WorldWideScience

Sample records for murine lung epithelial

  1. Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury.

    Science.gov (United States)

    Husain, Kareem D; Stromberg, Paul E; Woolsey, Cheryl A; Turnbull, Isaiah R; Dunne, W Michael; Javadi, Pardis; Buchman, Timothy G; Karl, Irene E; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Randomized, controlled study. University research laboratory. Genetically inbred mice. Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the

  2. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro

    DEFF Research Database (Denmark)

    Bengtson, Stefan; Kling, Kirsten; Madsen, Anne Mette

    2016-01-01

    Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon‐based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro...... and in vivo. Here, we report in‐depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2......–3 graphene layers with lateral sizes of 1–2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly...

  3. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    Science.gov (United States)

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  4. Nicotine transport in lung and non-lung epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  6. Haemophilia, AIDS and lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))

    1990-01-01

    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  7. Haemophilia, AIDS and lung epithelial permeability

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G.

    1990-01-01

    Lung 99m Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung 99m Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of 99m Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au)

  8. Decreased CXCL12 is associated with impaired alveolar epithelial cell migration and poor lung healing after lung resection.

    Science.gov (United States)

    Kanter, Jacob A; Sun, Haiying; Chiu, Stephen; DeCamp, Malcolm M; Sporn, Peter H S; Sznajder, Jacob I; Bharat, Ankit

    2015-10-01

    Prolonged air leak (PAL) is an important cause of morbidity and mortality after lung resection, but its pathogenesis has not been elucidated. Migration of alveolar type II epithelial cells is essential for lung wound repair. Here we determined the role of C-X-C motif chemokine 12 (CXCL12) on alveolar epithelial cell migration and lung wound healing. CXCL12 in the pleural fluid of patients was analyzed using enzyme-linked immunosorbent assay. Human A549 and murine MLE12 alveolar epithelial cell lines were used for wound closure, cell migration, and proliferation assays. Western blot was used to analyze Rac1 and cofilin. Pleural CXCL12 was decreased in patients with PAL (1,389 ± 192 vs 3,270 ± 247 pg/mL; P alveolar epithelial cell migration by binding to its receptor CXCR4 and may have a role in lung healing. CXCL12-mediated alveolar epithelial cell migration is associated with Rac1 and cofilin activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Hepatocyte growth factor, a determinant of airspace homeostasis in the murine lung.

    Directory of Open Access Journals (Sweden)

    Carla Calvi

    Full Text Available The alveolar compartment, the fundamental gas exchange unit in the lung, is critical for tissue oxygenation and viability. We explored hepatocyte growth factor (HGF, a pleiotrophic cytokine that promotes epithelial proliferation, morphogenesis, migration, and resistance to apoptosis, as a candidate mediator of alveolar formation and regeneration. Mice deficient in the expression of the HGF receptor Met in lung epithelial cells demonstrated impaired airspace formation marked by a reduction in alveolar epithelial cell abundance and survival, truncation of the pulmonary vascular bed, and enhanced oxidative stress. Administration of recombinant HGF to tight-skin mice, an established genetic emphysema model, attenuated airspace enlargement and reduced oxidative stress. Repair in the TSK/+ mouse was punctuated by enhanced akt and stat3 activation. HGF treatment of an alveolar epithelial cell line not only induced proliferation and scattering of the cells but also conferred protection against staurosporine-induced apoptosis, properties critical for alveolar septation. HGF promoted cell survival was attenuated by akt inhibition. Primary alveolar epithelial cells treated with HGF showed improved survival and enhanced antioxidant production. In conclusion, using both loss-of-function and gain-of-function maneuvers, we show that HGF signaling is necessary for alveolar homeostasis in the developing lung and that augmentation of HGF signaling can improve airspace morphology in murine emphysema. Our studies converge on prosurvival signaling and antioxidant protection as critical pathways in HGF-mediated airspace maintenance or repair. These findings support the exploration of HGF signaling enhancement for diseases of the airspace.

  10. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications

    Directory of Open Access Journals (Sweden)

    Amelia Kellar

    2015-01-01

    Full Text Available Murine models for the study of lung cancer have historically been the backbone of preliminary preclinical data to support early human clinical trials. However, the availability of multiple experimental systems leads to debate concerning which model, if any, is best suited for a particular therapeutic strategy. It is imperative that these models accurately predict clinical benefit of therapy. This review provides an overview of the current murine models used to study lung cancer and the advantages and limitations of each model, as well as a retrospective evaluation of the uses of each model with respect to accuracy in predicting clinical benefit of therapy. A better understanding of murine models and their uses, as well as their limitations may aid future research concerning the development and implementation of new targeted therapies and chemotherapeutic agents for lung cancer.

  11. Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture.

    Directory of Open Access Journals (Sweden)

    Yeojun Yun

    Full Text Available Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.

  12. Interactions of Francisella tularensis with Alveolar Type II Epithelial Cells and the Murine Respiratory Epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew Faron

    Full Text Available Francisella tularensis is classified as a Tier 1 select agent by the CDC due to its low infectious dose and the possibility that the organism can be used as a bioweapon. The low dose of infection suggests that Francisella is unusually efficient at evading host defenses. Although ~50 cfu are necessary to cause human respiratory infection, the early interactions of virulent Francisella with the lung environment are not well understood. To provide additional insights into these interactions during early Francisella infection of mice, we performed TEM analysis on mouse lungs infected with F. tularensis strains Schu S4, LVS and the O-antigen mutant Schu S4 waaY::TrgTn. For all three strains, the majority of the bacteria that we could detect were observed within alveolar type II epithelial cells at 16 hours post infection. Although there were no detectable differences in the amount of bacteria within an infected cell between the three strains, there was a significant increase in the amount of cellular debris observed in the air spaces of the lungs in the Schu S4 waaY::TrgTn mutant compared to either the Schu S4 or LVS strain. We also studied the interactions of Francisella strains with human AT-II cells in vitro by characterizing the ability of these three strains to invade and replicate within these cells. Gentamicin assay and confocal microscopy both confirmed that F. tularensis Schu S4 replicated robustly within these cells while F. tularensis LVS displayed significantly lower levels of growth over 24 hours, although the strain was able to enter these cells at about the same level as Schu S4 (1 organism per cell, as determined by confocal imaging. The Schu S4 waaY::TrgTn mutant that we have previously described as attenuated for growth in macrophages and mouse virulence displayed interesting properties as well. This mutant induced significant airway inflammation (cell debris and had an attenuated growth phenotype in the human AT-II cells. These

  13. A fluorescence model of the murine lung for optical detection of pathogenic bacteria

    Science.gov (United States)

    Durkee, Madeleine S.; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2017-07-01

    We present a computer model of intravital excitation and external fluorescence detection in the murine lungs validated with a three-dimensional lung tissue phantom. The model is applied to optical detection of pulmonary tuberculosis infection.

  14. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    Science.gov (United States)

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  15. Cigarette smoke alters the secretome of lung epithelial cells.

    Science.gov (United States)

    Mossina, Alessandra; Lukas, Christina; Merl-Pham, Juliane; Uhl, Franziska E; Mutze, Kathrin; Schamberger, Andrea; Staab-Weijnitz, Claudia; Jia, Jie; Yildirim, Ali Ö; Königshoff, Melanie; Hauck, Stefanie M; Eickelberg, Oliver; Meiners, Silke

    2017-01-01

    Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The role of Sox2 on lung epithelial airway epithelial differentiation

    NARCIS (Netherlands)

    J.K. Ochieng (Joshua)

    2014-01-01

    markdownabstract__Abstract__ The foregut is crucial for development of respiratory organs including the lungs. Foregut morphogenesis starts around embryonic day 8.0 in mouse when the endoderm epithelial sheet folds ventrally during gastrulation [1,2]. At embryonic day 9.0, the ventral folding

  17. Lung epithelial permeability and inhaled furosemide. Added dimensions in asthmatics

    International Nuclear Information System (INIS)

    Bhure, U.N.; Bhure, S.U.; Bhatt, B.M.; Mistry, S.; Pednekar, S.J.; Chari, V.V.; Desai, S.A.; Joshi, J.M.; Paidhungat, A.J.

    2009-01-01

    Lung clearance rates of inhaled 99m Tc-diethylene-triamine-pentaacetic acid (DTPA) aerosols constitute a sensitive index to evaluate the permeability changes characteristic of airway epithelial damage. It was thought that edema of the airway wall which is reported in asthma could be relieved with a diuretic like furosemide, helping to relieve the symptoms. We intended to study the effect of inhaled furosemide on lung epithelial permeability in asthmatics and smokers with the help of 99m Tc-DTPA lung clearance test (LCT). The study included three groups (n=15), viz. normal healthy controls, asymptomatic chronic smokers, and chronic persistent asthmatics. Each subject underwent the LCT twice, baseline and post-furosemide (Lasix) study, within a week's interval. The post-furosemide study was carried out 15 min after inhalation of 10 mg of lasix. Lung epithelial permeability was determined in terms of clearance half-life (T 1/2 ). The baseline mean T 1/2 values for controls, smokers, and asthmatics were 50.95±16.58, 20.81±5.47, 24.06±6.19 min, respectively. Post-lasix T 1/2 values were 50.83±15.84, 20.70±5.65, 41.27±15.07 min, respectively. There was a significant difference (P<0.001) in baseline and post-lasix clearance values in asthmatics only. Baseline lung epithelial permeability was altered in smokers and asthmatics compared to the controls. Furosemide was effective only in asthmatics in reverting the permeability almost back to the normal range. Inhaled furosemide was effective even in moderate and severe asthmatics. Furosemide has multiple mechanisms of action. It possibly acts at bronchial level in view of the pathology in asthmatics lying in the airways. (author)

  18. Cytotoxic effects of air freshener biocides in lung epithelial cells.

    Science.gov (United States)

    Kwon, Jung-Taek; Lee, Mimi; Seo, Gun-Baek; Kim, Hyun-Mi; Shim, Ilseob; Lee, Doo-Hee; Kim, Taksoo; Seo, Jung Kwan; Kim, Pilje; Choi, Kyunghee

    2013-09-01

    This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.

  19. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  20. Critical transition in tissue homeostasis accompanies murine lung senescence.

    Directory of Open Access Journals (Sweden)

    Carla L Calvi

    Full Text Available BACKGROUND: Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to "low pulmonary reserve", ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. METHODS/PRINCIPAL FINDINGS: Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4 and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. CONCLUSION/SIGNIFICANCE: Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging

  1. Lung cancer exosomes as drivers of epithelial mesenchymal transition.

    Science.gov (United States)

    Rahman, Mohammad A; Barger, Jennifer F; Lovat, Francesca; Gao, Min; Otterson, Gregory A; Nana-Sinkam, Patrick

    2016-08-23

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells.

  2. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  3. β2-Microglobulin participates in development of lung emphysema by inducing lung epithelial cell senescence.

    Science.gov (United States)

    Gao, Na; Wang, Ying; Zheng, Chun-Ming; Gao, Yan-Li; Li, Hui; Li, Yan; Fu, Ting-Ting; Xu, Li-Li; Wang, Wei; Ying, Sun; Huang, Kewu

    2017-05-01

    β 2 -Microglobulin (β 2 M), the light chain of the major histocompatibility complex class I (MHC I), has been identified as a proaging factor and is involved in the pathogenesis of neurodegenerative disorders by driving cognitive and regenerative impairments. However, little attention has focused on the effect of β 2 M in the development of lung emphysema. Here, we found that concentrations of β 2 M in plasma were significantly elevated in patients with lung emphysema than those in normal control subjects (1.89 ± 0.12 vs. 1.42 ± 0.06 mg/l, P lung tissue of emphysema (39.90 ± 1.97 vs. 23.94 ± 2.11%, P lung emphysema through induction of lung epithelial cell senescence and inhibition. Copyright © 2017 the American Physiological Society.

  4. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  5. Beneficial effects of ursodeoxycholic acid via inhibition of airway remodelling, apoptosis of airway epithelial cells, and Th2 immune response in murine model of chronic asthma.

    Science.gov (United States)

    Işık, S; Karaman, M; Çilaker Micili, S; Çağlayan-Sözmen, Ş; Bağrıyanık, H Alper; Arıkan-Ayyıldız, Z; Uzuner, N; Karaman, Ö

    In previous studies, anti-inflammatory, anti-apoptotic and immunomodulatory effects of ursodeoxycholic acid (UDCA) on liver diseases have been shown. In this study, we aimed to investigate the effects of UDCA on airway remodelling, epithelial apoptosis, and T Helper (Th)-2 derived cytokine levels in a murine model of chronic asthma. Twenty-seven BALB/c mice were divided into five groups; PBS-Control, OVA-Placebo, OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone. Mice in groups OVA-50mg/kg UDCA, OVA-150mg/kg UDCA, OVA-Dexamethasone received the UDCA (50mg/kg), UDCA (150mg/kg), and dexamethasone, respectively. Epithelium thickness, sub-epithelial smooth muscle thickness, number of mast and goblet cells of samples isolated from the lung were measured. Immunohistochemical scorings of the lung tissue for matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEG-F), transforming growth factor-beta (TGF-β), terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling (TUNEL) and cysteine-dependent aspartate-specific proteases (caspase)-3 were determined. IL-4, IL-5, IL-13, Nitric oxide, ovalbumin-specific immunoglobulin (Ig) E levels were quantified. The dose of 150mg/kg UDCA treatment led to lower epithelial thickness, sub-epithelial smooth muscle thickness, goblet and mast cell numbers compared to placebo. Except for MMP-9 and TUNEL all immunohistochemical scores were similar in both UDCA treated groups and the placebo. All cytokine levels were significantly lower in group IV compared to the placebo. These findings suggested that the dose of 150mg/kg UDCA improved all histopathological changes of airway remodelling and its beneficial effects might be related to modulating Th-2 derived cytokines and the inhibition of apoptosis of airway epithelial cells. Copyright © 2017 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  6. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs

    OpenAIRE

    Mathew, Biji; Jacobson, Jeffrey R.; Berdyshev, Evgeny; Huang, Yong; Sun, Xiaoguang; Zhao, Yutong; Gerhold, Lynnette M.; Siegler, Jessica; Evenoski, Carrie; Wang, Ting; Zhou, Tong; Zaidi, Rafe; Moreno-Vinasco, Liliana; Bittman, Robert; Chen, Chin Tu

    2011-01-01

    Clinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components...

  7. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  8. Infection rate and tissue localization of murine IL-12p40-producing monocyte-derived CD103(+) lung dendritic cells during pulmonary tuberculosis.

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.

  9. Tracing the fate of limbal epithelial progenitor cells in the murine cornea.

    Science.gov (United States)

    Di Girolamo, N; Bobba, S; Raviraj, V; Delic, N C; Slapetova, I; Nicovich, P R; Halliday, G M; Wakefield, D; Whan, R; Lyons, J G

    2015-01-01

    Stem cell (SC) division, deployment, and differentiation are processes that contribute to corneal epithelial renewal. Until now studying the destiny of these cells in a living mammal has not been possible. However, the advent of inducible multicolor genetic tagging and powerful imaging technologies has rendered this achievable in the translucent and readily accessible murine cornea. K14CreER(T2)-Confetti mice that harbor two copies of the Brainbow 2.1 cassette, yielding up to 10 colors from the stochastic recombination of fluorescent proteins, were used to monitor K-14(+) progenitor cell dynamics within the corneal epithelium in live animals. Multicolored columns of cells emerged from the basal limbal epithelium as they expanded and migrated linearly at a rate of 10.8 µm/day toward the central cornea. Moreover, the permanent expression of fluorophores, passed on from progenitor to progeny, assisted in discriminating individual clones as spectrally distinct streaks containing more than 1,000 cells within the illuminated area. The centripetal clonal expansion is suggestive that a single progenitor cell is responsible for maintaining a narrow corridor of corneal epithelial cells. Our data are in agreement with the limbus as the repository for SC as opposed to SC being distributed throughout the central cornea. This is the first report describing stem/progenitor cell fate determination in the murine cornea using multicolor genetic tracing. This model represents a powerful new resource to monitor SC kinetics and fate choice under homeostatic conditions, and may assist in assessing clonal evolution during corneal development, aging, wound-healing, disease, and following transplantation. © 2014 AlphaMed Press.

  10. The influence of age on lung epithelial permeability

    International Nuclear Information System (INIS)

    Yang Minfu; Wang Daoyu; Liu Xiujie; He Zuoxiang; Wang Yuetao; Wang Shiwen

    2007-01-01

    Objective: The pulmonary clearance rate of aerosolized 99 Tc m -DTPA is a sensitive index for measurement of lung epithelial permeability (LEP). It is well established that LEP increases in some pathological conditions. However, little is known about the influence of age on LEP. Accordingly, the aim of this study was to evaluate the relationship between age and LEP in healthy nonsmokers. Methods: Seventy-nine healthy nonsmokers underwent 99 Tc m -DTPA inhalation imaging and pulmonary clearance index (k) was calculated. The following analyses were done: (1) To compare the difference of k values between aged (≥ 65 years) and non-aged ( 0 + b 1 x + b 2 x 2 + b 3 x 3 , y symbolized k values and x symbolized age). Conclusions: The data of LEP at different age groups showed negative correlation of LEP and age in non-smokers. This data might play an age-related reference data in investigating senescence and lung disease in non-smokers. (authors)

  11. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  12. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  13. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  14. Simulation of lung alveolar epithelial wound healing in vitro.

    Science.gov (United States)

    Kim, Sean H J; Matthay, Michael A; Mostov, Keith; Hunt, C Anthony

    2010-08-06

    The mechanisms that enable and regulate alveolar type II (AT II) epithelial cell wound healing in vitro and in vivo remain largely unknown and need further elucidation. We used an in silico AT II cell-mimetic analogue to explore and better understand plausible wound healing mechanisms for two conditions: cyst repair in three-dimensional cultures and monolayer wound healing. Starting with the analogue that validated for key features of AT II cystogenesis in vitro, we devised an additional cell rearrangement action enabling cyst repair. Monolayer repair was enabled by providing 'cells' a control mechanism to switch automatically to a repair mode in the presence of a distress signal. In cyst wound simulations, the revised analogue closed wounds by adhering to essentially the same axioms available for alveolar-like cystogenesis. In silico cell proliferation was not needed. The analogue recovered within a few simulation cycles but required a longer recovery time for larger or multiple wounds. In simulated monolayer wound repair, diffusive factor-mediated 'cell' migration led to repair patterns comparable to those of in vitro cultures exposed to different growth factors. Simulations predicted directional cell locomotion to be critical for successful in vitro wound repair. We anticipate that with further use and refinement, the methods used will develop as a rigorous, extensible means of unravelling mechanisms of lung alveolar repair and regeneration.

  15. Graphene-induced apoptosis in lung epithelial cells through EGFR

    Science.gov (United States)

    Tsai, Shih-Ming; Bangalore, Preeti; Chen, Eric Y.; Lu, David; Chiu, Meng-Hsuen; Suh, Andrew; Gehring, Matthew; Cangco, John P.; Garcia, Santiago G.; Chin, Wei-Chun

    2017-07-01

    Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

  16. Murine model of BCG lung infection: Dynamics of lymphocyte ...

    Indian Academy of Sciences (India)

    Unknown

    NK cells in lungs declined by 30% but the total number of NK cells (NK1⋅1+) per lung increased by about 50%,. 5–6 weeks ..... to some lymphoid tissues like spleen (NK cells < 5%), .... effector cells of innate resistance and regulatory cells of.

  17. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  18. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    Science.gov (United States)

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  19. Paracytosis of Haemophilus influenzae through cell layers of NCI-H292 lung epithelial cells

    NARCIS (Netherlands)

    van Schilfgaarde, M.; van Alphen, L.; Eijk, P.; Everts, V.; Dankert, J.

    1995-01-01

    Haemophilus influenzae penetrates the respiratory epithelium during carriage and invasive disease, including respiratory tract infections. We developed an in vitro model system consisting of lung epithelial NCI-H292 cells on permeable supports to study the passage of H. influenzae through lung

  20. Elastin Cables Define the Axial Connective Tissue System in the Murine Lung.

    Science.gov (United States)

    Wagner, Willi; Bennett, Robert D; Ackermann, Maximilian; Ysasi, Alexandra B; Belle, Janeil; Valenzuela, Cristian D; Pabst, Andreas; Tsuda, Akira; Konerding, Moritz A; Mentzer, Steven J

    2015-11-01

    The axial connective tissue system is a fiber continuum of the lung that maintains alveolar surface area during changes in lung volume. Although the molecular anatomy of the axial system remains undefined, the fiber continuum of the lung is central to contemporary models of lung micromechanics and alveolar regeneration. To provide a detailed molecular structure of the axial connective tissue system, we examined the extracellular matrix of murine lungs. The lungs were decellularized using a 24 hr detergent treatment protocol. Systematic evaluation of the decellularized lungs demonstrated no residual cellular debris; morphometry demonstrated a mean 39 ± 7% reduction in lung dimensions. Scanning electron microscopy (SEM) demonstrated an intact structural hierarchy within the decellularized lung. Light, fluorescence, and SEM of precision-cut lung slices demonstrated that alveolar duct structure was defined by a cable line element encased in basement membrane. The cable line element arose in the distal airways, passed through septal tips and inserted into neighboring blood vessels and visceral pleura. The ropelike appearance, collagenase resistance and anti-elastin immunostaining indicated that the cable was an elastin macromolecule. Our results indicate that the helical line element of the axial connective tissue system is composed of an elastin cable that not only defines the structure of the alveolar duct, but also integrates the axial connective tissue system into visceral pleura and peripheral blood vessels. © 2015 Wiley Periodicals, Inc.

  1. Angiogenesis gene expression in murine endothelial cells during post-pneumonectomy lung growth

    Directory of Open Access Journals (Sweden)

    Konerding Moritz A

    2011-07-01

    Full Text Available Abstract Although blood vessel growth occurs readily in the systemic bronchial circulation, angiogenesis in the pulmonary circulation is rare. Compensatory lung growth after pneumonectomy is an experimental model with presumed alveolar capillary angiogenesis. To investigate the genes participating in murine neoalveolarization, we studied the expression of angiogenesis genes in lung endothelial cells. After left pneumonectomy, the remaining right lung was examined on days 3, 6, 14 and 21days after surgery and compared to both no surgery and sham thoracotomy controls. The lungs were enzymatically digested and CD31+ endothelial cells were isolated using flow cytometry cell sorting. The transcriptional profile of the CD31+ endothelial cells was assessed using quantitative real-time polymerase chain reaction (PCR arrays. Focusing on 84 angiogenesis-associated genes, we identified 22 genes with greater than 4-fold regulation and significantly enhanced transcription (p

  2. Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling.

    Science.gov (United States)

    Marty, Amber J; Wüthrich, Marcel; Carmen, John C; Sullivan, Thomas D; Klein, Bruce S; Cuomo, Christina A; Gauthier, Gregory M

    2013-07-01

    Blastomyces dermatitidis belongs to a group of thermally dimorphic fungi that grow as sporulating mold in the soil and convert to pathogenic yeast in the lung following inhalation of spores. Knowledge about the molecular events important for fungal adaptation and survival in the host remains limited. The development of high-throughput analytic tools such as RNA sequencing (RNA-Seq) has potential to provide novel insight on fungal pathogenesis especially if applied in vivo during infection. However, in vivo transcriptional profiling is hindered by the low abundance of fungal cells relative to mammalian tissue and difficulty in isolating fungal cells from the tissues they infect. For the purpose of obtaining B. dermatitidis RNA for in vivo transcriptional analysis by RNA-Seq, we developed a simple technique for isolating yeast from murine lung tissue. Using a two-step approach of filtration and centrifugation following lysis of murine lung cells, 91% of yeast cells causing infection were isolated from lung tissue. B. dermatitidis recovered from the lung yielded high-quality RNA with minimal murine contamination and was suitable for RNA-Seq. Approximately 87% of the sequencing reads obtained from the recovered yeast aligned with the B. dermatitidis genome. This was similar to 93% alignment for yeast grown in vitro. The use of near-freezing temperature along with short ex vivo time minimized transcriptional changes that would have otherwise occurred with higher temperature or longer processing time. In conclusion, we have developed a technique that recovers the majority of yeast causing pulmonary infection and yields high-quality fungal RNA with minimal contamination by mammalian RNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter

    International Nuclear Information System (INIS)

    Michael, S.; Montag, M.; Dott, W.

    2013-01-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0–100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. -- Highlights: ► The study compares the toxicological effects of different source-related particles with regard to their chemical composition. ► The chemical characterization of the coarse particles revealed clear differences in elemental, TC and PAH composition. ► Equal mass concentrations of urban traffic and rural PM caused different toxicological responses. ► The observations confirm the hypothesis that particle composition, as well as origin, influence the PM-induced toxicity. -- The toxicological responses of lung epithelial cells and macrophages differ significantly after an exposure to equal mass concentrations of urban traffic and rural PM

  4. Iron supplementation decreases severity of allergic inflammation in murine lung.

    Directory of Open Access Journals (Sweden)

    Laura P Hale

    Full Text Available The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans.

  5. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    Science.gov (United States)

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Clarifying CB2 Receptor-Dependent and Independent Effects of THC on Human Lung Epithelial Cells

    OpenAIRE

    Sarafian, Theodore; Montes, Cindy; Harui, Airi; Beedanagari, Sudheer R.; Kiertscher, Sylvia; Stripecke, Renata; Hossepian, Derik; Kitchen, Christina; Kern, Rita; Belperio, John; Roth, Michael D.

    2008-01-01

    Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that Δ9-tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 (Sarafian et al., 2003; Sarafian et al., 2005). The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the typ...

  7. Cyto-adherence of Mycoplasma mycoides subsp. mycoides to bovine lung epithelial cells.

    Science.gov (United States)

    Aye, Racheal; Mwirigi, Martin Kiogora; Frey, Joachim; Pilo, Paola; Jores, Joerg; Naessens, Jan

    2015-02-07

    Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP), a respiratory disease of cattle, whereas the closely related Mycoplasma mycoides subsp. capri (Mmc) is a goat pathogen. Cyto-adherence is a crucial step in host colonization by mycoplasmas and subsequent pathogenesis. The aim of this study was to investigate the interactions between Mmm and mammalian host cells by establishing a cyto-adherence flow cytometric assay and comparing tissue and species specificity of Mmm and Mmc strains. There were little significant differences in the adherence patterns of eight different Mmm strains to adult bovine lung epithelial cells. However, there was statistically significant variation in binding to different host cells types. Highest binding was observed with lung epithelial cells, intermediate binding with endothelial cells and very low binding with fibroblasts, suggesting the presence of effective adherence of Mmm on cells lining the airways of the lung, which is the target organ for this pathogen, possibly by high expression of a specific receptor. However, binding to bovine fetal lung epithelial cells was comparably low; suggesting that the lack of severe pulmonary disease seen in many infected young calves can be explained by reduced expression of a specific receptor. Mmm bound with high efficiency to adult bovine lung cells and less efficiently to calves or goat lung cells. The data show that cyto-adherence of Mmm is species- and tissue- specific confirming its role in colonization of the target host and subsequent infection and development of CBPP.

  8. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  9. Automated segmentation of murine lung tumors in x-ray micro-CT images

    Science.gov (United States)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  10. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs

    Science.gov (United States)

    Mathew, Biji; Jacobson, Jeffrey R.; Berdyshev, Evgeny; Huang, Yong; Sun, Xiaoguang; Zhao, Yutong; Gerhold, Lynnette M.; Siegler, Jessica; Evenoski, Carrie; Wang, Ting; Zhou, Tong; Zaidi, Rafe; Moreno-Vinasco, Liliana; Bittman, Robert; Chen, Chin Tu; LaRiviere, Patrick J.; Sammani, Saad; Lussier, Yves A.; Dudek, Steven M.; Natarajan, Viswanathan; Weichselbaum, Ralph R.; Garcia, Joe G. N.

    2011-01-01

    Clinically significant radiation-induced lung injury (RILI) is a common toxicity in patients administered thoracic radiotherapy. Although the molecular etiology is poorly understood, we previously characterized a murine model of RILI in which alterations in lung barrier integrity surfaced as a potentially important pathobiological event and genome-wide lung gene mRNA levels identified dysregulation of sphingolipid metabolic pathway genes. We hypothesized that sphingolipid signaling components serve as modulators and novel therapeutic targets of RILI. Sphingolipid involvement in murine RILI was confirmed by radiation-induced increases in lung expression of sphingosine kinase (SphK) isoforms 1 and 2 and increases in the ratio of ceramide to sphingosine 1-phosphate (S1P) and dihydro-S1P (DHS1P) levels in plasma, bronchoalveolar lavage fluid, and lung tissue. Mice with a targeted deletion of SphK1 (SphK1−/−) or with reduced expression of S1P receptors (S1PR1+/−, S1PR2−/−, and S1PR3−/−) exhibited marked RILI susceptibility. Finally, studies of 3 potent vascular barrier-protective S1P analogs, FTY720, (S)-FTY720-phosphonate (fTyS), and SEW-2871, identified significant RILI attenuation and radiation-induced gene dysregulation by the phosphonate analog, fTyS (0.1 and 1 mg/kg i.p., 2×/wk) and to a lesser degree by SEW-2871 (1 mg/kg i.p., 2×/wk), compared with those in controls. These results support the targeting of S1P signaling as a novel therapeutic strategy in RILI.—Mathew, B., Jacobson, J. R., Berdyshev, E., Huang, Y., Sun, X., Zhao, Y., Gerhold, L. M., Siegler, J., Evenoski, C., Wang, T., Zhou, T., Zaidi, R., Moreno-Vinasco, L., Bittman, R., Chen, C. T., LaRiviere, P. J., Sammani, S., Lussier, Y. A., Dudek, S. M., Natarajan, V., Weichselbaum, R. R., Garcia, J. G. N. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. PMID:21712494

  11. IL-36 receptor deletion attenuates lung injury and decreases mortality in murine influenza pneumonia.

    Science.gov (United States)

    Aoyagi, T; Newstead, M W; Zeng, X; Kunkel, S L; Kaku, M; Standiford, T J

    2017-07-01

    Influenza virus causes a respiratory disease in humans that can progress to lung injury with fatal outcome. The interleukin (IL)-36 cytokines are newly described IL-1 family cytokines that promote inflammatory responses via binding to the IL-36 receptor (IL-36R). The mechanism of expression and the role of IL-36 cytokines are poorly understood. Here, we investigated the role of IL-36 cytokines in modulating the innate inflammatory response during influenza virus-induced pneumonia in mice. The intranasal administration of influenza virus upregulated IL-36α mRNA and protein production in the lungs. In vitro, influenza virus-mediated IL-36α but not IL-36γ is induced and secreted from alveolar epithelial cells (AECs) through both a caspase-1 and caspase-3/7 dependent pathway. IL-36α was detected in microparticles shed from AECs and promoted the production of pro-inflammatory cytokines and chemokines in respiratory cells. IL-36R-deficient mice were protected from influenza virus-induced lung injury and mortality. Decreased mortality was associated with significantly reduced early accumulation of neutrophils and monocytes/macrophages, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines, and permeability of the alveolar-epithelial barrier in despite impaired viral clearance. Taken together, these data indicate that IL-36 ligands exacerbate lung injury during influenza virus infection.

  12. Proteomic profiling of acrolein adducts in human lung epithelial cells

    Science.gov (United States)

    Spiess, Page C.; Deng, Bin; Hondal, Robert J.; Matthews, Dwight E.; van der Vliet, Albert

    2011-01-01

    Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology. PMID:21704744

  13. Comparison of three tracers for detecting lung epithelial injury in anesthetized sheep

    International Nuclear Information System (INIS)

    Peterson, B.T.; Dickerson, K.D.; James, H.L.; Miller, E.J.; McLarty, J.W.; Holiday, D.B.

    1989-01-01

    We compared the ability of three aerosolized tracers to discriminate among control, lung inflation with a positive end expired pressure of 10 cmH 2 O, lung vascular hypertension and edema without lung injury, and lung edema with lung injury due to intravenous oleic acid. The tracers were 99m Tc-diethylenetriaminepentaacetate ( 99m Tc-DTPA, mol wt 492), 99m Tc-human serum albumin ( 99m Tc-ALB, mol wt 69,000), and 99m Tc-aggregated albumin ( 99m Tc-AGG ALB, mol wt 383,000). 99m Tc-DTPA clearance measurements were not able to discriminate lung injury from lung inflation. The 99m Tc-AGG ALB clearance rate was unchanged by lung inflation and increased slightly with lung injury. The 99mTc-ALB clearance rate (0.06 +/- 0.02%/min) was unchanged by lung inflation (0.09 +/- 0.02%/min, P greater than 0.05) or 4 h of hypertension without injury (0.09 +/- 0.04%/min, P greater than 0.05). Deposition of 99m Tc-ALB within 15 min of the administration of the oleic acid increased the clearance rate to 0.19 +/- 0.06%/min, which correlated well with the postmortem lung water volume (r = 0.92, P less than 0.01). This did not occur when there was a 60-min delay in the deposition of 99m Tc-ALB. We conclude that 99m Tc-ALB is the best indicator for studying the effects of lung epithelial injury on protein and fluid transport into and out of the air spaces of the lungs in a minimally invasive manner

  14. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    2016-08-01

    Full Text Available The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β. Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  15. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  16. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma.

    Science.gov (United States)

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Lee, Mee-Young; Kim, So-Young; Park, Bo-Young; Kim, Mi-Kyoung; Lee, In-Young; Oh, Sei-Ryang; Lee, Hyeong-Kyu

    2008-12-01

    Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

  17. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    Science.gov (United States)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  18. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    International Nuclear Information System (INIS)

    Ford, N L; Martin, E L; Lewis, J F; Veldhuizen, R A W; Holdsworth, D W; Drangova, M

    2009-01-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  19. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Ford, N L [Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Martin, E L; Lewis, J F; Veldhuizen, R A W [Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario N6A 4V2 (Canada); Holdsworth, D W; Drangova, M [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, PO Box 5015, London, Ontario N6A 5K8 (Canada)], E-mail: nlford@ryerson.ca

    2009-04-07

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  20. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  1. Timing of developmental reduction in epithelial glutathione redox potential is associated with increased epithelial proliferation in the immature murine intestine.

    Science.gov (United States)

    Reid, Graham K; Berardinelli, Andrew J; Ray, Laurie; Jackson, Arena R; Neish, Andrew S; Hansen, Jason M; Denning, Patricia W

    2017-08-01

    BackgroundThe intracellular redox potential of the glutathione (GSH)/glutathione disulfide (GSSG) couple regulates cellular processes. In vitro studies indicate that a reduced GSH/GSSG redox potential favors proliferation, whereas a more oxidized redox potential favors differentiation. Intestinal growth depends upon an appropriate balance between the two. However, how the ontogeny of intestinal epithelial cellular (IEC) GSH/GSSG redox regulates these processes in the developing intestine has not been fully characterized in vivo.MethodsOntogeny of intestinal GSH redox potential and growth were measured in neonatal mice.ResultsWe show that IEC GSH/GSSG redox potential becomes increasingly reduced (primarily driven by increased GSH concentration) over the first 3 weeks of life. Increased intracellular GSH has been shown to drive proliferation through increased poly-ADP-ribose polymerase (PARP) activity. We show that increasing IEC poly-ADP-ribose chains can be measured over the first 3 weeks of life, indicating an increase in IEC PARP activity. These changes are accompanied by increased intestinal growth and IEC proliferation as assessed by villus height/crypt depth, intestinal length, and Ki67 staining.ConclusionUnderstanding how IEC GSH/GSSG redox potential is developmentally regulated may provide insight into how premature human intestinal redox states can be manipulated to optimize intestinal growth and adaptation.

  2. Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection

    NARCIS (Netherlands)

    Aprianto, Rieza; Slager, Jelle; Holsappel, Siger; Veening, Jan-Willem

    2016-01-01

    BACKGROUND: Streptococcus pneumoniae, the pneumococcus, is the main etiological agent of pneumonia. Pneumococcal infection is initiated by bacterial adherence to lung epithelial cells. The exact transcriptional changes occurring in both host and microbe during infection are unknown. Here, we

  3. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    Science.gov (United States)

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  4. Macrophage Responses to Epithelial Dysfunction Promote Lung Fibrosis in Aging

    Science.gov (United States)

    2017-10-01

    11 5. Changes/Problems...….……………………………………………… 12 6. Products …………………………………….……….….……………. 13 7. Participants & Other Collaborating...the whole lung tissue (traditional approach implemented by other groups). All samples have yielded high- quality (RIN over 7) RNA. Libraries for RNA...performed in house and not being outsourced . Actual or anticipated problems or delays and actions or plans to resolve them: Nothing to report. Changes

  5. A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells

    Science.gov (United States)

    Magness, Scott T.; Puthoff, Brent J.; Crissey, Mary Ann; Dunn, James; Henning, Susan J.; Houchen, Courtney; Kaddis, John S.; Kuo, Calvin J.; Li, Linheng; Lynch, John; Martin, Martin G.; May, Randal; Niland, Joyce C.; Olack, Barbara; Qian, Dajun; Stelzner, Matthias; Swain, John R.; Wang, Fengchao; Wang, Jiafang; Wang, Xinwei; Yan, Kelley; Yu, Jian

    2013-01-01

    Fluorescence-activated cell sorting (FACS) is an essential tool for studies requiring isolation of distinct intestinal epithelial cell populations. Inconsistent or lack of reporting of the critical parameters associated with FACS methodologies has complicated interpretation, comparison, and reproduction of important findings. To address this problem a comprehensive multicenter study was designed to develop guidelines that limit experimental and data reporting variability and provide a foundation for accurate comparison of data between studies. Common methodologies and data reporting protocols for tissue dissociation, cell yield, cell viability, FACS, and postsort purity were established. Seven centers tested the standardized methods by FACS-isolating a specific crypt-based epithelial population (EpCAM+/CD44+) from murine small intestine. Genetic biomarkers for stem/progenitor (Lgr5 and Atoh 1) and differentiated cell lineages (lysozyme, mucin2, chromogranin A, and sucrase isomaltase) were interrogated in target and control populations to assess intra- and intercenter variability. Wilcoxon's rank sum test on gene expression levels showed limited intracenter variability between biological replicates. Principal component analysis demonstrated significant intercenter reproducibility among four centers. Analysis of data collected by standardized cell isolation methods and data reporting requirements readily identified methodological problems, indicating that standard reporting parameters facilitate post hoc error identification. These results indicate that the complexity of FACS isolation of target intestinal epithelial populations can be highly reproducible between biological replicates and different institutions by adherence to common cell isolation methods and FACS gating strategies. This study can be considered a foundation for continued method development and a starting point for investigators that are developing cell isolation expertise to study physiology and

  6. Engineered FGF-2 expression induces glandular epithelial hyperplasia in the murine prostatic dorsal lobe.

    NARCIS (Netherlands)

    Takahashi, N.; Takeuchi, T.; Nishimatsu, H.; Kamijo, T.; Tomita, K.; Schalken, J.A.; Teshima, S.; Kitamura, T.

    2004-01-01

    OBJECTIVE: It is known that androgens and stromal-epithelial interactions are required for the formation and growth of the prostate. FGF-2 is overexpressed in prostatic stromal cells in benign prostatic hypertrophy (BPH)/prostate cancer. This supports the paracrine/autocrine growth of prostatic

  7. Biological effects of desert dust in respiratory epithelial cells and a murine model.

    Science.gov (United States)

    Abstract As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States could impact a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sedime...

  8. Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia.

