WorldWideScience

Sample records for murine leukemic lymphoblast

  1. Radiobiological heterogeneity of leukemic lymphocyte precursors from acute lymphoblastic leukemia patients

    International Nuclear Information System (INIS)

    Uckun, F.M.; Kim, T.H.; Ramsay, N.C.; Min, W.S.; Song, C.W.

    1989-01-01

    The report outlines the authors' findings on the radiobiological features of leukemic lymphocyte precursors from acute lymphoblastic leukemia (ALL) patients. A marked heterogeneity existed between different cell lines, with a remarkable radioresistance and repair capacity in some ALL patients and an acute radiosensitivity in the absence of a detectable repair capacity in others. (U.K.)

  2. Nature of leukemic stem cells in murine myelogenous leukemia

    International Nuclear Information System (INIS)

    Yoshida, K.; Nemoto, K.; Nishimura, M.; Hayata, I.; Inoue, T.; Seki, M.

    1986-01-01

    We investigated the nature of myelogenous leukemic stem cells in mice. L-8057, a megakaryoblastic leukemia cell line used in this study, produces in vivo and in vitro colonies. By means of typical chromosomal aberrations in L-8057, one can conveniently detect the origin of the cells in each colony derived from a leukemic stem cell. Direct evidence of whether cells from each colony had leukemogenicity in recipient mice was successfully obtained by the colony transplantation assay. Both leukemic colony-forming unit-spleen (L-CFU-s) and leukemic colony-forming unit-culture (L-CFU-c) in L-8057 may have belonged to the same differentiating stage in the stem cells because of their similar radiosensitivity, although some parts of the L-CFU of L-8057 seemed to have lost their capability to regenerate L-CFU-s when the cells were plated in dishes. This leukemic stem cell preserves high self-renewal ability in vitro after 10 passages. In addition, in vitro colony formation by this leukemic cell during the above course of serial passages did not require any additional exogenous stimulators. The same sort of trials have been made on other types of leukemias. Leukemic stem cells showed remarkable variety in their response to stimulating factors and in their self-renewal activity, which suggests that they may have consisted of heterogeneous populations

  3. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  4. Profound radiosensitivity in leukemic T-cell lines and T-cell-type acute lymphoblastic leukemia demonstrated by sodium [51Cr]chromate labeling

    International Nuclear Information System (INIS)

    Nakazawa, S.; Minowada, J.; Tsubota, T.; Sinks, L.F.

    1978-01-01

    Radiation sensitivity was determined by measuring spontaneous release from 51 Cr-labeled cells in various lymphoid cell populations. Among six leukemia T-cell lines originating from acute lymphoblastic leukemia, four such lines were found to be highly radiosensitive. In contrast, two of the leukemic T-cell lines and four normal control B-cell lines were not radiosensitive. Thymocytes from six patients and leukemia T-cell blasts from three patients with T-cell leukemia were likewise found to be highly radiosensitive, whereas leukemic blasts from six patients with null-cell (non-T, non-B-cell) acute lymphoblastic leukemia were not radiosensitive. Normal peripheral blood lymphocytes and mitogen-induced normal lymphoblasts were found not to be radiosensitive. The results indicate that measurement of the radiation sensitivity of acute leukemic blasts may have a therapeutic significance in coping with the heterogeneous nature of individual leukemia cases

  5. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods

    DEFF Research Database (Denmark)

    Obro, Nina F; Ryder, Lars P; Madsen, Hans O

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring...... clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and....../or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative...

  6. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013

  7. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    International Nuclear Information System (INIS)

    Santos, Nuno R. dos; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T.

    2010-01-01

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL

  8. NF-κB in T-cell Acute Lymphoblastic Leukemia: Oncogenic Functions in Leukemic and in Microenvironmental Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nuno R. dos, E-mail: nrsantos@ualg.pt; Ghezzo, Marinella N.; Silva, Ricardo C. da; Fernandes, Mónica T. [IBB-Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-11-05

    Two main NF-κB signaling pathways, canonical and noncanonical, performing distinct functions in organisms have been characterized. Identification of mutations in genes encoding components of these NF-κB signaling pathways in lymphoid malignancies confirmed their key role in leukemogenesis. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes that despite significant therapeutic advances can still be fatal. Although mutations in NF-κB genes have not been reported in T-ALL, NF-κB constitutive activation in human T-ALL and in acute T-cell leukemia mouse models has been observed. Although these studies revealed activation of members of both canonical and noncanonical NF-κB pathways in acute T-cell leukemia, only inhibition of canonical NF-κB signaling was shown to impair leukemic T cell growth. Besides playing an important pro-oncogenic role in leukemic T cells, NF-κB signaling also appears to modulate T-cell leukemogenesis through its action in microenvironmental stromal cells. This article reviews recent data on the role of these transcription factors in T-ALL and pinpoints further research crucial to determine the value of NF-κB inhibition as a means to treat T-ALL.

  9. Hematopoietic stem cells can be separated from leukemic cells in a subgroup of adult acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Wang, Wenwen; Foerner, Elena; Buss, Eike; Jauch, Anna; Eckstein, Volker; Wuchter, Patrick; Ho, Anthony D; Lutz, Christoph

    2017-06-01

    In B-cell acute lymphoblastic leukemia (B-ALL) separation of normal hematopoietic stem cells (HSC) has so far been limited to a subgroup of patients. As aldehyde dehydrogenase (ALDH)-activity is enriched in various stem cells we investigated its value for HSC isolation in adult B-ALL. Based on ALDH-activity patients could be stratified in ALDH-numerous (≥1.9% ALDH +  cells) and ALDH-rare (cells) cases. In ALDH-rare B-ALL clonal-marker negative HSC could be separated by the CD34 + CD38 - ALDH +  phenotype, whereas this separation was not possible in ALDH-numerous B-ALL. Functional analysis confirmed the HSC-potential of isolated cells, which were uniformly CD19-negative. However, addition of ALDH-activity further improved HSC-purity. In summary, we provide a method to separate functionally normal HSC from leukemic cells in a subgroup of B-ALL patients that can be identified prospectively. This protocol thereby facilitates comparative analyses of matched HSC and leukemic cells in order to improve our understanding of leukemia evolution.

  10. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods.

    Science.gov (United States)

    Øbro, Nina F; Ryder, Lars P; Madsen, Hans O; Andersen, Mette K; Lausen, Birgitte; Hasle, Henrik; Schmiegelow, Kjeld; Marquart, Hanne V

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and/or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative immunophenotype and antigen modulation) that highlight important methodological pitfalls. These findings demonstrate that with sufficient experience, flow cytometry is reliable for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia, although rare cases require supplementary PCR-based monitoring.

  11. Defective quorum sensing of acute lymphoblastic leukemic cells: evidence of collective behavior of leukemic populations as semi-autonomous aberrant ecosystems

    Science.gov (United States)

    Patel, Sapan J; Dao, Su; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Quorum sensing (QS) is a generic term used to describe cell-cell communication and collective decision making by bacterial and social insects to regulate the expression of specific genes in controlling cell density and other properties of the populations in response to nutrient supply or changes in the environment. QS mechanisms also have a role in higher organisms in maintaining homeostasis, regulation of the immune system and collective behavior of cancer cell populations. In the present study, we used a p190BCR-ABL driven pre-B acute lymphoblastic leukemia (ALL3) cell line derived from the pleural fluid of a terminally ill patient with ALL to test the QS hypothesis in leukemia. ALL3 cells don’t grow at low density (LD) in liquid media but grow progressively faster at increasingly high cell densities (HD) in contrast to other established leukemic cell lines that grow well at very low starting cell densities. The ALL3 cells at LD are poised to grow but shortly die without additional stimulation. Supernates of ALL3 cells (HDSN) and some other primary cells grown at HD stimulate the growth of the LD ALL3 cells without which they won’t survive. To get further insight into the activation processes we performed microarray analysis of the LD ALL3 cells after stimulation with ALL3 HDSN at days 1, 3, and 6. This screen identified several candidate genes, and we linked them to signaling networks and their functions. We observed that genes involved in lipid, cholesterol, fatty acid metabolism, and B cell activation are most up- or down-regulated upon stimulation of the LD ALL3 cells using HDSN. We also discuss other pathways that are differentially expressed upon stimulation of the LD ALL3 cells. Our findings suggest that the Ph+ ALL population achieves dominance by functioning as a collective aberrant ecosystem subject to defective quorum-sensing regulatory mechanisms. PMID:27429840

  12. Apoptosis induction by Maackia amurensis agglutinin in childhood acute lymphoblastic leukemic cells

    DEFF Research Database (Denmark)

    Kapoor, Sarika; Marwaha, Ram; Majumdar, Siddhartha

    2007-01-01

    acute lymphoblastic leukemia (ALL) as compared to cells from children with non-hematological disorders ("Controls"). MAA recognized a 66 kDa sialoglycoprotein present in membrane fraction of ALL cells. Moreover, MAA induced apoptosis in ALL cells was found to be reduced significantly in presence of GM2...

  13. Proteoglycan biosynthesis in murine monocytic leukemic (M1) cells before and after differentiation

    International Nuclear Information System (INIS)

    McQuillan, D.J.; Yanagishita, M.; Hascall, V.C.; Bickel, M.

    1989-01-01

    Murine monocytic leukemic (M1) cells were cultured in the presence of [ 3 H]glucosamine and [ 35 S]sulfate. Labeled proteoglycans were purified by anion exchange chromatography and characterized by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with chemical and enzymatic degradation. M1 cells synthesize a single predominant species of proteoglycan which distributes almost equally between the cell and medium after 17 h labeling. The cell-associated proteoglycan has an overall size of about 135 kDa and contains three to five chondroitin sulfate chains (28-31 kDa each) attached to a chondroitinase-generated core protein of 28 kDa. The synthesis and subsequent secretion of this proteoglycan was enhanced 4-5-fold in cells induced to differentiate into macrophages. This was not a phenomenon of arrest in the G0/G1 stage of the cell cycle, since density inhibited undifferentiated cells arrested at this stage did not increase proteoglycan synthesis. The chondroitin sulfate chains contained exclusively chondroitin 4- and 6-sulfate; however, the ratio of these two disaccharides differed between the medium- and cell-associated proteoglycans, and changed during progression of the cells into a fully differentiated phenotype. Pulse-chase kinetics indicate the presence of two distinct pools of proteoglycan; one that is secreted very rapidly from the cell after a approximately 1-h lag, and a second pool that is turned over in the cell with a half-time of approximately 3.5 h. Subtle differences in the glycosylation patterns of the medium- and cell-associated species are consistent with synthesis of two pools. Papain digestion suggests that the chondroitin sulfate chains are clustered on a small protease resistant peptide. The data suggest that this proteoglycan is similar to the serglycin proteoglycan family

  14. [Effects of PCI-32765 and Dasatinib on the Acute Lymphoblastic Leukemic Cells and Their Mechanisms].

    Science.gov (United States)

    Deng, Yuan; Tao, Shan-Dong; Zhang, Xin; Ma, Jing-Jing; He, Zheng-Mei; Chen, Yue; Deng, Zhi-Kui; Yu, Liang

    2017-02-01

    To investigate the effects of Btk inhibitor (PCI-32765) and BCR-ABL tyrosine kinase inhibitor (Dasatinib) on proliferation and apoptosis of acute lymphoblastic leukemia (ALL) cell lines (Sup-B15, RS4;11) and the possible mechanism. RS4;11 and Sup-B15 cells were treated with PCI-32765 and Dasatinib, the cell proliferation and apoptosis were detected by CCK-8, the Btk and other apoptotic proteins were detected by Western blot. PCI-32765 could inhibit the proliferation of RS4;11 and Sup-B15 cells in a dose-dependent manner, Sup-B15 cells were more sensitive to PCI-32765 than RS4;11 cells, their IC 50 were 3 µmol/L and 8 µmol/L respectively, the difference between them was statistically significant (PPCI-32765(PPCI-32765 or Dasatinib alone group and the combination group at the different time-point (8, 12, 24, 36, 48 and 72 h), the 2 drugs showed a synergistic effect on cells in a time-dependent manner. After being treated with PCI-32765 and Dasatinib, the RS4;11 and Sup-B15 cells showed that cell shrinkage, increase of cytoplasmic density, nuclear pyknosis, deviation and karyorrhexis, and increase of the apoptotic cells in the combination group, while the promotive effect of low dosage dasatinib on apoptosis of RS4;11 cells was not strong. PCI-32765 and Dasatinib could decrease the expression and activity of BCR-ABL, Btk, Lyn, Src in Sup-B15 and RS4;11 cells. PCI-32765 or Dasatinib can inhibit the proliferation and induce the apoptosis of Sup-B15 and RS4;11 cells, PCI-32765 and Dasatinib displayed the synergistic effects. The possible mechanism may be related with the blocking of B cell receptor(BCR) signal pathway, thereby inhibiting the cell proliferation and promoting the cell apoptosis.

  15. Properties of murine leukemia viruses produced by leukemic cells established from NIH Swiss mice with radiation-induced leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Okumoto, Masaaki; Nishikawa, Ryosuke; Takamori, Yasuhiko; Iwai, Yoshiaki; Iwai, Mineko [Radiation Center of Osaka Prefecture, Sakai (Japan); Imai, Shunsuke; Morimoto, Junji; Tsubura, Yoshihiko

    1984-06-01

    Three leukemic cell lines, designated NIH-RL1, NIH-RL2 and NFS-RL1, were established from spleen and thymuses of NIH Swiss and NFS mice with radiation-induced leukemia. The culture fluids of these cell lines contained RNA-dependent DNA polymerase (RDDP) activities associated with particles of buoyant density of 1.15-1.17 (g/cm/sup 3/). The divalent cation reqirement of these enzymes was characteristic for that of murine leukemia viruses. In competition radioimmunoassay, a major core protein, p30, was detected in culture fluid of each leukemic cell line. Competition curves of viral p30 produced by these cell lines revealed that these viruses were very similar to those of xenotropic viruses of NZB mice. These viruses were undetectable both by XC plaque assay using SC-1 cells as an indicator cell, and by mink S/sup +/L/sup -/ focus induction assay. These viruses also lacked productive infectivity to mink lung cells (CCL-64), and were nononcogenic in syngeneic mice when the viruses were intrathymically inoculated.

  16. Cyclopentenyl cytosine induces apoptosis and increases cytarabine-induced apoptosis in a T-lymphoblastic leukemic cell-line

    NARCIS (Netherlands)

    Verschuur, A. C.; Brinkman, J.; van Gennip, A. H.; Leen, R.; Vet, R. J.; Evers, L. M.; Voûte, P. A.; van Kuilenburg, A. B.

    2001-01-01

    Cyclopentenyl cytosine (CPEC) is a nucleoside-analogue that decreases the concentrations of cytidine triphosphate (CTP) and deoxycytidine triphosphate (dCTP) in leukemic cells by inhibiting the enzyme CTP synthetase, resulting in a decreased synthesis of RNA and DNA. Low concentrations of dCTP

  17. Leukemic blasts are present at low levels in spinal fluid in one-third of childhood acute lymphoblastic leukemia cases

    DEFF Research Database (Denmark)

    Levinsen, Mette; Marquart, Hanne V; Groth-Pedersen, Line

    2016-01-01

    BACKGROUND: Central nervous system (CNS) involvement is associated with relapse in childhood acute lymphoblastic leukemia (ALL) and is a diagnostic challenge. PROCEDURE: In a Nordic/Baltic prospective study, we assessed centralized flow cytometry (FCM) of locally fixed cerebrospinal fluid (CSF......: 45 × 10(9) /l vs. 10 × 10(9) /l, P diagnosis remained so despite at least two doses...

  18. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  19. Quantitative assay for the number of leukemic spleen colony forming unit in radiation-induced murine myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Nara, N [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Bessho, M

    1981-11-01

    In mice with myelogenous leukemia, leukemic spleen colony forming units were assayed quantitatively. When 5 x 10/sup 3/ - 2 x 10/sup 4/ leukemic cells were transplanted to other mice of the same strain, a rectilinear relationship (p < 0.01) was found between the number of the cells transplanted and that of the colonies formed on the surface of the spleen. From these results, the authors considered that myelogenous leukemia in mice is an adequate model for acute myelogenous leukemia in human adults, and that the quantitative assay of the leukemic colony forming units can be used for sensitivity tests of antileukemic agents.

  20. Novel quinazolinone MJ-29 triggers endoplasmic reticulum stress and intrinsic apoptosis in murine leukemia WEHI-3 cells and inhibits leukemic mice.

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Lu

    Full Text Available The present study was to explore the biological responses of the newly compound, MJ-29 in murine myelomonocytic leukemia WEHI-3 cells in vitro and in vivo fates. We focused on the in vitro effects of MJ-29 on ER stress and mitochondria-dependent apoptotic death in WEHI-3 cells, and to hypothesize that MJ-29 might fully impair the orthotopic leukemic mice. Our results indicated that a concentration-dependent decrease of cell viability was shown in MJ-29-treated cells. DNA content was examined utilizing flow cytometry, whereas apoptotic populations were determined using annexin V/PI, DAPI staining and TUNEL assay. Increasing vital factors of mitochondrial dysfunction by MJ-29 were further investigated. Thus, MJ-29-provaked apoptosis of WEHI-3 cells is mediated through the intrinsic pathway. Importantly, intracellular Ca(2+ release and ER stress-associated signaling also contributed to MJ-29-triggered cell apoptosis. We found that MJ-29 stimulated the protein levels of calpain 1, CHOP and p-eIF2α pathways in WEHI-3 cells. In in vivo experiments, intraperitoneal administration of MJ-29 significantly improved the total survival rate, enhanced body weight and attenuated enlarged spleen and liver tissues in leukemic mice. The infiltration of immature myeloblastic cells into splenic red pulp was reduced in MJ-29-treated leukemic mice. Moreover, MJ-29 increased the differentiations of T and B cells but decreased that of macrophages and monocytes. Additionally, MJ-29-stimulated immune responses might be involved in anti-leukemic activity in vivo. Based on these observations, MJ-29 suppresses WEHI-3 cells in vitro and in vivo, and it is proposed that this potent and selective agent could be a new chemotherapeutic candidate for anti-leukemia in the future.

  1. Leukemic meningitis involving the cauda equina: a case report

    International Nuclear Information System (INIS)

    Lee, Dong Hyun; Kim, Ho Kyun; Lee, Young Hwan

    2008-01-01

    The CNS involvement by leukemia may either be meningeal or parenchymal, although meningeal infiltration of leukemic cells, known as leukemic meningitis is more common. We report a case of leukemic meningitis involving the cauda equina in a patient with an acute lymphoblastic crisis which transformed from the chronic phase of chronic myeloid leukemia. An MR image revealed diffuse enlargement and peripheral ring enhancement of the nerve roots of the cauda equina

  2. Leukemic meningitis involving the cauda equina: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyun; Kim, Ho Kyun; Lee, Young Hwan [School of Medicine, Catholic University of Daegu, Daegu (Korea, Republic of)

    2008-07-15

    The CNS involvement by leukemia may either be meningeal or parenchymal, although meningeal infiltration of leukemic cells, known as leukemic meningitis is more common. We report a case of leukemic meningitis involving the cauda equina in a patient with an acute lymphoblastic crisis which transformed from the chronic phase of chronic myeloid leukemia. An MR image revealed diffuse enlargement and peripheral ring enhancement of the nerve roots of the cauda equina.

  3. Leukemic cell labeling with indium-111-oxine

    International Nuclear Information System (INIS)

    Uchida, T.; Takagi, Y.; Matsuda, S.; Yui, T.; Ishibashi, T.; Kimura, H.; Kariyone, S.

    1984-01-01

    Leukemic cells were labeled with In-111-oxine in patients with acute leukemia. In vitro labeling studies revealed that labeling efficiency reached maximum 80.8 +- 3.6% (mean +- 1SD) by 2 times washes after 20 minutes incubation time. Cell viability was assessed by trypan blue exclusion test and in vitro culture of leukemic cells, which showed no cellular damage during labeling procedure. Elution of In-111 from the labeled cells was 10.0 +- 1.2% at 12 hours after labeling. For in vivo leukemic cell kinetic studies, more than 10/sup 8/ leukemic cells separated from Ficoll-Hypacque sedimentation were labeled by 30 minutes of In-111-oxine incubation and two times washes at 37 0 C. In vivo studies were performed in 7 patients with acute myeloblastic, lymphoblastic leukemia and blastic crisis of chronic myelocytic leukemia. Labeled leukemic cells disappeared in single exponential fashion with half life of 9.6 to 31.8 hours. Total leukemic cell pool in peripheral circulation was calculated, which correlated well with peripheral leukemic cell counts (r=0.99). No relationship was observed between total leukemic cell pool and leukemic cell turnover rate. Migration patterns of labeled leukemic cells showed that pulmonary uptake was evident within 15 minutes after the infusion and returned to base-line. Splenic and hepatic uptake showed gradual increase up to 24 hours. Bone marrow accumulation was shown only in 2 cases. Presently, there are no suitable radionuclides for leukemic cell labeling. In-111-oxine labeled leukemic cells would overcome this difficulty

  4. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    Science.gov (United States)

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  5. Leukemic transformation of donor spleen cells following their transplantation into supralethally irradiated mice with pre-existing viral leukemia. [X Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnert, P M; OKunewick, J P; Erhard, P

    1974-01-01

    Fialkow et al. previously reported leukemia induction in donor-type cells after treating patients for acute lymphoblastic leukemia with total-body irradiation and hematopoietic cell transplantation. Utilizing a murine model and paralleling their treatment protocol, we have documented that induction of leukemia can occur in normal donor cells transplanted into Rauscher viral leukemic mice at 0, 1 and 2 days after irradiation. The induction of leukemia in the grafted cells was verified by: the occurrence of splenomegaly; and secondary spleen cell transplants, whereby the secondary donors were transplanted mice still alive at 30 days and the secondary recipients were normal unirradiated mice. The spleen weights of the grafted leukemic mice were found to be significantly greater than those of the controls and all secondary recipients that received spleen cells from the primary grafted leukemic mice also died of leukemia. Verification that the regenerating hematopoietic tissue was from donor (males) and not host source (females) was accomplished by spleen chromosome preparations taken from randomly selected mice at 14 and at 30 days after cell transplantation. In these preparations, the Y chromosome was clearly distinguishable on the basis of size, shape, and differential staining. The data indicate that induction of leukemia after whole-body irradiation and hematopoietic cell transplantation can occur in immunologically matched donor cells when a viral agent is present and that the incidence of this induction is not affected by a time delay between irradiation and transplant.

  6. Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia

    NARCIS (Netherlands)

    A. Holleman (Amy); M.L. den Boer (Monique); K.M. Kazemier (Karin); G.E. Janka-Schaub (Gritta); R. Pieters (Rob)

    2003-01-01

    textabstractResistance of leukemic cells to chemotherapeutic agents is associated with an unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate the underlying mechanisms of cellular drug resistance, the activation of various apoptotic parameters in

  7. Leukemic optic neuropathy.

    Science.gov (United States)

    Brown, G C; Shields, J A; Augsburger, J J; Serota, F T; Koch, P

    1981-03-01

    The clinical course and ophthalmic manifestations of an eight year old child with acute undifferentiated leukemia and unilateral blindness secondary to leukemic optic nerve head infiltration are described. At autopsy the involved nerve head and peripapillary retina demonstrated massive leukemic cell infiltration and hemorrhagic necrosis. This manifestation of leukemia is quite uncommon and prognosis for life in such cases is poor with existing methods of therapy.

  8. Novel cytotoxic exhibition mode of antimicrobial peptide anoplin in MEL cells, the cell line of murine Friend leukemia virus-induced leukemic cells.

    Science.gov (United States)

    Zhu, Li-Na; Fu, Cai-Yun; Zhang, Shi-Fu; Chen, Wei; Jin, Yuan-Ting; Zhao, Fu-Kun

    2013-09-01

    Anoplin is a recently discovered antimicrobial peptide (AMP) isolated from the venom sac of the spider wasp Anoplius samariensis, and it is one of the shortest α-helical AMP found naturally to date consisting of only ten amino acids. Previous results showed that anoplin exhibits potent antimicrobial activity but little hemolytic activity. In this study, we synthesized anoplin, studied its cytotoxicity in Friend virus-induced leukemia cells [murine erythroleukemia (MEL) cells], and proposed its possible mechanism. Our results showed that anoplin could inhibit the proliferation of MEL cells in a dose-dependent and time-dependent manner via disrupting the integrity of cell membrane, which indicated that anoplin exerts its cytotoxicity efficacy. In addition, the cell cycle distribution of MEL cells was arrested in the G₀/G₁ phase significantly. However, anoplin could not induce obvious apoptosis in MEL cells, as well as anoplin could not induce visible changes on morphology and quantity in the bone marrow cells isolated from normal mice. All of these results indicate that anoplin, as generally believed, is a selective AMP, a value characteristic in the design of safe therapeutic agents. The cytotoxicity of anoplin on MEL cells was mainly attributable to the plasma membrane perturbation and also to the intracellular events such as the arrest of cell cycle. Although this is an initial study that explored the activity of anoplin in vitro rather than in vivo, with the increasing resistance of conventional chemotherapy, there is no doubt that anoplin has desirable feature to be developed as a novel and selective anticancer agent. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  9. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; van Noorden, Cornelis J. F.; Carraway, Hetty E.; Maciejewski, Jaroslaw P.; Molenaar, Remco J.

    2017-01-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are

  10. Normal and Leukemic Hematopoiesis

    NARCIS (Netherlands)

    Vercauteren, Suzanne Maria

    2003-01-01

    Acute Myeloid Leukemia (AML) is a clonal myeloproliferative disease characterized by an uncontrolled proliferation and block in differentiation of myeloid committed blood cells in the bone marrow. Despite the lack of mature cells derived from the leukemic clone in the majority of AML patients, AML

  11. An antigen shared by human granulocytes, monocytes, marrow granulocyte precursors and leukemic blasts.

    Science.gov (United States)

    Shumak, K H; Rachkewich, R A

    1983-01-01

    An antibody to human granulocytes was raised in rabbits by immunization with granulocytes pretreated with rabbit antibody to contaminating antigens. The antibody reacted not only with granulocytes but also with monocytes and bone marrow granulocyte precursors including colony-forming units in culture (CFU-C). In tests with leukemic cells, the antibody reacted with blasts from most (8 of 9) patients with acute myelomonoblastic leukemia and from some patients with acute myeloblastic leukemia, morphologically undifferentiated acute leukemia and chronic myelogenous leukemia in blast crisis. The antibody did not react with blasts from patients with acute lymphoblastic leukemia nor with leukemic cells from patients with chronic lymphocytic leukemia.

  12. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration

    Science.gov (United States)

    Dias, Sergio; Hattori, Koichi; Zhu, Zhenping; Heissig, Beate; Choy, Margaret; Lane, William; Wu, Yan; Chadburn, Amy; Hyjek, Elizabeth; Gill, Muhammad; Hicklin, Daniel J.; Witte, Larry; Moore, M.A.S.; Rafii, Shahin

    2000-01-01

    Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF165 induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF165 also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF165-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation. PMID:10953026

  13. Limiting-dilution analysis for the determination of leukemic cell frequencies after bone marrow decontamination with mafosfamide or merocyanine 540

    International Nuclear Information System (INIS)

    Porcellini, A.; Talevi, N.; Marchetti-Rossi, M.T.; Palazzi, M.; Manna, A.; Sparaventi, G.; Delfini, C.; Valentini, M.

    1987-01-01

    To stimulate a leukemia remission marrow, cell suspensions of normal human bone marrow were mixed with human acute lymphoblastic or myelogenous leukemic cells of the CCRF-SF, Nalm-6, and K-562 lines. The cell mixtures were incubated in vitro with mafosfamide (AZ) or with the photoreactive dye merocyanine 540 (MC-540). A quantity of 10(4) cells of the treated suspensions was dispensed into microculture plates, and graded cell numbers of the line used to contaminate the normal marrow were added. Limiting-dilution analysis was used to estimate the frequency of leukemia cells persisting after treatment with the decontaminating agents. Treatment with AZ or MC-540 produced a total elimination (ie, 6 logs or 5.3 logs respectively) of B cell acute leukemia cells (CCRF-SB), whereas nearly 1.7 logs and 2 logs of K-562 acute myelogenous blasts were still present in the cell mixtures after treatment with MC-540 and AZ, respectively. Treatment of the Nalm-6-contaminated cell mixtures with AZ resulted in 100% elimination of clonogenic cells, whereas nearly 80% decontamination was obtained with MC-540. Our results suggest that treatment with AZ could be an effective method of eliminating clonogenic tumor cells from human bone marrow. MC-540, shown by previous studies to spare sufficient pluripotential stem cells to ensure hemopoietic reconstitution in the murine model and in clinical application, has comparable effects and merits trials for possible clinical use in autologous bone marrow transplantation

  14. Limiting-dilution analysis for the determination of leukemic cell frequencies after bone marrow decontamination with mafosfamide or merocyanine 540

    Energy Technology Data Exchange (ETDEWEB)

    Porcellini, A.; Talevi, N.; Marchetti-Rossi, M.T.; Palazzi, M.; Manna, A.; Sparaventi, G.; Delfini, C.; Valentini, M.

    1987-11-01

    To stimulate a leukemia remission marrow, cell suspensions of normal human bone marrow were mixed with human acute lymphoblastic or myelogenous leukemic cells of the CCRF-SF, Nalm-6, and K-562 lines. The cell mixtures were incubated in vitro with mafosfamide (AZ) or with the photoreactive dye merocyanine 540 (MC-540). A quantity of 10(4) cells of the treated suspensions was dispensed into microculture plates, and graded cell numbers of the line used to contaminate the normal marrow were added. Limiting-dilution analysis was used to estimate the frequency of leukemia cells persisting after treatment with the decontaminating agents. Treatment with AZ or MC-540 produced a total elimination (ie, 6 logs or 5.3 logs respectively) of B cell acute leukemia cells (CCRF-SB), whereas nearly 1.7 logs and 2 logs of K-562 acute myelogenous blasts were still present in the cell mixtures after treatment with MC-540 and AZ, respectively. Treatment of the Nalm-6-contaminated cell mixtures with AZ resulted in 100% elimination of clonogenic cells, whereas nearly 80% decontamination was obtained with MC-540. Our results suggest that treatment with AZ could be an effective method of eliminating clonogenic tumor cells from human bone marrow. MC-540, shown by previous studies to spare sufficient pluripotential stem cells to ensure hemopoietic reconstitution in the murine model and in clinical application, has comparable effects and merits trials for possible clinical use in autologous bone marrow transplantation.

  15. Migration of acute lymphoblastic leukemia cells into human bone marrow stroma.

    Science.gov (United States)

    Makrynikola, V; Bianchi, A; Bradstock, K; Gottlieb, D; Hewson, J

    1994-10-01

    Most cases of acute lymphoblastic leukemia (ALL) arise from malignant transformation of B-cell precursors in the bone marrow. Recent studies have shown that normal and leukemic B-cell precursors bind to bone marrow stromal cells through the beta-1 integrins VLA-4 and VLA-5, thereby exposing early lymphoid cells to regulatory cytokines. It has been recently reported that the pre-B cell line NALM-6 is capable of migrating under layers of murine stromal cells in vitro (Miyake et al. J Cell Biol 1992;119:653-662). We have further analyzed leukemic cell motility using human bone marrow fibroblasts (BMF) as a stromal layer. The precursor-B ALL cell line NALM-6 rapidly adhered to BMF, and underwent migration or tunneling into BMF layers within 5 h, as demonstrated by light and electron microscopy, and confirmed by a chromium-labeling assay. Migration was also observed with the precursor-B ALL lines Reh and KM-3, with a T leukemia line RPMI-8402, the monocytic line U937, and the mature B line Daudi. In contrast, mature B (Raji), myeloid (K562, HL-60), and T lines (CCRF-CEM, MOLT-4) did not migrate. When cases of leukemia were analyzed, BMF migration was largely confined to precursor-B ALL, occurring in eight of 13 cases tested. Of other types of leukemia, migration was observed in one of four cases of T-ALL, but no evidence was seen in six acute myeloid leukemias and two patients with chronic lymphocytic leukemia. Only minimal migration into BMF was observed with purified sorted CD10+ CD19+ early B cells from normal adult marrow, while normal mature B lymphocytes from peripheral blood did not migrate. ALL migration was inhibited by monoclonal antibodies to the beta sub-unit of the VLA integrin family, and by a combination of antibodies to VLA-4 and VLA-5. Partial inhibition was also observed when leukemic cells were incubated with antibodies to VLA-4, VLA-5, or VLA-6 alone. In contrast, treatment of stromal cells with antibodies to vascular cell adhesion molecule or

  16. Mediastinal involvement in adults with lymphoblastic lymphoma

    International Nuclear Information System (INIS)

    Schwartz, E.E.; Conroy, J.F.; Bonner, H.; Hahnemann Univ. Hospital, Philadelphia, PA; Hahnemann Univ. Hospital, Philadelphia, PA; Chester County Hospital, West Chester, PA

    1987-01-01

    Radiologic, clinical, and pathologic findings are described in 6 young adults with lymphoblastic lymphoma (LBL), an aggressive tumor which has recently become recognized as a serious threat to adults as well as to children. Each patient presented with a mediastinal mass, three of them developing cardiac tamponade and one a superior vena cava syndrome. CT scanning and echocardiography were particularly helpful in defining the lesions. The rapid dissemination of LBL, and its early progression to a leukemic phase call for promt diagnosis and treatment. (orig.)

  17. Mediastinal involvement in adults with lymphoblastic lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, E.E.; Conroy, J.F.; Bonner, H.

    Radiologic, clinical, and pathologic findings are described in 6 young adults with lymphoblastic lymphoma (LBL), an aggressive tumor which has recently become recognized as a serious threat to adults as well as to children. Each patient presented with a mediastinal mass, three of them developing cardiac tamponade and one a superior vena cava syndrome. CT scanning and echocardiography were particularly helpful in defining the lesions. The rapid dissemination of LBL, and its early progression to a leukemic phase call for promt diagnosis and treatment.

  18. Optic nerve infiltration by acute lymphoblastic leukemia: MRI contribution

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Maria de Fatima; Braga, Flavio Tulio [Federal University of Sao Paulo, Department of Diagnostic Imaging, Paulista School of Medicine, Sao Paulo (Brazil); Rocha, Antonio Jose da [Santa Casa de Misericordia de Sao Paulo, Servico de Diagnostico por Imagem, Sao Paulo (Brazil); Lederman, Henrique Manoel [Federal University of Sao Paulo, Division of Diagnostic Imaging in Pediatrics, Department of Diagnostic Imaging, Sao Paulo (Brazil)

    2005-08-01

    We describe the clinical presentation and imaging features of a patient with acute lymphoblastic leukemia (ALL) that was complicated by optic nerve infiltration. The clinical and diagnostic characteristics of this complication must be recognized so that optimal therapy can be started to prevent blindness. MR imaging is useful in early detection and should be performed in any leukemic patient with ocular complaints, even during remission. (orig.)

  19. Optic nerve infiltration by acute lymphoblastic leukemia: MRI contribution

    International Nuclear Information System (INIS)

    Soares, Maria de Fatima; Braga, Flavio Tulio; Rocha, Antonio Jose da; Lederman, Henrique Manoel

    2005-01-01

    We describe the clinical presentation and imaging features of a patient with acute lymphoblastic leukemia (ALL) that was complicated by optic nerve infiltration. The clinical and diagnostic characteristics of this complication must be recognized so that optimal therapy can be started to prevent blindness. MR imaging is useful in early detection and should be performed in any leukemic patient with ocular complaints, even during remission. (orig.)

  20. A 7 YEAR-7-MONTH OLD BOY WITH LEUKEMIC RETINOPATHY

    Directory of Open Access Journals (Sweden)

    Ni Made Rini Suari

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Ocular problems in patient with leukemia which are called leukemic retinopathy and subhyaloid hemorrhage is one of its feature. Subhyaloid hemorrhage in children with acute lymphoblastic leukemia (ALL is rarely happened. We reported a boy 7 year 7 month old, complained sudden blurred vision on his both eyes and diagnosed with acute lymphoblastic leukemia. When patient had complained his vision, result of routine hematology showed anemia, thrombocytopenia, and leukocytosis. Treatment of leukemic retinopathy in this patient was supportive and causal therapy with transfusion of thrombocyte concentrate, hydration for leukocytosis, giving chemotherapy intrathecal methotrexate and systemic (vincristine, daunorubicin, L-asparginase. We found gradually undergone resolution of subhyaloid hemorrhages, visible flame shaped thin, and his vision recovered nearly completely to 6/6 OD and 6/20 OS /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  1. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. DENTAL CONSIDERATIONS FOR LEUKEMIC PEDIATRIC PATIENTS: AN UPDATED REVIEW FOR GENERAL DENTAL PRACTITIONER.

    Science.gov (United States)

    Lowal, Kholoud A; Alaizari, Nader Ahmed; Tarakji, Bassel; Petro, Waleed; Hussain, Khaja Amjad; Altamimi, Mohamed Abdullah Alsakran

    2015-10-01

    The early signs of leukemia can usually manifest in the oral cavity due to infiltration of leukemic cells or due to associated decline in normal marrow elements, especially in the acute phase of leukemia, as common lesions at this stage of the disease can be screened and diagnosed by the dentist. Therefore, the dental community should be aware of the oral manifestations of leukemia and oral complications of anticancer treatment. This can eliminate the oral symptoms of the disease and to improve quality of life for these patients. An extensive search in PubMed line using a combination of terms like "leukemia, children, dental, Acute lymphoblastic leukemia, pediatric" for last ten years was made. Reviews and case reports concerned about acute lymphoblastic leukemia in children were all collected and analyzed and data were extracted. Accordingly, the aim of this review is to highlight on the oral presentations of leukemia in children attending dental clinics and the management of its undesirable side effects.

  3. Differential Effects of Tea Extracts on Growth and Cytokine Production by Normal and Leukemic Human Leukocytes

    Directory of Open Access Journals (Sweden)

    Diana Bayer

    2012-04-01

    Full Text Available Background: Tea is one of the world’s most highly consumed beverages, second only to water. It is affordable and abundant and thus has great potential for improving health of those in both developed and developing areas. Green, oolong, and black teas differ in the extent of fermentation and types of bioactive polyphenols produced. Green tea and its major polyphenol decrease growth of some cancer cells and effect production of immune system cytokines. This study compares the effects of different types of tea extracts on viability and cytokine production by normal and leukemic human T lymphocytes. Generation of the toxic reactive oxygen species H2O2 by extracts was also examined.Methods: The Jurkat T lymphoblastic leukemia cells and mitogen-stimulated normal human peripheral blood mononuclear cells were used in this study. Cell viability was determined by (3-4,5-dimethylthiamizol-2-yl-diphenyltetrazolium bromide assay and production of interleukin-2 by Enzyme-Linked ImmunoSorbent Assay. Levels of H2O2 generated by tea extracts were determined using the xylenol-orange method.Results: We found that green, oolong, and black tea extracts differentially effect the growth and viability of T lymphoblastic leukemia cells and normal peripheral blood mononuclear cells, substantially decreasing both growth and viability of leukemic T lymphocytes and having much lesser effects on their normal counterparts. Tea extracts also had differential effects on the production of the T lymphocyte growth factor interleukin-2, significantly decreasing production by leukemic cells while having only minor effects on normal cells. All three extracts induced H2O2 generation, with green and oolong tea extracts having the greatest effect. Leukemic cells were much more susceptible to growth inhibition and killing by H2O2 than normal lymphocytes.Functional Foods in Health and Disease 2012, 2(4:72-85 Conclusions: The three tea extracts studied altered leukemic T lymphocyte

  4. A case of acute lymphoblastic leukemia with abnormal brain CT scan after cranial irradiation for central nervous system leukemia

    International Nuclear Information System (INIS)

    Sato, Junko; Abe, Takanori; Watanabe, Tsutomu

    1988-01-01

    A 21-year-old woman with acute lymphoblastic leukemia presented with central neurologic symptoms immediately after the second irradiation (20 Gy to the brain and 10 Gy to the spinal cord) for central nervous system (CNS)-leukemia 3 years and 2 months after the first cranial irradiation with 20 Gy. White matter was depicted as diffusely high density area on CT; histology revealed necrosis of leukemic cells. In the present patient with repeated recurrent CNS-leukemia, leukemic cells seemed to have been damaged simultaneously after irradiation because of parenchymal widespread involvement of leukemic cells, resulting in brain edema, an increased intracranial pressure and parenchymal disturbance. This finding may have an important implication for the risk of cranial irradiation in the case of widespread involvement of leukemic cells. Re-evaluation of cranial irradiation in such cases is suggested. (Namekawa, K.)

  5. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells

    OpenAIRE

    Riz, Irene; Hawley, Teresa S; Luu, Truong V; Lee, Norman H; Hawley, Robert G

    2010-01-01

    Abstract Background The homeobox gene TLX1 (for T-cell leukemia homeobox 1, previously known as HOX11) is inappropriately expressed in a major subgroup of T cell acute lymphoblastic leukemia (T-ALL) where it is strongly associated with activating NOTCH1 mutations. Despite the recognition that these genetic lesions cooperate in leukemogenesis, there have been no mechanistic studies addressing how TLX1 and NOTCH1 functionally interact to promote the leukemic phenotype. Results Global gene expre...

  6. Uncontrolled hypertension secondary to leukemic cell infiltration of kidneys in a hemodialysis patient

    Directory of Open Access Journals (Sweden)

    Kultigin Turkmen

    2010-06-01

    Full Text Available Kultigin Turkmen1, Lutfullah Altintepe2, Ibrahim Guney2, Ismet Aydogdu3, Osman Koc4, Mehmet Ali Erkut5, Halil Zeki Tonbul11Department of Nephrology, Meram School of Medicine, Selcuk University, 2Meram Training and Research Hospital, Selcuk University, 3Department of Hematology, Meram School of Medicine, Selcuk University, 4Department of Radiology, Meram School of Medicine, Selcuk University, 5Department of Hematology, Meram Training and Research Hospital, Selcuk UniversityAbstract: Leukemic infiltration of the kidney is usually silent, and the admission of the patients with renal dysfunction or acute kidney injury is uncommon. We present a 34-year old hemodialysis patient with new onset of uncontrolled hypertension, erythropoietin-resistant anemia, thrombocytopenia, and Bell’s palsy. On admission, his blood pressure (BP was 210/110 mmHg and he had petechiae and purpura at upper and lower extremities. Renal ultrasonography (USG showed bilaterally enlarged kidneys without hydronephrosis, unlike his previous USG, which determined bilaterally atrophic kidneys. Acute lymphoblastic leukemia, hypertensive crisis due to bilateral leukemic cell infiltration of kidneys, tumor lysis syndrome, and leukemic involvement of the facial nerve were diagnosed. Despite intense antihypertensive management, his BP was not controlled. After prednisolone, daunorubicine, and vincristine therapy, the size of kidneys diminished and his BP dropped under normal range. In conclusion, pathological findings such as uncontrolled hypertension, flank pain, skin rashes, and abnormal blood count should be considered carefully, even in patients with end-stage renal disease receiving renal replacement therapy.Keywords: leukemic cell infiltration, uncontrolled hypertension, hemodialysis

  7. Effects of granulocyte-macrophage colony-stimulating factor and interleukin 6 on the growth of leukemic blasts in suspension culture.

    Science.gov (United States)

    Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y

    1992-05-01

    We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.

  8. Cannabidiol Reduces Leukemic Cell Size – But Is It Important?

    Science.gov (United States)

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent. PMID

  9. Cannabidiol Reduces Leukemic Cell Size - But Is It Important?

    Science.gov (United States)

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro . However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent.

  10. Leukemic Oral Manifestations and their Management.

    Science.gov (United States)

    Francisconi, Carolina Favaro; Caldas, Rogerio Jardim; Oliveira Martins, Lazara Joyce; Fischer Rubira, Cassia Maria; da Silva Santos, Paulo Sergio

    2016-01-01

    Leukemia is the most common neoplastic disease of the white blood cells which is important as a pediatric malignancy. Oral manifestations occur frequently in leukemic patients and may present as initial evidence of the disease or its relapse. The symptoms include gingival enlargement and bleeding, oral ulceration, petechia, mucosal pallor, noma, trismus and oral infections. Oral lesions arise in both acute and chronic forms of all types of leukemia. These oral manifestations either may be the result of direct infiltration of leukemic cells (primary) or secondary to underlying thrombocytopenia, neutropenia, or impaired granulocyte function. Despite the fact that leukemia has long been known to be associated with oral lesions, the available literature on this topic consists mostly of case reports, without data summarizing the main oral changes for each type of leukemia. Therefore, the present review aimed at describing oral manifestations of all leukemia types and their dental management. This might be useful in early diagnosis, improving patient outcomes.

  11. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Childhood Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Pui, Ching-Hon; Yang, Jun J; Hunger, Stephen P

    2015-01-01

    PURPOSE: To review the impact of collaborative studies on advances in the biology and treatment of acute lymphoblastic leukemia (ALL) in children and adolescents. METHODS: A review of English literature on childhood ALL focusing on collaborative studies was performed. The resulting article...

  13. Minimal Residual Disease Detection and Evolved IGH Clones Analysis in Acute B Lymphoblastic Leukemia Using IGH Deep Sequencing.

    Science.gov (United States)

    Wu, Jinghua; Jia, Shan; Wang, Changxi; Zhang, Wei; Liu, Sixi; Zeng, Xiaojing; Mai, Huirong; Yuan, Xiuli; Du, Yuanping; Wang, Xiaodong; Hong, Xueyu; Li, Xuemei; Wen, Feiqiu; Xu, Xun; Pan, Jianhua; Li, Changgang; Liu, Xiao

    2016-01-01

    Acute B lymphoblastic leukemia (B-ALL) is one of the most common types of childhood cancer worldwide and chemotherapy is the main treatment approach. Despite good response rates to chemotherapy regiments, many patients eventually relapse and minimal residual disease (MRD) is the leading risk factor for relapse. The evolution of leukemic clones during disease development and treatment may have clinical significance. In this study, we performed immunoglobulin heavy chain ( IGH ) repertoire high throughput sequencing (HTS) on the diagnostic and post-treatment samples of 51 pediatric B-ALL patients. We identified leukemic IGH clones in 92.2% of the diagnostic samples and nearly half of the patients were polyclonal. About one-third of the leukemic clones have correct open reading frame in the complementarity determining region 3 (CDR3) of IGH , which demonstrates that the leukemic B cells were in the early developmental stage. We also demonstrated the higher sensitivity of HTS in MRD detection and investigated the clinical value of using peripheral blood in MRD detection and monitoring the clonal IGH evolution. In addition, we found leukemic clones were extensively undergoing continuous clonal IGH evolution by variable gene replacement. Dynamic frequency change and newly emerged evolved IGH clones were identified upon the pressure of chemotherapy. In summary, we confirmed the high sensitivity and universal applicability of HTS in MRD detection. We also reported the ubiquitous evolved IGH clones in B-ALL samples and their response to chemotherapy during treatment.

