Using both in vitro (hippocampal synaptosomes in superfusion and in vivo (microdialysis approaches we investigated whether and to what extent β amyloid peptide 1-40 (Aβ 1-40 interferes with the cholinergic modulation of the release of glycine (GLY in the rat hippocampus. The nicotine-evoked overflow of endogenous GLY in hippocampal synaptosomes in superfusion was significantly inhibited by Aβ 1-40 (10 nM while increasing the concentration to 100 nM the inhibitory effect did not further increase. Both the Choline (Ch (α7 agonist; 1 mM and the 5-Iodo-A-85380 dihydrochloride (5IA85380, α4β2 agonist; 10 nM-evoked GLY overflow were inhibited by Aβ1-40 at 100 nM but not at 10nM concentrations. The KCl evoked [3H]GLY and [3H]Acetylcholine (ACh overflow were strongly inhibited in presence of oxotremorine; however this inhibitory muscarinic effect was not affected by Aβ1-40. The effects of Aβ1-40 on the administration of nicotine, veratridine, 5IA85380 and PHA 543613 hydrochloride (PHA543613 (a selective agonist of α7 subtypes on hippocampal endogenous GLY release in vivo were also studied. Aβ 1-40 significantly reduced (at 10 μM but not at 1 μM the nicotine evoked in vivo release of GLY. Aβ 1-40 (at 10 μM but not at 1 μM significantly inhibited the PHA543613 (1 mM-elicited GLY overflow while was ineffective on the GLY overflow evoked by 5IA85380 (1 mM. Aβ 40-1 (10 μM did not produce any inhibitory effect on nicotine evoked GLY overflow both in the in vitro and in vivo experiments. Our results indicate that a the cholinergic modulation of the release of GLY occurs by the activation of both α7 and α4β2 nicotinic ACh receptors (nAChRs as well as by the activation of inhibitory muscarinic ACh receptors (mAChRs and b Aβ 1-40 can modulate cholinergic evoked GLY release exclusively through the interaction with α7 and the α4β2 nAChR nicotinic receptors but not through mAChR subtypes.

  11. No changes in lymphocyte muscarinic receptors and platelet monoamine oxidase-B examined as surrogate central nervous system biomarkers in a Faroese children cohort prenatally exposed to methylmercury and polychlorinated biphenyls

    Coccini, Teresa; Manzo, Luigi; Debes, Frodi

    2009-01-01

    Experimental evidence suggests that monoamine oxidase B (MAO-B) and muscarinic cholinergic receptors (mAChRs) are involved in the pathogenesis of neurotoxicity caused by methylmercury and polychlorinated biphenyls (PCBs). Blood samples from 7-year-old exposed children were analyzed for platelet M....../or PCB exposure, whereas these markers are significantly altered in sustained exposure scenarios, as shown by clinical studies in drug addicts or patients treated with psychopharmacological agents....

  12. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  13. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory.

    Cornelisse, Sandra; Joëls, Marian; Smeets, Tom

    2011-12-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.

  14. Adenosine A2A receptor blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    Ahmed M Fathalla

    2016-02-01

    Full Text Available Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson's disease (PD symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1,3-dipropylxanthine, two selective A2Aand A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h, rotenone(1.5 mg/kg/48 h, s.c., ZM241385 (3.3 mg/kg/day, i.p and 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg/day, i.p. After that, animals were subjected to behavioral (stride length and grid walking and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography. In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby high performance liquid chromatography. The effect of rotenone was partially preventedin the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 has led toan improvement improved of motor function and movement coordination (a partial increase of stride length and partial decrease in the number of foot slips and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2Areceptor blockade by ZM241385, but not A1receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients.. This may provide a more selective treatment strategy for PD patients.

  15. The Role of Muscarinic Receptors on spasmolytic Activity of Hydroalcohlic Extract of Parsley(petroselinum crispumSeed in Adult Male Rat's Ileum

    Raede Tavalaee

    2016-08-01

    Full Text Available Abstract Background: because of the side effects of chemical drugs, using plant drugs was considered during recent decades. Based on previous studies, various concentrations of plant extracts can reduce ileum contraction caused by KCl and carbachol. Therefore, in this study, the role of muscarinic receptors in anti-spasmolytic activity of hydroalcohlic extract of parsley(petroselinum crispumseed in adult male rat's ileum was investigated. Materials and Methods: The distal part of Wistar rat’s ileum was separated and its contractions were recorded under 1 gr stretching and 37oC temperature in the bathroom containing the solution of Tyrode by Isotonic method. The ileum tissue was inserted in separately in first group affected by KCl and parsley seed, in the second group affected by KCl and carbachol with concentration 10-2 mg/ml and after that parsley seed, the third group affected by carbachol with concentration 10-2 mg/ml and then the extraction of parsley seed and the fourth group affected by scopolamine with concentration 10-3 M and after that KCl and then the extraction of parsley seed. Results: Non-cumulative concentrations of extract reduced the ileum contraction caused by KCl (60mM in a concentration-dependent form (p<0.001. There was a significant difference between the effect of extract in the presence of carbachol and extract concentration 0.2 mg/ml (p<0.01. There was no significant difference between the effect of extract in the presence of carbachol without stimulating tissue by KCl (60mM with extract concentration 0.2mg/ml (p<0.05. There was no significant difference between the effect of extract in the presence of scopolamine with extract concentration 0.2mg/ml(p<0.05. Conclusion: This study showed that the hydroalcholic of parsley seed extract has a relaxatory effect on rat’s ileum. Carbachol with KCl has a synergistic effect on smooth muscle contraction of the ileum wall and muscarinic receptors do not involve in the

  16. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  17. The role of muscarinic cholinergic signaling in cost-benefit decision making

    Fobbs, Wambura

    Animals regularly face decisions that affect both their immediate success and long term survival. Such decisions typically involve some form of cost-benefit analysis and engage a number of high level cognitive processes, including learning, memory and motivational influences. While decision making has been a focus of study for over a century, it's only in the last 20 years that researchers have begun to identify functional neural circuits that subserve different forms of cost-benefit decision making. Even though the cholinergic system is both functionally and anatomically positioned to modulate cost-benefit decision circuits, the contribution of the cholinergic system to decision making has been little studied. In this thesis, I investigated the cognitive and neural contribution of muscarinic cholinergic signaling to cost-benefit decision making. I, first, re-examined the effects of systemic administration of 0.3 mg/kg atropine on delay and probability discounting tasks and found that blockade of muscarinic acetylcholine receptors by atropine induced suboptimal choices (impulsive and risky) in both tasks. Since the effect on delay discounting was restricted to the No Cue version of the delay discounting task, I concluded that muscarinic cholinergic signaling mediates both forms of cost-benefit decision making and is selectively engaged when decisions require valuation of reward options whose costs are not externally signified. Second, I assessed the impact of inactivating the nucleus basalis (NBM) on both forms decision making and the effect of injecting atropine locally into the orbitofrontal cortex (OFC), basolateral amygdala (BLA), or nucleus accumbens (NAc) core during the No Cue version of the delay discounting task. I discovered that although NBM inactivation failed to affect delay discounting, it induced risk aversion in the probability discounting task; and blockade of intra- NAc core, but not intra-OFC or intra-BLA, muscarinic cholinergic signaling lead to

  18. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    Memo, M; Battaini, F; Spano, P F; Trabucchi, M [University of Brescia, (Italy). Dept. of Pharmacology

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D/sub 1/ receptors, associated with adenylyl cyclase activity, and D/sub 2/ receptor, uncoupled to a cyclic AMP generating system. In order to understand the role of D/sub 1/ and D/sub 2/ receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D/sub 1/ receptors, and sulpiride, a selective antagonist to D/sub 2/ receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D/sub 2/ receptors. In fact under these conditions /sup 3/H-(-)-sulpiride binding, which is a marker of D/sub 2/ receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D/sub 2/ receptors. Moreover, sulpiride does not induce supersensitivity of the D/sub 1/ receptors, characterized by /sup 3/H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by /sup 3/H-spiroperidol and /sup 3/H-(-)-sulpiride binding. These findings suggest that D/sub 1/ and D/sub 2/ receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements.

  19. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    Memo, M.; Battaini, F.; Spano, P.F.; Trabucchi, M.

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D 1 receptors, associated with adenylyl cyclase activity, and D 2 receptor, uncoupled to a cyclic APM generating system. In order to understand the role of D 1 and D 2 receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D 1 receptors, and sulpiride, a selective antagonist to D 2 receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D 2 receptors. In fact under these conditions 3 H-(-)-sulpiride binding, which is a marker of D 2 receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D 2 receptors. Moreover, sulpiride does not induce supersensitivity of the D 1 receptors, characterized by 3 H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by 3 H-spiroperidol and 3 H-(-)-sulpiride binding. These findings suggest that D 1 and D 2 receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements. (author)

  20. Effects of angiotensin II receptor blockade on cerebral, cardiovascular, counter-regulatory, and symptomatic responses during hypoglycaemia in patients with type 1 diabetes

    Færch, Louise H; Thorsteinsson, Birger; Tarnow, Lise

    2015-01-01

    INTRODUCTION: High spontaneous activity of the renin-angiotensin system (RAS) results in more pronounced cognitive impairment and more prolonged QTc interval during hypoglycaemia in type 1 diabetes. We tested whether angiotensin II receptor blockade improves cerebral and cardiovascular function d...

  1. Effect of cannabinoids CB1 receptors blockade on hemodynamic parameters and endothelial function at the immobilization stress in the experiment

    S. V. Gavreliuk

    2017-12-01

    Full Text Available The aim of the study was to evaluate the response of hemodynamic parameters and changes in endothelial function in modeling of CB1 cannabinoid receptors blockade in chronic stress. Materials and мethods. The study was performed on four groups of hundred-day-old rats, which were examined by ultrasonic scanning during the ten-day period of the experiment. The first group consisted of intact animals; the second group – animals, which were exposed to immobilization stress; the third – animals which were given a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day daily per os; the fourth group consisted of animals which daily received a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day and were exposed to immobilization stress. The intraluminal vessel diameter, the intima-media complex thickness, endothelium-dependent and endothelium-independent dilation were quantified in the ultrasound examination. Quantitative characteristics of the blood flow were studied: peak systolic velocity, end diastolic velocity, resistive index and peak-systolic/end-diastolic ratio, and estimated mean blood flow velocity. Results. It has been found that the effect of chronic immobilization stress in 100-day-old male rats causes intima-media complex structure and thickness change, endothelial dysfunction and increase in the abdominal aorta intraluminal diameter. Hemodynamics changes are characterized by a decrease in the average blood flow velocity and an increase in the values of indices characterizing the vascular wall peripheral resistance. Prolonged blockade of cannabinoids CB1 receptors leads to endothelial dysfunction development, a decrease in the intraluminal diameter of the abdominal aorta and a decrease in the average blood flow velocity while vascular wall elastic properties maintaining. This affects the sensitivity of cardiovascular system to nitrogen oxide, which is manifested by

  2. Remodeling of intrinsic cardiac neurons: effects of β-adrenergic receptor blockade in guinea pig models of chronic heart disease.

    Hardwick, Jean C; Southerland, E Marie; Girasole, Allison E; Ryan, Shannon E; Negrotto, Sara; Ardell, Jeffrey L

    2012-11-01

    Chronic heart disease induces remodeling of cardiac tissue and associated neuronal components. Treatment of chronic heart disease often involves pharmacological blockade of adrenergic receptors. This study examined the specific changes in neuronal sensitivity of guinea pig intrinsic cardiac neurons to autonomic modulators in animals with chronic cardiac disease, in the presence or absence of adrenergic blockage. Myocardial infarction (MI) was produced by ligature of the coronary artery and associated vein on the dorsal surface of the heart. Pressure overload (PO) was induced by a banding of the descending dorsal aorta (∼20% constriction). Animals were allowed to recover for 2 wk and then implanted with an osmotic pump (Alzet) containing either timolol (2 mg·kg(-1)·day(-1)) or vehicle, for a total of 6-7 wk of drug treatment. At termination, intracellular recordings from individual neurons in whole mounts of the cardiac plexus were used to assess changes in physiological responses. Timolol treatment did not inhibit the increased sensitivity to norepinephrine seen in both MI and PO animals, but it did inhibit the stimulatory effects of angiotensin II on the norepinephrine-induced increases in neuronal excitability. Timolol treatment also inhibited the increase in synaptically evoked action potentials observed in PO animals with stimulation of fiber tract bundles. These results demonstrate that β-adrenergic blockade can inhibit specific aspects of remodeling within the intrinsic cardiac plexus. In addition, this effect was preferentially observed with active cardiac disease states, indicating that the β-receptors were more influential on remodeling during dynamic disease progression.

  3. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats

    Max Thorwald

    2018-04-01

    Full Text Available Hyperglycemia increases the risk of oxidant overproduction in the heart through activation of a multitude of pathways. Oxidation of mitochondrial enzymes may impair their function resulting in accumulation of intermediates and reverse electron transfer, contributing to mitochondrial dysfunction. Furthermore, the renin-angiotensin system (RAS becomes inappropriately activated during metabolic syndrome, increasing oxidant production. To combat excess oxidant production, the transcription factor, nuclear factor erythriod-2- related factor 2 (Nrf2, induces expression of many antioxidant genes. We hypothesized that angiotensin II receptor type 1 (AT1 blockade improves mitochondrial function in response to an acute glucose load via upregulation of Nrf2. To address this hypothesis, an oral glucose challenge was performed in three groups prior to dissection (n = 5–8 animals/group/time point of adult male rats: 1 Long Evans Tokushima Otsuka (LETO; lean strain-control, 2 insulin resistant, obese Otsuka Long Evans Tokushima Fatty (OLETF, and 3 OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 6 weeks. Hearts were collected at T0, T60, and T120 minutes post-glucose infusion. ARB increased Nrf2 binding 32% compared to OLETF at T60. Total superoxide dismutase (SOD and catalase (CAT activities were increased 45% and 66% respectively in ARB treated animals compared to OLETF. Mitochondrial enzyme activities of aconitase, complex I, and complex II increased by 135%, 33% and 66%, respectively in ARB compared to OLETF. These data demonstrate the protective effects of AT1 blockade on mitochondrial function during the manifestation of insulin resistance suggesting that the inappropriate activation of AT1 during insulin resistance may impair Nrf2 translocation and subsequent antioxidant activities and mitochondrial function. Keywords: Angiotensin II, Mitochondria, Cardiac, Antioxidant enzymes, TCA cycle

  4. Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity.