    Science.gov (United States)

    Tan, Kai Sen; Choi, Hyungwon; Jiang, Xiaoou; Yin, Lu; Seet, Ju Ee; Patzel, Volker; Engelward, Bevin P; Chow, Vincent T

    2014-07-11

    Tissue regeneration in the lungs is gaining increasing interest as a potential influenza management strategy. In this study, we explored the role of microRNAs, short non-coding RNAs involved in post-transcriptional regulation, during pulmonary regeneration after influenza infection. We profiled miRNA and mRNA expression levels following lung injury and tissue regeneration using a murine influenza pneumonia model. BALB/c mice were infected with a sub-lethal dose of influenza A/PR/8(H1N1) virus, and their lungs were harvested at 7 and 15 days post-infection to evaluate the expression of ~300 miRNAs along with ~36,000 genes using microarrays. A global network was constructed between differentially expressed miRNAs and their potential target genes with particular focus on the pulmonary repair and regeneration processes to elucidate the regulatory role of miRNAs in the lung repair pathways. The miRNA arrays revealed a global down-regulation of miRNAs. TargetScan analyses also revealed specific miRNAs highly involved in targeting relevant gene functions in repair such as miR-290 and miR-505 at 7 dpi; and let-7, miR-21 and miR-30 at 15 dpi. The significantly differentially regulated miRNAs are implicated in the activation or suppression of cellular proliferation and stem cell maintenance, which are required during the repair of the damaged lungs. These findings provide opportunities in the development of novel repair strategies in influenza-induced pulmonary injury.

  9. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung

    Science.gov (United States)

    Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.

    2015-01-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985

  10. Depleted uranium induces neoplastic transformation in human lung epithelial cells.

    Science.gov (United States)

    Xie, Hong; LaCerte, Carolyne; Thompson, W Douglas; Wise, John Pierce

    2010-02-15

    Depleted uranium (DU) is commonly used in military armor and munitions, and thus, exposure of soldiers and noncombatants is frequent and widespread. Previous studies have shown that DU has both chemical and radiological toxicity and that the primary route of exposure of DU to humans is through inhalation and ingestion. However, there is limited research information on the potential carcinogenicity of DU in human bronchial cells. Accordingly, we determined the neoplastic transforming ability of particulate DU to human bronchial epithelial cells (BEP2D). We observed the loss of contact inhibition and anchorage independent growth in cells exposed to DU after 24 h. We also characterized these DU-induced transformed cell lines and found that 40% of the cell lines exhibit alterations in plating efficiency and no significant changes in the cytotoxic response to DU. Cytogenetic analyses showed that 53% of the DU-transformed cell lines possess a hypodiploid phenotype. These data indicate that human bronchial cells are transformed by DU and exhibit significant chromosome instability consistent with a neoplastic phenotype.

  11. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  12. Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma.

    Science.gov (United States)

    Uchida, Akifumi; Samukawa, Takuya; Kumamoto, Tomohiro; Ohshige, Masahiro; Hatanaka, Kazuhito; Nakamura, Yoshihiro; Mizuno, Keiko; Higashimoto, Ikkou; Sato, Masami; Inoue, Hiromasa

    2017-12-12

    It is crucial to develop novel diagnostic approaches for determining if peripheral lung nodules are malignant, as such nodules are frequently detected due to the increased use of chest computed tomography scans. To this end, we evaluated levels of napsin A in epithelial lining fluid (ELF), since napsin A has been reported to be an immunohistochemical biomarker for histological diagnosis of primary lung adenocarcinoma. In consecutive patients with indeterminate peripheral lung nodules, ELF samples were obtained using a bronchoscopic microsampling (BMS) technique. The levels of napsin A and carcinoembryonic antigen (CEA) in ELF at the nodule site were compared with those at the contralateral site. A final diagnosis of primary lung adenocarcinoma was established by surgical resection. We performed BMS in 43 consecutive patients. Among patients with primary lung adenocarcinoma, the napsin A levels in ELF at the nodule site were markedly higher than those at the contralateral site, while there were no significant differences in CEA levels. Furthermore, in 18 patients who were undiagnosed by bronchoscopy and finally diagnosed by surgery, the napsin A levels in ELF at the nodule site were identically significantly higher than those at the contralateral site. In patients with non-adenocarcinoma, there were no differences in napsin A levels in ELF. The area under the receiver operator characteristic curve for identifying primary lung adenocarcinoma was 0.840 for napsin A and 0.542 for CEA. Evaluation of napsin A levels in ELF may be useful for distinguishing primary lung adenocarcinoma.

  13. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    Science.gov (United States)

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  14. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Adhesive interaction measured between AFM probe and lung epithelial type II cells

    International Nuclear Information System (INIS)

    Leonenko, Zoya; Finot, Eric; Amrein, Matthias

    2007-01-01

    The toxicity of inhaled nanoparticles entering the body through the lung is thought to be initially defined by the electrostatic and adhesive interaction of the particles with lung's wall. Here, we investigated the first step of the interaction of nanoparticles with lung epithelial cells using atomic force microscope (AFM) as a force apparatus. Nanoparticles were modeled by the apex of the AFM tip and the forces of interaction between the tip and the cell analyzed over time. The adhesive force and work of adhesion strongly increased for the first 100 s of contact and then leveled out. During this time, the tip was penetrating deeply into the cell. It first crossed a stiff region of the cell and then entered a much more compliant cell region. The work of adhesion and its progression over time were not dependent on the load with which the tip was brought into contact with the cell. We conclude that the initial thermodynamic aspects and the time course of the uptake of nanoparticles by lung epithelial cells can be studied using our experimental approach. It is discussed how the potential health threat posed by nanoparticles of different size and surface characteristics can be evaluated using the method presented

  16. Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung

    Science.gov (United States)

    Yates, Laura L.; Schnatwinkel, Carsten; Hazelwood, Lee; Chessum, Lauren; Paudyal, Anju; Hilton, Helen; Romero, M. Rosario; Wilde, Jonathan; Bogani, Debora; Sanderson, Jeremy; Formstone, Caroline; Murdoch, Jennifer N.; Niswander, Lee A.; Greenfield, Andy; Dean, Charlotte H.

    2013-01-01

    During lung development, proper epithelial cell arrangements are critical for the formation of an arborized network of tubes. Each tube requires a lumen, the diameter of which must be tightly regulated to enable optimal lung function. Lung branching and lumen morphogenesis require close epithelial cell–cell contacts that are maintained as a result of adherens junctions, tight junctions and by intact apical–basal (A/B) polarity. However, the molecular mechanisms that maintain epithelial cohesion and lumen diameter in the mammalian lung are unknown. Here we show that Scribble, a protein implicated in planar cell polarity (PCP) signalling, is necessary for normal lung morphogenesis. Lungs of the Scrib mouse mutant Circletail (Crc) are abnormally shaped with fewer airways, and these airways often lack a visible, ‘open’ lumen. Mechanistically we show that Scrib genetically interacts with the core PCP gene Vangl2 in the developing lung and that the distribution of PCP pathway proteins and Rho mediated cytoskeletal modification is perturbed in ScribCrc/Crc lungs. However A/B polarity, which is disrupted in Drosophila Scrib mutants, is largely unaffected. Notably, we find that Scrib mediates functions not attributed to other PCP proteins in the lung. Specifically, Scrib localises to both adherens and tight junctions of lung epithelia and knockdown of Scrib in lung explants and organotypic cultures leads to reduced cohesion of lung epithelial cells. Live imaging of Scrib knockdown lungs shows that Scrib does not affect bud bifurcation, as previously shown for the PCP protein Celsr1, but is required to maintain epithelial cohesion. To understand the mechanism leading to reduced cell–cell association, we show that Scrib associates with β-catenin in embryonic lung and the sub-cellular distribution of adherens and tight junction proteins is perturbed in mutant lung epithelia. Our data reveal that Scrib is required for normal lung epithelial organisation and lumen

  17. Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice.

    Science.gov (United States)

    Carraresi, Laura; Martinelli, Rosanna; Vannoni, Alessandro; Riccio, Massimo; Dembic, Maja; Tripodi, Sergio; Cintorino, Marcella; Santi, Spartaco; Bigliardi, Elisa; Carmellini, Mario; Rossini, Mara

    2006-01-08

    We have established two murine cell lines derived from Small Cell Lung Carcinomas (SCLCs) developed by HPV-E6/E7 transgenic mice. These cells named PPAP-9 and PPAP-10 were isolated from mice bearing tumors, 9 and 10 months old, respectively. The cells, 5 microm in diameter, express HPV oncoproteins and sustain tumor formation after subcutaneous injection in syngenic mice. A detailed analysis indicated the epithelial origin and the neuroendocrine differentiation of these cells. We showed by confocal immunofluorescence the expression of the epithelial marker cytokeratin 5, whose gene promoter was used to direct the expression of HPV E6/E. Cells express several neuroendocrine markers such as CGRP, MAP-2, Ash1, CgrA, Scg2. The neuroendocrine differentiation of these cells was further confirmed by electron microscopy demonstrating neuropeptides secreting granules in their cytoplasm. Furthermore, in agreement with the altered expression observed in the majority of human SCLC we showed in these cells the absence of both p53 and pRB and a dramatic reduction in the expression of Caveolin-1.

  18. Primary epithelial myoepithelial carcinoma of lung, reporting of a rare entity, its molecular histogenesis and review of the literature.

    Science.gov (United States)

    Arif, Farzana; Wu, Susan; Andaz, Shahriyour; Fox, Stewart

    2012-01-01

    Primary epithelial myoepithelial carcinoma of lung is a rare entity and is thought to arise from the submucosal bronchial glands distributed throughout the lower respiratory tract. Because of the rarity of this tumor, we describe one case of epithelial myoepithelial carcinoma arising in the bronchus intermedius and presenting as an endobronchial mass. A 57-year-old male patient presented with an incidental finding of an endobronchial mass located in the lumen of the right lower lobe bronchus and caused near total luminal occlusion of the bronchus. An endobronchial carcinoid tumor was entertained clinically. Subsequently the patient underwent an uneventful videothoracoscopic lobectomy of lower and middle lobes of the right lung. Morphologically and immunohistochemically the tumor was characterized by two cell populations with epithelial and myoepithelial cells forming duct-like structure. The final diagnosis of epithelial myoepithelial carcinoma of lung was rendered.

  19. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    International Nuclear Information System (INIS)

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin

    2007-01-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17β-estradiol (E 2 ) resulted from an interaction between TCDD and E 2 could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE 2 ), especially 4-MeOE 2 , accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E 2 . In the present study, we demonstrate unique accumulation of 4-MeOE 2 , as a result of TCDD/E 2 interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE 2 -treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE 2 -treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE 2 were unaffected by NAC. We concluded that 4-MeOE 2 accumulation resulting from TCDD and E 2 interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD

  20. Gigantol Inhibits Epithelial to Mesenchymal Process in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Thitita Unahabhokha

    2016-01-01

    Full Text Available Lung cancer remains a leading public health problem as evidenced by its increasing death rate. The main cause of death in lung cancer patients is cancer metastasis. The metastatic behavior of lung cancer cells becomes enhanced when cancer cells undergo epithelial to mesenchymal transition (EMT. Gigantol, a bibenzyl compound extracted from the Thai orchid, Dendrobium draconis, has been shown to have promising therapeutic potential against cancer cells, which leads to the hypothesis that gigantol may be able to inhibit the fundamental EMT process in cancer cells. This study has demonstrated for the first time that gigantol possesses the ability to suppress EMT in non-small cell lung cancer H460 cells. Western blot analysis has revealed that gigantol attenuates the activity of ATP-dependent tyrosine kinase (AKT, thereby inhibiting the expression of the major EMT transcription factor, Slug, by both decreasing its transcription and increasing its degradation. The inhibitory effects of gigantol on EMT result in a decrease in the level of migration in H460 lung cancer cells. The results of this study emphasize the potential of gigantol for further development against lung cancer metastasis.

  1. Induction of mesenchymal cell phenotypes in lung epithelial cells by adenovirus E1A.

    Science.gov (United States)

    Behzad, A R; Morimoto, K; Gosselink, J; Green, J; Hogg, J C; Hayashi, S

    2006-12-01

    Epithelial-mesenchymal transformation is now recognised as an important feature of tissue remodelling. The present report concerns the role of adenovirus infection in inducing this transformation in an animal model of chronic obstructive pulmonary disease. Guinea pig primary peripheral lung epithelial cells (PLECs) transfected with adenovirus E1A (E1A-PLECs) were compared to guinea pig normal lung fibroblasts (NLFs) transfected with E1A (E1A-NLFs). These cells were characterised by PCR, immunocytochemistry, electron microscopy, and Western and Northern blot analyses. Electrophoretic mobility shift assays were performed in order to examine nuclear factor (NF)-kappaB and activator protein (AP)-1 binding activities. E1A-PLECs and E1A-NLFs positive for E1A DNA, mRNA and protein expressed cytokeratin and vimentin but not smooth muscle alpha-actin. Both exhibited cuboidal morphology and junctional complexes, but did not contain lamellar bodies or express surfactant protein A, B or C mRNAs. These two cell types differed, however, in their NF-kappaB and AP-1 binding after lipopolysaccharide stimulation, possibly due to differences in the expression of the subunits that comprise these transcriptional complexes. E1A transfection results in the transformation of peripheral lung epithelial cells and normal lung fibroblasts to a phenotype intermediate between that of the two primary cells. It is postulated that this intermediate phenotype may play a major role in the remodelling of the airways in chronic obstructive pulmonary disease associated with persistence of adenovirus E1A DNA.

  2. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  3. Spontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumors

    Directory of Open Access Journals (Sweden)

    MIchael P. Endsley

    2015-07-01

    Full Text Available High-grade serous carcinoma (HGSC is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOELOW was developed and continuously passaged in culture to mimic cellular aging (MOEHIGH. The MOEHIGH cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOEHIGH cells proliferated significantly faster than MOELOW, and the MOEHIGH cells produced more 2D foci and 3D soft agar colonies as compared to MOELOW. MOEHIGH were xenografted into athymic female nude mice both in the subcutaneous and the intraperiteonal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOEHIGH and MOELOW were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOEHIGH had enhanced protein expression of c-myc, Cyclin E, p53 and FOXM1 with reduced expression of p21. MOEHIGH were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.

  4. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    Directory of Open Access Journals (Sweden)

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  5. BCG vaccination drives accumulation and effector function of innate lymphoid cells in murine lungs.

    Science.gov (United States)

    Steigler, Pia; Daniels, Naomi J; McCulloch, Tim R; Ryder, Brin M; Sandford, Sarah K; Kirman, Joanna R

    2018-04-01

    The tuberculosis (TB) vaccine bacille Calmette-Guérin (BCG) prevents disseminated childhood TB; however, it fails to protect against the more prevalent pulmonary TB. Limited understanding of the immune response to Mycobacterium tuberculosis, the causative agent of TB, has hindered development of improved vaccines. Although memory CD4 T cells are considered the main mediators of protection against TB, recent studies suggest there are other key subsets that contribute to antimycobacterial immunity. To that end, innate cells may be involved in the protective response. In this study, we investigated the primary response of innate lymphoid cells (ILCs) to BCG exposure. Using a murine model, we showed that ILCs increased in number in the lungs and lymph nodes in response to BCG vaccination. Additionally, there was significant production of the antimycobacterial cytokine IFN-γ by ILCs. As ILCs are located at mucosal sites, it was investigated whether mucosal vaccination (intranasal) stimulated an enhanced response compared to the traditional vaccination approach (intradermal or subcutaneous). Indeed, in response to intranasal vaccination, the number of ILCs, and IFN-γ production in NK cells and ILC1s in the lungs and lymph nodes, were higher than that provoked through intradermal or subcutaneous vaccination. This work provides the first evidence that BCG vaccination activates ILCs, paving the way for future research to elucidate the protective potential of ILCs against mycobacterial infection. Additionally, the finding that lung ILCs respond rigorously to mucosal vaccination may have implications for the delivery of novel TB vaccines. © 2018 Australasian Society for Immunology Inc.

  6. Alveolar epithelial fluid transport capacity in reperfusion lung injury after lung transplantation.

    Science.gov (United States)

    Ware, L B; Golden, J A; Finkbeiner, W E; Matthay, M A

    1999-03-01

    Reperfusion lung injury is an important cause of morbidity and mortality after orthotopic lung transplantation. The purpose of this study was to investigate the function of the alveolar epithelium in the setting of reperfusion lung injury. Simultaneous samples of pulmonary edema fluid and plasma were collected from eight patients with severe post-transplantation reperfusion edema. The edema fluid to plasma protein ratio was measured, an indicator of alveolar-capillary barrier permeability. The initial edema fluid to plasma protein ratio was > 0.75 in six of eight patients, confirming the presence of increased permeability of the alveolar-capillary barrier. Graft ischemic time was positively correlated with the degree of permeability (r = 0.77, p mean +/- SD). Alveolar fluid clearance was calculated from serial samples in six patients. Intact alveolar fluid clearance correlated with less histologic injury, rapid resolution of hypoxemia, and more rapid resolution of radiographic infiltrates. The two patients with no net alveolar fluid clearance had persistent hypoxemia and more severe histologic injury. This study provides the first direct evidence that increased permeability to protein is the usual cause of reperfusion edema after lung transplantation, with longer ischemic times associated with greater permeability to protein in the transplanted lung. The high rates of alveolar fluid clearance indicate that the fluid transport capacity of the alveolar epithelium may be well preserved in the allograft despite reperfusion lung injury. The ability to reabsorb fluid from the alveolar space was a marker of less severe reperfusion injury, whereas the degree of alveolar-capillary barrier permeability to protein was not. Measurement of alveolar fluid clearance may be useful to assess the severity of reperfusion lung injury and to predict outcome when pulmonary edema develops after lung transplantation.

  7. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices

    Directory of Open Access Journals (Sweden)

    Goldenberg Anna

    2006-06-01

    Full Text Available Abstract Background Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV which serves to match lung perfusion to ventilation. The underlying mechanisms are not fully resolved yet. The major vascular segment contributing to HPV, the intra-acinar artery, is mostly located in that part of the lung that cannot be selectively reached by the presently available techniques, e.g. hemodynamic studies of isolated perfused lungs, recordings from dissected proximal arterial segments or analysis of subpleural vessels. The aim of the present study was to establish a model which allows the investigation of HPV and its underlying mechanisms in small intra-acinar arteries. Methods Intra-acinar arteries of the mouse lung were studied in 200 μm thick precision-cut lung slices (PCLS. The organisation of the muscle coat of these vessels was characterized by α-smooth muscle actin immunohistochemistry. Basic features of intra-acinar HPV were characterized, and then the impact of reactive oxygen species (ROS scavengers, inhibitors of the respiratory chain and Krebs cycle metabolites was analysed. Results Intra-acinar arteries are equipped with a discontinuous spiral of α-smooth muscle actin-immunoreactive cells. They exhibit a monophasic HPV (medium gassed with 1% O2 that started to fade after 40 min and was lost after 80 min. This HPV, but not vasoconstriction induced by the thromboxane analogue U46619, was effectively blocked by nitro blue tetrazolium and diphenyleniodonium, indicating the involvement of ROS and flavoproteins. Inhibition of mitochondrial complexes II (3-nitropropionic acid, thenoyltrifluoroacetone and III (antimycin A specifically interfered with HPV, whereas blockade of complex IV (sodium azide unspecifically inhibited both HPV and U46619-induced constriction. Succinate blocked HPV whereas fumarate had minor effects on vasoconstriction. Conclusion This study establishes the first model for investigation of basic characteristics of HPV

  8. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine

    Science.gov (United States)

    Vyas, Dinesh; Robertson, Charles M; Stromberg, Paul E; Martin, James R.; Dunne, W. Michael; Houchen, Courtney W; Barrett, Terrence A; Ayala, Alfred; Perl, Mario; Buchman, Timothy G; Coopersmith, Craig M

    2007-01-01

    Gut epithelial apoptosis is involved in the pathophysiology of multiple diseases. This study characterized intestinal apoptosis in three mechanistically distinct injuries with different kinetics of cell death. FVB/N mice were subjected to gamma radiation, Pseudomonas aeruginosa pneumonia or injection of monoclonal anti-CD3 antibody and sacrificed 4, 12, or 24 hours post-injury (n=10/time point). Apoptosis was quantified in the jejunum by hematoxylin and eosin (H&E), active caspase-3, terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling (TUNEL), in situ oligoligation reaction (ISOL,) cytokeratin 18, and annexin V staining. Reproducible results were obtained only for H&E, active caspase-3, TUNEL and ISOL, which were quantified and compared against each other for each injury at each time point. Kinetics of injury were different with early apoptosis highest following radiation, late apoptosis highest following anti CD3, and more consistent levels following pneumonia. ISOL was the most consistent stain and was always statistically indistinguishable from at least 2 stains. In contrast, active caspase-3 demonstrated lower levels of apoptosis, while the TUNEL assay had higher levels of apoptosis in the most severely injured intestine regardless of mechanism of injury. H&E was a statistical outlier more commonly than any other stain. This suggests that regardless of mechanism or kinetics of injury, ISOL correlates to other quantification methods of detecting gut epithelial apoptosis more than any other method studied and compares favorably to other commonly accepted techniques of quantifying apoptosis in a large intestinal cross sectional by balancing sensitivity and specificity across a range of times and levels of death. PMID:17357092

  9. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    Directory of Open Access Journals (Sweden)

    Mariam El-Ashmawy

    Full Text Available Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs. In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF = 1.3, and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  10. TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Karine Pallier

    Full Text Available Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT. The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33 and showed that TWIST1 expression was linked to EGFR mutations (P<0.001, to low CDH1 expression (P<0.05 and low disease free survival (P = 0.044. To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.

  11. Modulation of epithelial sodium channel (ENaC expression in mouse lung infected with Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Radzioch Danuta

    2005-01-01

    Full Text Available Abstract Background The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC and the catalytic subunit of Na+-K+-ATPase. Methods Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c and susceptible (DBA/2, C57BL/6 and A/J mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection. Results The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p 1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains. Conclusions These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.

  12. Mechanisms of RhoGDI2 Mediated Lung Cancer Epithelial-Mesenchymal Transition Suppression

    Directory of Open Access Journals (Sweden)

    Huiyan Niu

    2014-11-01

    Full Text Available Background: The aim of this study was to evaluate the function of RhoGDI2 in lung cancer epithelial-mesenchymal transition (EMT process and to illustrate the underlying mechanisms that will lead to improvement of lung cancer treatment. Methods: The RhoGDI2 knock-down and overexpressing A549 cell lines were first constructed. The influence of RhoGDI2 on cytoskeleton in A549 cells was studied using two approaches: G-LISA-based Rac1 activity measurement and immunostaining-based F-actin distribution. The expression levels of key EMT genes were analyzed using real time quantitative polymerase chain reaction (RT-qPCR, western blot and immunostaining in untreated and RhoGDI2 knock-down or overexpressing A549 cells in both in vivo and in vitro experimental settings. Results: Our study showed that the activity of Rac1, a key gene that is crucial for the initiation and metastasis of human lung adenocarcinoma, causing the redistribution of F-actin with partial loss of cell-cell adhesions and stress fibers, was significantly suppressed by RhoGDI2. RhoGDI2 promoted the expression of EMT marker gene E-cadherin and repressed EMT promoting genes Slug, Snail, α-SMA in both A549 cells and lung and liver organs derived from the mouse models. Knocking-down RhoGDI2 induced abnormal morphology for lung organs. Conclusion: These findings indicate that RhoGDI2 repressed the activity of Rac1 and may be involved in the rearrangement of cytoskeleton in lung cancer cells. RhoGDI2 suppresses the metastasis of lung cancer mediated through EMT by regulating the expression of key genes such as E-cadherin, Slug, Snail and α-SMA in both in vivo and in vitro models.

  13. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    International Nuclear Information System (INIS)

    Perkins, Timothy N.; Dentener, Mieke A.; Stassen, Frank R.; Rohde, Gernot G.; Mossman, Brooke T.; Wouters, Emiel F.M.; Reynaert, Niki L.

    2016-01-01

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  14. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Timothy N.; Dentener, Mieke A. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Stassen, Frank R. [Department of Medical Microbiology, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Rohde, Gernot G. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Mossman, Brooke T. [Department of Pathology, University of Vermont College of Medicine, Burlington, VT (United States); Wouters, Emiel F.M. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Reynaert, Niki L., E-mail: n.reynaert@maastrichtuniversity.nl [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands)

    2016-06-15

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  15. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  16. Pooled population pharmacokinetic model of imipenem in plasma and the lung epithelial lining fluid.

    Science.gov (United States)

    van Hasselt, J G Coen; Rizk, Matthew L; Lala, Mallika; Chavez-Eng, Cynthia; Visser, Sandra A G; Kerbusch, Thomas; Danhof, Meindert; Rao, Gauri; van der Graaf, Piet H

    2016-06-01

    Several clinical trials have confirmed the therapeutic benefit of imipenem for treatment of lung infections. There is however no knowledge of the penetration of imipenem into the lung epithelial lining fluid (ELF), the site of action relevant for lung infections. Furthermore, although the plasma pharmacokinetics (PK) of imipenem has been widely studied, most studies have been based on selected patient groups. The aim of this analysis was to characterize imipenem plasma PK across populations and to quantify imipenem ELF penetration. A population model for imipenem plasma PK was developed using data obtained from healthy volunteers, elderly subjects and subjects with renal impairment, in order to identify predictors for inter-individual variability (IIV) of imipenem PK. Subsequently, a clinical study which measured plasma and ELF concentrations of imipenem was included in order to quantify lung penetration. A two compartmental model best described the plasma PK of imipenem. Creatinine clearance and body weight were included as subject characteristics predictive for IIV on clearance. Typical estimates for clearance, central and peripheral volume, and inter-compartmental clearance were 11.5 l h(-1) , 9.37 l, 6.41 l, 13.7 l h(-1) , respectively (relative standard error (RSE) imipenem into ELF was described using a time-independent penetration coefficient of 0.44 (RSE 14%). The identified lung penetration coefficient confirms the clinical relevance of imipenem for treatment of lung infections, while the population PK model provided insights into predictors of IIV for imipenem PK and may be of relevance to support dose optimization in various subject groups. © 2016 The British Pharmacological Society.

  17. A heteromeric molecular complex regulates the migration of lung alveolar epithelial cells during wound healing.

    Science.gov (United States)

    Ghosh, Manik C; Makena, Patrudu S; Kennedy, Joseph; Teng, Bin; Luellen, Charlean; Sinclair, Scott E; Waters, Christopher M

    2017-05-19

    Alveolar type II epithelial cells (ATII) are instrumental in early wound healing in response to lung injury, restoring epithelial integrity through spreading and migration. We previously reported in separate studies that focal adhesion kinase-1 (FAK) and the chemokine receptor CXCR4 promote epithelial repair mechanisms. However, potential interactions between these two pathways were not previously considered. In the present study, we found that wounding of rat ATII cells promoted increased association between FAK and CXCR4. In addition, protein phosphatase-5 (PP5) increased its association with this heteromeric complex, while apoptosis signal regulating kinase-1 (ASK1) dissociated from the complex. Cell migration following wounding was decreased when PP5 expression was decreased using shRNA, but migration was increased in ATII cells isolated from ASK1 knockout mice. Interactions between FAK and CXCR4 were increased upon depletion of ASK1 using shRNA in MLE-12 cells, but unaffected when PP5 was depleted. Furthermore, we found that wounded rat ATII cells exhibited decreased ASK1 phosphorylation at Serine-966, decreased serine phosphorylation of FAK, and decreased association of phosphorylated ASK1 with FAK. These changes in phosphorylation were dependent upon expression of PP5. These results demonstrate a unique molecular complex comprising CXCR4, FAK, ASK1, and PP5 in ATII cells during wound healing.

  18. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Feltens, Ralph; Moegel, Iljana; Roeder-Stolinski, Carmen; Simon, Jan-Christoph; Herberth, Gunda; Lehmann, Irina

    2010-01-01

    Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-κB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasis on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase π1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.

  19. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells.

    Science.gov (United States)

    Oghalaie, Akbar; Kazemi-Lomedasht, Fatemeh; Zareinejad, Mohammad Reza; Shahbazzadeh, Delavar

    2017-01-01

    Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1) was the main aim of this study. Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC) using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5). Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  20. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells

    Directory of Open Access Journals (Sweden)

    Akbar Oghalaie

    2017-01-01

    Full Text Available Background: Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1 was the main aim of this study. Materials and Methods: Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Results: Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5. Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Conclusion: Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  1. Toxic response of nickel nanoparticles in human lung epithelial A549 cells.

    Science.gov (United States)

    Ahamed, Maqusood

    2011-06-01

    Nickel nanoparticle (Ni NP) is increasingly used in modern industries such as catalysts, sensors and electronic applications. Due to wide-spread industrial applications the inhalation is the primary source of exposure to Ni NPs. However, data demonstrating the effect of Ni NPs on the pulmonary system remain scarce. The present study was designed to examine the toxic effect of human lung epithelial A549 cells treated with well characterized Ni NPs at the concentrations of 0, 1, 2, 5, 10 and 25 μg/ml for 24 and 48 h. Mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH), reactive oxygen species (ROS), membrane lipid peroxidation (LPO) and caspase-3 activity were assessed as toxicity end points. Results showed that Ni NPs reduced mitochondrial function and induced the leakage of LDH in dose and time-dependent manner. Ni NPs were also found to induce oxidative stress in dose and time-dependent manner indicated by depletion of GSH and induction of ROS and LPO. Further, activity of caspase-3 enzyme, marker of apoptosis was significantly higher in treated cells with time and Ni NPs dosage. The results exhibited significant toxicity of Ni NPs in human lung epithelial A549 cells which is likely to be mediated through oxidative stress. This study warrants more careful assessment of Ni NPs before their industrial applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effects of diesel exhaust particles on human lung epithelial cells: an in vitro study.

    Science.gov (United States)

    Mazzarella, G; Ferraraccio, F; Prati, M V; Annunziata, S; Bianco, A; Mezzogiorno, A; Liguori, G; Angelillo, I F; Cazzola, M

    2007-06-01

    Atmospheric particulate matter (PM), an ingredient of urban pollution matter, is a mixture of solid and liquid particles differing in origin, dimension and composition. There is big concern about inhaled PM in urban areas, especially due to its adverse effects on the respiratory system. Diesel exhaust particulate (DEP), which constitutes the major part of PM, is characterized by a carbonic mixture composed of approximately 18,000 different high-molecular-weight organic compounds. Diesel engines release 10 times the amount of NO(2) aldehydes and breathable PM compared to unleaded gasoline engines and more than 100 times that produced by catalysed gasoline engines; these data gain great significance when taken into account the fact that diesel-powered vehicles are becoming more and more popular. DEP polyaromatic hydrocarbons (PAH), once deposited on airways mucous surfaces easily pass through epithelial cells (ECs) membranes, bind themselves to cytosolic receptors and then affect cell growth and differentiation. Human lung epithelial cells and macrophages engulf DEP, this resulting in increased proinflammatory cytokines release (IL-6, IL-8 and GM-CSF). We investigated the biological effects of DEP-PM on the human lung EC line A549. Light microscopy analysis suggested the presence of cell wall alterations, and provided evidence of PM internalization and cytoplasmic vacuolization. Following PM stimulation, nuclei also were seen undergo clear gross morphological modifications. Immunocytochemistry was used to detect intracytoplasmic IL-6 and IL-8 expression.

  3. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

    Science.gov (United States)

    Gonneaud, Alexis; Turgeon, Naomie; Boudreau, François; Perreault, Nathalie; Rivard, Nathalie; Asselin, Claude

    2016-02-01

    The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment. © 2015 Wiley Periodicals, Inc.

  4. Intravenous immunoglobulin prevents murine antibody-mediated acute lung injury at the level of neutrophil reactive oxygen species (ROS production.

    Directory of Open Access Journals (Sweden)

    John W Semple

    Full Text Available Transfusion-related acute lung injury (TRALI is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature and respiratory distress (dyspnea were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage.

  5. Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells

    International Nuclear Information System (INIS)

    Sarafian, Theodore; Montes, Cindy; Harui, Airi; Beedanagari, Sudheer R.; Kiertscher, Sylvia; Stripecke, Renata; Hossepian, Derik; Kitchen, Christina; Kern, Rita; Belperio, John; Roth, Michael D.

    2008-01-01

    Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that Δ 9 -tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 [Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P., and Roth, M. D. (2003). Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 284, L298-306; Sarafian, T., Habib, N., Mao, J. T., Tsu, I. H., Yamamoto, M. L., Hsu, E., Tashkin, D. P., and Roth, M. D. (2005). Gene expression changes in human small airway epithelial cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett 158, 95-107]. The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the type 2 cannabinoid receptor (CB2R) using a self-inactivating lentiviral vector. This transduction resulted in a 60-fold increase in CB2R mRNA relative to cells transduced with a control vector. Transduced cell lines were used to study the effects of THC on chemotactic activity and mitochondrial function. Chemotaxis in response to a 10% serum gradient was suppressed in a concentration-dependent manner by exposure to THC. CB2R-transduced cells exhibited less intrinsic chemotactic activity (p m ) in both control and CB2R-transduced cells. However, these decreases did not play a significant role in chemotaxis inhibition since cyclosporine A, which protected against ATP loss, did not increase cell migration. Moreover, CB2R-transduced cells displayed higher Ψ m than did control cells. Since both Ψ m and chemotaxis are regulated by intracellular signaling, we investigated the effects of THC on the activation of multiple signaling pathways. Serum exposure activated several signaling events of which phosphorylation of IκB-α and JNK was regulated in a CB2R- and THC

  6. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; White, Paul A; Gingerich, John

    2011-01-01

    It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation...

  7. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  8. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Meng Hang

    2015-06-01

    Full Text Available The present study was done to determine whether kaempferol, a natural polyphenol of the flavonoid family, affects Epithelial-Mesenchymal Transition (EMT in non-small cell lung cancer cells. Kaempferol not only inhibited cancer cell proliferation and migration in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indispensible to cellular motility, invasiveness and metastasis. These results indicate that kaempferol suppresses non-small cell lung cancer migration by modulating the expression of EMT proteins. Therefore, kaempferol may be useful as a potential anticancer agent for non-small cell lung cancer.

  9. Sulfation of chlorotyrosine and nitrotyrosine by human lung endothelial and epithelial cells: Role of the human SULT1A3

    International Nuclear Information System (INIS)

    Yasuda, Shin; Yasuda, Tomoko; Liu, Ming-Yih; Shetty, Sreerama; Idell, Steven; Boggaram, Vijayakumar; Suiko, Masahito; Sakakibara, Yoichi; Fu Jian; Liu, Ming-Cheh

    2011-01-01

    During inflammation, potent reactive oxidants formed may cause chlorination and nitration of both free and protein-bound tyrosine. In addition to serving as biomarkers of inflammation-mediated oxidative stress, elevated levels of chlorotyrosine and nitrotyrosine have been linked to the pathogenesis of lung and vascular disorders. The current study was designed to investigate whether the lung cells are equipped with mechanisms for counteracting these tyrosine derivatives. By metabolic labeling, chlorotyrosine O-[ 35 S]sulfate and nitrotyrosine O-[ 35 S]sulfate were found to be generated and released into the labeling media of human lung endothelial and epithelial cells labeled with [ 35 S]sulfate in the presence of added chlorotyrosine and nitrotyrosine. Enzymatic assays using the eleven known human cytosolic sulfotransferases (SULTs) revealed SULT1A3 as the enzyme responsible for catalyzing the sulfation of chlorotyrosine and nitrotyrosine. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated the expression of SULT1A3 in the lung endothelial and epithelial cells used in this study. Kinetic constants of the sulfation of chlorotyrosine and nitrotyrosine by SULT1A3 were determined. Collectively, these results suggest that sulfation by SULT1A3 in lung endothelial and epithelial cells may play a role in the inactivation and/or disposal of excess chlorotyrosine and nitrotyrosine generated during inflammation.

  10. Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Maria A Hegeman

    Full Text Available BACKGROUND: Ventilator-induced lung injury (VILI is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction in an established murine model of VILI. METHODS: Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O ("lower" tidal volumes of ∼7.5 ml/kg; LVT or 18 cmH2O ("higher" tidal volumes of ∼15 ml/kg; HVT. Dexamethasone was intravenously administered at the initiation of HVT-ventilation. Non-ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. RESULTS: Particularly HVT-ventilation led to alveolar-capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro-inflammatory response in lungs of HVT-ventilated mice, without improving alveolar-capillary permeability, gas exchange and pulmonary edema formation. CONCLUSIONS: Dexamethasone treatment completely abolishes ventilator-induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar-capillary barrier dysfunction in an established murine model of VILI.

  11. Recurrent milk aspiration produces changes in airway mechanics, lung eosinophilia, and goblet cell hyperplasia in a murine model.

    Science.gov (United States)

    Janahi, I A; Elidemir, O; Shardonofsky, F R; Abu-Hassan, M N; Fan, L L; Larsen, G L; Blackburn, M R; Colasurdo, G N

    2000-12-01

    Recurrent aspiration of milk into the respiratory tract has been implicated in the pathogenesis of a variety of inflammatory lung disorders including asthma. However, the lack of animal models of aspiration-induced lung injury has limited our knowledge of the pathophysiological characteristics of this disorder. This study was designed to evaluate the effects of recurrent milk aspiration on airway mechanics and lung cells in a murine model. Under light anesthesia, BALB/c mice received daily intranasal instillations of whole cow's milk (n = 7) or sterile physiologic saline (n = 9) for 10 d. Respiratory system resistance (Rrs) and dynamic elastance (Edyn,rs) were measured in anesthetized, tracheotomized, paralyzed and mechanically ventilated mice 24 h after the last aspiration of milk. Rrs and Edyn,rs were derived from transrespiratory and plethysmographic pressure signals. In addition, airway responses to increasing concentrations of i.v. methacholine (Mch) were determined. Airway responses were measured in terms of PD(100) (dose of Mch causing 100% increase from baseline Rrs) and Rrs,max (% increase from baseline at the maximal plateau response) and expressed as % control (mean +/- SE). We found recurrent milk aspiration did not affect Edyn and baseline Rrs values. However, airway responses to Mch were increased after milk aspiration when compared with control mice. These changes in airway mechanics were associated with an increased percentage of lymphocytes and eosinophils in the bronchoalveolar lavage, mucus production, and lung inflammation. Our findings suggest that recurrent milk aspiration leads to alterations in airway function, lung eosinophilia, and goblet cell hyperplasia in a murine model.

  12. Comparative Plasma Exposure and Lung Distribution of Two Human Use Commercial Azithromycin Formulations Assessed in Murine Model: A Preclinical Study

    OpenAIRE

    Rivulgo, Virginia Margarita; Sparo, Mónica; Ceci, Mónica; Fumuso, Elida; Confalonieri, Alejandra; Delpech, Gastón; Sanchez Bruni, Sergio Fabian

    2016-01-01

    Azithromycin(AZM)therapeutic failure and relapses of patients treated with generic -35 formulations have been observed in clinical practice.The main goal of this research was 36 to compare in a pre-clinical study the serum exposure and lung tissue concentrationof 37 two commercial formulations AZM-based in murine model. The current study involved 38 264 healthy Balb-C.Mice were divided in two groups (n=44): Animals of Group A 39 (Reference Formulation ?R-) were orally treated with AZM suspens...

  13. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling.

    Science.gov (United States)

    Ito, Yoko; Correll, Kelly; Schiel, John A; Finigan, Jay H; Prekeris, Rytis; Mason, Robert J

    2014-07-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. Copyright © 2014 the American Physiological Society.