  14. Bacteremia due to Aeromonas hydrophila in Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    Fatima, A.; Afridi, F.I.; Farooqi, B.J.; Qureshi, A.; Hussain, A.

    2013-01-01

    Aeromonas hydrophila (A. hydrophila) is a low virulent organism but may cause devastating fatal infections in immunocompromised host especially in liver cirrhosis. It is rarely reported to cause septicemia in a patient with Acute Lymphoblastic Leukemia (ALL). The mortality rate of septicemia due to A. hydrophila is 29% to 73%. We report a case of 59-year-old female patient who was a known case of ALL, presented with the complaints of fever, lethargy and generalized weakness for one month. After taking blood samples for investigations, empirical antimicrobial therapy was started. She did not improve after 48 hours of therapy. Meanwhile blood culture revealed pure growth of A. hydrophila. After sensitivity report was available, ciprofloxacin was started. Patient became afebrile after 48 hours of treatment with ciprofloxacin. It is very vital to correctly identified and treat bacteremia due to A. hydrophila especially in the underlying leukemic patient. (author)

  15. Tumefactive intracranial presentation of precursor B-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Forester, Craig M.; Braunreiter, Chi L.; Yaish, Hasan; Afify, Zeinab; Hedlund, Gary L.

    2009-01-01

    In children, leukemia is the most common malignancy, and approximately 75% of leukemias are acute lymphoblastic leukemia (ALL). Central nervous system leukemia is found at diagnosis in fewer than 5% of children with ALL. Leukemic intracranial masses have been described with acute myeloid leukemia, but ALL presenting as a mass lesion is rare. We describe a unique case of an intracranial confirmed precursor B cell (pre-B) ALL mass in a 13-year-old girl that was diagnosed by brain CT, MRI and cerebral angiography, and confirmed by biopsy. This report details pertinent history and distinguishing imaging features of an intracranial ALL tumefaction. (orig.)

  16. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nordlund, Jessica; Bäcklin, Christofer L; Zachariadis, Vasilios

    2015-01-01

    BACKGROUND: We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA...... in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant...

  17. Tumefactive intracranial presentation of precursor B-cell acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Forester, Craig M. [University of Utah, Salt Lake City, UT (United States); Braunreiter, Chi L. [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Helen DeVos Children' s Hospital, Department of Pediatric Hematology Oncology, Grand Rapids, MI (United States); Yaish, Hasan; Afify, Zeinab [University of Utah, Division of Pediatric Hematology Oncology, Primary Children' s Medical Center, Salt Lake City, UT (United States); Hedlund, Gary L. [Primary Children' s Medical Center, Department of Pediatric Radiology, Salt Lake City, UT (United States)

    2009-11-15

    In children, leukemia is the most common malignancy, and approximately 75% of leukemias are acute lymphoblastic leukemia (ALL). Central nervous system leukemia is found at diagnosis in fewer than 5% of children with ALL. Leukemic intracranial masses have been described with acute myeloid leukemia, but ALL presenting as a mass lesion is rare. We describe a unique case of an intracranial confirmed precursor B cell (pre-B) ALL mass in a 13-year-old girl that was diagnosed by brain CT, MRI and cerebral angiography, and confirmed by biopsy. This report details pertinent history and distinguishing imaging features of an intracranial ALL tumefaction. (orig.)

  18. Prognostic significance of primary bone changes in children with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Rajantie, J.; Jaeaeskelaeinen, J.; Perkkioe, M.; Siimes, M.A.

    1985-01-01

    In a period of 6.5 years, acute leukaemia was diagnosed in 140 children at our hospital: 137 children had long bone radiographs and 45 patients had bone lesions. Eleven of the 115 patients who had skull radiographs had osteolytic lesions and another four had wide sutures. No patients had bone changes at relapse or at cessation of 3 years' successful therapy. In acute lymphoblastic leukemia, the frequence of osseous lesions tended to be higher in patients in sub-groups with a more favourable prognosis. The duration of remission and survival times were higher in patients with ''leukemic'' long bones than in those without them (p<0.10 and <0.05, respectively). Changes in the skull could not be related to the outcome. We found no abnormalities in the bones of the eight patients with acute non-lymphoblastic leukemia. (orig.)

  19. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy

    Science.gov (United States)

    Schmiegelow, Kjeld; Müller, Klaus; Mogensen, Signe Sloth; Mogensen, Pernille Rudebeck; Wolthers, Benjamin Ole; Stoltze, Ulrik Kristoffer; Tuckuviene, Ruta; Frandsen, Thomas

    2017-01-01

    During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both), bone toxicities (including osteonecrosis), thromboembolism, sinusoidal obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia), high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall survival rates above 90%, there is a need for strategies for assessing the burden of toxicities in the overall evaluation of anti-leukemic therapy programs. PMID:28413626

  20. A case of acute lymphoblastic leukemia with an intracerebellar mass

    International Nuclear Information System (INIS)

    Oshima, Yukio; Shitara, Toshiji; Kuribayashi, Toshio; Noji, Takashi; Kuroume, Takayoshi

    1983-01-01

    A 3-year-old boy, who had a complaint of hemorrhagic diathesis, was diagnosed as having acute lymphoblastic leukemia. Remission was induced by a combination of vincristine and prednisolone. Prophylactic intrathecal methotrexate and cranial irradiation were administered. Two years later, he was hospitalized for CNS leukemia and treated with multiple doses of intrathecal methotrexate. At the time, the results of CT scanning were normal. Six months later, though, he developed vomiting and lethargy. CT scanning showed a mass of an increased density in the right cerebellar hemisphere that displaced the fourth ventricle to the left and resulted in an obstructive hydrocephalus. Decompression was done by means of Ommaya reservoir setting. Soon his consciousness returned to normal, and CT scanning revealed no abnormal mass three weeks later. A month later, though, the CNS leukemia returned. He developed vomiting and a headache, and CT scanning showed a high-density mass in the right cerebellar hemisphere. The mass was diagnosed as hematoma. He died one month later. In this case, the previous mass showed evidence of a relatively uniform contrast enhancement, which is consistent with the intracerebral leukemic mass reported by Wendling. In Japan, this is the first report of an intracerebellar mass of acute lymphoblastic leukemia as perceived by CT scanning. (author)

  1. Acute lymphoblastic leukemia mimicking Wilms tumor at presentation.

    Science.gov (United States)

    Singh, Amitabh; Mandal, Anirban; Guru, Vijay; Seth, Rachna

    2016-09-01

    Acute lymphoblastic leukemia (ALL), the commonest malignancy of childhood, is known to manifest with a myriad of atypical presentations. Nephromegaly is a rare presentation of childhood ALL with hepatic mass being even rarer. We present a 3 year-old child with unilateral renal mass and hepatic mass lesion with normal blood counts, initially suspected to have metastatic Wilms tumor based on clinical, radiological and WT1 positivity on immunocytochemistry of renal mass. He was later diagnosed as ALL with peripheral blood flowcytometry and bone marrow examination. Renomegaly at presentation of acute leukemia is not necessarily due to leukemic infiltration and rarely leads to renal impairment. The radiological differential of such a renal mass includes both benign and malignant entities including metastasis. Over-expression of WT1 mRNA has been found in a number of solid tumors and hematological malignancies and is far from being diagnostic of Wilms tumor. Again, a small number of children with acute leukemia may have a deceptively normal complete blood count at presentation. Though, initial all (clinical, radiological, hematological, and immunocytological) parameters pointed towards a diagnosis of Wilms tumor in our case, the subsequent development of thrombocytopenia and lymphocytic leukocytosis prompted further investigation and final diagnosis of ALL. WT1 positivity is a known phenomenon in childhood ALL and undifferentiated lymphoblasts may be positive for WT1 and negative for Leucocyte common antigen. Acute leukemia with renal and hepatic mass with normal blood counts at presentation is a diagnostic challenge.

  2. Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS).

    Science.gov (United States)

    Krause, Sarah; Pfeiffer, Christian; Strube, Susanne; Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Loges, Sonja; Waizenegger, Jonas; Ben-Batalla, Isabel; Cario, Gunnar; Möricke, Anja; Stanulla, Martin; Schrappe, Martin; Schewe, Denis M

    2015-01-29

    Patients with t(1;19)-positive acute lymphoblastic leukemia (ALL) are prone to central nervous system (CNS) relapses, and expression of the TAM (Tyro3, Axl, and Mer) receptor Mer is upregulated in these leukemias. We examined the functional role of Mer in the CNS in preclinical models and performed correlative studies in 64 t(1;19)-positive and 93 control pediatric ALL patients. ALL cells were analyzed in coculture with human glioma cells and normal rat astrocytes: CNS coculture caused quiescence and protection from methotrexate toxicity in Mer(high) ALL cell lines, which was antagonized by short hairpin RNA-mediated knockdown of Mer. Mer expression was upregulated, prosurvival Akt and mitogen-activated protein kinase signaling were activated, and secretion of the Mer ligand Galectin-3 was stimulated. Mer(high) t(1;19) primary cells caused CNS involvement to a larger extent in murine xenografts than in their Mer(low) counterparts. Leukemic cells from Mer(high) xenografts showed enhanced survival in coculture. Treatment of Mer(high) patient cells with the Mer-specific inhibitor UNC-569 in vivo delayed leukemia onset, reduced CNS infiltration, and prolonged survival of mice. Finally, a correlation between high Mer expression and CNS positivity upon initial diagnosis was observed in t(1;19) patients. Our data provide evidence that Mer is associated with survival in the CNS in t(1;19)-positive ALL, suggesting a role as a diagnostic marker and therapeutic target. © 2015 by The American Society of Hematology.

  3. Flow cytometric analysis of expression of interleukin-2 receptor beta chain (p70-75) on various leukemic cells

    International Nuclear Information System (INIS)

    Hoshino, S.; Oshimi, K.; Tsudo, M.; Miyasaka, M.; Teramura, M.; Masuda, M.; Motoji, T.; Mizoguchi, H.

    1990-01-01

    We analyzed the expression of the interleukin-2 receptor (IL-2R) beta chain (p70-75) on various leukemic cells from 44 patients by flow cytometric analysis using the IL-2R beta chain-specific monoclonal antibody, designated Mik-beta 1. Flow cytometric analysis demonstrated the expression of the IL-2R beta chain on granular lymphocytes (GLs) from all eight patients with granular lymphocyte proliferative disorders (GLPDs), on adult T-cell leukemia (ATL) cells from all three patients with ATL, and on T-cell acute lymphoblastic leukemia (T-ALL) cells from one of three patients with T-ALL. Although GLs from all the GLPD patients expressed the IL-2R beta chain alone and not the IL-2R alpha chain (Tac-antigen: p55), ATL and T-ALL cells expressing the beta chain coexpressed the alpha chain. In two of seven patients with common ALL (cALL) and in both patients with B-cell chronic lymphocytic leukemia, the leukemic cells expressed the alpha chain alone. Neither the alpha chain nor the beta chain was expressed on leukemic cells from the remaining 28 patients, including all 18 patients with acute nonlymphocytic leukemia, five of seven patients with cALL, all three patients with multiple myeloma, and two of three patients with T-ALL. These results indicate that three different forms of IL-2R chain expression exist on leukemic cells: the alpha chain alone; the beta chain alone; and both the alpha and beta chains. To examine whether the results obtained by flow cytometric analysis actually reflect functional aspects of the expressed IL-2Rs, we studied the specific binding of 125I-labeled IL-2 (125I-IL-2) to leukemic cells in 18 of the 44 patients. In addition, we performed 125I-IL-2 crosslinking studies in seven patients. The results of IL-2R expression of both 125I-IL-2 binding assay and crosslinking studies were in agreement with those obtained by flow cytometric analysis

  4. Acute lymphoblastic leukemia presenting as a breast lump: A report of two cases

    Directory of Open Access Journals (Sweden)

    Syed Besina

    2013-01-01

    Full Text Available Extra-medullary leukemic infiltration of the breast by acute lymphoblastic leukemia (ALL is very rare. We report two cases of ALL presenting as breast masses and diagnosed on fine-needle aspiration (FNA. Our first patient, a post-partum 30-year-old female, developed bilateral breast lumps in her last trimester of pregnancy and complained of easy fatigability. Our second patient, a 14-year-old girl, presented with a right-breast lump of 1-week duration. She had received treatment for ALL 1 year back and had been in complete remission for the last 1 year. FNA of the breast nodules done in both the cases revealed diffuse infiltration by lymphoblasts. Subsequent hematological investigations confirmed bone marrow involvement by ALL in the first case and extra-medullary relapse in the second case. Fine-needle aspiration cytology (FNAC is an easy and cost effective method for the early diagnosis of metastatic leukemic infiltration, avoiding unnecessary excisional biopsies in such cases.

  5. Sulforaphane induces cell cycle arrest and apoptosis in acute lymphoblastic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Koramit Suppipat

    Full Text Available Acute lymphoblastic leukemia (ALL is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9, inactivation of PARP, p53-independent upregulation of p21(CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.

  6. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2018-02-22

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  7. Carfilzomib and Hyper-CVAD in Treating Patients With Newly Diagnosed Acute Lymphoblastic Leukemia or Lymphoma

    Science.gov (United States)

    2018-03-01

    Contiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia

  8. Shedding of CD9 antigen into cerebrospinal fluid by acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Komada, Y; Ochiai, H; Shimizu, K; Azuma, E; Kamiya, H; Sakurai, M

    1990-07-01

    The accurate identification of small numbers of leukemic cells in the cerebrospinal fluid (CSF) presents a diagnostic problem in the treatment of acute lymphoblastic leukemia (ALL). We demonstrated that soluble CD9 antigen was shed into CSF obtained from children with ALL, using enzyme-linked immunosorbent assay (ELISA), which used the activity of CD9 antigen to bind the Ricinus communis agglutinin (RCA1) and a monoclonal antibody, SJ-9A4, simultaneously. Using RCA1/SJ-9A4 ELISA, CD9 antigen was detectable in CSF but not in plasma from 12 cases of CD9+ ALL in central nervous system (CNS) relapse. However, CD9 antigen was not released into CSF from 11 cases of CD9- ALL with CNS involvement, 136 cases of CD9+ ALL in complete remission (CR), 29 cases of CD9- ALL in CR, or 21 cases of aseptic meningitis. Interestingly, the levels of CD9 antigen were elevated in CSF from 7 of 10 CD9+ ALL patients without cytologically proven CNS involvement at diagnosis, with subsequent return to undetectable levels after initial induction chemotherapy was begun. In addition, sequential analysis of CSF from a 5-year-old boy with CD9+ ALL in CNS relapse showed that levels of CD9 antigen correlated well with the number of leukemic cells in CSF. Serial quantitative analysis of CD9 antigen in CSF could be useful to detect the proliferation of residual leukemic cells before the clinical manifestation.

  9. Constitutional abnormalities of IDH1 combined with secondary mutations predispose a patient with Maffucci syndrome to acute lymphoblastic leukemia.

    Science.gov (United States)

    Hirabayashi, Shinsuke; Seki, Masafumi; Hasegawa, Daisuke; Kato, Motohiro; Hyakuna, Nobuyuki; Shuo, Takuya; Kimura, Shunsuke; Yoshida, Kenichi; Kataoka, Keisuke; Fujii, Yoichi; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Kiyokawa, Nobutaka; Miyano, Satoru; Ogawa, Seishi; Takita, Junko; Manabe, Atsushi

    2017-12-01

    Maffucci syndrome is a nonhereditary disorder caused by somatic mosaic isocitrate dehydrogenase 1 or 2 (IDH1 or IDH2) mutations and is characterized by multiple enchondromas along with hemangiomas. Malignant transformation of enchondromas to chondrosarcomas and secondary neoplasms, such as brain tumors or acute myeloid leukemia, are serious complications. A 15-year-old female with Maffucci syndrome developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). A somatic mutation in IDH1 was detected in hemangioma and leukemic cells. KRAS mutation and deletion of IKZF1 were detected in leukemic cells. Patients with Maffucci syndrome may, therefore, be at risk of BCP-ALL associated with secondary genetic events that affect lymphocyte differentiation. © 2017 Wiley Periodicals, Inc.

  10. Changes in the transport of leucine-14C across the red cell membrane in children with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Stepniewski, M.; Cyklis, R.; Szafran, Z.; Armata, J.; Nawrocka-Kanska, B.

    1981-01-01

    Distribution of leucine- 14 C between intracellular water of red blood cells and incubation medium was significantly higher in 13 children with acute lymphoblastic leukemia than in 22 healthy children. The distribution ratio of leucine- 14 C was significantly lower when measured in the group of 6 children in the period of remission, as compared with children in the acute phase of the disease and only slightly higher than in the control group. The results of this study indicate the existence of structural changes in leukemic red cell membrane responsible for the observed disturbances of leucine transport. (author)

  11. Acute Lymphoblastic Leukemia (ALL) (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Acute Lymphoblastic Leukemia (ALL) KidsHealth / For Parents / Acute Lymphoblastic Leukemia (ALL) What's in this article? About Leukemia Causes ...

  12. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Kjeld Schmiegelow

    2017-04-01

    Full Text Available During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both, bone toxicities (including osteonecrosis, thromboembolism, sinusoidal obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia, high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall survival rates above 90%, there is a need for strategies for assessing the burden of toxicities in the overall evaluation of anti-leukemic therapy programs.

  13. Differential Activity of Voltage- and Ca2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case

    Directory of Open Access Journals (Sweden)

    Salvador Valle-Reyes

    2018-05-01

    Full Text Available Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.

  14. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    Directory of Open Access Journals (Sweden)

    Oxana Dobrovinskaya

    2016-08-01

    Full Text Available Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh, which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL were found to produce a considerably higher amount of ACh than healthy T lumphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  15. Heterogeneity of genomic fusion of BCR and ABL in Philadelphia chromosome-positive acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Rubin, C.M.; Carrino, J.J.; Dickler, M.N.; Leibowitz, D.; Smith, S.D.; Westbrook, C.A.

    1988-01-01

    Philadelphia chromosome-positive acute lymphoblastic leukemia occurs in two molecular forms, those with and those without rearrangement of the breakpoint cluster region on chromosome 22. The molecular abnormality in the former group is similar to that found in chronic myelogenous leukemia. To characterize the abnormality in the breakpoint cluster region-unrearranged form, the authors have mapped a 9; 22 translocation from the Philadelphia chromosome-positive acute lymphoblastic leukemia cell line SUP-B13 by using pulsed-field gel electrophoresis and have cloned the DNA at the translocation junctions. They demonstrate a BCR-ABL fusion gene on the Philadelphia chromosome. The exons from ABL are the same. Analysis of leukemic cells from four other patients with breakpoint cluster region-unrearranged Philadelphia chromosome-positive acute lymphoblastic leukemia revealed a rearrangement on chromosome 22 close to the breakpoint in SUP-B13 in only one patient. These data indicate that breakpoints do not cluster tightly in this region but are scattered, possibly in a large intron. Given the large size of BCR and the heterogeneity in breakpoint location, detection of BCR rearrangement by standard Southern blot analysis is difficult. Pulsed-field gel electrophoresis should allow detection at the DNA level in every patient and thus will permit clinical correlation of the breakpoint location with prognosis

  16. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  17. Thromboembolism in Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Rank, Cecilie Utke; Toft, Nina; Tuckuviene, Ruta

    2018-01-01

    Thromboembolism frequently occurs during acute lymphoblastic leukemia (ALL) therapy. We prospectively registered thromboembolic events during treatment of 1772 consecutive Nordic/Baltic ALL patients 1-45years treated according to the Nordic Society of Pediatric Hematology and Oncology (NOPHO) ALL...

  18. on Lymphoblastic Leukemia Jurkat Cells

    African Journals Online (AJOL)

    human tumor cell line (Hela) by using MTT assay. [13]. In the present study, we have observed the cytotoxic effect of ethanolic extract of C. arvensis against Jurkat cells, a human lymphoblastic leukemia cell line, by using Trypan blue, MTS assay and FACS analysis. It was shown from the trypan blue exclusion assay that ...

  19. Leukemic Cells "Gas Up" Leaky Bone Marrow Blood Vessels.

    Science.gov (United States)

    Itkin, Tomer; Rafii, Shahin

    2017-09-11

    In this issue of Cancer Cell, Passaro et al. demonstrate how leukemia through aberrant induction of reactive oxygen species and nitric oxide production trigger marrow vessel leakiness, instigating pro-leukemic function. Disrupted tumor blood vessels promote exhaustion of non-malignant stem and progenitor cells and may facilitate leukemia relapse following chemotherapeutic treatment. Copyright © 2017. Published by Elsevier Inc.

  20. Bone marrow stromal elements in murine leukemia; Decreased CSF-producing fibroblasts and normal IL-1 expression by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishay, Z [Laboratory of Experimental Hematology, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School (Israel); Barak, V [Laboratory of Immunology, Department of Oncology, Hadassah University Hospital (Israel); Shoshan, S [Faculty of Dental Medicine, Connective Tissue Research Laboratory, Hebrew University, Jerusalem (Israel); Prindull, G [Department of Pediatrics, University of Gottingen, Gottingen (Germany, F.R.)

    1990-01-01

    A study of bone marrow stromal elements in murine acute myeloid leukemia (AML) was carried out. Our previous studies had indicated marrow stromal deficiency in murine AML. In the current investigation, separate stromal cells were cultured and the results obtained have shown that, while marrow stromal macrophages are normal in leukemia and express adequate amounts of IL-1, the fibroblasts are markedly reduced. However, if sufficient fibroblasts are pooled in vitro, they produce adequate amounts of CSF. Test of TNF{alpha} in leukemic cells CM, as possible cause of marrow stromal inhibition in leukemia, had not disclosed this cytokine. Further, it was observed that total body lethal irradiation of leukemic mice aggravates the stromal deficiency, confirming results of our previous investigations. It is concluded that bone marrow stromal deficiency in murine AML is due to decreased fibroblasts and, implicity, reduced CSF production. (author).

  1. Analysis of myelomonocytic leukemic differentiation by a cell surface marker panel including a fucose-binding lectin from Lotus tetragonolobus.

    Science.gov (United States)

    Elias, L; Van Epps, D E

    1984-06-01

    The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.

  2. Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Wojtuszkiewicz, Anna; Peters, Godefridus J; van Woerden, Nicole L

    2015-01-01

    BACKGROUND: Methotrexate (MTX) eradicates leukemic cells by disrupting de novo nucleotide biosynthesis and DNA replication, resulting in cell death. Since its introduction in 1947, MTX-containing chemotherapeutic regimens have proven instrumental in achieving curative effects in acute lymphoblast...... resistant to MTX at diagnosis may allow for tailoring novel treatment strategies to individual leukemia patients....... leukemia (ALL). However, drug resistance phenomena pose major obstacles to efficacious ALL chemotherapy. Moreover, clinically relevant molecular mechanisms underlying chemoresistance remain largely obscure. Several alterations in MTX metabolism, leading to impaired accumulation of this cytotoxic agent...... in tumor cells, have been classified as determinants of MTX resistance. However, the relation between MTX resistance and long-term clinical outcome of ALL has not been shown previously. METHODS: We have collected clinical data for 235 childhood ALL patients, for whom samples taken at the time of diagnosis...

  3. RBP2 Promotes Adult Acute Lymphoblastic Leukemia by Upregulating BCL2.

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    Full Text Available Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL, adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2 was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression.

  4. Ex vivo assays to study self-renewal, long-term expansion, and leukemic transformation of genetically modified human hematopoietic and patient-derived leukemic stem cells

    NARCIS (Netherlands)

    Sontakke, Pallavi; Carretta, Marco; Capala, Marta; Schepers, Hein; Schuringa, Jan Jacob

    2014-01-01

    With the emergence of the concept of the leukemic stem cell (LSC), assays to study them remain pivotal in understanding (leukemic) stem cell biology. Although the in vivo NOD-SCID or NSG xenotransplantation model is currently still the favored assay of choice in most cases, this system has some

  5. Quantitative MR imaging of normal and leukemic bone marrow

    International Nuclear Information System (INIS)

    Hinks, R.S.; Dunlap, H.J.; Poon, P.Y.; Curtis, J.; Henkelman, R.M.

    1986-01-01

    The authors have developed and tested a protocol that allows extraction of reliable T1 and T2 relaxation times from imaging data. They have used these methods to study in vivo the bone marrow of healthy volunteers and patients with acute leukemia. Examinations were performed at 6.25 MHz using an interleaved ISE/SE sequence to calculate T1 and an eight echo (TE = 25) sequence to calculate T2. The results are summarized as follows: In leukemic patients, T1 = 476 +- 115 msec; in leukemic patients in remission, T1 = 290 +- 31 msec; in healthy volunteers, T1 = 329 +- 32 msec. The T2 values were not significantly different for the three groups (105 +- 10 msec). Work is underway to evaluate whether T1 values of bone marrow may be used to monitor patients in remission and to detect the onset of relapse

  6. Alteration in Bone Mineral Metabolism in Children with Acute Lymphoblastic Leukemia (ALL: A Review

    Directory of Open Access Journals (Sweden)

    Chowdhury Yakub Jamal

    2009-11-01

    Full Text Available In recent years there has been a significant increase in event free survival (EFS and overall survival in children with cancer. As survival rates for childhood cancer have radically improved, late effects associated with the successful but highly intensive chemotherapy and/or radiotherapy have dramatically increased. Many possible late effects of cancer treatment are recognized in pediatric cancer patients as infertility, endocrine deficiency, renal failure, pulmonary and cardiac toxicity, obesity and osteopenia/osteoporosis. Decreased bone mineral density (BMD and bone metabolism disturbances have been recognized and reported in literature. Osteopenia/osteoporosis skeletal abnormalities, osteonecrosis and pathological fractures are known to occur frequently in childhood acute lymphoblastic leukemia (ALL at diagnosis, during and after treatment with chemotherapy. Various studies have revealed different metabolic alterations related to ALL. Some suggestions have been made about their relationship with the disease process. Various metabolic abnormalities may be encountered in the newly diagnosed ALL patients. It includes decreased and increased serum levels of calcium and phosphate. Hypercalcemia may result from leukemic infiltrations of bone and release of parathormone like substance from lymphoblast. Elevated serum phosphate can occur as a result of leukemic cell lysis and may induce hypocalcemia. It has been postulated by other authors that leukemic cells may directly infiltrate bone and produce parathroid hormone related peptides, prostaglandin E and osteoblast inhibiting factors. Hypomagnesemia, hypocalcaemia and hypothyroidisum have been demonstrated in patients with ALL. Some patients may have poor nutrition and decreased physical activities during treatment. However postulations have also been made that chemotherapy may play a role in creating metabolic alterations in children with ALL. Corticosteroid, methotraxate and cranial irradiations

  7. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation

    Science.gov (United States)

    Chen, Bill B.; Glasser, Jennifer R.; Coon, Tiffany A.; Zou, Chunbin; Miller, Hannah L.; Fenton, Moon; McDyer, John F.; Boyiadzis, Michael

    2012-01-01

    Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G0 phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G0 phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCFFBXL2 in lymphoproliferative malignancies. PMID:22323446

  8. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    International Nuclear Information System (INIS)

    Lee, Kyung Joo; Lee, Seung Rho; Park, Dong Woo; Joo, Kyung Bin; Kim, Jang Wook; Hahm, Chang Kok; Kim, Ki Joong; Lee, Hahng

    2001-01-01

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain

  9. Imaging findings of the brain abnormalities in acute lymphoblastic leukemia of children during and after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Joo; Lee, Seung Rho; Park, Dong Woo; Joo, Kyung Bin; Kim, Jang Wook; Hahm, Chang Kok; Kim, Ki Joong; Lee, Hahng [College of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2001-09-01

    We evaluated the imaging abnormalities of the brain observed during and after treatment of acute childhood lymphoblastic leukemia. The study group consisted of 30 patients (male : female=19 : 11 ; mean age, 64 months) with acute childhood lymphoblastic leukemia during the previous ten-year period who had undergone prophylaxis of the central nervous system. Irrespective of the CNS symptoms, base-line study of the brain involving CT and follow-up CT or MRI was undertaken more than once. We retrospectively evaluated the imaging findings, methods of treatment, associated CNS symptoms, and the interval between diagnosis and the time at which brain abnormalities were revealed by imaging studies. In 15 (50% ; male : female=9 : 6 ; mean age, 77 months) of 30 patients, brain abnormalities that included brain atrophy (n=9), cerebral infarctions (n=4), intracranial hemorrhage (n=1), mineralizing microangiopathy (n=2), and periventricular leukomalacia (n=3) were seen on follow-up CT or MR images. In four of nine patients with brain atrophy, imaging abnormalities such as periventricular leukomalacia (n=2), infarction (n=1) and microangiopathy (n=1) were demonstrated. Fourteen of the 15 patients underwent similar treatment ; the one excluded had leukemic cells in the CSF. Six patients had CNS symptoms. In the 15 patients with abnormal brain imaging findings, the interval between diagnosis and the demonstration of brain abnormalities was between one month and four years. After the cessation of treatment, imaging abnormalities remained in all patients except one with brain atrophy. Various imaging abnormalities of the brain may be seen during and after the treatment of acute childhood lymphoblastic leukemia and persist for a long time. In children with this condition, the assessment of brain abnormalities requires follow-up study of the brain.

  10. Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

    Directory of Open Access Journals (Sweden)

    Ryosuke Shirasaki

    2012-01-01

    Full Text Available We recently reported that chronic myelogenous leukemia (CML cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimeric BCR-ABL transcript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferation in vivo.

  11. TRESK potassium channel in human T lymphoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Miguel, Dénison Selene, E-mail: amurusk@hotmail.com [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico); García-Dolores, Fernando, E-mail: garciaddf@yahoo.com [Department of Pathology, Institute of Forensic Sciences, Av. Niños Héroes 130, Col. Doctores, C.P. 06720 Mexico, DF (Mexico); Rosa Flores-Márquez, María, E-mail: mariafo31@yahoo.com.mx [National Medical Center of Occident (CMNO) IMSS, Belisario Dominguez 735, Col. Independencia Oriente, C.P. 44340 Guadalajara, Jalisco (Mexico); Delgado-Enciso, Iván [University of Colima, School of Medicine, Av. Universidad 333, Col. Las Viboras, C.P. 28040 Colima (Mexico); Pottosin, Igor, E-mail: pottosin@ucol.mx [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico); Dobrovinskaya, Oxana, E-mail: oxana@ucol.mx [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico)

    2013-05-03

    Highlights: • TRESK (KCNK18) mRNA is present in different T lymphoblastic cell lines. • KCNK18 mRNA was not found in resting peripheral blood lymphocytes. • Clinical samples of T lymphoblastic leukemias and lymphomas were positive for TRESK. • TRESK in T lymphoblasts has dual localization, in plasma membrane and intracellular. -- Abstract: TRESK (TWIK-related spinal cord K{sup +}) channel, encoded by KCNK18 gene, belongs to the double-pore domain K{sup +} channel family and in normal conditions is expressed predominantly in the central nervous system. In our previous patch-clamp study on Jurkat T lymphoblasts we have characterized highly selective K{sup +} channel with pharmacological profile identical to TRESK. In the present work, the presence of KCNK18 mRNA was confirmed in T lymphoblastic cell lines (Jurkat, JCaM, H9) but not in resting peripheral blood lymphocytes of healthy donors. Positive immunostaining for TRESK was demonstrated in lymphoblastic cell lines, in germinal centers of non-tumoral lymph nodes, and in clinical samples of T acute lymphoblastic leukemias/lymphomas. Besides detection in the plasma membrane, intracellular TRESK localization was also revealed. Possible involvement of TRESK channel in lymphocyte proliferation and tumorigenesis is discussed.

  12. TRESK potassium channel in human T lymphoblasts

    International Nuclear Information System (INIS)

    Sánchez-Miguel, Dénison Selene; García-Dolores, Fernando; Rosa Flores-Márquez, María; Delgado-Enciso, Iván; Pottosin, Igor; Dobrovinskaya, Oxana

    2013-01-01

    Highlights: • TRESK (KCNK18) mRNA is present in different T lymphoblastic cell lines. • KCNK18 mRNA was not found in resting peripheral blood lymphocytes. • Clinical samples of T lymphoblastic leukemias and lymphomas were positive for TRESK. • TRESK in T lymphoblasts has dual localization, in plasma membrane and intracellular. -- Abstract: TRESK (TWIK-related spinal cord K + ) channel, encoded by KCNK18 gene, belongs to the double-pore domain K + channel family and in normal conditions is expressed predominantly in the central nervous system. In our previous patch-clamp study on Jurkat T lymphoblasts we have characterized highly selective K + channel with pharmacological profile identical to TRESK. In the present work, the presence of KCNK18 mRNA was confirmed in T lymphoblastic cell lines (Jurkat, JCaM, H9) but not in resting peripheral blood lymphocytes of healthy donors. Positive immunostaining for TRESK was demonstrated in lymphoblastic cell lines, in germinal centers of non-tumoral lymph nodes, and in clinical samples of T acute lymphoblastic leukemias/lymphomas. Besides detection in the plasma membrane, intracellular TRESK localization was also revealed. Possible involvement of TRESK channel in lymphocyte proliferation and tumorigenesis is discussed

  13. Cannabidiol Reduces Leukemic Cell Size ? But Is It Important?

    OpenAIRE

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptos...

  14. Chromosomal Aberrations Associated with Clonal Evolution and Leukemic Transformation in Fanconi Anemia: Clinical and Biological Implications

    Directory of Open Access Journals (Sweden)

    Stefan Meyer

    2012-01-01

    Full Text Available Fanconi anaemia (FA is an inherited disease with congenital and developmental abnormalities, bone marrow failure, and extreme risk of leukemic transformation. Bone marrow surveillance is an important part of the clinical management of FA and often reveals cytogenetic aberrations. Here, we review bone marrow findings in FA and discuss the clinical and biological implications of chromosomal aberrations associated with leukemic transformation.

  15. Determination of Elements in Normal and Leukemic Human Whole Blood by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Frykberg, B; Samsahl, K; Wester, P O

    1961-11-15

    By means of gamma-spectrometry the following elements were simultaneously determined in normal and leukemic human whole blood: Cu, Mn, Zn, Sr, Na, P, Ca, Rb, Cd, Sb, Au, Cs and Fe. Chemical separations were performed according to a group separation method using ion-exchange technique. No significant difference between the concentrations of the elements in normal- and leukemic blood was observed.

  16. Determination of Elements in Normal and Leukemic Human Whole Blood by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.; Frykberg, B.; Samsahl, K.; Wester, P.O.

    1961-11-01

    By means of gamma-spectrometry the following elements were simultaneously determined in normal and leukemic human whole blood: Cu, Mn, Zn, Sr, Na, P, Ca, Rb, Cd, Sb, Au, Cs and Fe. Chemical separations were performed according to a group separation method using ion-exchange technique. No significant difference between the concentrations of the elements in normal- and leukemic blood was observed

  17. Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Carlet, Michela; Kofler, Reinhard; Janjetovic, Kristina; Rainer, Johannes; Schmidt, Stefan; Panzer-Grümayer, Renate; Mann, Georg; Prelog, Martina; Meister, Bernhard; Ploner, Christian

    2010-01-01

    Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed. Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of PFKFB2-15A and -15B isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM. Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent PFKFB2 induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (PFKFB1 and 4) or not induced by GC (PFKFB3). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL in vitro model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis. Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC

  18. CD19/CD22 Chimeric Antigen Receptor T Cells and Chemotherapy in Treating Children or Young Adults With Recurrent or Refractory CD19 Positive B Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2017-11-20

    B Acute Lymphoblastic Leukemia; CD19 Positive; Minimal Residual Disease; Philadelphia Chromosome Positive; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Acute Lymphoblastic Leukemia

  19. Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Yeh, Su-Peng; Lo, Wen-Jyi; Lin, Chiao-Lin; Liao, Yu-Min; Lin, Chen-Yuan; Bai, Li-Yuan; Liang, Ji-An; Chiu, Chang-Fang

    2012-02-01

    Both bone marrow hematopoietic cells (BM-HCs) and mesenchymal stem cells (BM-MSCs) may have cytogenetic aberrations in leukemic patients, and anti-leukemic therapy may induce cytogenetic remission of BM-HCs. The impact of anti-leukemic therapy on BM-MSCs remains unknown. Cytogenetic studies of BM-MSCs from 15 leukemic patients with documented cytogenetic abnormalities of BM-HCs were investigated. To see the influence of anti-leukemic therapy on BM-MSCs, cytogenetic studies were carried out in seven of them after the completion of anti-leukemic therapy, including anthracycline/Ara-C-based chemotherapy in two patients, high-dose busulfan/cyclophosphamide-based allogeneic transplantation in two patients, and total body irradiation (TBI)-based allogeneic transplantation in three patients. To simulate the effect of TBI in vitro, three BM-MSCs from one leukemic patient and two normal adults were irradiated using the same dosage and dosing schedule of TBI and cytogenetics were re-examined after irradiation. At the diagnosis of leukemia, two BM-MSCs had cytogenetic aberration, which were completely different to their BM-HCs counterpart. After the completion of anti-leukemic therapy, cytogenetic aberration was no longer detectable in one patient. Unexpectedly, BM-MSCs from three patients receiving TBI-based allogeneic transplantation acquired new, clonal cytogenetic abnormalities after transplantation. Similarly, complex cytogenetic abnormalities were found in all the three BM-MSCs exposed to in vitro irradiation. In conclusion, anti-leukemic treatments induce not only "cytogenetic remission" but also new cytogenetic abnormalities of BM-MSCs. TBI especially exerts detrimental effect on the chromosomal integrity of BM-MSCs and highlights the equal importance of investigating long-term adverse effect of anti-leukemic therapy on BM-MSCs as opposed to beneficial effect on BM-HCs.

  20. Cyanobacteria as a Source for Novel Anti-Leukemic Compounds.

    Science.gov (United States)

    Humisto, Anu; Herfindal, Lars; Jokela, Jouni; Karkman, Antti; Bjørnstad, Ronja; Choudhury, Romi R; Sivonen, Kaarina

    2016-01-01

    Cyanobacteria are an inspiring source of bioactive secondary metabolites. These bioactive agents are a diverse group of compounds which are varying in their bioactive targets, the mechanisms of action, and chemical structures. Cyanobacteria from various environments, especially marine benthic cyanobacteria, are found to be rich sources for the search for novel bioactive compounds. Several compounds with anticancer activities have been discovered from cyanobacteria and some of these have succeeded to enter the clinical trials. Varying anticancer agents are needed to overcome increasing challenges in cancer treatments. Different search methods are used to reveal anticancer compounds from natural products, but cell based methods are the most common. Cyanobacterial bioactive compounds as agents against acute myeloid leukemia are not well studied. Here we examined our new results combined with previous studies of anti-leukemic compounds from cyanobacteria with emphasis to reveal common features in strains producing such activity. We report that cyanobacteria harbor specific anti-leukemic compounds since several studied strains induced apoptosis against AML cells but were inactive against non-malignant cells like hepatocytes. We noted that particularly benthic strains from the Baltic Sea, such as Anabaena sp., were especially potential AML apoptosis inducers. Taken together, this review and re-analysis of data demonstrates the power of maintaining large culture collections for the search for novel bioactivities, and also how anti-AML activity in cyanobacteria can be revealed by relatively simple and low-cost assays.

  1. T cell differentiation stages identified by molecular and immunologic analysis of the T cell receptor complex in childhood lymphoblastic leukemia.

    Science.gov (United States)

    Mirro, J; Kitchingman, G; Behm, F G; Murphy, S B; Goorha, R M

    1987-03-01

    T cell differentiation was investigated by determining the relationship of T cell receptor (Ti) gene rearrangement and transcription to the expression of surface and cytoplasmic T3 antigen using blast cells from five children with acute lymphoblastic leukemia of thymic origin. Patterns of monoclonal antibody (MoAb) reactivity indicated that these cases were representative of the three recognized stages (I, II, III) of human thymocyte development. The T3 antigen, which becomes linked to the Ti to form a functional T cell receptor complex on mature thymocytes, was expressed on the cell surface in two cases (stage III). However, in the remaining three cases that were surface T3 negative (stages I and II), large amounts of T3 were identified in the cytoplasm by immunoperoxidase staining and flow cytometry. Leukemic blasts from all five patients showed rearranged genes encoding the beta-chain portion of the Ti heterodimer. RNA transcripts of Ti beta-chain genes were also evident in lymphoblasts from all five cases, but transcripts coding for the alpha-chain portion of Ti were found only in cases that expressed T3 on the cell surface. Thus the absence of surface T3 (and presumably Ti) coincides with the absence of Ti alpha-chain RNA, suggesting that transcription of alpha-chain genes is a critical regulatory event in the surface expression of the Ti-T3 complex. Leukemic T cells that rearrange and express Ti beta-chain genes but lack Ti alpha-chain messenger RNA (mRNA) may represent a stage of differentiation analogous to pre-B cells, where heavy-chain immunoglobulin (Ig) genes are rearranged and expressed but light-chain Ig genes are not expressed.

  2. Pharmacogenetics in Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Cheok, Meyling H.; Pottier, Nicolas; Kager, Leo

    2009-01-01

    Progress in the treatment of acute leukemia in children has been remarkable, from a disease being lethal four decades ago to current cure rates exceeding 80%. This exemplary progress is largely due to the optimization of existing treatment modalities rather than the discovery of new antileukemic agents. However, despite these high cure rates, the annual number of children whose leukemia relapses after their initial therapy remains greater than that of new cases of most types of childhood cancers. The aim of pharmacogenetics is to develop strategies to personalize treatment and tailor therapy to individual patients, with the goal of optimizing efficacy and safety through better understanding of human genome variability and its influence on drug response. In this review, we summarize recent pharmacogenomic studies related to the treatment of pediatric acute lymphoblastic leukemia. These studies illustrate the promise of pharmacogenomics to further advance the treatment of human cancers, with childhood leukemia serving as a paradigm. PMID:19100367

  3. Diagnosis of acute lymphoblastic leukemia from intracerebral hemorrhage and blast crisis. A case report and review of the literature.

    Science.gov (United States)

    Naunheim, Matthew R; Nahed, Brian V; Walcott, Brian P; Kahle, Kristopher T; Soupir, Chad P; Cahill, Daniel P; Borges, Lawrence F

    2010-09-01

    Intracerebral hemorrhage (ICH) contributes significantly to the morbidity and mortality of patients suffering from acute leukemia. While ICH is often identified in autopsy studies of leukemic patients, it is rare for ICH to be the presenting sign that ultimately leads to the diagnosis of leukemia. We report a patient with previously undiagnosed acute precursor B-cell lymphoblastic leukemia (ALL) who presented with diffuse encephalopathy due to ICH in the setting of an acute blast crisis. The diagnosis of ALL was initially suspected, because of the hyperleukocytosis observed on presentation, then confirmed with a bone marrow biopsy and flow cytometry study of the peripheral blood. Furthermore, detection of the BCR/ABL Philadelphia translocation t(9:22)(q34:q11) in this leukemic patient by fluorescent in situ hybridization permitted targeted therapy of the blast crisis with imatinib (Gleevec). Understanding the underlying etiology of ICH is pivotal in its management. This case demonstrates that the presence of hyperleukocytosis in a patient with intracerebral hemorrhage should raise clinical suspicion for acute leukemia as the cause of the ICH.

  4. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  5. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  6. Clinical impact of leukemic blast heterogeneity at diagnosis in cytogenetic intermediate-risk acute myeloid leukemia

    DEFF Research Database (Denmark)

    Hoffmann, Marianne Hutchings; Klausen, Tobias Wirenfeldt; Boegsted, Martin

    2012-01-01

    Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact.......Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact....

  7. The in-vitro study of human blood leukemic cells by pulsed NMR

    International Nuclear Information System (INIS)

    Zulkarnaen, M.; Munawir; Wibowo, Tono; Suyitno, Gogot

    1983-01-01

    The diagram of leukemic cells in human blood has been studied by using the NMR longitudinal relaxation technique. The observation was treated in whole blood, serum and blood cell. Every result was compared with previous observation and show that the values of the proton longitudinal relaxation in the leukemic whole blood almost twice or more that of normal blood, while in the serum and the blood cell, the values are nearly the same. (author)

  8. DIAGNOSIS AND SUBCLASSIFICATION OF ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Sabina Chiaretti

    2014-10-01

    Full Text Available Acute lymphoblastic leukemia (ALL is a disseminated malignancy of B- or T-lymphoblasts which imposes a rapid and accurate diagnostic process to support an optimal risk-oriented therapy and thus increase the curability rate. The need for a precise diagnostic algorithm is underlined by the awareness that both ALL therapy and related success rates may vary greatly in function of ALL subset, from standard chemotherapy in patients with standard-risk ALL, to allotransplantation (SCT and targeted therapy in high-risk patients and cases expressing suitable biological targets, respectively. This review offers a glimpse on how best identify ALL and the most relevant ALL subsets.

  9. Acute Lymphoblastic Leukaemia presenting as Juvenile Idiopathic ...

    African Journals Online (AJOL)

    Background: Acute Lymphoblastic Leukaemia in children commonly presents with osteo articular manifestations that may mimic Juvenile Idiopathic Arthritis. This may create considerable diagnostic difficulty and lead to delay in commencing appropriate treatment. Case: An eight year old boy who presented with multiple ...

  10. Implications of infectious diseases and the adrenal hypothesis for the etiology of childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    F. Azevedo-Silva

    2010-03-01

    Full Text Available Acute leukemia is the most frequent cancer in children. Recently, a new hypothesis was proposed for the pathogenesis of childhood acute lymphoblastic leukemia (ALL. The so-called "adrenal hypothesis" emphasized the role of endogenous cortisol in the etiology of B-cell precursor ALL. The incidence peak of ALL in children between 3 to 5 years of age has been well documented and is consistent with this view. The adrenal hypothesis proposes that the risk of childhood B-cell precursor ALL is reduced when early childhood infections induce qualitative and quantitative changes in the hypothalamus-pituitary-adrenal axis. It suggests that the increased plasma cortisol levels would be sufficient to eliminate all clonal leukemic cells originating during fetal life. Because Brazil is a continental and tropical country, the exposure to infections is diversified with endemic viral and regionally non-viral infections, with some characteristics that support the recent adrenal hypothesis. Here we discuss this new hypothesis in terms of data from epidemiological studies and the possible implications of the diversity of infections occurring in Brazilian children.