    Blume, Shannon R; Nam, Hannah; Luz, Sandra; Bangasser, Debra A; Bhatnagar, Seema

    2018-06-15

    Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Imaging of muscarinic acetylcholine receptors using (+)N-[11C]methyl-3-piperidyl benzilate (11C-3NMPB) in vascular dementia and Alzheimer's disease

    Saito, Hirohiko

    2006-01-01

    In order to clarify the integrity of muscarinic acetylcholine receptor (mAChR) in vascular dementia (VaD) and Alzheimer's disease (AD), PET imaging with (+) N-[ 11 C]methyl-3-piperidyl benzilate ( 11 C-3NMPB) was performed in 12 patients with VaD, 11 patients with AD, and 7 normal controls (NC group). The mAChR binding was compared by the ratios compared with the cerebellum which were calculated from the regions of interest (ROI), and by three-dimensional statistic analysis. Compared with the NC group, mAChR was not significantly reduced in any ROI in AD patients. In those with VaD due to cortical lesions, mAChR was reduced in the infarcted areas. On the other hand, mAChR was significantly reduced in the thalamus and anterior cingulated gyrus, but not in other cerebral cortices in patients with VaD due to subcortical lesions. Accordingly, it is suggested that the mAChR is preserved in the cerebral cortices in patients with VaD due to subcortical lesions as well as in AD patients. (author)

  6. Presynaptic muscarinic receptors, calcium channels, and protein kinase C modulate the functional disconnection of weak inputs at polyinnervated neonatal neuromuscular synapses.

    Santafe, M M; Garcia, N; Lanuza, M A; Tomàs, M; Besalduch, N; Tomàs, J

    2009-04-01

    We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 muM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block.

  7. Point mutation of a conserved aspartate, D69, in the muscarinic M2 receptor does not modify voltage-sensitive agonist potency.

    Ågren, Richard; Sahlholm, Kristoffer; Nilsson, Johanna; Århem, Peter

    2018-01-29

    The muscarinic M 2 receptor (M 2 R) has been shown to display voltage-sensitive agonist binding, based on G protein-activated inward rectifier potassium channel (GIRK) opening and radioligand binding at different membrane voltages. A conserved aspartate in transmembrane segment (TM) II of M 2 R, D69, has been proposed as the voltage sensor. While a recent paper instead presented evidence of tyrosines in TMs III, VI, and VII acting as voltage sensors, these authors were not able to record GIRK channel activation by a D69N mutant M 2 R. In the present study, we succeeded in recording ACh-induced GIRK channel activation by this mutant at -80 and 0 mV. The acetylcholine EC 50 was about 2.5-fold higher at 0 mV, a potency shift very similar to that observed at wild-type M 2 R, indicating that voltage sensitivity persists at the D69N mutant. Thus, our present observations corroborate the notion that D69 is not responsible for voltage sensitivity of the M 2 R. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-02-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of /sup 201/Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and /sup 201/Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of /sup 201/Tl uptake in non-occluded endocardium. Uptake of /sup 201/Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties.

  9. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-01-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of 201 Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and 201 Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of 201 Tl uptake in non-occluded endocardium. Uptake of 201 Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties. (orig.) [de

  10. Differential regulation by agonist and phorbol ester of cloned m1 and m2 muscarinic acetylcholine receptors in mouse Y1 adrenal cells and in Y1 cells deficient in cAMP-dependent protein kinase

    Scherer, N.M.; Nathanson, N.M.

    1990-01-01

    Cloned muscarinic acetylcholine m1 and m2 receptors were expressed in stably transfected mouse Y1 adrenal cells and in a variant Y1 line, Kin-8, which is deficient in cAMP-dependent protein kinase activity (PKA - ). m1 and m2 receptors were rapidly internalized following exposure of transfected PKA + or PKA - cells to the muscarinic agonist carbachol. Thus, agonist-dependent internalization of m1 and m2 did not require PKA activity. A differential effect of PKA on regulation by agonist of the m2 receptor, but not the m1 receptor, was unmasked in PKA - cells. These data indicate that the basal activity of PKA may modulate the agonist-dependent internalization of the m2 receptor, but not the m1 receptor. The internalization of the m1 and m2 receptors in both PKA + and PKA - cells was accompanied by desensitization of functional responses. Exposure of PKA + cells to 10 -7 M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, resulted in a 30 ± 9% decrease in the number of m1 receptors on the cell surface. The m2 receptor was not internalized following treatment of either PKA + or PKA - cells with PMA. Thus, the m1 and m2 receptors show differential sensitivity to internalization by PMA. Agonist-dependent internalization of the m1 receptor appeared to be independent of activation of PKC because (1) agonist-dependent internalization of m1 was not attenuated in PKA - cells, (2) the rate and extent of internalization of m1 in cells exposed to PMA were less than those in cells exposed to agonist, and (3) treatment of cells with concanavalin A selectivity blocked internalization of m1 in cells exposed to PMA, but not to agonist. The effects of agonist and PMA on receptor internalization were not additive. Exposure of PKA + or PKA - cells to PMA reduced the magnitude of pilocarpine-stimulated PI hydrolysis by about 25%

  11. Blockade of group II metabotropic glutamate receptors produces hyper-locomotion in cocaine pre-exposed rats by interactions with dopamine receptors.

    Yoon, Hyung Shin; Jang, Ju Kyong; Kim, Jeong-Hoon

    2008-09-01

    It was previously reported that blockade of group II metabotropic glutamate receptors (mGluRs) produces hyper-locomotion in rats previously exposed to amphetamine, indicating that group II mGluRs are well positioned to modulate the expression of behavioral sensitization by amphetamine. The present study further examined the locomotor activating effects of specific blockade of these receptors after cocaine pre-exposures. First, rats were pre-exposed to seven daily injections of cocaine (15mg/kg, IP). When challenged the next day with an injection of either saline or the group II mGluR antagonist LY341495 (0.5, 1.0 or 2.5mg/kg, IP), they produced hyper-locomotor activity, measured by infrared beam interruptions, to LY341495 compared to saline in a dose-dependent manner. Second, rats were pre-exposed to either saline or seven daily injections of cocaine (15mg/kg, IP). Three weeks later, when they were challenged with an injection of either saline or LY341495 (1.0mg/kg, IP), only rats pre-exposed to cocaine produced hyper-locomotor activity to LY341495 compared to saline. These effects, however, were not present when dopamine D1 (SCH23390; 5 or 10microg/kg), but not D2 (eticlopride; 10 or 50microg/kg), receptor antagonist was pre-injected, indicating that this cocaine-induced hyper-locomotor activity to LY341495 may be mediated in dopamine D1 receptor-dependent manner. These results suggest that group II mGluRs may be adapted to interact with dopaminergic neuronal signaling in mediating the sensitized locomotor activity produced by repeated cocaine pre-exposures.

  12. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain.

    Borowski, Andreas; Vetter, Tina; Kuepper, Michael; Wohlmann, Andreas; Krause, Sebastian; Lorenzen, Thomas; Virchow, Johann Christian; Luttmann, Werner; Friedrich, Karlheinz

    2013-02-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine with a pivotal role in development and maintenance of atopic diseases such as allergic asthma and atopic dermatitis. Moreover, recent studies show an involvement of TSLP in the progression of various cancers. TSLP signaling is mediated by the TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor. It consists of the IL-7 receptor alpha chain (IL-7Rα), which is shared with the IL-7 receptor, and the TSLPRα chain as a specific subunit. Blocking signal release by TSLP without affecting IL-7 function is a potentially interesting option for the treatment of atopic diseases or certain tumors. By employing the extracellular domain of human TSLPRα chain (hTSLPRα(ex)) as an antigen, we generated a set of monoclonal antibodies. Several binders to native and/or denatured receptor protein were identified and characterized by cytometry and Western blot analysis. A screen based on a STAT3-driven reporter gene assay in murine pro-B cells expressing a functional hTSLPR yielded two hybridoma clones with specific antagonistic properties towards hTSLP, but not IL-7. Kinetic studies measuring blockade of hTSLP-dependent STAT phosphorylation in a TSLP-responsive cell line revealed an inhibitory constant in the nanomolar range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  14. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Boronic acid adducts of technetium dioxime (BATO) complexes derived from quinuclidine benzilate (QNB) boronic acid stereoisomers: Syntheses and studies of their binding to the muscarinic acetylcholine receptor

    Jurisson, Silvia S.; Pirro, John; DiRocco, Richard J.; Rosenspire, Karen C.; Jagoda, Elaine; Nanjappan, Palaniappa; Eckelman, William C.; Nowotnik, David P.; Nunn, Adrian D.

    1995-01-01

    We have investigated the possibility of using BATO complexes derivatized with the muscarinic acetylcholine receptor (mAChR) antagonist, quinuclidinyl benzilate (QNB), for mAChR imaging. The BATO complexes, TcCl(DMG) 3 B-QNB, were prepared using QNB derivatives containing a 4'-boronic acid substituent on one of the benzilic benzene rings (QNB-boronic acid). The QNB-boronic acid molecule has two chiral centers, and all four QNB-BATO stereoisomers were made and evaluated. When studied using in vitro receptor binding assays based on tissue from rat brain caudate-putamen (which contains primarily M 1 and M 4 mAChR) and rat heart (M 2 mAChR), the QNB-boronic acid stereoisomers had binding affinities (K A ) in the range 2 x 10 5 -1 x 10 8 , at least 10-fold lower than theK A for QNB (ca 2 x 10 9 ). The stereochemistry of both centers had some influence on the affinity constant. When the TcCl(DMG) 3 B-QNB complexes were studied, none of the stereoisomeric complexes displayed measurable specific binding (K A 6 ), but all showed high non-specific binding. In vitro autoradiography with rat brain slices confirmed the absence of specific binding in these tracers. In vivo, the 99m TcCl(DMG) 3 B-QNB complexes displayed minimal brain uptake, and modest heart uptake; the latter was unlikely to be related to uptake by the mAChR. In light of these findings, we conclude that the interaction between the TcCl(DMG) 3 B-QNB complexes and biological membranes is dominated by the hydrophobicity of the BATO moiety. The TcCl(DMG) 3 B-QNB complexes, therefore, have little potential for mAChR imaging

  16. Effect of genetic and pharmacological blockade of GABA receptors on the 5-HT2C receptor function during stress.

    Martin Cédric B P; Gassmann Martin; Chevarin Caroline; Hamon Michel; Rudolph Uwe; Bettler Bernhard; Lanfumey Laurence; Mongeau Raymond

    2014-01-01

    5-HT2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on serotonin (5-HT) release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT tur...

  17. Benzazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects

    Iorio, L.C.; Billiard, W.; Gold, E.H.

    1986-01-01

    This chapter describes the displacement of 3 H-23390 and 3 H-spiperone binding by dopamine agonists and antagonists. The authors undertook an evaluation of the ability of selected analogs of SCH 23390 to displace 3 H-SCH 23390 and 3 H-spiperone. Structure-activity relationships of SCH 23390 analogs: 7-position substituents, is shown. It is shown that, in general, benzazepines with a variety of substituents in the 7-position retain their selectivity for D 1 sites. Substituents at the 8-position and at the N-position are also discussed. The authors determine a correlation between displacement of 3 H-SCH 23390 and blockade of dopamine-sensitive adenylate cyclase (DSAC). These effects and inhibition of conditioned avoidance responsing (CAS) in rats was also studied. A detailed evaluation is presented of the effects of SCH 23390 and haloperidol in the Inclined Screen and CAR tests

  18. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  19. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  1. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  2. Blockade of human P2X7 receptor function with a monoclonal antibody.

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  3. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  4. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien; Sabourin, Jean-Christophe; Benderitter, Marc; Francois, Agnes

    2009-01-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET A ), and ET type B receptor (ET B ) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectum tissue were done; the sections were also immunostained for ET A and ET B receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET A /ET B expression and ET A /ET B localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET A and ET B in healthy human rectums was similar to that in rat rectums. However, strong ET A immunostaining was seen in the presence of human radiation proctitis, and increased ET A mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET A was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET A , radiation exposure deregulates the endothelin system through an 'ET A profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or specific ET A receptor blockade do not prevent radiation damage

  5. Impaired recovery of brain muscarinic receptor sites following an adaptive down-regulation induced by repeated administration of diisopropyl fluorophosphate in aged rats

    Pintor, A.; Fortuna, S.; De Angelis, S.; Michalek, H.

    1990-01-01

    Potential age-related differences in the recovery rate of brain cholinesterase activity (ChE) and muscarinic acetylcholine receptor binding sites (mAChRs) following reduction induced by repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. Male 3- and 24-month old rats were s.c. injected with DFP on alternate days for 2 weeks and killed 48 hr and 7, 14, 21, 28 and 35 days after the last treatment. In the hippocampus and striatum, but not in the cerebral cortex, of control rats there as a significant age-related decline of ChE activity and maximal density of 3H-QNB binding sites (Bmax). The repeated administration of DFP during the first week caused a syndrome of cholinergic stimulation both in aged and young rats. The syndrome was more pronounced, in terms of intensity and duration in aged than in young animals resulting in 40 and 12% mortality, respectively; during the second week the syndrome attenuated in the two age-groups. The percentage inhibition of brain ChE at the end of DFP treatment did not differ between young and surviving aged rats. The down-regulation of mACRs was present in the three brain regions of both young and age rats (from 20 to 40%). Factorial analysis of variance showed significant differences for age, recovery rate, and significant interaction between age and recovery rate, both for ChE and mAChRs in young rats the three brain areas

  6. Impaired recovery of brain muscarinic receptor sites following an adaptive down-regulation induced by repeated administration of diisopropyl fluorophosphate in aged rats

    Pintor, A.; Fortuna, S.; De Angelis, S.; Michalek, H. (Istituto Superiore di Sanita, Rome (Italy))

    1990-01-01

    Potential age-related differences in the recovery rate of brain cholinesterase activity (ChE) and muscarinic acetylcholine receptor binding sites (mAChRs) following reduction induced by repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. Male 3- and 24-month old rats were s.c. injected with DFP on alternate days for 2 weeks and killed 48 hr and 7, 14, 21, 28 and 35 days after the last treatment. In the hippocampus and striatum, but not in the cerebral cortex, of control rats there as a significant age-related decline of ChE activity and maximal density of 3H-QNB binding sites (Bmax). The repeated administration of DFP during the first week caused a syndrome of cholinergic stimulation both in aged and young rats. The syndrome was more pronounced, in terms of intensity and duration in aged than in young animals resulting in 40 and 12% mortality, respectively; during the second week the syndrome attenuated in the two age-groups. The percentage inhibition of brain ChE at the end of DFP treatment did not differ between young and surviving aged rats. The down-regulation of mACRs was present in the three brain regions of both young and age rats (from 20 to 40%). Factorial analysis of variance showed significant differences for age, recovery rate, and significant interaction between age and recovery rate, both for ChE and mAChRs in young rats the three brain areas.