  14. Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

    Science.gov (United States)

    Zhang, Huilan; Oak, Sameer R.; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R.; Lee, Joyce; Bell, Matt; Knight, Darryl A.; Martinez, Fernando J.; Sleeman, Matthew A.; Herzog, Erica L.; Hogaboam, Cory M.

    2014-01-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung. PMID:24325475

  15. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Science.gov (United States)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  16. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Science.gov (United States)

    Lyons, John D; Mittal, Rohit; Fay, Katherine T; Chen, Ching-Wen; Liang, Zhe; Margoles, Lindsay M; Burd, Eileen M; Farris, Alton B; Ford, Mandy L; Coopersmith, Craig M

    2016-01-01

    Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered. C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival. Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003). Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury. Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on the models used.

  17. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Directory of Open Access Journals (Sweden)

    John D Lyons

    Full Text Available Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered.C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival.Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003. Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury.Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on

  18. Expression of genes related to the hypothalamic-pituitary-adrenal axis in murine fetal lungs in late gestation

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-11-01

    Full Text Available Abstract Background Lung maturation is modulated by several factors, including glucocorticoids. Expression of hypothalamic-pituitary-adrenal (HPA axis-related components, with proposed or described local regulatory systems analogous to the HPA axis, was reported in peripheral tissues. Here, HPA axis-related genes were studied in the mouse developing lung during a period overlapping the surge of surfactant production. Methods Expression of genes encoding for corticotropin-releasing hormone (CRH, CRH receptors (CRHR 1 and 2beta, CRH-binding protein, proopiomelanocortin (POMC, melanocortin receptor 2 (MC2R, and glucocorticoid receptor was quantified by real-time PCR and localized by in situ hydridization in fetal lungs at gestational days (GD 15.5, 16.5, and 17.5, and was also quantified in primary mesenchymal- and epithelial cell-enriched cultures. In addition, the capability of CRH and adrenocorticotropic hormone (ACTH to stimulate pulmonary expression of enzymes involved in the adrenal pathway of glucocorticoid synthesis was addressed, as well as the glucocorticoid production by fetal lung explants. Results We report that all the studied genes are expressed in fetal lungs according to different patterns. On GD 15.5, Mc2r showed peaks in expression in samples that have previously presented high mRNA levels for glucocorticoid synthesizing enzymes, including 11beta-hydroxylase (Cyp11b1. Crhr1 mRNA co-localized with Pomc mRNA in cells surrounding the proximal epithelium on GD 15.5 and 16.5. A transition in expression sites toward distal epithelial cells was observed between GD 15.5 and 17.5 for all the studied genes. CRH or ACTH stimulation of genes involved in the adrenal pathway of glucocorticoid synthesis was not observed in lung explants on GD 15.5, whereas CRH significantly increased expression of 21-hydroxylase (Cyp21a1 on GD 17.5. A deoxycorticosterone production by fetal lung explants was observed. Conclusions Temporal and spatial

  19. Vascular and epithelial damage in the lung of the mouse after X rays or neutrons

    International Nuclear Information System (INIS)

    Law, M.P.; Ahier, R.G.

    1989-01-01

    The response of the lung was studied in CFLP mice after exposure of the whole thorax to X rays (250 kVp) or cyclotron neutrons (16 MeV deuterons on Be, mean energy 7.5 MeV). To measure blood volume and leakage of plasma proteins, 51Cr-labeled red blood cells and 125I-albumin were injected intravenously and 24 h later lungs were lavaged via the trachea. Radioactivities in lung tissue and lavage fluid were determined to estimate the accumulation of albumin in the interstitial and alveolar spaces indicating damage to blood vessels and alveolar epithelium respectively. Function of type II pneumonocytes was assessed by the amounts of surfactant (assayed as lipid phosphorous) released into the lavage fluid. During the first 6 weeks, lavage protein and surfactant were increased, the neutron relative biological effectiveness (RBE) being unity. During pneumonitis at 12-24 weeks, surfactant levels were normal, blood volume was decreased, and both interstitial and alveolar albumin were increased. Albumin levels then decreased. At late times after exposure (42-64 weeks) alveolar albumin returned to normal but interstitial albumin was still slightly elevated. Values of RBE for changes in blood volume and interstitial and alveolar albumin at 15 weeks and for changes in blood volume and interstitial albumin at 46 weeks were 1.4, comparable with that for animal survival at 180 days. The results indicate that surfactant production is not critical for animal survival. They suggest that changes in blood vessels and alveolar epithelium occur during acute pneumonitis; epithelial repair follows but some vascular damage may persist. The time course of the changes in albumin levels did not correlate with increases in collagen biosynthesis which have been observed as early as 1 month after exposure and persist for up to 1 year

  20. The influence of volatile anesthetics on alveolar epithelial permeability measured by noninvasive radionuclide lung scan

    International Nuclear Information System (INIS)

    Hung, Chih-Jen; Wu, Rick Sai-Chuen; Lin, Cheng-Chieh; Kao, Albert; Tsai, Jeffrey J.P.

    2003-01-01

    Many volatile anesthetics have long been thought to affect pulmonary functions including lung ventilation (LV) and alveolar epithelial permeability (AEP). The purpose of this study is to examine the influence of volatile anesthetics on LV and AEP by noninvasive radionuclide lung imaging of technetium-99m labeled diethylene triamine pentaacetic acid radioaerosol inhalation lung scan (DTPA lung scan). Twenty patients undergoing surgery and receiving volatile anesthesia with 1% halothane were enrolled as the study group 1. The other 20 patients undergoing surgery and receiving volatile anesthesia with 1.5% isoflurane were enrolled as the study group 2. At the same time, 20 patients undergoing surgery with intravenous anesthesia drugs were included as a control group. Before surgery, 1 hour after surgery, and 1 week after surgery, we investigated the 3 groups of patients with DTPA lung scan to evaluate LV and AEP by 99m Tc DTPA clearance halftime (T1/2). No significant change or abnormality of LV before surgery, 1 hour after surgery, or 1 week after surgery was found among the 3 groups of patients. In the control group, the 99m Tc DTPA clearance T1/2 was 63.5±16.4, 63.1±18.4, and 62.8±17.0 minutes, before surgery, 1 hour after surgery, and 1 week after surgery, respectively. In group 1, it was 65.9±9.3, 62.5±9.1, and 65.8±10.3 minutes, respectively. No significant change in AEP before surgery, 1 hour after surgery, or 1 week after surgery was found. However, in group 2, the 99m Tc DTPA clearance T1/2 was 65.5±13.2, 44.9±10.5, and 66.1±14.0 minutes, respectively. A significant transient change in AEP was found 1 hour after surgery, but it recovered 1 week after surgery. We conclude that volatile anesthesia is safe for LV and AEP, and only isoflurane can induce transient change of AEP. (author)

  1. A lung cancer risk classifier comprising genome maintenance genes measured in normal bronchial epithelial cells.

    Science.gov (United States)

    Yeo, Jiyoun; Crawford, Erin L; Zhang, Xiaolu; Khuder, Sadik; Chen, Tian; Levin, Albert; Blomquist, Thomas M; Willey, James C

    2017-05-02

    Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation. Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening. After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96-0.99). The overall classification accuracy was 93% (95% CI 88%-98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone. The LCRT biomarker reported here displayed high accuracy and ease

  2. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    Science.gov (United States)

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  3. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Snyder Jeanne M

    2002-10-01

    Full Text Available Abstract Background It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A, the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. Methods H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. Results Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase, or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. Conclusion Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway.

  4. Acinetobacter baumannii and A. pittii clinical isolates lack adherence and cytotoxicity to lung epithelial cells in vitro.

    Science.gov (United States)

    Lázaro-Díez, María; Navascués-Lejarza, Teresa; Remuzgo-Martínez, Sara; Navas, Jesús; Icardo, José Manuel; Acosta, Felix; Martínez-Martínez, Luis; Ramos-Vivas, José

    2016-09-01

    The molecular and genetic basis of Acinetobacter baumannii and Acinetobacter pittii virulence remains poorly understood, and there is still lack of knowledge in host cell response to these bacteria. In this study, we have used eleven clinical Acinetobacter strains (A. baumannii n = 5; A. pittii n = 6) to unravel bacterial adherence, invasion and cytotoxicity to human lung epithelial cells. Our results showed that adherence to epithelial cells by Acinetobacter strains is scarce and cellular invasion was not truly detected. In addition, all Acinetobacter strains failed to induce any cytotoxic effect on A549 cells. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities

    DEFF Research Database (Denmark)

    Barfod, Kenneth Klingenberg; Roggenbuck, Michael; Hansen, Lars H.

    2013-01-01

    Background This work provides the first description of the bacterial population of the lung microbiota in mice. The aim of this study was to examine the lung microbiome in mice, the most used animal model for inflammatory lung diseases such as COPD, cystic fibrosis and asthma.......Background This work provides the first description of the bacterial population of the lung microbiota in mice. The aim of this study was to examine the lung microbiome in mice, the most used animal model for inflammatory lung diseases such as COPD, cystic fibrosis and asthma....

  6. Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung.

    Directory of Open Access Journals (Sweden)

    Felix R Stahl

    Full Text Available Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8(+ T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming "nodular inflammatory foci" (NIF in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control.

  7. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Science.gov (United States)

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer

  8. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Lili Chen

    Full Text Available BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL staining and decreased Ki-67 expression in tumors. Through natural killer (NK cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria

  9. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation.

    Science.gov (United States)

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14 + population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion.

  10. Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs.

    Science.gov (United States)

    Kurz, S; Steffens, H P; Mayer, A; Harris, J R; Reddehase, M J

    1997-04-01

    The state of cytomegalovirus (CMV) after the resolution of acute infection is an unsolved problem in CMV research. While the term "latency" is in general use to indicate the maintenance of the viral genome, a formal exclusion of low-level persistent productive infection depends on the sensitivity of the assay for detecting infectious virus. We have improved the method for detecting infectivity by combining centrifugal infection of permissive indicator cells in culture, expansion to an infectious focus, and sensitive detection of immediate-early RNA in the infected cells by reverse transcriptase PCR. A limiting-dilution approach defined the sensitivity of this assay. Infectivity was thereby found to require as few as 2 to 9 virion DNA molecules of murine CMV, whereas the standard measure of infectivity, the PFU, is the equivalent of ca. 500 viral genomes. Since murine CMV forms multicapsid virions in most infected tissues, the genome-to-infectivity ratio is necessarily >1. This assay thus sets a new standard for investigating CMV latency. In mice in which acute infection was resolved, the viral DNA load in the lungs, a known organ site of CMV latency and recurrence, was found to be 1 genome per 40 lung cells, or a total of ca. 1 million genomes. Despite this high load of CMV DNA, infectious virus was not detected with the improved assay, but recurrence was inducible. These data provide evidence against a low-level persistent productive infection and also imply that intermittent spontaneous recurrence is not a frequent event in latently infected lungs.

  11. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  12. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    International Nuclear Information System (INIS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-01-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed

  13. Xianyu decoction attenuates the inflammatory response of human lung bronchial epithelial cell.

    Science.gov (United States)

    Yu, Chenyi; Xiang, Qiangwei; Zhang, Hailin

    2018-06-01

    Xianyu decoction (XD), a Chinese experience recipe, shows inhibitory effects on lung cancer. However, the potential functions of XD on pneumonia were unknown. This study aimed to investigate the effect of XD on inflammatory response of childhood pneumonia. Human lung bronchial epithelial cell line BEAS-2B was cultured in different doses of LPS with or without XD treatment. The expression of miR-15a and IKBKB were altered by transfection assay. RT-PCR and western blot were used to evaluate the effects of XD and miR-15a mimic/inhibitor on the expression levels of miR-15a, IKBKB, p65 and IκBα. ELISA was used to determine the levels of CRP, IL-6 and IL-8. High expression of miR-15a was observed in serum and cell model of pneumonia. miR-15a promoted the expression of inflammatory cytokines IL-6, IL-8, CRP and IKBKB in vitro. XD treatment downregulated the level of miR-15a in pneumonia children. In addition, XD reduced the expression of inflammatory cytokines and the phosphorylation levels of p65 and IκBα by inhibition of miR-15a and IKBKB expression in LPS-stimulated BEAS-2B cells. XD downregulated the level of miR-15a in serum of pneumonia children. Additionally, XD inhibited inflammatory response in LPS-stimulated BEAS-2B cells possibly by blocking IKBKB/NF-κB signal pathway which was regulated by miR-15a. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Detection of alveolar epithelial injury by 99mTc-DTPA radioaerosol inhalation lung scan following blunt chest trauma

    International Nuclear Information System (INIS)

    Okudan, B.; Han, S.; Baldemir, M.; Yildiz, M.

    2004-01-01

    DTPA clearance rate is a reliable index of alveolar epithelial permeability, and is a highly sensitive marker of pulmonary epithelial damage, even of mild degree. In this study, 99m Tc-DTPA aerosol inhalation scintigraphy was used to assess the pulmonary epithelial membrane permeability and to investigate the possible application of this permeability value as an indicator of early alveolar or interstitial changes in patients with blunt chest trauma. A total of 26 patients was chest trauma (4 female, 22 male, 31-80 yrs, mean age; 53±13 yrs) who were referred to the emergency department in our hospital participated in this study. Technetium-99m diethylene triamine pentaacetic acid (DTPA) aerosol inhalation scintigraphy was performed on the first and thirtieth days after trauma. Clearance half times (T 1/2 ) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. On the first day, mean T 1/2 value of the whole lung was 63±19 minutes (min), and thirtieth day mean T 1/2 value was 67±21 min. On the first day, mean PI values of the lung and 30th day mean PI value were 0.60±0.05, and 0.63 ±0.05, respectively. Significant changes were observed in radioaerosol clearance and penetration indices. Following chest trauma, clearance of 99m Tc-DTPA increased owing to breakdown of the alveolar-capillary barrier. This increase in the epithelial permeability of the lung appears to be an early manifestation of lung disease that may lead to efficient therapy in the early phase. (author)

  15. Taurine modulation of hypochlorous acid-induced lung epithelial cell injury in vitro. Role of anion transport.

    OpenAIRE

    Cantin, A M

    1994-01-01

    Airway secretions of cystic fibrosis patients were found to contain high concentrations of taurine, which decreased with antibiotic therapy during acute respiratory exacerbations. Taurine, in a 1:1 molar ratio with HOCl/OCl-, caused a 10-fold increase in the amount of HOCl/OCl- needed to induce cytotoxicity to the cat lung epithelial cell line, AKD. Although DMSO protected cells against HOCl/OCl(-)-mediated injury, the presence of an equimolar concentration of taurine with HOCl/OCl- prevented...

  16. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  17. Loss of Proliferation and Antigen Presentation Activity following Internalization of Polydispersed Carbon Nanotubes by Primary Lung Epithelial Cells

    Science.gov (United States)

    Kumari, Mandavi; Sachar, Sumedha; Saxena, Rajiv K.

    2012-01-01

    Interactions between poly-dispersed acid functionalized single walled carbon nanotubes (AF-SWCNTs) and primary lung epithelial (PLE) cells were studied. Peritoneal macrophages (PMs, known phagocytic cells) were used as positive controls in this study. Recovery of live cells from cultures of PLE cells and PMs was significantly reduced in the presence of AF-SWCNTs, in a time and dose dependent manner. Both PLE cells as well as PMs could take up fluorescence tagged AF-SWCNTs in a time dependent manner and this uptake was significantly blocked by cytochalasin D, an agent that blocks the activity of acto-myosin fibers and therefore the phagocytic activity of cells. Confocal microscopic studies confirmed that AF-SWCNTs were internalized by both PLE cells and PMs. Intra-trachially instilled AF-SWCNTs could also be taken up by lung epithelial cells as well as alveolar macrophages. Freshly isolated PLE cells had significant cell division activity and cell cycling studies indicated that treatment with AF-SWCNTs resulted in a marked reduction in S-phase of the cell cycle. In a previously standardized system to study BCG antigen presentation by PLE cells and PMs to sensitized T helper cells, AF-SWCNTs could significantly lower the antigen presentation ability of both cell types. These results show that mouse primary lung epithelial cells can efficiently internalize AF-SWCNTs and the uptake of nanotubes interfered with biological functions of PLE cells including their ability to present BCG antigens to sensitized T helper cells. PMID:22384094

  18. Quantitative Analysis of Cellular Proteome Alterations in CDV-Infected Mink Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Mingwei Tong

    2017-12-01

    Full Text Available Canine distemper virus (CDV, a paramyxovirus, causes a severe highly contagious lethal disease in carnivores, such as mink. Mink lung epithelial cells (Mv.1.Lu cells are sensitive to CDV infection and are homologous to the natural host system of mink. The current study analyzed the response of Mv.1.Lu cells to CDV infection by iTRAQ combined with LC–MS/MS. In total, 151 and 369 differentially expressed proteins (DEPs were markedly up-regulated or down-regulated, respectively. Thirteen DEPs were validated via real-time RT-PCR or western blot analysis. Network and KEGG pathway analyses revealed several regulated proteins associated with the NF-κB signaling pathway. Further validation was performed by western blot analysis and immunofluorescence assay, which demonstrated that different CDV strains induced NF-κB P65 phosphorylation and nuclear translocation. Moreover, the results provided interesting information that some identified DEPs possibly associated with the pathogenesis and the immune response upon CDV infection. This study is the first overview of the responses to CDV infection in Mv.1.Lu cells, and the findings will help to analyze further aspects of the molecular mechanisms involved in viral pathogenesis and the immune responses upon CDV infection.

  19. Fenspiride inhibits histamine-induced responses in a lung epithelial cell line.

    Science.gov (United States)

    Quartulli, F; Pinelli, E; Broué-Chabbert, A; Gossart, S; Girard, V; Pipy, B

    1998-05-08

    Using the human lung epithelial WI26VA4 cell line, we investigated the capacity of fenspiride, an anti-inflammatory drug with anti-bronchoconstrictor properties, to interfere with histamine-induced intracellular Ca2+ increase and eicosanoid formation. Histamine and a histamine H1 receptor agonist elicited a rapid and transient intracellular Ca2+ increase (0-60 s) in fluo 3-loaded WI26VA4 cells. This response was antagonized by the histamine H1 receptor antagonist, diphenhydramine, the histamine H2 receptor antagonist, cimetidine, having no effect. Fenspiride (10(-7)-10(-5) M) inhibited the histamine H1 receptor-induced Ca2+ increase. In addition, histamine induced a biphasic increase in arachidonic acid release. The initial rise (0-30 s), a rapid and transient arachidonic acid release, was responsible for the histamine-induced intracellular Ca2+ increase. In the second phase release (15-60 min), a sustained arachidonic acid release appeared to be associated with the formation of cyclooxygenase and lipoxygenase metabolites. Fenspiride (10(-5) M) abolished both phases of histamine-induced arachidonic acid release. These results suggest that anti-inflammatory and antibronchoconstrictor properties of fenspiride may result from the inhibition of these effects of histamine.

  20. Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition.

    Science.gov (United States)

    Fumoto, Katsumi; Takigawa-Imamura, Hisako; Sumiyama, Kenta; Kaneiwa, Tomoyuki; Kikuchi, Akira

    2017-01-01

    In lung development, the apically constricted columnar epithelium forms numerous buds during the pseudoglandular stage. Subsequently, these epithelial cells change shape into the flat or cuboidal pneumocytes that form the air sacs during the canalicular and saccular (canalicular-saccular) stages, yet the impact of cell shape on tissue morphogenesis remains unclear. Here, we show that the expression of Wnt components is decreased in the canalicular-saccular stages, and that genetically constitutive activation of Wnt signaling impairs air sac formation by inducing apical constriction in the epithelium as seen in the pseudoglandular stage. Organ culture models also demonstrate that Wnt signaling induces apical constriction through apical actomyosin cytoskeletal organization. Mathematical modeling reveals that apical constriction induces bud formation and that loss of apical constriction is required for the formation of an air sac-like structure. We identify MAP/microtubule affinity-regulating kinase 1 (Mark1) as a downstream molecule of Wnt signaling and show that it is required for apical cytoskeletal organization and bud formation. These results suggest that Wnt signaling is required for bud formation by inducing apical constriction during the pseudoglandular stage, whereas loss of Wnt signaling is necessary for air sac formation in the canalicular-saccular stages. © 2017. Published by The Company of Biologists Ltd.

  1. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    Science.gov (United States)

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  2. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    Science.gov (United States)

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  3. Linking Ventilator Injury-Induced Leak across the Blood-Gas Barrier to Derangements in Murine Lung Function

    Directory of Open Access Journals (Sweden)

    Bradford J. Smith

    2017-07-01

    Full Text Available Mechanical ventilation is vital to the management of acute respiratory distress syndrome, but it frequently leads to ventilator-induced lung injury (VILI. Understanding the pathophysiological processes involved in the development of VILI is an essential prerequisite for improving lung-protective ventilation strategies. The goal of this study was to relate the amount and nature of material accumulated in the airspaces to biomarkers of injury and the derecruitment behavior of the lung in VILI. Forty-nine BALB/c mice were mechanically ventilated with combinations of tidal volume and end-expiratory pressures to produce varying degrees of overdistension and atelectasis while lung function was periodically assessed. Total protein, serum protein, and E-Cadherin levels were measured in bronchoalveolar lavage fluid (BALF. Tissue injury was assessed by histological scoring. We found that both high tidal volume and zero positive end-expiratory pressure were necessary to produce significant VILI. Increased BALF protein content was correlated with increased lung derecruitability, elevated peak pressures, and histological evidence of tissue injury. Blood derived molecules were present in the BALF in proportion to histological injury scores and epithelial injury, reflected by E-Cadherin levels in BALF. We conclude that repetitive recruitment is an important factor in the pathogenesis of VILI that exacerbates injury associated with tidal overdistension. Furthermore, the dynamic mechanical behavior of the injured lung provides a means to assess both the degree of tissue injury and the nature and amount of blood-derived fluid and proteins that accumulate in the airspaces.

  4. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage.

    Science.gov (United States)

    Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih

    2016-02-01

    Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.

  5. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  6. NF-κB dependent and independent mechanisms of quartz-induced proinflammatory activation of lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2010-05-01

    Full Text Available Abstract In the initiation and progression of pulmonary inflammation, macrophages have classically been considered as a crucial cell type. However, evidence for the role of epithelial type II cells in pulmonary inflammation has been accumulating. In the current study, a combined in vivo and in vitro approach has been employed to investigate the mechanisms of quartz-induced proinflammatory activation of lung epithelial cells. In vivo, enhanced expression of the inflammation- and oxidative stress-related genes HO-1 and iNOS was found on the mRNA level in rat lungs after instillation with DQ12 respirable quartz. Activation of the classical NF-κB pathway in macrophages and type II pneumocytes was indicated by enhanced immunostaining of phospho-IκBα in these specific lung cell types. In vitro, the direct, particle-mediated effect on proinflammatory signalling in a rat lung epithelial (RLE cell line was compared to the indirect, macrophage product-mediated effect. Treatment with quartz particles induced HO-1 and COX-2 mRNA expression in RLE cells in an NF-κB independent manner. Supernatant from quartz-treated macrophages rapidly activated the NF-κB signalling pathway in RLE cells and markedly induced iNOS mRNA expression up to 2000-fold compared to non-treated control cells. Neutralisation of TNFα and IL-1β in macrophage supernatant did not reduce its ability to elicit NF-κB activation of RLE cells. In addition the effect was not modified by depletion or supplementation of intracellular glutathione. The results from the current work suggest that although both oxidative stress and NF-κB are likely involved in the inflammatory effects of toxic respirable particles, these phenomena can operate independently on the cellular level. This might have consequences for in vitro particle hazard testing, since by focusing on NF-κB signalling one might neglect alternative inflammatory pathways.

  7. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  8. Early Impairment of Lung Mechanics in a Murine Model of Marfan Syndrome

    Science.gov (United States)

    Uriarte, Juan J.; Meirelles, Thayna; Gorbenko del Blanco, Darya; Nonaka, Paula N.; Campillo, Noelia; Sarri, Elisabet; Navajas, Daniel; Egea, Gustavo; Farré, Ramon

    2016-01-01

    Early morbidity and mortality in patients with Marfan syndrome (MFS) -a connective tissue disease caused by mutations in fibrillin-1 gene- are mainly caused by aorta aneurysm and rupture. However, the increase in the life expectancy of MFS patients recently achieved by reparatory surgery promotes clinical manifestations in other organs. Although some studies have reported respiratory alterations in MFS, our knowledge of how this connective tissue disease modifies lung mechanics is scarce. Hence, we assessed whether the stiffness of the whole lung and of its extracellular matrix (ECM) is affected in a well-characterized MFS mouse model (FBN1C1039G/+). The stiffness of the whole lung and of its ECM were measured by conventional mechanical ventilation and atomic force microscopy, respectively. We studied 5-week and 9-month old mice, whose ages are representative of early and late stages of the disease. At both ages, the lungs of MFS mice were significantly more compliant than in wild type (WT) mice. By contrast, no significant differences were found in local lung ECM stiffness. Moreover, histopathological lung evaluation showed a clear emphysematous-like pattern in MFS mice since alveolar space enlargement was significantly increased compared with WT mice. These data suggest that the mechanism explaining the increased lung compliance in MFS is not a direct consequence of reduced ECM stiffness, but an emphysema-like alteration in the 3D structural organization of the lung. Since lung alterations in MFS are almost fully manifested at an early age, it is suggested that respiratory monitoring could provide early biomarkers for diagnosis and/or follow-up of patients with the Marfan syndrome. PMID:27003297

  9. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter.

    Science.gov (United States)

    Michael, S; Montag, M; Dott, W

    2013-12-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  11. miR-130b-3p Modulates Epithelial-Mesenchymal Crosstalk in Lung Fibrosis by Targeting IGF-1.

    Science.gov (United States)

    Li, Shuhong; Geng, Jing; Xu, Xuefeng; Huang, Xiaoxi; Leng, Dong; Jiang, Dingyuan; Liang, Jiurong; Wang, Chen; Jiang, Dianhua; Dai, Huaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and usually lethal fibrotic lung disease with largely unknown etiology and pathogenesis. Evidence suggests microRNAs (miRNA) contribute to pathogenesis of IPF. In this study, we sought to identify miRNA expression signatures and determine the role of miR-130b-3p in lung fibrosis. The miRNA expression profile of the lungs from patients with IPF and normal donors was determined by Affymetrix microarray, and transcriptome with Affymetrix array. The functions and signal pathways as well as miRNA-mRNA networks were established by bioinformatics analysis. Luciferase assays and ELISA were used to confirm the miRNA target gene. The effect of miRNA-transfected epithelium on fibroblast activities was assessed using a co-culture system. The fibroblast activities were determined by qRT-PCR, western blotting, Transwell and BrdU assays. Seven miRNAs were significantly decreased in IPF lungs, with miR-130b-3p being the highest in the miRNA-mRNA network. Insulin-like growth factor (IGF-1) was a target gene of miR-130b-3p in the epithelium. miR-130b-3p inhibition in the epithelium induced collagen I expression and enhanced the proliferation and migration ability of fibroblast in co-culture systems, which mimicked the functions of exogenous IGF-1 on fibroblasts. Neutralizing IGF-1 with an antibody significantly reduced the modulatory effects of miR-130b-3p inhibitor-transfected epithelium on the activation of fibroblasts. Our results show that miR-130b-3p was downregulated in IPF lungs. miR-130b-3p downregulation contributed to the activation of fibroblasts and the dysregulated epithelial-mesenchymal crosstalk by promoting IGF-1 secretion from lung epithelium, suggesting a key regulatory role for this miRNA in preventing lung fibrosis.

  12. Streptococcus pneumoniae-Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol.

    Science.gov (United States)

    Zahlten, Janine; Kim, Ye-Ji; Doehn, Jan-Moritz; Pribyl, Thomas; Hocke, Andreas C; García, Pedro; Hammerschmidt, Sven; Suttorp, Norbert; Hippenstiel, Stefan; Hübner, Ralf-Harto

    2015-06-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia worldwide. During pneumococcal pneumonia, the human airway epithelium is exposed to large amounts of H2O2 as a product of host and pathogen oxidative metabolism. Airway cells are known to be highly vulnerable to oxidant damage, but the pathophysiology of oxidative stress induced by S. pneumoniae and the role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant systems of the host are not well characterized. For gluthation/gluthathion disulfide analysis BEAS-2B cells, primary broncho-epithelial cells (pBEC), explanted human lung tissue and mouse lungs were infected with different S. pneumoniae strains (D39, A66, R6x, H2O2/pneumolysin/LytA- deficient mutants of R6x). Cell death was proven by LDH assay and cell viability by IL-8 ELISA. The translocation of Nrf2 and the expression of catalase were shown via Western blot. The binding of Nrf2 at the catalase promoter was analyzed by ChIP. We observed a significant induction of oxidative stress induced by S. pneumoniae in vivo, ex vivo, and in vitro. Upon stimulation, the oxidant-responsive transcription factor Nrf2 was activated, and catalase was upregulated via Nrf2. The pneumococci-induced oxidative stress was independent of S. pneumoniae-derived H2O2 and pneumolysin but depended on the pneumococcal autolysin LytA. The Nrf2 inducer resveratrol, as opposed to catalase, reversed oxidative stress in lung epithelial cells. These observations indicate a H2O2-independent induction of oxidative stress in lung epithelial cells via the release of bacterial factors of S. pneumoniae. Resveratrol might be an option for prevention of acute lung injury and inflammatory responses observed in pneumococcal pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    Science.gov (United States)

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-01-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  15. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  16. Role of estrogen in lung cancer based on the estrogen receptor-epithelial mesenchymal transduction signaling pathways

    Directory of Open Access Journals (Sweden)

    Zhao XZ

    2015-10-01

    RNA expression of E-cadherin was significantly reduced in estrogen-treated tumor tissues than that in vehicle-treated tissues. In the estrogen plus tamoxifen group, protein and mRNA expressions of ERα and AKT were dramatically reduced by tamoxifen treatment in tumor tissue compared with the estrogen group; mRNA expression of E-cadherin was increased in tumor tissue; protein expression of vimentin and PI3K were downregulated in tumor tissue; protein expression of E-cadherin increased in lung tissue; protein expression of ERα and PI3K were downregulated in lung tissue compared with the estrogen group. 2 For female mice: in the estrogen group, estrogen treatment significantly increased mRNA expression of ERβ and PI3K, and protein expression of ERβ, PI3K, AKT, and vimentin in both tumor tissue and lung tissue compared with the vehicle-treated group. mRNA expression of E-cadherin was downregulated in tumor tissue, and mRNA expression of AKT was increased in lung tissues compared with the vehicle-treated group. In the estrogen plus tamoxifen group, tamoxifen treatment dramatically reduced protein expression of ERα, ERβ, AKT, and vimentin but significantly increased protein expression of E-cadherin in tumor tissues and lung tissue compared with the estrogen group. mRNA expression of ERβ, PI3K, and AKT was dramatically reduced by tamoxifen treatment in lung tissues compared with the estrogen group.Conclusion: Estrogen promoted lung adenocarcinoma cell metastasis by inducing lung epithelial mesenchymal cells and reducing intercellular adhesion force through PI3K/AKT signaling pathway.Keywords: Lewis lung carcinoma, estrogen, estrogen receptor, epithelial–mesenchymal transition

  17. Evaluation of lung epithelial permeability in the volatile substance abuse using Tc-99m DTPA aerosol scintigraphy

    International Nuclear Information System (INIS)

    Cayir, D.; Demirel, K.; Korkmaz, M.; Koca, G.

    2011-01-01

    Chronic inhalant use is associated with significant toxic effects, including neurological, renal, hepatic, and pulmonary damage. However, there is a paucity of reports regarding respiratory complications in inhalant abusers. The aim of this study was to evaluate pulmonary epithelial permeability in the volatile substance abuse (VSA) using technetium-99m-labeled diethylenetriamine pentaacetic acid (Tc-99m DTPA) aerosol scintigraphy. This study included 18 patients with volatile substance abuse and 18 volunteer controls. All of patients and controls were smokers. Tc-99m DTPA aerosol scintigraphy was performed in all cases. Time-activity curves from each lung were generated and clearance half-time (T 1/2 ) of Tc-99m DTPA were calculated. T 1/2 of whole lung was calculated as a mean of the T 1/2 of left and right lung. The T 1/2 values of Tc-99m DTPA clearance in the substance abusers were significantly decreased as compared to the control group with respective mean values of 28.86±8.44, and 62.14±26.12 min (p=0.001). It was seen Tc-99m DTPA clearance from lung was faster as the duration of substance abuse was increased. Tc-99m DTPA pulmonary clearance is markedly accelerated in the volatile substance abuse. This suggests that inhalant abuse of substance may produce abnormalities in pulmonary alveolo-capillary membrane function. (author)

  18. Evaluation of lung epithelial permeability in the volatile substance abuse using Tc-99m DTPA aerosol scintigraphy.

    Science.gov (United States)

    Cayir, Derya; Demirel, Koray; Korkmaz, Meliha; Koca, Gokhan

    2011-10-01

    Chronic inhalant use is associated with significant toxic effects, including neurological, renal, hepatic, and pulmonary damage. However, there is a paucity of reports regarding respiratory complications in inhalant abusers. The aim of this study was to evaluate pulmonary epithelial permeability in the volatile substance abuse (VSA) using Tc-99m DTPA aerosol scintigraphy. This study included 18 patients with volatile substance abuse and 18 volunteer controls. All of patients and controls were smokers. Tc-99m DTPA aerosol scintigraphy was performed in all cases. Time-activity curves from each lung were generated and clearance half-time (T(1/2)) of Tc-99m DTPA were calculated. T(1/2) of whole lung was calculated as a mean of the T(1/2) of left and right lung. The T(1/2) values of Tc-99m DTPA clearance in the substance abusers were significantly decreased as compared to the control group with respective mean values of 28.86 ± 8.44, and 62.14 ± 26.12 min (p = 0.001). It was seen Tc-99m DTPA clearance from lung was faster as the duration of substance abuse was increased. Tc-99m DTPA pulmonary clearance is markedly accelerated in the volatile substance abuse. This suggests that inhalant abuse of substance may produce abnormalities in pulmonary alveolo-capillary membrane function.

  19. Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components.

    Science.gov (United States)

    Housley, D G; Bérubé, K A; Jones, T P; Anderson, S; Pooley, F D; Richards, R J

    2002-07-01

    The Soufriere Hills, a stratovolcano on Montserrat, started erupting in July 1995, producing volcanic ash, both from dome collapse pyroclastic flows and phreatic explosions. The eruptions/ash resuspension result in high concentrations of suspended particulate matter in the atmosphere, which includes cristobalite, a mineral implicated in respiratory disorders. To conduct toxicological studies on characterised samples of ash, together with major components of the dust mixture (anorthite, cristobalite), and a bioreactive mineral control (DQ12 quartz). Rats were challenged with a single mass (1 mg) dose of particles via intratracheal instillation and groups sacrificed at one, three, and nine weeks. Acute bioreactivity of the particles was assessed by increases in lung permeability and inflammation, changes in epithelial cell markers, and increase in the size of bronchothoracic lymph nodes. Data indicated that respirable ash derived from pyroclastic flows (20.1% cristobalite) or phreatic explosion (8.6% cristobalite) had minimal bioreactivity in the lung. Anorthite showed low bioreactivity, in contrast to pure cristobalite, which showed progressive increases in lung damage. Results suggests that either the percentage mass of cristobalite particles present in Montserrat ash was not sufficient as a catalyst in the lung environment, or its surface reactivity was masked by the non-reactive volcanic glass components during the process of ash formation.

  20. Role of alveolar epithelial Early growth response-1 (Egr-1) in CD8+ T Cell mediated Lung Injury

    Science.gov (United States)

    Ramana, Chilakamarti V.; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung- Joo; Enelow, Richard I.

    2009-01-01

    Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8+ T cells in this injury, and have found that the critical effector molecule is TNF-α expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory cells, recruited by chemokines expressed by the target alveolar epithelial cells. In this study we analyzed the mechanisms involved in the induction of epithelial chemokine expression triggered by antigen-specific CD8+ T cell recognition, and demonstrate that the Early growth response-1 (Egr-1) transcription factor is rapidly induced in epithelial cells, both in vitro and ex vivo, and that this is a critical regulator of a host of inflammatory chemokines. Genetic deficiency of Egr-1 significantly abrogates both the chemokine expression and the immunopathologic injury associated with T cell recognition, and it directly regulates transcriptional activity of a model CXC chemokine, MIP-2. We further demonstrate that Egr-1 induction is triggered by TNF-α– dependent ERK activation, and inhibition of this pathway ablates Egr-1 expression. These findings suggest that Egr-1 may represent an important target in mitigating the immunopathology of severe influenza infection. PMID:19786304

  1. Role of alveolar epithelial early growth response-1 (Egr-1) in CD8+ T cell-mediated lung injury.

    Science.gov (United States)

    Ramana, Chilakamarti V; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung-Joo; Enelow, Richard I

    2009-12-01

    Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8(+) T cells in this injury, and have found that the critical effector molecule is TNF-alpha expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory cells, recruited by chemokines expressed by the target alveolar epithelial cells. In this study we analyzed the mechanisms involved in the induction of epithelial chemokine expression triggered by antigen-specific CD8(+) T cell recognition, and demonstrate that the early growth response-1 (Egr-1) transcription factor is rapidly induced in epithelial cells, both in vitro and ex vivo, and that this is a critical regulator of a host of inflammatory chemokines. Genetic deficiency of Egr-1 significantly abrogates both the chemokine expression and the immunopathologic injury associated with T cell recognition, and it directly regulates transcriptional activity of a model CXC chemokine, MIP-2. We further demonstrate that Egr-1 induction is triggered by TNF-alpha-dependent ERK activation, and inhibition of this pathway ablates Egr-1 expression. These findings suggest that Egr-1 may represent an important target in mitigating the immunopathology of severe influenza infection.

  2. Assessment of Lung Epithelial Cytological Changes Associated with Air Pollution in Hail Industrial Area in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Fawaz D. Alshammari

    2018-04-01

    Full Text Available Objective: The purpose of this study was to assess the lung epithelial atypical changes (if any, which might be associated with continuous exposure to air pollution resulting from motor vehicles maintenance. Methodology: This is a case control study, investigated 250 participants by cytological methods. Of the 250 participants, 200 were cases exposed to vehicle maintenance emissions air pollution and 50 were controls (non-exposed. Early morning expectorated sputum specimen was obtained and cytologically assessed. Results: Cytological atypia was identified in 7 (3.5% out of the 200 cases and could not be identified in 193 (96.5% cases, whereas, in the control group, cytological atypia was not found. The risk of cytological atypia, which is associated with exposure to vehicle maintenance emissions air pollution, the 95% confidence interval (95% CI and relative risk (RR; RR=3.9 (0.2199 to 69.7010, P=0.3529. Metaplasia was identified among 26 (13% cases and 2/50 (4% in the controls. The risk of metaplasia that is associated with exposure to vehicle maintenance emissions air pollution, the 95% CI and RR=3.5 (0.8218 to 15.649, P=0.0893. Conclusion: The exposure to vehicle maintenance air pollution increases the risk of lung epithelial atypical changes, which may develop in to precancerous and cancerous changes.

  3. Inclusion of Moloney murine leukemia virus elements upstream of the transgene cassette in an E1-deleted adenovirus leads to an unusual genomic integration in epithelial cells

    International Nuclear Information System (INIS)

    Zheng Changyu; O'Connell, Brian C.; Baum, Bruce J.