  11. Proteomic changes in a childhood acute lymphoblastic leukemia cell line during the adaptation to vincristine.

    Science.gov (United States)

    Guzmán-Ortiz, Ana Laura; Aparicio-Ozores, Gerardo; Valle-Rios, Ricardo; Medina-Contreras, Oscar; Patiño-López, Genaro; Quezada, Héctor

    Relapse occurs in approximately 20% of Mexican patients with childhood acute lymphoblastic leukemia (ALL). In this group, chemoresistance may be one of the biggest challenges. An overview of complex cellular processes like drug tolerance can be achieved with proteomic studies. The B-lineage pediatric ALL cell line CCRF-SB was gradually exposed to the chemotherapeutic vincristine until proliferation was observed at 6nM, control cells were cultured in the absence of vincristine. The proteome from each group was analyzed by nanoHPLC coupled to an ESI-ion trap mass spectrometer. The identified proteins were grouped into overrepresented functional categories with the PANTHER classification system. We found 135 proteins exclusively expressed in the presence of vincristine. The most represented functional categories were: Toll receptor signaling pathway, Ras Pathway, B and T cell activation, CCKR signaling map, cytokine-mediated signaling pathway, and oxidative phosphorylation. Our study indicates that signal transduction and mitochondrial ATP production are essential during adaptation of leukemic cells to vincristine, these processes represent potential therapeutic targets. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  12. Effects of Malnutrition on Neutrophil/Mononuclear Cell Apoptotic Functions in Children with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Cakir, Fatma Betul; Berrak, Su Gülsün; Aydogan, Gonul; Tulunay, Aysin; Timur, Cetin; Canpolat, Cengiz; Eksioglu Demiralp, Emel

    2017-04-01

    Recent studies claim that apoptosis may explain immune dysfunction observed in malnutrition. The objective of this study was to determine the effect of malnutrition on apoptotic functions of phagocytic cells in acute lymphoblastic leukemia (ALL). Twenty-eight ALL patients (13 with malnutrition) and thirty controls were enrolled. Neutrophil and mononuclear cell apoptosis of ALL patients and the control group were studied on admission before chemotherapy and repeated at a minimum of three months after induction of chemotherapy or when the nutritional status of leukemic children improved. The apoptotic functions of both ALL groups on admission were significantly lower than those of the control group. The apoptotic functions were lower in ALL patients with malnutrition than those in ALL patients without malnutrition, but this was not statistically significant. The repeated apoptotic functions of both ALL groups were increased to similar values with the control group. This increase was found to be statistically significant. The apoptotic functions in ALL patients were not found to be affected by malnutrition. However, after dietary intervention, increased apoptotic functions in both ALL patient groups deserve mentioning. Dietary intervention should always be recommended as malnutrition or cachexia leads to multiple complications. Enhanced apoptosis might originate also from remission state of cancer.

  13. Leydig cell function in boys following treatment for testicular relapse of acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Blatt, J.; Sherins, R.J.; Niebrugge, D.; Bleyer, W.A.; Poplack, D.G.

    1985-01-01

    Current practice for achieving local control of testicular relapse in males with acute lymphoblastic leukemia (ALL) includes the use of 2,400-rad testicular radiation. Although this therapy is known to cause germ cell depletion, it has been assumed that it does not alter testicular secretion of testosterone. To test this assumption, the authors measured gonadotropin and testosterone levels in seven boys with ALL who had been treated with radiation for clinically apparent testicular relapse. In four of seven boys, testicular relapse was bilateral with overt involvement of one testicle and microscopic involvement of the other. Three of these four boys demonstrated delayed sexual maturation, and in addition to elevated follicle-stimulating hormone (FSH) concentrations, testosterone levels were low and luteinizing hormone levels were elevated compared with controls. These data indicate that boys with overt testicular leukemia who are treated with 2,400-rad testicular radiation are at risk for Leydig cell dysfunction. However, the relative contributions of radiation, prior chemotherapy, and leukemic infiltration to this dysfunction remain to be clarified

  14. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2017-07-19

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  15. Effect of dioxin on normal and leukemic human hematopoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lambertenghi-Deliliers, G.; Soligo, D. [Univ. degli Studi, Milan (Italy). Dipt. die Ematologia, Ospedale Maggiore Policlinico IRCCS; Fracchiolla, N.S. [Ospedale Maggiore Policlinico IRCCS, Milan (Italy). Dipt. di Ematologia; Servida, F. [Fondazione Matarelli, Milan (Italy); Bertazzi, P.A. [Istituti Clinici di Perfezionamento, Milan (Italy). Dipt. di Medicina del Lavoro

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) arises from chlorination of phenolic substrates or from partial combustion of organic materials in the presence of chlorine sources. TCDD has a large number of biological effects such as long-lasting skin disease, cardiovascular disease, diabete and cancer. TCDD is the prototypical agonist of the aryl hydrocarbon receptor (AhR), a member of the erb-A family that also includes the receptors for steroids, thyroid hormones, peroxisome proliferators and retinoids. When bound to dioxin, the AhR can bind to DNA and alter the expression of some genes including cytokines and growth factors. In this study, we analyzed the effect of escalating doses of TCDD on human CD34{sup +} progenitor cells from the leukapheresis of normal donors stimulated with G-CSF as well as the human myeloid leukemic cell lines HL60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia). The possible specific modulation of gene expression induced by the TCDD exposure was then tested by means of microarray analyses.

  16. Pulmonary leukemic involvement: high-resolution computed tomography evaluation

    International Nuclear Information System (INIS)

    Oliveira, Ana Paola de; Marchiori, Edson; Souza Junior, Arthur Soares

    2004-01-01

    Objective: To evaluate the role of high-resolution computed tomography (HRCT) in patients with leukemia and pulmonary symptoms, to establish the main patterns and to correlate them with the etiology. Materials and Methods: This is a retrospective study of the HRCT of 15 patients with leukemia and pulmonary symptoms. The examinations were performed using a spatial high-resolution protocol and were analyzed by two independent radiologists. Results: The main HRCT patterns found were ground-glass opacity (n=11), consolidation (n=9), airspace nodules (n=3), septal thickening (n=3), tree-in-bud pattern (n=3), and pleural effusion (n=3). Pulmonary infection was the most common finding seen in 12 patients: bacterial pneumonia (n=6), fungal infection (n = 4), pulmonary tuberculosis (n=1) and viral infection (n=1). Leukemic pleural infiltration (n=1), lymphoma (n=1) and pulmonary hemorrhage (n=1) were detected in the other three patients. Conclusion: HRCT is an important tool that may suggest the cause of lung involvement, its extension and in some cases to guide invasive procedures in patients with leukemia. (author)

  17. Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor

    International Nuclear Information System (INIS)

    Gough, N.M.; Gearing, D.P.; King, J.A.; Willson, T.A.; Hilton, D.J.; Nicola, N.A.; Metcalf, D.

    1988-01-01

    A human homologue of the recently cloned murine leukemia-inhibitory factor (LIF) gene was isolated from a genomic library by using the marine cDNA as a hybridization probe. The nucleotide sequence of the human gene indicated that human LIF has 78% amino acid sequence identity with murine LIF, with no insertions or deletions, and that the region of the human gene encoding the mature protein has one intervening sequence. After oligonucleotide-mediated mutagenesis, the mature protein-coding region of the LIF gene was introduced into the yeast expression vector YEpsec1. Yeast cells transformed with the resulting recombinant could be induced with galactose to produce high levels of a factor that induced the differentiation of murine M1 leukemic cells in a manner analogous to murine LIF. This factor competed with 125 I-labeled native murine LIF for binding to specific cellular receptors on murine cells, compatible with a high degree of structural similarity between the murine and human factors

  18. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Scheijen, Blanca; Boer, Judith M; Marke, René; Tijchon, Esther; van Ingen Schenau, Dorette; Waanders, Esmé; van Emst, Liesbeth; van der Meer, Laurens T; Pieters, Rob; Escherich, Gabriele; Horstmann, Martin A; Sonneveld, Edwin; Venn, Nicola; Sutton, Rosemary; Dalla-Pozza, Luciano; Kuiper, Roland P; Hoogerbrugge, Peter M; den Boer, Monique L; van Leeuwen, Frank N

    2017-03-01

    Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia ( P =0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival ( P =0.0003) and a higher 5-year cumulative incidence of relapse ( P =0.005), when compared with IKZF1 -deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1 , did not affect the outcome of IKZF1 -deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1 -deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1 +/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1 +/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1 -deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function. Copyright© Ferrata Storti Foundation.

  19. Ultrasound and MR Findings of Aleukemic Leukemia Cutis in a Patient with Complete Remission of Acute Lymphoblastic Leukemia: A Case Report

    International Nuclear Information System (INIS)

    Kim, Min Sung; Jee, Won Hee; Kim, Sun Ki; Lee, So Yeon; Lim, Gye Yeon; Park, Gyeong Sin; Lee, Seok

    2010-01-01

    Aleukemic leukemia cutis is an extremely rare condition characterized by the infiltration of leukemic cells in skin without blasts in the peripheral blood. Leukemia cutis is considered a grave prognostic sign, thus early diagnosis is important. Leukemia cutis usually occurs in patients with myeloid leukemia. To the best of our knowledge, there has been no report regarding the radiological findings of aleukemic leukemia cutis, which is probably due to the presence of the skin changes in most patients. We report the ultrasound and MR findings of aleukemic leukemia cutis, even without the skin manifestation in patients with a history of complete remission of the acute lymphoblastic leukemia following an allogeneic peripheral blood stem cell transplantation

  20. Unilateral optic disk edema with central retinal artery and vein occlusions as the presenting signs of relapse in acute lymphoblastic leukemia.

    Science.gov (United States)

    Salazar Méndez, R; Fonollá Gil, M

    2014-11-01

    A 39-year-old man with Philadelphia chromosome-positive acute lymphoblastic leukemia (LAL Ph+) developed progressive vision loss to no light perception in his right eye. He had optic disk edema and later developed central artery and vein occlusions. Pan-photocoagulation, as well as radiotherapy of the whole brain were performed in several fractions. Unfortunately the patient died of hematological relapse 4 months later. Optic nerve infiltration may appear as an isolated sign of a leukemia relapse, even before a hematological relapse occurs. Leukemic optic neuropathy is a critical sign, not only for vision, but also for life, and radiotherapy should be immediately performed before irreversible optic nerve damage occurs. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  1. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number

    DEFF Research Database (Denmark)

    Gregers, Jannie; Christensen, Ib Jarle; Dalhoff, Kim

    2010-01-01

    with chromosome 21 copy number in the leukemic clone. A total of 500 children with acute lymphoblastic leukemia treated according to the common Nordic treatment protocols were included, and we found that the RFC AA variant was associated with a 50% better chance of staying in remission compared with GG or GA......The reduced folate carrier (RFC) is involved in the transport of methotrexate (MTX) across the cell membrane. The RFC gene (SLC19A1) is located on chromosome 21, and we hypothesized that the RFC80 G>A polymorphism would affect outcome and toxicity in childhood leukemia and that this could interact...... variants (P = .046). Increased copy numbers of chromosome 21 appear to improve outcome also in children with GA or GG variant. In a subset of 182 children receiving 608 high-dose MTX courses, we observed higher degree of bone marrow toxicity in patients with the RFC AA variant compared with GA/GG variants...

  2. The association of reduced folate carrier 80G>A polymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number

    DEFF Research Database (Denmark)

    Gregers, Jannie; Christensen, Ib Jarle; Dalhoff, Kim

    2010-01-01

    with chromosome 21 copy number in the leukemic clone. A total of 500 children with acute lymphoblastic leukemia treated according to the common Nordic treatment protocols were included, and we found that the RFC AA variant was associated with a 50% better chance of staying in remission compared with GG or GA...... (platelet 73 vs 99/105 x 10(9)/L, P = .004, hemoglobin 5.6 vs 5.9/6.0 mmol/L, P = .004) and a higher degree of liver toxicity in patients with RFC GG variant (alanine aminotransferase 167 vs 127/124 U/L, P = .05). In conclusion, the RFC 80G>A polymorphism interacts with chromosome 21 copy numbers...

  3. Ultrasound and MR Findings of Aleukemic Leukemia Cutis in a Patient with Complete Remission of Acute Lymphoblastic Leukemia: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Sung; Jee, Won Hee; Kim, Sun Ki; Lee, So Yeon; Lim, Gye Yeon; Park, Gyeong Sin; Lee, Seok [Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2010-12-15

    Aleukemic leukemia cutis is an extremely rare condition characterized by the infiltration of leukemic cells in skin without blasts in the peripheral blood. Leukemia cutis is considered a grave prognostic sign, thus early diagnosis is important. Leukemia cutis usually occurs in patients with myeloid leukemia. To the best of our knowledge, there has been no report regarding the radiological findings of aleukemic leukemia cutis, which is probably due to the presence of the skin changes in most patients. We report the ultrasound and MR findings of aleukemic leukemia cutis, even without the skin manifestation in patients with a history of complete remission of the acute lymphoblastic leukemia following an allogeneic peripheral blood stem cell transplantation

  4. Chimeric Antigen Receptor T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Ciprian Tomuleasa

    2018-02-01

    Full Text Available Chimeric antigen receptor (CAR T-cell technology has seen a rapid development over the last decade mostly due to the potential that these cells may have in treating malignant diseases. It is a generally accepted principle that very few therapeutic compounds deliver a clinical response without treatment-related toxicity, and studies have shown that CAR T-cells are not an exception to this rule. While large multinational drug companies are currently investigating the potential role of CAR T-cells in hematological oncology, the potential of such cellular therapies are being recognized worldwide as they are expected to expand in the patient to support the establishment of the immune memory, provide a continuous surveillance to prevent and/or treat a relapse, and keep the targeted malignant cell subpopulation in check. In this article, we present the possible advantages of using CAR T-cells in treating acute lymphoblastic leukemia, presenting the technology and the current knowledge in their preclinical and early clinical trial use. Thus, this article first presents the main present-day knowledge on the standard of care for acute lymphoblastic leukemia. Afterward, current knowledge is presented about the use of CAR T-cells in cancer immunotherapy, describing their design, the molecular constructs, and the preclinical data on murine models to properly explain the background for their clinical use. Last, but certainly not least, this article presents the use of CAR T-cells for the immunotherapy of B-cell acute lymphoblastic leukemia, describing both their potential clinical advantages and the possible side effects.

  5. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells.

    Directory of Open Access Journals (Sweden)

    Jérome Kluza

    Full Text Available Challenges today concern chronic myeloid leukemia (CML patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention.

  6. The mTOR inhibitor, everolimus (RAD001), overcomes resistance to imatinib in quiescent Ph-positive acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Kuwatsuka, Y; Minami, M; Minami, Y; Sugimoto, K; Hayakawa, F; Miyata, Y; Abe, A; Goff, D J; Kiyoi, H; Naoe, T

    2011-01-01

    In Ph-positive (Ph + ) leukemia, the quiescent cell state is one of the reasons for resistance to the BCR-ABL-kinase inhibitor, imatinib. In order to examine the mechanisms of resistance due to quiescence and the effect of the mammalian target of rapamycin inhibitor, everolimus, for such a resistant population, we used Ph + acute lymphoblastic leukemia patient cells serially xenotransplanted into NOD/SCID/IL2rγ null (NOG) mice. Spleen cells from leukemic mice showed a higher percentage of slow-cycling G 0 cells in the CD34 + CD38 − population compared with the CD34 + CD38 + and CD34 − populations. After ex vivo imatinib treatment, more residual cells were observed in the CD34 + CD38 − population than in the other populations. Although slow-cycling G 0 cells were insensitive to imatinib in spite of BCR-ABL and CrkL dephosphorylation, combination treatment with everolimus induced substantial cell death, including that of the CD34 + CD38 − population, with p70-S6 K dephosphorylation and decrease of MCL-1 expression. The leukemic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse system with the in vivo combination treatment with imatinib and everolimus showed a decrease of tumor burden including CD34 + cells. These results imply that treatment with everolimus can overcome resistance to imatinib in Ph + leukemia due to quiescence

  7. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    International Nuclear Information System (INIS)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi; Asano, Shigetaka

    2010-01-01

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  8. Acute Respiratory Distress Syndrome Caused by Leukemic Infiltration of the Lung

    Directory of Open Access Journals (Sweden)

    Yao-Kuang Wu

    2008-05-01

    Full Text Available Respiratory distress syndrome resulting from leukemic pulmonary infiltrates is seldom diagnosed antemortem. Two 60- and 80-year-old women presented with general malaise, progressive shortness of breath, and hyperleukocytosis, which progressed to acute respiratory distress syndrome (ARDS after admission. Acute leukemia with pulmonary infection was initially diagnosed, but subsequent examinations including open lung biopsy revealed leukemic pulmonary infiltrates without infection. In one case, the clinical condition and chest radiography improved initially after combination therapy with chemotherapy for leukemia and aggressive pulmonary support. However, new pulmonary infiltration on chest radiography and hypoxemia recurred, which was consistent with acute lysis pneumopathy. Despite aggressive treatment, both patients died due to rapidly deteriorating condition. Leukemic pulmonary involvement should be considered in acute leukemia patients with non-infectious diffusive lung infiltration, especially in acute leukemia with a high blast count.

  9. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  10. Analysis of the surface membrane of iodinated leukemic cells by SDS-polyacrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Ishitani, Kunihiko; Ikeda, Akira; Tamura, Minoru; Takeuchi, Hidekazu; Ihara, Koji

    1980-01-01

    Surface proteins of human leukemic cells were labeled selectively by lactoperoxydase catalysed-iodination and examined by SDS-polyacrylamide gel electrophoresis. The electrophoretic pattern of the surface membranes of cells from a patients with chronic mylogeneous leukemia in blast crisis was of B cell type and showed Ia like antigen. Leukemic cells from a patient with hairly cell leukemia also expressed the pattern of B cell type when tested by this method the technique of iodinating cell surface with lactoperoxidase is useful in characterization of leukemia cells for diagnosis and monitoring of clinical course. (author)

  11. IN SILICO MODELLING OF CYTOTOXIC BEHAVIOUR OF ANTI-LEUKEMIC COMPOUNDS ON HL-60 CELL LINE

    Directory of Open Access Journals (Sweden)

    David Ebuka Arthur

    2016-05-01

    Full Text Available This research employs multiple linear regression technique in the modelling of some potent anti-leukemic compounds using paDEL molecular descriptor software calculator, to identify the best relationship between the chemical structure and toxicities of the anticancer datasets against some leukemic cell lines (HL-60. Statistical parameters such as Q2 and R2pred (test set were computed to validate the strength of the model, while Williams plot was used to assess its applicability domain. The mean effects of the molecular descriptors in the models were calculated to illuminate the principal properties of the molecules responsible for their cytotoxicity.

  12. Molecular mechanisms associated with leukemic transformation of MPL-mutant myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Beer, Philip A; Ortmann, Christina A; Stegelmann, Frank

    2010-01-01

    Somatic activating mutations in MPL, the thrombopoietin receptor, occur in the myeloproliferative neoplasms, although virtually nothing is known about their role in evolution to acute myeloid leukemia. In this study, the MPL T487A mutation, identified in de novo acute myeloid leukemia......, was not detected in 172 patients with a myeloproliferative neoplasm. In patients with a prior MPL W515L-mutant myeloproliferative neoplasm, leukemic transformation was accompanied by MPL-mutant leukemic blasts, was seen in the absence of prior cytoreductive therapy and often involved loss of wild-type MPL...

  13. SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1

    Science.gov (United States)

    Leal, Paulo C.; Bhasin, Manoj K.; Zenatti, Priscila Pini; Nunes, Ricardo J.; Yunes, Rosendo A.; Nowill, Alexandre E.; Libermann, Towia A.; Zerbini, Luiz Fernando; Yunes, José Andrés

    2015-01-01

    Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N’-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002. PMID:26302043

  14. A fatal case of acute pulmonary embolism caused by right ventricular masses of acute lymphoblastic lymphoma-leukemia in a 13 year old girl

    Directory of Open Access Journals (Sweden)

    Yu Mi Ko Ko

    2012-07-01

    Full Text Available We report a case of a 13-year-old girl with acute lymphoblastic lymphoma- leukemia, who presented with a cardiac metastasis in the right ventricle, resulting in a pulmonary embolism. At the time of her leukemia diagnosis, a cardiac mass was incidentally found. The differential diagnosis for this unusual cardiac mass included cardiac tumor, metastasis, vegetation, and thrombus. Empirical treatment was initiated, including anticoagulation and antibiotics. She underwent plasmapheresis and was administered oral prednisolone for her leukemia. Five days later, she experienced sudden hemodynamic collapse and required extracorporeal membrane oxygenation insertion and emergency surgery. These interventions proved futile, and the patient died. Pathology revealed that the cardiac mass comprised an aggregation of small, round, necrotic cells consistent with leukemia. This is the first known case of acute lymphoblastic leukemia presenting as a right ventricular mass, with consequent fatal acute pulmonary embolism. A cardiac mass in a child with acute leukemia merits investigation to rule out every possible etiology, including vegetation, thrombus, and even a mass of leukemic cells, which could result in the fatal complication of pulmonary embolism.

  15. Establishment of a new human pre-B acute lymphoblastic leukemia cell line (KMO-90) with 1;19 translocation carrying p53 gene alterations.

    Science.gov (United States)

    Sotomatsu, M; Hayashi, Y; Kawamura, M; Yugami, S; Shitara, T

    1993-10-01

    A new human pre-B acute lymphoblastic leukemia cell line (KMO-90) was established from the bone marrow sample of a 12-year-old girl with acute lymphoblastic leukemia (ALL) carrying 1;19 chromosome translocation. KMO-90 cells expressed HLA-DR, CD10, CD19, and CD22 antigens. These cells had also cytoplasmic immunoglobulin lacking surface immunoglobulin, indicating that these had a pre-B phenotype. Chromosome analysis of this cell line showed 48, XX, +8, +19, t(1;19)(q23;p13). Southern blot analysis showed the same sized rearrangements of the E2A gene in KMO-90 cells as those in the original leukemic cells. By means of reverse transcriptase-polymerase chain reaction analysis, we detected E2A/PBX1 fusion transcripts in KMO-90 cells. KMO-90 is useful when studying the role of the 1;19 translocation in the etiology of pre-B ALL. Furthermore, we studied alterations of the p53 gene in this cell line by polymerase chain reaction, single-strand conformation polymorphism analysis. KMO-90 cells were identified to have a point mutation at codon 177 (CCC-->TCC) of the p53 gene, suggesting that alterations of the p53 gene may have an important role in the establishment of this cell line.

  16. Detection of Anti-Asparaginase Antibodies During Therapy with E.coli Asparaginase in Children with Newly Diagnosed Acute Lymphoblastic Leukemia and Lymphoma

    International Nuclear Information System (INIS)

    EBEID, E.N.; KAMEL, M.M.; ALI, B.A.

    2008-01-01

    Background: Asparaginase is an effective anti leukemic agent which is included in most front-line protocols for pediatric acute lymphoblastic leukemia (All) worldwide. Since asparaginase is a bacterial protein, it may induce formation of antibodies. The reported frequency of anti-asparaginase antibodies is highly variable: antibodies have been reported in as many as 79% of adults and as many as 70% of children after intravenous or intramuscular administration of E.coli asparaginase. Purpose: The aim of this study was to determine if the presence of antibodies during induction and continuation phases in newly diagnosed children with ALL and lymphoblastic lymphoma during therapy with E.coli asparaginase, had any correlation with various factors such as: age, gender, hypersensitivity reactions, response to therapy and Event Free Survival (EFS). Patients and Methods: Between the period from March 2005 to May 2007, sixty-four children who attended the Menia outpatient pediatric oncology clinic, or were admitted to the in patient department of the Menia oncology center, were enrolled in the study. Forty children had newly diagnosed ALL and 24 had lymphoblastic lymphoma. Patients were 48 males (75%) and 16 females (25%) with a male:female ratio 3:1. Their ages ranged from 3.5 to 17 years with mean age of 9.6 years. All patients received asparaginase therapy according to the St. Jude Total X III protocol, in a dose of 10,000 Iu/m2/dose, intramuscularly for 6-9 doses during the induction phase and another 6-9 doses during continuation phase according to disease status. Results: Forty one patients achieved complete remission, 9 had partial remission, and 14 were lost to followup at different intervals of treatment. Anti asparaginase antibodies were detected in 36 patients (56%) out of 64 patients, and 37 patients (60%) out of 62 patients who were treated with asparaginase at day 8 and day 27 of induction phase respectively. Moreover, 33 patients (61%) out of 54 patients, and

  17. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Siddiqui, Rafat A., E-mail: rsiddiqu@iuhealth.org [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Biology, Indiana University-Purdue University, Indianapolis, IN (United States); Department of Medicine, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  18. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-01-01

    Highlights: → 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. → DIP-DHA resulted in increased activation of caspase-3, and caspase-7. → DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  19. Positive /sup 111/In-granulocyte scintigraphy in a patient with focal leukemic blast cell infiltrations

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaelae, M; Remes, K; Paavonen, T; Liewendahl, K

    1985-06-01

    A patient with acute myeloid leukemia was investigated with /sup 111/In-granulocyte scintigraphy to reveal possible sites of infection. /sup 111/In-granulocytes accumulated in areas of leukemia blast cell infiltration leading to a false-positive scintigram. This possibility must be kept in mind when studying leukemic patients using labeled leukocytes.

  20. Proteinase-Activated Receptor 1 (PAR1 regulates leukemic stem cell functions.

    Directory of Open Access Journals (Sweden)

    Nicole Bäumer

    Full Text Available External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  1. CD25 targeted therapy of chemotherapy resistant leukemic stem cells using DR5 specific TRAIL peptide

    Directory of Open Access Journals (Sweden)

    Jayaprakasam Madhumathi

    2017-03-01

    Full Text Available Chemotherapy resistant leukemic stem cells (LSCs are being targeted as a modern therapeutic approach to prevent disease relapse. LSCs isolated from methotrexate resistant side population (SP of leukemic cell lines HL60 and MOLT4 exhibited high levels of CD25 and TRAIL R2/DR5 which are potential targets. Recombinant immunotoxin conjugating IL2α with TRAIL peptide mimetic was constructed for DR5 receptor specific targeting of LSCs and were tested in total cell population and LSCs. IL2-TRAIL peptide induced apoptosis in drug resistant SP cells from cell lines and showed potent cytotoxicity in PBMCs derived from leukemic patients with an efficacy of 81.25% in AML and 100% in CML, ALL and CLL. IL2-TRAIL peptide showed cytotoxicity in relapsed patient samples and was more effective than TRAIL or IL2-TRAIL proteins. Additionally, DR5 specific IL2-TRAIL peptide was effective in targeting and killing LSCs purified from cell lines [IC50: 952 nM in HL60, 714 nM in MOLT4] and relapsed patient blood samples with higher efficacy (85% than IL2-TRAIL protein (46%. Hence, CD25 and DR5 specific targeting by IL2-TRAIL peptide may be an effective strategy for targeting drug resistant leukemic cells and LSCs.

  2. Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia.

    Science.gov (United States)

    Majeti, Ravindra

    2014-01-01

    Massively parallel DNA sequencing has uncovered recurrent mutations in many human cancers. In acute myeloid leukemia (AML), cancer genome/exome resequencing has identified numerous recurrently mutated genes with an average of 5 mutations in each case of de novo AML. In order for these multiple mutations to accumulate in a single lineage of cells, they are serially acquired in clones of self-renewing hematopoietic stem cells (HSC), termed pre-leukemic HSC. Isolation and characterization of pre-leukemic HSC have shown that their mutations are enriched in genes involved in regulating DNA methylation, chromatin modifications, and the cohesin complex. On the other hand, genes involved in regulating activated signaling are generally absent. Pre-leukemic HSC have been found to persist in clinical remission and may ultimately give rise to relapsed disease through the acquisition of novel mutations. Thus, pre-leukemic HSC may constitute a key cellular reservoir that must be eradicated for long-term cures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    Science.gov (United States)

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  4. Clinical characteristics and genetic analysis of childhood acute lymphoblastic leukemia with hemophagocytic lymphohistiocytosis: a Japanese retrospective study by the Kyushu-Yamaguchi Children's Cancer Study Group.

    Science.gov (United States)

    Moritake, Hiroshi; Kamimura, Sachiyo; Nunoi, Hiroyuki; Nakayama, Hideki; Suminoe, Aiko; Inada, Hiroko; Inagaki, Jiro; Yanai, Fumio; Okamoto, Yasuhiro; Shinkoda, Yuichi; Shimomura, Maiko; Itonaga, Nobuyoshi; Hotta, Noriko; Hidaka, Yasufumi; Ohara, Osamu; Yanagimachi, Masakatsu; Nakajima, Noriko; Okamura, Jun; Kawano, Yoshifumi

    2014-07-01

    This present study sought to analyze acute lymphoblastic leukemia (ALL) patients with hemophagocytic lymphohistiocytosis (HLH) registered in Kyushu-Yamaguchi Children's Cancer Study Group studies conducted between 1996 and 2007. Four of 357 patients, including two of 318 patients with B cell precursor acute lymphoblastic leukemia (BCP-ALL) and two of 39 of those with T cell acute lymphoblastic leukemia (T-ALL), were identified. HLH was observed more frequently in the T-ALL patients than in the BCP-ALL patients (P = 0.061). The mean age of 13.0 years at the diagnosis of leukemia in the HLH + ALL group was significantly higher than the 6.05 years observed in the remaining ALL groups (P = 0.001). A female predisposition was noted, as all four patients were female (P = 0.043). In two of four patients, the leukemic cells exhibited deletions on the long arm of chromosome 6 (P = 0.003). Three patients suffered from HLH during maintenance therapy. Parvovirus B19 infection and cytomegalovirus reactivation were identified as causes of HLH in one and two patients, respectively. All four patients are currently in complete remission, although one developed relapse of leukemia after receiving maintenance therapy. Based on the genetic analyses, non-synonymous single nucleotide polymorphisms (SNPs) in UNC13D, syntaxin 11, and STXBP2 were identified in all patients. Clinicians should therefore be aware of the risk of HLH during maintenance therapy, especially in older T-ALL patients with SNPs in familial HLH causative genes.

  5. In vitro gamma irradiation Medical Center of leukemic cells in mice, rats, and guinea pigs

    International Nuclear Information System (INIS)

    Gross, L.; Dreyfuss, Y.; Ehrenreich, T.; Feldman, D.; Limbert, L.M.

    1980-01-01

    In vitro gamma irradiation of virus-induced (Gross) mouse leukemia cells at doses of 350 to 1600 rads (1 rad = 0.01 gray) had no effect on their ability to induce leukemia, usually within 2 weeks, after transplantation into syngeneic mice. However, when cells irradiated at doses of 2000-20,000 rads were transplanted, they induced leukemia after a latency period exceeding 2.5 months, similar to the results observed in mice inoculated with filtered mouse leukemia extracts. Similar results were also obtained after irradiation of leukemic cells derived from rats in which leukemia had been induced by rat-adapted mouse leukemia virus. Apparently, gamma irradiation at a dose of, or exceeding, 2000 rads, inhibits the ability of mouse and rat leukemic cells to induce leukemia after transplantation into syngeneic hosts; however, it does not inactivate the virus carried by such cells nor prevent it from inducing leukemia. [In previous experiments, doses of more than 4,500,000 rads were needed to inactivate the passage A (Gross) leukemia virus carried in either mouse or rat leukemic cells.] In vitro gamma irradiation of L2C guinea pig leukemic cells at doses of 750 to 2500 rads had no apparent effect on their ability to induce leukemia after transplantation into strain 2 guinea pigs. However, irradiation at doses of 3250 to 20,000 rads inactivated their ability to do so. The morphology of mouse, rat, and guinea pig leukemic cells and the virus particles present in such cells was not affected by irradiation at doses of 20,000 rads

  6. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche.

    Science.gov (United States)

    Vanegas, Natalia-Del Pilar; Vernot, Jean-Paul

    2017-01-01

    Leukemic and mesenchymal stem cells interact in the leukemic microenvironment and affect each other differently. This interplay has also important implications for the hematopoietic stem cell (HSC) biology and function. This study evaluated human HSC self-renewal potential and quiescence in an in vitro leukemic niche without leukemic cells. A leukemic niche was established by co-culturing mesenchymal stem cells with a fresh conditioned medium obtained from a leukemic (REH) cell line. After 3 days, the REH-conditioned medium was removed and freshly isolated CD34+ at a density of up to 100,000 cells/ml were added to the leukemic niche. CD34+ cell evaluations (cell cycle, self-renewal gene expression and migration capacity) were performed after 3 further days of co-culture. Additionally, we preliminary investigated the soluble factors present in the leukemic niche and their effect on the mesenchymal stem cells. Statistical significance was assessed by Student's t test or the nonparametric test Kolmogorov-Smirnov. By co-culturing normal mesenchymal stem cells with the REH-conditioned medium we showed that hematopoietic stem cells, normally in a quiescent state, enter cell cycle and proliferate. This loss of quiescence was accompanied by an increased expression of Ki-67 and c-Myc, two well-known cell proliferation-associated markers. Two central regulators of quiescence GATA2 and p53 were also down regulated. Importantly, two genes involved in HSC self-renewal, Klf4 and the histone-lysine N -methyltransferase enzyme Ezh2, were severely affected. On the contrary, c-Kit expression, the stem cell factor receptor, was upregulated in hematopoietic stem cells when compared to the normal niche. Interestingly, mesenchymal stem cells incubated with the REH-conditioned medium stopped growing, showed a flattened morphology with the appearance of small vacuoles, and importantly, became positive for the senescence-associated beta-galactosidase activity. Evaluation of the leukemic

  7. Patterns of DNMT1 Promoter Methylation in Patients with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Rahmani, Tirdad; Azad, Mehdi; Chahardouli, Bahram; Nasiri, Hajar; Vatanmakanian, Mousa; Kaviani, Saeid

    2017-07-01

    Background: Acute lymphoblastic leukemia (ALL) is a clonal malignant disorder characterized by an uncontrolled proliferation of immature T or B lymphocytes. Extensive studies have shown that the epigenetic changes, especially modified DNA methylation patterns in the regulatory regions through the DNA methyltransferase (DNMTs), play an important role in the development of genetic disorders and abnormal growth and maturation capacity of leukemic stem cells (LSCs).The aim of this study was to evaluate the changes in DNMT1 promoter methylation and its expression pattern in patients with ALL. Materials and Methods: In this experimental study, methylation specific PCR (MSP) was used to assess the methylation status of DNMT1 promoter regions in samples collected from ALL patients (n=45) and healthy control subjects. According to this method, un-methylated cytosine nucleotides are converted to uracil by sodium bisulfite and the proliferation of methylated and un-methylated regions are performed using specific primers for target sequences. Results: None of the patients with B and T-ALL showed methylated promoter regions of the DNMT1 gene, while the methylation pattern of both pre-B ALL patients and the control group showed a relative promoter methylation. Conclusion: Analysis of promoter methylation patterns in various subgroups of ALL has revealed the importance of DNMT1 in the regulation of gene expression. Likewise, extensive data have also highlighted the methylation-based mechanisms exerted by DNAM1 as one of the main participants regulating gene expression in B-ALL and T-ALL patients. Investigation of the overall DNA methylation pattern offers significant improvements in the prediction of disease prognosis and treatment response.

  8. Nanomedicine approaches in acute lymphoblastic leukemia.

    Science.gov (United States)

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Patel, B; Kang, Y; Cui, K; Litt, M; Riberio, M S J; Deng, C; Salz, T; Casada, S; Fu, X; Qiu, Y; Zhao, K; Huang, S

    2014-02-01

    Long-range chromatin interactions control metazoan gene transcription. However, the involvement of intra- and interchromosomal interactions in development and oncogenesis remains unclear. TAL1/SCL is a critical transcription factor required for the development of all hematopoietic lineages; yet, aberrant TAL1 transcription often occurs in T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that oncogenic TAL1 expression is regulated by different intra- and interchromosomal loops in normal hematopoietic and leukemic cells, respectively. These intra- and interchromosomal loops alter the cell-type-specific enhancers that interact with the TAL1 promoter. We show that human SET1 (hSET1)-mediated H3K4 methylations promote a long-range chromatin loop, which brings the +51 enhancer in close proximity to TAL1 promoter 1 in erythroid cells. The CCCTC-binding factor (CTCF) facilitates this long-range enhancer/promoter interaction of the TAL1 locus in erythroid cells while blocking the same enhancer/promoter interaction of the TAL1 locus in human T-cell leukemia. In human T-ALL, a T-cell-specific transcription factor c-Maf-mediated interchromosomal interaction brings the TAL1 promoter into close proximity with a T-cell-specific regulatory element located on chromosome 16, activating aberrant TAL1 oncogene expression. Thus, our study reveals a novel molecular mechanism involving changes in three-dimensional chromatin interactions that activate the TAL1 oncogene in human T-cell leukemia.

  10. Plasma Hsp90 Level as a Marker of Early Acute Lymphoblastic Leukemia Engraftment and Progression in Mice.

    Directory of Open Access Journals (Sweden)

    Mateus Milani

    Full Text Available Current monitoring of acute lymphoblastic leukemia (ALL in living mice is based on FACS analysis of blood hCD45+ cells. In this work, we evaluated the use of human IGFBP2, B2M or Hsp90 as soluble markers of leukemia. ELISA for B2M and IGFBP2 resulted in high background levels in healthy animals, precluding its use. Conversely, plasma levels of Hsp90 showed low background and linear correlation to FACS results. In another experiment, we compared Hsp90 levels with percentage of hCD45+ cells in blood, bone marrow, liver and spleen of animals weekly sacrificed. Hsp90 levels proved to be a superior method for the earlier detection of ALL engraftment and correlated linearly to ALL burden and progression in all compartments, even at minimal residual disease levels. Importantly, the Hsp90/hCD45+ ratio was not altered when animals were treated with dexamethasone or a PI3K inhibitor, indicating that chemotherapy does not directly interfere with leukemia production of Hsp90. In conclusion, plasma Hsp90 was validated as a soluble biomarker of ALL, useful for earlier detection of leukemia engraftment, monitoring leukemia kinetics at residual disease levels, and pre-clinical or mouse avatar evaluations of anti-leukemic drugs.

  11. Plasma Hsp90 Level as a Marker of Early Acute Lymphoblastic Leukemia Engraftment and Progression in Mice

    Science.gov (United States)

    de Vasconcellos, Jaíra Ferreira; Brandalise, Silvia Regina; Nowill, Alexandre Eduardo; Yunes, José Andrés

    2015-01-01

    Current monitoring of acute lymphoblastic leukemia (ALL) in living mice is based on FACS analysis of blood hCD45+ cells. In this work, we evaluated the use of human IGFBP2, B2M or Hsp90 as soluble markers of leukemia. ELISA for B2M and IGFBP2 resulted in high background levels in healthy animals, precluding its use. Conversely, plasma levels of Hsp90 showed low background and linear correlation to FACS results. In another experiment, we compared Hsp90 levels with percentage of hCD45+ cells in blood, bone marrow, liver and spleen of animals weekly sacrificed. Hsp90 levels proved to be a superior method for the earlier detection of ALL engraftment and correlated linearly to ALL burden and progression in all compartments, even at minimal residual disease levels. Importantly, the Hsp90/hCD45+ ratio was not altered when animals were treated with dexamethasone or a PI3K inhibitor, indicating that chemotherapy does not directly interfere with leukemia production of Hsp90. In conclusion, plasma Hsp90 was validated as a soluble biomarker of ALL, useful for earlier detection of leukemia engraftment, monitoring leukemia kinetics at residual disease levels, and pre-clinical or mouse avatar evaluations of anti-leukemic drugs. PMID:26068922

  12. An adult patient who developed malignant fibrous histiocytoma 9 years after radiation therapy for childhood acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Kato, Yasuhiro; Ohno, Norioki; Horikawa, Yoko; Nishimura, Shin-ichiro; Ueda, Kazuhiro; Shimose, Shoji

    2002-01-01

    A 24-year-old Japanese man with a history of acute lymphoblastic leukemia, which occurred during childhood, developed malignant fibrous histiocytoma of his left knee. His past history revealed that he had undergone leukemic blast cell invasion of the left knee and subsequent radiation therapy 9 years ago. The total radiation doses for the upper part of the left tibia and the lower part of the left femur were 60 Gy and 40 Gy, respectively. Neither distant metastasis nor a relapse of leukemia occurred. A curative resection of the left femur with a noninvasive margin was performed. Adjuvant chemotherapy including high-dose methotrexate was given successfully before and after surgery; this was followed by relapse-free survival for 3 years. The nature of postirradiation malignant fibrous histiocytoma is highly aggressive. When a patient complains of persistent symptoms in a previously irradiated field, the possibility of this tumor must be taken into account. The importance of early diagnosis cannot be over-emphasized. (author)

  13. An adult patient who developed malignant fibrous histiocytoma 9 years after radiation therapy for childhood acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yasuhiro [National Hiroshima Hospital, Higashi-Hiroshima (Japan); Ohno, Norioki; Horikawa, Yoko; Nishimura, Shin-ichiro; Ueda, Kazuhiro; Shimose, Shoji [Hiroshima Univ. (Japan). School of Medicine

    2002-12-01

    A 24-year-old Japanese man with a history of acute lymphoblastic leukemia, which occurred during childhood, developed malignant fibrous histiocytoma of his left knee. His past history revealed that he had undergone leukemic blast cell invasion of the left knee and subsequent radiation therapy 9 years ago. The total radiation doses for the upper part of the left tibia and the lower part of the left femur were 60 Gy and 40 Gy, respectively. Neither distant metastasis nor a relapse of leukemia occurred. A curative resection of the left femur with a noninvasive margin was performed. Adjuvant chemotherapy including high-dose methotrexate was given successfully before and after surgery; this was followed by relapse-free survival for 3 years. The nature of postirradiation malignant fibrous histiocytoma is highly aggressive. When a patient complains of persistent symptoms in a previously irradiated field, the possibility of this tumor must be taken into account. The importance of early diagnosis cannot be over-emphasized. (author)

  14. EBV, HCMV, HHV6, and HHV7 Screening in Bone Marrow Samples from Children with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Morales-Sánchez, A.; Pompa-Mera, E. N.; Fajardo-Gutiérrez, A.; Alvarez-Rodríguez, F. J.; Bekker-Méndez, V. C.; Flores-Chapa, J. de Diego; Flores-Lujano, J.; Jiménez-Hernández, E.; Peñaloza-González, J. G.; Rodríguez-Zepeda, M. C.; Torres-Nava, J. R.; Velázquez-Aviña, M. M.; Amador-Sánchez, R.; Alvarado-Ibarra, M.; Reyes-Zepeda, N.; Espinosa-Elizondo, R. M.; Pérez-Saldivar, M. L.; Núñez-Enríquez, J. C.; Mejía-Aranguré, J. M.; Fuentes-Pananá, E. M.

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in childhood worldwide and Mexico has reported one of the highest incidence rates. An infectious etiology has been suggested and supported by epidemiological evidences; however, the identity of the involved agent(s) is not known. We considered that early transmitted lymphotropic herpes viruses were good candidates, since transforming mechanisms have been described for them and some are already associated with human cancers. In this study we interrogated the direct role of EBV, HCMV, HHV6, and HHV7 human herpes viruses in childhood ALL. Viral genomes were screened in 70 bone marrow samples from ALL patients through standard and a more sensitive nested PCR. Positive samples were detected only by nested PCR indicating a low level of infection. Our result argues that viral genomes were not present in all leukemic cells, and, hence, infection most likely was not part of the initial genetic lesions leading to ALL. The high statistical power of the study suggested that these agents are not involved in the genesis of ALL in Mexican children. Additional analysis showed that detected infections or coinfections were not associated with prognosis. PMID:25309913

  15. Trisomy 13 in a patient with common acute lymphoblastic leukemia: description of a case and review of the literature.

    Science.gov (United States)

    Spirito, Francesca R; Mancini, Marco; Derme, Valentina; Cimino, Giuseppe; Testi, Anna Maria; Tafuri, Agostino; Vitale, Antonella; Foà, Robin

    2003-07-01

    Trisomy 13 occurring as a single cytogenetic abnormality has been associated with undifferentiated or biphenotypic acute leukemias and with an adverse prognostic outcome. We describe for the first time a case of B-cell common acute lymphoblastic leukemia (ALL) with trisomy 13 at diagnosis in an 18-year-old boy. The leukemic cells did not express myelocytic or T-cell associated antigens and no molecular abnormalities were detected. Following treatment, according to the GIMEMA ALL 0496 protocol, the patient achieved a brief (2 months) complete remission. At relapse, cytogenetic analysis showed karyotypic evolution that included two novel subclones carrying a del(6q), a del(7q), and an add(17q) in association with trisomy 13. In addition, immunophenotypic analysis revealed the coexpression of the CD33 and CD7 antigens on common ALL blasts, in accordance with other reported cases that displayed a predominant biphenotypic leukemia profile. The patient failed to obtain a second remission and died soon after due to infective complications. This report indicates that trisomy 13 can be found also in B-lineage ALL and underlines that this cytogenetic abnormality may identify a subgroup of male patients with clonal evolution potential and an adverse clinical outcome.

  16. Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.

    Science.gov (United States)

    Sandri, Sara; De Sanctis, Francesco; Lamolinara, Alessia; Boschi, Federico; Poffe, Ornella; Trovato, Rosalinda; Fiore, Alessandra; Sartori, Sara; Sbarbati, Andrea; Bondanza, Attilio; Cesaro, Simone; Krampera, Mauro; Scupoli, Maria T; Nishimura, Michael I; Iezzi, Manuela; Sartoris, Silvia; Bronte, Vincenzo; Ugel, Stefano

    2017-10-20

    Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

  17. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Bikel, I.; Faibes, D.; Uren, J.R.; Livingston, D.M.

    1978-01-01

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  18. Fatal Candidemia in a Patient with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2018-02-16

    Profoosionaf 7 ,0 Fatal Candidemia in a Patient with Acute Lymphoblastic Leukemia Brittany Lenz, MD, Arturo Dominguez, MD, Adnan Mir, MD, PhD Objectives...with pre-B cell acute lymphoblastic leukemia was admitted for presumed septic shock secondary to an unknown infectious etiology. The patient was...NOTES 14. ABSTRACT Fatal Candidcn1ia in a Patient \\\\ith Acute Lympboblastic Leukemia Brittany Lenz. MD. Arturo Dominguez.. MD. Adnan J’vlir. MD, PhD

  19. Studies by radioiodination of normal adult, fetal and leukemic cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kannourakis, G; Cauchi, M N [Department of Pathology and Immunology, Monash Medical School, Melbourne, Australia

    1978-01-01

    A comparison was made between cord blood lymphocytes, normal adult lymphocytes and leukemic cells after membrane iodination with lactoperoxidase. A double-labeling technique using lactoperoxidase iodination with /sup 125/I and /sup 131/I followed by analysis on polyacrylamide gel electrophoresis revealed a number of membrane differences between leukemic, normal and fetal cells. There was a reduction in the 70,000 molecular weight component in cord blood cells compared to adult lymphocytes, and an increase in membrane peptides with molecular weights of 35,000, 20,000, 9,000 and 4,000. Although smaller molecular weight peptides were also present in chronic lymphatic leukemia as well as acute myeloid leukemia, these were shown to be distinct from fetal type membrane components.