  7. Dissociation between cardiomyocyte function and remodeling with beta-adrenergic receptor blockade in isolated canine mitral regurgitation.

    Pat, Betty; Killingsworth, Cheryl; Denney, Thomas; Zheng, Junying; Powell, Pamela; Tillson, Michael; Dillon, A Ray; Dell'Italia, Louis J

    2008-12-01

    The low-pressure volume overload of isolated mitral regurgitation (MR) is associated with increased adrenergic drive, left ventricular (LV) dilatation, and loss of interstitial collagen. We tested the hypothesis that beta1-adrenergic receptor blockade (beta1-RB) would attenuate LV remodeling after 4 mo of MR in the dog. beta1-RB did not attenuate collagen loss or the increase in LV mass in MR dogs. Using MRI and three-dimensional (3-D) analysis, there was a 70% increase in the LV end-diastolic (LVED) volume-to-LV mass ratio, a 23% decrease in LVED midwall circumferential curvature, and a >50% increase in LVED 3-D radius/wall thickness in MR dogs that was not attenuated by beta1-RB. However, beta1-RB caused a significant increase in LVED length from the base to apex compared with untreated MR dogs. This was associated with an increase in isolated cardiomyocyte length (171+/-5 microm, P<0.05) compared with normal (156+/-3 microm) and MR (165+/-4 microm) dogs. Isolated cardiomyocyte fractional shortening was significantly depressed in MR dogs compared with normal dogs (3.73+/-0.31 vs. 5.02+/-0.26%, P<0.05) and normalized with beta1-RB (4.73+/-0.48%). In addition, stimulation with the beta-adrenergic receptor agonist isoproterenol (25 nM) increased cardiomyocyte fractional shortening by 215% (P<0.05) in beta1-RB dogs compared with normal (56%) and MR (50%) dogs. In summary, beta1-RB improved LV cardiomyocyte function and beta-adrenergic receptor responsiveness despite further cell elongation. The failure to attenuate LV remodeling associated with MR could be due to a failure to improve ultrastructural changes in extracellular matrix organization.

  8. The effect of ZMS on the coupling of muscarinic receptor to G-proteins activation in rat brain

    Fang Cailong; Hu Yaer; Gao Ruxue; Xia Zongqin

    1999-01-01

    The carbachol-stimulated [ 35 S]GTP γ S binding method was used to observe the effect of ZMS, an active component from Zhimu, on the coupling of M-receptor to G-protein. the effect of ZMS on the ability of learning and memory in aged rats was also observed. It was shown that the carbachol-stimulated elevation of [ 35 S]GTPγS binding was significantly decreased in aged rats as compared with young rats. The carbachol-induced [ 35 S]STPγS binding showed that administration of ZMS at median or high dose have a definite elevation effect on the coupling activity of M-receptors to G-protein in brain, and this elevation was accompanied by an improvement of learning and memory ability

  9. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells.

    Leung, Joseph C K; Chan, Loretta Y Y; Saleem, M A; Mathieson, P W; Tang, Sydney C W; Lai, Kar Neng

    2015-07-01

    Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.

  10. The effect of purinergic P2 receptor blockade on skeletal muscle exercise hyperemia in miniature swine

    Mortensen, Stefan Peter; McAllister, R M; Yang, H T

    2014-01-01

    PURPOSE: ATP could play an important role in skeletal muscle blood flow regulation by inducing vasodilation via purinergic P2 receptors. This study investigated the role of P2 receptors in exercise hyperemia in miniature swine. METHODS: We measured regional blood flow with radiolabeled......-microsphere technique and systemic hemodynamics before and after arterial infusion of the P2 receptor antagonist reactive blue 2 during treadmill exercise (5.2 km/h, ~60 % VO2max) and arterial ATP infusion in female Yucatan miniature swine (~29 kg). RESULTS: Mean blood flow during exercise from the 16 sampled skeletal...... muscle tissues was 138 ± 18 mL/min/100 g (mean ± SEM), and it was reduced in 11 (~25 %) of the 16 sampled skeletal muscles after RB2 was infused. RB2 also lowered diaphragm blood flow and kidney blood flow, whereas lung tissue blood flow was increased (all P

  11. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals

    Krueger, Katharina; Gruner, Janina; Madeja, Michael; Musshoff, Ulrich [Universitaetsklinikum Muenster, Institut fuer Physiologie I, Muenster (Germany); Hartmann, Louise M.; Hirner, Alfred V. [Universitaet Duisburg-Essen, Institut fuer Umweltanalytik, Essen (Germany); Binding, Norbert [Universitaetsklinikum Muenster, Institut fuer Arbeitsmedizin, Muenster (Germany)

    2006-08-15

    Pentavalent and trivalent organoarsenic compounds belong to the major metabolites of inorganic arsenicals detected in humans. Recently, the question was raised whether the organic arsenicals represent metabolites of a detoxification process or methylated species with deleterious biological effects. In this study, the effects of trivalent arsenite (AsO{sub 3} {sup 3-}; iA{sup III}), the pentavalent organoarsenic compounds monomethylarsonic acid (CH{sub 3}AsO(OH){sub 2}; MMA{sup V}) and dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and the trivalent compounds monomethylarsonous acid (CH{sub 3}As(OH){sub 2}, MMA{sup III}) and dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) were tested on glutamate receptors and on voltage-operated potassium and sodium channels heterologously expressed in Xenopus oocytes. Membrane currents of ion channels were measured by conventional two-electrode voltage-clamp techniques. The effects of arsenite were tested in concentrations of 1-1,000 {mu}mol/l and the organic arsenical compounds were tested in concentrations of 0.1-100 {mu}mol/l. We found no significant effects on voltage-operated ion channels; however, the arsenicals exert different effects on glutamate receptors. While MMA{sup V} and MMA{sup III} significantly enhanced ion currents through N-methyl-d-aspartate (NMDA) receptor ion channels with threshold concentrations <10 {mu}mol/l, DMA{sup V} and DMA{sup III} significantly reduced NMDA-receptor mediated responses with threshold concentrations <0.1 {mu}mol/l; iA{sup III} had no effects on glutamate receptors of the NMDA type. MMA{sup III} and DMA{sup V} significantly reduced ion currents through {alpha}-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor ion channels with threshold concentrations <10 {mu}mol/l (MMA{sup III}) and <1 {mu}mol/l (DMA{sup V}). MMA{sup V} and iA{sup III} had no significant effects on glutamate receptors of the AMPA type. The effects of MMA{sup V}, MMA

  12. Blockade of AT1 receptors by losartan did not affect renin gene expression in kidney medulla

    Tybitanclová, K.; Szabová, L.; Grima, M.; Ingert, C.; Železná, Blanka; Zórad, Š.

    2006-01-01

    Roč. 25, č. 1 (2006), s. 43-51 ISSN 0231-5882 Grant - others:VEGA(SK) 2/5090/25 Institutional research plan: CEZ:AV0Z50520514 Keywords : AT1 receptor * renin-angiotensin system * kidneys Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.771, year: 2006

  13. Angiotensin receptor blockade in acute stroke. The Scandinavian Candesartan Acute Stroke Trial

    Sandset, Else Charlotte; Murray, Gordon; Boysen, Gudrun

    2010-01-01

    BACKGROUND: Elevated blood pressure following acute stroke is common, and yet early antihypertensive treatment is controversial. ACCESS suggested a beneficial effect of the angiotensin receptor blocker candesartan in the acute phase of stroke, but these findings need to be confirmed in new, large...

  14. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte

    2014-01-01

    PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801....... VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant...

  15. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors

    Jeon, Jongrye; Dencker, Ditte; Wörtwein, Gitta

    2010-01-01

    AChRs are coexpressed with D(1) dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M(4) mAChR subpopulation in modulating dopamine-dependent behaviors, we used Cre/loxP technology to generate mutant mice that lack M(4) mAChRs only in D(1) dopamine....... Since enhanced central dopaminergic neurotransmission is a hallmark of several severe disorders of the CNS, including schizophrenia and drug addiction, our findings have substantial clinical relevance....

  16. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    Background The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. Methods We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then...

  17. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles

    Stone, Audrey J.; Copp, Steven W.; Kim, Joyce S.; Kaufman, Marc P.

    2015-01-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles ...

  18. Amenorrhea secondary to a vismodegib-induced blockade of follicle-stimulating hormone-receptor activation.

    Strasswimmer, John; Latimer, Benjamin; Ory, Steven

    2014-08-01

    To report a novel mechanism suggestive of early ovarian failure secondary to the anti-tumor hedgehog-pathway inhibitor vismodegib. Case report and literature review. Academic and private dermatology and fertility practices. A 34-year-old nulliparous woman with locally advanced basal cell carcinomas who became amenorrheic while receiving oral therapy with vismodegib. Physical examination and endocrine evaluation. Elevated follicle-stimulating hormone (FSH) and low estrogen in the setting of a normal anti-Müllerian hormone. FSH was elevated; estrogen was low. Preantral follicles were detected and anti-Müllerian hormone activity was normal. Menses resumed 5 weeks after cessation of therapy. Vismodegib, a first-in-class inhibitor of the hedgehog signaling pathway is indicated for advanced basal cell carcinoma and is associated with amenorrhea. The mechanism is unknown; it has some features of ovarian failure but preserves ovarian potential through blockading of FSH-receptor-dependent signal transduction. This effect appears to be rapidly reversible upon cessation of therapy. Vismodegib and related compounds may have potential for a role in intervention for gynecologic and endocrine disorders and in therapy for other issues involving FSH-dependent function. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Endocannabinoid receptor blockade increases vascular endothelial growth factor and inflammatory markers in obese women with polycystic ovary syndrome.

    Sathyapalan, Thozhukat; Javed, Zeeshan; Kilpatrick, Eric S; Coady, Anne-Marie; Atkin, Stephen L

    2017-03-01

    Animal studies suggest that cannabinoid receptor-1 (CB-1) blockade reduces inflammation and neovascularization by decreasing vascular endothelial growth factor (VEGF) levels associated with a reduction in inflammatory markers, thereby potentially reducing cardiovascular risk. To determine the impact of CB1 antagonism by rimonabant on VEGF and inflammatory markers in obese PCOS women. Randomized, open-labelled parallel study. Endocrinology outpatient clinic in a referral centre. Twenty patients with PCOS (PCOS) and biochemical hyperandrogenaemia with a body mass index of ≥30 kg/m 2 were recruited. Patients were randomized to 1·5 g daily of metformin or 20 mg daily of rimonabant. Post hoc review to detect VEGF and pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 before and after 12 weeks of treatment. After 12 weeks of rimonabant treatment, there was a significant increase in VEGF (99·2 ± 17·6 vs 116·2 ± 15·8 pg/ml, P weight loss. © 2016 John Wiley & Sons Ltd.

  20. Pitting type of pretibial edema in a patient with silent thyroiditis successfully treated by angiotensin ii receptor blockade.

    Kazama, Itsuro; Mori, Yoko; Baba, Asuka; Nakajima, Toshiyuki

    2014-01-01

    Female, 56 FINAL DIAGNOSIS: Thyroiditis - silent Symptoms: Palpitations • pretibial pitting edema • short of breath • sweating - Clinical Procedure: - Specialty: Endocrinology and Metabolic. Unknown etiology. Hyper- or hypothyroidism sometimes causes pretibial myxedema characterized by non-pitting infiltration of a proteinaceous ground substance. However, in those patients, the "pitting" type of pretibial edema as a result of increased sodium and fluid retention or vascular hyper-permeability rarely occurs, except in cases complicated by heart failures due to severe cardiomyopathy or pulmonary hypertension. A 56-year-old woman developed bilateral pretibial pitting edema, followed by occasional sweating, palpitations, and shortness of breath, which persisted for more than 2 months. The diagnosis of hyperthyroidism due to silent thyroiditis was supported by elevated levels of free thyroxine (T4) and triiodothyronine (T3), with a marked decrease in thyroid-stimulating hormone (TSH), and the negative results for TSH receptor antibodies with typical findings of destructive thyrotoxicosis. Despite her "pitting" type of pretibial edema, a chest radio-graph demonstrated the absence of cardiomyopathy or congestive heart failure. Oral administration of angiotensin II receptor blocker (ARB) was initiated for her systolic hypertension, with a relatively higher elevation of plasma renin activity compared to that of the aldosterone level. Although the symptoms characteristic to hyperthyroidism, such as increased sweating, palpitations and shortness of breath, slowly improved with a spontaneous resolution of the disease, ARB quickly resolved the pretibial pitting edema shortly after the administration.. In this case, increased activity of the renin-angiotensin-aldosterone system stimulated by thyroid hormone was likely responsible for the patient's pitting type of edema. The pharmacological blockade of the renin-angiotensin-aldosterone system was thought to be effective for

  1. Effects of activation and blockade of dopamine receptors on the extinction of a passive avoidance reaction in mice with a depressive-like state.

    Dubrovina, N I; Zinov'eva, D V

    2010-01-01

    Learning and extinction of a conditioned passive avoidance reaction resulting from neuropharmacological actions on dopamine D(1) and D(2) receptors were demonstrated to be specific in intact mice and in mice with a depressive-like state. Learning was degraded only after administration of the D(2) receptor antagonist sulpiride and was independent of the initial functional state of the mice. In intact mice, activation of D(2) receptors with quinpirole led to a deficit of extinction, consisting of a reduction in the ability to acquire new inhibitory learning in conditions associated with the disappearance of the expected punishment. In mice with the "behavioral despair" reaction, characterized by delayed extinction, activation of D(1) receptors with SKF38393 normalized this process, while the D(2) agonist was ineffective. A positive effect consisting of accelerated extinction of the memory of fear of the dark ("dangerous") sector of the experimental chamber was also seen on blockade of both types of dopamine receptor.

  2. Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms.

    Ellen Mueller Fox

    Full Text Available Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks-one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths.