    2003-01-01

    Classically, the 5' and 3' long terminal repeats (LTRs) are considered necessary but not sufficient for retroviral integration. Recently, we reported that inclusion of these and additional elements from Moloney murine leukemia virus (MoMLV) facilitated transgene integration, without retroviral integrase, when placed in an adenoviral context (AdLTR-luc vector) (Nat. Biotech. 18 (2000), 176; Biochem. Biophys. Res. Commun. 300 (2003), 115). To help understand this nonhomologous DNA recombination event, we constructed another vector, AdELP-luc, with 2.7 kb of MoMLV elements identically placed into an E1-deleted adenovirus type 5 backbone upstream of a luciferase cDNA reporter gene. Unlike AdLTR-luc, no MoMLV elements were placed downstream of the expression cassette. AdELP-luc readily infected epithelial cells in vitro. Southern hybridizations with DNA from cloned cells showed that disruption of the MoMLV sequences occurred. One cell clone, grown in vitro without any special selection medium for 9 months, exhibited stable vector integration and luciferase activity. Importantly, both Southern hybridization and FISH analyses showed that in addition to the MoMLV elements and expression cassette, substantial adenoviral sequence downstream of the luciferase cDNA was genomically integrated. These results suggest that the 2.7 kb of MoMLV sequence included in AdELP-luc have cis-acting functions and mediates an unusual integration event

  4. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    Science.gov (United States)

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  5. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model

    Directory of Open Access Journals (Sweden)

    O'Shaughnessy Patrick T

    2011-01-01

    Full Text Available Abstract Background There is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure. Results In this study, mice were exposed sub-acutely by inhalation to well-characterized nanosilver (3.3 mg/m3, 4 hours/day, 10 days, 5 ± 2 nm primary size. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage fluid. Lungs were evaluated for histopathologic changes and the presence of silver. In contrast to published in vitro studies, minimal inflammatory response or toxicity was found following exposure to nanosilver in our in vivo study. The median retained dose of nanosilver in the lungs measured by inductively coupled plasma - optical emission spectroscopy (ICP-OES was 31 μg/g lung (dry weight immediately after the final exposure, 10 μg/g following exposure and a 3-wk rest period and zero in sham-exposed controls. Dissolution studies showed that nanosilver did not dissolve in solutions mimicking the intracellular or extracellular milieu. Conclusions Mice exposed to nanosilver showed minimal pulmonary inflammation or cytotoxicity following sub-acute exposures. However, longer term exposures with higher lung burdens of nanosilver are needed to ensure that there are no chronic effects and to evaluate possible translocation to other organs.

  6. Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling

    OpenAIRE

    Marty, Amber J.; Wüthrich, Marcel; Carmen, John C.; Sullivan, Thomas D.; Klein, Bruce S.; Cuomo, Christina A.; Gauthier, Gregory M.

    2013-01-01

    B. dermatitidis belongs to a group of thermally dimorphic fungi that grow as sporulating mold in the soil and convert to pathogenic yeast in the lung following inhalation of spores. Knowledge about the molecular events important for fungal adaptation and survival in the host remains limited. The development of high-throughput analytic tools such as RNA sequencing (RNA-Seq) has potential to provide novel insight on fungal pathogenesis especially if applied in vivo during infection. However, in...

  7. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    International Nuclear Information System (INIS)

    Ma, Jane; Bishoff, Bridget; Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane; Castranova, Vincent

    2017-01-01

    The emission of cerium oxide nanoparticles (CeO 2 ) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO 2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO 2 -induced fibrosis. Male Sprague-Dawley rats were exposed to CeO 2 (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO 2 (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO 2 -exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO 2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO 2 -exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO 2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO 2 nanoparticle exposure. - Highlights: • CeO 2 exposure induced lung fibrosis. • CeO 2 were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO 2 caused ATII cell hypertrophy and hyperplasia and altered fibroblast function

  8. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Bishoff, Bridget [Mylan Pharmaceuticals, Morganntown, WV (United States); Mercer, R.R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, NIOSH, Morgantown, WV (United States); Castranova, Vincent, E-mail: vcastran@hsc.wvu.edu [School of Pharmacy, West Virginia University, Morgantown, WV (United States)

    2017-05-15

    The emission of cerium oxide nanoparticles (CeO{sub 2}) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO{sub 2} induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO{sub 2}-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO{sub 2} (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28 days after CeO{sub 2} (3.5 mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO{sub 2}-exposed rats at 28 days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO{sub 2} exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO{sub 2}-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO{sub 2} exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO{sub 2} nanoparticle exposure. - Highlights: • CeO{sub 2} exposure induced lung fibrosis. • CeO{sub 2} were detected in lung tissue, alveolar type II (ATII) cells and fibroblasts. • CeO{sub 2} caused ATII

  9. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Science.gov (United States)

    Caraher, Erin J; Kwon, Sophia; Haider, Syed H; Crowley, George; Lee, Audrey; Ebrahim, Minah; Zhang, Liqun; Chen, Lung-Chi; Gordon, Terry; Liu, Mengling; Prezant, David J; Schmidt, Ann Marie; Nolan, Anna

    2017-01-01

    World Trade Center-particulate matter(WTC-PM) exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI). The receptor for advanced glycation end-products (RAGE) is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV). Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE)≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72). Wild type(WT) and RAGE-deficient(Ager-/-) mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased sRAGE is

  10. Receptor for advanced glycation end-products and World Trade Center particulate induced lung function loss: A case-cohort study and murine model of acute particulate exposure.

    Directory of Open Access Journals (Sweden)

    Erin J Caraher

    Full Text Available World Trade Center-particulate matter(WTC-PM exposure and metabolic-risk are associated with WTC-Lung Injury(WTC-LI. The receptor for advanced glycation end-products (RAGE is most highly expressed in the lung, mediates metabolic risk, and single-nucleotide polymorphisms at the AGER-locus predict forced expiratory volume(FEV. Our objectives were to test the hypotheses that RAGE is a biomarker of WTC-LI in the FDNY-cohort and that loss of RAGE in a murine model would protect against acute PM-induced lung disease. We know from previous work that early intense exposure at the time of the WTC collapse was most predictive of WTC-LI therefore we utilized a murine model of intense acute PM-exposure to determine if loss of RAGE is protective and to identify signaling/cytokine intermediates. This study builds on a continuing effort to identify serum biomarkers that predict the development of WTC-LI. A case-cohort design was used to analyze a focused cohort of male never-smokers with normal pre-9/11 lung function. Odds of developing WTC-LI increased by 1.2, 1.8 and 1.0 in firefighters with soluble RAGE (sRAGE≥97pg/mL, CRP≥2.4mg/L, and MMP-9≤397ng/mL, respectively, assessed in a multivariate logistic regression model (ROCAUC of 0.72. Wild type(WT and RAGE-deficient(Ager-/- mice were exposed to PM or PBS-control by oropharyngeal aspiration. Lung function, airway hyperreactivity, bronchoalveolar lavage, histology, transcription factors and plasma/BAL cytokines were quantified. WT-PM mice had decreased FEV and compliance, and increased airway resistance and methacholine reactivity after 24-hours. Decreased IFN-γ and increased LPA were observed in WT-PM mice; similar findings have been reported for firefighters who eventually develop WTC-LI. In the murine model, lack of RAGE was protective from loss of lung function and airway hyperreactivity and was associated with modulation of MAP kinases. We conclude that in a multivariate adjusted model increased s

  11. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms

    Science.gov (United States)

    Antony, N.; McDougall, A. R.; Mantamadiotis, T.; Cole, T. J.; Bird, A. D.

    2016-01-01

    During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. PMID:27150575

  12. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  13. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  14. Injection of Syngeneic Murine Melanoma Cells to Determine Their Metastatic Potential in the Lungs.

    Science.gov (United States)

    Timmons, Joshua J; Cohessy, Sean; Wong, Eric T

    2016-05-24

    Approximately 90% of human cancer deaths are linked to metastasis. Despite the prevalence and relative harm of metastasis, therapeutics for treatment or prevention are lacking. We report a method for the establishment of pulmonary metastases in mice, useful for the study of this phenomenon. Tail vein injection of B57BL/6J mice with B16-BL6 is among the most used models for melanoma metastases. Some of the circulating tumor cells establish themselves in the lungs of the mouse, creating "experimental" metastatic foci. With this model it is possible to measure the relative effects of therapeutic agents on the development of cancer metastasis. The difference in enumerated lung foci between treated and untreated mice indicates the efficacy of metastases neutralization. However, prior to the investigation of a therapeutic agent, it is necessary to determine an optimal number of injected B16-BL6 cells for the quantitative analysis of metastatic foci. Injection of too many cells may result in an overabundance of metastatic foci, impairing proper quantification and overwhelming the effects of anti-cancer therapies, while injection of too few cells will hinder the comparison between treated and controls.

  15. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    International Nuclear Information System (INIS)

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As 2 O 3

  16. Hypoxia inducible factor 3α plays a critical role in alveolarization and distal epithelial cell differentiation during mouse lung development.

    Directory of Open Access Journals (Sweden)

    Yadi Huang

    Full Text Available Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by Hypoxia Inducible Factors (HIF. HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFα, and a constitutively expressed subunit, HIF1β. HIF1α and HIF2α, encoded by two separate genes, contribute to the activation of hypoxia inducible genes. A third HIFα gene, HIF3α, is subject to alternative promoter usage and splicing, leading to three major isoforms, HIF3α, NEPAS and IPAS. HIF3α gene products add to the complexity of the hypoxia response as they function as dominant negative inhibitors (IPAS or weak transcriptional activators (HIF3α/NEPAS. Previously, we and others have shown the importance of the Hif1α and Hif2α factors in lung development, and here we investigated the role of Hif3α during pulmonary development. Therefore, HIF3α was conditionally expressed in airway epithelial cells during gestation and although HIF3α transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities, including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3α expressing lungs displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3α expression, the level of Hif2α was reduced, but that of Hif1α was not affected. Two regulatory genes, Rarβ, involved in alveologenesis, and Foxp2, a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3α expressing lungs. In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that Hif3α binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2 promoter region. Moreover, Hif3α affected the expression of genes not typically involved in the hypoxia response, providing evidence for a novel

  17. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  18. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    2010-06-01

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  19. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Perkins Timothy N

    2012-02-01

    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  20. Exposure to febrile-range hyperthermia potentiates Wnt signalling and epithelial-mesenchymal transition gene expression in lung epithelium.

    Science.gov (United States)

    Potla, Ratnakar; Tulapurkar, Mohan E; Luzina, Irina G; Atamas, Sergei P; Singh, Ishwar S; Hasday, Jeffrey D

    2018-02-01

    As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).

  1. Vectorial transcytosis of dimeric IgA by the Calu-3 human lung epithelial cell line: upregulation by IFN-gamma

    NARCIS (Netherlands)

    Loman, S.; Radl, J.; Jansen, H. M.; Out, T. A.; Lutter, R.

    1997-01-01

    We have developed an in vitro airway epithelial cell model for dimeric immunoglobulin (Ig) A (dIgA) transcytosis that allows the assessment of polymeric Ig receptor (pIgR) gene expression and actual dIgA transport. Tight monolayers of human lung-derived Calu-3 adenocarcinoma cells grown on permeable

  2. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung.

    Directory of Open Access Journals (Sweden)

    Chad A Lerner

    Full Text Available Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used, and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292 in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that

  3. Radiosensitivity of a epithelial cell model from an embryonic rat lung involving in particular the status of p53 gene

    International Nuclear Information System (INIS)

    Paris, Francois

    1998-01-01

    In this research thesis, the author presents ionizing radiations and their effects on living matter (damages to DNA, cell response to irradiation, proteins activated by radio-induced DNA breaks), the p53 protein (p53 mutation in cancers, structure), and the effect of ionizing radiation on this protein (expression and activation). Then this thesis addresses the study of a set of sister line of epithelial cells obtained from an embryonic rat lung treated with benzo(a)pyrene, a mutagenic agent notably present in cigarette smoke, in hydrocarbon combustion and in atmospheric pollution, and therefore responsible of cancers. This thesis thus reports the development of an experimental model allowing transformed cells to be studied [fr

  4. DMBT1 promotes basal and meconium-induced nitric oxide production in human lung epithelial cells in vitro

    DEFF Research Database (Denmark)

    Müller, Hanna; Weiss, Christel; Renner, Marcus

    2017-01-01

    Meconium aspiration syndrome (MAS) is characterized by surfactant inactivation and inflammation. As lung epithelial cells up-regulate nitric oxide (NO) in response to inflammation, the NO production following meconium exposition was examined in relation to expression of Deleted in Malignant Brain...... NO production than the DMBT1- cells (p = 0.0090). Meconium led in DMBT1- and DMBT1+ cells to elevated NO levels (p production in DMBT1+ cells (p = 0.0476), but NO levels remained above...... NO production from DMBT1- cells (p = 0.0289). Dexamethasone diminished NO production in DMBT1+ cells after meconium exposition (p = 0.0076). Combined addition of LPS and meconium significantly increased NO production in both cell types (p

  5. Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages

    DEFF Research Database (Denmark)

    Jantzen, Kim; Roursgaard, Martin; Madsen, Claus Desler

    2012-01-01

    Studies in mono-culture of cells have shown that diesel exhaust particles (DEPs) increase the production of reactive oxygen species (ROS) and oxidative stress-related damage to DNA. However, the level of particle-generated genotoxicity may depend on interplay between different cell types, e.g. lung...... treatment with standard reference DEPs, SRM2975 and SRM1650b. The exposure to DEPs did not affect the colony-forming ability of A549 cells in co-culture with THP-1a cells. The DEPs generated DNA strand breaks and oxidatively damaged DNA, measured using the alkaline comet assay as formamidopyrimidine...... relationship between levels of respiration and ROS production. In conclusion, exposure of mono-cultured cells to DEPs generated oxidative stress to DNA, whereas co-cultures with macrophages had lower levels of oxidatively damaged DNA than A549 epithelial cells....

  6. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-κB activation

    International Nuclear Information System (INIS)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke; Feltens, Ralph; Kohse, Franziska; Bergen, Martin von; Moerbt, Nora; Eder, Klaus; Duschl, Albert; Lehmann, Irina

    2008-01-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-κB) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-κB activity. An inhibitor of NF-κB, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-κB signalling pathway by styrene is mediated via a redox-sensitive mechanism

  7. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    DEFF Research Database (Denmark)

    Müller, Hanna; Nagel, Christian; Weiss, Christel

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well...... as with DMBT1 levels. To examine the effect of DMBT1 on VEGF and IL-6 expression we compared type II lung epithelial A549 cells stably transfected with a DMBT1 expression plasmid (DMBT1+ cells) to A549 cells stably transfected with an empty expression plasmid (DMBT1- cells). The concentrations of VEGF and IL-6...... that DMBT1 promotes VEGF and suppresses IL-6 production in alveolar tissues, which could point to DMBT1 having a possible role in the transition from inflammation to regeneration and being a potentially useful clinical marker....

  8. Antitumour responses induced by a cell-based Reovirus vaccine in murine lung and melanoma models

    International Nuclear Information System (INIS)

    Campion, Ciorsdan A.; Soden, Declan; Forde, Patrick F.

    2016-01-01

    The ever increasing knowledge in the areas of cell biology, the immune system and the mechanisms of cancer are allowing a new phase of immunotherapy to develop. The aim of cancer vaccination is to activate the host immune system and some success has been observed particularly in the use of the BCG vaccine for bladder cancer as an immunostimulant. Reovirus, an orphan virus, has proven itself as an oncolytic virus in vitro and in vivo. Over 80 % of tumour cell lines have been found to be susceptible to Reovirus infection and it is currently in phase III clinical trials. It has been shown to induce immune responses to tumours with very low toxicities. In this study, Reovirus was examined in two main approaches in vivo, in mice, using the melanoma B16F10 and Lewis Lung Carcinoma (LLC) models. Initially, mice were treated intratumourally (IT) with Reovirus and the immune responses determined by cytokine analysis. Mice were also vaccinated using a cell-based Reovirus vaccine and subsequently exposed to a tumourigenic dose of cells (B16F10 or LLC). Using the same cell-based Reovirus vaccine, established tumours were treated and subsequent immune responses and virus retrieval investigated. Upregulation of several cytokines was observed following treatment and replication-competent virus was also retrieved from treated tumours. Varying levels of cytokine upregulation were observed and no replication-competent virus was retrieved in vaccine-treated mice. Prolongation of survival and delayed tumour growth were observed in all models and an immune response to Reovirus, either using Reovirus alone or a cell-based vaccine was also observed in all mice. This study provides evidence of immune response to tumours using a cell-based Reovirus vaccine in both tumour models investigated, B16F10 and LLC, cytokine induction was observed with prolongation of survival in almost all cases which may suggest a new method for using Reovirus in the clinic

  9. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis.

    Science.gov (United States)

    Roum, J H; Borok, Z; McElvaney, N G; Grimes, G J; Bokser, A D; Buhl, R; Crystal, R G

    1999-07-01

    Cystic fibrosis (CF) is characterized by accumulation of activated neutrophils and macrophages on the respiratory epithelial surface (RES); these cells release toxic oxidants, which contribute to the marked epithelial derangements seen in CF. These deleterious consequences are magnified, since reduced glutathione (GSH), an antioxidant present in high concentrations in normal respiratory epithelial lining fluid (ELF), is deficient in CF ELF. To evaluate the feasibility of increasing ELF GSH levels and enhancing RES antioxidant protection, GSH aerosol was delivered (600 mg twice daily for 3 days) to seven patients with CF. ELF total, reduced, and oxidized GSH increased (P < 0.05, all compared with before GSH therapy), suggesting adequate RES delivery and utilization of GSH. Phorbol 12-myristate 13-acetate-stimulated superoxide anion (O2-.) release by ELF inflammatory cells decreased after GSH therapy (P < 0.002). This paralleled observations that GSH added in vitro to CF ELF inflammatory cells suppressed O2-. release (P < 0.001). No adverse effects were noted during treatment. Together, these observations demonstrate the feasibility of using GSH aerosol to restore RES oxidant-antioxidant balance in CF and support the rationale for further clinical evaluation.

  10. 15-Deoxy-Delta-12,14-Prostaglandin J2 Inhibits Lung Inflammation and Remodeling in Distinct Murine Models of Asthma

    Directory of Open Access Journals (Sweden)

    Diego S. Coutinho

    2017-06-01

    Full Text Available 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2 has been described as an anti-inflammatory lipid mediator in several in vitro and in vivo studies, but its effect on allergic pulmonary inflammation remains elusive. The aim of this study was to investigate the therapeutic potential of 15d-PGJ2 based on distinct murine models of allergic asthma triggered by either ovalbumin (OVA or house dust mite extract (HDM. Characteristics of lung inflammation, airway hyper-reactivity (AHR, mucus exacerbation, and lung remodeling in sensitized A/J mice treated or not with 15d-PGJ2 were assessed. 15d-PGJ2 treatments were carried out systemically or topically given via subcutaneous injection or intranasal instillation, respectively. Analyses were carried out 24 h after the last allergen provocation. Irrespective of the route of administration, 15d-PGJ2 significantly inhibited the peribronchial accumulation of eosinophils and neutrophils, subepithelial fibrosis and also mucus exacerbation caused by either OVA or HDM challenge. The protective effect of 15d-PGJ2 occurred in parallel with inhibition of allergen-induced AHR and lung tissue production of pro-inflammatory cytokines, such as interleukin (IL-5, IL-13, IL-17, and TNF-α. Finally, 15d-PGJ2 was found effective in inhibiting NF-κB phosphorylation upon HDM challenge as measured by Western blotting. In conclusion, our findings suggest that 15d-PGJ2 can reduce crucial features of asthma, including AHR, lung inflammation, and remodeling in distinct murine models of the disease. These effects are associated with a decrease in lung tissue generation of pro-inflammatory cytokines by a mechanism related to downregulation of NF-κB phosphorylation.

  11. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways.

    Science.gov (United States)

    Yun, Jeong H; Morrow, Jarrett; Owen, Caroline A; Qiu, Weiliang; Glass, Kimberly; Lao, Taotao; Jiang, Zhiqiang; Perrella, Mark A; Silverman, Edwin K; Zhou, Xiaobo; Hersh, Craig P

    2017-07-01

    Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip +/- , and Fam13a -/- murine strains exposed chronically to CS. The CS-resistant Fam13a -/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a -/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.

  12. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Science.gov (United States)

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  13. Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment.

    Science.gov (United States)

    Vannitamby, Amanda; Seow, Huei Jiunn; Anderson, Gary; Vlahos, Ross; Thompson, Michelle; Steinfort, Daniel; Irving, Louis B; Bozinovski, Steven

    2017-12-01

    Matrix metalloproteinase-9 (MMP-9) is increased in a number of pathological lung conditions, where the proteinase contributes to deleterious remodelling of the airways. While both lung cancer and COPD are associated with increased MMP-9 expression, the cellular and molecular drivers of MMP-9 remain unresolved. In this study, MMP-9 transcript measured within the tumour region from patients with non-small-cell lung cancer (NSCLC) and coexisting COPD was found to be uniformly increased relative to adjacent tumour-free tissue. MMP-9 gene expression and immunohistochemistry identified tumour-associated neutrophils, but not macrophages, as a predominant source of this proteinase. In addition, PTEN gene expression was significantly reduced in tumour and there was evidence of epithelial MMP-9 expression. To explore whether PTEN can regulate epithelial MMP-9 expression, a small interfering (si)RNA knockdown strategy was used in Beas-2B bronchial epithelial cells. PTEN knockdown by siRNA selectively increased MMP-9 expression in response to lipopolysaccharide in a corticosteroid-insensitive manner. In summary, tumour-associated neutrophils represent an important source of MMP-9 in NSCLC, and loss of epithelial PTEN may further augment steroid-insensitive expression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Targeted epigenetic editing of SPDEF reduces mucus production in lung epithelial cells

    NARCIS (Netherlands)

    Song, Juan; Cano-Rodriquez, David; Winkle, Melanie; Gjaltema, Rutger A. F.; Goubert, Desiree; Jurkowski, Tomasz P.; Heijink, Irene H.; Rots, Marianne G.; Hylkema, Machteld N.

    2017-01-01

    Airway mucus hypersecretion contributes to the morbidity and mortality in patients with chronic inflammatory lung diseases. Reducing mucus production is crucial for improving patients' quality of life. The transcription factor SAM-pointed domain-containing Ets-like factor (SPDEF) plays a critical

  15. PRE-TREATMENT WITH DIESEL EXHAUST EXTRACT ALTERS INFLUENZA VIRUS REPLICATION IN LUNG EPITHELIAL CELLS

    Science.gov (United States)

    Diesel Exhaust (DE) has been demonstrated to generate inflammatory responses in the lung and modify immune responses to allergens. However, little is known about the effects of DE on common respiratory viral infections. We examined whether exposure to DE extracts (DEE) modifies i...

  16. LACK OF DNA SINGLE STRAND BREAKS IN A LUNG EPITHELIAL CELL LINE AFTER EXPOSURE TO ARSENIC

    Science.gov (United States)

    Arsenic (As) is a carcinogen whose most important target organs include the skin and lungs. Exposure can occur via water ingestion, or inhalation, as As is a by-product of fossil fuel combustion and other industrial activities. The carcinogenic mechanism of action for As remains ...

  17. IL-32 expression in the airway epithelial cells of patients with Mycobacterium avium complex lung disease.

    NARCIS (Netherlands)

    Bai, X.; Ovrutsky, A.R.; Kartalija, M.; Chmura, K.; Kamali, A.; Honda, J.R.; Oberley-Deegan, R.E.; Dinarello, C.A.; Crapo, J.D.; Chang, L.Y.; Chan, E.D.

    2011-01-01

    Lung disease due to Mycobacterium avium complex (MAC) organisms is increasing. A greater understanding of the host immune response to MAC organisms will provide a foundation to develop novel therapies for these recalcitrant infections. IL-32 is a newly described pro-inflammatory cytokine that

  18. Lung function declines in patients with pulmonary sarcoidosis and increased respiratory epithelial permeability to 99mTc-DTPA

    International Nuclear Information System (INIS)

    Chinet, T.; Dusser, D.; Labrune, S.; Collignon, M.A.; Chretien, J.; Huchon, G.J.

    1990-01-01

    Respiratory epithelial clearance of 99m Tc-DTPA (RC-Tc-DTPA) and pulmonary function tests (PFT) were determined at intervals of 6 or 12 months in 37 untreated, nonsmoking patients with sarcoidosis over a period of 6 to 36 months. PFT included the measurements of total lung capacity (TLC), vital capacity (VC), FEV1, and diffusing capacity for carbon monoxide. No difference was found between the respiratory clearance of 113m In-DTPA (2.25 +/- 1.00%/min) and RC-Tc-DTPA (2.29 +/- 1.11%/min) in eight patients with pulmonary sarcoidosis. Pulmonary function decreased 15% or more in at least 2 function tests during 11 follow-up periods, but it remained stable during 47 follow-up periods. In patients whose lung function deteriorated, RC-Tc-DTPA increased to 3.51 +/- 1.55%/min; in contrast, in patients whose lung function remained stable, regardless of the initial values, RC-Tc-DTPA was normal (1.00 +/- 0.50%/min; p less than 0.001). In eight patients who were treated with corticosteroids, RC-Tc-DTPA decreased from 3.48 +/- 1.31%/min to 1.56 +/- 0.64%/min (p less than 0.001), and PFT improved. We conclude that in nonsmokers with pulmonary sarcoidosis, increased RC-Tc-DTPA is not related to dissociation of 99mTc from DTPA, RC-Tc-DTPA is increased when pulmonary function decreases, and, when increased, RC-Tc-DTPA decreases with corticosteroid therapy

  19. Expression and Activity of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Distal Lung Epithelial Cells In Vitro.

    Science.gov (United States)

    Nickel, Sabrina; Selo, Mohammed Ali; Fallack, Juliane; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2017-12-01

    Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line. BCRP expression levels in AT2 and AT1-like cells and in different passages of NCI-H441 cells were determined using q-PCR and immunoblot. Transporter localisation was confirmed by confocal laser scanning microscopy. Efflux and transport studies using the BCRP substrate BODIPY FL prazosin and the inhibitor Ko143 were carried out to assess BCRP activity in the different cell models. BCRP expression decreased during transdifferentiation from AT2 to AT1-like phenotype. Culturing NCI-H441 cells at an air-liquid interface or submersed did not change BCRP abundance, however, BCRP levels increased with passage number. BCRP was localised to the apical membrane and cytosol in NCI-H441 cells. In primary cells, the protein was found predominantly in the nucleus. Functional studies were consistent with expression data. BCRP is differently expressed in AT2 and AT1-like cells with lower abundance and activity in the latter ones. Nuclear BCRP might play a transcriptional role in distal lung epithelium. In NCI-H441 cells, BCRP is expressed in apical cell membranes and its activity is consistent with the localisation pattern.

  20. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  1. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    Science.gov (United States)

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells.

    Science.gov (United States)

    Hagiwara, Masaya; Maruta, Naomichi; Marumoto, Moegi

    2017-06-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left-right asymmetry, and disease pathogenesis of the human lung.

  3. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Armstead, Andrea L. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Arena, Christopher B. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Li, Bingyun, E-mail: bili@hsc.wvu.edu [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, Morgantown, WV 26506 (United States)

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics.

  4. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Armstead, Andrea L.; Arena, Christopher B.; Li, Bingyun

    2014-01-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics

  5. Protocol for Lipid-Mediated Transient Transfection in A549 Epithelial Lung Cell Line.

    Science.gov (United States)

    Marcos-Vadillo, Elena; García-Sánchez, Asunción

    2016-01-01

    Trials of transfection in eukaryotic cells are essential tools for the study of gene and protein function. They have been used in a wide range of research fields. In this chapter, a method of transient transfection of the A549 cell line, human lung cells of alveolar epithelium, with an expression plasmid is described. In addition, the fundamental characteristics of this experimental procedure are addressed.

  6. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane

    International Nuclear Information System (INIS)

    Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro; Freyre-Fonseca, Verónica; Delgado-Buenrostro, Norma L.; Flores-Flores, José O.; Gutiérrez-López, Gustavo F.; Sánchez-Pérez, Yesennia; García-Cuéllar, Claudia M.

    2015-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO 2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO 2 -B) using TiO 2 spheres (TiO 2 -SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm 2 ) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO 2 -B effect on agglomerates size, cell size and granularity than TiO 2 -SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO 2 -SP and TiO 2 -B, respectively; TiO 2 -SP and TiO 2 -B induced 23% and 70% cell size decrease, respectively, whilst TiO 2 -SP and TiO 2 -B induced 7 and 14-fold of granularity increase. NO x production was down-regulated (31%) by TiO 2 -SP and up-regulated (70%) by TiO 2 -B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO 2 -SP exposed cells while TiO 2 -B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO 2 -B had higher proliferative potential than TiO 2 -SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm 2 ) to titanium dioxide nanoparticles (TiO 2 -NPs) shaped as spheres (TiO 2 -SP) and belts (TiO 2 -B) for midterm (7 continuous days) separately. (B) Then, cells from each cell

  7. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Freyre-Fonseca, Verónica [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Doctorado en Ciencias en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CP 11340 México, DF (Mexico); Delgado-Buenrostro, Norma L. [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Flores-Flores, José O. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria AP 70-186, CP 04510 México, DF (Mexico); Gutiérrez-López, Gustavo F. [Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, CP 11340 México, DF (Mexico); Sánchez-Pérez, Yesennia; García-Cuéllar, Claudia M. [Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando 22, Tlalpan, CP 14080 México, DF (Mexico); and others

    2015-01-15

    Titanium dioxide nanoparticles (TiO{sub 2} NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO{sub 2} NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO{sub 2}-B) using TiO{sub 2} spheres (TiO{sub 2}-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm{sup 2}) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO{sub 2}-B effect on agglomerates size, cell size and granularity than TiO{sub 2}-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO{sub 2}-SP and TiO{sub 2}-B, respectively; TiO{sub 2}-SP and TiO{sub 2}-B induced 23% and 70% cell size decrease, respectively, whilst TiO{sub 2}-SP and TiO{sub 2}-B induced 7 and 14-fold of granularity increase. NO{sub x} production was down-regulated (31%) by TiO{sub 2}-SP and up-regulated (70%) by TiO{sub 2}-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO{sub 2}-SP exposed cells while TiO{sub 2}-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO{sub 2}-B had higher proliferative potential than TiO{sub 2}-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm{sup 2}) to titanium dioxide nanoparticles (TiO{sub 2}-NPs) shaped as spheres (TiO{sub 2

  8. Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse.

    Science.gov (United States)

    Arlt, Volker M; Gingerich, John; Schmeiser, Heinz H; Phillips, David H; Douglas, George R; White, Paul A

    2008-11-01

    FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

  9. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    International Nuclear Information System (INIS)

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-01-01

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNFα). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure

  10. Cadmium nanoparticles citrullinate cytokeratins within lung epithelial cells: cadmium as a potential cause of citrullination in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Hutchinson D

    2018-01-01

    Full Text Available David Hutchinson,1,2 Judith Müller,3 Joseph E McCarthy,4 Yurii K Gun’ko,4,5 Navin Kumar Verma,6 Xuezhi Bi,7 Luisana Di Cristo,8 Laura Kickham,8 Dania Movia,8 Adriele Prina-Mello,5,8 Yuri Volkov5,8,9 1Royal Cornwall Hospital NHS Trust, Treliske, 2University of Exeter Medical School Cornwall, UK; 3University of Basel, Basel, Switzerland; 4School of Chemistry, 5Advanced Materials for BioEngineering Research Centre (AMBER, Trinity College Dublin, Dublin, Ireland; 6Lee Kong Chian School of Medicine, Nanyang Technological University, 7Bioprocessing Technology Institute, A*STAR Graduate Academy, Singapore; 8Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland; 9International Laboratory of Magnetically Controlled Nanosystems for Theranostics of Oncological and Cardiovascular Diseases, ITMO University, St. Petersburg, Russia Objective: The objective of the study was to determine whether the cadmium-derived materials induce intracellular protein citrullination. Methods: Human A549 lung epithelial cells were exposed to cadmium in soluble and nanoparticulate forms represented by cadmium chloride (CdCl2 and cadmium oxide (CdO, respectively, and their combinations with ultrafine carbon black (ufCB produced by high temperature combustion, imitating cigarette burning. Protein citrullination in cell lysates was analyzed by Western immunoblotting and verified by immunofluorescent confocal microscopy. Target citrullinated proteins were identified by proteomic analysis. Results: CdO, ufCB and its combination with CdCl2 and CdO after high temperature combustion induced protein citrullination in cultured human lung epithelial cells, as detected by immunoblotting with anti-citrullinated protein antibody. Cytokeratins of type II (1, 2, 5, 6A, 6B and 77 and type I (9, 10 were identified as major intracellular citrullination targets. Immunofluorescent staining confirmed the localization of citrullinated proteins both in the

  11. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  12. [X-ray diagnosis of malignant non-epithelial tumors of the lung].

    Science.gov (United States)

    Arablinskiĭ, V M; Efimova, O Iu; Trakhtenberg, A Kh; Frank, G A; Korenev, S V

    1991-01-01

    The paper is devoted to analysis of the investigation and treatment of 137 patients with histologically verified lung sarcoma. X-ray was the chief method of primary detection. A classification, singling out 3 types, was developed: peripheral (82.6%), central (16%) and disseminated (1.4%). The first one included nodular (76%) and pneumonia-like (6.6%) types of changes, the second one--endobronchial changes (11%), peribronchial (2.9%) and exobronchial nodular (2.1%) changes. The developed roentgenosemeiotics made it possible to diagnose malignancy in 72% of the patients, indicating its nonepithelial nature in 36%.

  13. Rac1 overexpression is correlated with epithelial mesenchymal transition and predicts poor prognosis in non-small cell lung cancer.

    Science.gov (United States)

    Zhou, Yujuan; Liao, Qianjin; Han, Yaqian; Chen, Jie; Liu, Zhigang; Ling, Hang; Zhang, Jing; Yang, Wenjuan; Oyang, Linda; Xia, Longzheng; Wang, Li; Wang, Heran; Xue, Lei; Wang, Hui; Hu, Bingqiang

    2016-01-01

    Objective: Ras-related C3 botulinum toxin substrate1(Rac1) and epithelial mesenchymal transition (EMT) are key therapeutic targets in cancer. We investigated the clinical significance of Rac1 and markers of EMT expression in non-small cell lung cancer (NSCLC), and their possible correlation with EMT phenotype. Methods: Immunohistochemistry was used to assess the expression of Rac1, Snail1, Twist1, N-cadherin (N-cad), Vimentin (Vim), and E-cadherin (E-cad) in 153 NSCLC paraffin-embedded specimens and 45 normal specimens adjacent to tumors. The correlation of Rac1 and EMT markers with clinicopathological characteristics and the relationship between the protein levels and progression-free survival (PFS) and overall survival (OS) were analyzed. Results: Compared with non-tumor tissues, the NSCLC tissues showed marked elevation in the levels of Rac1, Snail1, Twist1, N-cad, and Vim levels, whereas the E-cad levels were significantly decreased (P Rac1 and EMT markers was significantly associated with TNM stage and metastasis (P Rac1 may be associated with poor OS and PFS compared with low expression (PRac1, Snail1, Twist1, N-cad, Vim, and E-cad was an independent prognostic factor in NSCLC. Interestingly, Rac1 expression was positively correlated with Snail1, Twist1, N-cad, and Vim levels (r=0.563, r=0.440, r=0.247 r=0.536, PRac1, Twist, Snail1, Vim and N-cad were highly expressed in lung cancer patients resistant to radiotherapy, while E-cad was poorly expressed. Conclusion: Rac1 may promote NSCLC progression and metastasis via EMT, which may be considered as a potential therapeutic target.

  14. Gene expression dose-response changes in microarrays after exposure of human peripheral lung epithelial cells to nickel(II).

    Science.gov (United States)

    Cheng, Robert Y S; Zhao, Ailian; Alvord, W Gregory; Powell, Douglas A; Bare, Robert M; Masuda, Akira; Takahashi, Takashi; Anderson, Lucy M; Kasprzak, Kazimierz S

    2003-08-15

    Occupational exposure to nickel compounds is associated with lung cancer risk; both genotoxic and epigenetic mechanisms have been proposed. For comprehensive examination of the acute effects of nickel(II) acetate on gene expression in cultured human peripheral lung epithelial HPL1D cells, microarray analyses were carried out with cDNA chips (approximately 8000 cDNAs). Cells were exposed for 24 h to nontoxic (50, 100, and 200 microM) or toxic (400, 800, and 1600 microM) nickel(II) concentrations. Cluster analysis was applied to the 868 genes with > or = 2-fold change at any concentration. Two main clusters showed marked up- or down-regulation at the highest, toxic concentrations. The data further subdivided into 10 highly cohesive clusters with high probability, and of these only 2 had the same response trend at low nontoxic as at high concentrations, an observation of clear relevance to the process of high- to low-dose extrapolation in risk assessment. There were 113 genes showing > or = 2-fold change at the three lower nontoxic concentrations, those most relevant to in vivo carcinogenesis. In addition to expected responses of metallothionein, ferritin, and heat-shock proteins, the results revealed for the first time changed expression of some potential cancer-related genes in response to low-dose Ni(II): RhoA, dyskerin, interferon regulatory factor 1, RAD21 homologue, and tumor protein, translationally controlled. Overall, most of the genes impacted by nontoxic concentrations of nickel(II) acetate related to gene transcription, protein synthesis and stability, cytoskeleton, signaling, metabolism, cell membrane, and extracellular matrix.

  15. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    Science.gov (United States)

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Arctigenin represses TGF-β-induced epithelial mesenchymal transition in human lung cancer cells.

    Science.gov (United States)

    Xu, Yanrui; Lou, Zhiyuan; Lee, Seong-Ho

    2017-11-18

    Arctigenin (ARC) is a lignan that is abundant in Asteraceae plants, which show anti-inflammatory and anti-cancer activities. The current study investigated whether ARC affects cancer progression and metastasis, focusing on EMT using invasive human non-small cell lung cancer (NSCLC) cells. No toxicity was observed in the cells treated with different doses of ARC (12-100 μM). The treatment of ARC repressed TGF-β-stimulated changes of metastatic morphology and cell invasion and migration. ARC inhibited TGF-β-induced phosphorylation and transcriptional activity of smad2/3, and expression of snail. ARC also decreased expression of N-cadherin and increased expression of E-cadherin in dose-dependent and time-dependent manners. These changes were accompanied by decreased amount of phospho-smad2/3 in nucleus and nuclear translocation of smad2/3. Moreover, ARC repressed TGF-β-induced phosphorylation of ERK and transcriptional activity of β-catenin. Our data demonstrate anti-metastatic activity of ARC in lung cancer model. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Correlation of Hypoxia and Pro-senescence Protein Expression in Green Sea Turtle (Chelonia mydas Lung Epithelial and Dermal Fibroblast Cell Culture

    Directory of Open Access Journals (Sweden)

    Anggraini Barlian

    2018-03-01

    Full Text Available Recent studies have shown hypoxia-induced gene expression correlated with cellular senescence. HIF-1α (hypoxia-inducible factor 1-alpha, p53, and pRB were induced under hypoxia and correlated with cellular senescence. The localization and expression of HIF-1α, p53, and pRB in Chelonia mydas lung epithelial and dermal fibroblast cell cultures were analyzed under normoxic and hypoxic conditions (at 4 and 24 hours. Human dermal fibroblast was used for comparison purposes. Protein localization was analyzed with immunocytochemistry, while protein expression was analyzed with the Western blot and enhanced chemiluminescence (ECL method. HIF-1α, p53, and pRB were localized in the nuclei of the C. mydas cell cultures treated with hypoxia. The C. mydas lung epithelial cell cultures had a higher increase of HIF-1α expression than the human dermal fibroblast cell culture. The hypoxic conditions did not affect p53 expression significantly in C. mydas lung epithelial and dermal fibroblast cell cultures. Meanwhile, pRB expression changed significantly under hypoxia in the C. mydas dermal fibroblast cells. Expression of p53 and pRB in the human cell cultures was higher than in the C. mydas cell cultures. This research suggests that C. mydas and human cell cultures have different pro-senescence protein expression responses under hypoxic conditions.