  20. Leukemic meningitis in a patient with hairy cell leukemia. A case report

    International Nuclear Information System (INIS)

    Wolfe, D.W.; Scopelliti, J.A.; Boselli, B.D.

    1984-01-01

    Central nervous system involvement has not previously been described in patients with hairy cell leukemia (HCL). A patient is reported who presented with meningeal involvement as his initial symptom of HCL. Diagnosis was established by morphologic and cytochemical studies of his cerebrospinal fluid (CSF) and bone marrow. Treatment with whole-brain irradiation and intrathecal chemotherapy was successful in clearing leukemic cells from the CSF with resolution of symptoms

  1. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human

    Science.gov (United States)

    Yu, Jianhua; Mitsui, Takeki; Wei, Min; Mao, Hsiaoyin; Butchar, Jonathan P.; Shah, Mithun Vinod; Zhang, Jianying; Mishra, Anjali; Alvarez-Breckenridge, Christopher; Liu, Xingluo; Liu, Shujun; Yokohama, Akihiko; Trotta, Rossana; Marcucci, Guido; Benson, Don M.; Loughran, Thomas P.; Tridandapani, Susheela; Caligiuri, Michael A.

    2011-01-01

    IL-15 may have a role in the development of T cell large granular lymphocyte (T-LGL) or NKT leukemias. However, the mechanisms of action and the identity of the cell subset that undergoes leukemic transformation remain elusive. Here we show that in both mice and humans, NKp46 expression marks a minute population of WT NKT cells with higher activity and potency to become leukemic. Virtually 100% of T-LGL leukemias in IL-15 transgenic mice expressed NKp46, as did a majority of human T-LGL leukemias. The minute NKp46+ NKT population, but not the NKp46– NKT population, was selectively expanded by overexpression of endogenous IL-15. Importantly, IL-15 transgenic NKp46– NKT cells did not become NKp46+ in vivo, suggesting that NKp46+ T-LGL leukemia cells were the malignant counterpart of the minute WT NKp46+ NKT population. Mechanistically, NKp46+ NKT cells possessed higher responsiveness to IL-15 in vitro and in vivo compared with that of their NKp46– NKT counterparts. Furthermore, interruption of IL-15 signaling using a neutralizing antibody could prevent LGL leukemia in IL-15 transgenic mice. Collectively, our data demonstrate that NKp46 identifies a functionally distinct NKT subset in mice and humans that appears to be directly susceptible to leukemic transformation when IL-15 is overexpressed. Thus, IL-15 signaling and NKp46 may be useful targets in the treatment of patients with T-LGL or NKT leukemia. PMID:21364281

  2. Correlation of total body potassium and leukemic cell mass in patients with chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Chandra, P.; Sawitsky, A.; Chanana, A.D.; Chikkappa, G.; Cohn, S.H.; Rai, K.R.; Cronkity, E.P.

    1979-01-01

    Total body leukemic mass in patients with chronic lymphocytic leukemia (CLL) was measured by quantitation of total body potassium (TBK) with a whole-body counter. In addition, the predicted normal total body potassium (Kp) for each patient was calculated from an empirically derived relationship involving height, weight age, and sex. Both the absolute TBK and the relative excess of total body potassium (TBK/Kp) were related to the stage of disease. Patients in the early stages of CLL were found to have lower TBK and TBK/Kp than patients in the late stages of disease. Both of these parameters increased with the successively advanced stages of the disease. The clinically monitored reduction of leukemic cell mass following therapy was accompanied by reductions in TBK and TBK/Kp. Data presented support the notion that TBK/Kp is a useful indicator of the total body leukemic mass. Futhermore, the results of these studies quantitatively validate the proposed clinical staging system for CLL. Quantitation of TBK by a whole-body counter is an accurate and noninvasive procedure and does not require administration of isotopes

  3. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  4. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  5. Development of A model of B acute lymphoblastic leukemia for the investigation of the potential leukemogenic effects of 50 Hz magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, N.; Alberdi, A.; Corona, A.; Guillosson, J.J.; Nafziger, J. [Universite Rene Descartes, Lab. d' Hematologie Cellulaire et Moleculaire, CNRS UMR 8147, Faculte de Pharmacie, 75 - Paris (France)

    2006-07-01

    Over the past 25 years, a possible association between exposure to extremely low frequency magnetic fields (50 Hz M.F.) and cancer has be en extensively studied. The most consistent data were found for B acute lymphoblastic leukaemia in children that represents the most common type of cancer encountered in childhood. However, controversial results were reported in epidemiologic studies about this potential adverse effect of 50 Hz M.F.. Therefore, we developed an animal model of B acute lymphoblastic leukaemia to investigate the possible co-initiating or promoting effects of 50 Hz M.F. on the incidence of leukaemia in children. In this model leukaemia was chemically induced in male W.K.A.H./H km rats by a nitrosourea derivative, N-butyl nitrosourea (B.N.U.) administered 5 days a week for 24 weeks. Development of leukaemia was monitored by clinical observation, follow-up of blood parameters and appearance of blasts cells in serially repeated peripheral blood samples. The phenotype of the leukaemia in the affected rats was determined by cytological examination and cytochemical reactions on blood and bone marrow cells and, by immuno phenotyping of bone marrow cells using various markers. Leukaemia occurred in 60% of B.N.U. treated rats. Among the leukemic rats, 65% developed B acute lymphoblastic leukaemia. The maximum of leukaemia development was observed between the 5. to the 8. month following the beginning of B.N.U. treatment. Using this model, we decided to investigate the potential co-initiating or promoting effects of 50 Hz M.F.. The possible effects of harmonics (150, 250 and 350 Hz) that pollute the electrical network are also studied. The total number of leukaemia and the phenotype of leukaemia obtained will be compared between the B.N.U. treated animals exposed to 50 Hz M.F. with or without harmonics and the animals treat ed with B.N.U. alone. We believe that the results of this experiment might be helpful to answer the question of whether or not 50 Hz M

  6. Development of A model of B acute lymphoblastic leukemia for the investigation of the potential leukemogenic effects of 50 Hz magnetic fields

    International Nuclear Information System (INIS)

    Bernard, N.; Alberdi, A.; Corona, A.; Guillosson, J.J.; Nafziger, J.

    2006-01-01

    Over the past 25 years, a possible association between exposure to extremely low frequency magnetic fields (50 Hz M.F.) and cancer has be en extensively studied. The most consistent data were found for B acute lymphoblastic leukaemia in children that represents the most common type of cancer encountered in childhood. However, controversial results were reported in epidemiologic studies about this potential adverse effect of 50 Hz M.F.. Therefore, we developed an animal model of B acute lymphoblastic leukaemia to investigate the possible co-initiating or promoting effects of 50 Hz M.F. on the incidence of leukaemia in children. In this model leukaemia was chemically induced in male W.K.A.H./H km rats by a nitrosourea derivative, N-butyl nitrosourea (B.N.U.) administered 5 days a week for 24 weeks. Development of leukaemia was monitored by clinical observation, follow-up of blood parameters and appearance of blasts cells in serially repeated peripheral blood samples. The phenotype of the leukaemia in the affected rats was determined by cytological examination and cytochemical reactions on blood and bone marrow cells and, by immuno phenotyping of bone marrow cells using various markers. Leukaemia occurred in 60% of B.N.U. treated rats. Among the leukemic rats, 65% developed B acute lymphoblastic leukaemia. The maximum of leukaemia development was observed between the 5. to the 8. month following the beginning of B.N.U. treatment. Using this model, we decided to investigate the potential co-initiating or promoting effects of 50 Hz M.F.. The possible effects of harmonics (150, 250 and 350 Hz) that pollute the electrical network are also studied. The total number of leukaemia and the phenotype of leukaemia obtained will be compared between the B.N.U. treated animals exposed to 50 Hz M.F. with or without harmonics and the animals treat ed with B.N.U. alone. We believe that the results of this experiment might be helpful to answer the question of whether or not 50 Hz M

  7. Characterization, expression and complex formation of the murine Fanconi anaemia gene product Fancg.

    Science.gov (United States)

    van de Vrugt, Henri J; Koomen, Mireille; Berns, Mariska A D; de Vries, Yne; Rooimans, Martin A; van der Weel, Laura; Blom, Eric; de Groot, Jan; Schepers, Rik J; Stone, Stacie; Hoatlin, Maureen E; Cheng, Ngan Ching; Joenje, Hans; Arwert, Fré

    2002-03-01

    Fanconi anaemia (FA) is an autosomal recessive chromosomal instability disorder. Six distinct FA disease genes have been identified, the products of which function in an integrated pathway that is thought to support a nuclear caretaker function. Comparison of FA gene characteristics in different species may help to unravel the molecular function of the FA pathway. We have cloned the murine homologue of the Fanconi anaemia complementation group G gene, FANCG/XRCC9. The murine Fancg protein shows an 83% similarity to the human protein sequence, and has a predicted molecular weight of 68.5 kDa. Expression of mouse Fancg in human FA-G lymphoblasts fully corrects their cross-linker hypersensitivity. At mRNA and protein levels we detected the co-expression of Fancg and Fanca in murine tissues. In addition, mouse Fancg and Fanca proteins co-purify by immunoprecipitation. Upon transfection into Fanca-deficient mouse embryonic fibroblasts EGFP-Fancg chimeric protein was detectable in the nucleus. We identified a murine cDNA, Fancg, which cross-complements the cellular defect of human FA-G cells and thus represents a true homologue of human FANCG. Spleen, thymus and testis showed the highest Fancg expression levels. Although Fancg and Fanca are able to form a complex, this interaction is not required for Fancg to accumulate in the nuclear compartment.

  8. Synergistic apoptosis induction in leukemic cells by the phosphatase inhibitor salubrinal and proteasome inhibitors.

    Directory of Open Access Journals (Sweden)

    Hannes C A Drexler

    Full Text Available Cells adapt to endoplasmic reticulum (ER-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD, however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1

  9. Therapeutic activity of two xanthones in a xenograft murine model of human chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Berthou Christian

    2010-12-01

    Full Text Available Abstract Background We previously reported that allanxanthone C and macluraxanthone, two xanthones purified from Guttiferae trees, display in vitro antiproliferative and proapoptotic activities in leukemic cells from chronic lymphocytic leukemia (CLL and leukemia B cell lines. Results Here, we investigated the in vivo therapeutic effects of the two xanthones in a xenograft murine model of human CLL, developed by engrafting CD5-transfected chronic leukemia B cells into SCID mice. Treatment of the animals with five daily injections of either allanxanthone C or macluraxanthone resulted in a significant prolongation of their survival as compared to control animals injected with the solvent alone (p = 0.0006 and p = 0.0141, respectively. The same treatment of mice which were not xenografted induced no mortality. Conclusion These data show for the first time the in vivo antileukemic activities of two plant-derived xanthones, and confirm their potential interest for CLL therapy.

  10. Transcriptional activation of prostate specific homeobox gene NKX3-1 in subsets of T-cell lymphoblastic leukemia (T-ALL.

    Directory of Open Access Journals (Sweden)

    Stefan Nagel

    Full Text Available Homeobox genes encode transcription factors impacting key developmental processes including embryogenesis, organogenesis, and cell differentiation. Reflecting their tight transcriptional control, homeobox genes are often embedded in large non-coding, cis-regulatory regions, containing tissue specific elements. In T-cell acute lymphoblastic leukemia (T-ALL homeobox genes are frequently deregulated by chromosomal aberrations, notably translocations adding T-cell specific activatory elements. NKX3-1 is a prostate specific homeobox gene activated in T-ALL patients expressing oncogenic TAL1 or displaying immature T-cell characteristics. After investigating regulation of NKX3-1 in primary cells and cell lines, we report its ectopic expression in T-ALL cells independent of chromosomal rearrangements. Using siRNAs and expression profiling, we exploited NKX3-1 positive T-ALL cell lines as tools to investigate aberrant activatory mechanisms. Our data confirmed NKX3-1 activation by TAL1/GATA3/LMO and identified LYL1 as an alternative activator in immature T-ALL cells devoid of GATA3. Moreover, we showed that NKX3-1 is directly activated by early T-cell homeodomain factor MSX2. These activators were regulated by MLL and/or by IL7-, BMP4- and IGF2-signalling. Finally, we demonstrated homeobox gene SIX6 as a direct leukemic target of NKX3-1 in T-ALL. In conclusion, we identified three major mechanisms of NKX3-1 regulation in T-ALL cell lines which are represented by activators TAL1, LYL1 and MSX2, corresponding to particular T-ALL subtypes described in patients. These results may contribute to the understanding of leukemic transcriptional networks underlying disturbed T-cell differentiation in T-ALL.

  11. The mTOR inhibitor, everolimus (RAD001), overcomes resistance to imatinib in quiescent Ph-positive acute lymphoblastic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwatsuka, Y; Minami, M; Minami, Y; Sugimoto, K; Hayakawa, F; Miyata, Y; Abe, A [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Goff, D J [Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA (United States); Kiyoi, H [Department of Infectious Diseases, Nagoya University Hospital, Nagoya (Japan); Naoe, T [Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya (Japan)

    2011-05-01

    In Ph-positive (Ph{sup +}) leukemia, the quiescent cell state is one of the reasons for resistance to the BCR-ABL-kinase inhibitor, imatinib. In order to examine the mechanisms of resistance due to quiescence and the effect of the mammalian target of rapamycin inhibitor, everolimus, for such a resistant population, we used Ph{sup +} acute lymphoblastic leukemia patient cells serially xenotransplanted into NOD/SCID/IL2rγ{sup null} (NOG) mice. Spleen cells from leukemic mice showed a higher percentage of slow-cycling G{sub 0} cells in the CD34{sup +}CD38{sup −} population compared with the CD34{sup +}CD38{sup +} and CD34{sup −} populations. After ex vivo imatinib treatment, more residual cells were observed in the CD34{sup +}CD38{sup −} population than in the other populations. Although slow-cycling G{sub 0} cells were insensitive to imatinib in spite of BCR-ABL and CrkL dephosphorylation, combination treatment with everolimus induced substantial cell death, including that of the CD34{sup +}CD38{sup −} population, with p70-S6 K dephosphorylation and decrease of MCL-1 expression. The leukemic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse system with the in vivo combination treatment with imatinib and everolimus showed a decrease of tumor burden including CD34{sup +} cells. These results imply that treatment with everolimus can overcome resistance to imatinib in Ph{sup +} leukemia due to quiescence.

  12. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Antonella Conforti

    Full Text Available Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs isolated from bone marrow (BM of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs at diagnosis (day+0 and during chemotherapy treatment (days: +15; +33; +78, the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs. ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001 and ability to support in vitro hematopoiesis (p = 0.04 as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.. ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present, nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment.

  13. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  14. Immunophenotypic investigation of infant acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    A. M. Popov

    2012-01-01

    Full Text Available Aim of the study – immunophenotype description of infant acute lymphoblastic leukemia (ALL. 64 patients (29 boys and 35 girls with acute leukemia (AL aged from 0 to 11 months were included in the current study. ALL was found less frequently in infants than in older children (67.19 % and 87.69 %, respectively. BI-ALL was the most common immunological ALL type (60.46 % in infant ALL, while BII-ALL was notably less frequent compared with other age groups (30.23 %. Significant immunophenotypic differences were observed in patients with and without MLL gene rearrangements. Number of cases in those tumor cells expressed CD10, CD20, CD45, CD133, CD15, NG2 varied between MLL-positive and MLL-negative groups. CD10- and CD20-negativity, high CD45, CD15, CD65 and NG2 expression were immunophenotypic signatures of MLL-rearranged infant ALL, although NG2 had the highest diagnostic efficacy. High CD34 and CD65 expression was frequently associated with presence of MLL-AF4 fusion gene. Thus infants’ B-cell precursor ALL immunophenotype differs significantly due to the presence of MLL gene rearrangements. Diagnostic immunophenotyping of infants’ ALL allows predicting presence of MLL rearrangements and NG2 is the most applicable single marker.

  15. Immunophenotypic investigation of infant acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    A. M. Popov

    2014-07-01

    Full Text Available Aim of the study – immunophenotype description of infant acute lymphoblastic leukemia (ALL. 64 patients (29 boys and 35 girls with acute leukemia (AL aged from 0 to 11 months were included in the current study. ALL was found less frequently in infants than in older children (67.19 % and 87.69 %, respectively. BI-ALL was the most common immunological ALL type (60.46 % in infant ALL, while BII-ALL was notably less frequent compared with other age groups (30.23 %. Significant immunophenotypic differences were observed in patients with and without MLL gene rearrangements. Number of cases in those tumor cells expressed CD10, CD20, CD45, CD133, CD15, NG2 varied between MLL-positive and MLL-negative groups. CD10- and CD20-negativity, high CD45, CD15, CD65 and NG2 expression were immunophenotypic signatures of MLL-rearranged infant ALL, although NG2 had the highest diagnostic efficacy. High CD34 and CD65 expression was frequently associated with presence of MLL-AF4 fusion gene. Thus infants’ B-cell precursor ALL immunophenotype differs significantly due to the presence of MLL gene rearrangements. Diagnostic immunophenotyping of infants’ ALL allows predicting presence of MLL rearrangements and NG2 is the most applicable single marker.

  16. [Epigenetic alterations in acute lymphoblastic leukemia].

    Science.gov (United States)

    Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  17. [Acute lymphoblastic leukemia: a genomic perspective].

    Science.gov (United States)

    Jiménez-Morales, Silvia; Hidalgo-Miranda, Alfredo; Ramírez-Bello, Julián

    In parallel to the human genome sequencing project, several technological platforms have been developed that let us gain insight into the genome structure of human entities, as well as evaluate their usefulness in the clinical approach of the patient. Thus, in acute lymphoblastic leukemia (ALL), the most common pediatric malignancy, genomic tools promise to be useful to detect patients at high risk of relapse, either at diagnosis or during treatment (minimal residual disease), and they also increase the possibility to identify cases at risk of adverse reactions to chemotherapy. Therefore, the physician could offer patient-tailored therapeutic schemes. A clear example of the useful genomic tools is the identification of single nucleotide polymorphisms (SNPs) in the thiopurine methyl transferase (TPMT) gene, where the presence of two null alleles (homozygous or compound heterozygous) indicates the need to reduce the dose of mercaptopurine by up to 90% to avoid toxic effects which could lead to the death of the patient. In this review, we provide an overview of the genomic perspective of ALL, describing some strategies that contribute to the identification of biomarkers with potential clinical application. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  18. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration

    Science.gov (United States)

    Yang, Jun J.; Hunger, Stephen P.; Pieters, Rob; Schrappe, Martin; Biondi, Andrea; Vora, Ajay; Baruchel, André; Silverman, Lewis B.; Schmiegelow, Kjeld; Escherich, Gabriele; Horibe, Keizo; Benoit, Yves C.M.; Izraeli, Shai; Yeoh, Allen Eng Juh; Liang, Der-Cherng; Downing, James R.; Evans, William E.; Relling, Mary V.; Mullighan, Charles G.

    2015-01-01

    Purpose To review the impact of collaborative studies on advances in the biology and treatment of acute lymphoblastic leukemia (ALL) in children and adolescents. Methods A review of English literature on childhood ALL focusing on collaborative studies was performed. The resulting article was reviewed and revised by the committee chairs of the major ALL study groups. Results With long-term survival rates for ALL approaching 90% and the advent of high-resolution genome-wide analyses, several international study groups or consortia were established to conduct collaborative research to further improve outcome. As a result, treatment strategies have been improved for several subtypes of ALL, such as infant, MLL-rearranged, Philadelphia chromosome–positive, and Philadelphia chromosome–like ALL. Many recurrent genetic abnormalities that respond to tyrosine kinase inhibitors and multiple genetic determinants of drug resistance and toxicities have been identified to help develop targeted therapy. Several genetic polymorphisms have been recognized that show susceptibility to developing ALL and that help explain the racial/ethnic differences in the incidence of ALL. Conclusion The information gained from collaborative studies has helped decipher the heterogeneity of ALL to help improve personalized treatment, which will further advance the current high cure rate and the quality of life for children and adolescents with ALL. PMID:26304874

  19. Epigenetic analysis of childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Dunwell, Thomas L; Hesson, Luke B; Pavlova, Tatiana; Zabarovska, Veronika; Kashuba, Vladimir; Catchpoole, Daniel; Chiaramonte, Raffaella; Brini, Anna T; Griffiths, Mike; Maher, Eamonn R; Zabarovsky, Eugene; Latif, Farida

    2009-04-01

    We used a chromosome 3 wide NotI microarray for identification of epigenetically inactivated genes in childhood acute lymphoblastic leukemia (ALL). Three novel genes demonstrated frequent methylation in childhood ALL. PPP2R3A (protein phosphatase 2, regulatory subunit B", alpha) was frequently methylated in T (69%) and B (82%)-ALL. Whilst FBLN2 (fibulin 2) and THRB (thyroid hormone receptor, beta) showed frequent methylation in B-ALL (58%; 56% respectively), but were less frequently methylated in T-ALL (17% for both genes). Recently it was demonstrated that BNC1 (Basonuclin 1) and MSX1 (msh homeobox 1) were frequently methylated across common epithelial cancers. In our series of childhood ALL BNC1 was frequently methylated in both T (77%) and B-ALL (79%), whilst MSX1 showed T-ALL (25%) specific methylation. The methylation of the above five genes was cancer specific and expression of the genes could be restored in methylated leukemia cell lines treated with 5-aza-2'-deoxycytidine. This is the first report demonstrating frequent epigenetic inactivation of PPP2R3A, FBLN2, THRB, BNC1 and MSX1 in leukemia. The identification of frequently methylated genes showing cancer specific methylation will be useful in developing early cancer detection screens and for targeted epigenetic therapies.

  20. Asparaginase-associated pancreatitis in childhood acute lymphoblastic leukaemia

    DEFF Research Database (Denmark)

    Wolthers, Benjamin O.; Frandsen, Thomas L.; Baruchel, André

    2017-01-01

    BACKGROUND: Survival for childhood acute lymphoblastic leukaemia surpasses 90% with contemporary therapy; however, patients remain burdened by the severe toxic effects of treatment, including asparaginase-associated pancreatitis. To investigate the risk of complications and risk of re......-exposing patients with asparaginase-associated pancreatitis to asparaginase, 18 acute lymphoblastic leukaemia trial groups merged data for this observational study. METHODS: Patient files from 26 trials run by 18 trial groups were reviewed on children (aged 1·0-17·9 years) diagnosed with t(9;22)-negative acute...... lymphoblastic leukaemia between June 1, 1996, and Jan 1, 2016, who within 50 days of asparaginase exposure developed asparaginase-associated pancreatitis. Asparaginase-associated pancreatitis was defined by at least two criteria: abdominal pain, pancreatic enzymes at least three times the upper limit of normal...

  1. Pre leukemic granulocytic sarcoma of vagina: a case report with review of literature

    International Nuclear Information System (INIS)

    Lakshminarasimhan, Srinivasan; Doval, D.C.; Rajashekhar, Usha; Mukherjee, Geethashree; Kannan, V.; Lakshmi Devi; Bapsy, P.P.

    1996-01-01

    Granulocytic sarcoma is an extramedullary tumor of malignant granulocytic progenitor cells, that may precede the onset of acute myeloid leukemia or appear during the leukemic manifestation or blastic crisis of chronic myeloproliferative disorders. A case of granulocytic sarcoma of vagina in a 27 year old woman treated with local radiotherapy is described. After seven months of follow up she developed acute myeloid leukemia. The case has been presented in view of its rarity and discussed in light of the available literature. (author). 13 refs., 1 fig

  2. Ezh2 Controls an Early Hematopoietic Program and Growth and Survival Signaling in Early T Cell Precursor Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Etienne Danis

    2016-03-01

    Full Text Available Early T cell precursor acute lymphoblastic leukemia (ETP-ALL is an aggressive subtype of ALL distinguished by stem-cell-associated and myeloid transcriptional programs. Inactivating alterations of Polycomb repressive complex 2 components are frequent in human ETP-ALL, but their functional role is largely undefined. We have studied the involvement of Ezh2 in a murine model of NRASQ61K-driven leukemia that recapitulates phenotypic and transcriptional features of ETP-ALL. Homozygous inactivation of Ezh2 cooperated with oncogenic NRASQ61K to accelerate leukemia onset. Inactivation of Ezh2 accentuated expression of genes highly expressed in human ETP-ALL and in normal murine early thymic progenitors. Moreover, we found that Ezh2 contributes to the silencing of stem-cell- and early-progenitor-cell-associated genes. Loss of Ezh2 also resulted in increased activation of STAT3 by tyrosine 705 phosphorylation. Our data mechanistically link Ezh2 inactivation to stem-cell-associated transcriptional programs and increased growth/survival signaling, features that convey an adverse prognosis in patients.

  3. Early presentation of osteonecrosis in acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Mogensen, Signe Sloth; Harila-Saari, Arja; Frandsen, Thomas Leth

    2017-01-01

    Osteonecrosis (ON) is usually considered treatment related in patients with acute lymphoblastic leukemia (ALL). We report two patients with presentation of ON at the time of ALL diagnosis. Both were females and diagnosed with ALL at age 8 and 14 years. In the latter, some symptoms and radiologica......Osteonecrosis (ON) is usually considered treatment related in patients with acute lymphoblastic leukemia (ALL). We report two patients with presentation of ON at the time of ALL diagnosis. Both were females and diagnosed with ALL at age 8 and 14 years. In the latter, some symptoms...

  4. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries

    DEFF Research Database (Denmark)

    Oskarsson, Trausti; Söderhäll, Stefan; Arvidson, Johan

    2016-01-01

    Relapse is the main reason for treatment failure in childhood acute lymphoblastic leukemia. Despite improvements in the up-front therapy, survival after relapse is still relatively poor, especially for high-risk relapses. The aims of this study were to assess outcomes following acute lymphoblastic...... leukemia relapse after common initial Nordic Society of Paediatric Haematology and Oncology protocol treatment; to validate currently used risk stratifications, and identify additional prognostic factors for overall survival. Altogether, 516 of 2735 patients (18.9%) relapsed between 1992 and 2011 and were...

  5. TLX1 and NOTCH coregulate transcription in T cell acute lymphoblastic leukemia cells

    Directory of Open Access Journals (Sweden)

    Lee Norman H

    2010-07-01

    Full Text Available Abstract Background The homeobox gene TLX1 (for T-cell leukemia homeobox 1, previously known as HOX11 is inappropriately expressed in a major subgroup of T cell acute lymphoblastic leukemia (T-ALL where it is strongly associated with activating NOTCH1 mutations. Despite the recognition that these genetic lesions cooperate in leukemogenesis, there have been no mechanistic studies addressing how TLX1 and NOTCH1 functionally interact to promote the leukemic phenotype. Results Global gene expression profiling after downregulation of TLX1 and inhibition of the NOTCH pathway in ALL-SIL cells revealed that TLX1 synergistically regulated more than 60% of the NOTCH-responsive genes. Structure-function analysis demonstrated that TLX1 binding to Groucho-related TLE corepressors was necessary for maximal transcriptional regulation of the NOTCH-responsive genes tested, implicating TLX1 modulation of the NOTCH-TLE regulatory network. Comparison of the dataset to publicly available biological databases indicated that the TLX1/NOTCH-coregulated genes are frequently targeted by MYC. Gain- and loss-of-function experiments confirmed that MYC was an essential mediator of TLX1/NOTCH transcriptional output and growth promotion in ALL-SIL cells, with TLX1 contributing to the NOTCH-MYC regulatory axis by posttranscriptional enhancement of MYC protein levels. Functional classification of the TLX1/NOTCH-coregulated targets also showed enrichment for genes associated with other human cancers as well as those involved in developmental processes. In particular, we found that TLX1, NOTCH and MYC coregulate CD1B and RAG1, characteristic markers of early cortical thymocytes, and that concerted downregulation of the TLX1 and NOTCH pathways resulted in their irreversible repression. Conclusions We found that TLX1 and NOTCH synergistically regulate transcription in T-ALL, at least in part via the sharing of a TLE corepressor and by augmenting expression of MYC. We conclude that

  6. Minimal Residual Disease Evaluation in Childhood Acute Lymphoblastic Leukemia: An Economic Analysis.

    Science.gov (United States)

    2016-01-01

    Minimal residual disease (MRD) testing by higher performance techniques such as flow cytometry and polymerase chain reaction (PCR) can be used to detect the proportion of remaining leukemic cells in bone marrow or peripheral blood during and after the first phases of chemotherapy in children with acute lymphoblastic leukemia (ALL). The results of MRD testing are used to reclassify these patients and guide changes in treatment according to their future risk of relapse. We conducted a systematic review of the economic literature, cost-effectiveness analysis, and budget-impact analysis to ascertain the cost-effectiveness and economic impact of MRD testing by flow cytometry for management of childhood precursor B-cell ALL in Ontario. A systematic literature search (1998-2014) identified studies that examined the incremental cost-effectiveness of MRD testing by either flow cytometry or PCR. We developed a lifetime state-transition (Markov) microsimulation model to quantify the cost-effectiveness of MRD testing followed by risk-directed therapy to no MRD testing and to estimate its marginal effect on health outcomes and on costs. Model input parameters were based on the literature, expert opinion, and data from the Pediatric Oncology Group of Ontario Networked Information System. Using predictions from our Markov model, we estimated the 1-year cost burden of MRD testing versus no testing and forecasted its economic impact over 3 and 5 years. In a base-case cost-effectiveness analysis, compared with no testing, MRD testing by flow cytometry at the end of induction and consolidation was associated with an increased discounted survival of 0.0958 quality-adjusted life-years (QALYs) and increased discounted costs of $4,180, yielding an incremental cost-effectiveness ratio (ICER) of $43,613/QALY gained. After accounting for parameter uncertainty, incremental cost-effectiveness of MRD testing was associated with an ICER of $50,249/QALY gained. In the budget-impact analysis, the

  7. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  8. Antigen Expression on Blast Cells and Hematological Parameters at Presentation in Acute Lymphoblastic Leukemia Patients

    International Nuclear Information System (INIS)

    Naeem, S.; Bukhari, M. H.

    2015-01-01

    Objective: To analyze the expression of various antigens on the leukemic blasts and to determine the hematological parameters, in Acute Lymphoblastic Leukemia (ALL) patients at presentation. Study Design: Observational study. Place and Duration of Study: King Edward Medical University, Lahore and Hameed Latif Hospital, Lahore, from February 2013 to March 2014. Methodology: A total of 50 newly diagnosed and untreated patients of ALL were selected from Mayo Hospital and Hameed Latif Hospital. These patients included both genders and all age groups. Hemoglobin, total leukocyte count and platelet count were determined on hematology analyser-Sysmex-Kx-2I. Blast cell percentage was estimated on Giemsa stained blood smears. Immuno phenotyping was done on bone marrow samples by 5 colour flow cytometery on Beckman Counter Navious Flow cytometer. An acute leukemia panel of 23 antibodies was used. The data was entered and analyzed in SPSS version 22. Results: Of the 50 ALL patients, 36 (72 percentage) were B-ALL and 14 (28 percentage) T-ALL. There were 18 (36 percentage) children and 32 (64 percentage) adults. T-ALL included 22 percentage of the childhood and 31 percentage of the adult cases. Immuno phenotypic analysis showed that CD19, CD79a and CD20 were B-lineage specific markers whereas cCD3, CD3 and CD5 were T-lineage specific. CD10 was the most sensitive marker for B-ALL and CD7 was the most sensitive marker of T-ALL. TdT was expressed in 92 percentage B-ALL and 71 percentage T-ALL cases, CD34 in 58 percentage and 43 percentage cases and CD45 in 83 percentage and 100 percentage respectively. High leukocyte count (> 50 x 109/L) was present in 58 percentage cases. Hemoglobin was < 10 g/dl in 74 percentage patients and platelet count was below 20 x 109/Lin 12 percentage patients. Leukocyte count, hemoglobin, platelet count and blast cell percentage did not show a significant difference in the two ALL immuno types. Conclusion: The frequency of T-ALL is higher in childhood

  9. Minimal Residual Disease Evaluation in Childhood Acute Lymphoblastic Leukemia: An Economic Analysis

    Science.gov (United States)

    Gajic-Veljanoski, O.; Pham, B.; Pechlivanoglou, P.; Krahn, M.; Higgins, Caroline; Bielecki, Joanna

    2016-01-01

    Background Minimal residual disease (MRD) testing by higher performance techniques such as flow cytometry and polymerase chain reaction (PCR) can be used to detect the proportion of remaining leukemic cells in bone marrow or peripheral blood during and after the first phases of chemotherapy in children with acute lymphoblastic leukemia (ALL). The results of MRD testing are used to reclassify these patients and guide changes in treatment according to their future risk of relapse. We conducted a systematic review of the economic literature, cost-effectiveness analysis, and budget-impact analysis to ascertain the cost-effectiveness and economic impact of MRD testing by flow cytometry for management of childhood precursor B-cell ALL in Ontario. Methods A systematic literature search (1998–2014) identified studies that examined the incremental cost-effectiveness of MRD testing by either flow cytometry or PCR. We developed a lifetime state-transition (Markov) microsimulation model to quantify the cost-effectiveness of MRD testing followed by risk-directed therapy to no MRD testing and to estimate its marginal effect on health outcomes and on costs. Model input parameters were based on the literature, expert opinion, and data from the Pediatric Oncology Group of Ontario Networked Information System. Using predictions from our Markov model, we estimated the 1-year cost burden of MRD testing versus no testing and forecasted its economic impact over 3 and 5 years. Results In a base-case cost-effectiveness analysis, compared with no testing, MRD testing by flow cytometry at the end of induction and consolidation was associated with an increased discounted survival of 0.0958 quality-adjusted life-years (QALYs) and increased discounted costs of $4,180, yielding an incremental cost-effectiveness ratio (ICER) of $43,613/QALY gained. After accounting for parameter uncertainty, incremental cost-effectiveness of MRD testing was associated with an ICER of $50,249/QALY gained. In

  10. Resistance of some leukemic blasts to lysis by lymphokine activated killer (LAK) cells

    Energy Technology Data Exchange (ETDEWEB)

    Panayotides, P; Sjoegren, A -M; Reizenstein, P; Porwit, A. Immunopathology Lab., Dept. of Pathology, Karolinska Hospital, Stockholm; Wasserman, J

    1988-01-01

    Peripheral blood mononuclear cells (PBMC) from healthy donors and AML patients in remission were stimulated with phytohemagglutinin (PHA) and recombinant interleukin-2 (IL-2). These stimulated cells (lymphokine activated killer (LAK) cells) showed increased DNA synthesis as measured by /sup 3/H-Thymidine uptake. A synergistic effect of PHA and IL-2 was found. LAK cells' ability to kill acute myeloid leukemia (AML) blasts was investigated by the /sup 51/Cr release assay. LAK cells showed a cytotoxicity (over 10% specific /sup 51/Cr release) against 9/12 leukemic blasts, even at effector/target (E/T) ratios as low as 5:1. However, on average only 22.2% (SD 11.8) and 36.5% (SD 12.5) /sup 51/Cr release were obtained in 4- and 18-hour cytotoxicity assays, respectively, at an E/T ratio of 20:1. Leukemic blasts in 3/12 AML cases and normal PBMC were entirely resistant to lysis, even at an E/T ratio of 80:1. Susceptibility to lysis was not correlated to peanut-agglutinin receptor expression. LAK cells were more cytotoxic towards the K-562 cell line (natural killer activity) than unstimulated PBMC.

  11. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    Science.gov (United States)

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  12. Altered expression of asparagine synthetase mRNA in human leukemic and carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.O.; Guzowski, D.E.; Millan, C.A. [North Shore Univ. Hospital/Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine. Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.

  13. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    Science.gov (United States)

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  14. Predicting radiation effects on the development of leukemic stem cells based on studies of leukemias induced by high- and low-dose-rate radiation

    International Nuclear Information System (INIS)

    Hirouchi, Tokuhisa

    2012-01-01

    One of the most important causes of radiation-induced cancers, particularly leukemia, is gene mutations resulting from single and double strand breaks in the DNA. Tanaka et al. (2003) reported life shortening in specific pathogen free male and female B6C3F1 mice continuously exposed to γ rays at a low dose rate of 20 mGy/22 h/d for 400 days from 8 weeks of age. Early death due to cancer, mostly malignant lymphomas, was observed in both sexes. A significant increase in the incidence of myeloid leukemia, resulting in early death, was also reported in males. It is expected however, that at 20 mGy/22 h/d, which is equivalent to a dose of 15 μGy/min, DNA strand breaks induced in these cells are repaired soon after they occur. Murine leukemias induced by high-dose-rate radiation were also found in males, and 80% of the mice with leukemia had hemizygous deletions in chromosome 2 around the PU.1 gene and they appeared to be derived from DNA strand breaks. Majority of these leukemia showing hemizygous deletions in chromosome 2 revealed point mutations in the remaining alleles resulting in PU.1 inactivation, which was reported to be related to leukemogenesis. These point mutations are assumed to be independent of DNA strand breaks that occur immediately after irradiation, as they appear at later time after irradiation. This review discusses the effect of radiation-induced DNA strand breaks and also mutagenesis induced independently of DNA strand breaks in hematopoietic cells contributing to the development of the first leukemic stem cell. (author)

  15. Assessment of mercaptopurine (6MP) metabolites and 6MP metabolic key-enzymes in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Wojtuszkiewicz, Anna; Barcelos, Ana; Dubbelman, Boas; De Abreu, Ronney; Brouwer, Connie; Bökkerink, Jos P; de Haas, Valerie; de Groot-Kruseman, Hester; Jansen, Gerrit; Kaspers, Gertjan L; Cloos, Jacqueline; Peters, G J

    2014-01-01

    Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.

  16. Identification of CD34+ and CD34− leukemia-initiating cells in MLL-rearranged human acute lymphoblastic leukemia

    Science.gov (United States)

    Aoki, Yuki; Watanabe, Takashi; Saito, Yoriko; Kuroki, Yoko; Hijikata, Atsushi; Takagi, Masatoshi; Tomizawa, Daisuke; Eguchi, Mariko; Eguchi-Ishimae, Minenori; Kaneko, Akiko; Ono, Rintaro; Sato, Kaori; Suzuki, Nahoko; Fujiki, Saera; Koh, Katsuyoshi; Ishii, Eiichi; Shultz, Leonard D.; Ohara, Osamu; Mizutani, Shuki

    2015-01-01

    Translocation of the mixed-lineage leukemia (MLL) gene with AF4, AF9, or ENL results in acute leukemia with both lymphoid and myeloid involvement. We characterized leukemia-initiating cells (LICs) in primary infant MLL-rearranged leukemia using a xenotransplantation model. In MLL-AF4 patients, CD34+CD38+CD19+ and CD34−CD19+ cells initiated leukemia, and in MLL-AF9 patients, CD34−CD19+ cells were LICs. In MLL-ENL patients, either CD34+ or CD34− cells were LICs, depending on the pattern of CD34 expression. In contrast, in patients with these MLL translocations, CD34+CD38−CD19−CD33− cells were enriched for normal hematopoietic stem cells (HSCs) with in vivo long-term multilineage hematopoietic repopulation capacity. Although LICs developed leukemic cells with clonal immunoglobulin heavy-chain (IGH) rearrangement in vivo, CD34+CD38−CD19−CD33− cells repopulated recipient bone marrow and spleen with B cells, showing broad polyclonal IGH rearrangement and recipient thymus with CD4+ single positive (SP), CD8+ SP, and CD4+CD8+ double-positive (DP) T cells. Global gene expression profiling revealed that CD9, CD32, and CD24 were over-represented in MLL-AF4, MLL-AF9, and MLL-ENL LICs compared with normal HSCs. In patient samples, these molecules were expressed in CD34+CD38+ and CD34− LICs but not in CD34+CD38−CD19−CD33− HSCs. Identification of LICs and LIC-specific molecules in primary human MLL-rearranged acute lymphoblastic leukemia may lead to improved therapeutic strategies for MLL-rearranged leukemia. PMID:25538041

  17. Potent anti-leukemia activities of humanized CD19-targeted CAR-T cells in patients with relapsed/refractory acute lymphoblastic leukemia.

    Science.gov (United States)

    Cao, Jiang; Wang, Gang; Cheng, Hai; Wei, Chen; Qi, Kunming; Sang, Wei; Zhenyu, Li; Shi, Ming; Li, Huizhong; Qiao, Jianlin; Pan, Bin; Zhao, Jing; Wu, Qingyun; Zeng, Lingyu; Niu, Mingshan; Jing, Guangjun; Zheng, Junnian; Xu, Kailin

    2018-04-10

    Chimeric antigen receptor T (CAR-T) cell therapy has shown promising results for relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). The immune response induced by murine single-chain variable fragment (scFv) of the CAR may limit CAR-T cell persistence and thus increases the risk of leukemia relapse. In this study, we developed a novel humanized scFv from the murine FMC63 antibody. A total of 18 R/R ALL patients with or without prior murine CD19 CAR-T therapy were treated with humanized CD19-targeted CAR-T cells (hCART19s). After lymphodepletion chemotherapy with cyclophosphamide and fludarabine, the patients received a single dose (1 × 10 6 /kg) of autologous hCART19s infusion. Among the 14 patients without previous CAR-T therapy, 13 (92.9%) achieved complete remission (CR) or CR with incomplete count recovery (CRi) on day 30, whereas 1 of the 3 patients who failed a second murine CAR-T infusion achieved CR after hCART19s infusion. At day 180, the overall and leukemia-free survival rates were 65.8% and 71.4%, respectively. The cumulative incidence of relapse was 22.6%, and the non-relapse mortality rate was 7.1%. During treatment, 13 patients developed grade 1-2 cytokine release syndrome (CRS), 4 patients developed grade 3-5 CRS, and 1 patient experienced reversible neurotoxicity. These results indicated that hCART19s could induce remission in patients with R/R B-ALL, especially in patients who received a reinfusion of murine CAR-T. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  18. Treatment-related mortality in relapsed childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Oskarsson, Trausti; Söderhäll, Stefan; Arvidson, Johan

    2018-01-01

    BACKGROUND: Treatment of relapsed childhood acute lymphoblastic leukemia (ALL) is particularly challenging due to the high treatment intensity needed to induce and sustain a second remission. To improve results, it is important to understand how treatment-related toxicity impacts survival...

  19. Pharmacogenetics Influence Treatment Efficacy in Childhood Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Devidsen, M.L.; Dalhoff, K.; Schmiegelow, K.

    2008-01-01

    in treatment resistance and toxic side effects. As most childhood acute lymphoblastic leukemia treatment protocols include up to 13 different chemotherapeutic agents, the impact of individual SNPs has been difficult to evaluate. So far Focus has mainly been on the widely used glucocorticosteroids, methotrexate...

  20. PHF6 mutations in T-cell acute lymphoblastic leukemia

    NARCIS (Netherlands)

    P. van Vlierberghe (Pieter); T. Palomero (Teresa); H. Khiabanian (Hossein); J. van der Meulen (Joni); M. Castillo (Mireia); N. van Roy (Nadine); B. de Moerloose (Barbara); J. Philippé (Jan); S. González-García (Sara); M.L. Toribio (María); T. Taghon (Tom); L.C. Zuurbier (Linda); B. Cauwelier (Barbara); C.J. Harrison (Christine); C. Schwab (Claire); M. Pisecker (Markus); S. Strehl; A.W. Langerak (Anton); J. Gecz (Jozef); E. Sonneveld (Edwin); R. Pieters (Rob); E. Paietta (Elisabeth); J. Rowe (Jacob); P.H. Wiernik (Peter); Y. Benoit (Yves); J. Soulier (Jean); B. Poppe (Bruce); X. Yao (Xiaopan); C. Cordon-Cardo (Carlos); J.P.P. Meijerink (Jules); R. Rabadan (Raul); F. Speleman (Franki); A.A. Ferrando (Adolfo)

    2010-01-01

    textabstractTumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating

  1. Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Adult acute lymphoblastic leukemia (ALL; also called acute lymphocytic leukemia) is a blood cancer that often gets worse quickly if it is not treated. Treatments include chemotherapy, radiation therapy, stem cell transplant, and targeted therapy. Get detailed information about ALL in this expert-reviewed summary.

  2. Etiology of common childhood acute lymphoblastic leukemia: the adrenal hypothesis

    DEFF Research Database (Denmark)

    Schmiegelow, K.; Vestergaard, T.; Nielsen, S.M.

    2008-01-01

    The pattern of infections in the first years of life modulates our immune system, and a low incidence of infections has been linked to an increased risk of common childhood acute lymphoblastic leukemia (ALL). We here present a new interpretation of these observations--the adrenal hypothesis...

  3. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    Science.gov (United States)

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  4. L-asparaginase treatment in acute lymphoblastic leukemia

    NARCIS (Netherlands)

    R. Pieters (Rob); S.P. Hunger (Stephen); J. Boos (Joachim); C. Rizzari (Carmelo); L.B. Silverman (Lewis); A. Baruchel (André); N. Goekbuget (Nicola); M. Schrappe (Martin); C.H. Pui (Ching-Hon)

    2011-01-01

    textabstractAsparaginases are a cornerstone of treatment protocols for acute lymphoblastic leukemia (ALL) and are used for remission induction and intensification treatment in all pediatric regimens and in the majority of adult treatment protocols. Extensive clinical data have shown that intensive

  5. Asparaginase-Associated toxicity in children with acute lymphoblastic leukemia

    NARCIS (Netherlands)

    N. Hijiya (Nobuko); I.M. van der Sluis (Inge)

    2016-01-01

    textabstractAsparaginase is an integral component of multiagent chemotherapy regimens for the treatment of children with acute lymphoblastic leukemia. Positive outcomes are seen in patients who are able to complete their entire prescribed course of asparaginase therapy. Toxicities associated with

  6. Bone histomorphometry in children with newly diagnosed acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Leeuw, JA; Koudstaal, J; Wiersema-Buist, J; Kamps, WA; Timens, W

    2003-01-01

    The objective of this study was to obtain insight into bone formation and resorption in children with newly diagnosed untreated acute lymphoblastic leukemia (ALL). In 23 consecutive children with ALL, a bone biopsy was taken from the crista iliaca posterior under ketamine anesthesia, together with

  7. Second Malignant Neoplasms After Treatment of Childhood Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Schmiegelow, K.; Levinsen, Mette Frandsen; Attarbaschi, Andishe

    2013-01-01

    PURPOSE: Second malignant neoplasms (SMNs) after diagnosis of childhood acute lymphoblastic leukemia (ALL) are rare events. PATIENTS AND METHODS: We analyzed data on risk factors and outcomes of 642 children with SMNs occurring after treatment for ALL from 18 collaborative study groups between 19...