  3. Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus

    Weihprecht, H; Lorenz, J N; Schnermann, J

    1990-01-01

    Adenosine has been proposed to act within the juxtaglomerular apparatus (JGA) as a mediator of the inhibition of renin secretion produced by a high NaCl concentration at the macula densa. To test this hypothesis, we studied the effects of the adenosine1 (A1)-receptor blocker 8-cyclopentyl-1......,3-dipropylxanthine (CPX) on renin release from single isolated rabbit JGAs with macula densa perfused. The A1-receptor agonist, N6-cyclohexyladenosine (CHA), applied in the bathing solution at 10(-7) M, was found to inhibit renin secretion, an effect that was completely blocked by adding CPX (10(-5) M) to the bath....... Applied to the lumen, 10(-5) M CPX produced a modest stimulation of renin secretion rates suppressed by a high NaCl concentration at the macula densa (P less than 0.05). The effect of changing luminal NaCl concentration on renin secretion rate was examined in the presence of CPX (10(-7) and 10(-5) M...

  4. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal

  5. Proceedings of the International Symposium on Subtypes of Muscarinic Receptors (5th), Held in Newport Beach, California, October 22-24, 1992.

    1993-02-22

    AHMED , Chest 96 1285-1291 (1991). 29. P.J. BARNES, Thorax 44 161-167 (1989). 30. P.W. IND, C.M.S. DIXON, R.W. FULLER and P.J. BARNES, Am Rev Respir...mechanism by which muscarinic agonists, such as pilocarpiný_ lower the intraocular pressure of glaucoma patients. Pharmacological studies with subtype

  6. Effects of 5-HT5A receptor blockade on amnesia or forgetting.

    Aparicio-Nava, L; Márquez-García, L A; Meneses, A

    2018-01-09

    Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT 5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT 5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. No significant effect of angiotensin II receptor blockade on intermediate cardiovascular end points in hemodialysis patients

    Peters, Christian Daugaard; Kjaergaard, Krista D; Jensen, Jens D

    2014-01-01

    Agents blocking the renin-angiotensin-aldosterone system are frequently used in patients with end-stage renal disease, but whether they exert beneficial cardiovascular effects is unclear. Here the long-term effects of the angiotensin II receptor blocker, irbesartan, were studied in hemodialysis......, and residual renal function. Brachial blood pressure decreased significantly in both groups, but there was no significant difference between placebo and irbesartan. Use of additional antihypertensive medication, ultrafiltration volume, and dialysis dosage were not different. Intermediate cardiovascular end...... points such as central aortic blood pressure, carotid-femoral pulse wave velocity, left ventricular mass index, N-terminal brain natriuretic prohormone, heart rate variability, and plasma catecholamines were not significantly affected by irbesartan treatment. Changes in systolic blood pressure during...

  8. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    treated with either saline, MK-801 (5 mg/kg i.p.) or NBQX (30 mg/kg i.p. x 3) were subjected to permanent MCAO. Regional CPSR and volumes of gray matter structures displaying normal CPSR were measured in coronal cryosections of the brain by quantitative autoradiography following an i.v. bolus injection....... Treatment with MK-801 significantly increased the volume of tissue with normal CPSR in the ischemic hemisphere compared to controls, whereas this was not seen with NBQX treatment. The results suggest that MK-801 and NBQX have different effects on peri-infarct protein synthesis after MCAO. Since both......We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  9. Blockade of serotonin 5-HT2A receptors potentiates dopamine D2 activation-induced disruption of pup retrieval on an elevated plus maze, but has no effect on D2 blockade-induced one.

    Nie, Lina; Di, Tianqi; Li, Yu; Cheng, Peng; Li, Ming; Gao, Jun

    2018-06-23

    Appetitive aspect of rat maternal behavior, such as pup retrieval, is motivationally driven and sensitive to dopamine disturbances. Activation or blockade of dopamine D 2 receptors causes a similar disruption of pup retrieval, which may also reflect an increase in maternal anxiety and/or a disruption of executive function. Recent work indicates that serotonin 5-HT 2A receptors also play an important role in rat maternal behavior. Given the well-known modulation of 5-HT 2A on the mesolimbic and mesocortical dopamine functions, the present study examined the extent to which blockade of 5-HT 2A receptors on dopamine D 2 -mediated maternal effects using a pup retrieval on the elevated plus maze (EPM) test. Sprague-Dawley postpartum female rats were acutely injected with quinpirole (a D 2 agonist, 0.10 and 0.25 mg/kg, sc), or haloperidol (a D 2 antagonist, 0.1 or 0.2 mg/kg, sc), in combination of MDL100907 (a 5-HT 2A receptor antagonist, 1.0 mg/kg, sc, 30 min before quinpirole or haloperidol injection) or saline and tested at 30, 90 and 240 min after quinpirole or haloperidol injection on postpartum days 3 and 7. Quinpirole and haloperidol decreased the number of pup retrieved (an index of maternal motivation) and sequential retrieval score (an index of executive function), prolonged the pup retrieval latencies, reduced the percentage of time spent on the open arms (an index of maternal anxiety), and decreased the distance travelled on the maze in a dose-dependent and time-dependent fashion. MDL100907 treatment by itself had no effect on pup retrieval, but it exacerbated the quinpirole-induced disruption of pup retrieval, but had no effect on the haloperidol-induced one. These findings suggest a complex interactive effect between 5-HT 2A and D 2 receptors on one or several maternal processes (maternal motivation, anxiety and executive function), and support the idea that one molecular mechanism by which 5-HT 2A receptors mediate maternal behavior is through

  10. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome.

    Tsuboi, H; Matsumoto, I; Wakamatsu, E; Nakamura, Y; Iizuka, M; Hayashi, T; Goto, D; Ito, S; Sumida, T

    2010-10-01

    M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva from salivary glands. It is reported that some patients with Sjögren's syndrome (SS) carried inhibitory autoantibodies against M3R. The purpose of this study is to clarify the epitopes and function of anti-M3R antibodies in SS. We synthesized peptides encoding the extracellular domains of human-M3R including the N-terminal region and the first, second and third extracellular loops. Antibodies against these regions were examined by enzyme-linked immunosorbent assay in sera from 42 SS and 42 healthy controls. For functional analysis, human salivary gland (HSG) cells were preincubated with immunoglobulin G (IgG) separated from sera of anti-M3R antibody-positive SS, -negative SS and controls for 12 h. After loading with Fluo-3, HSG cells were stimulated with cevimeline hydrochloride, and intracellular Ca(2+) concentrations [(Ca(2+) )i] were measured. Antibodies to the N-terminal, first, second and third loops were detected in 42·9% (18 of 42), 47·6% (20 of 42), 54·8% (23 of 42) and 45·2% (19 of 42) of SS, while in 4·8% (two of 42), 7·1% (three of 42), 2·4% (one of 42) and 2·4% (one of 42) of controls, respectively. Antibodies to the second loop positive SS-IgG inhibited the increase of (Ca(2+) )i induced by cevimeline hydrochloride. Antibodies to the N-terminal positive SS-IgG and antibodies to the first loop positive SS-IgG enhanced it, while antibodies to the third loop positive SS-IgG showed no effect on (Ca(2+) )i as well as anti-M3R antibody-negative SS-IgG. Our results indicated the presence of several B cell epitopes on M3R in SS. The influence of anti-M3R antibodies on salivary secretion might differ based on these epitopes. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  11. [Analysis of epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome].

    Tsuboi, Hiroto; Matsuo, Naomi; Iizuka, Mana; Nakamura, Yumi; Matsumoto, Isao; Sumida, Takayuki

    2010-01-01

    Sjögren's syndrome (SS) is an autoimmune disease that affects exocrine glands including salivary and lacrimal glands. It is characterized by lymphocytic infiltration into exocrine glands, leading to dry mouth and eyes. A number of auto-antibodies, such as anti-SS-A and SS-B antibodies, are detected in patients with SS. However, no SS-specific pathologic auto-antibodies have yet been found in this condition. M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva from salivary glands. It is reported that some patients with SS carried inhibitory auto-antibodies against M3R. To clarify the epitopes and function of anti-M3R antibodies in SS, we examined antibodies to the extracellular domains (N terminal region, the first, second, and third extracellular loop) of M3R by ELISA using synthesized peptide antigens encoding these domains in 42 SS and 42 healthy controls (HC). Titers and positivity of anti-M3R antibodies to every extracellular domain of M3R were significantly higher in SS than in HC. For functional analysis, human salivary gland (HSG) cells were pre-cultured with IgG from anti-M3R antibodies positive SS, negative SS, and HC. HSG cells were stimulated with cevimeline hydrochloride and intracellular calcium concentration ([Ca(2+)](i)) was measured. IgG from anti-M3R antibodies to the second loop positive SS inhibited the increase of [Ca(2+)](i), but IgG from antibodies to the N terminal or the first loop positive SS enhanced it, while IgG from antibodies to the third loop positive SS showed no effect on [Ca(2+)](i) as well as IgG from anti-M3R antibodies negative SS and HC. These findings indicated the presence of several B cell epitopes on M3R in SS and effect of anti-M3R antibodies on the salivary secretion might differ with these epitopes.

  12. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis

    Karanikas, Georgios; Becherer, Alexander; Wiesner, Karoline; Dudczak, Robert; Kletter, Kurt

    2002-01-01

    Angiotensin converting enzyme (ACE) inhibitors as well as angiotensin II receptor antagonists are able to prevent the vasoconstrictive effect of angiotensin II on the efferent renal vessels, which is believed to play an important role in renovascular hypertension. This effect is assumed to be essential for the demonstration of renovascular hypertension by captopril renography. In this study, renographic changes induced by captopril and the AT1 receptor antagonist valsartan were compared in patients with a high probability for renovascular hypertension. Twenty-five patients with 33 stenosed renal arteries (grade of stenosis >50%) and hypertension were studied. Captopril, valsartan and baseline renography were performed within 48 h using technetium-99m mercaptoacetyltriglycine. Blood pressure was monitored, plasma renin concentration before and after intervention was determined and urinary flow was estimated from the urinary output of the hydrated patients. Alterations in renographic curves after intervention were evaluated according to the Santa Fe consensus on ACE inhibitor renography. Captopril renography was positive, indicating renovascular hypertension, in 25 of the 33 stenosed vessels, whereas valsartan renography was positive in only ten. Blood pressure during captopril and valsartan renography was not different; reduction in blood pressure was the same after valsartan and captopril. Plasma renin concentration was comparable for valsartan and captopril studies, showing suppressed values after intervention in as many as 12 of the 25 patients. Urinary flow after valsartan was higher than after captopril (P<0.05). However, this difference could not explain the markedly higher sensitivity of captopril compared with valsartan in demonstrating renal artery stenosis. In 14 of the 25 patients, blood pressure response to revascularisation was monitored, showing a much better predictive value for captopril renography. It is concluded that captopril renography is much

  13. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis

    Karanikas, Georgios; Becherer, Alexander; Wiesner, Karoline; Dudczak, Robert; Kletter, Kurt [Department of Nuclear Medicine, University of Vienna (Austria)

    2002-03-01

    Angiotensin converting enzyme (ACE) inhibitors as well as angiotensin II receptor antagonists are able to prevent the vasoconstrictive effect of angiotensin II on the efferent renal vessels, which is believed to play an important role in renovascular hypertension. This effect is assumed to be essential for the demonstration of renovascular hypertension by captopril renography. In this study, renographic changes induced by captopril and the AT1 receptor antagonist valsartan were compared in patients with a high probability for renovascular hypertension. Twenty-five patients with 33 stenosed renal arteries (grade of stenosis >50%) and hypertension were studied. Captopril, valsartan and baseline renography were performed within 48 h using technetium-99m mercaptoacetyltriglycine. Blood pressure was monitored, plasma renin concentration before and after intervention was determined and urinary flow was estimated from the urinary output of the hydrated patients. Alterations in renographic curves after intervention were evaluated according to the Santa Fe consensus on ACE inhibitor renography. Captopril renography was positive, indicating renovascular hypertension, in 25 of the 33 stenosed vessels, whereas valsartan renography was positive in only ten. Blood pressure during captopril and valsartan renography was not different; reduction in blood pressure was the same after valsartan and captopril. Plasma renin concentration was comparable for valsartan and captopril studies, showing suppressed values after intervention in as many as 12 of the 25 patients. Urinary flow after valsartan was higher than after captopril (P<0.05). However, this difference could not explain the markedly higher sensitivity of captopril compared with valsartan in demonstrating renal artery stenosis. In 14 of the 25 patients, blood pressure response to revascularisation was monitored, showing a much better predictive value for captopril renography. It is concluded that captopril renography is much

  14. Buspirone Counteracts MK-801-Induced Schizophrenia-Like Phenotypes through Dopamine D3 Receptor Blockade

    Torrisi, Sebastiano Alfio; Salomone, Salvatore; Geraci, Federica; Caraci, Filippo; Bucolo, Claudio; Drago, Filippo; Leggio, Gian Marco

    2017-01-01

    Background: Several efforts have been made to develop effective antipsychotic drugs. Currently, available antipsychotics are effective on positive symptoms, less on negative symptoms, but not on cognitive impairment, a clinically relevant dimension of schizophrenia. Drug repurposing offers great advantages over the long-lasting, risky and expensive, de novo drug discovery strategy. To our knowledge, the possible antipsychotic properties of buspirone, an azapirone anxiolytic drug marketed in 1986 as serotonin 5-HT1A receptor (5-HT1AR) partial agonist, have not been extensively investigated despite its intriguing pharmacodynamic profile, which includes dopamine D3 (D3R) and D4 receptor (D4R) antagonist activity. Multiple lines of evidence point to D3R as a valid therapeutic target for the treatment of several neuropsychiatric disorders including schizophrenia. In the present study, we tested the hypothesis that buspirone, behaving as dopamine D3R antagonist, may have antipsychotic-like activity. Materials and Methods: Effects of acute administration of buspirone was assessed on a wide-range of schizophrenia-relevant abnormalities induced by a single administration of the non-competitive NMDAR antagonist MK-801, in both wild-type mice (WT) and D3R-null mutant mice (D3R-/-). Results: Buspirone (3 mg⋅kg-1, i.p.) was devoid of cataleptogenic activity in itself, but resulted effective in counteracting disruption of prepulse inhibition (PPI), hyperlocomotion and deficit of temporal order recognition memory (TOR) induced by MK-801 (0.1 mg⋅kg-1, i.p.) in WT mice. Conversely, in D3R-/- mice, buspirone was ineffective in preventing MK-801-induced TOR deficit and it was only partially effective in blocking MK-801-stimulated hyperlocomotion. Conclusion: Taken together, these results indicate, for the first time, that buspirone, might be a potential therapeutic medication for the treatment of schizophrenia. In particular, buspirone, through its D3R antagonist activity, may be

  15. The effect of hippocampal NMDA receptor blockade by MK-801 on cued fear extinction.

    Zhang, Bo; Li, Chuan-Yu; Wang, Xiu-Song

    2017-08-14

    Extinction of conditioned fear has been suggested to be a new form of learning instead of erasure of what was originally learned, and the process is NMDA (N-methyl d-aspartate) receptor (NMDAR) dependent. Most of studies have so far revealed the important roles of NMDARs in the amygdala and medial prefrontal cortex (mPFC) in cued fear extinction. Although the ventral hippocampus has intimately reciprocal connections with the amygdala and mPFC, the role of its NMDARs in cued fear extinction remains unclear. The present experiment explored the issue by bilateral pre-extinction microinjection of the noncompetitive NMDAR antagonist MK-801 into the ventral hippocampus. Four groups of rats were given habituation, tone cued fear conditioning, fear extinction training and extinction test. Prior to extinction training, rats received bilateral infusions of either MK-801 (1.5, 3, or 6μg/0.5μl) or saline. Our results showed that MK-801 reduced freezing on the first trial of extinction training with no impact on within-session acquisition of extinction, and that the lower doses of MK-801 resulted in increased freezing on the extinction retrieval test. These findings suggest that ventral hippocampal NMDARs are necessary for the consolidation of tone cued fear extinction. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Estrous cycle and food availability affect feeding induced by amygdala 5-HT receptor blockade.