  18. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Kumar, Sudhir; Siddiqui, Huma; Patil, Govil; Ashquin, Mohd; Ahmad, Iqbal

    2010-10-09

    Though, oxidative stress has been implicated in silica nanoparticles induced toxicity both in vitro and in vivo, but no similarities exist regarding dose-response relationship. This discrepancy may, partly, be due to associated impurities of trace metals that may present in varying amounts. Here, cytotoxicity and oxidative stress parameters of two sizes (10 nm and 80 nm) of pure silica nanoparticles was determined in human lung epithelial cells (A549 cells). Both sizes of silica nanoparticles induced dose-dependent cytotoxicity as measured by MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and lactate dehydrogenase (LDH) assays. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) generation, and membrane lipid peroxidation (LPO). However, both sizes of silica nanoparticles had little effect on intracellular glutathione (GSH) level and the activities of glutathione metabolizing enzymes; glutathione reductase (GR) and glutathione peroxidase (GPx). Buthionine-[S,R]-sulfoximine (BSO) plus silica nanoparticles did not result in significant GSH depletion than that caused by BSO alone nor N-acetyl cysteine (NAC) afforded significant protection from ROS and LPO induced by silica nanoparticles. The rather unaltered level of GSH is also supported by finding no appreciable alteration in the level of GR and GPx. Our data suggest that the silica nanoparticles exert toxicity in A549 cells through the oxidant generation (ROS and LPO) rather than the depletion of GSH. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Toxicity of engineered nanomaterials and their transformation products following wastewater treatment on A549 human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Yanjun Ma

    2014-01-01

    Full Text Available Here we characterize the toxicity of environmentally-relevant forms of engineered nanomaterials (ENMs, which can transform during wastewater treatment and persist in aqueous effluents and biosolids. In an aerosol exposure scenario, cytotoxicity and genotoxicity of effluents and biosolids from lab-scale sequencing batch reactors (SBRs to A549 human lung epithelial cells were examined. The SBRs were dosed with nanoAg, nano zero-valent iron (NZVI, nanoTiO2 and nanoCeO2 at sequentially increasing concentrations from 0.1 to 20 mg/L. Toxicities were compared to outputs from SBRs dosed with ionic/bulk analogs, undosed SBRs, and pristine ENMs. Pristine nanoAg and NZVI showed significant cytotoxicity to A549 cells in a dose-dependent manner from 1 to 67 μg/mL, while nanoTiO2 and nanoCeO2 only exerted cytotoxicity at 67 μg/mL. Only nanoAg induced a genotoxic response, at 9, 33 and 53 μg/mL. However, no significant cytotoxic or genotoxic effects of the SBR effluents or biosolids containing nanomaterials were observed.

  20. Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines

    Directory of Open Access Journals (Sweden)

    Kaski Samuel

    2007-03-01

    Full Text Available Abstract Background Asbestos has been shown to cause chromosomal damage and DNA aberrations. Exposure to asbestos causes many lung diseases e.g. asbestosis, malignant mesothelioma, and lung cancer, but the disease-related processes are still largely unknown. We exposed the human cell lines A549, Beas-2B and Met5A to crocidolite asbestos and determined time-dependent gene expression profiles by using Affymetrix arrays. The hybridization data was analyzed by using an algorithm specifically designed for clustering of short time series expression data. A canonical correlation analysis was applied to identify correlations between the cell lines, and a Gene Ontology analysis method for the identification of enriched, differentially expressed biological processes. Results We recognized a large number of previously known as well as new potential asbestos-associated genes and biological processes, and identified chromosomal regions enriched with genes potentially contributing to common responses to asbestos in these cell lines. These include genes such as the thioredoxin domain containing gene (TXNDC and the potential tumor suppressor, BCL2/adenovirus E1B 19kD-interacting protein gene (BNIP3L, GO-terms such as "positive regulation of I-kappaB kinase/NF-kappaB cascade" and "positive regulation of transcription, DNA-dependent", and chromosomal regions such as 2p22, 9p13, and 14q21. We present the complete data sets as Additional files. Conclusion This study identifies several interesting targets for further investigation in relation to asbestos-associated diseases.

  1. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    Science.gov (United States)

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells.

    Science.gov (United States)

    Gong, Yuanqi; Lan, Haibing; Yu, Zhihong; Wang, Meng; Wang, Shu; Chen, Yu; Rao, Haiwei; Li, Jingying; Sheng, Zhiyong; Shao, Jianghua

    2017-09-16

    Sepsis-related acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells resulting in acute hypoxemic respiratory failure. Recent studies indicated that anaerobic glycolysis play an important role in sepsis. However, whether inhibition of aerobic glycolysis exhibits beneficial effect on sepsis-induced ALI is not known. In vivo, a cecal ligation and puncture (CLP)-induced ALI mouse model was set up and mice treated with glycolytic inhibitor 3PO after CLP. The mice treated with the 3PO ameliorated the survival rate, histopathological changes, lung inflammation, lactate increased and lung apoptosis of mice with CLP-induced sepsis. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) resulted in cell apoptosis, inflammatory cytokine production, enhanced glycolytic flux and reactive oxygen species (ROS) increased. While these changes were attenuated by 3PO treatment. Sequentially, treatment of A549 cells with lactate caused cell apoptosis and enhancement of ROS. Pretreatment with N-acetylcysteine (NAC) significantly lowered LPS and lactate-induced the generation of ROS and cell apoptosis in A549 cells. Therefore, these results indicate that anaerobic glycolysis may be an important contributor in cell apoptosis of sepsis-related ALI. Moreover, LPS specifically induces apoptotic insults to A549 cell through lactate-mediated enhancement of ROS. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An imaging flow cytometry method to assess ricin trafficking in A549 human lung epithelial cells.

    Science.gov (United States)

    Jenner, Dominic; Chong, Damien; Walker, Nicola; Green, A Christopher

    2018-02-01

    The endocytosis and trafficking of ricin in mammalian cells is an important area of research for those producing ricin anti-toxins and other ricin therapeutics. Ricin trafficking is usually observed by fluorescence microscopy techniques. This gives good resolution and leads to a detailed understanding of the internal movement of ricin within cells. However, microscopy techniques are often hampered by complex analysis and quantification techniques, and the inability to look at ricin trafficking in large populations of cells. In these studies we have directly labelled ricin and assessed if its trafficking can be observed using Imaging Flow Cytometry (IFC) both to the cytoplasmic region of cells and specifically to the Golgi apparatus. Using IDEAS® data analysis software the specific fluorescence location of the ricin within the cells was analysed. Then, using cytoplasmic masking techniques to quantify the number of cells with endocytosed cytoplasmic ricin or cells with Golgi-associated ricin, kinetic endocytosis curves were generated. Here we present, to the authors' knowledge, the first example of using imaging flow cytometry for evaluating the subcellular transport of protein cargo, using the trafficking of ricin toxin in lung cells as a model. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung.

    Science.gov (United States)

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L

    2018-05-10

    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    Science.gov (United States)

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  6. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  7. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Diabate, Silvia; Plaumann, Diana; Uebel, Caroline; Weiss, Carsten [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen (Germany); Bergfeldt, Britta [Karlsruhe Institute of Technology, Institute of Technical Chemistry, Eggenstein-Leopoldshafen (Germany)

    2011-12-15

    Combustion-derived nanoparticles as constituents of ambient particulate matter have been shown to induce adverse health effects due to inhalation. However, the components inducing these effects as well as the biological mechanisms are still not fully understood. The fine fraction of fly ash particles collected from the electrostatic precipitator of a municipal solid waste incinerator was taken as an example for real particles with complex composition released into the atmosphere to study the mechanism of early biological responses of BEAS-2B human lung epithelial cells. The studies include the effects of the water-soluble and -insoluble fractions of the fly ash and the well-studied carbon black nanoparticles were used as a reference. Fly ash induced reactive oxygen species (ROS) and increased the total cellular glutathione (tGSH) content. Carbon black also induced ROS generation; however, in contrast to the fly ash, it decreased the intracellular tGSH. The fly ash-induced oxidative stress was correlated with induction of the anti-oxidant enzyme heme oxygenase-1 and increase of the redox-sensitive transcription factor Nrf2. Carbon black was not able to induce HO-1. ROS generation, tGSH increase and HO-1 induction were only induced by the insoluble fraction of the fly ash, not by the water-soluble fraction. ROS generation and HO-1 induction were markedly inhibited by pre-incubation of the cells with the anti-oxidant N-acetyl cysteine which confirmed the involvement of oxidative stress. Both effects were also reduced by the metal chelator deferoxamine indicating a contribution of bioavailable transition metals. In summary, both fly ash and carbon black induce ROS but only fly ash induced an increase of intracellular tGSH and HO-1 production. Bioavailable transition metals in the solid water-insoluble matrix of the fly ash mostly contribute to the effects. (orig.)

  8. Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells.

    Science.gov (United States)

    Patel, Eshan; Lynch, Christine; Ruff, Victoria; Reynolds, Mindy

    2012-02-01

    Nickel and cobalt are heavy metals found in land, water, and air that can enter the body primarily through the respiratory tract and accumulate to toxic levels. Nickel compounds are known to be carcinogenic to humans and animals, while cobalt compounds produce tumors in animals and are probably carcinogenic to humans. People working in industrial and manufacturing settings have an increased risk of exposure to these metals. The cytotoxicity of nickel and cobalt has individually been demonstrated; however, the underlying mechanisms of co-exposure to these heavy metals have not been explored. In this study, we investigated the effect of exposure of H460 human lung epithelial cells to nickel and cobalt, both alone and in combination, on cell survival, apoptotic mechanisms, and the generation of reactive oxygen species and double strand breaks. For simultaneous exposure, cells were exposed to a constant dose of 150 μM cobalt or nickel, which was found to be relatively nontoxic in single exposure experiments. We demonstrated that cells exposed simultaneously to cobalt and nickel exhibit a dose-dependent decrease in survival compared to the cells exposed to a single metal. The decrease in survival was the result of enhanced caspase 3 and 7 activation and cleavage of poly (ADP-ribose) polymerase. Co-exposure increased the production of ROS and the formation of double strand breaks. Pretreatment with N-acetyl cysteine alleviated the toxic responses. Collectively, this study demonstrates that co-exposure to cobalt and nickel is significantly more toxic than single exposure and that toxicity is related to the formation of ROS and DSB. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions

    Directory of Open Access Journals (Sweden)

    Kathleen eKilcullen

    2016-02-01

    Full Text Available Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1 and 14579 (BC2 in aerated and microaerobic (static cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO, and metabolic product(s such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid.

  10. Peroxisome proliferator-activated receptor-γ agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    International Nuclear Information System (INIS)

    Arnold, Ralf; Koenig, Wolfgang

    2006-01-01

    We have previously shown that peroxisome proliferator-activated receptor-γ (PPARγ) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPARγ agonists (15d-PGJ 2 , ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPARγ agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPARγ agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process

  11. Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue

    International Nuclear Information System (INIS)

    Schwab, Felix; Schleede, Simone; Hahn, Dieter

    2013-01-01

    Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF / CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all ROIs (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI. (orig.)

  12. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro.

    Science.gov (United States)

    Armstead, Andrea L; Arena, Christopher B; Li, Bingyun

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause "hard metal lung disease" but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells.

    Science.gov (United States)

    Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping

    2018-02-19

    The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    DEFF Research Database (Denmark)

    Poulsen, Sarah Søs; Jacobsen, Nicklas R.; Labib, Sarah

    2013-01-01

    in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models...

  15. Relative Efficacy of Uptake and Presentation of Mycobacterium bovis BCG Antigens by Type I Mouse Lung Epithelial Cells and Peritoneal Macrophages ▿

    Science.gov (United States)

    Kumari, Mandavi; Saxena, Rajiv K.

    2011-01-01

    Flow cytometric studies indicated that both peritoneal macrophages (PMs) and primary lung epithelial (PLE) cells isolated from mouse lungs could take up fluorescence-tagged Mycobacterium bovis BCG. BCG uptake in both cases was significantly inhibited by cytochalasin D, indicating active internalization of BCG by these cells. Confocal microscopy data further confirmed that BCG was internalized by PLE cells. BCG sonicate antigen (sBCG) had marked toxicity toward PMs but was relatively nontoxic to PLE cells. Accordingly, BCG sonicate antigen induced a significantly higher apoptotic and necrotic response in PMs compared to that in PLE cells. Both PMs and PLE cells exposed to BCG antigens and fixed thereafter could efficiently present antigens to purified BCG-sensitized T helper cells, as assessed by the release of interleukin-2 (IL-2) and gamma interferon (IFN-γ). If, however, PLE cells were fixed before exposure to BCG, antigen presentation was abrogated, indicating that the PLE cells may in some way process the BCG antigen. A comparison of efficacies of BCG-pulsed PLE cells and PMs to present antigen at various antigen-presenting cell (APC)/T cell ratios indicated that PMs had only marginally greater APC function than that of PLE cells. Staining with specific monoclonal antibodies indicated that the cultured PLE cells used for antigen presentation essentially comprised type I epithelial cells. Our results suggest that type I lung epithelial cells may present BCG antigens to sensitized T helper cells and that their performance as APCs is comparable with that of PMs. PMID:21646448

  16. Lipid raft facilitated ligation of K-α1-tubulin by specific antibodies on epithelial cells: Role in pathogenesis of chronic rejection following human lung transplantation

    International Nuclear Information System (INIS)

    Tiriveedhi, Venkataswarup; Angaswamy, Nataraju; Weber, Joseph; Mohanakumar, T.

    2010-01-01

    Research highlights: → Addition of KAT Abs (+) sera to NHBE culture causes upregulation of growth factors. → Cholesterol depletion causes down regulation of growth factor expression. → Cholesterol depletion is accompanied by loss of membrane bound caveolin. → Thus, we demonstrate lipid raft are critical for efficient ligation of the KAT Abs. -- Abstract: Long term function of human lung allografts is hindered by development of chronic rejection manifested as Bronchiolitis Obliterans Syndrome (BOS). We have previously identified the development of antibodies (Abs) following lung transplantation to K-α1-tubulin (KAT), an epithelial surface gap junction cytoskeletal protein, in patients who develop BOS. However, the biochemical and molecular basis of the interactions and signaling cascades mediated by KAT Abs are yet to be defined. In this report, we investigated the biophysical basis of the epithelial cell membrane surface interaction between KAT and its specific Abs. Towards this, we analyzed the role of the lipid raft-domains in the membrane interactions which lead to cell signaling and ultimately increased growth factor expression. Normal human bronchial epithelial (NHBE) cells, upon specific ligation with Abs to KAT obtained either from the serum of BOS(+) patients or monoclonal KAT Abs, resulted in upregulation of growth factors VEGF, PDGF, and bFGF (6.4 ± 1.1-, 3.2 ± 0.9-, and 3.4 ± 1.1-fold increase, respectively) all of which are important in the pathogenesis of BOS. To define the role for lipid raft in augmenting surface interactions, we analyzed the changes in the growth factor expression pattern upon depletion and enrichment with lipid raft following the ligation of the epithelial cell membranes with Abs specific for KAT. NHBE cells cultured in the presence of β-methyl cyclodextran (βMCD) had significantly reduced growth factor expression (1.3 ± 0.3, vs βMCD untreated being 6.4 ± 1.1-fold increase) upon stimulation with KAT Abs. Depletion

  17. Lipid raft facilitated ligation of K-{alpha}1-tubulin by specific antibodies on epithelial cells: Role in pathogenesis of chronic rejection following human lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Tiriveedhi, Venkataswarup; Angaswamy, Nataraju [Department of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (United States); Weber, Joseph [Department of Medicine, Washington University School of Medicine, St. Louis, MO (United States); Mohanakumar, T., E-mail: kumart@wustl.edu [Department of Surgery, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO (United States)

    2010-08-20

    Research highlights: {yields} Addition of KAT Abs (+) sera to NHBE culture causes upregulation of growth factors. {yields} Cholesterol depletion causes down regulation of growth factor expression. {yields} Cholesterol depletion is accompanied by loss of membrane bound caveolin. {yields} Thus, we demonstrate lipid raft are critical for efficient ligation of the KAT Abs. -- Abstract: Long term function of human lung allografts is hindered by development of chronic rejection manifested as Bronchiolitis Obliterans Syndrome (BOS). We have previously identified the development of antibodies (Abs) following lung transplantation to K-{alpha}1-tubulin (KAT), an epithelial surface gap junction cytoskeletal protein, in patients who develop BOS. However, the biochemical and molecular basis of the interactions and signaling cascades mediated by KAT Abs are yet to be defined. In this report, we investigated the biophysical basis of the epithelial cell membrane surface interaction between KAT and its specific Abs. Towards this, we analyzed the role of the lipid raft-domains in the membrane interactions which lead to cell signaling and ultimately increased growth factor expression. Normal human bronchial epithelial (NHBE) cells, upon specific ligation with Abs to KAT obtained either from the serum of BOS(+) patients or monoclonal KAT Abs, resulted in upregulation of growth factors VEGF, PDGF, and bFGF (6.4 {+-} 1.1-, 3.2 {+-} 0.9-, and 3.4 {+-} 1.1-fold increase, respectively) all of which are important in the pathogenesis of BOS. To define the role for lipid raft in augmenting surface interactions, we analyzed the changes in the growth factor expression pattern upon depletion and enrichment with lipid raft following the ligation of the epithelial cell membranes with Abs specific for KAT. NHBE cells cultured in the presence of {beta}-methyl cyclodextran ({beta}MCD) had significantly reduced growth factor expression (1.3 {+-} 0.3, vs {beta}MCD untreated being 6.4 {+-} 1.1-fold

  18. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    International Nuclear Information System (INIS)

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-01-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and β-naphthylamine (β-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H 2 O 2 or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  19. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  20. Evaluation of connectivity map-discovered celastrol as a radiosensitizing agent in a murine lung carcinoma model: Feasibility study of diffusion-weighted magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Hong Young Jun

    Full Text Available This study was designed to identify potential radiosensitizing (RS agents for combined radio- and chemotherapy in a murine model of human lung carcinoma, and to evaluate the in vivo effect of the RS agents using diffusion-weighted magnetic resonance imaging (DW-MRI. Radioresistance-associated genes in A549 and H460 cells were isolated on the basis of their gene expression profiles. Celastrol was selected as a candidate RS by using connectivity mapping, and its efficacy in lung cancer radiotherapy was tested. Mice inoculated with A549 carcinoma cells were treated with single ionizing radiation (SIR, single celastrol (SC, or celastrol-combined ionizing radiation (CCIR. Changes in radiosensitization over time were assessed using DW-MRI before and at 3, 6, and 12 days after therapy initiation. The tumors were stained with hematoxylin and eosin at 6 and 12 days after therapy. The percentage change in the apparent diffusion coefficient (ADC value in the CCIR group was significantly higher than that in the SC and SIR group on the 12th day (Mann-Whitney U-test, p = 0.05; Kruskal-Wallis test, p < 0.05. A significant correlation (Spearman's rho correlation coefficient of 0.713, p = 0.001 was observed between the mean percentage tumor necrotic area and the mean ADC values after therapy initiation. These results suggest that the novel radiosensitizing agent celastrol has therapeutic effects when combined with ionizing radiation (IR, thereby maximizing the therapeutic effect of radiation in non-small cell lung carcinoma. In addition, DW-MRI is a useful noninvasive tool to monitor the effects of RS agents by assessing cellularity changes and sequential therapeutic responses.

  1. c-Jun Proto-Oncoprotein Plays a Protective Role in Lung Epithelial Cells Exposed to Staphylococcal α-Toxin

    Directory of Open Access Journals (Sweden)

    Alejandro J. Moyano

    2018-05-01

    Full Text Available c-Jun is a member of the early mammalian transcriptional regulators belonging to the AP-1 family, which participates in a wide range of cellular processes such as proliferation, apoptosis, tumorigenesis, and differentiation. Despite its established role in cell survival upon stress, its participation in the stress response induced by bacterial infections has been poorly investigated. To study the potential role of c-Jun in this context we choose the widely studied α-toxin produced by Staphylococcus aureus, a pore-forming toxin that is a critical virulence factor in the pathogenesis of these bacteria. We analyzed the effect of α-toxin treatment in the activation, expression, and protein levels of c-Jun in A549 lung epithelial cells. Furthermore, we explored the role of c-Jun in the cellular fate after exposure to α-toxin. Our results show that staphylococcal α-toxin per se is able to activate c-Jun by inducing phosphorylation of its Serine 73 residue. Silencing of the JNK (c-Jun N-terminal Kinase signaling pathway abrogated most of this activation. On the contrary, silencing of the ERK (Extracellular Signal-Regulated Kinase pathway exacerbated this response. Intriguingly, while the exposure to α-toxin induced a marked increase in the levels of c-Jun transcripts, c-Jun protein levels noticeably decreased in the same time-frame as a consequence of active proteolytic degradation through the proteasome-dependent pathway. In addition, we established that c-Jun promoted cell survival when cells were challenged with α-toxin. Similarly, c-Jun phosphorylation was also induced in cells upon intoxication with the cytolysin produced by Vibrio cholerae in a JNK-dependent manner, suggesting that c-Jun-JNK axis would be a conserved responsive cellular pathway to pore-forming toxins. This study contributes to understanding the role of the multifaceted c-Jun proto-oncoprotein in cell response to bacterial pore-forming toxins, positioning it as a relevant

  2. Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells

    International Nuclear Information System (INIS)

    Patel, Eshan; Lynch, Christine; Ruff, Victoria; Reynolds, Mindy

    2012-01-01

    Nickel and cobalt are heavy metals found in land, water, and air that can enter the body primarily through the respiratory tract and accumulate to toxic levels. Nickel compounds are known to be carcinogenic to humans and animals, while cobalt compounds produce tumors in animals and are probably carcinogenic to humans. People working in industrial and manufacturing settings have an increased risk of exposure to these metals. The cytotoxicity of nickel and cobalt has individually been demonstrated; however, the underlying mechanisms of co-exposure to these heavy metals have not been explored. In this study, we investigated the effect of exposure of H460 human lung epithelial cells to nickel and cobalt, both alone and in combination, on cell survival, apoptotic mechanisms, and the generation of reactive oxygen species and double strand breaks. For simultaneous exposure, cells were exposed to a constant dose of 150 μM cobalt or nickel, which was found to be relatively nontoxic in single exposure experiments. We demonstrated that cells exposed simultaneously to cobalt and nickel exhibit a dose-dependent decrease in survival compared to the cells exposed to a single metal. The decrease in survival was the result of enhanced caspase 3 and 7 activation and cleavage of poly (ADP-ribose) polymerase. Co-exposure increased the production of ROS and the formation of double strand breaks. Pretreatment with N-acetyl cysteine alleviated the toxic responses. Collectively, this study demonstrates that co-exposure to cobalt and nickel is significantly more toxic than single exposure and that toxicity is related to the formation of ROS and DSB. -- Highlights: ► Decreased survival following simultaneous exposure to NiCl 2 and CoCl 2 . ► Enhanced caspase and PARP cleavage following co-exposure. ► Increased formation of ROS in dual exposed cells. ► N-acetyl cysteine pretreatment decreases Co and Ni toxicity. ► Co-exposure to Ni and Co enhances the formation of double strand

  3. Ethanol Decreases Inflammatory Response in Human Lung Epithelial Cells by Inhibiting the Canonical NF-kB-Pathway

    Directory of Open Access Journals (Sweden)

    Katharina Mörs

    2017-08-01

    Full Text Available Background/Aims: Alcohol (ethanol, EtOH as significant contributor to traumatic injury is linked to suppressed inflammatory response, thereby influencing clinical outcomes. Alcohol-induced immune-suppression during acute inflammation (trauma was linked to nuclear factor-kappaB (NF-ĸB. Here, we analyzed alcohol`s effects and mechanisms underlying its influence on NF-ĸB-signaling during acute inflammation in human lung epithelial cells. Methods: A549-cells were stimulated with interleukin (IL-1β, or sera from trauma patients (TP or healthy volunteers, with positive/negative blood alcohol concentrations (BAC, and subsequently exposed to EtOH (170 Mm, 1h. IL-6-release and neutrophil adhesion to A549 were analyzed. Specific siRNA-NIK mediated downregulation of non-canonical, and IKK-NBD-inhibition of canonical NF-ĸB signaling were performed. Nuclear levels of activated p50 and p52 NF-ĸB-subunits were detected using TransAm ELISA. Results: Both stimuli significantly induced IL-6-release (39.79±4.70 vs. 0.58±0.8 pg/ml and neutrophil adhesion (132.30±8.80 vs. 100% control, p<0.05 to A549-cells. EtOH significantly decreased IL-6-release (22.90±5.40, p<0.05 and neutrophil adherence vs. controls (105.40±14.5%, p<0.05. IL-1β-induced significant activation of canonical/p50 and non-canonical/p52 pathways. EtOH significantly reduced p50 (34.90±23.70 vs. 197.70±36.43, p<0.05 not p52 activation. Inhibition of canonical pathway was further increased by EtOH (less p50-activation, while p52 remained unaltered. Inhibition of non-canonical pathway was unchanged by EtOH. Conclusion: Here, alcohol`s anti-inflammatory effects are mediated via decreasing nuclear levels of activated p50-subunit and canonical NF-ĸB signaling pathway.

  4. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  5. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Rachael L Gerlach

    Full Text Available Replication, cell tropism and the magnitude of the host's antiviral immune response each contribute to the resulting pathogenicity of influenza A viruses (IAV in humans. In contrast to seasonal IAV in human cases, the 2009 H1N1 pandemic IAV (H1N1pdm shows a greater tropism for infection of the lung similar to H5N1. We hypothesized that host responses during infection of well-differentiated, primary human bronchial epithelial cells (wd-NHBE may differ between seasonal (H1N1 A/BN/59/07 and H1N1pdm isolates from a fatal (A/KY/180/10 and nonfatal (A/KY/136/09 case. For each virus, the level of infectious virus and host response to infection (gene expression and apical/basal cytokine/chemokine profiles were measured in wd-NHBE at 8, 24, 36, 48 and 72 hours post-infection (hpi. At 24 and 36 hpi, KY/180 showed a significant, ten-fold higher titer as compared to the other two isolates. Apical cytokine/chemokine levels of IL-6, IL-8 and GRO were similar in wd-NHBE cells infected by each of these viruses. At 24 and 36 hpi, NHBE cells had greater levels of pro-inflammatory cytokines including IFN-α, CCL2, TNF-α, and CCL5, when infected by pandemic viruses as compared with seasonal. Polarization of IL-6 in wd-NHBE cells was greatest at 36 hpi for all isolates. Differential polarized secretion was suggested for CCL5 across isolates. Despite differences in viral titer across isolates, no significant differences were observed in KY/180 and KY/136 gene expression intensity profiles. Microarray profiles of wd-NHBE cells diverged at 36 hpi with 1647 genes commonly shared by wd-NHBE cells infected by pandemic, but not seasonal isolates. Significant differences were observed in cytokine signaling, apoptosis, and cytoskeletal arrangement pathways. Our studies revealed differences in temporal dynamics and basal levels of cytokine/chemokine responses of wd-NHBE cells infected with each isolate; however, wd-NHBE cell gene intensity profiles were not significantly

  6. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    International Nuclear Information System (INIS)

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-01

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H 2 O 2 ) and superoxide dismutase 2 (SOD2, antioxidant against O 2 ·− ) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The

  7. Ethanol Decreases Inflammatory Response in Human Lung Epithelial Cells by Inhibiting the Canonical NF-kB-Pathway.

    Science.gov (United States)

    Mörs, Katharina; Hörauf, Jason-Alexander; Kany, Shinwan; Wagner, Nils; Sturm, Ramona; Woschek, Mathias; Perl, Mario; Marzi, Ingo; Relja, Borna

    2017-01-01

    Alcohol (ethanol, EtOH) as significant contributor to traumatic injury is linked to suppressed inflammatory response, thereby influencing clinical outcomes. Alcohol-induced immune-suppression during acute inflammation (trauma) was linked to nuclear factor-kappaB (NF-ĸB). Here, we analyzed alcohol`s effects and mechanisms underlying its influence on NF-ĸB-signaling during acute inflammation in human lung epithelial cells. A549-cells were stimulated with interleukin (IL)-1β, or sera from trauma patients (TP) or healthy volunteers, with positive/negative blood alcohol concentrations (BAC), and subsequently exposed to EtOH (170 Mm, 1h). IL-6-release and neutrophil adhesion to A549 were analyzed. Specific siRNA-NIK mediated downregulation of non-canonical, and IKK-NBD-inhibition of canonical NF-ĸB signaling were performed. Nuclear levels of activated p50 and p52 NF-ĸB-subunits were detected using TransAm ELISA. Both stimuli significantly induced IL-6-release (39.79±4.70 vs. 0.58±0.8 pg/ml) and neutrophil adhesion (132.30±8.80 vs. 100% control, p<0.05) to A549-cells. EtOH significantly decreased IL-6-release (22.90±5.40, p<0.05) and neutrophil adherence vs. controls (105.40±14.5%, p<0.05). IL-1β-induced significant activation of canonical/p50 and non-canonical/p52 pathways. EtOH significantly reduced p50 (34.90±23.70 vs. 197.70±36.43, p<0.05) not p52 activation. Inhibition of canonical pathway was further increased by EtOH (less p50-activation), while p52 remained unaltered. Inhibition of non-canonical pathway was unchanged by EtOH. Here, alcohol`s anti-inflammatory effects are mediated via decreasing nuclear levels of activated p50-subunit and canonical NF-ĸB signaling pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  9. Propolin C Inhibited Migration and Invasion via Suppression of EGFR-Mediated Epithelial-to-Mesenchymal Transition in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jih-Tung Pai

    2018-01-01

    Full Text Available Controlling lung cancer cell migration and invasion via epithelial-to-mesenchymal transition (EMT through the regulation of epidermal growth factor receptor (EGFR signaling pathway has been demonstrated. Searching biological active phytochemicals to repress EGFR-regulated EMT might prevent lung cancer progression. Propolis has been used as folk medicine in many countries and possesses anti-inflammatory, antioxidant, and anticancer activities. In this study, the antimigration and anti-invasion activities of propolin C, a c-prenylflavanone from Taiwanese propolis, were investigated on EGFR-regulated EMT signaling pathway. Cell migration and invasion activities were dose-dependently suppressed by noncytotoxic concentration of propolin C. Downregulations of vimentin and snail as well as upregulation of E-cadherin expressions were through the inhibition of EGFR-mediated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt and extracellular signal-regulated kinase (ERK signaling pathway in propolin C-treated cells. In addition, EGF-induced migration and invasion were suppressed by propolin C-treated A549 lung cancer cells. No significant differences in E-cadherin expression were observed in EGF-stimulated cells. Interestingly, EGF-induced expressions of vimentin, snail, and slug were suppressed through the inhibition of PI3K/Akt and ERK signaling pathway in propolin C-treated cells. Inhibition of cell migration and invasion by propolin C was through the inhibition of EGF/EGFR-mediated signaling pathway, followed by EMT suppression in lung cancer.

  10. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment.

    Science.gov (United States)

    Maza, Paloma K; Suzuki, Erika

    2016-01-01

    Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation.

  11. Vasodilatory effect of the stable vasoactive intestinal peptide analog RO 25-1553 in murine and rat lungs.

    Directory of Open Access Journals (Sweden)

    Jun Yin

    Full Text Available Stable analogs of vasoactive intestinal peptide (VIP have been proposed as novel line of therapy in chronic obstructive pulmonary disease (COPD based on their bronchodilatory and anti-inflammatory effects. We speculated that VIP analogs may provide additional benefits in that they exert vasodilatory properties in the lung, and tested this hypothesis in both ex vivo and in vivo models.In isolated perfused mouse lungs and in an in vivo rat model, pulmonary blood vessels were preconstricted by hypoxia and hemodynamic changes in response to systemic (ex vivo or inhaled (in vivo administration of the cyclic VIP analog RO 25-1553 were determined.In mouse lungs, RO 25-1553 reduced intrinsic vascular resistance at normoxia, and attenuated the increase in pulmonary artery pressure in response to acute hypoxia. Consistently, inhalation of RO 25-1553 (1 mg · mL(-1 for 3 min caused an extensive and sustained (> 60 min inhibition of the pulmonary arterial pressure increase in response to hypoxia in vivo that was comparable to the effects of inhaled sildenafil. This effect was not attributable to systemic cardiovascular effects of RO 25-1553, but to a lung specific reduction in pulmonary vascular resistance, while cardiac output and systemic arterial hemodynamics remained unaffected. No adverse effects of RO 25-1553 inhalation on pulmonary gas exchange, ventilation-perfusion matching, or lung fluid content were detected.Our findings demonstrate that inhaled delivery of the stable VIP analog RO 25-1553 induces a potent and sustained vasodilatory effect in the pulmonary circulation with no detectable adverse effects. Therapeutic inhalation of RO 25-1553 may provide vascular benefits in addition to its reported anti-inflammatory and bronchodilatory effects in COPD, yet caution is warranted given the overall poor results of vasodilator therapies for pulmonary hypertension secondary to COPD in a series of recent clinical trials.

  12. Resolvin E1 (RX-10001) reduces corneal epithelial barrier disruption and protects against goblet cell loss in a murine model of dry eye.

    Science.gov (United States)

    de Paiva, Cintia S; Schwartz, C Eric; Gjörstrup, Per; Pflugfelder, Stephen C

    2012-11-01

    Resolvin E1 (RvE1; RX-10001) belongs to a new class of endogenous immunoregulating mediators, originally identified as a metabolite of the omega-3 polyunsaturated fatty acid, eicosapentaenoic acid. Based on its proven efficacy in models of chronic inflammation, this study investigated the efficacy of resolvin E1 in a murine model of dry eye. C57/B6 mice, aged 6 to 8 weeks, were treated with systemic scopolamine and exposed to air draft and low humidity for 16 hours/day for 5 days and allocated to the following groups: unexposed controls, disease controls, treatment with vehicle or RvE1 delivered topically as its methyl ester prodrug, RX-10005, to enhance corneal surface penetration. Treatment was initiated at the time of desiccating stress induction. Treatment efficacy was assessed by corneal permeability using Oregon Green Dextran and by conjunctival goblet cell density using periodic acid-Schiff reagent. RvE1 reduced the increase in corneal staining by 80% compared with untreated disease controls. Goblet cell density was reduced by 20% in disease controls but fully maintained in the group receiving RvE1. RvE1, delivered as its methyl ester prodrug, improved the outcome measures of corneal staining and goblet cell density in this murine model of dry eye, indicating the potential utility of endogenous resolvins and resolvin analogues in the treatment of dry eye.

  13. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  14. Lung fibroblasts may play an important role in clearing apoptotic bodies of bronchial epithelial cells generated by exposure to PHMG-P-containing solution.

    Science.gov (United States)

    Park, Eun-Jung; Park, Sung-Jin; Kim, Sanghwa; Lee, Kyuhong; Chang, Jaerak

    2018-04-01

    Polyhexamethylene guanidine (PHMG) has been widely used in the industry owing to its excellent biocidal, anti-corrosive, and anti-biofouling properties. In Korea, consumers exposed to PHMG-phosphate (PHMG-P)-containing humidifier disinfectant have begun to suffer from fibrotic lung injury-related symptoms for unknown reasons. However, no appropriate treatment has yet been found because the detail toxic mechanism has not been identified. Herein, we first studied the toxic mechanism of PHMG-P-containing solution using human normal bronchial epithelial cells (BEAS-2B cells). When exposed for 24 h, PHMG-P-containing solution rapidly decreased cell viability from around 6 h after exposure and significantly increased of the phosphatidylserine exposure and the LDH release. At 6 h of exposure, the material contained in the solution was found to be bound to the cell membrane and the inner wall of vacuoles, and damaged the cell membrane and organelles. In addition, a significant increase of IFN-γ was observed among cytokines, the expression of apoptosis-, autophagy-, and membrane and DNA damage-related proteins was also enhanced. Meanwhile, the level of intracellular ROS and the secretion of IL-8 and CXCL-1, which are chemokines for professional phagocytes, decreased. Thus, we treated dead BEAS-2B cells to lung fibroblasts (HFL-1), non-professional phagocytes, and then we observed that the dead cells rapidly attached to HFL-1 cells and were taken up. Additionally, increased secretion of IL-8 and CXCL-1 was observed in the cells. Based on these results, we suggest that pulmonary exposure to PHMG-P induces apoptosis of bronchial epithelial cells and lung fibroblasts might play an important role in the clearance of the apoptotic debris. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. RNA interference targeting carbohydrate sulfotransferase 3 diminishes macrophage accumulation, inhibits MMP-9 expression and promotes lung recovery in murine pulmonary emphysema.

    Science.gov (United States)

    Kai, Yoshiro; Tomoda, Koichi; Yoneyama, Hiroyuki; Yoshikawa, Masanori; Kimura, Hiroshi

    2015-12-09

    Chondroitin sulfate proteoglycans are an important mediators in inflammation and leukocyte trafficking. However, their roles in pulmonary emphysema have not been explored. In a murine model of elastase-induced pulmonary emphysema, we found increased carbohydrate sulfotransferase 3 (CHST3), a specific enzyme that synthesizes chondroitin 6-sulfate proteoglycan (C6SPG). To elucidate the role of C6SPG, we investigated the effect of small interfering RNA (siRNA) targeting CHST3 that inhibits C6SPG-synthesis on the pathogenesis of pulmonary emphysema. Mice were intraperitoneally injected with CHST3 siRNA or negative control siRNA on day0 and 7 after intratracheal instillation of elastase. Histology, respiratory function, glycosaminoglycans (GAGs) content, bronchoalveolar lavage (BAL), elastin staining and gene expressions of tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)-9 mRNA were evaluated on day7 and/or day21. CHST3 mRNA increased at day 7 and decreased thereafter in lung. CHST3 siRNA successfully inhibited the expression of CHST3 mRNA throughout the study and this was associated with significant reduction of GAGs and C6SPG. Airway destruction and respiratory function were improved by the treatment with CHST3 siRNA. CHST3 siRNA reduced the number of macrophages both in BAL and lung parenchyma and also suppressed the increased expressions of TNF-α and MMP-9 mRNA. Futhermore, CHST3 siRNA improved the reduction of the elastin in the alveolar walls. CHST3 siRNA diminishes accumulation of excessive macrophages and the mediators, leading to accelerate the functional recovery from airway damage by repair of the elastin network associated with pulmonary emphysema.

  16. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1 in mouse lung type II epithelial cells.