  8. Acute T- cell lymphoblastic lymphoma - A case report | Sumba | East ...

    African Journals Online (AJOL)

    We highlight the case of a two year old female who presented with a two month history of left posterior auricular swelling. The swelling developed following trauma, was painless and progressively enlarging. After extensive evaluation the mass was noted to be an extramedullary presentation of Acute T cell lymphoblastic ...

  9. Acute lymphoblastic leukemia in children with Down syndrome

    DEFF Research Database (Denmark)

    Buitenkamp, Trudy D; Izraeli, Shai; Zimmermann, Martin

    2014-01-01

    Children with Down syndrome (DS) have an increased risk of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL). The prognostic factors and outcome of DS-ALL patients treated in contemporary protocols are uncertain. We studied 653 DS-ALL patients enrolled in 16 international trials from 1995...

  10. Eye on the B-ALL: B-cell receptor repertoires reveal persistence of numerous B-lymphoblastic leukemia subclones from diagnosis to relapse

    Science.gov (United States)

    Bashford-Rogers, R J M; Nicolaou, K A; Bartram, J; Goulden, N J; Loizou, L; Koumas, L; Chi, J; Hubank, M; Kellam, P; Costeas, P A; Vassiliou, G S

    2016-01-01

    The strongest predictor of relapse in B-cell acute lymphoblastic leukemia (B-ALL) is the level of persistence of tumor cells after initial therapy. The high mutation rate of the B-cell receptor (BCR) locus allows high-resolution tracking of the architecture, evolution and clonal dynamics of B-ALL. Using longitudinal BCR repertoire sequencing, we find that the BCR undergoes an unexpectedly high level of clonal diversification in B-ALL cells through both somatic hypermutation and secondary rearrangements, which can be used for tracking the subclonal composition of the disease and detect minimal residual disease with unprecedented sensitivity. We go on to investigate clonal dynamics of B-ALL using BCR phylogenetic analyses of paired diagnosis-relapse samples and find that large numbers of small leukemic subclones present at diagnosis re-emerge at relapse alongside a dominant clone. Our findings suggest that in all informative relapsed patients, the survival of large numbers of clonogenic cells beyond initial chemotherapy is a surrogate for inherent partial chemoresistance or inadequate therapy, providing an increased opportunity for subsequent emergence of fully resistant clones. These results frame early cytoreduction as an important determinant of long-term outcome. PMID:27211266

  11. A soluble form of CTLA-4 is present in paediatric patients with acute lymphoblastic leukaemia and correlates with CD1d+ expression.

    Directory of Open Access Journals (Sweden)

    Rita Simone

    Full Text Available CTLA-4 is a key factor in regulating and maintaining self tolerance, providing a negative signal to the T cell and thus limiting immune responses. Several polymorphisms within the CTLA-4 gene have been associated with an increased risk of developing autoimmune diseases and, very recently, with susceptibility to human cancer. Acute lymphoblastic leukemia is a clonal disorder of lymphoid progenitors representing the most frequent malignancy of childhood. Here, we show the presence at significantly elevated levels of a circulating soluble form of CTLA-4 in 70% of B-ALL pediatric patients with active disease, the positive correlation between the percentage of leukemic B lymphocytes and the amount of serum sCTLA-4, and the expression of sCTLA-4 transcript by B cells in patients. Finally, a correlation between CD1d expression (a negative prognostic marker and the sCTLA-4 in B-ALL patients was observed. This suggests a possible role of this soluble molecule as a marker of progression or severity of the neoplastic disease.

  12. Resveratrol protects leukemic cells against cytotoxicity induced by proteasome inhibitors via induction of FOXO1 and p27Kip1

    International Nuclear Information System (INIS)

    Niu, Xiao-Fang; Liu, Bao-Qin; Du, Zhen-Xian; Gao, Yan-Yan; Li, Chao; Li, Ning; Guan, Yifu; Wang, Hua-Qin

    2011-01-01

    It was reported recently that resveratrol could sensitize a number of cancer cells to the antitumoral effects of some conventional chemotherapy drugs. The current study was designed to investigate whether resveratrol could sensitize leukemic cells to proteasome inhibitors. Leukemic cells were treated with MG132 alone or in combination with resveratrol. Cell viability was investigated using MTT assay, and induction of apoptosis and cell cycle distribution was measured using flow cytometry. Western blot and real-time RT-PCR were used to investigate the expression of FOXO1 and p27 Kip1 . CHIP was performed to investigate the binding of FOXO1 to the p27 Kip1 promoter. Resveratrol strongly reduced cytotoxic activities of proteasome inhibitors against leukemic cells. MG132 in combination with resveratrol caused cell cycle blockade at G1/S transition via p27 Kip1 accumulation. Knockdown of p27 Kip1 using siRNA dramatically attenuated the protective effects of resveratrol on cytotoxic actions of proteasome inhibitors against leukemic cells. Resveratrol induced FOXO1 expression at the transcriptional level, while MG132 increased nuclear distribution of FOXO1. MG132 in combination with resveratrol caused synergistic induction of p27 Kip1 through increased recruitment of FOXO1 on the p27 Kip1 promoter. Resveratrol may have the potential to negate the cytotoxic effects of proteasome inhibitors via regulation of FOXO1 transcriptional activity and accumulation of p27 Kip1

  13. Leukemic blast cell colony formation in semisolid culture with erythropoietin: a case report of acute poorly differentiated erythroid leukemia.

    Science.gov (United States)

    Tomonaga, M; Jinnai, I; Tagawa, M; Amenomori, T; Nishino, K; Yao, E; Nonaka, H; Kuriyama, K; Yoshida, Y; Matsuo, T

    1987-02-01

    The bone marrow of a patient with acute undifferentiated leukemia developed unique colonies after a 14-day culture in erythropoietin (EPO)-containing methylcellulose. The colonies consisted of 20 to 200 nonhemoglobinized large blast cells. Cytogenetic analysis of single colonies revealed hypotetraploid karyotypes with several marker chromosomes that were identical to those found in directly sampled bone marrow. The concurrently formed erythroid bursts showed only normal karyotypes. No leukemic colony formation was observed in other culture systems with either colony-stimulating activity (CSA) or phytohemagglutinin-stimulated leukocyte-conditioned medium (PHA-LCM). The leukemic colonies exhibited a complete EPO-dose dependency similar to that of the patient's normal BFU-E. Although cytochemical and immunologic marker studies of the bone marrow cells failed to clarify the cell lineage of the leukemic cells with extraordinarily large cell size, ultrastructural study revealed erythroid differentiation such as siderosome formation in the cytoplasm and ferritin particles in the rhophecytosis invaginations. These findings indicate that the patient had poorly differentiated erythroid leukemia and that some of the clonogenic cells might respond to EPO in vitro. Corresponding to this biological feature, the leukemic cells were markedly decreased in number in response to repeated RBC transfusions, and partial remission was obtained. These observations suggest that erythroid leukemia distinct from erythroleukemia (M6) with a myeloblastic component, can develop as a minor entity of human acute leukemia.

  14. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment.

    Science.gov (United States)

    Lee, Ji Yoon; Han, A-Reum; Lee, Sung-Eun; Min, Woo-Sung; Kim, Hee-Je

    2016-05-01

    Podoplanin+ cells are indispensable in the tumor microenvironment. Increasing evidence suggests that podoplanin may support the growth and metastasis of solid tumors; however, to the best of our knowledge no studies have determined whether or not podoplanin serves a supportive role in acute myeloid leukemia (AML). The effects of co‑culture with podoplanin+ cells on the cellular activities of the leukemic cells, such as apoptosis and cell proliferation, in addition to the expression of podoplanin in leukemic cells, were investigated. Due to the fact that genetic abnormalities are the primary cause of leukemogenesis, the overexpression of the fibromyalgia‑like tyrosine kinase‑3 gene in colony forming units was also examined following cell sorting. Podoplanin+ cells were found to play a protective role against apoptosis in leukemic cells and to promote cell proliferation. Tumor‑associated antigens, including Wilms' tumor gene 1 and survivin, were increased when leukemic cells were co‑cultured with podoplanin+ cells. In combination, the present results also suggest that podoplanin+ cells can function as stromal cells for blast cell retention in the AML tumor microenvironment.

  15. Fundamental studies of leukemic cell labeling with /sup 111/In-oxine and their applications to cell kinetics in patients with acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Yuhkoh; Matsuda, Shin; Uchida, Tatsumi; Kariyone, Shigeo [Fukushima Medical Coll. (Japan)

    1984-04-01

    Fundamental studies of leukemic cell labeling with /sup 111/In-oxine and their applications to leukemic cell kinetics in five patients with acute myeloblastic leukemia (AML) were examined. Labeling efficiency of leukemic cells was 80.3 +- 3.6% for more than 1 x 10/sup 8/ cells at room temperature for 20 minutes of incubation followed by two times washes. Cell viability determined by means of trypanblue exclusion test was 95.3 +- 2.6%. In vitro elution rate of /sup 111/In from the labeled cells during 12 hours was 10.0 +- 1.2%. The disappearance curves of labeled leukemic cells in AMLs followed a single exponential fashion, and the half time of disappearance (T 1/2) ranged from 9.6 to 31.8 hours. Total blood leukemic cell pool (TBLCP) calculated with the dilution principles of radioisotopes correlated significantly with the leukemic cell counts (LC) in the peripheral blood (Y = 0.32 + 1.94X, r = 0.99). In the studies of organ distribution which were observed and analyzed with gamma camera and computer, labeled leukemic cells passed through lungs within 15 minutes. Radioactivity in the spleen increased rapidly for 30 - 60 minutes, then reached a plateau. Hepatic radioactivity showed a temporary decrease during 10 - 60 minutes following the moderate accumulation in initial 10 minutes. In two cases, bone marrow was visualized 24 hours after the injection. Radioactivity of the leukemic cells isolated from the bone marrow at 22 hours after the injection in one case was one third of the radioactivity in leukemic cells obtained from the peripheral blood at the same time.

  16. Fundamental studies of leukemic cell labeling with 111 In-oxine and their applications to cell kinetics in patients with acute leukemia

    International Nuclear Information System (INIS)

    Takagi, Yuhkoh; Matsuda, Shin; Uchida, Tatsumi; Kariyone, Shigeo

    1984-01-01

    Fundamental studies of leukemic cell labeling with 111 In-oxine and their applications to leukemic cell kinetics in five patients with acute myeloblastic leukemia (AML) were examined. Labeling efficiency of leukemic cells was 80.3 +- 3.6% for more than 1 x 10 8 cells at room temperature for 20 minutes of incubation followed by two times washes. Cell viability determined by means of trypanblue exclusion test was 95.3 +- 2.6%. In vitro elution rate of 111 In from the labeled cells during 12 hours was 10.0 +- 1.2%. The disappearance curves of labeled leukemic cells in AMLs followed a single exponential fashion, and the half time of disappearance (T 1/2) ranged from 9.6 to 31.8 hours. Total blood leukemic cell pool (TBLCP) calculated with the dilution principles of radioisotopes correlated significantly with the leukemic cell counts (LC) in the peripheral blood (Y = 0.32 + 1.94X, r = 0.99). In the studies of organ distribution which were observed and analized with gamma camera and computer, labeled leukemic cells passed through lungs within 15 minutes. Radioactivity in the spleen increased rapidly for 30 - 60 minutes, then reached a plateau. Hepatic radioactivity showed a temporary decrease during 10 - 60 minutes following the moderate accumulation in initial 10 minutes. In two cases, bone marrow was visualized 24 hours after the injection. Radioactivity of the leukemic cells isolated from the bone marrow at 22 hours after the injection in one case was one third of the radioactivity in leukemic cells obtained from the peripheral blood at the same time. (author)

  17. DNA repair and DNA synthesis in leukemic and virus infected cells

    International Nuclear Information System (INIS)

    Tuschl, H.; Altmann, H.; Kovac, R.; Topaloglou, A.; Stacher, A.; Fanta, D.

    1978-09-01

    Autoradiographic determinations of unscheduled DNA synthesis in peripheral lymphocytes of leukemic patients showed strongly different results according to various types of disease of different forms of therapy, respectively. Similar investigations performed with lymphocytes of Herpes simplex infected persons during symptom-free intervals revealed imbalances of the repair system caused by virus infection. BND cellulose chromatography and measurement of 3 H-thymidine incorporation into single- and double stranded DNA fractions showed an increase in velocity of the rejoining process, but a decrease in total incorporation. Because of these results and the demonstration of the supercoiled structure of DNA it is suggested that virusinfections cause a faster rejoining of gaps, but at the same time leave a number of failures within DNA unrecognized. (author)

  18. Differentiation-inducing effects of small fruit juices on HL-60 leukemic cells.

    Science.gov (United States)

    Yoshizawa, Y; Kawaii, S; Urashima, M; Fukase, T; Sato, T; Murofushi, N; Nishimura, H

    2000-08-01

    Epidemiological studies indicate that high intakes of fruits and vegetables are associated with a reduced risk of cancer, and several plant-derived drugs have been developed in medical oncology. Since only a small part of the flora has been tested for any kind of bioactivity, we chose small fruits as sources of differentiation-inducing activity against HL-60 leukemic cells. We have prepared juices from various small fruits that grow mainly in the northern part of Japan. Screening of 43 samples indicated that juices of Actinidia polygama Maxim., Rosa rugosa Thunb., Vaccinium smallii A. Gray, and Sorbus sambucifolia Roem. strongly induced differentiation of HL-60 cells to monocyte/macrophage characteristics in a concentration-dependent manner as indicated by histochemical and biochemical examinations.

  19. Hepatosplenic and renal candidiasis in leukemic patients: CT spectrum before and after therapy

    International Nuclear Information System (INIS)

    Shirkhoda, A.

    1986-01-01

    Abdominal CT performed in 14 leukemic patients with systemic candidiasis and involvement of the liver, spleen, or kidneys revealed numerous low-density lesions in ten livers (71%), eight spleens (57%), and in the kidneys of three patients (21%). Biopsy of all livers and of three kidneys proved hepatic candidiasis in all (100%) and renal candidiasis in three patients (21%). After treatment with amphotericin B and splenectomy (one patient), CT disclosed abnormal livers in eleven (80%) patients, abnormal spleens in seven (53%), and abnormal kidneys in three patients (21%). Rebiopsy disclosed Candida infection in all livers and all abnormal kidneys, so the patients were treated with liposomal amphotericin B. Although the patients became asymptomatic, CT continued to show abnormal livers in five (35%) and abnormal spleens in two (16%) (the previously abnormal kidneys became normal). Rebiopsy of the abnormal livers showed focal fibrosis and necrosis. These findings emphasize the importance of clinical and pathologic correlation of CT appearance

  20. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    International Nuclear Information System (INIS)

    Menschikowski, Mario; Platzbecker, Uwe; Hagelgans, Albert; Vogel, Margot; Thiede, Christian; Schönefeldt, Claudia; Lehnert, Renate; Eisenhofer, Graeme; Siegert, Gabriele

    2012-01-01

    The M-type phospholipase A2 receptor (PLA2R1) plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS) or acute leukemia. Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM) analysis was then carried out to quantify PLA2R1 methylation at 5-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis

  1. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  2. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  3. [Expression of c-MPL in leukemic stem cells from acute myeloid leukemia patients].

    Science.gov (United States)

    Yu, Pei; Qiu, Shao-Wei; Rao, Qing; Lin, Dong; Xing, Hai-Yan; Tang, Ke-Jing; Tian, Zheng; Wang, Min; Wang, Jian-Xiang

    2012-10-01

    This study was aimed to investigate the expression of c-MPL in acute myeloid leukemia (AML) and the correlation of the c-MPL expression with CD34 and CD38, so as to define the expression of c-MPL in leukemic stem cells. The expression levels of CD34, CD38 and c-MPL were detected by flow cytometry in bone marrow cells from 29 newly diagnosed AML patients. The relationship of c-MPL positive cell ratio with clinical parameters and correlation of c-MPL with CD34 and CD38 expression in AML patients were analyzed. The results showed that expression level of c-MPL in AML patients was significantly higher than that of normal controls (P MPL did not correlate with age, sex, white blood cell count, AML1-ETO fusion gene and remission after chemotherapy, but the expression of c-MPL in M2 and M5 patients was higher than that of normal control (P MPL in CD34 positive AML patients was obviously higher than that in CD34 negative AML patients (P MPL was significantly higher expressed in CD34(+) cells than that in CD34(-) cells (P MPL expression was not significantly different between CD34(+)CD38(-) and CD34(+)CD38(-) cell groups. Positive correlation between c-MPL and CD34 expression was observed (r = 0.380, P = 0.042). It is concluded that expression of c-MPL is higher in AML patients, and positively correlates with the expression level of CD34. The c-MPL expresses in leukemic stem cells.

  4. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.

    Science.gov (United States)

    Inoue, D; Kitaura, J; Matsui, H; Hou, H-A; Chou, W-C; Nagamachi, A; Kawabata, K C; Togami, K; Nagase, R; Horikawa, S; Saika, M; Micol, J-B; Hayashi, Y; Harada, Y; Harada, H; Inaba, T; Tien, H-F; Abdel-Wahab, O; Kitamura, T

    2015-04-01

    Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.

  5. Intramuscular leukemic relapse: clinical signs and imaging findings. A multicentric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey [Martin Luther University Halle-Wittenberg, Department of Radiology, Halle (Germany); University of Leipzig, Department of Diagnostic and Interventional Radiology, Leipzig (Germany); Kiratli, Hayyam [Hacettepe University School of Medicine, Department of Ophthalmology, Ankara (Turkey); Im, Soo Ah [Seoul St. Mary' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Manabe, Yasuhiro [National Hospital Organization Okayama Medical Center, Department of Neurology, Okayama (Japan); O' Neill, Alibhe; Shinagare, Atul B. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Spielmann, Rolf Peter [Martin Luther University Halle-Wittenberg, Department of Radiology, Halle (Germany)

    2014-09-26

    Leukemia is a group of malignant diseases involving peripheral blood and bone marrow. Extramedullary tumor manifestation in leukemia can also occur. They more often involve lymph nodes, skin, and bones. Intramuscular leukemic relapse (ILR) is very unusual. The aim of this analysis was to summarize the reported data regarding clinical signs and radiological features of ILR. The PubMed database was searched for publications related to ILR. After an analysis of all identified articles, 20 publications matched the inclusion criteria. The authors of the 20 publications were contacted and provided imaging of their cases for review. The following were recorded: age, gender, primary diagnosis, clinical signs, pattern, localization and size of the intramuscular leukemic relapse. Images of 16 patients were provided [8 computer tomographic (CT) images and 15 magnetic resonance images, MRI]. Furthermore, one patient with ILR was identified in our institutional database. Therefore, images of 17 patients were available for further analysis. Overall, 32 cases with ILR were included in the analysis. In most cases acute myeloid leukemia was diagnosed. Most ILRs were localized in the extremities (44 %) and in the extraocular muscles (44 %). Clinically, ILR manifested as local pain, swelling and muscle weakness. Radiologically, ILR presented most frequently with diffuse muscle infiltration. On postcontrast CT/MRI, most lesions demonstrated homogeneous enhancement. ILRs were hypo-/isointense on T1w and hyperintense on T2w images. ILR manifests commonly as focal pain, swelling and muscle weakness. ILR predominantly involved the extraocular musculature and the extremities. Radiologically, diffuse muscle infiltration was the most common imaging finding. (orig.)

  6. Ecotropic murine leukemia virus-induced fusion of murine cells

    International Nuclear Information System (INIS)

    Pinter, A.; Chen, T.; Lowy, A.; Cortez, N.G.; Silagi, S.

    1986-01-01

    Extensive fusion occurs upon cocultivation of murine fibroblasts producing ecotropic murine leukemia viruses (MuLVs) with a large variety of murine cell lines in the presence of the polyene antibiotic amphotericin B, the active component of the antifungal agent Fungizone. The resulting polykaryocytes contain nuclei from both infected and uninfected cells, as evidenced by autoradiographic labeling experiments in which one or the other parent cell type was separately labeled with [ 3 H]thymidine and fused with an unlabeled parent. This cell fusion specifically requires the presence of an ecotropic MuLV-producing parent and is not observed for cells producing xenotropic, amphotropic, or dualtropic viruses. Mouse cells infected with nonecotropic viruses retain their sensitivity toward fusion, whereas infection with ecotropic viruses abrogates the fusion of these cells upon cocultivation with other ecotropic MuLV-producing cells. Nonmurine cells lacking the ecotropic gp70 receptor are not fused under similar conditions. Fusion is effectively inhibited by monospecific antisera to gp70, but not by antisera to p15(E), and studies with monoclonal antibodies identify distinct amino- and carboxy-terminal gp70 regions which play a role in the fusion reaction. The enhanced fusion which occurs in the presence of amphotericin B provides a rapid and sensitive assay for the expression of ecotropic MuLVs and should facilitate further mechanistic studies of MuLV-induced fusion of murine cells

  7. New decision support tool for acute lymphoblastic leukemia classification

    Science.gov (United States)

    Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.

    2012-03-01

    In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.

  8. Acute lymphoblastic leukemia presenting with bilateral serous macular detachment

    Directory of Open Access Journals (Sweden)

    Luisa Vieira

    2015-12-01

    Full Text Available ABSTRACT Acute lymphoblastic leukemia is a malignant hematopoietic neoplasia, which is rare in adults. Although ocular fundus alterations may be commonly observed in the course of the disease, such alterations are rarely the presenting signs of the disease. Here we describe the case of a patient with painless and progressive loss of visual acuity (right eye, 2/10; left eye, 3/10 developing over two weeks, accompanied by fever and cervical lymphadenopathy. Fundus examination showed bilateral macular serous detachment, which was confirmed by optical coherence tomography. Fluorescein angiography revealed hyperfluorescent pinpoints in the posterior poles. The limits of the macular detachment were revealed in the late phase of the angiogram. The results of blood count analysis triggered a thorough, systematic patient examination. The diagnosis of acute lymphoblastic leukemia B (CD10+ was established, and intensive systemic chemotherapy was immediately initiated. One year after the diagnosis, the patient remains in complete remission without any ophthalmologic alterations.

  9. ACUTE LYMPHOBLASTIC LEUKEMIA WITHOUT CIRCULATING BLASTS PRESENTING AS SEVERE HYPERCALCEMIA

    Directory of Open Access Journals (Sweden)

    Z. Oloomi

    2007-05-01

    Full Text Available Hypercalcemia complicating malignancy is a rare complication in pediatric age group. In this article, we present a case with acute lymphoblastic leukemia presenting as severe hypercalcemia. A 10 years old girl presented with an acute onset of fever, nausea, vomiting, loss of weight, costovertebral pain and frequency. She was admitted with a presumptive diagnosis of acute pyelonephritis. Her examination showed mild hepatosplenomegaly. In laboratory studies she had sever hypercalcemia. Despite the absence of circulating blast, bone marrow aspiration was diagnostic of acute lymphoblastic leukemia. The hypercalcemia was initially treated with intravenous hydration and furosemide but the serum calcium levels normalized only after the beginning of specific chemotherapy. Hypercalcemia represents an emergency in children, and acute leukemia must be considered in differential diagnosis even when there are no circulating blasts.

  10. Acute Lymphoblastic Leukemia Presented as Multiple Breast Masses

    International Nuclear Information System (INIS)

    Bayrak, Ilkay Koray; Yalin, Turkay; Ozmen, Zafer; Aksoz, Tolga; Doughanji, Roula

    2009-01-01

    Breast metastases in cases leukemia are very rare and occur primarily in patients with acute myeloid leukemia. We report the involvement of breast metastases in a 30-year-old woman with acute T cell lymphoblastic leukemia. The patient's mammograms revealed an extremely dense pattern with ill-defined, denser mass-like lesions in both breasts. A bilateral breast ultrasonographic evaluation revealed lobular-shaped and partly ill-defined hypoechoic masses with a multi-septated nodular (mottled) appearance

  11. Bilateral proliferative retinopathy in B-cell acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Devesh Kumawat

    2018-01-01

    Full Text Available A 4-year-old child with B-cell acute lymphoblastic leukemia presented with vitreous hemorrhage due to proliferative retinopathy in both eyes. Pars plana vitrectomy was performed in both eyes to clear nonresolving vitreous hemorrhage after systemic stabilization. Visual recovery was limited by the disc drag in the right eye and subfoveal exudation in the left eye. Etiopathogenesis and management of proliferative retinopathy in acute leukemias are discussed.

  12. Prognosis after acute lymphoblastic leukaemia. [Side effects of radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, C B

    1975-04-01

    Following chemotherapy of lymphoblastic leukemia in children with folic acid antagonists, remission is achieved in 94 percent of patients. After chemotherapy has been stopped the risk of relapse is greatest during the first year, but relapses do occur. Sequelae of radiotherapy include bone growth impairment, brain cell damage, radioinduced neoplasms, and immunosuppression. Adverse effects of chemotherapy include hepatic fibrosis, impaired gonadal development, and oncogenic effects. (HLW)

  13. Effect of Taurine on Febrile Episodes in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Mina Islambulchilar

    2015-03-01

    Full Text Available Purpose: The purpose of our study was to evaluate the effect of oral taurine on the incidence of febrile episodes during chemotherapy in young adults with acute lymphoblastic leukemia. Methods: Forty young adults with acute lymphoblastic leukemia, at the beginning of maintenance course of their chemotherapy, were eligible for this study. The study population was randomized in a double blind manner to receive either taurine or placebo (2 gram per day orally. Life quality and side effects including febrile episodes were assessed using questionnaire. Data were analyzed using Pearson’s Chi square test. Results: Of total forty participants, 43.8% were female and 56.3 % were male. The mean age was 19.16±1.95 years (ranges: 16-23 years. The results indicated that the levels of white blood cells are significantly (P<0.05 increased in taurine treated group. There was no elevation in blasts count. A total of 70 febrile episodes were observed during study, febrile episodes were significantly (P<0.05 lower in taurine patients in comparison to the control ones. Conclusion: The overall incidence of febrile episodes and infectious complications in acute lymphoblastic leukemia patients receiving taurine was lower than placebo group. Taurine’s ability to increase leukocyte count may result in lower febrile episodes.

  14. The novel anticancer agent JNJ-26854165 is active in chronic myeloid leukemic cells with unmutated BCR/ABL and T315I mutant BCR/ABL through promoting proteosomal degradation of BCR/ABL proteins.

    Science.gov (United States)

    You, Liangshun; Liu, Hui; Huang, Jian; Xie, Wanzhuo; Wei, Jueying; Ye, Xiujin; Qian, Wenbin

    2017-01-31

    Chronic myeloid leukemia (CML) is a clonal malignant disease caused by the expression of BCR/ABL. MDM2 (human homolog of the murine double minute-2) inhibitors such as Nutlin-3 have been shown to induce apoptosis in a p53-dependent manner in CML cells and sensitize cells to Imatinib. Here, we demonstrate that JNJ-26854165, an inhibitor of MDM2, inhibits proliferation and triggers cell death in a p53-independent manner in various BCR/ABL-expressing cells, which include primary leukemic cells from patients with CML blast crisis and cells expressing the Imatinib-resistant T315I BCR/ABL mutant. The response to JNJ-26854165 is associated with the downregulation of BCR/ABL dependently of proteosome activation. Moreover, in all tested CML cells, with the exception of T315I mutation cells, combining JNJ-26854165 and tyrosine kinase inhibitor (TKI) Imatinib or PD180970 leads to a synergistic effect. In conclusion, our results suggest that JNJ-26854165, used either alone or in combination with TKIs, represents a promising novel targeted approach to overcome TKI resistance and improve patient outcome in CML.

  15. ROLE OF LEUKEMIC STEM CELLS IN THE CHRONIC MYELOID LEUKEMIA PATHOGENESIS

    Directory of Open Access Journals (Sweden)

    Sviezhentseva IO

    2016-09-01

    Full Text Available The presence of leukemic stem cells (LSC in the bone marrow of patients with chronic myeloid leukemia (CML is the cause of relapses as a result of the treatment with chemotherapeutic agents and target therapy drugs. This is due to the ability of LSC to attach itself to the microenvironment cells and to remain at rest for a long time. Vascular and osteoblasts niche play a very important role in this process. However, for being in G0 phase LSC have direct contact with the cellular elements of bone marrow microenvironment. So LSK contact with mesenchymal cells of bone marrow using the appendixes, connecting components invaginations and lint. The cadherins and integrins are important in the interaction of osteoblasts niche. They are able to activate intracellular signaling cascades that provide resting state of LSK. In addition, a bone marrow niche provides changes of LSC oxidative metabolism, which also plays an important role for cell entry into the G0 phase. Further, LSC also have certain physiological properties, which play an important role in the drug resistance formation, particularly drugs with targeted actions - tyrosine kinase inhibitors. LSK characterized by a high level of BCR-ABL expression and their population can have a lot of point mutations in the bcr-abl gene in the same patient. This leads to the fact that the taken medicines dose does not act against LSK, reducing the number of a whole leukemic cells clone. However, complete LSC elimination from the the patient’s bone marrow need search the main differences between the LSC and normal HSC. After the literature analysis it was found that LSC have several significant differences such as the ability to cause leukemia during the transplantation to immunodeficient animals, this leukemia is morphologically and phenotypically similar to the original tumor, in addition the LSC can be transmitted from animal to animal. In addition, the LSC is also characterized by the mutations presence

  16. Chemotherapy impedes in vitro microcirculation and promotes migration of leukemic cells with impact on metastasis

    International Nuclear Information System (INIS)

    Prathivadhi-Bhayankaram, Sruti V.; Ning, Jianhao; Mimlitz, Michael; Taylor, Carolyn; Gross, Erin; Nichols, Michael; Guck, Jochen; Ekpenyong, Andrew E.

    2016-01-01

    Although most cancer drugs target the proliferation of cancer cells, it is metastasis, the complex process by which cancer cells spread from the primary tumor to other tissues and organs of the body where they form new tumors, that leads to over 90% of all cancer deaths. Thus, there is an urgent need for anti-metastasis therapy. Surprisingly, emerging evidence suggests that certain anti-cancer drugs such as paclitaxel and doxorubicin can actually promote metastasis, but the mechanism(s) behind their pro-metastatic effects are still unclear. Here, we use a microfluidic microcirculation mimetic (MMM) platform which mimics the capillary constrictions of the pulmonary and peripheral microcirculation, to determine if in-vivo-like mechanical stimuli can evoke different responses from cells subjected to various cancer drugs. In particular, we show that leukemic cancer cells treated with doxorubicin and daunorubicin, commonly used anti-cancer drugs, have over 100% longer transit times through the device, compared to untreated leukemic cells. Such delays in the microcirculation are known to promote extravasation of cells, a key step in the metastatic cascade. Furthermore, we report a significant (p < 0.01) increase in the chemotactic migration of the doxorubicin treated leukemic cells. Both enhanced retention in the microcirculation and enhanced migration following chemotherapy, are pro-metastatic effects which can serve as new targets for anti-metastatic drugs. - Highlights: • Doxorubicin enhances migration of leukemic cancer cells before cell death. • Doxorubicin and Daunorubicin stiffen and delay cells in mimicked microcirculation. • Some cancer drugs cause changes in cell mechanics that lead to pro-metastatic effects. • Cell mechanics becomes a new target for anti-metastatic drugs.

  17. Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis.

    NARCIS (Netherlands)

    Gabler, C.; Blank, N.; Hieronymus, T.; Schiller, M.; Berden, J.H.M.; Kalden, J.R.; Lorenz, H.M.

    2004-01-01

    OBJECTIVE: To evaluate the presence of histones and nucleosomes in cell lysates of freshly isolated peripheral blood mononuclear cells (PBMC), fully activated lymphoblasts, or lymphoblasts after induction of apoptosis. METHODS: Each histone class (H1, H2A, H2B, H3, and H4) was detected by western

  18. Immunophenotype of leukemic blasts with small peroxidase-positive granules detected by electron microscopy.

    Science.gov (United States)

    Vainchenker, W; Villeval, J L; Tabilio, A; Matamis, H; Karianakis, G; Guichard, J; Henri, A; Vernant, J P; Rochant, H; Breton-Gorius, J

    1988-05-01

    Forty-three cases of undifferentiated leukemias by light microscopy examination were diagnosed as acute myeloblastic leukemias by ultrastructural revelation of peroxidase and were subsequently studied by immunological markers. In 41 of these cases, blasts were labeled by at least one of the antimyeloid MoAbs (My 7, My 9, and 80H5). An antimyeloperoxidase polyclonal antibody was used in 23 cases and was clearly positive in 11 of them, while cytochemistry by light microscopy was negative. These myeloblasts were frequently mixed with a minority of blasts from other lineages especially promegakaryoblasts. It is noteworthy that in 6 cases myeloid and lymphoid markers (E rosette receptor, common acute lymphoblastic leukemia antigen (cALLA), CD 9, CD 19 antigens (anti-B4 MoAb] were detected on a fraction of blast cells, suggesting a bilineage leukemia. However, in double labeling experiments, blasts with myeloperoxidase coexpressed lymphoid and myeloid markers including cALLA and CD 19 antigen. In one case, blasts had a typical non-B, non-T acute lymphoblastic leukemia phenotype (HLA-DR, CD 9, CD 19, cALLA positive) without staining by any of the antimyeloid MoAbs. However, 70% of the blasts were labeled by the antimyeloperoxidase antibody and expressed peroxidase-positive granules at ultrastructural level. In conclusion, most of the AML undiagnosed by optical cytochemistry are identified by antimyeloid antibodies. Some of these cases are also stained by some antilymphoid MoAbs. Use of antibodies against myeloperoxidase may improve the diagnosis of difficult cases of acute myeloblastic leukemia.

  19. Noninvasive identification of subcellular organization and nuclear morphology features associated with leukemic cells using light-scattering spectroscopy

    Science.gov (United States)

    Hsiao, Austin; Hunter, Martin; Greiner, Cherry; Gupta, Sharad; Georgakoudi, Irene

    2011-03-01

    Leukemia is the most common and deadly cancer among children and one of the most prevalent cancers among adults. Improvements in its diagnosis and monitoring of leukemic patients could have a significant impact in their long-term treatment. We demonstrate that light-scattering spectroscopy (LSS)-based approaches could serve as a tool to achieve this goal. Specifically, we characterize the light scattering properties of leukemic (NALM-6) cells and compare them to those of normal lymphocytes and granulocytes in the 440-710 nm range, over +/-4 deg about the exact backscattering direction. We find that the LSS spectra are well described by an inverse power-law wavelength dependence, with a power exponent insensitive to the scattering angle but significantly higher for leukemic cells than for normal leukocytes. This is consistent with differences in the subcellular morphology of these cells, detected in differential interference contrast images. Furthermore, the residual light-scattering signal, extracted after subtracting the inverse power-law fit from the data, can be analyzed assuming a Gaussian distribution of spherical scatterers using Mie theory. This analysis yields scatterer sizes that are consistent with the diameters of cell nuclei and allows the detection of the larger nuclei of NALM-6 cells compared to those of lymphocytes and granulocytes.

  20. Apoptosis induction in MV4-11 and K562 human leukemic cells by Pereskia sacharosa (Cactaceae) leaf crude extract.

    Science.gov (United States)

    Asmaa, Mat Jusoh Siti; Al-Jamal, Hamid Ali Nagi; Ang, Cheng Yong; Asan, Jamaruddin Mat; Seeni, Azman; Johan, Muhammad Farid

    2014-01-01

    Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

  1. Towards The Generation of Functionalized Magnetic Nanowires to Target Leukemic Cells

    KAUST Repository

    Alsharif, Nouf

    2016-04-01

    In recent years, magnetic nanowires (NWs) have been widely used for their therapeutic potential in biomedical applications. The use of iron (Fe) NWs combines two important properties, biocompatibility and remote manipulation by magnetic fields. In addition the NWs can be coated and functionalized to target cells of interest and, upon exposure to an alternating magnetic field, have been shown to induce cell death on several types of adherent cells, including several cancer cell types. For suspension cells, however, using these NWs has been much less effective primarily due to the free-floating nature of the cells minimizing the interaction between them and the NWs. Leukemic cells express higher levels of the cell surface marker CD44 (Braumüller, Gansauge, Ramadani, & Gansauge, 2000), compared to normal blood cells. The goal of this study was to functionalize Fe NWs with a specific monoclonal antibody towards CD44 in order to target leukemic cells (HL-60 cells). This approach is expected to increase the probability of a specific binding to occur between HL-60 cells and Fe NWs. Fe NWs were fabricated with an average diameter of 30-40 nm and a length around 3-4 μm. Then, they were coated with both 3-Aminopropyl-triethoxysilane and bovine serum albumin (BSA) in order to conjugate them with an anti-CD44 antibody (i.e. anti-CD44-iron NWs). The antibody interacts with the amine group in the BSA via the 1-Ethyl-3-3-dimethylaminopropyl-carbodiimide and N-Hydroxysuccinimide coupling. The NWs functionalization was confirmed using a number of approaches including: infrared spectroscopy, Nanodrop to measure the concentration of CD44 antibody, as well as fluorescent-labeled secondary antibody staining to detect the primary CD44 antibody. To confirm that the anti-CD44-iron NWs and bare Fe NWs, in the absence of a magnetic field, were not toxic to HL-60 cells, cytotoxicity assays using XTT (2,3-Bis-2-Methoxy-4-Nitro-5-Sulfophenyl-2H-Tetrazolium-5-Carboxanilide) were performed and

  2. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type.

    Science.gov (United States)

    Duro, D; Bernard, O; Della Valle, V; Leblanc, T; Berger, R; Larsen, C J

    1996-02-15

    We have reported previously a preliminary study of a t(9;14)(p21-22; q11) in B-cell acute lymphoblastic leukemia. This translocation had rearranged the TCRA/D locus on chromosome band 14q11 and the locus encoding the tumor suppressor gene P16INK4/MTS1 (P16) on band 9p21 (D. Duro et al., Oncogene, 11: 21-29, 1995). In the present report, the breakpoints were precisely localized on each chromosome partner. On the 14q- derivative, the sequence derived from chromosome 9 was interrupted at 1.0 kb upstream of the first exon of P16, close to a consensus recombination heptamer, CACTGTG. In addition, the chromosome 14 breakpoint was localized at the end of the TCRD2 (delta 2) segment, and 22 residues with unknown origin were present at the translocation junction. On the 9p+ derivative, chromosome 9 sequences were in continuity with those displaced onto chromosome 14, and the 14q11 breakpoint was located within TCRJA29 segment. These features are consistent with aberrant activity of the TCR gene recombinase complex. Although all three coding exons of P16 were displaced onto the chromosome 14q-derivative, no P16 transcript was detected in the leukemic cells. Because the region spanning the P16 exon 1 was not inactivated by methylation and because the other P16 allele was deleted, the implication is that the chromosome breakpoint was likely to disrupt regulatory elements involved in the normal expression of the gene. As a whole, then, our results show that translocations affecting band 9p21 can participate to the inactivation of P16, thus justifying a systematic survey of translocations of the 9p21 band in acute lymphoblastic leukemia.

  3. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    Science.gov (United States)

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  4. A novel application of furazolidone: anti-leukemic activity in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Xueqing Jiang

    Full Text Available Acute myeloid leukemia (AML is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA has been successfully introduced to treat acute promyelocytic leukemia (APL, it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA. Furazolidone (FZD was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.

  5. The Leukemic Stem Cell Niche: Adaptation to “Hypoxia” versus Oncogene Addiction

    Directory of Open Access Journals (Sweden)

    Giulia Cheloni

    2017-01-01

    Full Text Available Previous studies based on low oxygen concentrations in the incubation atmosphere revealed that metabolic factors govern the maintenance of normal hematopoietic or leukemic stem cells (HSC and LSC. The physiological oxygen concentration in tissues ranges between 0.1 and 5.0%. Stem cell niches (SCN are placed in tissue areas at the lower end of this range (“hypoxic” SCN, to which stem cells are metabolically adapted and where they are selectively hosted. The data reported here indicated that driver oncogenic proteins of several leukemias are suppressed following cell incubation at oxygen concentration compatible with SCN physiology. This suppression is likely to represent a key positive regulator of LSC survival and maintenance (self-renewal within the SCN. On the other hand, LSC committed to differentiation, unable to stand suppression because of addiction to oncogenic signalling, would be unfit to home in SCN. The loss of oncogene addiction in SCN-adapted LSC has a consequence of crucial practical relevance: the refractoriness to inhibitors of the biological activity of oncogenic protein due to the lack of their molecular target. Thus, LSC hosted in SCN are suited to sustain the long-term maintenance of therapy-resistant minimal residual disease.

  6. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Myeloperoxidase mRNA detection for lineage determination of leukemic blasts: retrospective analysis.

    Science.gov (United States)

    Crisan, D; Anstett, M J

    1995-07-01

    Myeloperoxidase (MPO) mRNA is an early myeloid marker; its detection in the morphologically and immunophenotypically primitive blasts of acute undifferentiated leukemia (AUL) establishes myeloid lineage and allows reclassification as acute myelogenous leukemia with minimal differentiation (AML-MO). We have previously reported a procedure for MPO mRNA detection by RT-PCR (reverse transcription-polymerase chain reaction) and an adaptation for use of routine hematology smears. This variant procedure allows retrospective analysis of mRNA and is used in the present study to evaluate the lineage of leukemic blasts in seven cases with morphology and cytochemistry consistent with AUL. All hematology smears used in this study were air-dried, unstained or Wright-stained and stored at room temperature for periods varying between 3 days and 2 years. MPO mRNA was detected in six cases, establishing the myeloid lineage of the blasts and the diagnosis of AML-MO. In the remaining case, the blasts were MPO mRNA negative, confirming the diagnosis of AUL. The RT-PCR procedure for retrospective mRNA analysis is useful in the clinical setting, due to its high specificity and sensitivity, speed (less than 24 h), safety (no radioactivity) and convenient use of routine hematology smears; it is particularly attractive in clinical situations when fresh or frozen specimens are no longer available at the time when the need for molecular diagnostics becomes apparent.

  8. Colloidal silver nanoparticles improve anti-leukemic drug efficacy via amplification of oxidative stress.

    Science.gov (United States)

    Guo, Dawei; Zhang, Junren; Huang, Zhihai; Jiang, Shanxiang; Gu, Ning

    2015-02-01

    Recently, increased reactive oxygen species (ROS) levels and altered redox status in cancer cells have become a novel therapeutic strategy to improve cancer selectivity over normal cells. It has been known that silver nanoparticles (AgNPs) display anti-leukemic activity via ROS overproduction. Hence, we hypothesized that AgNPs could improve therapeutic efficacy of ROS-generating agents against leukemia cells. In the current study, N-(4-hydroxyphenyl)retinamide (4-HPR), a synthetic retinoid, was used as a drug model of ROS induction to investigate its synergistic effect with AgNPs. The data exhibited that AgNPs with uniform size prepared by an electrochemical method could localize in the lysosomes, mitochondria and cytoplasm of SHI-1 cells. More importantly, AgNPs together with 4-HPR could exhibit more cytotoxicity and apoptosis via overproduction of ROS in comparison with that alone. Taken together, these results reveal that AgNPs combined with ROS-generating drugs could potentially enhance therapeutic efficacy against leukemia cells, thereby providing a novel strategy for AgNPs in leukemia therapy. Copyright © 2015. Published by Elsevier B.V.

  9. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Marco L Davila

    Full Text Available Although many adults with B cell acute lymphoblastic leukemia (B-ALL are induced into remission, most will relapse, underscoring the dire need for novel therapies for this disease. We developed murine CD19-specific chimeric antigen receptors (CARs and an immunocompetent mouse model of B-ALL that recapitulates the disease at genetic, cellular, and pathologic levels. Mouse T cells transduced with an all-murine CD3ζ/CD28-based CAR that is equivalent to the one being used in our clinical trials, eradicate B-ALL in mice and mediate long-term B cell aplasias. In this model, we find that increasing conditioning chemotherapy increases tumor eradication, B cell aplasia, and CAR-modified T cell persistence. Quantification of recipient B lineage cells allowed us to estimate an in vivo effector to endogenous target ratio for B cell aplasia maintenance. In mice exhibiting a dramatic B cell reduction we identified a small population of progenitor B cells in the bone marrow that may serve as a reservoir for long-term CAR-modified T cell stimulation. Lastly, we determine that infusion of CD8+ CAR-modified T cells alone is sufficient to maintain long-term B cell eradication. The mouse model we report here should prove valuable for investigating CAR-based and other therapies for adult B-ALL.

  10. Association of ARID5B gene variants with acute lymphoblastic leukemia in Yemeni children.

    Science.gov (United States)

    Al-Absi, Boshra; Noor, Suzita M; Saif-Ali, Riyadh; Salem, Sameer D; Ahmed, Radwan H; Razif, Muhammad Fm; Muniandy, Sekaran

    2017-04-01

    Studies have shown an association between ARID5B gene polymorphisms and childhood acute lymphoblastic leukemia. However, the association between ARID5B variants and acute lymphoblastic leukemia among the Arab population still needs to be studied. The aim of this study was to investigate the association between ARID5B variants with acute lymphoblastic leukemia in Yemeni children. A total of 14 ARID5B gene single nucleotide polymorphisms (SNPs) were genotyped in 289 Yemeni children, of whom 136 had acute lymphoblastic leukemia and 153 were controls, using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Using logistic regression adjusted for age and gender, the risks of acute lymphoblastic leukemia were presented as odds ratios and 95% confidence intervals. We found that nine SNPs were associated with acute lymphoblastic leukemia under additive genetic models: rs7073837, rs10740055, rs7089424, rs10821936, rs4506592, rs10994982, rs7896246, rs10821938, and rs7923074. Furthermore, the recessive models revealed that six SNPs were risk factors for acute lymphoblastic leukemia: rs10740055, rs7089424, rs10994982, rs7896246, rs10821938, and rs7923074. The gender-specific impact of these SNPs under the recessive genetic model revealed that SNPs rs10740055, rs10994982, and rs6479779 in females, and rs10821938 and rs7923074 in males were significantly associated with acute lymphoblastic leukemia risk. Under the dominant model, SNPs rs7073837, rs10821936, rs7896246, and rs6479778 in males only showed striking association with acute lymphoblastic leukemia. The additive model revealed that SNPs with significant association with acute lymphoblastic leukemia were rs10821936 (both males and females); rs7073837, rs10740055, rs10994982, and rs4948487 (females only); and rs7089424, rs7896246, rs10821938, and rs7923074 (males only). In addition, the ARID5B haplotype block (CGAACACAA) showed a higher risk for acute lymphoblastic leukemia. The haplotype (CCCGACTGC) was

  11. Clonal origins of ETV6-RUNX1+ acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Alpar, D.; Wren, D.; Ermini, Luca

    2015-01-01

    Studies on twins with concordant acute lymphoblastic leukemia (ALL) have revealed that ETV6-RUNX1 gene fusion is a common, prenatal genetic event with other driver aberrations occurring subclonally and probably postnatally. The fetal cell type that is transformed by ETV6-RUNX1 is not identified...... by such studies or by the analysis of early B-cell lineage phenotype of derived progeny. Ongoing, clonal immunoglobulin (IG) and cross-lineage T-cell receptor (TCR) gene rearrangements are features of B-cell precursor leukemia and commence at the pro-B-cell stage of normal B-cell lineage development. We reasoned...