    Parker, Graham C; Bishop, Christopher; Coscina, Donald V

    2002-04-01

    We have recently reported that bilateral infusions of the 5-HT receptor antagonist metergoline (MET) into the posterior basolateral amygdala (pBLA) elicit feeding in female rats tested at mid-light cycle. The present study was performed to determine whether (1) testing at two different phases of the estrous cycle, and/or (2) the palatability of the food might modify this effect. Subjects were 18 adult females with bilateral pBLA cannulae. Following familiarization with Froot Loops cereal, a within-subjects design tested all animals for 1- and 2-h food intake under 2 Drug (0.3 nmol MET vs. Vehicle), 2 Estrous Cycle (diestrus vs. estrus) and 2 Food (lab chow vs. Froot Loops) conditions. Rats weighed more at diestrus than at proestrus (Pestrus (Pestrus. A three-way interaction (Pestrus than in diestrus to lab chow but not Froot Loops. These data suggest pBLA MET differentially affects feeding over the estrous cycle depending on the palatability of food available.

  17. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade

    Tope eLanre-Amos

    2010-09-01

    Full Text Available Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity—theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.

  18. Endocannabinoid receptor blockade reduces alanine aminotransferase in polycystic ovary syndrome independent of weight loss.

    Dawson, Alison J; Kilpatrick, Eric S; Coady, Anne-Marie; Elshewehy, Abeer M M; Dakroury, Youssra; Ahmed, Lina; Atkin, Stephen L; Sathyapalan, Thozhukat

    2017-07-14

    Evidence suggests that endocannabinoid system activation through the cannabinoid receptor 1 (CB1) is associated with enhanced liver injury, and CB1 antagonism may be beneficial. The aim of this study was to determine the impact of rimonabant (CB1 antagonist) on alanine aminotransferase (ALT), a hepatocellular injury marker, and a hepatic inflammatory cytokine profile. Post hoc review of 2 studies involving 50 obese women with PCOS and well matched for weight, randomised to weight reducing therapy; rimonabant (20 mg od) or orlistat (120 mg tds), or to insulin sensitising therapy metformin, (500 mg tds), or pioglitazone (45 mg od). No subject had non-alcoholic fatty liver disease (NAFLD). Treatment with rimonabant for 12 weeks reduced both ALT and weight (p weight. There was a significant reduction of weight with orlistat (p weight loss and hepatic inflammatory markers in obese women with PCOS without NAFLD. ISRCTN58369615 (February 2007; retrospectively registered) ISRCTN75758249 (October 2007; retrospectively registered).

  19. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.

    Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub; Kim, Chong Jai

    2018-01-24

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  20. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts: Combination or Built-In CAR-T

    Dok Hyun Yoon

    2018-01-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  1. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  2. Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats.

    Bari, A; Dec, A; Lee, A W; Lee, J; Song, D; Dale, E; Peterson, J; Zorn, S; Huang, X; Campbell, B; Robbins, T W; West, A R

    2015-03-01

    The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study. We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior. A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits. These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.

  3. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of oxytocin receptor blockade on appetite for sugar is modified by social context.

    Olszewski, Pawel K; Allen, Kerry; Levine, Allen S

    2015-03-01

    Research on oxytocin (OT) has yielded two seemingly unrelated sets of discoveries: OT has prosocial effects, and it elicits termination of feeding, especially of food rich in carbohydrates. Here we investigated whether OT's involvement in food intake is affected by the social context in mice, with particular focus on the role of dominance. We used two approaches: injections and gene expression analysis. We housed two males per cage and determined a dominant one. Then we injected a blood-brain barrier penetrant OT receptor antagonist L-368,899 in either dominant or subordinate animals and gave them 10-min access to a sucrose solution in the apparatus in which social exposure was modified and it ranged from none to unrestricted contact. L-368,899 increased the amount of consumed sugar in dominant mice regardless of whether these animals had access to sucrose in the non-social or social contexts (olfactory-derived or partial social exposure). The antagonist also increased the proportion of time that dominant mice spent drinking the sweet solution in the paradigm in which both mice had to share a single source of sucrose. L-368,899-treated subordinate mice consumed more sucrose solution than saline controls only when the environment in which sugar was presented was devoid of social cues related to the dominant animal. Finally, we investigated whether hypothalamic OT gene expression differs between dominant and subordinate mice consuming sugar and found OT mRNA levels to be higher in dominant mice. We conclude that social context and dominance affect OT's effect on appetite for sucrose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade

    Ebdrup, Bjørn H; Raghava, Jayachandra M; Nielsen, Mette Ødegaard

    2016-01-01

    /3 receptor blockade would restore white matter. METHODS: Between December 2008 and July 2011, antipsychotic-naive patients with first-episode schizophrenia and matched healthy controls underwent baseline examination with 3 T MRI diffusion tensor imaging and clinical assessments. We assessed group differences...... with first-episode schizophrenia and 38 controls in our analysis, and 28 individuals in each group completed the study. At baseline, whole brain TBSS analyses revealed lower FA in patients in the right anterior thalamic radiation (ATR), right cingulum, right inferior longitudinal fasciculus and right...

  6. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction.

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Santafé, Manel; Tomàs, Josep

    2016-06-23

    The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. Here we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses. The three receptor sets considered (mAChR, AR and TrkB receptors

  7. SELECTIVITY PROFILE OF SOME RECENT MUSCARINIC ANTAGONISTS IN BOVINE AND GUINEA-PIG TRACHEA AND HEART

    ROFFEL, AF; HAMSTRA, JJ; ELZINGA, CRS; ZAAGSMA, J

    1994-01-01

    The functional affinities of some recently developed subtype-selective muscarinic antagonists towards bovine tracheal smooth muscle muscarinic M(3) receptors were established and compared to binding affinities for bovine cardiac M(2) and functional affinities for guinea-pig tracheal smooth muscle

  8. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  9. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  10. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  11. Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure

    McKay, Sean; Bengtson, C. Peter; Bading, Hilmar; Wyllie, David J.A.; Hardingham, Giles E.

    2013-01-01

    MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to ‘pre-block’ a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg2+ is also present. In the presence of Mg2+, 50% recovery from MK-801 blockade is achieved after 10′ of 100 μM NMDA, or 30′ of 15 μM NMDA exposure. In Mg2+-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg2+ in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg2+ or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg2+ for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 ‘pre-block’ protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled ‘Glutamate Receptor-Dependent Synaptic Plasticity’. PMID:23402996

  12. Combined blockade of ADP receptors and PI3-kinase p110β fully prevents platelet and leukocyte activation during hypothermic extracorporeal circulation.

    Stefanie Krajewski

    Full Text Available Extracorporeal circulation (ECC and hypothermia are used to maintain stable circulatory parameters and improve the ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K p110β. Under clinical conditions these processes are associated with life-threatening complications including thromboembolism and inflammation. This study analyzes effects of ADP receptor P(2Y(12 and P(2Y(1 blockade and PI3K p110β inhibition on platelets and granulocytes during hypothermic ECC. Human blood was treated with the P(2Y(12 antagonist 2-MeSAMP, the P(2Y(1 antagonist MRS2179, the PI3K p110β inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls. Under static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood was circulated in an ex vivo ECC model at 28°C for 30 minutes and various platelet and granulocyte markers were investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was inhibited using TGX-221 alone or in combination with P(2Y blockers (p<0.05, while no effect of hypothermic ECC or antiplatelet agents on GPIIb/IIIa and GPIbα expression and von Willebrand factor binding was observed. Sole P(2Y and PI3K blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during hypothermic ECC (p<0.05. P(2Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte aggregate formation (p<0.05. Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes were inhibited by combined P(2Y and PI3K blockade (p<0.05. Combined blockade of P

  13. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  14. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats

    Luis R. Cassinotti

    2018-02-01

    Full Text Available Overactivity of the sympathetic nervous system and central endothelins (ETs are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA-salt hypertensive rats. Following brain ET receptor type A (ETA blockade by BQ610 (selective antagonist, transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ETA blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein in the right OB of hypertensive animals. However, ETA blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ETA are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  15. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA) Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats.

    Cassinotti, Luis R; Guil, María J; Schöller, Mercedes I; Navarro, Mónica P; Bianciotti, Liliana G; Vatta, Marcelo S

    2018-02-27

    Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ET A ) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ET A blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ET A blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ET A are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  16. Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1Δ/- mice.

    Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M

    2017-08-01

    DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Left ventricular wall stress and sarcoplasmic reticulum Ca(2+)-ATPase gene expression in renal hypertensive rats: dose-dependent effects of ACE inhibition and AT1-receptor blockade.

    Zierhut, W; Studer, R; Laurent, D; Kästner, S; Allegrini, P; Whitebread, S; Cumin, F; Baum, H P; de Gasparo, M; Drexler, H

    1996-05-01

    Cardiac hypertrophy is associated with altered Ca2+ handling and may predispose to the development of LV dysfunction and cardiac failure. At the cellular level, the re-expression of ANF represents a well-established marker of myocyte hypertrophy while the decreased expression of the sarcoplasmatic reticulum (SR) Ca(2+)-ATPase is thought o play a crucial role in the alterations of Ca2+ handling and LV function. We assessed the dose-dependent effect of chronic ACE inhibition or AT1 receptor blockade on cardiac function in relation to the cardiac expression of the SR Ca(2+)-ATPase and ANF. Renal hypertensive rats (2K-1C) were treated for 12 weeks with three different doses of the ACE inhibitor benazepril, the AT1-receptor antagonist valsartan (each drug 0.3, 3, and 10 mg/kg per day i.p.) or placebo. LV dimensions, hypertrophy and wall stress were determined in vivo by magnetic resonance imaging and the gene expressions of ANF and SR Ca(2+)-ATPase were quantified by Northern blot. Low doses of both drugs did not affect blood pressure, hypertrophy, systolic wall stress and the ANF and SR Ca(2+)-ATPase gene expression. High doses of each drug reduced systolic blood pressure, wall stress, and LV hypertrophy to a similar extent and to values comparable to normotensive, age-matched rats. In addition, high dose treatment reduced LV end-systolic and end-diastolic volume as compared to untreated 2K-1C animals and normalized the mRNA levels of both ANF and SR Ca(2+)-ATPase (as compared to normotensive animals). We conclude that in this model, high doses of ACE inhibition and AT1-receptor blockade are necessary to normalize systolic blood pressure, LV hypertrophy and systolic LV wall stress which, in turn, is associated with restoration of a normal cardiac phenotype with respect to SR Ca(2+)-ATPase and ANF and normalization of cardiac function.

  18. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    Jonathan eShelton

    2015-01-01

    Full Text Available Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6 induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg. Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15 or advance (CT22 wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light-induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  19. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  20. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats.

    deBacker, Julian; Hawken, Emily R; Normandeau, Catherine P; Jones, Andrea A; Di Prospero, Cynthia; Mechefske, Elysia; Gardner Gregory, James; Hayton, Scott J; Dumont, Éric C

    2015-01-01

    Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear. Here we tracked excitatory synaptic strength in the oval bed nucleus of the stria terminalis (ovBNST) using whole-cell voltage-clamp recordings in brain slices from rats self-administering sucrose or cocaine. In the cocaine group, we measured both a persistent increase in AMPA to NMDA ratio (A:N) and slow decay time of NMDA currents throughout the self-administration period and after withdrawal from cocaine. In contrast, the sucrose group exhibited an early increase in A:N ratios (acquisition) that returned toward baseline values with continued self-administration (maintenance) and after withdrawal. The sucrose rats also displayed a decrease in NMDA current decay time with continued self-administration (maintenance), which normalized after withdrawal. Cocaine self-administering rats exhibited impairment in NMDA-dependent long-term depression (LTD) that could be rescued by GluN2B-containing NMDA receptor blockade. Sucrose self-administering rats demonstrated no impairment in NMDA-dependent LTD. During the maintenance period of self-administration, in vivo (daily intraperitoneally for 5 days) pharmacologic blockade of GluN2B-containing NMDA receptors did not reduce lever pressing for cocaine. However, in vivo GluN2B blockade did normalize A:N ratios in cocaine self-administrating rats, and dissociated the magnitude of ovBNST A:N ratios from drug-seeking behavior after protracted withdrawal. Altogether, our data demonstrate when and how bidirectional plasticity at ovBNST excitatory synapses becomes dysfunctional with cocaine self-administration and that NMDA

  1. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior

    Yan Li

    2018-04-01

    Full Text Available The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R, with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals’ sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

  2. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma.