    Directory of Open Access Journals (Sweden)

    Nisha Antony

    Full Text Available Cyclic AMP Response Element-Binding Protein 1 (Creb1 is a transcription factor that mediates cyclic adenosine 3', 5'-monophosphate (cAMP signalling in many tissues. Creb1(-/- mice die at birth due to respiratory failure and previous genome-wide microarray analysis of E17.5 Creb1(-/- fetal mouse lung identified important Creb1-regulated gene targets during lung development. The lipogenic enzymes stearoyl-CoA desaturase 1 (Scd1 and fatty acid synthase (Fasn showed highly reduced gene expression in Creb1(-/- lungs. We therefore hypothesized that Creb1 plays a crucial role in the transcriptional regulation of genes involved in pulmonary lipid biosynthetic pathways during lung development. In this study we confirmed that Scd1 and Fasn mRNA levels were down regulated in the E17.5 Creb1(-/- mouse lung while the lipogenic-associated transcription factors SrebpF1, C/ebpα and Pparγ were increased. In vivo studies using germline (Creb1(-/- and lung epithelial-specific (Creb1(EpiΔ/Δ Creb1 knockout mice showed strongly reduced Scd1, but not Fasn gene expression and protein levels in lung epithelial cells. In vitro studies using mouse MLE-15 epithelial cells showed that forskolin-mediated activation of Creb1 increased both Scd1 gene expression and protein synthesis. Additionally, MLE15 cells transfected with a dominant-negative ACreb vector blocked forskolin-mediated stimulation of Scd1 gene expression. Lipid profiling in MLE15 cells showed that dominant-negative ACreb suppressed forskolin-induced desaturation of ether linked lipids to produce plasmalogens, as well as levels of phosphatidylethanolamine, ceramide and lysophosphatidylcholine. Taken together these results demonstrate that Creb1 is essential for the induction and maintenance of Scd1 in developing fetal mouse lung epithelial cells.

  17. Evaluation of serum and pleural levels of endostatin and vascular epithelial growth factor in lung cancer patients with pleural effusion.

    Science.gov (United States)

    Zhang, Yu; Yu, Li-Ke; Xia, Ning

    2012-03-01

    To evaluate the diagnostic value of endostatin (ES), vascular endothelial growth factor (VEGF) and carcinoembryonic antigen (CEA) in both serum and pleural effusion of lung cancer patients. Levels of ES, VEGF and CEA in 52 malignant pleural effusion due to lung cancer and 50 patients with non-malignant disease were measured by using sandwich enzyme-linked immunosorbent assay and microparticle enzyme immunoassay. The ES, VEGF and CEA levels in pleural effusion and serum, and their ratio (F/S) were higher in lung cancer group than that in benign group, and the differences were statistically significant (Ppleural effusion due to lung cancer. In comparison with either single determination of concentration in serum or pleural fluid, the combined detection of two or three markers is of important clinical significance in the diagnosis of lung cancer. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury.

    Science.gov (United States)

    El Agha, Elie; Bellusci, Saverio

    2014-01-01

    Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.

  19. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury

    Directory of Open Access Journals (Sweden)

    Elie El Agha

    2014-01-01

    Full Text Available Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.

  20. The Replacement of five Consecutive Amino Acids in the Cyt1A Protein of Bacillus thuringiensis Enhances its Cytotoxic Activity against Lung Epithelial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kavita Nair

    2018-03-01

    Full Text Available Cyt1A protein is a cytolytic protein encoded by the cyt gene of Bacillus thuringiensis subsp. israelensis (Bti as part of the parasporal crystal proteins produced during the sporulation. Cyt1A protein is unique compared to the other endotoxins present in these parasporal crystals. Unlike δ-endotoxins, Cyt1A protein does not require receptors to bind to the target cell and activate the toxicity. It has the ability to affect a broad range of cell types and organisms, due to this characteristic. Cyt1A has been recognized to not only target the insect cells directly, but also recruit other endotoxins by acting as receptors. Due to these mode of actions, Cyt1A has been studied for its cytolytic activity against human cancer cell lines, although not extensively. In this study, we report a novel Cyt1A protein produced by a Bti strain QBT229 isolated from Qatar. When tested for its cytotoxicity against lung cancer cells, this local strain showed considerably higher activity compared to that of the reference Bti and other strains tested. The possible reasons for such enhanced activity were explored at the gene and protein levels. It was evidenced that five consecutive amino acid replacements in the β8 sheet of the Cyt1A protein enhanced the cytotoxicity against the lung epithelial cancer cells. Such novel Cyt1A protein with high cytotoxicity against lung cancer cells has been characterized and reported through this study.

  1. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs

    Energy Technology Data Exchange (ETDEWEB)

    He, Miao, E-mail: hemiao@mail.cmu.edu.cn [Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122 (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Kobayashi, Makoto [Department of Respiratory Medicine, Kanazawa Medical University, Ishikawa 920-0293 (Japan); Arashidani, Keiichi [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555 (Japan); Yoshida, Seiichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Nishikawa, Masataka [Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki 305-8506 (Japan); Takano, Hirohisa [Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530 (Japan); Sun, Guifan [Environment and Non-communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122 (China); Shibamoto, Takayuki [Department of Environmental Toxicology, University of California, Davis, CA 95616 (United States)

    2016-04-15

    The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples—urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan—on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of β-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/c mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80{sup +} CD11b{sup +} cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80{sup +} CD11b{sup +} cells (M2 macrophages) in lung tissue was higher in the OVA + ASD-PM2.5 treated mice than in the OVA + U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (β-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. - Highlights: • The aggravating effects of urban-PM2.5 and desert-PM2.5 on lung eosinophilia were compared.

  2. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs

    International Nuclear Information System (INIS)

    He, Miao; Ichinose, Takamichi; Kobayashi, Makoto; Arashidani, Keiichi; Yoshida, Seiichi; Nishikawa, Masataka; Takano, Hirohisa; Sun, Guifan; Shibamoto, Takayuki

    2016-01-01

    The biological and chemical natures of materials adsorbed onto fine particulate matter (PM2.5) vary by origin and passage routes. The exacerbating effects of the two samples—urban PM2.5 (U-PM2.5) collected during the hazy weather in a Chinese city and fine particles (ASD-PM2.5) collected during Asian sand dust (ASD) storm event days in Japan—on murine lung eosinophilia were compared to clarify the role of toxic materials in PM2.5. The amounts of β-glucan and mineral components were higher in ASD-PM2.5 than in U-PM2.5. On the other hand, organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), were higher in U-PM2.5 than in ASD-PM2.5. When BALB/c mice were intratracheally instilled with U-PM2.5 and ASD-PM2.5 (total 0.4 mg/mouse) with or without ovalbumin (OVA), various biological effects were observed, including enhancement of eosinophil recruitment induced by OVA in the submucosa of the airway, goblet cell proliferation in the bronchial epithelium, synergic increase of OVA-induced eosinophil-relevant cytokines and a chemokine in bronchoalveolar lavage fluid, and increase of serum OVA-specific IgG1 and IgE. Data demonstrate that U-PM2.5 and ASD-PM2.5 induced allergic inflammatory changes and caused lung pathology. U-PM2.5 and ASD-PM2.5 increased F4/80 + CD11b + cells, indicating that an influx of inflammatory and exudative macrophages in lung tissue had occurred. The ratio of CD206 positive F4/80 + CD11b + cells (M2 macrophages) in lung tissue was higher in the OVA + ASD-PM2.5 treated mice than in the OVA + U-PM2.5 treated mice. These results suggest that the lung eosinophilia exacerbated by both PM2.5 is due to activation of a Th2-associated immune response along with induced M2 macrophages and the exacerbating effect is greater in microbial element (β-glucan)-rich ASD-PM2.5 than in organic chemical-rich U-PM2.5. - Highlights: • The aggravating effects of urban-PM2.5 and desert-PM2.5 on lung eosinophilia were compared. • Both PM2.5 enhanced

  3. Protective effect of Galectin-9 in murine model of lung emphysema: Involvement of neutrophil migration and MMP-9 production

    Science.gov (United States)

    Horio, Yuko; Ichiyasu, Hidenori; Kojima, Keisuke; Saita, Naoki; Migiyama, Yohei; Iriki, Toyohisa; Fujii, Kazuhiko; Niki, Toshiro; Hirashima, Mitsuomi; Kohrogi, Hirotsugu

    2017-01-01

    Purpose Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and pulmonary emphysema. Persistent inflammation and remodeling of the lungs and airways result in reduced lung function and a lower quality of life. Galectin (Gal)-9 plays a crucial role as an immune modulator in various diseases. However, its role in the pathogenesis of pulmonary emphysema is unknown. This study investigates whether Gal-9 is involved in pulmonary inflammation and changes in emphysema in a porcine pancreatic elastase (PPE)-induced emphysema model. Materials and methods Gal-9 was administered to mice subcutaneously once daily from 1 day before PPE instillation to day 5. During the development of emphysema, lung tissue and bronchoalveolar lavage fluid (BALF) were collected. Histological and cytological findings, concentrations of chemokines and matrix metalloproteinases (MMPs) in the BALF, and the influence of Gal-9 treatment on neutrophils were analyzed. Results Gal-9 suppressed the pathological changes of PPE-induced emphysema. The mean linear intercept (Lm) of Gal-9-treated emphysema mice was significantly lower than that of PBS-treated emphysema mice (66.1 ± 3.3 μm vs. 118.8 ± 14.8 μm, respectively; p emphysema progressed significantly compared with that in wild–type (WT) mice (108.7 ± 6.58 μm vs. 77.19 ± 6.97 μm, respectively; p emphysema by inhibiting the infiltration of neutrophils and decreasing MMPs levels. Exogenous Gal-9 could be a potential therapeutic agent for COPD. PMID:28704475

  4. Lung disease phenotypes caused by overexpression of combinations of α-, β-, and γ-subunits of the epithelial sodium channel in mouse airways.

    Science.gov (United States)

    Livraghi-Butrico, Alessandra; Wilkinson, Kristen J; Volmer, Allison S; Gilmore, Rodney C; Rogers, Troy D; Caldwell, Ray A; Burns, Kimberlie A; Esther, Charles R; Mall, Marcus A; Boucher, Richard C; O'Neal, Wanda K; Grubb, Barbara R

    2018-02-01

    The epithelial Na + channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, β, and γ, which are differentially expressed (α > β > γ). Airway-targeted overexpression of the β subunit results in Na + hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na + hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na + transport and disease severity exceeding that of βENaC-Tg mice, we generated double (αβ, αγ, βγ) and triple (αβγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double βγENaC-Tg mice exhibited airway Na + absorption greater than that of βENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αβENaC-Tg mice exhibited Na + transport rates comparable to those of βENaC-Tg littermates. However, αβENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αβγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of βENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of β- and γENaC had additive effects on Na + transport and disease severity, suggesting dose dependency of these two variables.

  5. DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Møller, Peter

    2008-01-01

    ABSTRACT: BACKGROUND: Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM), such as SRM1650 and SRM2975, is advantageous because experiments...... collected at a traffic intensive road in Copenhagen, Denmark. RESULTS: All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase...... of cytotoxicity (as lactate dehydrogenase release) and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA, which might...

  6. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells

    International Nuclear Information System (INIS)

    Hansen, Tanja; Seidel, Albrecht; Borlak, Juergen

    2007-01-01

    The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca 2+ and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer

  7. Tumor cell heterogeneity in Small Cell Lung Cancer (SCLC: phenotypical and functional differences associated with Epithelial-Mesenchymal Transition (EMT and DNA methylation changes.

    Directory of Open Access Journals (Sweden)

    Alexander Krohn

    Full Text Available Small Cell Lung Cancer (SCLC is a specific subtype of lung cancer presenting as highly metastatic disease with extremely poor prognosis. Despite responding initially well to chemo- or radiotherapy, SCLC almost invariably relapses and develops resistance to chemotherapy. This is suspected to be related to tumor cell subpopulations with different characteristics resembling stem cells. Epithelial-Mesenchymal Transition (EMT is known to play a key role in metastatic processes and in developing drug resistance. This is also true for NSCLC, but there is very little information on EMT processes in SCLC so far. SCLC, in contrast to NSCLC cell lines, grow mainly in floating cell clusters and a minor part as adherent cells. We compared these morphologically different subpopulations of SCLC cell lines for EMT and epigenetic features, detecting significant differences in the adherent subpopulations with high levels of mesenchymal markers such as Vimentin and Fibronectin and very low levels of epithelial markers like E-cadherin and Zona Occludens 1. In addition, expression of EMT-related transcription factors such as Snail/Snai1, Slug/Snai2, and Zeb1, DNA methylation patterns of the EMT hallmark genes, functional responses like migration, invasion, matrix metalloproteases secretion, and resistance to chemotherapeutic drug treatment all differed significantly between the sublines. This phenotypic variability might reflect tumor cell heterogeneity and EMT during metastasis in vivo, accompanied by the development of refractory disease in relapse. We propose that epigenetic regulation plays a key role during phenotypical and functional changes in tumor cells and might therefore provide new treatment options for SCLC patients.

  8. The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells.

    Science.gov (United States)

    Rahman, Md Mostafizur; Prünte, Laura; Lebender, Leonard F; Patel, Brijeshkumar S; Gelissen, Ingrid; Hansbro, Philip M; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2016-11-16

    Protein phosphatase 2A (PP2A) activity can be enhanced pharmacologically by PP2A-activating drugs (PADs). The sphingosine analog FTY720 is the best known PAD and we have shown that FTY720 represses production of pro-inflammatory cytokines responsible for respiratory disease pathogenesis. Whether its phosphorylated form, FTY720-P, also enhances PP2A activity independently of the sphingosine 1-phosphate (S1P) pathway was unknown. Herein, we show that FTY720-P enhances TNF-induced PP2A phosphatase activity and significantly represses TNF-induced interleukin 6 (IL-6) and IL-8 mRNA expression and protein secretion from A549 lung epithelial cells. Comparing FTY720 and FTY720-P with S1P, we show that unlike S1P, the sphingosine analogs do not induce cytokine production on their own. In fact, FTY720 and FTY720-P significantly repress S1P-induced IL-6 and IL-8 production. We then examined their impact on expression of cyclooxygenase 2 (COX-2) and resultant prostaglandin E 2 (PGE 2) production. S1P did not increase production of this pro-inflammatory enzyme because COX-2 mRNA gene expression is NF-κB-dependent, and unlike TNF, S1P did not activate NF-κB. However, TNF-induced COX-2 mRNA expression and PGE 2 secretion is repressed by FTY720 and FTY720-P. Hence, FTY720-P enhances PP2A activity and that PADs can repress production of pro-inflammatory cytokines and enzymes in A549 lung epithelial cells in a manner devoid of S1P agonism.

  9. Diesel exhaust particles increase IL-1β-induced human β-defensin expression via NF-κB-mediated pathway in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Lee Chun

    2006-05-01

    Full Text Available Abstract Background Human β-defensin (hBD-2, antimicrobial peptide primarily induced in epithelial cells, is a key factor in the innate immune response of the respiratory tract. Several studies showed increased defensin levels in both inflammatory lung diseases, such as cystic fibrosis, diffuse panbronchiolitis, idiopathic pulmonary fibrosis and acute respiratory distress syndrome, and infectious diseases. Recently, epidemiologic studies have demonstrated acute and serious adverse effects of particulate air pollution on respiratory health, especially in people with pre-existing inflammatory lung disease. To elucidate the effect of diesel exhaust particles (DEP on pulmonary innate immune response, we investigated the hBD-2 and interleukin-8 (IL-8 expression to DEP exposure in interleukin-1 beta (IL-1β-stimulated A549 cells. Results IL-1β markedly up-regulated the hBD-2 promoter activity, and the subsequent DEP exposure increased dose-dependently the expression of hBD-2 and inflammatory cytokine IL-8 at the transcriptional level. In addition, DEP further induced the NF-κB activation in IL-1β-stimulated A549 cells more rapidly than in unstimulated control cells, which was showed by nuclear translocation of p65 NF-κB and degradation of IκB-α. The experiment using two NF-κB inhibitors, PDTC and MG132, confirmed that this increase of hBD-2 expression following DEP exposure was regulated through NF-κB-mediated pathway. Conclusion These results demonstrated that DEP exposure increases the expression of antimicrobial peptide and inflammatory cytokine at the transcriptional level in IL-1β-primed A549 epithelial cells and suggested that the increase is mediated at least partially through NF-κB activation. Therefore, DEP exposure may contribute to enhance the airway-responsiveness especially on the patients suffering from chronic respiratory disease.

  10. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease

    Directory of Open Access Journals (Sweden)

    Joana Neves

    2017-06-01

    Full Text Available Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1C326S, increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder.

  11. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    Science.gov (United States)

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  12. {sup 89}Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    England, Christopher G.; Ehlerding, Emily B.; Ellison, Paul A.; Hernandez, Reinier; Barnhart, Todd E. [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); Jiang, Dawei [Health Science Center, Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangzhou (China); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); Rekoske, Brian T. [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); McNeel, Douglas G. [University of Wisconsin - Madison, Department of Medicine, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States); Huang, Peng [Health Science Center, Shenzhen University, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangzhou (China); Cai, Weibo [University of Wisconsin - Madison, Department of Medical Physics, Madison, WI (United States); University of Wisconsin - Madison, Department of Radiology, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2018-01-15

    Nivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes. {sup 89}Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 ({sup 89}Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations. The tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of {sup 89}Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis. These data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification. (orig.)

  13. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection

    Science.gov (United States)

    Fernández, Andrea G.; Bonetto, Josefina; Giambartolomei, Guillermo H.; Fossati, Carlos A.; Baldi, Pablo C.

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site. PMID:26448160

  14. 8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Cell culture and murine model

    Energy Technology Data Exchange (ETDEWEB)

    Ryck, Tine de; Impe, Annouchka van; Bracke, Marc E. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Vanhoecke, Barbara W. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Ghent University, Laboratory of Microbial Ecology and Technology (LabMET), Ghent (Belgium); Heyerick, Arne [Ghent University, Laboratory of Pharmacognosy and Phytochemistry, Ghent (Belgium); Vakaet, Luc; Neve, Wilfried de [Ghent University Hospital, Department of Radiation Oncology, Ghent (Belgium); Mueller, Doreen [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Schmidt, Margret [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK) partner site Dresden and German Cancer Center (DKFZ), Heidelberg (Germany); Doerr, Wolfgang [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Medical University, Department of Radiation Oncology, CCC, and CD-Laboratory RadOnc, Vienna (Austria)

    2015-05-01

    The major component in the pathogenesis of oral radiation-induced mucositis is progressive epithelial hypoplasia and eventual ulceration. Irradiation inhibits cell proliferation, while cell loss at the surface continues. We conceived to slow down this desquamation by increasing intercellular adhesion, regulated by the E-cadherin/catenin complex. We investigated if 8-prenylnaringenin (8-PN) or tamoxifen (TAM) decrease the shedding of irradiated human buccal epithelial cells in vitro and thus delay the ulcerative phase of radiation-induced mucositis in vivo. In vitro, aggregates of buccal epithelial cells were irradiated and cultured in suspension for 11 days. 8-PN or TAM were investigated regarding their effect on cell shedding. In vivo, the lower tongue surface of mice was irradiated with graded single doses of 25 kV X-rays. The incidence, latency, and duration of the resulting mucosal ulcerations were analyzed after topical treatment with 8-PN, TAM or solvent. 8-PN or TAM prevented the volume reduction of the irradiated cell aggregates during the incubation period. This was the result of a higher residual cell number in the treated versus the untreated irradiated aggregates. In vivo, topical treatment with 8-PN or TAM significantly increased the latency of mucositis from 10.9 to 12.1 and 12.4 days respectively, while the ulcer incidence was unchanged. 8-PN and TAM prevent volume reduction of irradiated cell aggregates in suspension culture. In the tongues of mice, these compounds increase the latency period. This suggests a role for these compounds for the amelioration of radiation-induced mucositis in the treatment of head and neck tumors. (orig.) [German] Die wesentliche Komponente in der Pathogenese der radiogenen Mukositis ist eine progressive epitheliale Hypoplasie und letztendlich Ulzeration. Die Bestrahlung hemmt die Zellproliferation, waehrend der Zellverlust an der Oberflaeche fortbesteht. Wir versuchten, diese Desquamation durch eine Stimulation der

  15. Toxicity of the readily leachable fraction of urban PM2.5 to human lung epithelial cells: Role of soluble metals.

    Science.gov (United States)

    Palleschi, Simonetta; Rossi, Barbara; Armiento, Giovanna; Montereali, Maria Rita; Nardi, Elisa; Mazziotti Tagliani, Simona; Inglessis, Marco; Gianfagna, Antonio; Silvestroni, Leopoldo

    2018-04-01

    Fine airborne particulate matter (PM 2.5 ) has been repeatedly associated with adverse health effects in humans. The PM 2.5 soluble fraction, and soluble metals in particular, are thought to cause lung damage. Literature data, however, are not consistent and the role of leachable metals is still under debate. In this study, Winter and Summer urban PM 2.5 aqueous extracts, obtained by using a bio-compatible solution and different contact times at 37 °C, were used to investigate cytotoxic effects of PM 2.5 in cultured lung epithelial cells (A549) and the role played by the leachable metals Cu, Fe, Zn, Ni, Pb and Cd. Cell viability and migration, as well as intracellular glutathione, extracellular cysteine, cysteinylglycine and homocysteine concentrations, were evaluated in cells challenged with both PM 2.5 extracts before and after ultrafiltration and artificial metal ion solutions mimicking the metal composition of the genuine extracts. The thiol oxidative potential was also evaluated by an abiotic test. Results demonstrate that PM 2.5 bioactive components were released within minutes of PM 2.5 interaction with the leaching solution. Among these are i) low MW (bio-reactivity of Winter PM 2.5 extracts could not be explained by the presence of the studied metals. A possible role for PM 2.5 water-extractable organic components is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A549 lung adenocarcinoma cells.

    Science.gov (United States)

    Luo, Dan; Hu, Shiyuan; Tang, Chunlan; Liu, Guoxiang

    2018-03-01

    Mesenchymal stem cells (MSCs) are recruited into the tumour microenvironment and promote tumour growth and metastasis. Tumour microenvironment-induced autophagy is considered to suppress primary tumour formation by impairing migration and invasion. Whether these recruited MSCs regulate tumour autophagy and whether autophagy affects tumour growth are controversial. Our data showed that MSCs promote autophagy activation, reactive oxygen species production, and epithelial-mesenchymal transition (EMT) as well as increased migration and invasion in A549 cells. Decreased expression of E-cadherin and increased expression of vimentin and Snail were observed in A549 cells cocultured with MSCs. Conversely, MSC coculture-mediated autophagy positively promoted tumour EMT. Autophagy inhibition suppressed MSC coculture-mediated EMT and reduced A549 cell migration and invasion slightly. Furthermore, the migratory and invasive abilities of A549 cells were additional increased when autophagy was further enhanced by rapamycin treatment. Taken together, this work suggests that microenvironments containing MSCs can promote autophagy activation for enhancing EMT; MSCs also increase the migratory and invasive abilities of A549 lung adenocarcinoma cells. Mesenchymal stem cell-containing microenvironments and MSC-induced autophagy signalling may be potential targets for blocking lung cancer cell migration and invasion. Copyright © 2018 John Wiley & Sons, Ltd.

  17. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT in human lung cancer.

    Directory of Open Access Journals (Sweden)

    Frances E Lennon

    Full Text Available Recent epidemiologic studies implying differences in cancer recurrence based on anesthetic regimens raise the possibility that the mu opioid receptor (MOR can influence cancer progression. Based on our previous observations that overexpression of MOR in human non-small cell lung cancer (NSCLC cells increased tumor growth and metastasis, this study examined whether MOR regulates growth factor receptor signaling and epithelial mesenchymal transition (EMT in human NSCLC cells. We utilized specific siRNA, shRNA, chemical inhibitors and overexpression vectors in human H358 NSCLC cells that were either untreated or treated with various concentrations of DAMGO, morphine, fentanyl, EGF or IGF. Cell function assays, immunoblot and immunoprecipitation assays were then performed. Our results indicate MOR regulates opioid and growth factor-induced EGF receptor signaling (Src, Gab-1, PI3K, Akt and STAT3 activation which is crucial for consequent human NSCLC cell proliferation and migration. In addition, human NSCLC cells treated with opioids, growth factors or MOR overexpression exhibited an increase in snail, slug and vimentin and decrease ZO-1 and claudin-1 protein levels, results consistent with an EMT phenotype. Further, these effects were reversed with silencing (shRNA or chemical inhibition of MOR, Src, Gab-1, PI3K, Akt and STAT3 (p<0.05. Our data suggest a possible direct effect of MOR on opioid and growth factor-signaling and consequent proliferation, migration and EMT transition during lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings.

  18. Novel functional view of the crocidolite asbestos-treated A549 human lung epithelial transcriptome reveals an intricate network of pathways with opposing functions

    Directory of Open Access Journals (Sweden)

    Stevens John R

    2008-08-01

    Full Text Available Abstract Background Although exposure to asbestos is now regulated, patients continue to be diagnosed with mesothelioma, asbestosis, fibrosis and lung carcinoma because of the long latent period between exposure and clinical disease. Asbestosis is observed in approximately 200,000 patients annually and asbestos-related deaths are estimated at 4,000 annually1. Although advances have been made using single gene/gene product or pathway studies, the complexity of the response to asbestos and the many unanswered questions suggested the need for a systems biology approach. The objective of this study was to generate a comprehensive view of the transcriptional changes induced by crocidolite asbestos in A549 human lung epithelial cells. Results A statistically robust, comprehensive data set documenting the crocidolite-induced changes in the A549 transcriptome was collected. A systems biology approach involving global observations from gene ontological analyses coupled with functional network analyses was used to explore the effects of crocidolite in the context of known molecular interactions. The analyses uniquely document a transcriptome with function-based networks in cell death, cancer, cell cycle, cellular growth, proliferation, and gene expression. These functional modules show signs of a complex interplay between signaling pathways consisting of both novel and previously described asbestos-related genes/gene products. These networks allowed for the identification of novel, putative crocidolite-related genes, leading to several new hypotheses regarding genes that are important for the asbestos response. The global analysis revealed a transcriptome that bears signatures of both apoptosis/cell death and cell survival/proliferation. Conclusion Our analyses demonstrate the power of combining a statistically robust, comprehensive dataset and a functional network genomics approach to 1 identify and explore relationships between genes of known importance

  19. Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Leuvenink, Henri G.; Bakker, Stephan J. L.; Gans, Rijk O. B.; Koeter, Gerard H.; van Oosterhout, Antoon J. M.; Kauffman, Henk F.

    Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease ( COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke

  20. Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Directory of Open Access Journals (Sweden)

    Crandall Edward D

    2005-04-01

    Full Text Available Abstract Background Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. Methods Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. Results This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. Conclusion This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease.

  1. Role of alveolar epithelial Early growth response-1 (Egr-1) in CD8+ T Cell mediated Lung Injury

    OpenAIRE

    Ramana, Chilakamarti V.; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung- Joo; Enelow, Richard I.

    2009-01-01

    Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8+ T cells in this injury, and have found that the critical effector molecule is TNF-α expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory c...

  2. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells

    International Nuclear Information System (INIS)

    Babu, Dinesh; Leclercq, Georges; Goossens, Vera; Remijsen, Quinten; Vandenabeele, Peter; Motterlini, Roberto; Lefebvre, Romain A.

    2015-01-01

    Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H 2 O 2 -, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrial superoxide anion (O 2 · − ) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψ m ) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H 2 O 2 -mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O 2 · − production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O 2 · − levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on NOX-derived ROS to protect MODE-K cells from TNF

  3. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response

    International Nuclear Information System (INIS)

    Mukhopadhyay, Somshuvra; Shah, Mehul; Patel, Kirit; Sehgal, Pravin B.

    2006-01-01

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a 'megalocytosis' phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the 'Golgi blockade' hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and α-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1α and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis

  4. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.

    Science.gov (United States)

    Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan

    2011-08-01

    Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew; Chhabra, Gagan; Foster, Brad [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States); Webb, Brian [Thermo Fisher Scientific, Rockford, Illinois (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States)

    2016-09-02

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) in the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.

  6. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kristin Surmann

    2016-06-01

    Full Text Available To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP encoding a continuously expressed green fluorescent protein (GFP. Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed. Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC–MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]. They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  7. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Dinesh, E-mail: dinesh.babu@ugent.be [Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University (Belgium); Leclercq, Georges [Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University (Belgium); Goossens, Vera; Remijsen, Quinten; Vandenabeele, Peter [Inflammation Research Center, Molecular Signaling and Cell Death Unit, VIB, Ghent (Belgium); Department of Biomedical Molecular Biology, Molecular Signaling and Cell Death Unit, Ghent University, Ghent (Belgium); Motterlini, Roberto [Inserm U955, Equipe 12 and University Paris-Est Créteil, Faculty of Medicine, F-94000 Créteil (France); Lefebvre, Romain A. [Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University (Belgium)

    2015-10-15

    Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H{sub 2}O{sub 2}-, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrial superoxide anion (O{sub 2}·{sup −}) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψ{sub m}) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H{sub 2}O{sub 2}-mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O{sub 2}·{sup −} production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O{sub 2}·{sup −} levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on

  8. Fluoride-induced IL-8 release in human epithelial lung cells: Relationship to EGF-receptor-, SRC- and MAP-kinase activation

    International Nuclear Information System (INIS)

    Refsnes, Magne; Skuland, Tonje; Schwarze, Per E.; Ovrevik, Johan; Lag, Marit

    2008-01-01

    Exposure of human epithelial lung cells to fluorides is known to induce a marked increase in the release of interleukin (IL)-8, a chemokine involved in neutrophil recruitment. In the present study, the involvement of mitogen-activating protein kinases (MAPKs), the role of upstream activation of Src family kinases (SFKs), epidermal growth factor receptor (EGFR) activation and the interrelationships between these pathways in fluoride-induced IL-8 were examined in a human epithelial lung cell line (A549). Sodium fluoride strongly activated MAPK, in particular JNK1/2 and p38. The ERK1/2-inhibitor PD98059, the p38-inhibitor SB202190 and the JNK1/2-inhibitor SP600125 partially inhibited the fluoride-induced IL-8 response. Combinations of these inhibitors reduced the responses nearly to basal levels. Treatment with siRNA against JNK2 also reduced the IL-8 response to fluoride. Furthermore, fluoride activated SFKs, which was abolished by the SFK-inhibitor PP2. PP2 substantially inhibited the increased levels of IL-8, and partially reduced the fluoride-induced activation of ERK1/2, p38 and JNK1/2. Fluoride exposure also led to a phosphorylation of the EGFR, that was partially inhibited by PP2. AG1478, an EGFR-inhibitor, partially reduced the fluoride-induced IL-8 response and the phosphorylation of JNK1/2 and ERK1/2, but less the phosphorylation of p38. The effects of AG1478 were less than that of PP2. In conclusion, our findings suggest that the fluoride-induced IL-8 release involves the combined activation of ERK1/2, JNK1/2 and p38, and that the phosphorylation of these kinases, and in particular JNK1/2 and ERK1/2, partly, is mediated via a SFK-dependent EGFR-linked pathway. SFK-dependent, but EGFR-independent mechanisms seem important, and especially for phosphorylation of p38

  9. Synthesis and characterization of iron oxide nanoparticles (IONPs) and their cytotoxicity effects on lung epithelial carcinoma cells

    Science.gov (United States)

    Anjali, Jha, Sushil K.; Kuanr, Bijoy K.

    2017-05-01

    From last decade, iron oxide nanoparticles (IONPs) have been extensively used in a wide variety of biological and medical applications such as contrast agent in magnetic resonance imaging (MRI), in magnetic hyperthermia to cure cancer, drug delivery, cell labeling and so on. However, studies related to their cytotoxicity effects on human cells are still limited. Here, we have synthesized IONPs (Fe3O4) by electrochemical method and surface modified with several polymers such as polyethylene glycol (PEG), dextran. The size, structure, morphology and magnetic properties were characterized using various techniques such as XRD, TEM, VSM and surface modification was characterized using FTIR. The XRD results revealed that IONPs were Fe3O4 with a core diameter of 30 nm. Further, in order to investigate the cytotoxic effect of bare Fe3O4 IONPs (Fe-NPs), human lung cancer cells were exposed to 10-100 µg/ml bare Fe-NPs for 24 or 48 hrs. We found that bare Fe-NPs did not significantly affect the viability of lung cancer cells within first 24 hr of exposure. In contrast, after 48 hr exposure to bare Fe-NPs, the cell viability was decreased in a concentration-dependent manner. So, these data indicate that in order to use Fe-NPs for biomedical applications, long term effects on human cells must be thoroughly investigated.

  10. Large Uptake of Titania and Iron Oxide Nanoparticles in the Nucleus of Lung Epithelial Cells as Measured by Raman Imaging and Multivariate Classification

    Science.gov (United States)

    Ahlinder, Linnea; Ekstrand-Hammarström, Barbro; Geladi, Paul; Österlund, Lars

    2013-01-01

    It is a challenging task to characterize the biodistribution of nanoparticles in cells and tissue on a subcellular level. Conventional methods to study the interaction of nanoparticles with living cells rely on labeling techniques that either selectively stain the particles or selectively tag them with tracer molecules. In this work, Raman imaging, a label-free technique that requires no extensive sample preparation, was combined with multivariate classification to quantify the spatial distribution of oxide nanoparticles inside living lung epithelial cells (A549). Cells were exposed to TiO2 (titania) and/or α-FeO(OH) (goethite) nanoparticles at various incubation times (4 or 48 h). Using multivariate classification of hyperspectral Raman data with partial least-squares discriminant analysis, we show that a surprisingly large fraction of spectra, classified as belonging to the cell nucleus, show Raman bands associated with nanoparticles. Up to 40% of spectra from the cell nucleus show Raman bands associated with nanoparticles. Complementary transmission electron microscopy data for thin cell sections qualitatively support the conclusions. PMID:23870252

  11. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    International Nuclear Information System (INIS)

    Wörmann, Xenia; Lesch, Markus; Welke, Robert-William; Okonechnikov, Konstantin; Abdurishid, Mirshat; Sieben, Christian; Geissner, Andreas; Brinkmann, Volker; Kastner, Markus; Karner, Andreas; Zhu, Rong; Hinterdorfer, Peter; Anish, Chakkumkal; Seeberger, Peter H.; Herrmann, Andreas

    2016-01-01

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA_1 D130E, HA_2 I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.

  12. Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses.

    Science.gov (United States)

    Slater, Tessa; Eckerle, Isabella; Chang, Kin-Chow

    2018-04-10

    With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.

  13. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wörmann, Xenia [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Lesch, Markus [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee (Germany); Welke, Robert-William [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Okonechnikov, Konstantin; Abdurishid, Mirshat [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Sieben, Christian [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); Geissner, Andreas [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Brinkmann, Volker [Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin (Germany); Kastner, Markus [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Karner, Andreas [Center for Advanced Bioanalysis GmbH (CBL), Linz (Austria); Zhu, Rong; Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler University, Linz (Austria); Anish, Chakkumkal [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Seeberger, Peter H. [Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam (Germany); Institute of Chemistry and Biochemistry, Free University, Berlin (Germany); Herrmann, Andreas [Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin (Germany); and others

    2016-05-15

    The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA{sub 1} D130E, HA{sub 2} I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production. - Highlights: • We observed a spontaneous mutation of a 2009-pandemic H1N1 influenza virus in vitro. • The adaptation led to a 100-fold rise in replication rate in human A549 cells. • Adaptation was caused by two mutations in the HA gene segment. • Adaptation correlates with increased fusion pH and decreased receptor affinity.

  14. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with the involvement of caspase 3 and the MAPK pathway.

    Science.gov (United States)

    Ni, B; Bai, F F; Wei, Y; Liu, M J; Feng, Z X; Xiong, Q Y; Hua, L Z; Shao, G Q

    2015-09-25

    Lipid-associated membrane proteins (LAMPs) are important in the pathogenicity of the Mycoplasma genus of bacteria. We investigated whether Mycoplasma hyopneumoniae LAMPs have pathogenic potential by inducing apoptosis in a St. Jude porcine lung epithelial cell line (SJPL). LAMPs from a pathogenic strain of M. hyopneumoniae (strain 232) were used in the research. Our investigation made use of diamidino-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) analysis, and Annexin-V-propidium iodide staining. After LAMP treatment for 24 h, typical changes were induced, chromosomes were concentrated, apoptotic bodies were observed, the 3'-OH groups of cleaved genomes were exposed, and the percentage of apoptotic cells reached 36.5 ± 11.66%. Caspase 3 and caspase 8 were activated and cytochrome c (cyt c) was released from the mitochondria into the cytoplasm; poly ADP ribose polymerase (PARP) was digested into two fragments; p38 mitogen-activated protein kinase (MAPK) was phosphorylated; and the expression of pro-apoptosis protein Bax increased while the anti-apoptosis protein Bcl-2 decreased. LAMPs also stimulated SJPL cells to produce nitric oxide (NO) and superoxide. This study demonstrated that LAMPs from M. hyopneumoniae can induce apoptosis in SJPL cells through the activation of caspase 3, caspase 8, cyt c, Bax, and p38 MAPK, thereby contributing to our understanding of the pathogenesis of M. hyopneumoniae, which should improve the treatment of M. hyopneumoniae infections.

  15. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Science.gov (United States)

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  16. Increase of CTGF mRNA expression by respiratory syncytial virus infection is abrogated by caffeine in lung epithelial cells.

    Science.gov (United States)

    Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus

    2018-04-16

    Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Brechbuhl, Heather M. [Pediatrics, National Jewish Health, Denver, Colorado (United States); Kachadourian, Remy; Min, Elysia [Department of Medicine, National Jewish Health, Denver, Colorado (United States); Chan, Daniel [Medical Oncology, University of Colorado Denver Health Sciences Center (United States); Day, Brian J., E-mail: dayb@njhealth.org [Department of Medicine, University of Colorado Denver Health Sciences Center (United States); Immunology, University of Colorado Denver Health Sciences Center (United States); Pharmaceutical Sciences, University of Colorado Denver Health Sciences Center (United States); Department of Medicine, National Jewish Health, Denver, Colorado (United States)

    2012-01-01

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression and total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.