  12. Pyomyositis During Induction Chemotherapy for Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Kai-Liang Kao

    2006-04-01

    Full Text Available Herein, we report on the correct diagnosis and effective treatment procedures for pyomyositis, a very rare complication that remains a diagnostic challenge in children being treated for acute lymphoblastic leukemia (ALL. We report the case of a 10-year-old girl suffering from pyomyositis with ALL. Correct diagnosis is usually delayed because the initial symptom of pyomyositis, usually local pain, is similar to the common side effect of vincristine, a drug necessary for ALL induction therapy. We summarize the procedures taken to reach a timely diagnosis and therapeutic success.

  13. Oral health of children with acute lymphoblastic leukemia: A review

    Directory of Open Access Journals (Sweden)

    Kadalagere Lakshmana Girish Babu

    2016-01-01

    Full Text Available Leukemia is a malignancy of the bone marrow and blood. It is the most common childhood cancer in India. Advances in the treatment regimens have greatly increased the chances of survival. Both the disease and its treatment change the oral environment. In some cases, oral manifestations are the presenting feature of the disease and it will be the dentist′s responsibility to identify the underlying disorder and guide the diagnosis of the patient. Hence, the aim of present article is to review the literature concerning the oral health of children with acute lymphoblastic leukemia (ALL.

  14. A rare case of acute lymphoblastic leukaemia with hemophilia A

    Directory of Open Access Journals (Sweden)

    John Biju

    2009-12-01

    Full Text Available Abstract A rare case of Acute lymphoblastic leukemia with hemophillia in a 12 year old boy is presented in the article. Patient was known case of hemophillia (factor VIII deficiency. He was diagnosed as a case of ALL based on bone marrow examination and immunophenotypic study. Patient was treated as per Children Cancer group guidelines. The main aim of reporting this rare association lies in developing treatment strategies in preventing life threatening bleeding due to this rare association which though may be accidental but need further research.

  15. Oral squamous cell carcinoma following treatment of acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Waal, R.I.F. van der; Waal, I. van der [Univ. Hospital Vrije Univ., Dept. of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam (Netherlands); Veerman, A.J.P. [Univ. Hospital Vrije Univ., Dept. of Paediatric Oncology, Amsterdam (Netherlands); Snow, G.B. [Univ. Hospital Vrije Univ., Dept. of Otorhinolaryngology, Amsterdam (Netherlands)

    1997-02-01

    With substantially increased survival after most paediatric cancers over the past decades have come the late sequelae of treatment. Of all late complications of treatment, second malignancies are generally considered to be the most serious. We report on a 20-year-old man with an oral squamous cell carcinoma 17 years after initial chemotherapy and irradiation for acute lymphoblastic leukaemia. Although occurrence of the oral malignancy in this patient could have been treatment-related, one should keep in mind that the occurrence of second tumours may also be based on a shared genetic aetiology. (au) 9 refs.

  16. Primary orbital precursor T-cell lymphoblastic lymphoma

    DEFF Research Database (Denmark)

    Stenman, Lisa; Persson, Marta; Enlund, Fredrik

    2016-01-01

    Primary T-cell lymphoblastic lymphoma (T-LBL) in the eye region is very rare. The present study described a unique case of T-LBL involving the extraocular muscles. A 22-year-old male patient presented with a 3-week history of headache, reduced visual acuity and edema of the left eye. Clinical...... knowledge, this is the first report of a case of T-LBL involving the extraocular muscles. Although primary T-LBL in the eye region is very rare, our findings demonstrate that lymphoma should be considered in the differential diagnosis of patients with similar symptoms....

  17. Features of children temperament with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    N. A. Kornetov

    2013-01-01

    Full Text Available The temperament characteristics were studied in 86 children with acute lymphoblastic leukemia (ALL at the age of 3–16 years. Research was conducted using standardized and adapted to the Russian-speaking population of parental questionnaires for children of different age groups (Kolpakov V.G. et al., 1993. Statistically significant differences in temperament ALL patients from healthy children installed and feature of temperament, which is most often seen in children with conduct disorder are installed. The need for psychological and/or psychiatric counseling this category of patients is substantiated.

  18. Collagen XVIII Mutation in Knobloch Syndrome with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Mahajan, Vinit B.; Olney, Ann Haskins; Garrett, Penny; Chary, Ajit; Dragan, Ecaterina; Lerner, Gary; Murray, Jeffrey; Bassuk, Alexander G.

    2010-01-01

    Knobloch syndrome (KNO) is caused by mutations in the collagen XIII gene (COL18A1) and patients develop encephalocele and vitreoretinal degeneration. Here we report an El Salvadorian family where two sisters showed features of KNO. One of the siblings also developed acute lymphoblastic leukemia. DNA sequencing of COL18A1revealed a homozygous, 2-base pair deletion (c3514-3515delCT) in exon 41, which leads to abnormal collagen XVIII and deficiency of its proteolytic cleavage product endostatin. KNO patients with mutations in COL18A1 may be at risk for endostatin-related conditions including malignancy. PMID:20799329

  19. Esophageal strictures during treatment for acute lymphoblastic leukemia.

    LENUS (Irish Health Repository)

    Kelly, Kevin

    2012-02-01

    Esophageal stricture is a rare complication of paediatric cancer treatment that usually occurs after esophageal exposure to radiotherapy. We describe 4 cases of esophageal stricture during chemotherapy for acute lymphoblastic leukemia. All patients presented with refractory vomiting and were diagnosed with radiologic contrast studies. None of the patients had received radiotherapy. Esophageal candidiasis was seen in 2 patients but the remaining 2 patients had earlier systemic candidiasis. High-dose dexamethasone may predispose these children to both esophageal candidiasis and peptic esophagitis. The etiology of esophageal strictures during treatment for acute leukemia is likely to be multifactorial but systemic candidiasis may play a significant role.

  20. Technical relapsed testicular irradiation for acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Velazquez Miranda, S.; Delgado Gil, M. M.; Ortiz Siedel, M.; Munoz Carmona, D. M.; Gomez-Barcelona, J.

    2011-01-01

    Testicular irradiation in children suffering from acute lymphoblastic leukemia presents difficulties in relation to daily positioning, dosimetry for dose homogenization of complex geometry and volume change during irradiation thereof. This can lead to significant deviations from the prescribed doses. In addition, the usual techniques often associated with unnecessary irradiation of pelvic simphysis, anus and perineum. This, in the case of pediatric patients, is of great importance, since doses in the vicinity of 20 Gy are associated with a deviation of bone growth, low testosterone levels around 24 Gy and high rates of generation of second tumors. To overcome these problems we propose a special restraint in prone and non-coplanar irradiation.

  1. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia.

    Science.gov (United States)

    Milone, Jorge H; Enrico, Alicia

    2009-12-01

    The presence of the Philadelphia chromosome is a poor prognosis factor in acute lymphoblastic leukemia (ALL), in both children and adults. Using molecular techniques of the gen bcr/abl, it is possible to detect the abnormality, in up to the 40% of adult patients. The unsatisfactory results with conventional chemotherapy schemes have determined the intensification of the treatments and the consideration of allogenic bone marrow transplants as the best therapeutic instance. The development of tyrosine kinase inhibitors have become a therapeutic improvement in the treatment of Philadelphia chromosome-positive ALL, being combined with chemotherapy schemes, only in a selected group of patients, even in therapeutic programs that include transplant.

  2. [Disseminated fusariosis in a patient with acute lymphoblastic leukaemia

    DEFF Research Database (Denmark)

    Hermansen, N.E.; Ralfkiaer, E.M.; Kjeldsen, L.

    2008-01-01

    Invasive mould infections are a major cause of infectious mortality in highly immunosuppressed patients. Incidence in this high risk group is 10-20% with a death rate in excess of 50%. Most invasive moulds are Aspergillus spp. We present a case of a 74-year-old woman with acute lymphoblastic...... leukaemia who developed a rare disseminated mould infection with Fusarium solani during induction chemotherapy. We present the case story and discuss the pathogenesis, clinical characteristics and treatment of invasive fusariosis Udgivelsesdato: 2008/9/8...

  3. Oral squamous cell carcinoma following treatment of acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Waal, R.I.F. van der; Waal, I. van der; Veerman, A.J.P.; Snow, G.B.

    1997-01-01

    With substantially increased survival after most paediatric cancers over the past decades have come the late sequelae of treatment. Of all late complications of treatment, second malignancies are generally considered to be the most serious. We report on a 20-year-old man with an oral squamous cell carcinoma 17 years after initial chemotherapy and irradiation for acute lymphoblastic leukaemia. Although occurrence of the oral malignancy in this patient could have been treatment-related, one should keep in mind that the occurrence of second tumours may also be based on a shared genetic aetiology. (au) 9 refs

  4. B cell markers in Ph1-positive acute lymphoblastic leukemia.

    Science.gov (United States)

    Alimena, G; De Rossi, G; Gastaldi, R; Guglielmi, C; Mandelli, F

    1980-01-01

    A case of acute lymphoblastic leukemia (ALL) where the blast cells had B cell markers and displayed the presence of a typical Ph1 chromosome, originated by a standard t (9;22) translocation, is reported. Cytological and clinical aspects during the entire course of the disease were consistent with the diagnosis of ALL. Evidence of differentiation along a well-defined lymphoid cell line in a Ph1-positive cell confirms the presence of the Ph1 chromosome in conditions other than chronic granulocytic leukemia and shows that it possibly does not occur in an exclusively undifferentiated totipotent stem cell.

  5. Regulatory network of GATA3 in pediatric acute lymphoblastic leukemia

    OpenAIRE

    Hou, Qianqian; Liao, Fei; Zhang, Shouyue; Zhang, Duyu; Zhang, Yan; Zhou, Xueyan; Xia, Xuyang; Ye, Yuanxin; Yang, Hanshuo; Li, Zhaozhi; Wang, Leiming; Wang, Xi; Ma, Zhigui; Zhu, Yiping; Ouyang, Liang

    2017-01-01

    GATA3 polymorphisms were reported to be significantly associated with susceptibility of pediatric B-lineage acute lymphoblastic leukemia (ALL), by impacting on GATA3 expression. We noticed that ALL-related GATA3 polymorphism located around in the tissue-specific enhancer, and significantly associated with GATA3 expression. Although the regulatory network of GATA3 has been well reported in T cells, the functional status of GATA3 is poorly understood in B-ALL. We thus conducted genome-wide gene...

  6. Acute Lymphoblastic Leukemia Presented as Multiple Breast Masses

    Energy Technology Data Exchange (ETDEWEB)

    Bayrak, Ilkay Koray; Yalin, Turkay; Ozmen, Zafer; Aksoz, Tolga; Doughanji, Roula [Ondokuz Mayis University, Samsun (Turkmenistan)

    2009-10-15

    Breast metastases in cases leukemia are very rare and occur primarily in patients with acute myeloid leukemia. We report the involvement of breast metastases in a 30-year-old woman with acute T cell lymphoblastic leukemia. The patient's mammograms revealed an extremely dense pattern with ill-defined, denser mass-like lesions in both breasts. A bilateral breast ultrasonographic evaluation revealed lobular-shaped and partly ill-defined hypoechoic masses with a multi-septated nodular (mottled) appearance.

  7. ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells.

    Science.gov (United States)

    Garrison, Brian S; Rybak, Adrian P; Beerman, Isabel; Heesters, Balthasar; Mercier, Francois E; Scadden, David T; Bryder, David; Baron, Roland; Rossi, Derrick J

    2017-08-03

    The concept that tumor-initiating cells can co-opt the self-renewal program of endogenous stem cells as a means of enforcing their unlimited proliferative potential is widely accepted, yet identification of specific factors that regulate self-renewal of normal and cancer stem cells remains limited. Using a comparative transcriptomic approach, we identify ZNF521 / Zfp521 as a conserved hematopoietic stem cell (HSC)-enriched transcription factor in human and murine hematopoiesis whose function in HSC biology remains elusive. Competitive serial transplantation assays using Zfp521 -deficient mice revealed that ZFP521 regulates HSC self-renewal and differentiation. In contrast, ectopic expression of ZFP521 in HSCs led to a robust maintenance of progenitor activity in vitro. Transcriptional analysis of human acute myeloid leukemia (AML) patient samples revealed that ZNF521 is highly and specifically upregulated in AMLs with MLL translocations. Using an MLL-AF9 murine leukemia model and serial transplantation studies, we show that ZFP521 is not required for leukemogenesis, although its absence leads to a significant delay in leukemia onset. Furthermore, knockdown of ZNF521 reduced proliferation in human leukemia cell lines possessing MLL-AF9 translocations. Taken together, these results identify ZNF521/ZFP521 as a critical regulator of HSC function, which facilitates MLL-AF9-mediated leukemic disease in mice.

  8. Interaction between the immune system and acute myeloid leukemia: A model incorporating promotion of regulatory T cell expansion by leukemic cells.

    Science.gov (United States)

    Nishiyama, Yoshiaki; Saikawa, Yutaka; Nishiyama, Nobuaki

    2018-03-01

    Population dynamics of regulatory T cells (Treg) are crucial for the underlying interplay between leukemic and immune cells in progression of acute myeloid leukemia (AML). The goal of this work is to elucidate the dynamics of a model that includes Treg, which can be qualitatively assessed by accumulating clinical findings on the impact of activated immune cell infusion after selective Treg depletion. We constructed an ordinary differential equation model to describe the dynamics of three components in AML: leukemic blast cells, mature regulatory T cells (Treg), and mature effective T cells (Teff), including cytotoxic T lymphocytes. The model includes promotion of Treg expansion by leukemic blast cells, leukemic stem cell and progenitor cell targeting by Teff, and Treg-mediated Teff suppression, and exhibits two coexisting, stable steady states, corresponding to high leukemic cell load at diagnosis or relapse, and to long-term complete remission. Our model is capable of explaining the clinical findings that the survival of patients with AML after allogeneic stem cell transplantation is influenced by the duration of complete remission, and that cut-off minimal residual disease thresholds associated with a 100% relapse rate are identified in AML. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. CD19 negative precursor B acute lymphoblastic leukemia (B-ALL)-Immunophenotypic challenges in diagnosis and monitoring: A study of three cases.

    Science.gov (United States)

    Ghodke, Kiran; Bibi, Asma; Rabade, Nikhil; Patkar, Nikhil; Subramanian, P G; Kadam, Pratibha Aamre; Badrinath, Y; Ghogale, Sitaram; Gujral, Sumeet; Tembhare, Prashant

    2017-07-01

    CD19 is a B-cell specific marker, expressed on all stages of B-lymphocytes including plasma cells. It is widely used in the flow cytometric immunophenotyping (FCI) of B-cell and plasma cell malignancies. The analysis approach of FCI for the diagnosis and monitoring of B-cell acute lymphoblastic leukemia (B-ALL) is totally based on the CD19-based primary gating strategy and it would be challenging to study B-ALL without CD19 expression. Since CD19 negative B-ALL are extremely rare, we report three cases of B-ALL with negative expression of CD19 and discussed its implication in the diagnosis, residual disease monitoring and future targeted therapy. Peripheral blood (PB) and bone marrow (BM) samples from three cases suspicious of acute leukemia were studied for morphology, cytochemistry, immunophenotyping and cytogenetics. FCI was performed using a comprehensive six to eight-color multiparametric assay. The cytogenetic studies for standard recurrent genetic translocations were performed by FISH & Karyotyping. The three cases studied were diagnosed as B-ALL based on the expression of CD10, CD20, CD22, CD34, and CD79a by leukemic blasts. CD19 was studied using two different clones (i.e. J3-119 & HIB-19) and found to be severely down regulated in all three cases. There were no significant differentiating features in morphology. Cytogenetic studies were negative for recurrent translocations. We report three cases of extremely rare CD19 negative B-ALL. Lack of awareness of negative CD19 expression in B-ALL can leads to incorrect immunophenotypic diagnosis and monitoring of B-ALL, especially in laboratories using limited markers. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  10. Immunophenotypic and cytogenetic findings of B-lymphoblastic leukemia/lymphoma associated with combined IGH/BCL2 and MYC rearrangement.

    Science.gov (United States)

    Kelemen, Katalin; Holden, Jaclyn; Johnson, Laura J; Davion, Simone; Robetorye, Ryan S

    2017-07-01

    B-lymphoblastic leukemias (B-LBL) with combined IGH/BCL2 and MYC rearrangement are rare and their clinical, cytogenetic and immunophenotypic features are not well characterized. Here, we describe a case of a 61-year-old woman with B-LBL associated with these cytogenetic alterations and present a review of the literature of this disease. Four-color flow cytometry (FC) was performed on a BD FACSCanto II flow cytometer. Data were analyzed with BD FACSDiva software. Cytogenetic, fluorescence in situ hybridization (FISH), and molecular studies were performed by conventional methods. A review of the literature was performed by a PubMed-assisted search. Including our case, eight B-LBLs associated with a documented "double-hit" karyotype (IGH/BCL2 and 8q24/MYC rearrangement) were identified in the literature (male/female 2/6, age 15-65). Three occurred de-novo, and five had a history of a CD10+ B-cell lymphoma. The typical immunophenotype was CD10, CD19, TdT positive, and negative for CD34 and surface immunoglobulin (Ig), established either by FC or immunohistochemistry. Seven cases were CD20-, and one case was CD20+. Translocation partners of MYC varied, and included IGH, lambda light chain, and an unknown gene on chromosome 9. Prognosis was poor with median survival of five months. Patients with B-LBL associated with a combined IGH/BCL2 and MYC rearrangement often have a history of a mature B-cell lymphoma. The immunophenotype of these cases is different from that of mature "double-hit" lymphomas; FC is essential to differentiate the B-LBL cases from the leukemic phase of mature B-cell lymphomas. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  11. Regulation of CD95 expression and CD95-mediated cell death by interferon-gamma in acute lymphoblastic leukemia with chromosomal translocation t(4;11).

    Science.gov (United States)

    Dörrie, J; Schuh, W; Keil, A; Bongards, E; Greil, J; Fey, G H; Zunino, S J

    1999-10-01

    The regulatory effects of IFNgamma on CD95 expression and CD95-mediated cell death were investigated in three high-risk pro-B acute lymphoblastic leukemia (ALL) lines that carry the chromosomal translocation t(4;11)(q21;q23). These leukemias are characteristically refractory to conventional chemotherapeutic treatments operating through the induction of apoptosis. However, the mechanisms leading to increased cell survival and resistance to cell death in these leukemias are largely unknown. Interferon-gamma (IFNgamma), a potent inhibitor of hematopoiesis, acts in part by upregulating CD95 and sensitizing cells to CD95-induced apoptosis. The t(4;11) lines SEM, RS4;11, and MV4;11 expressed low levels of CD95, but were completely resistant to CD95-mediated death. Addition of IFNgamma markedly upregulated CD95 expression in SEM (8-9-fold), RS4;11 (2-3-fold), and MV4;11 (2-3-fold) lines. However, after treatment with IFNgamma, only an 11% increase in sensitivity to CD95-mediated cell death was observed in SEM cells, whereas RS4;11 and MV4;11 cells remained resistant. Cycloheximide, but not actinomycin D or brefeldin A, increased CD95-specific cell death only in IFNgamma-treated RS4;11 cells by approximately 12%. Abundant levels of Bcl-2 and Bcl-XL, known to inhibit CD95-signaling in some cells, were present suggesting a possible role for both molecules in the resistance to CD95-mediated cell death. Resistance of the leukemic blasts to CD95-mediated cell death and the failure of IFNgamma to substantially sensitize the CD95-signaling pathway may contribute to the highly malignant phenotype of pro-B ALL with translocation t(4;11).

  12. Adhesion molecule profiles of B-cell non-Hodgkin's lymphomas in the leukemic phase

    Directory of Open Access Journals (Sweden)

    D.M. Matos

    2006-10-01

    Full Text Available We evaluated the expression of 10 adhesion molecules on peripheral blood tumor cells of 17 patients with chronic lymphocytic leukemia, 17 with mantle-cell lymphoma, and 13 with nodal or splenic marginal B-cell lymphoma, all in the leukemic phase and before the beginning of any therapy. The diagnosis of B-cell non-Hodgkin's lymphomas was based on cytological, histological, immunophenotypic, and molecular biology methods. The mean fluorescence intensity of the adhesion molecules in tumor cells was measured by flow cytometry of CD19-positive cells and differed amongst the types of lymphomas. Comparison of chronic lymphocytic leukemia and mantle-cell lymphoma showed that the former presented a higher expression of CD11c and CD49c, and a lower expression of CD11b and CD49d adhesion molecules. Comparison of chronic lymphocytic leukemia and marginal B-cell lymphoma showed that the former presented a higher expression of CD49c and a lower expression of CD11a, CD11b, CD18, CD49d, CD29, and CD54. Finally, comparison of mantle-cell lymphoma and marginal B-cell lymphoma showed that marginal B-cell lymphoma had a higher expression of CD11a, CD11c, CD18, CD29, and CD54. Thus, the CD49c/CD49d pair consistently demonstrated a distinct pattern of expression in chronic lymphocytic leukemia compared with mantle-cell lymphoma and marginal B-cell lymphoma, which could be helpful for the differential diagnosis. Moreover, the distinct profiles of adhesion molecules in these diseases may be responsible for their different capacities to invade the blood stream.

  13. Expression of MICA, MICB and NKG2D in human leukemic myelomonocytic and cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Mendoza-Rincon Jorge

    2011-04-01

    Full Text Available Abstract Background Cancer cells are known to secrete the stress molecules MICA and MICB that activate cytotoxicity by lymphocytes and NK cells through their NKG2D receptor as a mechanism of immunological defense. This work was undertaken to evaluate if cancer cells can also express this receptor as a possible mechanisms of depletion of MIC molecules and thus interfere with their immune recognition. Methods Myelomonocytic leukemic (TPH-1 and U-937 and cervical cancer (CALO and INBL cell lines were evaluated by Western Blot, ELISA, flow cytometry and immunocytochemistry to evaluate their capacity to express and secrete MICA and MICB and to be induced to proliferate by these molecules as well as to express their receptor NKG2D. Statistical analysis was performed by two-way ANOVA for time course analysis and Student's t-test for comparison between groups. Values were considered significantly different if p Results THP-1 and U-937 produce and secrete the stress MICA and MICB as shown by Western Blot of lysed cells and by ELISA of their conditioned media. By Western Blot and flow cytometry we found that these cells also express the receptor NKG2D. When THP-1 and U-937 were cultured with recombinant MICA and MICB they exhibited a dose dependent induction for their proliferation. CALO and INBL also produce MICA and MICB and were induced to proliferate by these stress molecules. By Western Blot, flow cytometry and immunocytochemistry we also found that these cells express NKG2D. Conclusions Our novel results that tumor cells can simultaneously secrete MIC molecules and express their receptor, and to be induced for proliferation by these stress molecules, and that tumor epithelial cells can also express the NKG2D receptor that was thought to be exclusive of NK and cytotoxic lymphocytes is discussed as a possible mechanism of immunological escape and of tumor growth induction.

  14. Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangyan; Wang, Bing; Jiang, Pengfei; Chen, Yiqi; Mao, Zhengwei, E-mail: zwmao@zju.edu.cn; Gao, Changyou [Zhejiang University, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering (China)

    2015-01-15

    Exposure of the CeO{sub 2} nanoparticles (NPs) causes a public concern on their potential health risk due to their wide applications in the fields of fuel additive, commodities, pharmaceutical, and other industries. In this study, the interactions between two commercial CeO{sub 2} NPs (D-CeO{sub 2} from Degussa and PC-CeO{sub 2} from PlasmaChem) and mouse leukemic monocyte macrophage Raw264.7 cells were investigated to provide a fast and in-depth understanding of the biological influences of the NPs. Both types of the CeO{sub 2} NPs had a negative surface charge around −12 mV and showed a tendency to form aggregates with sizes of 191 ± 5.9 and 60.9 ± 2.8 nm in cell culture environment, respectively. The cellular uptake of the CeO{sub 2} NPs increased along with the increase of feeding dosage and prolongation of the culture time. The PC-CeO{sub 2} NPs had a faster uptake rate and reached higher cellular loading amount at the highest feeding concentration (200 µg/mL). In general, both types of the CeO{sub 2} NPs had rather small cytotoxicity even with a dosage as high as 200 µg/mL. The D-CeO{sub 2} NPs showed a relative stronger cytotoxicity especially at higher concentrations and longer incubation time. The NPs were dispersed in vacuoles (most likely endosomes and lysosomes) and cytoplasm. Although both types of the CeO{sub 2} NPs could suppress the production of reactive oxygen species, they impaired the mitochondria membrane potential to some extent. The cytoskeleton organization was altered and consequently the cell adhesion ability decreased after uptake of both types of the CeO{sub 2} NPs.

  15. Rapid Treatment of Leukostasis in Leukemic Mantle Cell Lymphoma Using Therapeutic Leukapheresis: A Case Report

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available We describe a case of severe leukocytosis caused by leukemic mantle cell lymphoma (MCL, complicated by leukostasis with myocardial infarction in which leukapheresis was used in the initial management. A 73-year-old male presented to the emergency department because of fatigue and thoracic pain. Blood count revealed 630 × 109/L WBC (white blood cells. The electrocardiogram showed ST-elevation with an increase of troponin and creatinine kinase. The diagnosis was ST-elevation myocardial infarction (STEMI induced and complicated by leukostasis. Immunophenotyping, morphology, cytogenetic and fluorescence-in-situ-hybridization analysis revealed the diagnosis of a blastoid variant of MCL. To remove leukocytes rapidly, leukapheresis was performed in the intensive care unit. Based on the differential blood count with 95% blasts, which were assigned to the lymphocyte population by the automatic hematology analyzer, leukapheresis procedures were then performed with the mononuclear cell standard program on the Spectra cell separator. The patient was treated with daily leukapheresis for 3 days. The WBC count decreased to 174 × 109/L after the third leukapheresis, with a 72% reduction. After the second apheresis, treatment with vincristine, cyclophosphamide, and prednisolone was started. The patient fully recovered in the further course of the treatment. To the best of our knowledge, this is the first report on blastoid MCL with leukostasis associated with a STEMI that was successfully treated by leukapheresis. Effective harvest of circulating lymphoma cells by leukapheresis requires adaptation of instrument settings based on the results of the differential blood count prior to apheresis.

  16. Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects.

    Science.gov (United States)

    Georgiadis, Christos; Preece, Roland; Nickolay, Lauren; Etuk, Aniekan; Petrova, Anastasia; Ladon, Dariusz; Danyi, Alexandra; Humphryes-Kirilov, Neil; Ajetunmobi, Ayokunmi; Kim, Daesik; Kim, Jin-Soo; Qasim, Waseem

    2018-03-06

    Gene editing can be used to overcome allo-recognition, which otherwise limits allogeneic T cell therapies. Initial proof-of-concept applications have included generation of such "universal" T cells expressing chimeric antigen receptors (CARs) against CD19 target antigens combined with transient expression of DNA-targeting nucleases to disrupt the T cell receptor alpha constant chain (TRAC). Although relatively efficient, transgene expression and editing effects were unlinked, yields variable, and resulting T cell populations heterogeneous, complicating dosing strategies. We describe a self-inactivating lentiviral "terminal" vector platform coupling CAR expression with CRISPR/Cas9 effects through incorporation of an sgRNA element into the ΔU3 3' long terminal repeat (LTR). Following reverse transcription and duplication of the hybrid ΔU3-sgRNA, delivery of Cas9 mRNA resulted in targeted TRAC locus cleavage and allowed the enrichment of highly homogeneous (>96%) CAR + (>99%) TCR - populations by automated magnetic separation. Molecular analyses, including NGS, WGS, and Digenome-seq, verified on-target specificity with no evidence of predicted off-target events. Robust anti-leukemic effects were demonstrated in humanized immunodeficient mice and were sustained longer than by conventional CAR + TCR + T cells. Terminal-TRAC (TT) CAR T cells offer the possibility of a pre-manufactured, non-HLA-matched CAR cell therapy and will be evaluated in phase 1 trials against B cell malignancies shortly. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  17. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Textural characteristics of bone marrow blast nucleus images with different variants of acute lymphoblastic leukemia

    Science.gov (United States)

    Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Mozhenkova, A. V.; Tupitsin, N. N.; Frenkel, M. A.

    2018-01-01

    The paper describes the method of recognition of T - and B - variants of acute lymphoblastic leukemia in microscopic images of blood cells. The method is based on the use of texture characteristics of images. Experimental recognition accuracy evaluation is obtained from the sample of 38 patients (17 with T-ALL and 21 with B-ALL variants of acute lymphoblastic leukemia). The obtained results show the possibility of applying of the proposed approach to the differential diagnosis of T- and B- variants of acute lymphoblastic leukemia.

  19. Acute Lymphoblastic Leukemia in a Man Treated With Fingolimod for Relapsing Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Stanley Cohan MD, PhD

    2015-03-01

    Full Text Available A man with relapsing multiple sclerosis, treated with fingolimod 0.5 mg/d for 15 months, developed acute lymphoblastic leukemia and died 4 months after immune ablation and bone marrow allograft, from graft versus host disease. To our knowledge, this is the first case of acute lymphoblastic leukemia reported in a patient treated with fingolimod. Although no causal relationship can be established between fingolimod use and acute lymphoblastic leukemia risk in this single case, future surveillance for lymphatic cell malignancies in patients treated with fingolimod appears justified.

  20. MR features of isolated uterine relapse in an adolescent with acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Novellas, Sebastien; Fournol, Maude; Geoffray, Anne; Chevallier, Patrick; Deville, Anne; Kurzenne, Jean-Yves

    2008-01-01

    Relapses of lymphoblastic leukaemia traditionally involve the central nervous system and testes in boys. Involvement of the female pelvic organs is frequently found at autopsy; however, involvement of the cervical uterus is rare and even less commonly symptomatic. A 13-cm uterine mass was discovered in a 15-year-old adolescent with a history of lymphoblastic leukaemia during childhood. Pelvic MRI was the best tool to assess the size, characteristics and invasive nature of this lesion of the uterine cervix. To our knowledge, this is a unique case in that we describe the MRI appearance of a relapsing lymphoblastic leukaemic mass both before and after treatment. (orig.)

  1. MR features of isolated uterine relapse in an adolescent with acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Novellas, Sebastien; Fournol, Maude; Geoffray, Anne; Chevallier, Patrick [Regional Hospital Centre and University of Nice, Medical Imaging Service, Archet 2 Hospital, 151 route de Saint Antoine de Ginestiere, B.P. 3079, Nice Cedex 3 (France); Deville, Anne [Regional Hospital Centre and University of Nice, Paediatric Service, Archet 2 Hospital, Nice (France); Kurzenne, Jean-Yves [Regional Hospital Centre and University of Nice, Paediatric Surgery Service, Archet 2 Hospital, Nice (France)

    2008-03-15

    Relapses of lymphoblastic leukaemia traditionally involve the central nervous system and testes in boys. Involvement of the female pelvic organs is frequently found at autopsy; however, involvement of the cervical uterus is rare and even less commonly symptomatic. A 13-cm uterine mass was discovered in a 15-year-old adolescent with a history of lymphoblastic leukaemia during childhood. Pelvic MRI was the best tool to assess the size, characteristics and invasive nature of this lesion of the uterine cervix. To our knowledge, this is a unique case in that we describe the MRI appearance of a relapsing lymphoblastic leukaemic mass both before and after treatment. (orig.)

  2. Imitation of Mb. perthes through acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Zaunschirm, A.; Muntean, W.; Kaulfersch, W.; Kurz, R.; Ritter, G.; Schneider, G.

    1983-01-01

    A two year old boy was seen in the orthopedic clinics because of typical symptoms of Legg-Perthes disease, a scintigraphy with Technetium sup(99m) showed a distinct deficiency of nuclear activity in the femoral head which is characteristic of the early stage of Legg-Perthes disease. A routine blood count lead to the diagnosis of acute lymphoblastic leukemia. The boy was treated according to the Austrian cooperative leukemia protocol and complete remission was achieved. No orthopedic treatment of the femur head necrosis was done, after eight weeks of treatment with multiagent chemotherapy the boy started to walk again and subsequently became free of all symptoms of Legg-Perthes disease. A scintigraphy done eight weeks after the initial scintigraphy showed that the deficiency of radionuclear activity of the femoral head was nearly vanished. This case illustrates the variability of bone involvement in acute lymphoblastic leukemia, which often is the most prominent symptom at an early stage of the disease. (Author)

  3. First-line treatment of acute lymphoblastic leukemia with pegasparaginase

    Directory of Open Access Journals (Sweden)

    Riccardo Masetti

    2009-07-01

    Full Text Available Riccardo Masetti, Andrea PessionPediatric Oncology and Hematology Unit “Lalla Seràgnoli”, University of Bologna, Bologna, ItalyAbstract: Acute lymphoblastic leukemia (ALL accounts for almost 4000 cases annually in the United States, approximately two thirds of which are in children and adolescents. Treatment results of ALL have improved considerably in the past decade, due to an optimal stratification of patients and a rational use of different antileukemic agents among which L-asparaginase (L-ASNase plays a fundamental role. This drug has been used in pediatric ALL chemotherapy protocols for almost 3 decades. In the 1970s and 1980s a chemically modified form of this enzyme called pegasparaginase (PEG-ASNase was rationally synthesized to decrease immunogenicity of the enzyme and prolong its half-life. The different advantages of PEG-ASNase have been demonstrated in many clinical studies, the last of which underline the utility of this drug in front-line therapy of ALL. In this review, we discuss the pharmacological advantages and clinical potential of PEG-ASNase and its important use in first-line treatment of ALL.Keywords: pegasparaginase, acute, lymphoblastic leukemia, pegylation

  4. [Childhood acute lymphoblastic leukemia in Norway 1992-2000].

    Science.gov (United States)

    Kolmannskog, Svein; Flaegstad, Trond; Helgestad, Jon; Hellebostad, Marit; Zeller, Bernward; Glomstein, Anders

    2007-05-31

    Acute lymphoblastic leukemia is the most common malignancy in childhood. The survival rate has increased steadily over the last 40 years. All children aged 0-15 years and diagnosed in Norway in the period 1992-2000, were included in the study (n = 301). The patients were followed up until 1.1. 2005. The diagnosis was made in 301 children, 33 new cases per year (range 24 to 40) on average. The peak incidence was between 2 and 5 years. Four of 6 infants with acute lymphoblastic leukemia and all 4 with mature B-cell leukemia are alive. Two of the remaining 291 children died before treatment was started. 289 were all treated according to the common Nordic NOPHO-ALL 1992 protocol. All children achieved remission (99.7%), except for one who died before remission was achieved. 55 children (19%) relapsed. Radiation to the brain as part of central nervous system prophylaxis was given to just 10% of the children. The 10-year event-free survival (p-EFS) was 76%, and 244 of 289 (84%) were alive 4-13 years after the diagnosis was made. The data are comparable with the best international results.

  5. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    Science.gov (United States)

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  6. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells

    Directory of Open Access Journals (Sweden)

    Aaron L. Miller

    2002-01-01

    Full Text Available Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone. (20Dex and two polyamine inhibitors, difluoromethylornithine. (20DFMO and methyl glyoxal bis guanylhydrazone. (20MGBG, on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase. (20ODC, the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity.

  7. Membranes replace irradiated blast cells as growth requirement for leukemic blast progenitors in suspension culture

    International Nuclear Information System (INIS)

    Nara, N.; McCulloch, E.A.

    1985-01-01

    The blast cells of acute myeloblastic leukemia (AML) may be considered as a renewal population, maintained by blast stem cells capable of both self-renewal and the generation of progeny with reduced or absent proliferative potential. This growth requires that two conditions be met: first, the cultures must contain growth factors in media conditioned either by phytohemagglutinin (PHA)-stimulated mononuclear leukocytes (PHA-LCM), or by cells of the continuous bladder carcinoma line HTB9 (HTB9-CM). Second, the cell density must be maintained at 10(6) blasts/ml; this may be achieved by adding irradiated cells to smaller numbers of intact blasts. The authors are concerned with the mechanism of the feeding function. They present evidence that (a) cell-cell contact is required. (b) Blasts are heterogeneous in respect to their capacity to support growth. (c) Fractions containing membranes from blast cells will substitute for intact cells in promoting the generation of new blast progenitors in culture. (d) This membrane function may be specific for AML blasts, since membranes from blasts of lymphoblastic leukemia or normal marrow cells were inactive

  8. Siglec-7 tetramers characterize B-cell subpopulations and leukemic blasts.

    Science.gov (United States)

    Gieseke, Friederike; Mang, Philippa; Viebahn, Susanne; Sonntag, Inga; Kruchen, Anne; Erbacher, Annika; Pfeiffer, Matthias; Handgretinger, Rupert; Müller, Ingo

    2012-08-01

    Cell surface glycosylation has important regulatory functions in the maturation, activation, and homeostasis of lymphocytes. The family of human sialic acid-binding immunoglobulin-like lectins (siglecs) comprises inhibitory as well as activating receptors intimately involved in the regulation of immune responses. Analyses of the interaction between siglecs and glycans are hampered by the low affinity of this interaction. Therefore, we expressed siglec-7 in eukaryotic cells, allowing for glycosylation, and oligomerized the protein in analogy to MHC tetramers. Using this tool, flow cytometric analysis of lymphocytes became possible. Sialic acid-dependent binding of siglec-7 tetramers was confirmed by glycan array analysis and loss of siglec tetramer binding after neuraminidase treatment of lymphocytes. In contrast to most lymphocyte subpopulations, which showed high siglec-7 ligand expression, B-cell subpopulations could be further subdivided according to different siglec-7 ligand expression levels. We also analyzed blasts from acute lymphoblastic leukemias of the B-cell lineage as well as the T-cell lineage, since malignant transformation is often associated with aberrant cell surface glycosylation. While pediatric T-ALL blasts highly expressed siglec-7 ligands, siglec-7 ligands were barely detectable on cALL blasts. Taken together, oligomerization of recombinant soluble siglec-7 enabled flow cytometric identification of physiologic lymphocyte subpopulations and malignant blasts. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Imported rickettsioses : think of murine typhus

    NARCIS (Netherlands)

    van der Kleij, FGH; Gansevoort, RT; Kreeftenberg, HG

    Murine typhus is a disease still prevalent in many parts of the world. Because the incidence in the US and Europe has declined rapidly, physicians in these continents have become unfamiliar with the clinical picture. Murine typhus is associated with significant morbidity and fatalities do occur,

  10. Inhibition of time-dependent enhancement of amino acid transport by leukemic leukocytes: a possible index of the sensitivity of cells to drugs

    Energy Technology Data Exchange (ETDEWEB)

    Frengley, P A; Peck, W A; Lichtman, M A

    1975-01-01

    Leukemic leukocytes increase their rates of alpha aminoisobutyric acid (AIB) accumulation when incubated for prolonged periods in amino acid deficient media. The time-dependent increase was prevented by concurrent exposure of cells to cycloheximide or actinomycin D in vitro. In addition, the increase in AIB uptake was not present in leukemic blasts studied in vitro when the cells were obtained from subjects with acute myeloblastic leukemia who had received antileukemic therapy. Cortisol added to cell suspensions in vitro inhibited the development of time-dependent increases in AIB uptake in lymphoid cells, but accentuated the process slightly in myeloblasts. Cortisol administered to a subject with CLL by infusion reduced the time-dependent increase in AIB uptake by CLL cells subsequently studied in vitro. These data indicate that the time-dependent increase in AIB uptake may be a means of testing the sensitivity of leukemic cells to drugs.

  11. Combined Treatment with Low Concentrations of Decitabine and SAHA Causes Cell Death in Leukemic Cell Lines but Not in Normal Peripheral Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    Barbora Brodská

    2013-01-01

    Full Text Available Epigenetic therapy reverting aberrant acetylation or methylation offers the possibility to target preferentially tumor cells and to preserve normal cells. Combination epigenetic therapy may further improve the effect of individual drugs. We investigated combined action of demethylating agent decitabine and histone deacetylase inhibitor SAHA (Vorinostat on different leukemic cell lines in comparison with peripheral blood lymphocytes. Large decrease of viability, as well as huge p21WAF1 induction, reactive oxygen species formation, and apoptotic features due to combined decitabine and SAHA action were detected in leukemic cell lines irrespective of their p53 status, while essentially no effect was observed in response to the combined drug action in normal peripheral blood lymphocytes of healthy donors. p53-dependent apoptotic pathway was demonstrated to participate in the wtp53 CML-T1 leukemic cell line response, while significant influence of reactive oxygen species on viability decrease has been detected in p53-null HL-60 cell line.

  12. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells

    NARCIS (Netherlands)

    Hulleman, Esther; Kazemier, Karin M.; Holleman, Amy; VanderWeele, David J.; Rudin, Charles M.; Broekhuis, Mathilde J. C.; Evans, William E.; Pieters, Rob; Den Boer, Monique L.

    2009-01-01

    Treatment failure in pediatric acute lymphoblastic leukemia (ALL) is related to cellular resistance to glucocorticoids (eg, prednisolone). Recently, we demonstrated that genes associated with glucose metabolism are differentially expressed between prednisolone-sensitive and prednisolone-resistant

  13. MLL duplication in a pediatric patient with B-cell lymphoblastic lymphoma.

    Science.gov (United States)

    Mater, David Van; Goodman, Barbara K; Wang, Endi; Gaca, Ana M; Wechsler, Daniel S

    2012-04-01

    Lymphoblastic lymphoma is the second most common type of non-Hodgkin lymphoma seen in children. Approximately, 90% of lymphoblastic lymphomas arise from T cells, with the remaining 10% being B-cell-lineage derived. Although T-cell lymphoblastic lymphoma most frequently occurs in the anterior mediastinum (thymus), B-cell lymphoblastic lymphoma (B-LBL) predominates in extranodal sites such as skin and bone. Here, we describe a pediatric B-LBL patient who presented with extensive abdominal involvement and whose lymphoma cells displayed segmental duplication of the mixed lineage leukemia (MLL) gene. MLL duplication/amplification has been described primarily in acute myeloid leukemia and myelodysplastic syndrome with no published reports of discrete MLL duplication/amplification events in B-LBL. The MLL gene duplication noted in this case may represent a novel mechanism for tumorigenesis in B-LBL.

  14. Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia : Proposal for an easy strategy

    NARCIS (Netherlands)

    Szczepanski, T; Willemse, MJ; Kamps, WA; van Wering, ER; Langerak, AW; van Dongen, JJM

    Background. Discrimination between late relapse of acute lymphoblastic leukemia (ALL) and secondary ALL might be clinically important, because the former might still respond favorably to chemotherapy and/or bone marrow transplantation, whereas secondary ALL is associated with poor prognosis.

  15. Host genome variations and risk of infections during induction treatment for childhood acute lymphoblastic leukaemia

    DEFF Research Database (Denmark)

    Lund, Bendik; Wesolowska-Andersen, Agata; Lausen, Birgitte

    2014-01-01

    Objectives: To investigate association of host genomic variation and risk of infections during treatment for childhood acute lymphoblastic leukaemia (ALL). Methods: We explored association of 34 000 singlenucleotide polymorphisms (SNPs) related primarily to pharmacogenomics and immune function...

  16. The controversy of varicella vaccination in children with acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Caniza, Miguela A; Hunger, Stephen P; Schrauder, Andre

    2012-01-01

    The available guidelines for varicella vaccination of susceptible children with acute lymphoblastic leukemia (ALL) have become increasingly conservative. However, vaccination of those who have remained in continuous complete remission for 1 year and are receiving chemotherapy is still considered...

  17. Predicting the neurobehavioral side effects of dexamethasone in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Warris, Lidewij T.; van den Akker, Erica L. T.; Aarsen, Femke K.; Bierings, Marc B.; van den Bos, Cor; Tissing, Wim J. E.; Sassen, Sebastiaan D. T.; Veening, Margreet A.; Zwaan, Christian M.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is an effective treatment for acute lymphoblastic leukemia (ALL), it can induce a variety of serious neurobehavioral side effects. We hypothesized that these side effects are influenced by glucocorticoid sensitivity at the tissue level. We therefore prospectively studied

  18. Hepatotoxicity During Maintenance Therapy and Prognosis in Children With Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Ebbesen, Maria S.; Nygaard, Ulrikka; Rosthøj, Susanne

    2017-01-01

    Hepatotoxicity is a known toxicity to treatment of childhood acute lymphoblastic leukemia. Hepatotoxicity occurs during maintenance therapy and is caused by metabolites of 6-Mercaptopurine (6 MP) and Methotrexate (MTX). Our objective was to investigate the association between alanine...

  19. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients

    NARCIS (Netherlands)

    Sassen, Sebastiaan D. T.; Mathôt, Ron A. A.; Pieters, Rob; Kloos, Robin Q. H.; de Haas, Valérie; Kaspers, Gertjan J. L.; van den Bos, Cor; Tissing, Wim J. E.; te Loo, Maroeska; Bierings, Marc B.; Kollen, Wouter J. W.; Zwaan, Christian M.; van der Sluis, Inge M.

    2017-01-01

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough

  20. Population pharmacokinetics of intravenous Erwinia asparaginase in pediatric acute lymphoblastic leukemia patients

    NARCIS (Netherlands)

    Sassen, Sebastiaan D. T.; Mathot, Ron A. A.; Pieters, Rob; Kloos, Robin Q. H.; de Haas, Valerie; Kaspers, Gertjan J. L.; van den Bos, Cor; Tissing, Wim J. E.; te Loo, D. Maroeska W. M.; Bierings, Marc B.; Kollen, Wouter J. W.; Zwaan, Christian M.; van der Sluis, Inge M.