    Patwardhan, Parag P; Ivy, Kathryn S; Musi, Elgilda; de Stanchina, Elisa; Schwartz, Gary K

    2016-01-26

    Sarcomas are rare but highly aggressive mesenchymal tumors with a median survival of 10-18 months for metastatic disease. Mutation and/or overexpression of many receptor tyrosine kinases (RTKs) including c-Met, PDGFR, c-Kit and IGF1-R drive defective signaling pathways in sarcomas. MGCD516 (Sitravatinib) is a novel small molecule inhibitor targeting multiple RTKs involved in driving sarcoma cell growth. In the present study, we evaluated the efficacy of MGCD516 both in vitro and in mouse xenograft models in vivo. MGCD516 treatment resulted in significant blockade of phosphorylation of potential driver RTKs and induced potent anti-proliferative effects in vitro. Furthermore, MGCD516 treatment of tumor xenografts in vivo resulted in significant suppression of tumor growth. Efficacy of MGCD516 was superior to imatinib and crizotinib, two other well-studied multi-kinase inhibitors with overlapping target specificities, both in vitro and in vivo. This is the first report describing MGCD516 as a potent multi-kinase inhibitor in different models of sarcoma, superior to imatinib and crizotinib. Results from this study showing blockade of multiple driver signaling pathways provides a rationale for further clinical development of MGCD516 for the treatment of patients with soft-tissue sarcoma.

  3. Pre- and postynaptic effects of muscarinic antagonists in the isolated guinea pig ileum

    Kilbinger, H.; Weiler, W.; Wessler, I.

    1986-01-01

    The authors have studied in the guinea-pig ileum whether the presynaptic muscarinic receptors of he cholinergic nerves differ from the postsynaptic muscarinic receptors of tthe longitudinal muscle in their affinities for several muscarinic antagonists. The method of measuring the release of tritium-ACh from the myenteric plexus-longitudinal muscle preparation in tthe guinea-pig ileum in the absence of a chlinesterase inhibitor is described in which two longitudinal muscle strips were incubated in a 2 ml organ bath with tritium-choline are subsequently superfused with Tyrode solution

  4. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory

    Cornelisse, S.; Joëls, M.; Smeets, T.

    2011-01-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be

  5. Evaluation and metabolite studies of {sup 125}I- and {sup 123}I-labelled E-(R,R)-IQNP: potential radioligands for visualization of M{sub 1} muscarinic acetylcholine receptors in brain

    Bergstroem, Kim A.; Halldin, Christer; Hiltunen, Jukka; Swahn, Carl-Gunnar; Ito, Hiroshi; Ginovart, Nathalie; Hall, Haakan; McPherson, Daniel W.; Knapp, F. F. (Russ); Larsson, Stig; Schnell, Per-Olof; Farde, Lars

    1998-04-01

    A new ligand for the M{sub 1} muscarinic receptor subtype, E-(R,R)-1-azabicyclo[2.2.2]oct-3-yl {alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (E-IQNP), was labelled with {sup 125}I and {sup 123}I for autoradiographic studies on human whole-brain cryosections and SPET studies, respectively, in Cynomolgus monkey. Autoradiography demonstrated E-[{sup 125}I]IQNP binding in M{sub 1} receptor-rich regions such as the neocortex and the striatum. The binding was displaceable by the selective M{sub 1} antagonist biperiden. In vivo single photon emission tomography (SPET) studies with E-[{sup 123}I]IQNP demonstrated a high accumulation of radioactivity in the monkey neocortex. Rapid hydrolysis of the quinuclidinyl ester to the free acid was found to be a major biotransformation route for E-[{sup 123}I]IQNP. The free acid of E-[{sup 123}I]IQNP does not pass the blood-brain barrier, but the plasma concentration was high as compared to the total radioactivity in brain. It is thus necessary to correct for the high concentration of radioactive metabolites in parenchymal blood (CBV) to obtain accurate values for E-[{sup 123}I]IQNP binding in brain.

  6. Biochemical characterization of a heterotrimeric G(i)-protein activator peptide designed from the junction between the intracellular third loop and sixth transmembrane helix in the m4 muscarinic acetylcholine receptor.

    Terawaki, Shin-ichi; Matsubayashi, Rina; Hara, Kanako; Onozuka, Tatsuki; Kohno, Toshiyuki; Wakamatsu, Kaori

    Muscarinic acetylcholine receptors (mAChRs) are G-protein coupled receptors (GPCRs) that are activated by acetylcholine released from parasympathetic nerves. The mAChR family comprises 5 subtypes, m1-m5, each of which has a different coupling selectivity for heterotrimeric GTP-binding proteins (G-proteins). m4 mAChR specifically activates the Gi/o family by enhancing the guanine nucleotide exchange factor (GEF) reaction with the Gα subunit through an interaction that occurs via intracellular segments. Here, we report that the m4 mAChR mimetic peptide m4i3c(14)Gly, comprising 14 residues in the junction between the intracellular third loop (i3c) and transmembrane helix VI (TM-VI) extended with a C-terminal glycine residue, presents GEF activity toward the Gi1 α subunit (Gαi1). The m4i3c(14)Gly forms a stable complex with guanine nucleotide-free Gαi1 via three residues in the VTI(L/F) motif, which is conserved within the m2/4 mAChRs. These results suggest that this m4 mAChR mimetic peptide, which comprises the amino acid of the mAChR intracellular segments, is a useful tool for understanding the interaction between GPCRs and G-proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats.

    Firoozmand, Lília Taddeo; Sanches, Andrea; Damaceno-Rodrigues, Nilsa Regina; Perez, Juliana Dinéia; Aragão, Danielle Sanches; Rosa, Rodolfo Mattar; Marcondes, Fernanda Klein; Casarini, Dulce Elena; Caldini, Elia Garcia; Cunha, Tatiana Sousa

    2018-04-20

    To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.

  8. NMDA receptor blockade alters the intracellular distribution of neuronal nitric oxide synthase in the superficial layers of the rat superior colliculus

    R.E. de Bittencourt-Navarrete

    2009-02-01

    Full Text Available Nitric oxide (NO is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

  9. Voltage sensitivity of M2 muscarinic receptors underlies the delayed rectifier-like activation of ACh-gated K(+) current by choline in feline atrial myocytes.

    Navarro-Polanco, Ricardo A; Aréchiga-Figueroa, Iván A; Salazar-Fajardo, Pedro D; Benavides-Haro, Dora E; Rodríguez-Elías, Julio C; Sachse, Frank B; Tristani-Firouzi, Martin; Sánchez-Chapula, José A; Moreno-Galindo, Eloy G

    2013-09-01

    Choline (Ch) is a precursor and metabolite of the neurotransmitter acetylcholine (ACh). In canine and guinea pig atrial myocytes, Ch was shown to activate an outward K(+) current in a delayed rectifier fashion. This current has been suggested to modulate cardiac electrical activity and to play a role in atrial fibrillation pathophysiology. However, the exact nature and identity of this current has not been convincingly established. We recently described the unique ligand- and voltage-dependent properties of muscarinic activation of ACh-activated K(+) current (IKACh) and showed that, in contrast to ACh, pilocarpine induces a current with delayed rectifier-like properties with membrane depolarization. Here, we tested the hypothesis that Ch activates IKACh in feline atrial myocytes in a voltage-dependent manner similar to pilocarpine. Single-channel recordings, biophysical profiles, specific pharmacological inhibition and computational data indicate that the current activated by Ch is IKACh. Moreover, we show that membrane depolarization increases the potency and efficacy of IKACh activation by Ch and thus gives the appearance of a delayed rectifier activating K(+) current at depolarized potentials. Our findings support the emerging concept that IKACh modulation is both voltage- and ligand-specific and reinforce the importance of these properties in understanding cardiac physiology.

  10. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  11. An Anti-Nicotinic Cognitive Challenge Model using Mecamylamine in Comparison with the Anti-Muscarinic Cognitive Challenge using Scopolamine

    Baakman, A. C.; Alvarez-jimenez, R.; Rissmann, R.; Klaassen, E. S.; Stevens, J.; Goulooze, S. C.; Burger, J.; Swart, E. L.; Van Gerven, J. M. A.; Groeneveld, G. J.

    Aims The muscarinic acetylcholine receptor antagonist scopolamine is often used for proof-of-pharmacology studies with pro-cognitive compounds. From a pharmacological point of view, it would seem more rational to use a nicotinic rather than a muscarinic anticholinergic challenge to prove

  12. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes.

    Clare, Susan E; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z; Kim, J Julie; Khan, Seema A

    2016-05-23

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer.

  13. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer. The online version of this article (doi:10.1186/s12885-016-2355-5) contains supplementary material, which is available to authorized users

  14. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.

    Zhang, Yue; Peti-Peterdi, Janos; Müller, Christa E; Carlson, Noel G; Baqi, Younis; Strasburg, David L; Heiney, Kristina M; Villanueva, Karie; Kohan, Donald E; Kishore, Bellamkonda K

    2015-12-01

    P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI. Copyright © 2015 by the American Society of Nephrology.

  15. (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride) induces saliva and tear secretions in rats and mice: the role of muscarinic acetylcholine receptors.

    Iga, Y; Arisawa, H; Ogane, N; Saito, Y; Tomizuka, T; Nakagawa-Yagi, Y; Masunaga, H; Yasuda, H; Miyata, N

    1998-11-01

    We investigated effects of (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride), a rigid analogue of acetylcholine, on saliva and tear secretions in rats and mice to evaluate its therapeutical efficacy for xerostomia and xerophthalmia in patients with Sjogren's syndrome and X-ray exposure in the head and neck. Intraduodenal administrations of SNI-2011 increased saliva secretion in a dose-dependent manner at doses ranging from 3 to 30 mg/kg in normal rats and mice, two strains of autoimmune disease mice and X-irradiated saliva secretion defective rats. The salivation elicited by SNI-2011 was completely inhibited by atropine. A similar atropine-sensitive response was observed in tear secretion. In rat submandibular/sublingual gland membranes, [3H]quinuclidinyl benzilate (QNB) binding was saturable, and Scatchard plot analysis revealed a single population of binding sites with a Kd of 22 pM and a maximal binding capacity of 60 fmol/mg protein. The competitive inhibition curve of the [3H]QNB binding by SNI-2011 was obtained, and its dissociation constant value calculated from IC50 was 1-2 microM. These results suggest that SNI-2011 increases saliva and tear secretions through a direct stimulation to muscarinic receptors in salivary and lacrimal glands, and they suggest that SNI-2011 should be beneficial to patients with Sjögren's syndrome and X-ray exposure in the head and neck.

  16. Muscarinic responses of gastric parietal cells

    Wilkes, J.M.; Kajimura, M.; Scott, D.R.; Hersey, S.J.; Sachs, G.

    1991-01-01

    Isolated rabbit gastric glands were used to study the nature of the muscarinic cholinergic responses of parietal cells. Carbachol stimulation of acid secretion, as measured by the accumulation of aminopyrine, was inhibited by the M1 antagonist, pirenzepine, with an IC50 of 13 microM; by the M2 antagonist, 11,2-(diethylamino)methyl-1 piperidinyl acetyl-5,11-dihydro-6H-pyrido 2,3-b 1,4 benzodiazepin-6-one (AF-DX 116), with an IC50 of 110 microM; and by the M1/M3 antagonist, diphenyl-acetoxy-4-methylpiperidinemethiodide, with an IC50 of 35 nM. The three antagonists displayed equivalent IC50 values for the inhibition of carbachol-stimulated production of 14CO2 from radiolabeled glucose, which is a measure of the turnover of the H,K-ATPase, the final step of acid secretion. Intracellular calcium levels were measured in gastric glands loaded with FURA 2. Carbachol was shown to both release calcium from an intracellular pool and to promote calcium entry across the plasma membrane. The calcium entry was inhibitable by 20 microM La3+. The relative potency of the three muscarinic antagonists for inhibition of calcium entry was essentially the same as for inhibition of acid secretion or pump related glucose oxidation. Image analysis of the glands showed the effects of carbachol, and of the antagonists, on intracellular calcium were occurring largely in the parietal cell. The rise in cell calcium due to release of calcium from intracellular stores was inhibited by 4-DAMP with an IC50 of 1.7 nM, suggesting that the release pathway was regulated by a low affinity M3 muscarinic receptor or state; Ca entry and acid secretion are regulated by a high affinity M3 muscarinic receptor or state, inhibited by higher 4-DAMP concentrations, suggesting that it is the steady-state elevation of Ca that is related to parietal cell function rather than the [Ca]i transient

  17. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  18. Blockade of α2-adrenergic receptors in prelimbic cortex: impact on cocaine self-administration in adult spontaneously hypertensive rats following adolescent atomoxetine treatment.

    Baskin, Britahny M; Nic Dhonnchadha, Bríd Á; Dwoskin, Linda P; Kantak, Kathleen M

    2017-10-01

    Research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder demonstrated that chronic methylphenidate treatment during adolescence increased cocaine self-administration established during adulthood under a progressive ratio (PR) schedule. Compared to vehicle, chronic atomoxetine treatment during adolescence failed to increase cocaine self-administration under a PR schedule in adult SHR. We determined if enhanced noradrenergic transmission at α2-adrenergic receptors within prefrontal cortex contributes to this neutral effect of adolescent atomoxetine treatment in adult SHR. Following treatment from postnatal days 28-55 with atomoxetine (0.3 mg/kg) or vehicle, adult male SHR and control rats from Wistar-Kyoto (WKY) and Wistar (WIS) strains were trained to self-administer 0.3 mg/kg cocaine. Self-administration performance was evaluated under a PR schedule of cocaine delivery following infusion of the α2-adrenergic receptor antagonist idazoxan (0 and 10-56 μg/side) directly into prelimbic cortex. Adult SHR attained higher PR break points and had greater numbers of active lever responses and infusions than WKY and WIS. Idazoxan dose-dependently increased PR break points and active lever responses in SHR following adolescent atomoxetine vs. vehicle treatment. Behavioral changes were negligible after idazoxan pretreatment in SHR following adolescent vehicle or in WKY and WIS following adolescent atomoxetine or vehicle. α2-Adrenergic receptor blockade in prelimbic cortex of SHR masked the expected neutral effect of adolescent atomoxetine on adult cocaine self-administration behavior. Moreover, greater efficacy of acute idazoxan challenge in adult SHR after adolescent atomoxetine relative to vehicle is consistent with the idea that chronic atomoxetine may downregulate presynaptic α2A-adrenergic autoreceptors in SHR.

  19. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT).