  18. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  19. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    International Nuclear Information System (INIS)

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-01-01

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E 2 ), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression

  20. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  1. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    Science.gov (United States)

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    MFI-50 nanoparticles was found to accumulate over a longer period of time as compared to MFI-100 nanoparticles. The study therefore points towards the capability of the non-cytotoxic zeolite nanoparticles to induce oxidative stress resulting in short-term altered cellular metabolism up-regulation and genomic instability. Although the damage was found to be short-lived, its persistence over longer durations, or stabilization cannot be neglected. Further studies are in progress to yield a better understanding of the mechanisms for oxidative stress and resulting cascade of events leading to genetic damage in the human lung alveolar epithelial cells following exposure to zeolite nanoparticles of different sizes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Characterization of Toll-like receptors in primary lung epithelial cells: strong impact of the TLR3 ligand poly(I:C on the regulation of Toll-like receptors, adaptor proteins and inflammatory response

    Directory of Open Access Journals (Sweden)

    Weith Andreas

    2005-11-01

    Full Text Available Abstract Background Bacterial and viral exacerbations play a crucial role in a variety of lung diseases including COPD or asthma. Since the lung epithelium is a major source of various inflammatory mediators that affect the immune response, we analyzed the inflammatory reaction of primary lung epithelial cells to different microbial molecules that are recognized by Toll-like receptors (TLR. Methods The effects of TLR ligands on primary small airway epithelial cells were analyzed in detail with respect to cytokine, chemokine and matrix metalloproteinase secretion. In addition, the regulation of the expression of TLRs and their adaptor proteins in small airway epithelial cells was investigated. Results Our data demonstrate that poly(I:C, a synthetic analog of viral dsRNA, mediated the strongest proinflammatory effects among the tested ligands, including an increased secretion of IL-6, IL-8, TNF-α, GM-CSF, GRO-α, TARC, MCP-1, MIP-3α, RANTES, IFN-β, IP-10 and ITAC as well as an increased release of MMP-1, MMP-8, MMP-9, MMP-10 and MMP-13. Furthermore, our data show that poly(I:C as well as type-1 and type-2 cytokines have a pronounced effect on the expression of TLRs and molecules involved in TLR signaling in small airway epithelial cells. Poly(I:C induced an elevated expression of TLR1, TLR2 and TLR3 and increased the gene expression of the general TLR adaptor MyD88 and IRAK-2. Simultaneously, poly(I:C decreased the expression of TLR5, TLR6 and TOLLIP. Conclusion Poly(I:C, an analog of viral dsRNA and a TLR3 ligand, triggers a strong inflammatory response in small airway epithelial cells that is likely to contribute to viral exacerbations of pulmonary diseases like asthma or COPD. The pronounced effects of poly(I:C on the expression of Toll-like receptors and molecules involved in TLR signaling is assumed to influence the immune response of the lung epithelium to viral and bacterial infections. Likewise, the regulation of TLR expression by type

  3. Acquired tolerance in cadmium-adapted lung epithelial cells: Roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein

    International Nuclear Information System (INIS)

    Lau, Andy T.Y.; Zhang Jian; Chiu, J.-F.

    2006-01-01

    Cadmium-resistant cells were developed in our laboratory with rat lung epithelial cells (LECs) by stepwise exposure of LECs to cadmium chloride from 1 μM to 20 μM after 20 passages. To investigate the Cd-resistant phenotype in a long-term perspective, cadmium-resistant cells adapted to 20 μM cadmium (Cd R ) were then cultured in the absence of cadmium for various passages [Cd R (-n)]. All these adapted cells were significantly protected from cadmium toxicity as compared to parental cadmium-sensitive LECs (Cd S ). The cadmium-resistant phenotype of adapted cells was relatively stable in the absence of cadmium for as long as 40 passages. Basal mRNA level of metallothionein-1 (MT-1) was dramatically higher in Cd R than in Cd R (-), which may account for the higher Cd-resistance of Cd R than Cd R (-). MT-1 mRNA level decreased drastically in Cd R after cadmium removal, suggesting that the high basal level of MT-1 in Cd R may be only partially responsible for cadmium-resistance. Treatment of cells with high levels of cadmium resulted in decreased phosphorylation of c-Jun N-terminal kinase (JNK1/2) in adapted cells than in sensitive cells and this cadmium-induced JNK activity was blocked by JNK inhibitor II, SP600125. Ro318220, a strong activator of JNK, reverted cadmium-sensitive phenotype in adapted cells. Taken together, our results suggest that during cadmium adaptation, cells develop tolerance to cell death, generally due to perturbation of the JNK signaling pathway and the nonresponsiveness of JNK phosphorylation is critical for the Cd-tolerance in these cells

  4. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture

    International Nuclear Information System (INIS)

    Dagher, Zeina; Garcon, Guillaume; Billet, Sylvain; Gosset, Pierre; Ledoux, Frederic; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz

    2006-01-01

    Epidemiological studies have associated the increase of respiratory and cardiovascular mortality and morbidity with high levels of air pollution particulate matter (PM). However, the underlying mechanisms of actions by which PM induce adverse health effects are still unclear. We have recently undertaken an extensive investigation of the adverse health effects of air pollution PM 2.5 , and shown that in vitro short-term exposure to PM 2.5 induced oxidative stress and inflammation in human lung epithelial cells (L132). Hence, it was convenient to complete the physical and chemical characterization of PM and to investigate whether in vitro short-term exposure to PM could be imply in the activation of apoptosis. Accordingly, we found that 92.15% of PM were equal or smaller than 2.5 μm and their specific surface area was 1 m 2 /g. Inorganic (i.e. Fe, Al, Ca, Na, K, Mg, Pb, etc.) and organic (i.e. polycyclic aromatic hydrocarbons) chemicals were found in PM, suggesting that much of them derived from wind-borne dust from the industrial complex and the heavy motor vehicle traffic. In other respects, we showed that PM exposure induced apoptosis by activating not only the tumor necrosis factor-alpha (TNF-α)-induced pathway (i.e. TNF-α secretion, caspase-8 and -3 activation), but also the mitochondrial pathway (i.e. 8-hydroxy-2'-desoxyguanosine formation, cytochrome c release from mitochondria, caspase-9 and -3 activation). Moreover, changes in the transcription rates of p53, bcl-2, and bax genes, on the one hand, and DNA fragmentation, on the other hand, were reported in PM-exposed proliferating L132 cells, revealing the occurrence of apoptotic events. Taken together, these findings suggested that in vitro short-term exposure to PM 2.5 induced apoptosis in L132 cells

  5. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    Science.gov (United States)

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.

  6. Detection of genomic instability in normal human bronchial epithelial cells exposed to 238Pu

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Fukushima, N.H.; Neft, R.E.; Lechner, J.F.

    1994-01-01

    Alpha particle-emitting radon daughters constitute a risk for development of lung cancer in humans. The development of this disease involves multiple genetic alterations. These changes and the time course they follow are not yet defined despite numerous in vitro endeavors to transform human lung cells with various physical or chemical agents. However, genomic instability, characterized both by structural and numerical chromosomal aberrations and by elevated rates of point mutations, is a common feature of tumor cells. Further, both types of genomic instability have been reported in the noncancerous progeny of normal murine hemopoietic cells exposed in vitro to α-particles. The purpose of this investigation was to determine if genomic instability is also a prominent feature of normal human bronchial epithelial cells exposed to α-particle irradiation from the decay of inhaled radon daughters

  7. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    Science.gov (United States)

    Ávila, Leonardo C M; Bruggemann, Thayse R; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL-10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (pswimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and pswimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung inflammation in mice.

  8. Comparative study of the effects of PM1-induced oxidative stress on autophagy and surfactant protein B and C expressions in lung alveolar type II epithelial MLE-12 cells.

    Science.gov (United States)

    Bai, Ru; Guan, Longfei; Zhang, Wei; Xu, Jinxia; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2016-12-01

    There is a strong link between smaller air pollution particles and a range of serious health conditions. Thus, there is a need for understanding the impacts of airborne fine particulate matter (PM) with an aerodynamic diameter of PM1) on lung alveolar epithelial cells. In the present study, mouse lung epithelial type II cell MLE-12 cells were used to examine the intracellular oxidative responses and the surfactant protein expressions after exposure to various concentrations of PM1 collected from an urban site and a steel-factory site (referred as uPM1 and sPM1 hereafter, respectively). Physicochemical characterization of PM1 was performed by using scanning electron microscopy and transmission electron microscopy. Cytotoxicity and autophagy induced by PM1 were assessed by using comprehensive approaches after MLE-12 cells were exposed to different concentrations of PM1 for various times. Expression of surfactant proteins B and C in MLE-12 cells was determined by Western blotting. All of the tested PM1 induced cytotoxicity evidenced by significant decrease of cell viability and increase of lactate dehydrogenase (LDH) release in a time- and concentration-dependent manner in the exposed cells compared with the unexposed cells. A similar pattern of increase of intercellular reactive oxygen species (ROS) generation and decrease of superoxide dismutase (SOD) and catalase (CAT) activities was also observed. PM1-induced autophagy was evidenced by an increase in microtubule-associated protein light chain-3 (LC3) puncta, accumulation of LC3II, and increased levels of beclin1. Data from Western blotting showed significant decrease of surfactant protein B and C expressions. Relatively high concentrations of transition metals, including Fe, Cu and Mn, may be responsible for the higher toxicity of sPM1 compared with uPM1. Moreover, pretreatment with N-acetylcysteine (NAC) or Chelex (a metal chelating agent, which removes a large suite of metals from PM1) prevented the increase of

  9. The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins.

    Science.gov (United States)

    Nolin, James D; Tully, Jane E; Hoffman, Sidra M; Guala, Amy S; van der Velden, Jos L; Poynter, Matthew E; van der Vliet, Albert; Anathy, Vikas; Janssen-Heininger, Yvonne M W

    2014-08-01

    Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A. Copyright © 2014 Elsevier Inc

  10. Lung

    International Nuclear Information System (INIS)

    DeNardo, G.L.; Blankenship, W.J.; Burdine, J.A. Jr.; DeNardo, S.J.

    1975-01-01

    At present no simple statement can be made relative to the role of radionuclidic lung studies in the pediatric population. It is safe to assume that they will be used with increasing frequency for research and clinical applications because of their sensitivity and ready applicability to the pediatric patient. Methods comparable to those used in adults can be used in children older than 4 years. In younger children, however, a single injection of 133 Xe in solution provides an index of both regional perfusion and ventilation which is easier to accomplish. This method is particularly valuable in infants and neonates because it is rapid, requires no patient cooperation, results in a very low radiation dose, and can be repeated in serial studies. Radionuclidic studies of ventilation and perfusion can be performed in almost all children if the pediatrician and the nuclear medicine specialist have motivation and ingenuity. S []ontaneous pulmonary vascular occlusive disease which occurs in infants and pulmonary emboli in children are easily detected using radionuclides. The pathophysiologic defects of pulmonary agenesis, bronchopulmonary sequestration, and foreign body aspiration may be demonstrated by these techniques. These techniques also appear to be useful in following patients with bronchial asthma, cystic fibrosis, congenital emphysema, and postinfection pulmonary abnormalities. (auth)

  11. ANTI-INFLAMMATORY EFFECT OF ANTI-TNF-ALPHA siRNA CATIONIC PHOSPHOROUS DENDRIMERS NANOCOMPLEXES ADMINISTERED INTRANASALLY IN A MURINE ACUTE LUNG INJURY MODEL

    DEFF Research Database (Denmark)

    Bohr, Adam; Tsapis, Nicolas; Andreana, Ilaria

    2017-01-01

    lung injury model. To achieve this goal, two different types of phosphorus-based dendrimers with either pyrrolidinium or morpholinium as terminal protonated amino groups were selected for their better biocompatibility compared to other dendrimers. Dendriplexes containing pyrrolidinium surface groups...

  12. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  13. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    International Nuclear Information System (INIS)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  14. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts.

    Science.gov (United States)

    da Luz, Camila Macedo; Boyles, Matthew Samuel Powys; Falagan-Lotsch, Priscila; Pereira, Mariana Rodrigues; Tutumi, Henrique Rudolf; de Oliveira Santos, Eidy; Martins, Nathalia Balthazar; Himly, Martin; Sommer, Aniela; Foissner, Ilse; Duschl, Albert; Granjeiro, José Mauro; Leite, Paulo Emílio Corrêa

    2017-01-31

    Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover

  15. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    Directory of Open Access Journals (Sweden)

    Leonardo C M Ávila

    Full Text Available Studies have reported that exposure to diesel exhaust particles (DEPs induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12, Swimming (30 min/day (n = 8, DEP (3 mg/mL-10 μL/mouse (n = 9 and DEP+Swimming (n = 8. The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF, measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH and the antioxidant enzymes catalase and glutathione peroxidase (GPx in the lung. Swimming sessions decreased the number of total cells (p<0.001, neutrophils and lymphocytes (p<0.001; p<0.05 in the BALF, as well as lung levels of IL-1β (p = 0.002, TNF-α (p = 0.003, IL-6 (p = 0.0001 and IFN-ϫ (p = 0.0001. However, the levels of IL-10 (p = 0.01 and IL-1ra (p = 0.0002 increased in the swimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001. Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and p<0.002. We concluded that in this experimental model, the high-intensity swimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung

  16. Effects of a Diphtheria-Tetanus-Acellular Pertussis Vaccine on Immune Responses in Murine Local Lymph Node and Lung Allergy Models▿

    Science.gov (United States)

    Vandebriel, Rob J.; Gremmer, Eric R.; van Hartskamp, Michiel; Dormans, Jan A. M. A.; Mooi, Frits R.

    2007-01-01

    We have previously shown that in mice, diphtheria-tetanus-acellular pertussis (DTaP) vaccination before Bordetella pertussis infection resulted in, besides effective clearance, immediate hypersensitivity (lung eosinophilia, increased total serum immunoglobulin E [IgE], and increased ex vivo Th2 cytokine production by cells from the bronchial lymph nodes). To better appreciate the extent of these findings, we measured DTaP vaccination effects in the local lymph node assay (LLNA) and an ovalbumin (OVA) lung allergy model. In the LLNA, mice were vaccinated or adjuvant treated before being sensitized with trimellitic anhydride (TMA; inducing a Th2-directed response) and dinitrochlorobenzene (DNCB; inducing a Th1-directed response). Compared to the adjuvant-treated controls, the vaccinated mice showed a decreased response to TMA and (to a much lesser extent) an increased response to DNCB. The decreased response to TMA coincided with increased transforming growth factor β levels. With the exception of filamentous hemagglutinin, all vaccine constituents contributed to the decreased response to TMA. In the lung allergy model, sensitization induced OVA-specific IgE, lung pathology (peribronchiolitis, perivasculitis, and hypertrophy of the bronchiolar mucus cells) and increased the number of eosinophils, lymphocytes, and neutrophils in the bronchoalveolar lavage fluid. Vaccination failed to modulate these parameters. In conclusion, although DTaP vaccination may affect the LLNA response, we found no evidence of an effect on lung allergy. PMID:17202304

  17. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    Science.gov (United States)

    Giacomelli, Chiara; Daniele, Simona; Romei, Chiara; Tavanti, Laura; Neri, Tommaso; Piano, Ilaria; Celi, Alessandro; Martini, Claudia; Trincavelli, Maria L.

    2018-01-01

    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different

  18. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    Directory of Open Access Journals (Sweden)

    Chiara Giacomelli

    2018-01-01

    Full Text Available The epithelial-mesenchymal transition (EMT is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1, which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin and the mesenchymal one (Vimentin, N-cadherin, respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to

  19. Casticin, an active compound isolated from Vitex Fructus, ameliorates the cigarette smoke-induced acute lung inflammatory response in a murine model.

    Science.gov (United States)

    Lee, Hyeonhoon; Jung, Kyung-Hwa; Lee, Hangyul; Park, Soojin; Choi, Woosung; Bae, Hyunsu

    2015-10-01

    The aim of this study was to determine of the effect of casticin, as an anti-inflammatory agent, on an acute lung inflammation in vivo model established through exposure to cigarette smoke (CS). Casticin is a phytochemical from Vitex species such as Vitex rotundifolia and Vitex agnus-castus that was recently shown to exert an anti-inflammatory effect in vivo. To demonstrate the effects of casticin, C57BL/6 mice were whole-body exposed to mainstream CS or fresh air for two weeks and treated with 1, 2, and 10mg/kg casticin via an i.p. injection. Immune cell infiltrations and cytokine productions were assessed from bronchoalveolar lavage Fluid (BALF), and lung histological analysis was performed. Treatment with casticin was observed to significantly inhibit the numbers of total cells, neutrophils, macrophages, and lymphocytes and reduce the levels of proinflammatory cytokines and chemokines in the BALF. In addition, casticin significantly decreased the infiltration of peribronchial and perivascular inflammatory cells and the epithelium thickness. The results of this study indicate that casticin has significant effects on the lung inflammation induced by CS in a mouse model. According to these outcomes, casticin may have therapeutic potential in inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Synergistic effect of bolus exposure to zinc oxide nanoparticles on bleomycin-induced secretion of pro-fibrotic cytokines without lasting fibrotic changes in murine lungs.

    Science.gov (United States)

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Ichihara, Sahoko

    2014-12-30

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs.

  1. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    Energy Technology Data Exchange (ETDEWEB)

    He, Miao, E-mail: hemiao.cmu@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Ichinose, Takamichi, E-mail: ichinose@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Song, Yuan, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Yasuhiro, E-mail: songyuan1107@163.com [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Arashidani, Keiichi, E-mail: arashi@snow.ocn.ne.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Iseigaoka, Yahata-nishi-ku, Kitakyushu, 807-8555 Fukuoka (Japan); Yoshida, Seiichi, E-mail: syoshida@oita-nhs.ac.jp [Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Liu, Boying, E-mail: boyingliu321@gmail.com [Environment and Chronic Non-communicable Disease Research Center, College of Public Health, China Medical University, 11001 Shenyang (China); Department of Health Sciences, Oita University of Nursing and Health Sciences, 870-1201 Oita (Japan); Nishikawa, Masataka, E-mail: mnishi@nies.go.jp [Environmental Chemistry Division, National Institute for Environmental Studies, 305-8506 Tsukuba, Ibaraki (Japan); Takano, Hirohisa, E-mail: htakano@health.env.kyoto-u.ac.jp [Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); and others

    2013-11-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 < ASD2) and SiO{sub 2} (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 < ASD2) and chemokine eotaxin (ASD1 > ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO{sub 2}. - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1

  2. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    International Nuclear Information System (INIS)

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Arashidani, Keiichi; Yoshida, Seiichi; Liu, Boying; Nishikawa, Masataka; Takano, Hirohisa

    2013-01-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 2 (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO 2 . - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1 2 (ASD1 > ASD2). • The ASD2 aggravating effects on lung

  3. Effects of mutant human Ki-rasG12C gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    International Nuclear Information System (INIS)

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-01-01

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras G12C allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 μg/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras G12C allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 μg/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 μg/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 μg/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras G12C expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models

  4. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  5. Proinflammatory effect of sodium 4-phenylbutyrate in deltaF508-cystic fibrosis transmembrane conductance regulator lung epithelial cells: involvement of extracellular signal-regulated protein kinase 1/2 and c-Jun-NH2-terminal kinase signaling.

    Science.gov (United States)

    Roque, Telma; Boncoeur, Emilie; Saint-Criq, Vinciane; Bonvin, Elise; Clement, Annick; Tabary, Olivier; Jacquot, Jacky

    2008-09-01

    Sodium 4-phenylbutyrate (4-PBA) has attracted a great deal of attention in cystic fibrosis (CF) pathology due to its capacity to traffic DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) to the cell membrane and restore CFTR chloride function at the plasma membrane of CF lung cells in vitro and in vivo. Using two different DeltaF508-CFTR lung epithelial cell lines (CFBE41o- and IB3-1 cells, characterized with DeltaF508-homozygous and heterozygous genotype, respectively) in vitro, 4-PBA induced an increase of proinflammatory cytokine interleukin (IL)-8 production in a concentration-dependent manner. This 4-PBA-induced IL-8 production was associated with a strong reduction of proteasome and nuclear factor-kappaB transcriptional activities in the two DeltaF508-CFTR lung cells either in a resting state or after tumor necrosis factor-alpha stimulation. In contrast, a strong increase of activator protein-1 transcriptional activity was observed. The inhibition of extracellular signal-regulated protein kinase 1/2 (ERK1/2) by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) and c-Jun-NH(2)-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) by anthra[1,9-cd] pyrazol-6 (2H)-one (SP600125), respectively, was associated with a reduction (2-3.5-fold) of IL-8 production in both DeltaF508-CFTR lung cell lines treated with 4-PBA. No significant change of IL-8 production was observed after an inhibition of p38 MAPK with 4-[4-(4-fluorophenyl)-5-(4-pyridinyl)-1H-imidazol-2-yl] phenol (SB202190). Therefore, we suggest that inhibition of both ERK1/2 and JNK signaling may be a means to strongly reduce 4-PBA-induced IL-8 production in combination with 4-PBA treatment to restore CFTR Cl(-) channel function in lung epithelial cells of patients with CF.

  6. Biosignature for airway inflammation in a house dust mite-challenged murine model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Hadeesha Piyadasa

    2016-02-01

    Full Text Available House dust mite (HDM challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge. In this murine model, we used repeated HDM challenge for two weeks which induced hallmarks of allergic asthma seen in humans, including airway hyper-responsiveness (AHR and elevated levels of circulating total and HDM-specific IgE and IgG1. Kinetic studies showed that at least 24 h after last HDM challenge results in significant AHR along with eosinophil infiltration in the lungs. Histologic assessment of lung revealed increased epithelial thickness and goblet cell hyperplasia, in the absence of airway wall collagen deposition, suggesting ongoing tissue repair concomitant with acute allergic lung inflammation. Thus, this model may be suitable to delineate airway inflammation processes that precede airway remodeling and development of fixed airway obstruction. We observed that a panel of cytokines e.g. IFN-γ, IL-1β, IL-4, IL-5, IL-6, KC, TNF-α, IL-13, IL-33, MDC and TARC were elevated in lung tissue and bronchoalveolar fluid, indicating local lung inflammation. However, levels of these cytokines remained unchanged in serum, reflecting lack of systemic inflammation in this model. Based on these findings, we further monitored the expression of 84 selected genes in lung tissues by quantitative real-time PCR array, and identified 31 mRNAs that were significantly up-regulated in lung tissue from HDM-challenged mice. These included genes associated with human asthma (e.g. clca3, ear11, il-13, il-13ra2, il-10, il-21, arg1 and chia1 and leukocyte recruitment in the lungs (e.g. ccl11, ccl12 and ccl24. This study describes a biosignature to enable broad and systematic interrogation of molecular mechanisms and intervention

  7. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  8. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    Science.gov (United States)

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  9. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2012-02-01

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from DeltaF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, alpha(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  10. Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2011-03-04

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  11. miR-24-3p/FGFR3 Signaling as a Novel Axis Is Involved in Epithelial-Mesenchymal Transition and Regulates Lung Adenocarcinoma Progression

    Directory of Open Access Journals (Sweden)

    Pengyu Jing

    2018-01-01

    Full Text Available Our previous studies showed that Fibroblast growth factor receptor 3 (FGFR3 contributed to cell growth in lung cancer. However, the correlation between FGFR3 and tumor progression, coupled with the underlying mechanisms, are not fully understood. The clinical significance of FGFR3 was determined in two cohorts of clinical samples (n=22, n=78. A panel of biochemical assays and functional experiments was utilized to elucidate the underlying mechanisms and effects of FGFR3 and miR-24-3p on lung adenocarcinoma progression. Upregulated FGFR3 expression indicated an adverse prognosis for lung adenocarcinoma individuals and promoted metastatic potential of lung adenocarcinoma cells. Owing to the direct regulation towards FGFR3, miR-24-3p could interfere with the potential of proliferation, migration, and invasion in lung adenocarcinoma, following variations of EMT-related protein expression. As a significant marker of EMT, E-cadherin was negatively correlated with FGFR3, of which ectopic overexpression could neutralize the antitumour effects of miR-24-3p and reverse its regulatory effects on EMT markers. Taken together, these findings define a novel insight into the miR-24-3p/FGFR3 signaling axis in regulating lung adenocarcinoma progression and suggest that targeting the miR-24-3p/FGFR3 axis could be an effective and efficient way to prevent tumor progression.

  12. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways.

    Science.gov (United States)

    Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun

    2018-07-01

    Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Biodistribution and Pharmacokinetics Study of siRNA-loaded Anti-NTSR1-mAb-functionalized Novel Hybrid Nanoparticles in a Metastatic Orthotopic Murine Lung Cancer Model

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    2016-01-01

    Full Text Available Small interfering RNA (siRNA is effective in silencing critical molecular pathways in cancer. The use of this tool as a treatment modality is limited by lack of an intelligent carrier system to enhance the preferential delivery of this molecule to specific targets in vivo. In the present study, the in vivo behavior of novel anti-NTSR1-mAb-functionalized antimutant K-ras siRNA-loaded hybrid nanoparticles, delivered by i.p. injection to non-small-cell lung cancer in mice models, was investigated and compared to that of a naked siRNA formulation. The siRNA in anti-NTSR1-mAb-functionalized hybrid nanoparticles was preferentially accumulated in tumor-bearing lungs and metastasized tumor for at least 48 hours while the naked siRNA formulation showed lack of preferential accumulation in all of the organs monitored. The plasma terminal half-life of nanoparticle-delivered siRNA was 11 times higher (17–1.5 hours than that of the naked siRNA formulation. The mean residence time and AUClast were 3.4 and 33 times higher than the corresponding naked siRNA formulation, respectively. High-performance liquid chromatography analysis showed that the hybrid nanoparticle carrier system protected the encapsulated siRNA against degradation in vivo. Our novel anti-NTSR1-mAb-functionalized hybrid nanoparticles provide a useful platform for in vivo targeting of siRNA for both experimental and clinical purposes.

  14. CNTN-1 Enhances Chemoresistance in Human Lung Adenocarcinoma Through Induction of Epithelial-Mesenchymal Transition by Targeting the PI3K/Akt Pathway

    Directory of Open Access Journals (Sweden)

    Ruijie Zhang

    2017-09-01

    Full Text Available Background/Aims: Chemoresistance has been a major obstacle to the effective treatment of lung cancer. Previously, we found that contactin-1 (CNTN-1 is related to cisplatin resistance in lung adenocarcinoma. Here, we aimed to investigate the underlying mechanism behind the role of CNTN-1 in cisplatin resistance in lung adenocarcinoma. Methods: EMT-associated phenotypes, including alterations in cellular morphology and marker (E-cadherin, N-cadherin and Vimentin expression, were compared between A549 cells and A549/DDP cells (a cisplatin-resistant cell line of lung adenocarcinoma with abnormal CNTN-1 expression by using real-time time PCR and Western blotting. Other methods, including CNTN-1 overexpression in A549 cells and CNTN-1 knockdown in A549/DDP cells, were also used to investigate the role of CNTN-1 in mediating the EMT phenotype and thr resulting cisplatin resistance and malignant progression of cancer cells in vitro and in vivo. Results: A549/DDP cells exhibited an EMT phenotype and aggravated malignant behaviors. CNTN-1 knockdown in A549/DDP cells partly reversed the EMT phenotype, increased drug sensitivity, and attenuated the malignant progression whereas CNTN-1 overexpression in A549 cells resulted in the opposite trend. Furthermore, the PI3K/Akt pathway was involved in the effects of CNTN-1 on EMT progression in A549/DDP cells, verified by the xenograft mouse model. Conclusion: CNTN-1 promotes cisplatin resistance in human cisplatin-resistant lung adenocarcinoma through inducing the EMT process by activating the PI3K/Akt signaling pathway. CNTN-1 may be a potential therapeutic target to reverse chemoresistance in cisplatin-resistant lung adenocarcinoma.

  15. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3.

    Science.gov (United States)

    Petpiroon, Nareerat; Sritularak, Boonchoo; Chanvorachote, Pithi

    2017-12-29

    The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including

  16. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines

    DEFF Research Database (Denmark)

    Roursgaard, Martin; Knudsen, Kristina Bram; Northeved, Helle

    2016-01-01

    The aim of this study was to compare the effects of cationic micelle and liposome drug delivery systems on liver and lung cells in a toxicological in vitro screening model, with observations on cytotoxicity and genotoxicity. A screening battery was established for assessment of a broad range of p...

  17. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice

    International Nuclear Information System (INIS)

    Jin, Hua; Shen, Shuijie; Chen, Xiaoyan; Zhong, Dafang; Zheng, Jiang

    2012-01-01

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examined the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine. -- Highlights: ► Dauricine induced apoptosis in lungs in mice and in cultured human pulmonary cells. ► Dauricine depleted cellular GSH in lungs of mice and in the human pulmonary cells. ► CYP3A subfamily mediated GSH depletion and apoptosis induced by dauricine. ► L-Buthionine sulfoximine potentiated dauricine-induced GSH depletion and apoptosis.

  18. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hua; Shen, Shuijie [Center for Developmental Therapeutics, Seattle Children' s Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, WA 98101 (United States); Chen, Xiaoyan; Zhong, Dafang [Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 (China); Zheng, Jiang, E-mail: jiang.zheng@seattlechildrens.org [Center for Developmental Therapeutics, Seattle Children' s Research Institute, Division of Gastroenterology and Hepatology, Department of Pediatrics, University of Washington, Seattle, WA 98101 (United States)

    2012-06-15

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examined the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine. -- Highlights: ► Dauricine induced apoptosis in lungs in mice and in cultured human pulmonary cells. ► Dauricine depleted cellular GSH in lungs of mice and in the human pulmonary cells. ► CYP3A subfamily mediated GSH depletion and apoptosis induced by dauricine. ► L-Buthionine sulfoximine potentiated dauricine-induced GSH depletion and apoptosis.

  19. Human airway organoid engineering as a step toward lung regeneration and disease modeling.

    Science.gov (United States)

    Tan, Qi; Choi, Kyoung Moo; Sicard, Delphine; Tschumperlin, Daniel J

    2017-01-01

    Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    Science.gov (United States)

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  1. Phenotypic plasticity and targeting of Siglec-F(high) CD11c(low) eosinophils to the airway in a murine model of asthma.

    Science.gov (United States)

    Abdala Valencia, H; Loffredo, L F; Misharin, A V; Berdnikovs, S

    2016-02-01

    Eosinophil recruitment in asthma is a multistep process, involving both trans-endothelial migration to the lung interstitium and trans-epithelial migration into the airways. While the trans-endothelial step is well studied, trans-epithelial recruitment is less understood. To contrast eosinophil recruitment between these two compartments, we employed a murine kinetics model of asthma. Eosinophils were phenotyped by multicolor flow cytometry in digested lung tissue and bronchoalveolar lavage (BAL) simultaneously, 6 h after each ovalbumin (OVA) challenge. There was an early expansion of tissue eosinophils after OVA challenge followed by eosinophil buildup in both compartments and a shift in phenotype over the course of the asthma model. Gradual transition from a Siglec-F(med) CD11c(-) to a Siglec-F(high) CD11c(low) phenotype in lung tissue was associated with eosinophil recruitment to the airways, as all BAL eosinophils were of the latter phenotype. Secondary microarray analysis of tissue-activated eosinophils demonstrated upregulation of specific integrin and chemokine receptor signature suggesting interaction with the mucosa. Using adhesion assays, we demonstrated that integrin CD11c mediated adhesion of eosinophils to fibrinogen, a significant component of epithelial barrier repair and remodeling. To the best of our knowledge, this is the only report to date dissecting compartmentalization of eosinophil recruitment as it unfolds during allergic inflammation. By capturing the kinetics of eosinophil phenotypic change in both tissue and BAL using flow cytometry and sorting, we were able to demonstrate a previously undocumented association between phenotypic shift of tissue-recruited eosinophils and their trans-epithelial movement, which implicates the existence of a specific mechanism targeting these cells to mucosal airways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

    Directory of Open Access Journals (Sweden)

    Grassian Vicki H

    2011-09-01

    Full Text Available Abstract Background Human exposure to nanoparticles (NPs and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p. in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3 and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse. Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH activity, and inflammatory cytokines in bronchoalveolar lavage (BAL fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse. Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection.

  3. Morphology changes in human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens

    International Nuclear Information System (INIS)

    Esposito, V.; Lucariello, A.; Savarese, L.; Cinelli, M.P.; Ferraraccio, F.; Bianco, A.; De Luca, A.; Mazzarella, G.

    2012-01-01

    In the recent literature there has been an increased interest in the effects of particulate matter on the respiratory tract. The objective of this study was to use an in vitro model of type II lung epithelium (A549) to evaluate the cell ability to take up sub-micron PM 1.0 particles (PM 1.0 ), Parietaria officinalis (ALL), and PM 1.0 + ALL together. Morphological analysis performed by Transmission Electron Microscope (TEM) showed that PM and ALL interacted with the cell surface, then penetrating into the cytoplasm. Each single treatment was able to point out a specific change in the morphology. The cells treated appear healthy and not apoptotic. The main effect was the increase of: multilamellar bodies, lysosomal enzymes, microvilli, and presence of vesicle/vacuoles containing particles. These observations demonstrate morphological and functional alterations related to the PM 1.0 and P. officinalis and confirm the induction of the inflammatory response in lung cells exposed to the inhalable particles. - Highlights: ► Cell ability to take up PM 1.0 particles, Parietaria officinalis (ALL), PM 1.0 + ALL. ► The cells treated appear healthy and not apoptotic. ► Each single treatment was able to point out a specific change in the morphology. ► Increase of multilamellar bodies lysosomal enzymes microvilli vesicle with particles. ► Induction of inflammatory response in lung cells exposed to the inhalable particles. - The urban environment with the combination of inhalable air pollution and particulate can damage the acinar lung units and activate cells of the immune system.

  4. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, a potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cells in vitro.

    OpenAIRE

    Woll, P J; Rozengurt, E

    1988-01-01

    In the search for a more potent bombesin antagonist, we found [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P to be effective in mouse fibroblasts and to inhibit the growth of small cell lung cancer, a tumor that secretes bombesin-like peptides that may act as autocrine growth factors. In murine Swiss 3T3 cells, [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P proved to be a bombesin antagonist as judged by the following criteria: (i) inhibition of DNA synthesis induced by gastrin-releasing peptide and ot...

  5. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO{sub 2} nanocrystals: Investigation of bio-medical application by chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), i Themba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Geetha, N. [Research and Development Center, Bharathiyar University, Coimbatore 641046 (India); Kanimozhi, K. [PG Research & Department of Chemistry, Auxilium College (Autonomous), Vellore (India); Maria Magdalane, C. [Department of Chemistry, St. Xavier’s College (Autonomous), Tirunelveli 627002 (India); LIFE, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Sivaranjani, S. [Research and Development Center, Bharathiyar University, Coimbatore 641046 (India); Department of Physics, SBM College of Engineering and Technology, Dindigul -624 005 (India); Ayeshamariam, A. [Research and Development Center, Bharathiyar University, Coimbatore 641046 (India); Department of Physics, Khadir Mohideen College, Adirampattinam 614601 (India); Kennedy, J. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5010 (New Zealand); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), i Themba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2017-05-01

    We report the synthesis of high quality ZnO doped TiO{sub 2} nanocrystals by chemical method at room temperature (RT), it can cause serious oxidative stress and DNA damage to human lung epithelial cells (A549) lines. Our aim in this study, to reduce the cytotoxicity effect of ZnO doped TiO{sub 2} nanocrystals are widely in biological fields. Several studies have been performed to understand the influence of ZnO doped titanium dioxide (TiO{sub 2}-NPs) on cell function; however the effects of nanoparticle against to exposure on the cell membrane have been duly addressed fascinatingly so far. However, In this interaction, which may alter cell metabolism and integrity, it is one of the importance to understand the modifications of the cell membrane, mechanisms of pulmonary A549 cell lines nanoparticles were uptake and the molecular pathway during the initial cell responses are still unclear and much more investigative efforts are need to properly characterize the ZnO doped titanium dioxide nanoparticles were reported successfully. In particular of the epithelial cells, upon particles are exposed human pulmonary epithelial cells (A549) to various concentrations of composition, structure and morphology of the nanocrystals were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanocrystals which identified peaks associated with (002), (100) and (101) planes of hexagonal wurtzite-type ZnO with lattice constants of a = b = 3.249 Å and c = 5.219 Å. The IR results showed high purity of products and indicated that the nanocrystals are made up of Ti−O and Zn−O bonds. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of ZnO/TiO{sub 2} nanocrystals which exhibits antibacterial activity over a broad range of bacterial species and in particular against Stre. Mut

  6. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO2 nanocrystals: Investigation of bio-medical application by chemical method

    International Nuclear Information System (INIS)

    Kaviyarasu, K.; Geetha, N.; Kanimozhi, K.; Maria Magdalane, C.; Sivaranjani, S.; Ayeshamariam, A.; Kennedy, J.; Maaza, M.

    2017-01-01

    We report the synthesis of high quality ZnO doped TiO 2 nanocrystals by chemical method at room temperature (RT), it can cause serious oxidative stress and DNA damage to human lung epithelial cells (A549) lines. Our aim in this study, to reduce the cytotoxicity effect of ZnO doped TiO 2 nanocrystals are widely in biological fields. Several studies have been performed to understand the influence of ZnO doped titanium dioxide (TiO 2 -NPs) on cell function; however the effects of nanoparticle against to exposure on the cell membrane have been duly addressed fascinatingly so far. However, In this interaction, which may alter cell metabolism and integrity, it is one of the importance to understand the modifications of the cell membrane, mechanisms of pulmonary A549 cell lines nanoparticles were uptake and the molecular pathway during the initial cell responses are still unclear and much more investigative efforts are need to properly characterize the ZnO doped titanium dioxide nanoparticles were reported successfully. In particular of the epithelial cells, upon particles are exposed human pulmonary epithelial cells (A549) to various concentrations of composition, structure and morphology of the nanocrystals were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD assessed the crystal structure of the nanocrystals which identified peaks associated with (002), (100) and (101) planes of hexagonal wurtzite-type ZnO with lattice constants of a = b = 3.249 Å and c = 5.219 Å. The IR results showed high purity of products and indicated that the nanocrystals are made up of Ti−O and Zn−O bonds. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating a narrow size distribution of ZnO/TiO 2 nanocrystals which exhibits antibacterial activity over a broad range of bacterial species and in particular against Stre. Mut where it out competes

  7. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Borghini, Andrea; Roursgaard, Martin; Andreassi, Maria Grazia

    2017-01-01

    One type of carbon nanotubes (CNTs) (MWCNT-7, from Mitsui) has been classified as probably carcinogenic to humans, however insufficient data does not warrant the same classification for other types of CNTs. Experimental data indicate that CNT exposure can result in oxidative stress and DNA damage...... the cells toward replicative senescence, assessed by attrition of telomeres. To investigate this, H2O2 and KBrO3 were used to induce DNA damage in the cells and the effect of pre-exposure to MWCNT tested for a change in repair activity inside the cells or in the extract of treated cells. The effect of MWCNT...... in cultured cells, whereas these materials appear to induce low or no mutagenicity. Therefore, the present study aimed to investigate whether in vitro exposure of cultured airway epithelial cells (A549) to multi-walled CNTs (MWCNTs) could increase the DNA repair activity of oxidatively damaged DNA and drive...

  8. Inflammatory Effects of Menthol vs. Non-menthol Cigarette Smoke Extract on Human Lung Epithelial Cells: A Double-Hit on TRPM8 by Reactive Oxygen Species and Menthol

    Directory of Open Access Journals (Sweden)

    Tzong-Shyuan Lee

    2017-04-01

    Full Text Available Clinical studies suggest that smokers with chronic obstructive pulmonary disease who use menthol cigarettes may display more severe lung inflammation than those who smoke non-menthol cigarette. However, the mechanisms for this difference remain unclear. Menthol is a ligand of transient receptor potential melastatin-8 (TRPM8, a Ca2+-permeant channel sensitive to reactive oxygen species (ROS. We previously reported that exposure of human bronchial epithelial cells (HBECs to non-menthol cigarette smoke extract (Non-M-CSE triggers a cascade of inflammatory signaling leading to IL-8 induction. In this study, we used this in vitro model to compare the inflammatory effects of menthol cigarette smoke extract (M-CSE and Non-M-CSE and delineate the mechanisms underlying the differences in their impacts. Compared with Non-M-CSE, M-CSE initially increased a similar level of extracellular ROS, suggesting the equivalent oxidant potency. However, M-CSE subsequently produced more remarkable elevations in intracellular Ca2+, activation of the mitogen-activated protein kinases (MAPKs/nuclear factor-κB (NF-κB signaling, and IL-8 induction. The extracellular ROS responses to both CSE types were totally inhibited by N-acetyl-cysteine (NAC; a ROS scavenger. The intracellular Ca2+ responses to both CSE types were also totally prevented by NAC, AMTB (a TRPM8 antagonist, or EGTA (an extracellular Ca2+ chelator. The activation of the MAPK/NF-κB signaling and induction of IL-8 to both CSE types were suppressed to similar levels by NAC, AMTB, or EGTA. These results suggest that, in addition to ROS generated by both CSE types, the menthol in M-CSE may act as another stimulus to further activate TRPM8 and induce the observed responses. We also found that menthol combined with Non-M-CSE induced greater responses of intracellular Ca2+ and IL-8 compared with Non-M-CSE alone. Moreover, we confirmed the essential role of TRPM8 in these responses to Non-M-CSE or M-CSE and the

  9. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Kaempferol Suppresses Transforming Growth Factor-β1–Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-1791

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-01-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non–small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1–induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1–mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1–mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1–induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1–mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1–induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1–induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. PMID:26297431

  11. Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia

    Science.gov (United States)

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.