    Erwinia asparaginase is an important component in the treatment of pediatric acute lymphoblastic leukemia. A large variability in serum concentrations has been observed after intravenous Erwinia asparaginase. Currently, Dutch Childhood Oncology Group protocols dose alterations are based on trough

  1. Effect of azole antifungal therapy on vincristine toxicity in childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Schie, R.M. van; Bruggemann, R.J.M.; Hoogerbrugge, P.M.; Loo, D.M. te

    2011-01-01

    BACKGROUND: Vincristine is one of the cornerstones of the treatment of children with acute lymphoblastic leukaemia (ALL). Constipation, and peripheral and central neurotoxicities are the most common side effects. A comparative study exploring vincristine toxicity in individual patients receiving

  2. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    Science.gov (United States)

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  3. Myeloblastic and lymphoblastic markers in acute undifferentiated leukemia and chronic myelogenous leukemia in blast crisis.

    Science.gov (United States)

    Shumak, K H; Baker, M A; Taub, R N; Coleman, M S

    1980-11-01

    Blast cells were obtained from 17 patients with acute undifferentiated leukemia and 13 patients with chronic myelogenous leukemia in blast crisis. The blasts were tested with anti-i serum in cytotoxicity tests and with antisera to myeloblastic leukemia-associated antigens in immunofluorescence tests. The terminal deoxynucleotidyl transferase (TDT) content of the blasts was also measured. Lymphoblasts react strongly with anti-i, do not react with anti-myeloblast serum, and have high levels of TDT; myeloblasts react weakly with anti-i, do not react with anti-myeloblast serum, and have very low levels of TDT. Of the 17 patients with acute undifferentiated leukemia, there were six with blasts which reacted like lymphoblasts, six with blasts which reacted like myeloblasts, and five with blasts bearing different combinations of these lymphoblastic and myeloblastic markers. Eight of the 11 patients with lymphoblastic or mixed lymphoblastic-myeloblastic markers, but only one of the six with myeloblastic markers, achieved complete or partial remission in response to therapy. Thus, in acute undifferentiated leukemia, classification of blasts with these markers may be of prognostic value. Of the 13 patients with chronic myelogenous leukemia in blast crises, the markers were concordant (for myeloblasts) in only two cases. Three of the 13 patients had TDT-positive blasts, but the reactions of these cells with anti-i and with anti-myeloblast serum differed from those seen with lymphoblasts from patients with acute lymphoblastic leukemia. Although the cell involved in "lymphoid" blast crisis of chronic myelogenous leukemia is similar in many respects to that involved in acute lymphoblastic leukemia, these cells are not identical.

  4. Precursor B-cell lymphoblastic leukemia of the arm mimicking neurogenic tumor: case report

    Directory of Open Access Journals (Sweden)

    Sui Xiu-fang

    2012-07-01

    Full Text Available Abstract Precursor B-cell lymphoblastic lymphoma (PBLL is an infrequent subtype of lymphoblastic lymphoma (LBL that commonly affected site for the diagnosis is the skin, followed by the head and neck. In this report, we presented a special case of PBLL located at the left arm and detected with magnetic resonance imaging (MRI and ultrasonography (US. This kind of PBLL is similar to a peripheral nerve tumor in clinical and radiographic manifestation.

  5. Alkaloid-rich fraction of Himatanthus lancifolius contains anti-tumor agents against leukemic cells

    Directory of Open Access Journals (Sweden)

    Melissa Pires de Lima

    2010-06-01

    Full Text Available The effects of the alkaloid-rich fraction of Himatanthus lancifolius (Müll. Arg Woodson on normal marrow cells and leukemic cell lines were investigated. After 48 h exposure, the proliferation assay showed significant cell growth inhibition for Daudi (0.1-10 µg/mL, K-562 (1-10 µg/mL, and REH cells (10-100 µg/mL, yet was inert for normal marrow cells. A similar inhibition profile was observed in clonogenic assays. This alkaloid-rich fraction, in which uleine is the main compound, showed no signs of toxicity to any cells up to 10 µg/mL. Cell feature analyses after induction of differentiation showed maintenance of the initial phenotype. Flow cytometric expression of Annexin-V and 7-AAD in K-562 and Daudi cells has indicated that the cells were not undergoing apoptosis or necrosis, suggesting cytostatic activity for tumor cellsOs efeitos da fração rica em alcalóides indólicos de Himatanthus lancifolius (Müll. Arg Woodson sobre células normais de medula óssea e linhagens celulares leucêmicas foram investigados. Após 48 horas de exposição, os ensaios de proliferação demonstraram efeitos inibitórios significativos para as linhagens Daudi (0,1-10 µg/mL, K-562 (1-10 µg/mL e REH (10-100 µg/mL, enquanto mostrou-se inerte sobre células normais de medula óssea. Os perfis de inibição se repetiram nos ensaios clonogênicos. A fração rica em alcalóides, na qual a uleína é a substância majoritária, não demonstrou toxicidade até a dose de 10 µg/mL para nenhuma das células incluídas no estudo. Da mesma forma, não se observou influência dessa fração sobre a diferenciação celular dessas linhagens, mas manutenção de seu estado maturacional inicial. O conjunto de dados descritos associado à baixa co-expressão de anexina-V e 7-AAD sugerem que esta fração exerce atividade citostática para células tumorais.

  6. Evaluation of reliability on STR typing at leukemic patients used for forensic purposes.

    Science.gov (United States)

    Filoglu, G; Bulbul, O; Rayimoglu, G; Yediay, F E; Zorlu, T; Ongoren, S; Altuncul, H

    2014-06-01

    Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010-2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in

  7. Clinical approach to circumvention of multidrug resistance in refractory leukemic patients: association of cyclosporin A with etoposide.

    Science.gov (United States)

    Maia, R C; Carriço, M K; Klumb, C E; Noronha, H; Coelho, A M; Vasconcelos, F C; Ruimanek, V M

    1997-12-01

    Alternative therapy for refractory leukemic patients is being increasingly adopted. Circumvention of multidrug resistance represents a strategy that has been taken into account when conventional chemotherapy failed. In this work a group of 15 refractory, heavily pretreated, patients was enrolled in a circumvention protocol including etoposide (ETO) and cyclosporin A (CSA). All patients received etoposide prior to this schedule. Toxicity to circumvention protocol was acceptable and only one serious side-effect was observed. Two hematological clinical responses were seen, both of which were positive to P-glycoprotein immunostaining and exhibited in vitro modulation by CSA in cultures using the thymidine incorporation assay. Three out of four patients negative for P-glycoprotein achieved a minor response. Three out of six clinical failures were also negative for Pgp immunostaining one of which exhibited sinergistic effect between ETO and CSA. Our study suggests that hematological response to ETO and CSA association can be obtained in intensely pretreated leukemic patients. Several factors may affect the response such as clinical status before this therapy. Additionally, it also suggests that not all CSA effects on the combination ETO-CSA can be attributed to Pgp modulation.

  8. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  9. NO-donating aspirin inhibits the growth of leukemic Jurkat cells and modulates β-catenin expression

    International Nuclear Information System (INIS)

    Nath, Niharika; Labaze, Georges; Rigas, Basil; Kashfi, Khosrow

    2004-01-01

    β-Catenin has been implicated in leukemic cell proliferation. We compared the effects of aspirin (ASA) and the ortho, meta, and para positional isomers of NO-donating aspirin (NO-ASA) on cell growth and β-catenin expression in human Jurkat T leukemic cells. Cell growth inhibition was strong: IC 50 for p-, o-, and m- were 20 ± 1.6 (mean ± SEM), 15 ± 1.5, and 200 ± 12 μM, respectively, in contrast to that of ASA (3200 ± 375 μM). The para isomer of NO-ASA degraded β-catenin in a dose- and time-dependent manner coinciding with increasing expression of activated caspase-3. The caspase inhibitor ZVAD blocked β-catenin cleavage by p-NO-ASA and partially reversed cell growth inhibition by p-NO-ASA but not that by ASA. A denitrated analog of p-NO-ASA did not degrade β-catenin indicating the importance of the NO-donating moiety. Our findings suggest that NO-ASA merits further study as an agent against leukemia

  10. TRIM32 promotes retinoic acid receptor α-mediated differentiation in human promyelogenous leukemic cell line HL60

    International Nuclear Information System (INIS)

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► TRIM32 enhanced RARα-mediated transcriptional activity even in the absence of RA. ► TRIM32 stabilized RARα in the human promyelogenous leukemic cell line HL60. ► Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. ► TRIM32 may function as a coactivator for RARα-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor α (RARα). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RARα and enhances transcriptional activity of RARα in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RARα, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RARα-mediated transcriptional activity even in the absence of RA and stabilizes RARα in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RARα-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  11. Immune Thrombocytopenia in a Child with T Cell Lymphoblastic Lymphoma

    Directory of Open Access Journals (Sweden)

    Kayo Tokeji

    2016-01-01

    Full Text Available We describe the case of a 13-year-old boy who presented with persistent thrombocytopenia during maintenance chemotherapy with mercaptopurine and methotrexate for T cell lymphoblastic lymphoma. He was diagnosed with immune thrombocytopenia (ITP after thorough investigations for the relapse of lymphoma and was successfully treated with immunoglobulin and steroids. ITP is known to be associated with chronic lymphocytic leukemia, Hodgkin lymphoma, and various types of non-Hodgkin lymphoma but rarely with T cell non-Hodgkin lymphoma or in children. Diagnosis of ITP with lymphoma is challenging due to the many factors affecting platelet counts, and ITP often complicates the diagnosis or treatment course of lymphoma. The underlying mechanism of ITP with NHL is still unclear. Drug-induced immunomodulation with a reduction of regulatory T cells might have contributed to the development of ITP in our case.

  12. Treatment of Young Adults with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Kansagra, Ankit; Litzow, Mark

    2017-06-01

    Young adults with acute lymphoblastic leukemia are a distinctive category of patients, with substantial difference in disease biology and response to therapy; hence, they pose unique challenges and issues beyond those faced by children and older adults. Despite inferior survival compared to children, there is growing evidence to suggest that young adults have improved outcomes when treated with pediatric-based approaches. With better supportive care and toxicity management and multidisciplinary team and approach, we have made great improvement in outcomes of young adults with ALL. However, despite significant progress, patients with persistence of minimal residual disease have a poor prognosis. This review discusses current controversies in the management of young adults with ALL, outcomes following pediatric and adult protocols, and the role of allogeneic stem cell transplantation. We also explore recent advances in disease monitoring and highlight our approach to incorporation of novel therapies in the management of young adults with ALL.

  13. Prediction of intellectual deficits in children with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Trautman, P.D.; Erickson, C.; Shaffer, D.; O'Connor, P.A.; Sitarz, A.; Correra, A.; Schonfeld, I.S.

    1988-01-01

    Possible predictors of reported lower cognitive functioning in irradiated children with acute lymphoblastic leukemia (ALL) were investigated. Thirty-four subjects, 5-14 years old, with ALL in continuous complete remission and without evidence of current or past central nervous system disease, were examined 9-110 months after diagnosis, using standard measures of intelligence and academic achievement. Subjects with a history of post-irradiation somnolence syndrome were significantly older at diagnosis than nonsomnolent subjects. Intelligence (IQ) was found to be unrelated to history of somnolence syndrome. IQ and achievement were unrelated to age at irradiation, irradiation-examination interval, and radiation dosages. The strongest predictor of IQ by far is parental social class. The importance of controlling for social class differences when searching for treatment effects on IQ and achievement is stressed

  14. CDX2 gene expression in acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Arnaoaut, H.H.; Mokhtar, D.A.; Samy, R.M.; Omar, Sh.A.; Khames, S.A.

    2014-01-01

    CDX genes are classically known as regulators of axial elongation during early embryogenesis. An unsuspected role for CDX genes has been revealed during hematopoietic development. The CDX gene family member CDX2 belongs to the most frequent aberrantly expressed proto-oncogenes in human acute leukemias and is highly leukemogenic in experimental models. We used reversed transcriptase polymerase chain reaction (RT-PCR) to determine the expression level of CDX2 gene in 30 pediatric patients with acute lymphoblastic leukemia (ALL) at diagnosis and 30 healthy volunteers. ALL patients were followed up to detect minimal residual disease (MRD) on days 15 and 42 of induction. We found that CDX2 gene was expressed in 50% of patients and not expressed in controls. Associations between gene expression and different clinical and laboratory data of patients revealed no impact on different findings. With follow up, we could not confirm that CDX2 expression had a prognostic significance.

  15. Primary orbital precursor T-cell lymphoblastic lymphoma

    DEFF Research Database (Denmark)

    Stenman, Lisa; Persson, Marta; Enlund, Fredrik

    2016-01-01

    Primary T-cell lymphoblastic lymphoma (T-LBL) in the eye region is very rare. The present study described a unique case of T-LBL involving the extraocular muscles. A 22-year-old male patient presented with a 3-week history of headache, reduced visual acuity and edema of the left eye. Clinical...... examination revealed left-sided exophthalmus, periorbital edema, chemosis, and reduced motility of the left eye. A magnetic resonance imaging scan revealed thickening of the left orbital muscles and a positron emission tomography-computed tomography scan also demonstrated activity in a subclavicular lymph....... There was no involvement of the bone marrow. Based on the clinical and histopathological findings, a diagnosis of T-LBL was made. There was no evidence of NOTCH1 mutation or rearrangements of the ETV6 and MLL genes and high-resolution array-based comparative genomic hybridization (arrayCGH) analysis revealed a normal...

  16. Acute lymphoblastic leukemia in a child with fanconi's anaemia

    International Nuclear Information System (INIS)

    Mushtaq, N.; Fadoo, Z.; Saleem, A.F.

    2012-01-01

    Fanconi anaemia (FA) is an autosomal recessive inherited disorder with progressive bone marrow failure, associated congenital malformation and solid and haematological malignancies. Acute myeloid leukemia is the commonest haematological malignancy followed by myelodysplastic syndrome in children with FA. FA transformed into acute lymphoblastic leukemia (ALL) is a rare phenomenon and one of the rarest haematological malignancies associated with this disorder. We are reporting a 13 years old girl with FA and positive chromosomal breakage. She required regular blood product transfusion. She was planned for haematopoietic stem cell transplantation (HSCT) but the sibling-matched donor was found to have chromosomal breaks as well. Later on, her peripheral smear showed blast cell. Bone marrow showed pre-B ALL. She was started on chemotherapy but died shortly due to complications of the treatment. For this rare condition conservative management is indeed essential, however, safe and appropriate chemotherapy regimen is needed. (author)

  17. Leydig cell damage after testicular irradiation for lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Shalet, S.M.; Horner, A.; Ahmed, S.R.; Morris-Jones, P.H.

    1985-01-01

    The effect of testicular irradiation on Leydig cell function has been studied in a group of boys irradiated between 1 and 5 years earlier for a testicular relapse of acute lymphoblastic leukemia. Six of the seven boys irradiated during prepubertal life had an absent testosterone response to HCG stimulation. Two of the four boys irradiated during puberty had an appropriate basal testosterone level, but the testosterone response to HCG stimulation was subnormal in three of the four. Abnormalities in gonadotropin secretion consistent with testicular damage were noted in nine of the 11 boys. Evidence of severe Leydig cell damage was present irrespective of whether the boys were studied within 1 year or between 3 and 5 years after irradiation, suggesting that recovery is unlikely. Androgen replacement therapy has been started in four boys and will be required by the majority of the remainder to undergo normal pubertal development

  18. [Acute lymphoblastic leukemia of T progenitors: from biology to clinics].

    Science.gov (United States)

    Genescà, Eulàlia; Ribera, Jordi; Ribera, Josep-Maria

    2015-03-09

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the main cause of morbidity among childhood blood disorders. There are 2 subtypes according to the affected lymphoid progenitor: B-ALL and T-ALL. The T-ALL is the less common and, although historically was associated with poor prognosis in both adults and children, at present, treatment outcomes do not differ significantly between the 2 types of ALL. The T-ALL subtype is the most complex and heterogeneous at the genetic level and currently the one with less new therapeutic alternatives available. This trend is changing thanks to the remarkable progress upon understanding its biology. This review summarizes the most recent and important biological findings in T-ALL and their possible therapeutic implications. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  19. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Bongiovanni, Deborah; Saccomani, Valentina

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy. PMID:28872614

  20. Childhood acute lymphoblastic leukemia: from genome to patient

    International Nuclear Information System (INIS)

    Kolenova, A.

    2016-01-01

    Acute lymphoblastic leukemia is the most common malignant disease in childhood. During recent decades prognosis for children with acute leukemia has greatly improved, including the patients treated in the Slovak Republic. The prognosis for these patients has improved as a result of the systematic and well-organized international research efforts and clinical trials. The advent of new genomic technologies has provided new insights into leukemogenesis, identified many novel subtypes of leukemia, and triggered development of new therapeutic formulations. The success of treatment depends on stratifying patients into risk group and incorporating novel treatment strategies.The Slovak pediatric leukemia group is actively incorporated into these international clinical trials and the outcome for our patients is comparable to the results published in Western Europe. (author)

  1. Acute lymphoblastic leukemia: a comprehensive review and 2017 update

    Science.gov (United States)

    Terwilliger, T; Abdul-Hay, M

    2017-01-01

    Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults, with an incidence of over 6500 cases per year in the United States alone. The hallmark of ALL is chromosomal abnormalities and genetic alterations involved in differentiation and proliferation of lymphoid precursor cells. In adults, 75% of cases develop from precursors of the B-cell lineage, with the remainder of cases consisting of malignant T-cell precursors. Traditionally, risk stratification has been based on clinical factors such age, white blood cell count and response to chemotherapy; however, the identification of recurrent genetic alterations has helped refine individual prognosis and guide management. Despite advances in management, the backbone of therapy remains multi-agent chemotherapy with vincristine, corticosteroids and an anthracycline with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of ALL. PMID:28665419

  2. Childhood Acute Lymphoblastic Leukemia: Integrating Genomics into Therapy

    Science.gov (United States)

    Tasian, Sarah K; Loh, Mignon L; Hunger, Stephen P

    2015-01-01

    Acute lymphoblastic leukemia (ALL), the most common malignancy of childhood, is a genetically complex entity that remains a major cause of childhood cancer-related mortality. Major advances in genomic and epigenomic profiling during the past decade have appreciably enhanced knowledge of the biology of de novo and relapsed ALL and have facilitated more precise risk stratification of patients. These achievements have also provided critical insights regarding potentially targetable lesions for development of new therapeutic approaches in the era of precision medicine. This review delineates the current genetic landscape of childhood ALL with emphasis upon patient outcomes with contemporary treatment regimens, as well as therapeutic implications of newly identified genomic alterations in specific subsets of ALL. PMID:26194091

  3. Childhood vaccinations and risk of acute lymphoblastic leukaemia in children

    DEFF Research Database (Denmark)

    Søegaard, Signe Holst; Rostgaard, Klaus; Schmiegelow, Kjeld

    2017-01-01

    information on ALL subtypes. Using Cox regression, we estimated hazard ratios (HRs) comparing vaccinated with unvaccinated children.Results: Childhood ALL was diagnosed in 490 children during 10 829 194 person-years of follow-up. Neither the total number of vaccine doses received nor exposure to each......Background: It has been proposed that childhood vaccinations protect against acute lymphoblastic leukaemia (ALL) in children by modulation of future responses to common infections in childhood. However, the available studies provide inconsistent findings, and population-based cohort studies...... with longitudinal information on vaccinations are lacking.Methods: In a register-based cohort of all children born in Denmark from 1 January 1990 to 31 December 2008, followed up until age 15 years or 31 December 2009 (n=1 225 404), we evaluated exposure to childhood vaccination and risk of childhood ALL, including...

  4. Management of acute lymphoblastic leukemia in young adults.

    Science.gov (United States)

    Muffly, Lori S; Reizine, Natalie; Stock, Wendy

    2018-02-01

    Substantial interest in acute lymphoblastic leukemia (ALL) in young adults (YAs) and investigations focused on this patient population have resulted in therapeutic advancements that are changing the management paradigm and improving outcomes. The pediatric ALL approach is feasible and effective when administered by medical oncologists. Advanced diagnostics and minimal residual disease measurements aid in prognostication and have resulted in shifting recommendations regarding allogeneic hematopoietic cell transplant in first remission. Blinatumomab, inotuzumab, and chimeric antigen receptor T-cell therapies are transforming the treatment of relapsed/refractory ALL. This comprehensive review of the current management of ALL in YAs summarizes recent scientific developments and clinical trial findings related to ALL biology, frontline management approaches, novel therapies, and supportive care specific to this patient population. Finally, a practical guide to modern YA management for practicing clinicians is provided.

  5. Acute lymphoblastic leukemia in adolescents and young adults.

    Science.gov (United States)

    Ribera, Josep-Maria; Oriol, Albert

    2009-10-01

    Today, long-term survival is achieved in more than 80% of children 1 to 10 years old with acute lymphoblastic leukemia (ALL). However, cure rates for adults and adolescents and young adults (AYA) with ALL remain relatively low, at only 40% to 50%. Age is a continuous prognostic variable in ALL, with no single age at which prognosis deteriorates markedly. Within childhood ALL populations, older children have shown inferior outcomes, whereas younger adults have shown superior outcomes among adult ALL patients. The type of treatment (pediatric-based versus adult-based) for AYA has recently been a matter of debate. In this article the biology and treatment of ALL in AYA is reviewed.

  6. Acute Lymphoblastic Leukemia in Infants: 20 years of Experience

    Directory of Open Access Journals (Sweden)

    Amanda Ibagy

    2013-01-01

    Full Text Available Objective: To analyze patients younger than 2 years with acute lymphoblastic leukemia, treated in the period between 1990 and 2010 in a state reference center. Methods: This was a clinical-epidemiological, cross-sectional, observational, and descriptive study. It included patients younger than 2 years with acute lymphoblastic leukemia, treated in the period of 1990 to 2010 in a pediatric oncology unit of a state reference center, totaling 41 cases. Results: All patients were white ethnicity, and 60.9% were females. Regarding age, 24.38% were younger than 6 months, 17.07% were between 6 months and 1 year, and 58.53% were older than 1 year. The age of 6 months was statistically significant for the outcome of death. Predominant signs and symptoms were fever, bruising, and petechiae. A leukocyte count > 100,000 was found in 34.14% of cases, hemoglobin count < 11 in 95.13%, and platelet count < 100,000 in 75.61. Infiltration of central nervous system was present in 12.91% of patients. According to the lineage, B-cell lineage predominated (73%, but the T-cell line was statistically significant for death. 39% of patients had disease recurrence. In relation to vital status, 70.73% of the patients died; septic shock was the main cause. Conclusions: Acute lymphoblastic leukemia in infants has a high mortality rate, especially in children under 1 year and those with T-cell derived lineage. Resumo: Objetivo: Analisar pacientes com menos de dois anos de idade com leucemia linfoblásti- ca aguda atendidos no período de 1990 a 2010, em um centro de referência estadual. Métodos: Estudo clínico, epidemiológico, transversal, descritivo e observacional. Pacientes incluídos tinham menos de dois anos de idade, com leucemia linfoblástica aguda, tratados no período de 1990 a 2010 na unidade de oncologia pediátrica de um centro de referência estadual, totalizando 41 casos. Resultados: Todos os pacientes eram Caucasianos e 60,9% eram do sexo feminino. Com rela

  7. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    International Nuclear Information System (INIS)

    Nagel, Stefan; Scherr, Michaela; MacLeod, Roderick AF; Venturini, Letizia; Przybylski, Grzegorz K; Grabarczyk, Piotr; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; Schmidt, Christian A; Drexler, Hans G

    2009-01-01

    Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3

  8. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Bruce N Bagley

    Full Text Available Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL called Spontaneous dominant leukemia (Sdl. Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H. MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

  9. A dominantly acting murine allele of Mcm4 causes chromosomal abnormalities and promotes tumorigenesis.

    Science.gov (United States)

    Bagley, Bruce N; Keane, Thomas M; Maklakova, Vilena I; Marshall, Jonathon G; Lester, Rachael A; Cancel, Michelle M; Paulsen, Alex R; Bendzick, Laura E; Been, Raha A; Kogan, Scott C; Cormier, Robert T; Kendziorski, Christina; Adams, David J; Collier, Lara S

    2012-01-01

    Here we report the isolation of a murine model for heritable T cell lymphoblastic leukemia/lymphoma (T-ALL) called Spontaneous dominant leukemia (Sdl). Sdl heterozygous mice develop disease with a short latency and high penetrance, while mice homozygous for the mutation die early during embryonic development. Sdl mice exhibit an increase in the frequency of micronucleated reticulocytes, and T-ALLs from Sdl mice harbor small amplifications and deletions, including activating deletions at the Notch1 locus. Using exome sequencing it was determined that Sdl mice harbor a spontaneously acquired mutation in Mcm4 (Mcm4(D573H)). MCM4 is part of the heterohexameric complex of MCM2-7 that is important for licensing of DNA origins prior to S phase and also serves as the core of the replicative helicase that unwinds DNA at replication forks. Previous studies in murine models have discovered that genetic reductions of MCM complex levels promote tumor formation by causing genomic instability. However, Sdl mice possess normal levels of Mcms, and there is no evidence for loss-of-heterozygosity at the Mcm4 locus in Sdl leukemias. Studies in Saccharomyces cerevisiae indicate that the Sdl mutation produces a biologically inactive helicase. Together, these data support a model in which chromosomal abnormalities in Sdl mice result from the ability of MCM4(D573H) to incorporate into MCM complexes and render them inactive. Our studies indicate that dominantly acting alleles of MCMs can be compatible with viability but have dramatic oncogenic consequences by causing chromosomal abnormalities.

  10. Glucocorticoid receptors on leukemic cells as evidenced by dexamethasone-induced cytolysis and /sup 3/H-dexamethasone binding

    Energy Technology Data Exchange (ETDEWEB)

    Thraenhardt, H; Haefer, R; Zintl, F

    1987-01-01

    The presence of glucocorticoid receptors on the leukemic cells of 33 patients affected with acute lymphatic leukemia (ALL) and 6 patients affected with acute myeloic leukemia (AML) was investigated by dexamethasone-induced cytolysis and (/sup 3/H)-dexamethasone binding. The tests undertaken proved that after 20 hours of incubation 9 of 26 non-T-non-B-ALL (c-ALL and unclassified ALL) and 2 of AML were lysed with dexamethasone; blood lymphocytes and bone marrow leukocytes of healthy donors, however, were not affected. Non-T-non-B-ALL and AML were able to bind essentially more (/sup 3/H)-dexamethasone than T-ALL. There existed no correlation between dexamethasone binding and dexamethasone-induced cytolysis.

  11. A 5-year old male with “leukemic form” of disseminated post-transplant lymphoproliferative disorder

    Directory of Open Access Journals (Sweden)

    Saadiya Haque

    2010-03-01

    Full Text Available Post-transplant lymphoproliferative disorder (PTLD represents an abnormal lymphoid proliferation that occurs in recipients of solid organ or bone marrow allograft. It includes a diverse group of diseases ranging from polymorphic B-cell hyperplasia to frank malignant lymphoma. Clinical presentation is variable, ranging from asymptomatic to generalized lymphadenopathy, mononucleosis-like syndrome, nodal or extranodal tumors (usually gastrointestinal tract, systemic lymphomatous involvement, and rare (less than 1% of cases fulminant disseminated disease. PTLD is more common in children than in adults. Younger patients usually present with mononucleosis-like symptoms. We present an unusual case of a 5-year old male who developed a widely disseminated leukemic form of PTLD, involving lymph nodes, tonsils, multiple organs, bone marrow, cerebrospinal fluid, and peripheral blood.

  12. In vitro anti-leukemic activity and chemical transformation of the 5'-chloro-5'-deoxy derivative of cyclo-cytidine

    International Nuclear Information System (INIS)

    Stankovicova, M.; Bachrata, M.; Sveda, P.; Rauko, P.; Blesova, P.

    1995-01-01

    Hydrochloride of 5'-chloro-5'-deoxy-cytocytidine (Cl-cC) is an analogue of hydrochloride (cC), a pro-drug of the compound with of the compound with the strong anti-leukemic activity arabinosylcytosine (araC). This paper is devoted to the study of its cytotoxic activity in vitro and to the effect of acid alkaline conditions and temperature on its stability. Cl-cC inhibits not only the growth of L1210 leukemia cells in vitro and the DNA synthesis (IC 50 = 0.09 μmol/dm 3 ) but, at the same time, it has a weak effect on RNA synthesis (IC 50 > 250 μmol/dm 3 ) and no effect on proteosynthesis. In alkaline conditions Cl-cC is transformed to 5'-chloro-araC and 2',5'-anhydro-araC but is more stable in acid solutions. (author)

  13. Effects of buffers and pH on in vitro binding of 67Ga by L1210 leukemic cells

    International Nuclear Information System (INIS)

    Glickson, J.D.; Webb, J.; Gams, R.A.

    1974-01-01

    The effect of sodium nitrate and a series of buffers on in vitro 67 Ga binding to L1210 leukemic cells at pH 6.8 +- 0.2 and 37 0 at concentrations of 10 -7 to 10 -2 M has been investigated. The relative ability of these agents to inhibit cellular incorporation of 67 Ga is given. Inhibition probably results from formation of gallium(III) complexes which are either impermeable to the tumor membrane or which compete with intracellular receptor complexes. However, direct interaction of buffers with the cell membrane or with gallium(III) receptors, as well as effects of buffers on cellular metabolism, have not been excluded. A monotonic decrease in the cellular incorporation of 67 Ga occurs between pH 6.2 and 7.8 in the presence of the inert buffer, 10 -2 M morpholinopropane sulfonic acid. (U.S.)

  14. Elimination of acute muelogenous leukemic cells from marrow and tumor suspensions in the rat with 4-hydroperoxycyclophosphamide

    International Nuclear Information System (INIS)

    Sharkis, S.J.; Santos, G.W.; Colvin, M.

    1980-01-01

    Cell suspensions of normal rat marrow mixed with rat acute myelogenous leukemic cells were prepared and incubated in vitro with graded doses of 4-hydroperoxycyclophosphamide (4HC). The cell suspensions were injected into rats prepared with a lethal dose of total body irradiation. Animals injected with these cells survived fatal irradiation induced aplasia. In a dose related manner 4HC was able to purge tumor cells from the cell mixtures. Thus, animals given cell suspensions incubated with the lower doses of 4HC showed prolonged survived before death from leukemia and animals given cell suspensions incubated with higher doses of 4HC survival lethal irradiation without the subsequent appearance of leukemia. These studies clearly establish that tumor cells may be eliminated from normal marrow suspensions without completely destroying the pluripotent stem cells

  15. Comparison of edge detection techniques for M7 subtype Leukemic cell in terms of noise filters and threshold value

    Directory of Open Access Journals (Sweden)

    Abdul Salam Afifah Salmi

    2017-01-01

    Full Text Available This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection. Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.

  16. The MDM-2 Antagonist Nutlin-3 Promotes the Maturation of Acute Myeloid Leukemic Blasts

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2007-10-01

    Full Text Available The small-molecule inhibitor of murine double minute (MDM-2, Nutlin-3, induced variable apoptosis in primary acute myeloid leukemia (AML blasts, promoted myeloid maturation of surviving cells, as demonstrated by analysis of CD11 b, CD14 surface antigens, by morphologic examination. Although the best-characterized activity of Nutlin-3 is activation of the p53 pathway, Nutlin-3 induced maturation also in one AML sample characterized by p53 deletion, as well as in the p53-/- human myeloblastic HL-60 cell line. At the molecular level, the maturational activity of Nutlin-3 in HL-60 cells was accompanied by the induction of E2F1 transcription factor, it was significantly counteracted by specific gene knockdown with small interfering RNA for E2F1. Moreover, Nutlin-3, as well as tumor necrosis factor (TNF α, potentiated the maturational activity of recombinant TNF-related apoptosis-inducing lig, (TRAIL in HL-60 cells. However, although TNF-α significantly counteracted the proapoptotic activity of TRAIL, Nutlin-3 did not interfere with the proapoptotic activity of TRAIL. Taken together, these data disclose a novel, potentially relevant therapeutic role for Nutlin-3 in the treatment of both p53 wild-type, p53-/- AML, possibly in association with recombinant TRAIL.

  17. The use of optical microscope equipped with multispectral detector to distinguish different types of acute lymphoblastic leukemia

    Science.gov (United States)

    Pronichev, A. N.; Polyakov, E. V.; Tupitsyn, N. N.; Frenkel, M. A.; Mozhenkova, A. V.

    2017-01-01

    The article describes the use of a computer optical microscopy with multispectral camera to characterize the texture of blasts bone marrow of patients with different variants of acute lymphoblastic leukemia: B- and T- types. Specific characteristics of the chromatin of the nuclei of blasts for different types of acute lymphoblastic leukemia were obtained.

  18. Assessing Compliance With Mercaptopurine Treatment in Younger Patients With Acute Lymphoblastic Leukemia in First Remission | Division of Cancer Prevention

    Science.gov (United States)

    This randomized phase III trial studies compliance to a mercaptopurine treatment intervention compared to standard of care in younger patients with acute lymphoblastic leukemia in remission. Assessing ways to help patients who have acute lymphoblastic leukemia to take their medications as prescribed may help them in taking their medications more consistently and may improve

  19. JS-K, an arylating nitric oxide (NO) donor, has synergistic anti-leukemic activity with cytarabine (ARA-C).

    Science.gov (United States)

    Shami, Paul J; Maciag, Anna E; Eddington, Jordan K; Udupi, Vidya; Kosak, Ken M; Saavedra, Joseph E; Keefer, Larry K

    2009-11-01

    We have designed prodrugs that release nitric oxide (NO) on metabolism by glutathione S-transferases (GST). This design exploits the upregulation of GST in acute myeloid leukemia (AML) cells. O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-leukemic activity. HL-60 myeloid leukemia cells were used for in vitro studies of the combination of JS-K with daunorubicin (DAUNO), cytarabine (ARA-C) or etoposide (ETOP) using the median effect method to determine synergistic, antagonistic, or additive effects. Combinations of JS-K added simultaneously, 2h before or 2h after the other compounds were used. JS-K and DAUNO were antagonistic in all three drug sequences. JS-K and ETOP were also antagonistic but to a lesser degree. JS-K and ARA-C showed strong synergy. The combination index at the 50% fraction affected was 0.37+/-0.23, 0.24+/-0.27, and 0.15+/-0.11 for simultaneous, JS-K first and ARA-C first additions, respectively. JS-K by itself induced DNA strand breaks at relatively high concentrations. However, at submicromolar concentrations, it significantly augmented ARA-C-induced DNA strand breaks. NMR spectroscopy revealed no evidence of chemical interaction between JS-K and the other chemotherapeutic agents. We conclude that ARA-C and JS-K have synergistic anti-leukemic activity and warrant further exploration in combination.

  20. BCR/ABL downregulates DNA-PK(CS)-dependent and upregulates backup non-homologous end joining in leukemic cells.

    Science.gov (United States)

    Poplawski, Tomasz; Blasiak, Janusz

    2010-06-01

    Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PK(CS); D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PK(CS) (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PK(CS), did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.

  1. Isolation of a novel chronic lymphocytic leukemic (CLL) cell line and development of an in vivo mouse model of CLL.

    Science.gov (United States)

    Kellner, Joshua; Wierda, William; Shpall, Elizabeth; Keating, Michael; McNiece, Ian

    2016-01-01

    Leukemic cell lines have become important tools for studies of disease providing a monoclonal cell population that can be extensively expanded in vitro while preserving leukemic cellular characteristics. However, studies of chronic lymphocytic leukemia (CLL) have been impeded in part by the lack of continuous human cell lines. CLL cells have a high spontaneous apoptosis rate in vitro and exhibit minimal proliferation in xenograft models. Therefore, there is a need for development of primary CLL cell lines and we describe the isolation of such a line from the bone marrow of a CLL patient (17p deletion and TP53 mutation) which has been in long term culture for more than 12 months with continuous proliferation. The CLL cell line (termed MDA-BM5) which was generated in vitro with continuous co-culture on autologous stromal cells is CD19+CD5+ and shows an identical pattern of somatic hypermutation as determined in the patient's bone marrow (BM), confirming the origin of the cells from the original CLL clone. MDA-BM5 cells were readily transplantable in NOD/SCID gamma null mice (NSG) with disease developing in the BM, liver and spleen. BM cells from quaternary serial transplantation in NSG mice demonstrated the presence of CD19+CD5+ cells with Ig restricted to lambda which is consistent with the original patient cells. These studies describe a new CLL cell line from a patient with del(17p) that provides a unique model for in vitro and in vivo studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Expression of HER2/Neu in B-Cell Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Rodriguez-Rodriguez, Sergio; Pomerantz, Alan; Demichelis-Gomez, Roberta; Barrera-Lumbreras, Georgina; Barrales-Benitez, Olga; Aguayo-Gonzalez, Alvaro

    2016-01-01

    The expression of HER2/neu in B-cell acute lymphoblastic leukemia has been reported in previous studies. The objective of this research was to study the expression of HER2/neu on the blasts of patients with acute leukemia from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran. From June 2015 to February 2016, a HER2/neu monoclonal antibody was added to the panel of antibodies that we routinely use in patients with acute leukemia. An expression of ≥ 30% was considered positive. We studied 33 patients: 19 had de novo leukemia (57.6%), three (9.1%) were in relapse, and in 11 (33.3%) their status could not be specified. Seventeen patients (51.5%) were classified as B-cell acute lymphoblastic leukemia with a median expression of HER2/neu of 0.3% (range 0-90.2). Three patients with B-cell acute lymphoblastic leukemia were positive for HER2/neu: 89.4%, 90.9%, and 62.4%. The first and third patient had de novo B-cell acute lymphoblastic leukemia. The second patient was in second relapse after allogeneic stem cell transplant. All three patients were categorized as high-risk at the time of diagnosis. In the studied Mexican population, we found a positive expression of HER2/neu in 17% of the B-cell acute lymphoblastic leukemia patients, similar to previous studies in which the expression was found in 15-50%.

  3. Metabolomics of the tumor microenvironment in pediatric acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Stefano Tiziani

    Full Text Available The tumor microenvironment is emerging as an important therapeutic target. Most studies, however, are focused on the protein components, and relatively little is known of how the microenvironmental metabolome might influence tumor survival. In this study, we examined the metabolic profiles of paired bone marrow (BM and peripheral blood (PB samples from 10 children with acute lymphoblastic leukemia (ALL. BM and PB samples from the same patient were collected at the time of diagnosis and after 29 days of induction therapy, at which point all patients were in remission. We employed two analytical platforms, high-resolution magnetic resonance spectroscopy and gas chromatography-mass spectrometry, to identify and quantify 102 metabolites in the BM and PB. Standard ALL therapy, which includes l-asparaginase, completely removed circulating asparagine, but not glutamine. Statistical analyses of metabolite correlations and network reconstructions showed that the untreated BM microenvironment was characterized by a significant network-level signature: a cluster of highly correlated lipids and metabolites involved in lipid metabolism (p<0.006. In contrast, the strongest correlations in the BM upon remission were observed among amino acid metabolites and derivatives (p<9.2 × 10(-10. This study provides evidence that metabolic characterization of the cancer niche could generate new hypotheses for the development of cancer therapies.

  4. The molecular genetic makeup of acute lymphoblastic leukemia.

    Science.gov (United States)

    Mullighan, Charles G

    2012-01-01

    Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention. Mutations in genes regulating lymphoid development are a hallmark of ALL, and alterations of the lymphoid transcription factor gene IKZF1 (IKAROS) are associated with a high risk of treatment failure in B-ALL. Approximately 20% of B-ALL cases harbor genetic alterations that activate kinase signaling that may be amenable to treatment with tyrosine kinase inhibitors, including rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Whole-genome sequencing has also identified novel targets of mutation in aggressive T-lineage ALL, including hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and epigenetic regulators. Challenges for the future are to comprehensively identify and experimentally validate all genetic alterations driving leukemogenesis and treatment failure in childhood and adult ALL and to implement genomic profiling into the clinical setting to guide risk stratification and targeted therapy.

  5. Acute lymphoblastic leukemia in adolescents and young adults.

    Science.gov (United States)

    Burke, Patrick W; Douer, Dan

    2014-01-01

    The cure rate of acute lymphoblastic leukemia (ALL) in children is 80%, compared to less than half in adults. A major proportion of this cure rate drop occurs in adolescents and young adults (AYAs). The age range defining this population varies between studies, biological characteristics are different from both younger children and older adults, and AYAs are treated either by pediatric or adult oncologists, who often apply different treatment approaches to the same ALL patient population. The outcome of AYAs aged 15-21 years treated by more contemporary pediatric protocols is similar to that of younger children but is inferior when using adult regimens. This motivated studying AYA patients, including those above the age of 21 years, with pediatric or 'pediatrics-inspired' regimens that intensified nonmyelosuppressive drugs such as vincristine, steroids and asparaginase, with very promising preliminary results. Discovering new mutations in AYA ALL will help stratify patients into risk subgroups and identify targets for novel agents. This, together with fine-tuning pediatric chemotherapy principles will hopefully finally decrease the cure rate gap between children and AYAs - and even older adults. © 2014 S. Karger AG, Basel.

  6. L-asparaginase induced hyperlipidaemia in acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Nesheli, H. M.; Tamaddoni, A.; Hosseinzadeh, F.; Moghaddam, T. G.

    2013-01-01

    Objective: To evaluate hyperlipidaemia in patients with acute lymphoblastic leukaemia (ALL) receiving L-asparaginase. Methods: A case-control study carried out between October 2007 and October 2010 with 77 patients undergoing chemotherapy at a teaching children hospital in Babol, Iran. Patients were treated with anti-leukaemic agents according to the protocols for standard-risk and high-risk ALL. Those patients who received asparaginase represented the cases and those who did not receive it were the controls. Biochemical markers were checked during the induction phase chemotherapy. Lipid profile of patients was recorded. Data was analysed using SPSS 16. Results: Of the 77 patients, 37 (48.05%) received asparaginase therapy and 40 (51.94%) patients did not. The mean peak triglyceride and cholesterol levels during asparaginase therapy in the first group were significantly higher than the levels in the second group. Conclusion: Severe hyperlipidaemia may be the cause of some morbidity in children receiving asparaginase. Asparaginase-induced hyperlipidaemia should be monitored in ALL patients during the induction phase of treatment. (author)

  7. TREATMENT OF ADOLESCENT AND YOUNG ADULTS WITH ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Josep-Maria Ribera

    2014-07-01

    Full Text Available The primary objective of this review was to update and discuss the current concepts andthe results of the treatment of acute lymphoblastic leukemia (ALL in adolescents and young adults(AYA. After a brief consideration of the epidemiologic and clinicobiologic characteristics of ALLin the AYA population, the main retrospective comparative studies stating the superiority ofpediatric over adult-based protocols were reviewed. The most important prospective studies inyoung adults using pediatric inspired or pediatric unmodified protocols were also reviewedemphasizing their feasibility at least up to the age of 40 yr and their promising results, with eventfreesurvival rates of 60-65% or greater. Results of trials from pediatric groups have shown that theunfavourable prognosis of adolescents is no more adequate. The majority of the older adolescentswith ALL can be cured with risk-adjusted and minimal residual disease-guided intensivechemotherapy, without stem cell transplantation. However, some specific subgroups, which aremore frequent in adolescents than in children (e.g., early pre-T, iAMP21, and BCR-ABL-like,deserve particular attention. In summary, the advances in treatment of ALL in adolescents havebeen translated to young adults, and that explains the significant improvement in survival of thesepatients in recent years.

  8. Outcome following late marrow relapse in childhood acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Chessells, J.; Leiper, A.; Rogers, D.

    1984-01-01

    Thirty-four children with acute lymphoblastic leukemia, who developed bone marrow relapse after treatment was electively stopped, received reinduction, consolidation, continuing therapy, and intrathecal (IT) methotrexate (MTX). Sixteen children who relapsed within six months of stopping treatment had a median second-remission duration of 26 weeks; all next relapses occurred in the bone marrow. In 18 children who relapsed later, the median duration of second remission was in excess of two years, but after a minimum of four years follow-up, 16 patients have so far relapsed again (six in the CNS). CNS relapse occurred as a next event in four of 17 children who received five IT MTX injections only and in two of 14 children who received additional regular IT MTX. Although children with late marrow relapses may achieve long second remissions, their long-term out-look is poor, and regular IT MTX does not afford adequate CNS prophylaxis. It remains to be seen whether more intensive chemotherapy, including high-dose chemoradiotherapy and bone marrow transplantation, will improve the prognosis in this group of patients

  9. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  10. Regulatory network of GATA3 in pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Hou, Qianqian; Liao, Fei; Zhang, Shouyue; Zhang, Duyu; Zhang, Yan; Zhou, Xueyan; Xia, Xuyang; Ye, Yuanxin; Yang, Hanshuo; Li, Zhaozhi; Wang, Leiming; Wang, Xi; Ma, Zhigui; Zhu, Yiping; Ouyang, Liang; Wang, Yuelan; Zhang, Hui; Yang, Li; Xu, Heng; Shu, Yang

    2017-05-30

    GATA3 polymorphisms were reported to be significantly associated with susceptibility of pediatric B-lineage acute lymphoblastic leukemia (ALL), by impacting on GATA3 expression. We noticed that ALL-related GATA3 polymorphism located around in the tissue-specific enhancer, and significantly associated with GATA3 expression. Although the regulatory network of GATA3 has been well reported in T cells, the functional status of GATA3 is poorly understood in B-ALL. We thus conducted genome-wide gene expression association analyses to reveal expression associated genes and pathways in nine independent B-ALL patient cohorts. In B-ALL patients, 173 candidates were identified to be significantly associated with GATA3 expression, including some reported GATA3-related genes (e.g., ITM2A) and well-known tumor-related genes (e.g., STAT4). Some of the candidates exhibit tissue-specific and subtype-specific association with GATA3. Through overexpression and down-regulation of GATA3 in leukemia cell lines, several reported and novel GATA3 regulated genes were validated. Moreover, association of GATA3 expression and its targets can be impacted by SNPs (e.g., rs4894953), which locate in the potential GATA3 binding motif. Our findings suggest that GATA3 may be involved in multiple tumor-related pathways (e.g., STAT/JAK pathway) in B-ALL to impact leukemogenesis through epigenetic regulation.