    Ramadan, Ronnie; Dhawan, Saurabh S; Binongo, José Nilo G; Alkhoder, Ayman; Jones, Dean P; Oshinski, John N; Quyyumi, Arshed A

    2016-04-01

    Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of angiotensin II type-1 receptor blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Subjects (n = 120) with carotid intima-media thickness >0.65 mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area and wall thickness were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Over 2 years, the carotid bulb vessel wall area decreased with Valsartan (-6.7, 95% CI [-11.6, -1.9] mm(2)) but not with placebo (3.4, 95% CI [-2.8, 9.6] mm(2)), P = .01 between groups. Similarly, mean wall thickness decreased with Valsartan (-0.18, 95% CI [-0.30, -0.06] mm), but not with placebo (0.08, 95% CI [-0.07, 0.23] mm), P = .009 between groups. Furthermore, plaque thickness decreased with Valsartan (-0.35, 95% CI [-0.63, -0.08] mm) but was unchanged with placebo (+0.28, 95% CI [-0.11, 0.69] mm), P = .01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium-independent vascular function. In subjects with carotid wall thickening, angiotensin II type-1 receptor blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis

  20. Angiotensin II type 1 receptor blockade partially attenuates hypoxia-induced pulmonary hypertension in newborn piglets: relationship with the nitrergic system

    Camelo, J.S. Jr. [Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Martins, A.R. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Instituto de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG (Brazil); Rosa, E. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SPBrasil (Brazil); Hehre, D.; Bancalari, E.; Suguihara, C. [Department of Pediatrics, Division of Neonatology, Neonatal Developmental Biology Laboratory, University of Miami Miller School of Medicine, Miami, FL (United States)

    2012-02-10

    The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT{sub 1} receptor (AT{sub 1}-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO{sub 2} = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT{sub 1}-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT{sub 1}-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT{sub 1}-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT{sub 1}-R staining, but C animals showed weak iNOS and AT{sub 1}-R staining. Macrophages of L and P animals showed moderate and weak AT{sub 2}-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT{sub 1}-R blockade. We suggest that AT{sub 1}-R blockade might act through AT{sub 2}-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.

  1. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p GABA(A) receptor interaction on food intake in broiler cockerels.

  2. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man

    Simonsen, Lene; Enevoldsen, Lotte H; Stallknecht, Bente

    2008-01-01

    During prolonged adrenaline infusion, lipolysis peaks within 30 min and thereafter tends to decline, and we hypothesized that the stimulation of local adipose tissue alpha2-adrenergic receptors accounts for this decline. The lipolytic effect of a prolonged intravenous adrenaline infusion combined....... Regional adipose tissue blood flow was measured by the (133)Xe clearance technique. Regional glycerol output (lipolytic rate) was calculated from these measurements and simultaneous measurements of arterial glycerol concentrations. Adrenaline infusion increased lipolysis in all three depots (data...... circulating adrenaline concentrations, and the decrease in lipolysis in subcutaneous adipose tissue under prolonged adrenaline stimulation is thus not attributed to alpha2-adrenergic receptor inhibition of lipolysis. However, in the preperitoneal adipose tissue depot, alpha2-adrenergic receptor tone plays...

  3. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.

    Olmos, G; DeGregorio-Rocasolano, N; Paz Regalado, M; Gasull, T; Assumpció Boronat, M; Trullas, R; Villarroel, A; Lerma, J; García-Sevilla, J A

    1999-07-01

    neuroprotective against glutamate-induced necrotic neuronal cell death in vitro and that this effect is mediated through NMDA receptor blockade by interacting with a site located within the NMDA channel pore.

  4. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats.

    Valic, Maja; Pecotic, Renata; Pavlinac Dodig, Ivana; Valic, Zoran; Stipica, Ivona; Dogas, Zoran

    2016-02-01

    What is the central question of this study? Intermittent hypercapnia is a concomitant feature of breathing disorders. Hypercapnic stimuli evoke a form of respiratory plasticity known as phrenic long-term depression in experimental animals. This study was performed to investigate the putative role of serotonin receptors in the initiation of phrenic long-term depression in anaesthetized rats. What is the main finding and its importance? Phrenic nerve long-term depression was revealed in animals pretreated with the serotonin broad-spectrum antagonist, methysergide. This study highlights that serotonin receptors modulate respiratory plasticity evoked by acute intermittent hypercapnia in anaesthetized rats. This study was performed to test the hypothesis that intermittent hypercapnia can evoke a form of respiratory plasticity known as long-term depression of the phrenic nerve (pLTD) and that 5-HT receptors play a role in the initiation of pLTD. Adult male urethane-anaesthetized, vagotomized, paralysed, mechanically ventilated Sprague-Dawley rats were exposed to an acute intermittent hypercapnia protocol. One group received i.v. injection of the non-selective 5-HT receptor antagonist methysergide and another group received i.v. injection of the selective 5-HT1A receptor antagonist WAY-100635 20 min before exposure to intermittent hypercapnia. A control group received i.v. injection of saline. Peak phrenic nerve activity and respiratory rhythm parameters were analysed at baseline (T0), during each of five hypercapnic episodes, and 15, 30 and 60 min (T60) after the last hypercapnia. Intravenous injection of methysergide before exposure to acute intermittent hypercapnia induced development of amplitude pLTD at T60 (decreased by 46.1 ± 6.9%, P = 0.003). Conversely, in control and WAY-100635-pretreated animals, exposure to acute intermittent hypercapnia did not evoke amplitude pLTD. However, a long-term decrease in phrenic nerve frequency was evoked both in control (42 ± 4

  5. Dynamic 123I-BMIPP single-photon emission computed tomography in patients with congestive heart failure: effect of angiotensin II type-1 receptor blockade.

    Takeishi, Yasuchika; Minamihaba, Osamu; Yamauchi, Sou; Arimoto, Takanori; Hirono, Osamu; Takahashi, Hiroki; Akiyama, Hideyuki; Miyamoto, Takuya; Nitobe, Joji; Nozaki, Naoki; Tachibana, Hidetada; Okuyama, Masaki; Fukui, Akio; Kubota, Isao; Okada, Akio; Takahashi, Kazuei

    2004-04-01

    Heart failure is a major and growing public health problem with a high mortality rate. Although recent studies have demonstrated that a variety of metabolic and/or neurohumoral factors are involved in the progression of this syndrome, the precise mechanisms responsible for this complex condition are poorly understood. To examine 123I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) kinetics in the early phase soon after tracer injection in patients with congestive heart failure (CHF), we performed dynamic single-photon emission computed tomography (SPECT). Twenty-six patients with CHF and eight control subjects were examined. The consecutive 15 images of 2-min dynamic SPECT were acquired for 30 min after injection. In the early phase after injection (0-4 min), a significant amount of radioactivity existed in the blood pool. After 6 min, the myocardial 123I-BMIPP image was clear and thus the washout rate of 123I-BMIPP from 6 to 30 min was calculated. The washout rate of 123I-BMIPP from the myocardium was faster in patients with CHF than in the controls (8 +/- 4 vs. -5 +/- 3%, p acid metabolism may represent a new mechanism for beneficial effects of angiotensin II receptor blockade on cardiac function and survival in patients with heart failure. 123I-BMIPP washout in the early phase obtained from dynamic SPECT may be a new marker for evaluating the severity of heart failure and the effects of medical treatment.

  6. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Blockade of rat alpha3beta4 nicotinic receptor function by methadone, its metabolites, and structural analogs.

    Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J

    2001-10-01

    The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.

  8. Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors

    Lyukmanova, E. N.; Shenkarev, Z. O.; Shulepko, M. A.; Paramonov, A. S.; Chugunov, A. O.; Janíčková, Helena; Dolejší, Eva; Doležal, Vladimír; Utkin, Y.N.; Tsetlin, V.I.; Arseniev, A. S.; Efremov, R. G.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2015-01-01

    Roč. 290, č. 39 (2015), s. 23616-23630 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-05696S Institutional support: RVO:67985823 Keywords : computer modeling * G protein-coupled receptor (GPCR) * site-directed mutagenesis Subject RIV: ED - Physiology Impact factor: 4.258, year: 2015

  9. Blockade of Cannabinoid CB1 Receptors in the Dorsal Periaqueductal Gray Unmasks the Antinociceptive Effect of Local Injections of Anandamide in Mice

    Diego C. Mascarenhas

    2017-10-01

    Full Text Available Divergent results in pain management account for the growing number of studies aiming at elucidating the pharmacology of the endocannabinoid/endovanilloid anandamide (AEA within several pain-related brain structures. For instance, the stimulation of both Transient Receptor Potential Vanilloid type 1 (TRPV1 and Cannabinoid type 1 (CB1 receptors led to paradoxical effects on nociception. Here, we attempted to propose a clear and reproducible methodology to achieve the antinociceptive effect of exogenous AEA within the dorsal periaqueductal gray (dPAG of mice exposed to the tail-flick test. Accordingly, male Swiss mice received intra-dPAG injection of AEA (CB1/TRPV1 agonist, capsaicin (TRPV1 agonist, WIN (CB1 agonist, AM251 (CB1 antagonist, and 6-iodonordihydrocapsaicin (6-IODO (TRPV1 selective antagonist and their nociceptive response was assessed with the tail-flick test. In order to assess AEA effects on nociception specifically at vanilloid or cannabinoid (CB substrates into the dPAG, mice underwent an intrinsically inactive dose of AM251 or 6-IODO followed by local AEA injections and were subjected to the same test. While intra-dPAG AEA did not change acute pain, local injections of capsaicin or WIN induced a marked TRPV1- and CB1-dependent antinociceptive effect, respectively. Regarding the role of AEA specifically at CB/vanilloid substrates, while the blockade of TRPV1 did not change the lack of effects of intra-dPAG AEA on nociception, local pre-treatment of AM251, a CB1 antagonist, led to a clear AEA-induced antinociception. It seems that the exogenous AEA-induced antinociception is unmasked when it selectively binds to vanilloid substrates, which might be useful to address acute pain in basic and perhaps clinical trials.

  10. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  11. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  13. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT)

    Ramadan, Ronnie; Dhawan, Saurabh S.; Binongo, José Nilo G.; Alkhoder, Ayman; Jones, Dean P.; Oshinski, John N.; Quyyumi, Arshed A.

    2016-01-01

    Background Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of Angiotensin II type-1 receptor (AT1R) blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Methods Subjects (n= 120) with carotid intima-media thickness >0.65mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area (VWA) and wall thickness (WT) were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Results Over 2 years, the carotid bulb VWA decreased with Valsartan (−6.7, 95% CI: (−11.6,−1.9) mm2) but not with placebo (3.4, 95% CI: (−2.8,9.6) mm2)), p=0.01 between groups. Similarly, mean WT decreased with Valsartan (−0.18, 95% CI: (−0.30,−0.06) mm), but not with placebo (0.08, 95% CI: (−0.07,0.23) mm),), p=0.009 between groups. Furthermore, plaque thickness decreased with Valsartan (−0.35, 95% CI: (−0.63,−0.08) mm) but was unchanged with placebo (+0.28, 95% CI: (−0.11,0.69) mm), p=0.01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium–independent vascular function. Conclusions In subjects with carotid wall thickening, AT1R blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with

  14. Iodine-123 labelled Z-(R,R)-IQNP: a potential radioligand for visualization of M{sub 1} and M{sub 2} muscarinic acetylcholine receptors in Alzheimer's disease

    Bergstroem, K.A. [Dept. of Clinical Neuroscience, Psychiatry and Nuclear Medicine Sections, Karolinska Institutet, Karolinska Hospital, Stockholm (Sweden); Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio (Finland); Halldin, C.; Okubo, Yoshiro; Nobuhara, Kenji; Swahn, C.G.; Karlsson, P.; Larsson, S.; Schnell, P.O.; Farde, L. [Dept. of Clinical Neuroscience, Psychiatry and Nuclear Medicine Sections, Karolinska Institutet, Karolinska Hospital, Stockholm (Sweden); Savonen, A.; Hiltunen, Jukka [MAP Medical Technologies Oy, Tikkakoski (Finland); McPherson, D.; Knapp, F.F. Jr. [Nuclear Medicine Group, Oak Ridge National Laboratory (ORNL), TN (United States)

    1999-11-01

    Z-(R)-1-Azabicyclo[2.2.2]oct-3-yl (R)-{alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (Z-IQNP) has high affinity to the M{sub 1}and M {sub 2} muscarinic acetylcholine receptor (mAChR) subtypes according to previous in vitro and in vivo studies in rats. In the present study iodine-123 labelled Z-IQNP was prepared for in vivo single-photon emission tomography (SPET) studies in cynomolgus monkeys. SPET studies with Z-[ {sup 123}I]IQNP demonstrated high accumulation in monkey brain (>5% of injected dose at 70 min p.i.) and marked accumulation in brain regions such as the thalamus, the neocortex, the striatum and the cerebellum. Pretreatment with the non-selective mAChR antagonist scopolamine (0.2 mg/kg) inhibited Z-[ {sup 123}I]IQNP binding in all these regions. The percentage of unchanged Z-[ {sup 123}I]IQNP measured in plasma was less than 10% at 10 min after injection, which may be due to rapid hydrolysis, as has been demonstrated previously with the E-isomer of IQNP. Z-[ {sup 123}I]IQNP showed higher uptake in M {sub 2}-rich regions, compared with previously obtained results with E-[ {sup 123}I]IQNP. In conclusion, the radioactivity distribution from Z-[ {sup 123}I]IQNP in monkey brain indicates that Z-[ {sup 123}I]IQNP binds to the M {sub 1}- and M {sub 2}-rich areas and provides a high signal for specific binding, and is thus a potential ligand for mAChR imaging with SPET. (orig.)