    2016-01-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756

  12. Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia.

    Science.gov (United States)

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A; Zabinski, Mary C; Yuen, Constance K; Lung, Wing Yi; Gower, Adam C; Belkina, Anna C; Ramirez, Maria I; Deng, Jane C; Quinton, Lee J; Jones, Matthew R; Mizgerd, Joseph P

    2016-09-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6G(bright)CD11b(bright) neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia.

  13. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC): Implications for Use of 1,25(OH)2D3 in NSCLC Treatment

    International Nuclear Information System (INIS)

    Upadhyay, Santosh Kumar; Verone, Alissa; Shoemaker, Suzanne; Qin, Maochun; Liu, Song; Campbell, Moray; Hershberger, Pamela A.

    2013-01-01

    1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDR high ) and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDR low and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT). Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH) 2 D 3 sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH) 2 D 3 induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH) 2 D 3 -mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH) 2 D 3 opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH) 2 D 3 may prevent lung cancer progression in a molecularly defined subset of NSCLC patients

  14. Upregulation of c-mesenchymal epithelial transition expression and RAS mutations are associated with late lung metastasis and poor prognosis in colorectal carcinoma.

    Science.gov (United States)

    Liu, Jianhua; Zeng, Weiqiang; Huang, Chengzhi; Wang, Junjiang; Xu, Lishu; Ma, Dong

    2018-05-01

    The present study aimed to investigate whether c-mesenchymal epithelial transition factor (C-MET) overexpression combined with RAS (including KRAS, NRAS and HRAS ) or BRAF mutations were associated with late distant metastases and the prognosis of patients with colorectal cancer (CRC). A total of 374 patients with stage III CRC were classified into 4 groups based on RAS/BRAF and C-MET status for comprehensive analysis. Mutations in RAS / BRAF were determined using Sanger sequencing and C-MET expression was examined using immunohistochemistry. The associations between RAS/BRAF mutations in combination with C-MET overexpression and clinicopathological variables including survival were evaluated. In addition, their predictive value for late distant metastases were statistically analyzed via logistic regression and receiver operating characteristic analysis. Among 374 patients, mutations in KRAS, NRAS, HRAS, BRAF and C-MET overexpression were observed in 43.9, 2.4, 0.3, 5.9 and 71.9% of cases, respectively. Considering RAS/BRAF mutations and C-MET overexpression, vascular invasion (P=0.001), high carcino-embryonic antigen level (P=0.031) and late distant metastases (PC-MET overexpression, although they were both predictive factors for adverse prognosis. Further logistic regression suggested that RAS/BRAF mutations and C-MET overexpression may predict late distant metastases. In conclusion, RAS/BRAF mutations and C-MET overexpression may serve as predictive indicators for metastatic behavior and poor prognosis of CRC.

  15. Effects on g2/m phase cell cycle distribution and aneuploidy formation of exposure to a 60 Hz electromagnetic field in combination with ionizing radiation or hydrogen peroxide in l132 nontumorigenic human lung epithelial cells.

    Science.gov (United States)

    Jin, Hee; Yoon, Hye Eun; Lee, Jae-Seon; Kim, Jae-Kyung; Myung, Sung Ho; Lee, Yun-Sil

    2015-03-01

    The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or H2O2, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM H2O2 for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or H2O2 (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

  16. Utility of bronchial lavage fluids for epithelial growth factor receptor mutation assay in lung cancer patients: Comparison between cell pellets, cell blocks and matching tissue specimens

    Science.gov (United States)

    Asaka, Shiho; Yoshizawa, Akihiko; Nakata, Rie; Negishi, Tatsuya; Yamamoto, Hiroshi; Shiina, Takayuki; Shigeto, Shohei; Matsuda, Kazuyuki; Kobayashi, Yukihiro; Honda, Takayuki

    2018-01-01

    The detection of epidermal growth factor receptor (EGFR) mutations is necessary for the selection of suitable patients with non-small cell lung cancer (NSCLC) for treatment with EGFR tyrosine kinase inhibitors. Cytology specimens are known to be suitable for EGFR mutation detection, although tissue specimens should be prioritized; however, there are limited studies that examine the utility of bronchial lavage fluid (BLF) in mutation detection. The purpose of the present study was to investigate the utility of BLF specimens for the detection of EGFR mutations using a conventional quantitative EGFR polymerase chain reaction (PCR) assay. Initially, quantification cycle (Cq) values of cell pellets, cell-free supernatants and cell blocks obtained from three series of 1% EGFR mutation-positive lung cancer cell line samples were compared for mutation detection. In addition, PCR analysis of BLF specimens obtained from 77 consecutive NSCLC patients, detecting EGFR mutations was validated, and these results were compared with those for the corresponding formalin-fixed paraffin-embedded (FFPE) tissue specimens obtained by surgical resection or biopsy of 49 of these patients. The Cq values for mutation detection were significantly lower in the cell pellet group (average, 29.58) compared with the other groups, followed by those in cell-free supernatants (average, 34.15) and in cell blocks (average, 37.12) for all three series (P<0.05). Mutational status was successfully analyzed in 77 BLF specimens, and the results obtained were concordant with those of the 49 matching FFPE tissue specimens. Notably, EGFR mutations were even detected in 10 cytological specimens that contained insufficient tumor cells. EGFR mutation testing with BLF specimens is therefore a useful and reliable method, particularly when sufficient cancer cells are not obtained. PMID:29399190

  17. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chien-Sheng [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Division of Thoracic Surgery, Department of Surgery, Taipei-Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Kawamura, Tomohiro; Peng, Ximei [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tochigi, Naobumi [Department of Pathology, University of Pittsburgh Medical Center, PA (United States); Shigemura, Norihisa [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Billiar, Timothy R. [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Nakao, Atsunori, E-mail: anakao@imap.pitt.edu [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Toyoda, Yoshiya [Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2011-05-06

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the

  18. Hydrogen inhalation reduced epithelial apoptosis in ventilator-induced lung injury via a mechanism involving nuclear factor-kappa B activation

    International Nuclear Information System (INIS)

    Huang, Chien-Sheng; Kawamura, Tomohiro; Peng, Ximei; Tochigi, Naobumi; Shigemura, Norihisa; Billiar, Timothy R.; Nakao, Atsunori; Toyoda, Yoshiya

    2011-01-01

    Highlights: → Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. → There is very limited information on the pathways regulated in vivo by the hydrogen. → Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. → NFκB activation during hydrogen treatment was correlated with elevated antiapoptotic protein. → NFκB activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigated whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NFκB) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NFκB activation, as indicated by NFκB DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NFκB DNA binding after 1 h of ventilation and decreased NFκB DNA binding after 2 h of ventilation, as compared with controls. The early activation of NFκB during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NFκB activation using SN50 reversed these protective effects. NFκB activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway

  19. Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM1.0) and pollen allergens

    International Nuclear Information System (INIS)

    Mazzarella, G.; Esposito, V.; Bianco, A.; Ferraraccio, F.; Prati, M.V.; Lucariello, A.; Manente, L.; Mezzogiorno, A.; De Luca, A.

    2012-01-01

    Asthma is currently defined as a chronic inflammatory disease of the airway. Several evidence indicate that vehicle emissions in cities is correlated with the allergic respiratory diseases. In the present study, we evaluated in the A549 cells the production and release of IL-4, IL-5 and IL-13 after treatment with sub-micron PM 1.0 particles (PM 1.0 ), Parietaria officinalis (ALL), and PM 1.0 + ALL together. Our data demonstrated that PM 1.0 + ALL together exhibited the greatest capacity to induce A549 cells to enhance the expression of IL-4 and IL-5 compared with the only PM 1.0 or ALL treatment. Interestingly, IL-13 that is necessary for allergen-induced airway hyper responsiveness, is increased in cells treated with PM 1.0 + ALL together, but is higher expressed when the cells are treated only with the allergen. Our data support the hypothesis that the urban environment damage the acinar lung units and activates cells of the immune system. - Highlights: ► The genetic factors plays a key role in the development of the asthma. ► Its development can only be made in the presence of specific environmental factors. ► We evaluated in the A549 cells the production and release of IL-4, IL-5 and IL-13. ► IL-4, IL-5 and IL-13 expression increased when the A549 cells are treated with PM 1.0 + ALL together. - The urban environment with the combination of inhalable air pollution and particulate are able to damage the acinar lung units and are able to activate cells of the immune system.

  20. Enhanced Detection of Sub-Retinal Pigment Epithelial Cell Layer Deposits in Human and Murine Tissue: Imaging Zinc as a Biomarker for Age-Related Macular Degeneration (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    van Kuijk, Frederik J G M; McPherson, Scott W; Roehrich, Heidi

    2017-08-01

    Understanding the apparent paradoxical role of zinc in the pathogenesis and prevention of age-related macular degeneration (AMD) has been limited by the lack of animal models for its detection in sub-retinal epithelial deposits (drusen), a definitive early hallmark of AMD. In-vitro studies using Zinpyr-1 showed drusen contained high levels of zinc, but the probe was not suitable for in-vivo studies. This study compares Zinpyr-1 to ZPP1, a new fluorescein-based probe for zinc, to assess the potential of ZPP1 for in-vivo detection of zinc in drusen. Flat mounts of human sub-RPE tissue using the probes were analyzed by fluorescence and confocal microscopy. Flat mounts of sub-RPE tissue from mice deficient in superoxide dismutase isoform-1 (CuZn-SOD-KO) or isoform-2 (Mn-SOD-RPE-KO) were analyzed with sub-RPE deposits confirmed by histology. Drusen are detected in greater numbers and intensity with ZPP1 compared to Zinpyr-1. Using ZPP1, drusen was detected in a sample from a 46-year old human donor without ocular history, suggesting that ZPP1 might be sensitive enough to detect drusen at an early stage. With CuZn-SOD KO mice, ZPP1 detected sub-RPE deposits at 10 months of age, whereas Zinpyr-1 required 14 months. Detection of sub-RPE deposits by ZPP1 was greatly enhanced compared to Zinpyr-1. This enhanced sensitivity will allow for more insightful analysis of zinc in AMD using human specimens and mouse models. This could result in the development of a sensitive in-vivo probe to enhance research on the role zinc in drusen formation and the early clinical diagnosis of AMD.

  1. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    Science.gov (United States)

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-05

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Murine alpha1-adrenoceptor subtypes. I. Radioligand binding studies

    NARCIS (Netherlands)

    Yang, M.; Reese, J.; Cotecchia, S.; Michel, M. C.

    1998-01-01

    Alpha1-adrenoceptors were identified in murine tissues by [3H]prazosin saturation binding studies, with a rank order of cerebral cortex > cerebellum > liver > lung > kidney > heart > spleen, with the spleen not exhibiting detectable expression. Competition binding studies were performed with

  4. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells

    International Nuclear Information System (INIS)

    Hsiao, I-Lun; Huang, Yuh-Jeen

    2011-01-01

    Although novel nanomaterials are being produced and applied in our daily lives at a rapid pace, related health and environmental toxicity assessments are lagging behind. Recent reports have concluded that the physicochemical properties of nanoparticles (NPs) have a crucial influence on their toxicities and should be evaluated during risk assessments. Nevertheless, several controversies exist regarding the biological effects of NP size and surface area. In addition, relatively few reports describe the extents to which the physicochemical properties of NPs influence their toxicity. In this study, we used six self-synthesized and two commercial ZnO and TiO 2 nanomaterials to evaluate the effects of the major physicochemical properties of NPs (size, shape, surface area, phase, and composition) on human lung epithelium cells (A549). We characterized these NPs using transmission electron microscopy, X-ray diffraction, the Brunauer-Emmett-Teller method, and dynamic laser scattering. From methyl thiazolyl tetrazolium (MTT) and Interleukin 8 (IL-8) assays of both rod- and sphere-like ZnO NPs, we found that smaller NPs had greater toxicity than larger ones-a finding that differs from those of previous studies. Furthermore, at a fixed NP size and surface area, we found that the nanorod ZnO particles were more toxic than the corresponding spherical ones, suggesting that both the size and shape of ZnO NPs influence their cytotoxicity. In terms of the effect of the surface area, we found that the contact area between a single NP and a single cell was more important than the total specific surface area of the NP. All of the TiO 2 NP samples exhibited cytotoxicities lower than those of the ZnO NP samples; among the TiO 2 NPs, the cytotoxicity increased in the following order: amorphous > anatase > anatase/rutile; thus, the phase of the NPs can also play an important role under size-, surface area-, and shape-controlled conditions. - Research Highlights: → Evaluate the

  5. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2015-04-01

    Full Text Available Soo-Jin Choi, Hee-Jeong Paek, Jin YuDepartment of Food Science and Technology, Seoul Women’s University, Seoul, Republic of KoreaAbstract: Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK, and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs, which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.Keywords: layered double hydroxide, mitogen-activated protein kinases, Src family kinases, nuclear factor kappa B, oxidative stress, inflammatory cytokine

  6. Roles of Chaperone/Usher Pathways of Yersinia pestis in a Murine Model of Plague and Adhesion to Host Cells

    Science.gov (United States)

    Hatkoff, Matthew; Runco, Lisa M.; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B.; Bliska, James B.

    2012-01-01

    Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague. PMID:22851745

  7. Differential NF-κB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8 induction in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Refsnes M

    2014-12-01

    Full Text Available Magne Refsnes, Tonje Skuland, Marit Låg, Per E Schwarze, Johan Øvrevik Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway Abstract: Different toxic agents have a varying potential to induce the production of the proinflammatory chemokine, CXCL8 (interleukin [IL]-8, in lung cells. A critical question is which mechanisms determine the magnitude and persistence of the CXCL8 responses to different stimuli. To approach this, we compared the potential of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, and sodium fluoride (NaF to induce CXCL8 responses in A549 cells, with emphasis on the importance of nuclear factor kappa B (NF-κB- and mitogen-activated protein kinase (MAPK signaling. Notably, TPA induced a greater release of CXCL8 than did NaF. Furthermore, TPA induced a strong, rapid, but transient upregulation of CXCL8 messenger (mRNA, whereas NaF induced a weaker, more delayed, but persistent upregulation. With respect to signaling, TPA led to an early, strong, and relatively transient extracellular signal-regulated kinase (ERK1/2 phosphorylation, and a less marked and even more transient phosphorylation of c-jun-N-terminal kinases (JNK1/2 and p38. In contrast, NaF elicited a lower, but relatively sustained increase in phosphorylation of ERK1/2, and a marked phosphorylation of p38 and JNK1/2, with the JNK1/2 response as most transient. Only ERK1/2 inhibition affected the TPA response, whereas inhibition of all the three MAPK cascades reduced NaF-induced CXCL8 release. TPA also induced an early, marked phosphorylation/translocation of p65 (NF-κB, whereas NaF induced slower, less pronounced effects on p65. The CXCL8 responses by TPA and NaF were reduced by p65-siRNA. In conclusion, all MAPK cascades were involved in NaF-induced CXCL8 release, whereas only ERK1/2 activation was involved in response to TPA. Furthermore, NF-κB activation appeared to be

  8. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  9. Allergen-induced resistin-like molecule-α promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis.

    Science.gov (United States)

    Mavi, Parm; Niranjan, Rituraj; Dutt, Parmesh; Zaidi, Asifa; Shukla, Jai Shankar; Korfhagen, Thomas; Mishra, Anil

    2014-09-01

    Resistin-like molecule (Relm)-α is a secreted, cysteine-rich protein belonging to a newly defined family of proteins, including resistin, Relm-β, and Relm-γ. Although resistin was initially defined based on its insulin-resistance activity, the family members are highly induced in various inflammatory states. Earlier studies implicated Relm-α in insulin resistance, asthmatic responses, and intestinal inflammation; however, its function still remains an enigma. We now report that Relm-α is strongly induced in the esophagus in an allergen-challenged murine model of eosinophilic esophagitis (EoE). Furthermore, to understand the in vivo role of Relm-α, we generated Relm-α gene-inducible bitransgenic mice by using lung-specific CC-10 promoter (CC10-rtTA-Relm-α). We found Relm-α protein is significantly induced in the esophagus of CC10-rtTA-Relm-α bitransgenic mice exposed to doxycycline food. The most prominent effect observed by the induction of Relm-α is epithelial cell hyperplasia, basal layer thickness, accumulation of activated CD4(+) and CD4(-) T cell subsets, and eosinophilic inflammation in the esophagus. The in vitro experiments further confirm that Relm-α promotes primary epithelial cell proliferation but has no chemotactic activity for eosinophils. Taken together, our studies report for the first time that Relm-α induction in the esophagus has a major role in promoting epithelial cell hyperplasia and basal layer thickness, and the accumulation of activated CD4(+) and CD4(-) T cell subsets may be responsible for partial esophageal eosinophilia in the mouse models of EoE. Notably, the epithelial cell hyperplasia and basal layer thickness are the characteristic features commonly observed in human EoE. Copyright © 2014 the American Physiological Society.

  10. 1,25-Dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC): Implications for Use of 1,25(OH){sub 2}D{sub 3} in NSCLC Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Santosh Kumar; Verone, Alissa; Shoemaker, Suzanne [Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Qin, Maochun; Liu, Song [Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Campbell, Moray; Hershberger, Pamela A., E-mail: pamela.hershberger@roswellpark.org [Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States)

    2013-11-08

    1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) exerts anti-proliferative activity by binding to the vitamin D receptor (VDR) and regulating gene expression. We previously reported that non-small cell lung cancer (NSCLC) cells which harbor epidermal growth factor receptor (EGFR) mutations display elevated VDR expression (VDR{sup high}) and are vitamin D-sensitive. Conversely, those with K-ras mutations are VDR{sup low} and vitamin D-refractory. Because EGFR mutations are found predominately in NSCLC cells with an epithelial phenotype and K-ras mutations are more common in cells with a mesenchymal phenotype, we investigated the relationship between vitamin D signaling capacity and the epithelial mesenchymal transition (EMT). Using NSCLC cell lines and publically available lung cancer cell line microarray data, we identified a relationship between VDR expression, 1,25(OH){sub 2}D{sub 3} sensitivity, and EMT phenotype. Further, we discovered that 1,25(OH){sub 2}D{sub 3} induces E-cadherin and decreases EMT-related molecules SNAIL, ZEB1, and vimentin in NSCLC cells. 1,25(OH){sub 2}D{sub 3}-mediated changes in gene expression are associated with a significant decrease in cell migration and maintenance of epithelial morphology. These data indicate that 1,25(OH){sub 2}D{sub 3} opposes EMT in NSCLC cells. Because EMT is associated with increased migration, invasion, and chemoresistance, our data imply that 1,25(OH){sub 2}D{sub 3} may prevent lung cancer progression in a molecularly defined subset of NSCLC patients.

  11. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor.

    Science.gov (United States)

    Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J

    2017-10-12

    Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  12. Diallylthiosulfinate (Allicin, a Volatile Antimicrobial from Garlic (Allium sativum, Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor

    Directory of Open Access Journals (Sweden)

    Jana Reiter

    2017-10-01

    Full Text Available Garlic (Allium sativum has potent antimicrobial activity due to allicin (diallylthiosulfinate synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure by oxidation of diallyl disulfide by H2O2 using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas, Streptococcus, and Staphylococcus, including multi-drug resistant (MDR strains, was demonstrated. Minimal inhibitory (MIC and minimal bactericidal concentrations (MBC were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH. Similarly, the sensitivity of rat precision-cut lung slices (PCLS to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  13. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  14. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  15. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  16. Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection.

    Directory of Open Access Journals (Sweden)

    Sarah L Londrigan

    Full Text Available BST-2 (tetherin, CD317, HM1.24 restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC. BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection.

  17. Expression of neuroimmune semaphorins 4A and 4D and their receptors in the lung is enhanced by allergen and vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Keegan Achsah D

    2011-05-01

    Full Text Available Abstract Background Semaphorins were originally identified as molecules regulating a functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins found to be expressed on immune cells and were termed "immune semaphorins". It is known that Sema4A and Sema4D bind Tim-2 and CD72 expressed on leukocytes and PlexinD1 and B1 present on non-immune cells. These neuroimmune semaphorins and their receptors have been shown to play critical roles in many physiological and pathological processes including neuronal development, immune response regulation, cancer, autoimmune, cardiovascular, renal, and infectious diseases. However, the expression and regulation of Sema4A, Sema4D, and their receptors in normal and allergic lungs is undefined. Results Allergen treatment and lung-specific vascular endothelial growth factor (VEGF expression induced asthma-like pathologies in the murine lungs. These experimental models of allergic airway inflammation were used for the expression analysis of immune semaphorins and their receptors employing immunohistochemistry and flow cytometry techniques. We found that besides accessory-like cells, Sema4A was also detected on bronchial epithelial and smooth muscle cells, whereas Sema4D expression was high on immune cells such as T and B lymphocytes. Surprisingly, under inflammation various cell types including macrophages, lymphocytes, and granulocytes in the lung expressed Tim-2, a previously defined marker for Th2 cells. CD72 was found on lung immune, inflammatory, and epithelial cells. Bronchial epithelial cells were positive for both plexins, whereas some endothelial cells selectively expressed Plexin D1. Plexin B1 expression was also detected on lung DC. Both allergen and VEGF upregulated the expression of neuroimmune semaphorins and their receptors in the lung tissue. However, the lung tissue Sema4A-Tim2 expression was rather weak, whereas Sema4D-CD72 ligand-receptor pair was vastly

  18. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development

    DEFF Research Database (Denmark)

    Wu, Xunwei; Li, Shaohua; Chrostek-Grashoff, Anna

    2007-01-01

    To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane, but exhi......To study the role of Cdc42 in the establishment of epithelial polarity during mammalian development, we generated murine Cdc42-null embryonic stem cells and analyzed peri-implantation development using embryoid bodies (EBs). Mutant EBs developed endoderm and underlying basement membrane...

  19. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    Science.gov (United States)

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  20. Statistical lung model for microdosimetry

    International Nuclear Information System (INIS)

    Fisher, D.R.; Hadley, R.T.

    1984-03-01

    To calculate the microdosimetry of plutonium in the lung, a mathematical description is needed of lung tissue microstructure that defines source-site parameters. Beagle lungs were expanded using a glutaraldehyde fixative at 30 cm water pressure. Tissue specimens, five microns thick, were stained with hematoxylin and eosin then studied using an image analyzer. Measurements were made along horizontal lines through the magnified tissue image. The distribution of air space and tissue chord lengths and locations of epithelial cell nuclei were recorded from about 10,000 line scans. The distribution parameters constituted a model of lung microstructure for predicting the paths of random alpha particle tracks in the lung and the probability of traversing biologically sensitive sites. This lung model may be used in conjunction with established deposition and retention models for determining the microdosimetry in the pulmonary lung for a wide variety of inhaled radioactive materials

  1. Glomerular parietal epithelial cells in kidney physiology, pathology, and repair

    OpenAIRE

    Shankland, Stuart J.; Anders, Hans-Joachim; Romagnani, Paola

    2013-01-01

    Purpose of review We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. Recent findings Several new paradigms involving PECs have emerged demonstrating thei...

  2. Changes in the rat lung after exposure to radon and its progeny: Effects on incorporation of bromodeoxyuridine in epithelial cells and on the incidence of nuclear aberrations in Alveolar macrophages

    International Nuclear Information System (INIS)

    Taya, A.; Morgan, A.; Baker, S.T.; Humphreys, J.A.H.; Collier, C.G.; Bisson, M.

    1994-01-01

    The aim of this study was to investigate some responses of cells in the rat respiratory tract as a function of time after inhalation exposure to various levels of radon and its progeny. Rats were exposed to a constant concentration of radon and its progeny to give cumulative exposure levels of 120, 225, 440 and 990 working level months (WLM). An additional unexposed group of rats served as controls. The end points selected for investigation were (a) the incorporation of bromodeoxyuridine (BrdU) in epithelial cells of the conducting airways and of the alveolar region of the respiratory tract and (b) the incidence of alveolar macrophages with nuclear aberrations. After exposure, the incidence of epithelial cells incorporating BrdU-the labeling index-increased in all regions of the respiratory tract examined, but the increase occurred later in alveolar than in airway epithelial cells. The highest labeling index was found in bronchial epithelial cells, which probably received the highest radiation dose. After an initial induction period, the incidence of alveolar macrophages with nuclear aberrations also increased. The possibility of using the labeling index of alveolar and airway epithelial cells, and/or the incidence of nuclear aberrations in alveolar macrophages, to estimate the radiation dose to various regions of the respiratory tract after exposure of rats to radon and its progeny is discussed. 22 refs., 3 figs., 1 tab

  3. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    International Nuclear Information System (INIS)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-01-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGFβ1-mediated lytic phase. EBV lytic reactivation by TGFβ1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM 1 81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  4. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  5. Alveolar epithelial permeability in bronchial asthma in children

    International Nuclear Information System (INIS)

    Oishi, Takuji

    1993-01-01

    To evaluate alveolar epithelial permeability (k ep ) in children with bronchial asthma, 99m Tc-DTPA (diethylene triamine penta acetate) aerosol lung inhalation scintigraphies were performed. There was no correlation between the k ep value and the severity of asthma. On the other hand, out of 10 cases which had no aerosol deposition defect in the lung field, 4 showed high k ep values on the whole lung field and 7 had high k ep value areas, particularly apparent in the upper lung field. These results suggest that even when the central airway lesions are mild, severe damage exists in the alveolar region of the peripheral airway. (author)

  6. Evidence for tankyrases as antineoplastic targets in lung cancer

    International Nuclear Information System (INIS)

    Busch, Alexander M; Johnson, Kevin C; Stan, Radu V; Sanglikar, Aarti; Ahmed, Yashi; Dmitrovsky, Ethan; Freemantle, Sarah J

    2013-01-01

    New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or β-catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the β-catenin phosphorylation complex. This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls. Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models. Findings reported here uncovered deregulation of specific components of the Wnt pathway in both

  7. Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.

    Science.gov (United States)

    Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S

    2017-08-01

    Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.

  8. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Joo [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Sowers, Anastasia; Thetford, Angela [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); McKay-Corkum, Grace; Chung, Su I. [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Mitchell, James B. [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Citrin, Deborah E., E-mail: citrind@mail.nih.gov [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States)

    2016-11-15

    Purpose: Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. Methods and Materials: C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-time polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. Results: Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). Conclusions: Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes.

  9. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  10. Assessing the Cytotoxicity of Black Carbon As A Model for Ultrafine Anthropogenic Aerosol Across Human and Murine Cells: A Chronic Exposure Model of Nanosized Particulate Matter

    Science.gov (United States)

    Salinas, E.

    2015-12-01

    Combustion-derived nanomaterials or ultrafine (fuels. Ultrafine particles (UFPs) can absorb other noxious pollutants including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), toxic organic compounds, and heavy metals. The combination of high population density, meteorological conditions, and industrial productivity brings high levels of air pollution to the metropolitan area of El Paso, Texas, USA/ Ciudad Juarez, Chihuahua, Mexico, comprising the Paso del Norte air basin. A study conducted by scientists from the Research Triangle Park in North Carolina, analyzed sites adjacent to heavy-traffic highways in El Paso and elucidated higher UFP concentrations in comparison to previously published work exploring pollution and adverse health effects in the basin. UFPs can penetrate deep into the alveolar sacs of the lung, reaching distant alveolar sacs and inducing a series of immune responses that are detrimental to the body: evidence suggests that UFPs can also cross the alveolar-blood barrier and potentially endanger the body's immune response. The physical properties of UFPs and the dynamics of local atmospheric and topographical conditions indicate that emissions of nanosized carbonaceous aerosols could pose significant threats to biological tissues upon inhalation by local residents of the Paso del Norte. This study utilizes Black Carbon (BC) as a model for environmental UFPs and its effects on the immunological response. An in vitro approach is used to measure the ability of BC to promote cell death upon long-term exposure. Human epithelial lung cells (A549), human peripheral-blood monocytes (THP-1), murine macrophages (RAW264.7), and murine epithelial lung cells (LA-4) were treated with BC and assessed for metabolic activity after chronic exposure utilizing three distinct and independent cell viability assays. The cell viability experiments included a chronic study at 7, 10, and 14 days of UFP exposure at six different concentrations of

  11. Evaluation of combination therapy for Burkholderia cenocepacia lung infection in different in vitro and in vivo models.

    Directory of Open Access Journals (Sweden)

    Freija Van den Driessche

    Full Text Available Burkholderia cenocepacia is an opportunistic pathogen responsible for life-threatening infections in cystic fibrosis patients. B. cenocepacia is extremely resistant towards antibiotics and therapy is complicated by its ability to form biofilms. We investigated the efficacy of an alternative antimicrobial strategy for B. cenocepacia lung infections using in vitro and in vivo models. A screening of the NIH Clinical Collection 1&2 was performed against B. cenocepacia biofilms formed in 96-well microtiter plates in the presence of tobramycin to identify repurposing candidates with potentiator activity. The efficacy of selected hits was evaluated in a three-dimensional (3D organotypic human lung epithelial cell culture model. The in vivo effect was evaluated in the invertebrate Galleria mellonella and in a murine B. cenocepacia lung infection model. The screening resulted in 60 hits that potentiated the activity of tobramycin against B. cenocepacia biofilms, including four imidazoles of which econazole and miconazole were selected for further investigation. However, a potentiator effect was not observed in the 3D organotypic human lung epithelial cell culture model. Combination treatment was also not able to increase survival of infected G. mellonella. Also in mice, there was no added value for the combination treatment. Although potentiators of tobramycin with activity against biofilms of B. cenocepacia were identified in a repurposing screen, the in vitro activity could not be confirmed nor in a more sophisticated in vitro model, neither in vivo. This stresses the importance of validating hits resulting from in vitro studies in physiologically relevant model systems.

  12. Contribution of Neutrophils to Acute Lung Injury

    OpenAIRE

    Grommes, Jochen; Soehnlein, Oliver

    2010-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neut...

  13. Lung cancer

    International Nuclear Information System (INIS)

    Aisner, J.

    1985-01-01

    This book contains 13 chapters. Some of the chapter titles are: The Pathology of Lung Cancer; Radiotherapy for Non-Small-Cell Cancer of the Lung; Chemotherapy for Non-Small-Cell Lung Cancer; Immunotherapy in the Management of Lung Cancer; Preoperative Staging and Surgery for Non-Small-Cell Lung Cancer; and Prognostic Factors in Lung Cancer

  14. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice.

    Directory of Open Access Journals (Sweden)

    Di Jiang

    Full Text Available Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD. Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB. We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1 serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CAIKKβ with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+, but not transgene negative (Tg- mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.

  15. Formation of reactive oxygen species in rat epithelial cells upon ...

    Indian Academy of Sciences (India)

    In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the ...

  16. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    Science.gov (United States)

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  17. Ontogeny of pulmonary alveolar epithelial markers of differentiation.

    Science.gov (United States)

    Joyce-Brady, M F; Brody, J S

    1990-02-01

    We studied differentiation of the pulmonary epithelium in the periphery of fetal rat lung in vivo and in vitro by comparing the ontogeny of cell-surface glycoconjugates with that of surfactant phospholipids. Apical surface binding of the lectin Maclura pomifera agglutinin (MPA) and expression of a 200-kDa MPA-binding glycoprotein (MPA-gp200) was evident at 20 days gestation in type 2 cells, but did not correlate with ultrastructural features of type 2 cell differentiation. Epithelial cells isolated from peripheral lung of 18-day gestation fetal rats displayed hormone-sensitive surfactant synthesis prior to the hormone-insensitive expression of MPA-gp200. Expression of MPA-gp200 occurred in association with the appearance of many new apical surface proteins suggesting a hormone-independent process of polar membrane differentiation. Thus membrane and secretory differentiation are discordant and can be dissociated. In vivo binding of Ricinus communis 1 agglutinin (RCA1), an apical marker of the differentiated alveolar type 1 cell occurred in undifferentiated peripheral lung epithelial cells as early as 18 days gestation, disappeared from differentiating type 2 cells and appeared in differentiated type 1 cells. Both undifferentiated fetal epithelial cells at 18 days gestation and fully differentiated type 1 cells express multiple glycoproteins with terminal beta-linked galactose residues which bind RCA1. Some of these RCA1-binding glycoproteins appear to be similar. These observations suggest that alveolar epithelial type 1 cells may derive directly from undifferentiated peripheral lung epithelial cells as well as from fully differentiated type 2 cells. In addition, terminal differentiation of fetal lung peripheral epithelium into type 1 and type 2 cells may involve repression as well as induction of differentiation-related genes.

  18. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells.

    Science.gov (United States)

    O'Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A; Donnelly, Seamas C; Boylan, Denise; Marchal-Sommé, Joëlle; Kane, Rosemary; Keane, Michael P

    2015-09-15

    Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model

    International Nuclear Information System (INIS)

    Bumaschny, Viviana; Urtreger, Alejandro; Diament, Miriam; Krasnapolski, Martín; Fiszman, Gabriel; Klein, Slobodanka; Joffé, Elisa Bal de Kier

    2004-01-01

    The normal duct and lobular system of the mammary gland is lined with luminal and myoepithelial cell types. Although evidence suggests that myoepithelial cells might suppress tumor growth, invasion and angiogenesis, their role remains a major enigma in breast cancer biology and few models are currently available for exploring their influence. Several years ago a spontaneous transplantable mammary adenocarcinoma (M38) arose in our BALB/c colony; it contains a malignant myoepithelial cell component and is able to metastasize to draining lymph nodes and lung. To characterize this tumor further, primary M38 cultures were established. The low-passage LM38-LP subline contained two main cell components up to the 30th subculture, whereas the higher passage LM38-HP subline was mainly composed of small spindle-shaped cells. In addition, a large spindle cell clone (LM38-D2) was established by dilutional cloning of the low-passage MM38-LP cells. These cell lines were studied by immunocytochemistry, electron microscopy and ploidy, and syngeneic mice were inoculated subcutaneously and intravenously with the different cell lines, either singly or combined to establish their tumorigenic and metastatic capacity. The two subpopulations of LM38-LP cultures were characterized as luminal and myoepithelium-like cells, whereas LM38-HP was mainly composed of small, spindle-shaped epithelial cells and LM38-D2 contained only large myoepithelial cells. All of them were tumorigenic when inoculated into syngeneic mice, but only LM38-LP cultures containing both conserved luminal and myoepithelial malignant cells developed aggressive papillary adenocarcinomas that spread to lung and regional lymph nodes. The differentiated histopathology and metastatic ability of the spontaneous transplantable M38 murine mammary tumor is associated with the presence and/or interaction of both luminal and myoepithelial tumor cell types

  20. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors

    International Nuclear Information System (INIS)

    Bonde, Anne-Katrine; Tischler, Verena; Kumar, Sushil; Soltermann, Alex; Schwendener, Reto A

    2012-01-01

    Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT) at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM) reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells. We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized in vitro in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC). Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. In vitro, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade. Data presented here identify a novel role for macrophages in EMT

  1. Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry.

    Science.gov (United States)

    Cogle, Christopher R; Theise, Neil D; Fu, Dongtao; Ucar, Deniz; Lee, Sean; Guthrie, Steven M; Lonergan, Jean; Rybka, Witold; Krause, Diane S; Scott, Edward W

    2007-08-01

    Bone marrow cells have the capacity to contribute to distant organs. We show that marrow also contributes to epithelial neoplasias of the small bowel, colon, and lung, but not the skin. In particular, epithelial neoplasias found in patients after hematopoietic cell transplantations demonstrate that human marrow incorporates into neoplasias by adopting the phenotype of the surrounding neoplastic environment. To more rigorously evaluate marrow contribution to epithelial cancer, we employed mouse models of intestinal and lung neoplasias, which revealed specifically that the hematopoietic stem cell and its progeny incorporate within cancer. Furthermore, this marrow involvement in epithelial cancer does not appear to occur by induction of stable fusion. Whereas previous claims have been made that marrow can serve as a direct source of epithelial neoplasia, our results indicate a more cautionary note, that marrow contributes to cancer as a means of developmental mimicry. Disclosure of Potential Conflicts of Interest is found at the end of this article.

  2. Pathogenic mechanism in lung fibrosis

    International Nuclear Information System (INIS)

    Witschi, H.; Haschek, W.M.; Meyer, K.R.; Ullrich, R.L.; Dalbey, W.E.

    1979-01-01

    The purpose of the study was to examine whether an interaction between two agents causing alveolar epithelial damage would produce lung fibrosis. In mouse lung, intraperitoneal injection of the antioxidant butylated hydroxytoluene causes diffuse alveolar type I cell necrosis, followed by proliferation of type II alveolar cells. In animals exposed to 70% O 2 or 100-200 rad x rays during the phase of type II cell proliferation following BHT, diffuse interstitial lung fibrosis developed within 2 weeks. Quantitative analysis of the lungs for hydroxyproline showed that the interaction between BHT and O 2 or x rays was synergistic. If exposure to O 2 or x rays was delayed until epithelial recovery was complete, no fibrosis was seen. Abnormally high levels of lung collagen persisted up to 6 months after one single treatment with BHT and 100 rad x rays. A commonly seen form of chronic lung damage may thus be caused by an acute interaction between a bloodborne agent which damages the alveolar cell and a toxic inhalant or x rays, provided a critically ordered sequence of exposure is observed

  3. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  4. Lung Emergencies

    Science.gov (United States)

    ... The Marfan Foundation Marfan & Related Disorders What is Marfan Syndrome? What are Related Disorders? What are the Signs? ... Emergencies Lung Emergencies Surgeries Lung Emergencies People with Marfan syndrome can be at increased risk of sudden lung ...

  5. Nutrition for Lung Cancer

    Science.gov (United States)

    ... Become An Advocate Volunteer Ways To Give Lung Cancer www.lung.org > Lung Health and Diseases > Lung Disease Lookup > ... Cancer Learn About Lung Cancer What Is Lung Cancer Lung Cancer Basics Causes & Risk Factors Lung Cancer Staging ...

  6. Characterization of rat lung ICAM-1

    DEFF Research Database (Denmark)

    Beck-Schimmer, B; Schimmer, R C; Schmal, H

    1998-01-01

    studies, rat pulmonary artery endothelial cells (RPAEC), rat alveolar macrophages and aortic rings were stimulated (as described below) and evaluated for ICAM-1 expression. TREATMENT: RPAEC and macrophages were stimulated with lipopolysaccharide (LPS) and recombinant murine tumour necrosis factor alpha...... peaked at 4 h, while lung ICAM- I protein peaked at 6 h. CONCLUSIONS: Quantitation of ICAM-1 expression in vitro and in vivo suggests that ICAM-1 plays a central role in two lung inflammatory models. Furthermore, lung ICAM-1 upregulation involves at least two cell types: vascular endothelial cells...

  7. Molecular characterization of murine models of squamous carcinomas of preclinical application

    International Nuclear Information System (INIS) </