  15. Variation in the gene coding for the M5 Muscarinic receptor (CHRM5 influences cigarette dose but is not associated with dependence to drugs of addiction: evidence from a prospective population based cohort study of young adults

    Olsson Craig A

    2007-07-01

    Full Text Available Abstract Background The mesolimbic structures of the brain are important in the anticipation and perception of reward. Moreover, many drugs of addiction elicit their response in these structures. The M5 muscarinic receptor (M5R is expressed in dopamine-containing neurones of the substantia nigra pars compacta and ventral tegmental area, and regulates the release of mesolimbic dopamine. Mice lacking M5R show a substantial reduction in both reward and withdrawal responses to morphine and cocaine. The CHRM5, the gene that codes for the M5R, is a strong biological candidate for a role in human addiction. We screened the coding and core promoter sequences of CHRM5 using denaturing high performance liquid chromatography to identify common polymorphisms. Additional polymorphisms within the coding and core promoter regions that were identified through dbSNP were validated in the test population. We investigated whether these polymorphisms influence substance dependence and dose in a cohort of 1947 young Australians. Results Analysis was performed on 815 participants of European ancestry who were interviewed at wave 8 of the cohort study and provided DNA. We observed a 26.8% increase in cigarette consumption in carriers of the rs7162140 T-allele, equating to 20.1 cigarettes per week (p=0.01. Carriers of the rs7162140 T-allele were also found to have nearly a 3-fold increased risk of developing cannabis dependence (OR=2.9 (95%CI 1.1-7.4; p=0.03. Conclusion Our data suggest that variation within the CHRM5 locus may play an important role in tobacco and cannabis but not alcohol addiction in European ancestry populations. This is the first study to show an association between CHRM5 and substance use in humans. These data support the further investigation of this gene as a risk factor in substance use and dependence.

  16. Differential effects of beta-adrenergic receptor blockade in the medial prefrontal cortex during aversive and incidental taste memory formation.

    Reyes-López, J; Nuñez-Jaramillo, L; Morán-Guel, E; Miranda, M I

    2010-08-11

    The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC beta-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the beta-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that beta-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  18. Analysis of coupling of M2 muscarinic acetylcholine receptors to Gi/o, Gs and Gq heterotrimeric GTP-binding proteins

    Jakubík, Jan; Doležal, Vladimír

    2006-01-01

    Roč. 27, č. S1 (2006), s. 361-361 ISSN 1671-4083. [World Congress of Pharmacology /15./. 02.07.2006-07.07.2006, Beijing] R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : M2 receptor * heterotrimeric G-proteins * analysis of coupling Subject RIV: ED - Physiology

  19. PCP-induced alterations in cerebral glucose utilization in rat brain: blockade by metaphit, a PCP-receptor-acylating agent

    Tamminga, C.A.; Tanimoto, K.; Kuo, S.; Chase, T.N.; Contreras, P.C.; Rice, K.C.; Jackson, A.E.; O'Donohue, T.L.

    1987-01-01

    The effects of phencyclidine (PCP) on regional cerebral glucose utilization was determined by using quantitative autoradiography with [ 14 C]-2-deoxyglucose. PCP increased brain metabolism in selected areas of cortex, particularly limbic, and in the basal ganglia and thalamus, whereas the drug decreased metabolism in areas related to audition. These results are consistent with the known physiology of central PCP neurons and may help to suggest brain areas involved in PCP-mediated actions. Moreover, based on the behavioral similarities between PCP psychosis and an acute schizophrenic episode, these data may be relevant to the understanding of schizophrenia. The PCP-receptor-acylating agent, metaphit, blocked most of these PCP actions. In addition, metaphit by itself was found to diminish glucose utilization rather uniformly throughout brain. These results indicate an antagonist effect of metaphit on the PCP system and suggest a widespread action of metaphit, putatively at a PCP-related site, possibly in connection with the N-methyl-D-aspartate (NMDA) receptor

  20. Alpha adrenergic receptor blockade increases capillarisation and fractional O2 extraction and lowers blood flow in contracting human skeletal muscle

    Mortensen, Stefan P; Egginton, Stuart; Madsen, Mads

    2017-01-01

    AIM: To investigate the effect of elevated basal shear stress on angiogenesis in humans, and the role of enhanced skeletal muscle capillarisation on blood flow and O2 extraction. METHODS: Limb haemodynamics and O2 extraction was measured at rest and during one-leg knee-extensor exercise (12 and 24W......) in 10 healthy untrained young men before and after 4 weeks treatment with an α1 receptor-antagonist (Terazosin, 1-2 mg day(-1) ). Corresponding biopsies were taken from the m. vastus lateralis. RESULTS: Resting leg blood flow was increased by 57% 6 hours following Terazosin treatment (P... basal capillary-to-fibre ratio was 1.69±0.08 and increased to 1.90±0.08 after treatment (Pblood flow and venous lactate levels lower (6-7%; P

  1. Contrasting effects of lithium chloride and CB1 receptor blockade on enduring changes in the valuation of reward.

    Giovanni eHernandez

    2011-09-01

    Full Text Available When an organism has been trained to respond for a reward, its learned behavior can be characterized as goal-directed or habitual based on whether or not it is susceptible to reward devaluation. Here, we evaluated whether instrumental responding for brain stimulation reward (BSR can devalued using a paradigm traditionally used for natural rewards. Rats were trained to lever press for BSR. Subsequently, BSR was paired with either lithium chloride (LiCl, 5 mg/kg, i.p, a pro-emetic, or AM251, a CB1 receptor antagonist (3 mg/kg, i.p.. Pairings of BSR with these two compounds or their respective vehicle were performed in a novel environment so that only unconditional effects of BSR were affected by the pharmacological manipulations. Subsequently, in a probe test, all rats were returned in the drug-free state to the boxes where they had received training instrumental responding was reassessed in the absence of BSR delivery. LiCl produced enduring decreases in the number of responses during the test session, whereas AM251 had no effect. These results show that instrumental responding for BSR is susceptible to devaluation, in accord with the proposal that this behavior is supported at least in part by associations between the response and the rewarding outcome. Furthermore, they suggest that the reward modulation observed in studies involving the use of CB1 receptor antagonists arises from changes in the organism’s motivation rather than due to drug-induced changes in the intrinsic value of reward.

  2. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature.

    Almeida, M Camila; Hew-Butler, Tamara; Soriano, Renato N; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L; Nucci, Tatiane B; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R; Romanovsky, Andrej A

    2012-02-08

    We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.

  3. Contrasting Effects of Lithium Chloride and CB1 Receptor Blockade on Enduring Changes in the Valuation of Reward.

    Hernandez, Giovanni; Bernstein, David; Schoenbaum, Geoffrey; Cheer, Joseph F

    2011-01-01

    When an organism responds for a reward, its learned behavior can be characterized as goal-directed or habitual based on whether or not it is susceptible to reward devaluation. Here, we evaluated whether instrumental responding for brain stimulation reward (BSR) can be devalued using a paradigm traditionally used for natural rewards. Rats were trained to lever press for BSR; afterward, BSR was paired with either lithium chloride (LiCl, 5 mg/kg, i.p.), a pro-emetic, or AM251, a CB1 receptor antagonist (3 mg/kg, i.p.) or the vehicle of these compounds. Pairings of BSR with these compounds and their vehicles were performed in a novel environment so that only unconditional effects of BSR would be affected by the pharmacological manipulations. Subsequently, in a probe test, all rats were returned in the drug-free state to the boxes where they had received training and instrumental responding was reassessed in the absence of BSR delivery. When compared to control, LiCl produced a significant decrease in the number of responses during the test session, whereas AM251 did not. These results show that instrumental responding for BSR is susceptible to devaluation, in accord with the proposal that this behavior is supported at least in part by associations between the response and the rewarding outcome. Further, they suggest that reward modulation observed in studies involving the use of CB1 receptor antagonists arises from changes in the organism's motivation rather than drug-induced changes in the intrinsic value of reward.

  4. Effects of muscarinic M1 and M4 acetylcholine receptor stimulation on extinction and reinstatement of cocaine seeking in male mice, independent of extinction learning

    Stoll, Kevin; Hart, Rachel; Lindsley, Craig W

    2017-01-01

    seeking, and whether this was mediated via memory consolidation. METHODS: Experimentally naïve C57BL/6J mice were allowed to acquire self-administration of intravenous cocaine (1 mg/kg/infusion) under a fixed-ratio 1 schedule of reinforcement. Then, saline was substituted for cocaine until responding...... sessions (7.5 and 6.4 sessions). Xanomeline-treated mice showed no cocaine-induced reinstatement. CONCLUSIONS: These findings show that M1/M4 receptor stimulation can decrease cocaine seeking in mice. The effect lasted beyond treatment duration and was not dependent upon extinction learning. This suggests...

  5. Proceedings of the International Symposium on Subtypes of Muscarinic Receptors 2 (2nd) Held in Boston, Massachusetts on August 22-24 1985

    1986-04-30

    Uiversity ’ Hospital. Walter Reed Army Institute Of Research Lund &-22185 Building 40 MEWashington, D.C. 20307-5100 Pm Mau i~bers~, .D.Paul Bianckhi, M.D...acetyl- 6 Yamada, S., Yarmamura, H. 1. and Roeske, W. Rt. (1982) choline? (We suspect, for example, that the consistently Life Sci. 31, 1161-1170 lower...regulation of 9 Hammer, R., Giralo, E., Schiavi. G. B., Monferini. E. and receptor number be studied under in-vivo conditions? Can Ladinsky, H. Life

  6. Specific binding component of the 'inactive' stereoisomer (S,S)-[125I]IQNB to rat brain muscarinic receptors in vivo

    Boulay, Sheila F.; McRee, R. Carter; Cohen, Victor I.; Sood, Virendar K.; Zeeberg, Barry R.; Reba, Richard C.

    1996-01-01

    In vivo nonspecific binding can be estimated using the inactive stereoisomer of a receptor radioligand. However, the binding of the inactive stereoisomer may be partially specific. Specific binding of the inactive (S,S)-[ 125 I]IQNB was estimated from the inhibition induced by a competing nonradioactive ligand. This technique differed from the usual approach, since it was used to study the inactive rather than the active stereoisomer. The results indicate that there is substantial specific binding for (S,S)-[ 125 I]IQNB

  7. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients.

    Slagman, Maartje C J; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D

    2012-03-01

    Renin-angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both under- and overtitration of sodium targeting can easily occur. We evaluated whether N-terminal pro-brain natriuretic peptide (NT-proBNP), a biomarker of volume expansion, predicts the benefits of sodium targeting in CKD patients. In a cross-over randomized controlled trial, 33 non-diabetic CKD patients (proteinuria 3.8 ± 0.4 g/24 h, blood pressure 143/86 ± 3/2 mmHg, creatinine clearance 89 ± 5 mL/min) were treated during 6-week periods with placebo, angiotensin receptor blockade (ARB; losartan 100 mg/day) and ARB plus diuretics (losartan 100 mg/day plus hydrochlorothiazide 25 mg/day), combined with LS (93 ± 52 mmol Na(+)/24 h) and regular sodium diet (RS; 193 ± 62 mmol Na(+)/24 h, P diuretics and was normalized by ARB + diuretic + LS [39 (26-59) pg/mL, P = 0.65 versus controls]. NT-proBNP levels above the upper limit of normal (>125 pg/mL) predicted a larger reduction of blood pressure and proteinuria by LS and diuretics but not by ARB, during all steps of the titration regimen. Elevated NT-proBNP levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of sodium targeting, but not RAAS blockade, in proteinuric CKD patients. Importantly, this applies to the untreated condition, as well as to the subsequent treatment steps, consisting of RAAS blockade and even RAAS blockade combined with diuretics. NT-proBNP can be a useful tool to identify CKD patients in whom sodium targeting can improve blood pressure and proteinuria.

  8. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers.

    Khodadadi, M; Zendehdel, M; Baghbanzadeh, A; Babapour, V

    2017-10-01

    1. Endocannabinoids (ECBs) and their receptors play a regulatory function on several physiological processes such as feed-intake behaviour, mainly in the brain. This study was carried out in order to investigate the effects of the dopaminergic D1 and D2 receptors on CB1/CB2 ECB receptor-induced hyperphagia in 3-h feed-deprived neonatal layer chickens. 2. A total of 8 experiments were designed to explore the interplay of these two modulatory systems on feed intake in neonatal chickens. In Experiment 1, chickens were intracerebroventricular (ICV) injected with control solution, l-DOPA (levo-dihydroxyphenylalanine as precursor of dopamine; 125 nmol), 2-AG (2-arachidonoylglycerol as CB 1 receptor agonist; 2 µg) and co-administration of l-DOPA (125 nmol) plus 2-AG (2 µg). Experiments 2-4 were similar to Experiment 1 except birds were injected with either 6-OHDA (6-hydroxydopamine as dopamine synthesis inhibitor; 150 nmol), SCH23390 (D1 receptor antagonist; 5 nmol) and AMI-193 (D2 receptor antagonist; 5 nmol) instead of l-DOPA, respectively. Additionally, Experiments 5-8 followed the previous ones using the same dose of l-DOPA, 6-OHDA and dopamine antagonists except that birds were injected with CB65 (CB2 receptor agonist; 5 µg) instead of 2-AG. Coadministrations were at the same dose for each experiment. Cumulative feed intakes were measured until 120 min after each injection. 3. ICV administration of 6-OHDA and AMI-193 significantly attenuated 2-AG-induced hyperphagia. Interestingly, the hyperphagic effect of CB65 was significantly attenuated by administration of l-DOPA, whereas the administration of 6-OHDA and AMI-193 together amplified the hyperphagic effect of CB65. 4. It was concluded that cannabinoid-induced feeding behaviour is probably modulated by dopamine receptors in neonatal layer-type chickens. It seems that their interaction may be mediated by the D2-dopamine receptor.

  9. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade.

    Adam C Roberts

    Full Text Available The zebrafish larva has been a valuable model system for genetic and molecular studies of development. More recently, biologists have begun to exploit the surprisingly rich behavioral repertoire of zebrafish larvae to investigate behavior. One prominent behavior exhibited by zebrafish early in development is a rapid escape reflex (the C-start. This reflex is mediated by a relatively simple neural circuit, and is therefore an attractive model behavior for neurobiological investigations of simple forms of learning and memory. Here, we describe two forms of short-lived habituation of the C-start in response to brief pulses of auditory stimuli. A rapid form, persisting for ≥1 min but <15 min, was induced by 120 pulses delivered at 0.5-2.0 Hz. A more extended form (termed "short-term habituation" here, which persisted for ≥25 min but <1 h, was induced by spaced training. The spaced training consisted of 10 blocks of auditory pulses delivered at 1 Hz (5 min interblock interval, 900 pulses per block. We found that these two temporally distinguishable forms of habituation are mediated by different cellular mechanisms. The short-term form depends on activation of N-methyl-d-aspartate receptors (NMDARs, whereas the rapid form does not.

  10. Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells.

    Blecharz-Lang, Kinga G; Wagner, Josephin; Fries, Alexa; Nieminen-Kelhä, Melina; Rösner, Jörg; Schneider, Ulf C; Vajkoczy, Peter

    2018-02-10

    Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demo