  11. Philadelphia chromosome-positive acute lymphoblastic leukemia in childhood

    Directory of Open Access Journals (Sweden)

    Hong Hoe Koo

    2011-03-01

    Full Text Available In pediatric patients with acute lymphoblastic leukemia (ALL, the Philadelphia chromosome translocation is uncommon, with a frequency of less than 5%. However, it is classified as a high or very high risk, and only 20&#8210;30% of Philadelphia chromosome-positive (Ph+ children with ALL are cured with chemotherapy alone. Allogeneic hematopoietic stem cell transplantation from a closely matched donor cures 60% of patients in first complete remission. Recent data suggest that chemotherapy plus tyrosine kinase inhibitors (TKIs may be the initial treatment of choice for Ph+ ALL in children. However, longer observation is required to determine whether long-term outcome with intensive imatinib and chemotherapy is indeed equivalent to that with allogeneic related or alternative donor hematopoietic stem cell transplantation (HSCT. Reports on the use of second-generation TKIs in children with Ph+ ALL are limited. A few case reports have indicated the feasibility and clinical benefit of using dasatinib as salvage therapy enabling HSCT. However, more extensive data from clinical trials are needed to determine whether the administration of secondgeneration TKIs in children is comparable to that in adults. Because Ph+ ALL is rare in children, the question of whether HSCT could be a dispensable part of their therapy may not be answered for some time. An international multicenter study is needed to answer the question of whether imatinib plus chemotherapy could replace sibling allogeneic HSCT in children with Ph+ ALL.

  12. Primitive neuroectodermal tumor arising 8 years after chemotherapy and radiotherapy for acute lymphoblastic leukemia. Case report

    International Nuclear Information System (INIS)

    Yoshida, Yuya; Toma, Yasuo; Arai, Masayuki; Higashi, Ryo; Kashihara, Kengo; Kaizaki, Yasuharu

    2005-01-01

    We report a case of primitive neuroectodermal tumor (PNET) arising 8 years after chemotherapy and radiotherapy for acute lymphoblastic leukemia. A 15-year-old boy with a history of acute lymphoblastic leukemia, at the age of 7, underwent chemotherapy and 14 Gy of radiotherapy to the whole brain. He was admitted to our department due to the development of aphasia, right hemiparesis and generalized convulsive seizure. MRI showed an irregularly enhanced mass in the left frontal lobe. A gross total removal of the tumor was performed and histological examination showed it to be PNET. Postoperatively, the patient underwent 20 Gy of radiotherapy to the whole brain and 42 Gy of local radiotherapy. Follow-up MRI showed no evidence of recurrent tumor 4 months after the radiotherapy. This tumor was thought to be a secondary brain tumor arising in this survivor of childhood acute lymphoblastic leukemia and it is a rare complication of successful leukemia treatment. (author)

  13. Human TM9SF4 Is a New Gene Down-Regulated by Hypoxia and Involved in Cell Adhesion of Leukemic Cells.

    Directory of Open Access Journals (Sweden)

    Rosa Paolillo

    Full Text Available The transmembrane 9 superfamily protein member 4, TM9SF4, belongs to the TM9SF family of proteins highly conserved through evolution. TM9SF4 homologs, previously identified in many different species, were mainly involved in cellular adhesion, innate immunity and phagocytosis. In human, the function and biological significance of TM9SF4 are currently under investigation. However, TM9SF4 was found overexpressed in human metastatic melanoma and in a small subset of acute myeloid leukemia (AMLs and myelodysplastic syndromes, consistent with an oncogenic function of this gene.In this study, we first analyzed the expression and regulation of TM9SF4 in normal and leukemic cells and identified TM9SF4 as a gene highly expressed in human quiescent CD34+ hematopoietic progenitor cells (HPCs, regulated during monocytic and granulocytic differentiation of HPCs, both lineages giving rise to mature myeloid cells involved in adhesion, phagocytosis and immunity. Then, we found that TM9SF4 is markedly overexpressed in leukemic cells and in AMLs, particularly in M2, M3 and M4 AMLs (i.e., in AMLs characterized by the presence of a more or less differentiated granulocytic progeny, as compared to normal CD34+ HPCs. Proliferation and differentiation of HPCs occurs in hypoxia, a physiological condition in bone marrow, but also a crucial component of cancer microenvironment. Here, we investigated the impact of hypoxia on TM9SF4 expression in leukemic cells and identified TM9SF4 as a direct target of HIF-1α, downregulated in these cells by hypoxia. Then, we found that the hypoxia-mediated downregulation of TM9SF4 expression is associated with a decrease of cell adhesion of leukemic cells to fibronectin, thus demonstrating that human TM9SF4 is a new molecule involved in leukemic cell adhesion.Altogether, our study reports for the first time the expression of TM9SF4 at the level of normal and leukemic hematopoietic cells and its marked expression at the level of AMLs

  14. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells.

    Science.gov (United States)

    Curti, Antonio; Trabanelli, Sara; Onofri, Chiara; Aluigi, Michela; Salvestrini, Valentina; Ocadlikova, Darina; Evangelisti, Cecilia; Rutella, Sergio; De Cristofaro, Raimondo; Ottaviani, Emanuela; Baccarani, Michele; Lemoli, Roberto M

    2010-12-01

    The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia. Leukemic dendritic cells were generated from acute myeloid leukemia cells and used as stimulators in functional assays, including the induction of regulatory T cells. Indoleamine 2,3-dioxygenase expression in leukemic dendritic cells was evaluated at molecular, protein and enzymatic levels. We demonstrate that, after differentiation into dendritic cells, both indoleamine 2,3-dioxygenase-negative and indoleamine 2,3-dioxygenase-positive acute myeloid leukemia samples show induction and up-regulation of indoleamine 2,3-dioxygenase gene and protein, respectively. Indoleamine 2,3-dioxygenase-positive acute myeloid leukemia dendritic cells catabolize tryptophan into kynurenine metabolite and inhibit T-cell proliferation through an indoleamine 2,3-dioxygenase-dependent mechanism. Moreover, indoleamine 2,3-dioxygenase-positive leukemic dendritic cells increase the number of allogeneic and autologous CD4(+)CD25(+) Foxp3(+) T cells and this effect is completely abrogated by the indoleamine 2,3-dioxygenase-inhibitor, 1-methyl tryptophan. Purified CD4(+)CD25(+) T cells obtained from co-culture with indoleamine 2,3-dioxygenase-positive leukemic dendritic cells act as regulatory T cells as they inhibit naive T-cell proliferation and impair the complete maturation of normal dendritic cells. Importantly, leukemic dendritic cell-induced regulatory T cells are capable of in vitro suppression of a leukemia-specific T cell-mediated immune response, directed against the leukemia-associated antigen, Wilms' tumor protein. These data identify

  15. Bilateral knee and right ankle osteonecrosis in an adolescent girl with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Ülker Koçak

    2009-03-01

    Full Text Available Although rare, avascular necrosis of bone is a serious and incapacitating complication seen in children with acute lymphoblastic leukemia receiving high dose steroids. Here we present a 16 year-old girl who developed bilateral knee and right ankle avascular osteonecrosis one year after intensive chemotherapy for medium risk acute lymphoblastic leukemia. Indirect curettage of necrotic tissue and bone grafting were performed for both knees whereas conservative measures had been sufficient for the ankle. Early recognition of this condition is important in prevention of disabling sequela in skeletal system.

  16. Aplastic anaemia preceding acute lymphoblastic leukaemia in an adult with isolated deletion of chromosome 9q.

    LENUS (Irish Health Repository)

    Kelly, Kevin

    2008-12-01

    Aplastic anaemia (AA) can precede acute lymphoblastic leukaemia (ALL) in 2% of children but this is rarely reported to occur in adults. A 21-year-old male presented with bone marrow failure and bone marrow biopsy showed a profoundly hypocellular marrow. He recovered spontaneously but represented 2 months later when he was diagnosed with pre-B acute lymphoblastic leukaemia. Chromosomal examination revealed 46,XY,del(9)(q13q34). To the best of our knowledge this is the first case to be reported of aplasia preceding ALL with 9q minus as the sole chromosomal abnormality.

  17. Phenotyping and Target Expression Profiling of CD34+/CD38− and CD34+/CD38+ Stem- and Progenitor cells in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Katharina Blatt

    2018-06-01

    Full Text Available Leukemic stem cells (LSCs are an emerging target of curative anti-leukemia therapy. In acute lymphoblastic leukemia (ALL, LSCs frequently express CD34 and often lack CD38. However, little is known about markers and targets expressed in ALL LSCs. We have examined marker- and target expression profiles in CD34+/CD38− LSCs in patients with Ph+ ALL (n = 22 and Ph− ALL (n = 27 by multi-color flow cytometry and qPCR. ALL LSCs expressed CD19 (B4, CD44 (Pgp-1, CD123 (IL-3RA, and CD184 (CXCR4 in all patients tested. Moreover, in various subgroups of patients, LSCs also displayed CD20 (MS4A1 (10/41 = 24%, CD22 (12/20 = 60%, CD33 (Siglec-3 (20/48 = 42%, CD52 (CAMPATH-1 (17/40 = 43%, IL-1RAP (13/29 = 45%, and/or CD135 (FLT3 (4/20 = 20%. CD25 (IL-2RA and CD26 (DPPIV were expressed on LSCs in Ph+ ALL exhibiting BCR/ABL1p210, whereas in Ph+ ALL with BCR/ABL1p190, LSCs variably expressed CD25 but did not express CD26. In Ph− ALL, CD34+/CD38− LSCs expressed IL-1RAP in 6/18 patients (33%, but did not express CD25 or CD26. Normal stem cells stained negative for CD25, CD26 and IL-1RAP, and expressed only low amounts of CD52. In xenotransplantation experiments, CD34+/CD38− and CD34+/CD38+ cells engrafted NSG mice after 12–20 weeks, and targeting with antibodies against CD33 and CD52 resulted in reduced engraftment. Together, LSCs in Ph+ and Ph− ALL display unique marker- and target expression profiles. In Ph+ ALL with BCR/ABL1p210, the LSC-phenotype closely resembles the marker-profile of CD34+/CD38− LSCs in chronic myeloid leukemia, confirming the close biologic relationship of these neoplasms. Targeting of LSCs with specific antibodies or related immunotherapies may facilitate LSC eradication in ALL.

  18. Involvement of CD147 on multidrug resistance through the regulation of P-glycoprotein expression in K562/ADR leukemic cell line

    Directory of Open Access Journals (Sweden)

    Aoranit Somno

    2016-01-01

    Full Text Available The relationship between P-gp and CD147 in the regulation of MDR in leukemic cells has not been reported. This study aimed to investigate the correlation between CD147 and P-gp in the regulation of drug resistance in the K562/ADR leukemic cell line. The results showed that drug-resistant K562/ADR cells expressed significantly higher P-gp and CD147 levels than drug-free K562/ADR cells. To determine the regulatory effect of CD147 on P-gp expression, anti-CD147 antibody MEM-M6/6 significantly decreased P-gp and CD147 mRNA and protein levels. This is the first report to show that CD147 mediates MDR in leukemia through the regulation of P-gp expression.

  19. Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells

    OpenAIRE

    Curti, A; Trabanelli, S; Onofri, C; Aluigi, M; Salvestrini, V; Ocadlikova, D; Evangelisti, C; Rutella, S; De Cristofaro, R; Ottaviani, E; Baccarani, M; Lemoli, RM

    2010-01-01

    Background: The immunoregulatory enzyme indoleamine 2,3-dioxygenase, which catalyzes the conversion of tryptophan into kynurenine, is expressed in a significant subset of patients with acute myeloid leukemia, resulting in the inhibition of T-cell proliferation and the induction of regulatory T cells. Acute myeloid leukemia cells can be differentiated into dendritic cells, which have increased immunogenicity and have been proposed as vaccines against leukemia.\\ud Design and Methods: Leukemic d...

  20. Targeting Toll-like receptor 7/8 enhances uptake of apoptotic leukemic cells by monocyte-derived dendritic cells but interferes with subsequent cytokine-induced maturation.

    Science.gov (United States)

    van den Ancker, Willemijn; van Luijn, Marvin M; Ruben, Jurjen M; Westers, Theresia M; Bontkes, Hetty J; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A

    2011-01-01

    Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE(2)) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20-30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation.

  1. Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods.

    Science.gov (United States)

    Kremser, Andreas; Dressig, Julia; Grabrucker, Christine; Liepert, Anja; Kroell, Tanja; Scholl, Nina; Schmid, Christoph; Tischer, Johanna; Kufner, Stefanie; Salih, Helmut; Kolb, Hans Jochem; Schmetzer, Helga

    2010-01-01

    Myeloid-leukemic cells (AML, MDS, CML) can be differentiated to leukemia-derived dendritic cell [DC (DCleu)] potentially presenting the whole leukemic antigen repertoire without knowledge of distinct leukemia antigens and are regarded as promising candidates for a vaccination strategy. We studied the capability of 6 serum-free DC culture methods, chosen according to different mechanisms, to induce DC differentiation in 137 cases of AML and 52 cases of MDS. DC-stimulating substances were cytokines ("standard-medium", "MCM-Mimic", "cytokine-method"), bacterial lysates ("Picibanil"), double-stranded RNA ["Poly (I:C)"] or a cytokine bypass method ("Ca-ionophore"). The quality/quantity of DC generated was estimated by flow cytometry studying (co) expressions of "DC"antigens, costimulatory, maturation, and blast-antigens. Comparing these methods on average 15% to 32% DC, depending on methods used, could be obtained from blast-containing mononuclear cells (MNC) in AML/MDS cases with a DC viability of more than 60%. In all, 39% to 64% of these DC were mature; 31% to 52% of leukemic blasts could be converted to DCleu and DCleu-proportions in the suspension were 2% to 70% (13%). Average results of all culture methods tested were comparable, however not every given case of AML could be differentiated to DC with 1 selected method. However performing a pre-analysis with 3 DC-generating methods (MCM-Mimic, Picibanil, Ca-ionophore) we could generate DC in any given case. Functional analyses provided proof, that DC primed T cells to antileukemia-directed cytotoxic cells, although an anti-leukemic reaction was not achieved in every case. In summary our data show that a successful, quantitative DC/DCleu generation is possible with the best of 3 previously tested methods in any given case. Reasons for different functional behaviors of DC-primed T cells must be evaluated to design a practicable DC-based vaccination strategy.

  2. The evolution of clinical trials for infant acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Kotecha, R S; Gottardo, N G; Kees, U R; Cole, C H

    2014-01-01

    Acute lymphoblastic leukemia (ALL) in infants has a significantly inferior outcome in comparison with older children. Despite initial improvements in survival of infants with ALL since establishment of the first pediatric cooperative group ALL trials, the poor outcome has plateaued in recent years. Historically, infants were treated on risk-adapted childhood ALL protocols. These studies were pivotal in identifying the need for infant-specific protocols, delineating prognostic categories and the requirement for a more unified approach between study groups to overcome limitations in accrual because of low incidence. This subsequently led to the development of collaborative infant-specific studies. Landmark outcomes have included the elimination of cranial radiotherapy following the discovery of intrathecal and high-dose systemic therapy as a superior and effective treatment strategy for central nervous system disease prophylaxis, with improved neurodevelopmental outcome. Universal prospective identification of independent adverse prognostic factors, including presence of a mixed lineage leukemia rearrangement and young age, has established the basis for risk stratification within current trials. The infant-specific trials have defined limits to which conventional chemotherapeutic agents can be intensified to optimize the balance between treatment efficacy and toxicity. Despite variations in therapeutic intensity, there has been no recent improvement in survival due to the equilibrium between relapse and toxicity. Ultimately, to improve the outcome for infants with ALL, key areas still to be addressed include identification and adaptation of novel prognostic markers and innovative therapies, establishing the role of hematopoietic stem cell transplantation in first complete remission, treatment strategies for relapsed/refractory disease and monitoring and timely intervention of late effects in survivors. This would be best achieved through a single unified

  3. Severe Hypertriglyceridemia During Therapy For Childhood Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Bhojwani, Deepa; Darbandi, Rashid; Pei, Deqing; Ramsey, Laura B.; Chemaitilly, Wassim; Sandlund, John T.; Cheng, Cheng; Pui, Ching-Hon; Relling, Mary V.; Jeha, Sima; Metzger, Monika L.

    2014-01-01

    Background Asparaginase and steroids can cause hypertriglyceridemia in children with acute lymphoblastic leukemia (ALL). There are no guidelines for screening or management of patients with severe hypertriglyceridemia (>1000 mg/dL) during ALL therapy. Patients and Methods Fasting lipid profiles were obtained prospectively at 4 time-points for 257 children consecutively enrolled on a frontline ALL study. Risk factors were evaluated by the exact chi-square test. Details of adverse events and management of hypertriglyceridemia were extracted retrospectively. Results Eighteen of 257 (7%) patients developed severe hypertriglyceridemia. Older age and treatment with higher doses of asparaginase and steroids on the standard/high-risk arm were significant risk factors. Severe hypertriglyceridemia was not associated with pancreatitis after adjustment for age and treatment arm or with osteonecrosis after adjustment for age. However, patients with severe hypertriglyceridemia had a 2.5 to 3 times higher risk of thrombosis compared to patients without, albeit the difference was not statistical significant. Of the 30 episodes of severe hypertriglyceridemia in 18 patients, 7 were managed conservatively while the others with pharmacotherapy. Seventeen of 18 patients continued to receive asparaginase and steroids. Triglyceride levels normalized after completion of ALL therapy in all 12 patients with available measurements. Conclusion Asparaginase- and steroid-induced transient hypertriglyceridemia can be adequately managed with dietary modifications and close monitoring without altering chemotherapy. Patients with severe hypertriglyceridemia were not at increased risk of adverse events, with a possible exception of thrombosis. The benefit of pharmacotherapy in decreasing symptoms and potential complications requires further investigation. PMID:25087182

  4. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    Science.gov (United States)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  5. Blinatumomab for the treatment of acute lymphoblastic leukemia.

    Science.gov (United States)

    Kaplan, Jason B; Grischenko, Marina; Giles, Francis J

    2015-12-01

    Acute lymphoblastic leukemia (ALL) is a potentially fatal disease that involves clonal expansion of early lymphoid progenitor cells. Much of drug development for ALL treatment involves targeting antigens of the clonal cell surface. Blinatumomab belongs to an emerging class of anti-cancer therapeutics referred to as bispecific T-cell engaging antibodies. The Food and Drug Administration approved its use in relapsed or refractory adult Philadelphia chromosome-negative B-cell precursor ALL in December of 2014. Blinatumomab contains both an anti-CD3 and anti-CD19 arm, allowing for the juxtaposition of CD3+ T-cells to malignant CD19+ B-cells, thereby resulting in granzyme- and perforin-mediated B-cell apoptosis. Preclinical studies suggest that blinatumomab's efficacy is related to the effector-to-target ratio and to the difference between its affinity for CD19 and CD3. Preclinical and early phase clinical studies have allowed for the characterization of the pharmacokinetics of blinatumomab, including the determination of its short half-life. The metabolic pathway has not been fully characterized but is thought to be similar to that of other antibodies. Phase I and II studies led to the identification of an ideal stepwise dose, involving long-term continuous intravenous infusion (CIVI), to optimize its efficacy and reduce the risk of certain toxicities. A high remission rate and duration were noted among a relapsed/refractory population of patients. The results of clinical trials have identified cytokine release syndrome and neurotoxicity, among others, as serious drug-related toxicities, leading to the institution of a Risk Evaluation and Mitigation Strategy. Blinatumomab represents a significant addition to the treatment options for ALL, but it is not without its limitations, of which are its short-half life, necessitating long-term CIVI, and the eventual emergence of CD19-negative clones. Continual development of the agent involves assessing its role in the frontline

  6. Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors.

    Science.gov (United States)

    Morel, Sophia; Leahy, Jade; Fournier, Maryse; Lamarche, Benoit; Garofalo, Carole; Grimard, Guy; Poulain, Floriane; Delvin, Edgard; Laverdière, Caroline; Krajinovic, Maja; Drouin, Simon; Sinnett, Daniel; Marcil, Valérie; Levy, Emile

    2017-05-01

    Survivors of acute lymphoblastic leukemia (ALL), the most common cancer in children, are at increased risk of developing late cardiometabolic conditions. However, the mechanisms are not fully understood. This study aimed to characterize the plasma lipid profile, Apo distribution, and lipoprotein composition of 80 childhood ALL survivors compared with 22 healthy controls. Our results show that, despite their young age, 50% of the ALL survivors displayed dyslipidemia, characterized by increased plasma triglyceride (TG) and LDL-cholesterol, as well as decreased HDL-cholesterol. ALL survivors exhibited lower plasma Apo A-I and higher Apo B-100 and C-II levels, along with elevated Apo C-II/C-III and B-100/A-I ratios. VLDL fractions of dyslipidemic ALL survivors contained more TG, free cholesterol, and phospholipid moieties, but less protein. Differences in Apo content were found between ALL survivors and controls for all lipoprotein fractions except HDL 3 HDL 2 , especially, showed reduced Apo A-I and raised Apo A-II, leading to a depressed Apo A-I/A-II ratio. Analysis of VLDL-Apo Cs disclosed a trend for higher Apo C-III 1 content in dyslipidemic ALL survivors. In conclusion, this thorough investigation demonstrates a high prevalence of dyslipidemia in ALL survivors, while highlighting significant abnormalities in their plasma lipid profile and lipoprotein composition. Special attention must, therefore, be paid to these subjects given the atherosclerotic potency of lipid and lipoprotein disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Acute lymphoblastic leukemia: Are Egyptian children adherent to maintenance therapy?

    Directory of Open Access Journals (Sweden)

    Elhamy Rifky Abdel Khalek

    2015-01-01

    Full Text Available Background, Aims, Settings and Design: Poor adherence to oral maintenance chemotherapy can cause relapse of acute lymphoblastic leukemia (ALL. A multicenter study for the evaluation of adherence to oral 6-mercaptopurine (6-MP maintenance chemotherapy for childhood ALL in Egypt to identify contributing factors and possible steps to promote adherence. Materials and Methods: The study included 129 children with ALL in complete remission receiving 6-MP single daily oral dose in the evening. Evaluation was done through specific questionnaires for the patients as well as serum 6-MP measurements. Results: Nonadherence was detected in around 56% by questionnaires and around 50% by serum 6-MP level measurement. There was a highly significant correlation between nonadherence as found by the questionnaire and 6-MP level (P - 0.001. Nonadherence was significantly associated with low socioeconomic standard, noneducation and low educational level and large family size by both methods. High cost to come for follow-up visits was significant by questionnaire but not by 6-MP measurement. Adolescent age, the higher number of siblings, lack of written instructions, long time spent per visit, were all associated with higher rates of nonadherence, although none reached statistical significance. Conclusions: Nonadherence is a real problem in pediatric patients. Specific questionnaires can be an excellent reliable method for the routine follow-up of these children, and drug level assay can be requested only for confirmation. This protocol is especially effective in developing countries where financial resources may be limited. Every effort should be made to uncover its true incidence, contributing factors, and best methods of intervention.

  8. Growth and puberty after treatment for acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Alves Claudia Helena Bastos da Silva

    2004-01-01

    Full Text Available Over the last 20 years, after combining treatment of chemotherapy and radiotherapy, there has been an improvement in the survival rate of acute lymphoblastic leukemia patients, with a current cure rate of around 70%. Children with the disease have been enrolled into international treatment protocols designed to improve survival and minimize the serious irreversible late effects. Our oncology unit uses the international protocol: GBTLI LLA-85 and 90, with the drugs methotrexate, cytosine, arabinoside, dexamethasone, and radiotherapy. However, these treatments can cause gonadal damage and growth impairment. PATIENTS AND METHOD: The authors analyzed 20 children off therapy in order to determine the role of the various doses of radiotherapy regarding endocrinological alterations. They were divided into 3 groups according to central nervous system prophylaxis: Group A underwent chemotherapy, group B underwent chemotherapy plus radiotherapy (18 Gy, and group C underwent chemotherapy plus radiotherapy (24 Gy. Serum concentrations of LH, FSH, GH, and testosterone were determined. Imaging studies included bone age, pelvic ultrasound and scrotum, and skull magnetic resonance imaging. RESULTS: Nine of the patients who received radiotherapy had decreased pituitary volume. There was a significant difference in the response to GH and loss of predicted final stature (Bayley-Pinneau between the 2 irradiated groups and the group that was not irradiated, but there was no difference regarding the radiation doses used (18 or 24 Gy. The final predicted height (Bayley-Pinneau was significantly less (P = 0.0071 in both groups treated with radiotherapy. Two girls had precocious puberty, and 1 boy with delayed puberty presented calcification of the epididymis. CONCLUSION: Radiotherapy was been responsible for late side effects, especially related to growth and puberty.

  9. Increased regulatory T cells in acute lymphoblastic leukemia patients.

    Science.gov (United States)

    Idris, Siti-Zuleha; Hassan, Norfarazieda; Lee, Le-Jie; Md Noor, Sabariah; Osman, Raudhawati; Abdul-Jalil, Marsitah; Nordin, Abdul-Jalil; Abdullah, Maha

    2015-10-01

    Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population which may be identified by the phenotype, CD3+CD4+CD25+CD127-. Role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukemias. A review of the literature on Tregs in acute leukemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukemias (ALLs). Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean ± SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL. Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies tumor-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumor-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal their mysteries and their impact on clinical significance.

  10. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

    Science.gov (United States)

    Wang, Hongfei; Wang, Yongqiang; Gao, Hongmei; Wang, Bing; Dou, Lin; Li, Yin

    2018-02-01

    Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.

  11. In vitro proliferation of normal and leukemic human leukocytes controlled by an inhibitory endopeptide. [/sup 3/H-TdR incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, A; Mann, J; Takacsi-Nagy, L; Zimonyi, I; Molnar, A; Klupp, T [Inst. of Experimental Medicine, Budapest (Hungary); Istvan Municipal Hospital, Budapest (Hungary); Heim Pal Children' s Hospital Budapest, (Hungary))

    1983-01-01

    GI-3, an endogenous inhibitory fraction isolated from leukocytes, selectively inhibits the proliferation of granuloid precursor cells in a non-toxic manner. Its active principle is an acidic chlor-tolidine positive decapeptide. The in vitro effect on normal and acute leukemic human bone marrow and blood cells was examined. A dose dependent inhibition by GI-3 of /sup 3/H-TdR incorporation into myeloid cells of normal bone marrow was found, the sensitivity of human cells being higher than that of rat cells. The proliferation of the target leukemic bone marrow and blood cells was also decreased by the endogenous inhibitor in a dose-dependent manner in untreated subjects as well as in patients in remission or relapse. The rate of inhibition of leukemic cell proliferation in the short-term suspension system examined almost coincided with the action of well-known cytostatics applied for comparison. Beyond its direct cytostatic effect, GI-3 could be used in the differential diagnosis of blastic leukemias, complementing the routine cytochemical methods.

  12. Transfer RNA species in human lymphocytes stimulated by mitogens and in leukemic cells. [/sup 3/H, /sup 14/C, /sup 32/P tracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Yang, W.K.; Novelli, G.D.

    1976-01-01

    Transfer ribonucleic acid (tRNA) profiles in human lymphocytes stimulated by various mitogens have been compared with profiles from nonstimulated cells and from leukemic cells using reversed-phase chromatography. Comparisons of (/sup 3/H)- or (/sup 11/C)uridine- or (/sup 32/P)phosphate-labeled tRNAs showed that the greatest changes in tRNA composition upon phytohemagglutinin (PHA) stimulation occurred in the first 8 h after mitogen addition. Stimulation of lymphocytes by pokeweed mitogen, anti-human immunoglobulin, or bacterial lipopolysaccharide resulted in tRNA species which showed distinct differences from each other and also from the tRNAs produced by phytohemagglutinin stimulation. Leukemic lymphocyte tRNAs showed the most extensive differences in profile when compared with chromatograms from non-neoplastic cells stimulated by a variety of mitogens. Specific isoaccepting species of tyrosyl-, aspartyl-, and phenylalanyl-tRNAs were also compared in PHA-stimulated and resting lymphocytes and no differences were found. When these same species were studied in leukemic cells, tyrosyl-tRNA profiles were shifted to elute at a lower salt concentration, while the aspartyl-tRNA profile showed a new peak not present in noncancerous cells.

  13. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line.

    Science.gov (United States)

    Tima, Singkome; Ichikawa, Hideki; Ampasavate, Chadarat; Okonogi, Siriporn; Anuchapreeda, Songyot

    2014-04-25

    Leukemia is a hematologic malignancy with a frequent incidence and high mortality rate. Previous studies have shown that the FLT3 gene is overexpressed in leukemic blast cells, especially in acute myeloid leukemia. In this study, a commercially available curcuminoid mixture (1), pure curcumin (2), pure demethoxycurcumin (3), and pure bisdemethoxycurcumin (4) were investigated for their inhibitory effects on cell growth, FLT3 expression, and cell cycle progression in an FLT3-overexpressing EoL-1 leukemic cell line using an MTT assay, Western blotting, and flow cytometry, respectively. The mixture (1) and compounds 2-4 demonstrated cytotoxic effects with IC50 values ranging from 6.5 to 22.5 μM. A significant decrease in FLT3 protein levels was found after curcuminoid treatment with IC20 doses, especially with mixture 1 and compound 2. In addition, mixture 1 and curcumin (2) showed activity on cell cycle arrest at the G0/G1 phase and decreased the FLT3 and STAT5A protein levels in a dose-dependent manner. Compound 2 demonstrated the greatest potential for inhibiting cell growth, cell cycle progression, and FLT3 expression in EoL-1 cells. This investigation has provided new findings regarding the effect of turmeric curcuminoids on FLT3 expression in leukemic cells.

  14. Fludarabine-mediated circumvention of cytarabine resistance is associated with fludarabine triphosphate accumulation in cytarabine-resistant leukemic cells.

    Science.gov (United States)

    Yamamoto, Shuji; Yamauchi, Takahiro; Kawai, Yasukazu; Takemura, Haruyuki; Kishi, Shinji; Yoshida, Akira; Urasaki, Yoshimasa; Iwasaki, Hiromichi; Ueda, Takanori

    2007-02-01

    The combination of cytarabine (ara-C) with fludarabine is a common approach to treating resistant acute myeloid leukemia. Success depends on a fludarabine triphosphate (F-ara-ATP)-mediated increase in the active intracellular metabolite of ara-C, ara-C 5'-triphosphate (ara-CTP). Therapy-resistant leukemia may exhibit ara-C resistance, the mechanisms of which might induce cross-resistance to fludarabine with reduced F-ara-ATP formation. The present study evaluated the effect of combining ara-C and fludarabine on ara-C-resistant leukemic cells in vitro. Two variant cell lines (R1 and R2) were 8-fold and 10-fold more ara-C resistant, respectively, than the parental HL-60 cells. Reduced deoxycytidine kinase activity was demonstrated in R1 and R2 cells, and R2 cells also showed an increase in cytosolic 5'-nucleotidase II activity. Compared with HL-60 cells, R1 and R2 cells produced smaller amounts of ara-CTP. Both variants accumulated less F-ara-ATP than HL-60 cells and showed cross-resistance to fludarabine nucleoside (F-ara-A). R2 cells, however, accumulated much smaller amounts of F-ara-ATP and were more F-ara-A resistant than R1 cells. In HL-60 and R1 cells, F-ara-A pretreatment followed by ara-C incubation produced F-ara-ATP concentrations sufficient for augmenting ara-CTP production, thereby enhancing ara-C cytotoxicity. No potentiation was observed in R2 cells. Nucleotidase might preferentially degrade F-ara-A monophosphate over ara-C monophosphate, leading to reduced F-ara-ATP production and thereby compromising the F-ara-A-mediated potentiation of ara-C cytotoxicity in R2 cells. Thus, F-ara-A-mediated enhancement of ara-C cytotoxicity depended on F-ara-ATP accumulation in ara-C-resistant leukemic cells but ultimately was associated with the mechanism of ara-C resistance.

  15. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation

    DEFF Research Database (Denmark)

    Milani, Lili; Lundmark, Anders; Nordlund, Jessica

    2008-01-01

    To identify genes that are regulated by cis-acting functional elements in acute lymphoblastic leukemia (ALL) we determined the allele-specific expression (ASE) levels of 2, 529 genes by genotyping a genome-wide panel of single nucleotide polymorphisms in RNA and DNA from bone marrow and blood...

  16. Reemergence of Murine Typhus in the US

    Centers for Disease Control (CDC) Podcasts

    2015-04-21

    Dr. Lucas Blanton discusses the Reemergence of Murine Typhus in Galveston Texas in 2013.  Created: 4/21/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 4/27/2015.

  17. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    NARCIS (Netherlands)

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating

  18. Charcot-Marie-Tooth Disease in a Child with Acute Lymphoblastic ...

    African Journals Online (AJOL)

    Results: Facial nerve palsy, increasing lower extremities muscle weakness and abnormal gait were noticed 4 weeks into vincristine therapy in a ten year old male on treatment for acute lymphoblastic leukaemia (ALL). On a suspicion of vincristine neurotoxicity, vincristine was excluded from his chemotherapy regimen.

  19. Cytokines, growth, and environment factors in bone marrow plasma of acute lymphoblastic leukemia pediatric patients

    Czech Academy of Sciences Publication Activity Database

    Kováč, M.; Vášková, M.; Petráčková, Denisa; Pelková, V.; Mejstříková, E.; Kalina, T.; Žaliová, M.

    2014-01-01

    Roč. 25, č. 1 (2014), s. 8-13 ISSN 1148-5493 R&D Projects: GA MZd NR9531 Institutional support: RVO:61388971 Keywords : pediatric acute lymphoblastic leukemia * bone marrow plasma * cytokine Subject RIV: CE - Biochemistry Impact factor: 1.960, year: 2014

  20. Duration of adrenal insufficiency during treatment for childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Vestergaard, Therese Risom; Juul, Anders; Lausten-Thomsen, Ulrik

    2011-01-01

    Children with acute lymphoblastic leukemia (ALL) recive high doses of glucocorticosteroid as part of their treatment. This may lead to suppression of the hypothalamic-pituitary-adrenal axis, acute adrenal insufficiency, and ultimately to life-threatening conditions. This study explores the adrena...

  1. Childhood Acute Lymphoblastic Leukemia Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    For acute lymphoblastic leukemia (ALL), the 5-year survival rate has improved significantly since 1975. Get information about risk factors, signs, diagnosis, molecular features, survival, risk-based treatment assignment, and induction and postinduction therapy for children and adolescents with newly diagnosed and recurrent ALL.

  2. Prediction of immunophenotype, treatment response, and relapse in childhood acute lymphoblastic leukemia using DNA microarrays

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Juncker, Agnieszka; Schmiegelow, K.

    2004-01-01

    Gene expression profiling is a promising tool for classification of pediatric acute lymphoblastic leukemia ( ALL). We analyzed the gene expression at the time of diagnosis for 45 Danish children with ALL. The prediction of 5-year event-free survival or relapse after treatment by NOPHO-ALL92 or 2000...

  3. High concordance of subtypes of childhood acute lymphoblastic leukemia within families

    DEFF Research Database (Denmark)

    Schmiegelow, K.; Thomsen, U Lautsen; Baruchel, A

    2012-01-01

    Polymorphic genes have been linked to the risk of acute lymphoblastic leukemia (ALL). Surrogate markers for a low burden of early childhood infections are also related to increased risk for developing childhood ALL. It remains uncertain, whether siblings of children with ALL have an increased risk...

  4. Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia | Office of Cancer Genomics

    Science.gov (United States)

    NCI's TARGET Initiative reported the discovery of a novel genetic marker for children with acute lymphoblastic leukemia (ALL) in the January 7, 2009, advance online edition of The New England Journal of Medicine. The genetic alteration identified, IKZF1, should improve clinicians' ability to identify high-risk patients and better assign these patients to appropriate therapy.

  5. Challenges in implementing individualized medicine illustrated by antimetabolite therapy of childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nersting, Jacob; Borst, Louise; Schmiegelow, Kjeld

    2011-01-01

    illustrated by studies involving childhood acute lymphoblastic leukemia (ALL), where each patient may receive up to 13 different anticancer agents over a period of 2-3 years. The challenges include i) addressing important, but low-frequency outcomes, ii) difficulties in interpreting the impact of single drug...

  6. Tracheoesophageal fistula resulting from invasive aspergillosis in acute lymphoblastic leukemia: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Won [Daejeon St. Mary' s Hospital, College of Medicine, Catholic University, Daejeon (Korea, Republic of)

    2006-04-15

    Tracheoesophageal fistula (TEF) in adult patients is an uncommon complication in leukemia. We present here on a case of TEF in a 46-year-old woman with ALL. The patient was asymptomatic and TEF is resulted from aspergillus bronchitis during the chemotherapy for acute lymphoblastic leukemia (ALL)

  7. Osteonecrosis in children treated for acute lymphoblastic leukemia: a magnetic resonance imaging study after treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, A.; Lanning, F.; Paakko, E.; Lanning, B. [Oulu Univ. (Finland)

    1998-02-01

    The purpose of this study was to find out the prevalence of osteonecrosis in children with acute lymphoblastic leukaemia (ALL) in complete bone marrow remission at the end of the treatment. Finally, the study suggests that the intensification phase of the treatment protocols with intensive dexamethasone medication might be responsible for the development of osteonecrosis. (N.C.)

  8. Serial Ultrasound Monitoring for Early Recognition of Asparaginase Associated Pancreatitis in Children With Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Raja, Raheel Altaf; Schmiegelow, K.; Henriksen, Birthe Merete

    2015-01-01

    BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children and L-asparaginase is an essential component of the treatment. Cessation of L-asparaginase decreases event free survival. Acute pancreatitis is the toxicity that most commonly results in cessation of L...

  9. The role of ABC-transporters in childhood and adult acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Plasschaert, Sabine Louise Anne

    2005-01-01

    Acute lymphoblastic leukemia is a disease characterized by an uncontrolled proliferation and maturation arest of lymphoid progenitor cells in the bone marrow, resulting in an excesso f malignant cells. The disease has a peak incidence between the age of 2-5 years, and a low and steady rise from the

  10. Delayed Neurotoxicity Associated with Therapy for Children with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Cole, Peter D.; Kamen, Barton A.

    2006-01-01

    Most children diagnosed today with acute lymphoblastic leukemia (ALL) will be cured. However, treatment entails risk of neurotoxicity, causing deficits in neurocognitive function that can persist in the years after treatment is completed. Many of the components of leukemia therapy can contribute to adverse neurologic sequelae, including…

  11. An Initial Reintegration Treatment of Children with Acute Lymphoblastic Leukemia (ALL).

    Science.gov (United States)

    Lurie, Michelle; Kaufman, Nadeen

    2001-01-01

    Evaluated the cognitive, psychological, and social adjustment of pediatric acute lymphoblastic leukemia (ALL) patients and assessed how their needs could best be met through reintegration programs focusing on learning/ educational needs. Findings from three case studies highlight the need for ALL patients to be provided with comprehensive programs…

  12. PEG-asparaginase allergy in children with acute lymphoblastic leukemia in the NOPHO ALL2008 protocol

    DEFF Research Database (Denmark)

    Henriksen, Louise Tram; Harila-Saari, Arja; Ruud, Ellen

    2014-01-01

    BACKGROUND: L-Asparaginase is an effective drug in the treatment of childhood acute lymphoblastic leukemia (ALL). The use of L-asparaginase may be limited by serious adverse events of which allergy is the most frequent. The objective of this study was to describe the clinical aspects of PEG...

  13. Measures of 6-mercaptopurine and methotrexate maintenance therapy intensity in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nielsen, Stine Nygaard; Grell, Kathrine; Nersting, Jacob

    2016-01-01

    PURPOSE: Normal white blood cell counts (WBC) are unknown in children with acute lymphoblastic leukemia (ALL). Accordingly, 6-mercaptopurine (6MP) and methotrexate (MTX) maintenance therapy is adjusted by a common WBC target of 1.5-3.0 × 10(9)/L. Consequently, the absolute degree...

  14. CD22: A Promising Target for Acute Lymphoblastic Leukemia Treatment | Center for Cancer Research

    Science.gov (United States)

    There are about 4,000 new cases of acute lymphoblastic leukemia (ALL) in the United States each year. Great improvements have been made in the treatment of ALL, but many patients suffer from side effects of standard therapy and continue to die of this disease. One of the most promising therapeutic strategies includes engineering T cells with a chimeric antigen receptor (CAR)

  15. Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Adult Acute Lymphoblastic Leukemia (ALL; also called acute lymphocytic leukemia) is an aggressive cancer that can progress quickly without treatment. Treatments include chemotherapy, radiation therapy, stem cell transplant, and targeted therapy. Get detailed information about the molecular genetics, prognosis, and treatment of ALL in this clinician summary.

  16. Tracheoesophageal fistula resulting from invasive aspergillosis in acute lymphoblastic leukemia: a case report

    International Nuclear Information System (INIS)

    Kang, Si Won

    2006-01-01

    Tracheoesophageal fistula (TEF) in adult patients is an uncommon complication in leukemia. We present here on a case of TEF in a 46-year-old woman with ALL. The patient was asymptomatic and TEF is resulted from aspergillus bronchitis during the chemotherapy for acute lymphoblastic leukemia (ALL)

  17. Erroneous Exchange of Asparaginase Forms in the Treatment of Acute Lymphoblastic Leukemia

    NARCIS (Netherlands)

    Cheung, Ka-Chun; van den Bemt, Patricia M. L. A.; Torringa, Maarten L. J.; Tamminga, Rienk Y. J.; Pieters, Rob; de Smet, Peter A. G. M.

    For the treatment of children with acute lymphoblastic leukemia (ALL), Dutch pediatric oncologists use the Dutch Childhood Oncology Group ALL 10 protocol. This protocol is complex, as it comprises many different drug regimens. One of the drugs is asparaginase which is available in different forms

  18. Efficacy and Toxicity of Asparaginases During Prospective Drug Monitoring in Patients With Childhood Acute Lymphoblastic Leukemia

    NARCIS (Netherlands)

    W.H. Tong (Wing)

    2014-01-01

    markdownabstract__Abstract__ Intensified and effective asparaginase therapy is very important in modern treatment of childhood acute lymphoblastic leukemia. The use of native E.coli asparaginase in induction leads to a high rate of hypersensitivity reactions to PEGasparaginase in the

  19. Erroneous exchange of asparaginase forms in the treatment of acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Cheung, K.C.; Bemt, P.M. van den; Torringa, M.L.; Tamminga, R.Y.; Pieters, R.; Smet, P.A. de

    2011-01-01

    For the treatment of children with acute lymphoblastic leukemia (ALL), Dutch pediatric oncologists use the Dutch Childhood Oncology Group ALL 10 protocol. This protocol is complex, as it comprises many different drug regimens. One of the drugs is asparaginase which is available in different forms

  20. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment

    DEFF Research Database (Denmark)

    Schmiegelow, K.; Attarbaschi, Andishe; Barzilai, Shlomit

    2016-01-01

    Although there are high survival rates for children with acute lymphoblastic leukaemia, their outcome is often counterbalanced by the burden of toxic effects. This is because reported frequencies vary widely across studies, partly because of diverse definitions of toxic effects. Using the Delphi ...

  1. Karyotyping, FISH, and PCR in acute lymphoblastic leukemia: competing or complementary diagnostics?

    NARCIS (Netherlands)

    Olde Nordkamp, Louise; Mellink, Clemens; van der Schoot, Ellen; van den Berg, Henk

    2009-01-01

    BACKGROUND: Chromosomal abnormalities, such as t(9;22)(q34;q11) (ABL/BCR), t(12;21)(p13;q22) (TEL/AML1), and t(11q23) (MLL) are independent prognostic indicators in childhood acute lymphoblastic leukemia resulting in risk adapted therapy. Accurate and rapid detection of these abnormalities is

  2. Mutational analysis of Bax and Bcl-2 in childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Salomons, G. S.; Buitenhuis, C. K.; Martínez Muñoz, C.; Verwijs-Jassen, M.; Behrendt, H.; Zsiros, J.; Smets, L. A.

    1998-01-01

    In childhood acute lymphoblastic leukaemia there are large interpatient variations in levels of the apoptosis-regulating proteins Bax and Bcl-2, but the molecular basis for this variation is unknown. Point-mutations in bax have been reported in cell lines derived from haematological malignancies.

  3. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA)

    DEFF Research Database (Denmark)

    Hokland, P; Rosenthal, P; Griffin, J D

    1983-01-01

    lymphoblastic leukemia cell with respect to surface marker phenotype. A population of CALLA- cells devoid of mature erythroid and myeloid surface markers was found to contain higher numbers of TdT+ cells but lower numbers of cyto-mu, B1, and Ia+ cells than the CALLA+ subset. In vitro analysis of normal...

  4. Osteonecrosis in children treated for acute lymphoblastic leukemia: a magnetic resonance imaging study after treatment

    International Nuclear Information System (INIS)

    Ojala, A.; Lanning, F.; Paakko, E.; Lanning, B.

    1998-01-01

    The purpose of this study was to find out the prevalence of osteonecrosis in children with acute lymphoblastic leukaemia (ALL) in complete bone marrow remission at the end of the treatment. Finally, the study suggests that the intensification phase of the treatment protocols with intensive dexamethasone medication might be responsible for the development of osteonecrosis. (N.C.)

  5. Acute lymphoblastic leukemia and obesity : increased energy intake or decreased physical activity?

    NARCIS (Netherlands)

    Jansen, H.; Postma, A.; Stolk, R. P.; Kamps, W. A.

    Background Obesity is a well-known problem in children with acute lymphoblastic leukemia ( ALL), and it might be the result of an excess in energy intake, reduced energy expenditure, or both. The aim of this study is to describe energy intake and physical activity during treatment for ALL with

  6. Late cardiac effects of anthracycline containing therapy for childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Rathe, Mathias; Carlsen, Niels L T; Oxhøj, Henrik

    2007-01-01

    At present about 80% of children with acute lymphoblastic leukemia (ALL) will be cured following treatment with multi-drug chemotherapy. A major concern for this growing number of survivors is the risk of late effects of treatment. The aim of this study was to determine whether signs...

  7. Handwriting and fine motor problems after treatment for acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Reinders-Messelink, H.A.; Schoemaker, M.M.; Goeken, L.N H; van den Briel, M.M.; Kamps, W.A; Simner, M L; Leedham, C G; Thomassen, A J W M

    1996-01-01

    Fine motor skills and handwriting performance were investigated in 17 children at least two years after treatment for acute lymphoblastic leukemia. It was hypothesized that as a late effect of vincristine neuropathy, children would still have fine motor and/or handwriting problems. Gross and fine

  8. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Shah, S.; Schrader, K.A.; Waanders, E.; Timms, A.E.; Vijai, J.; Miething, C.; Wechsler, J.; Yang, J.; Hayes, J.; Klein, R.J.; Zhang, J.; Wei, L.; Wu, G.; Rusch, M.; Nagahawatte, P.; Ma, J; Chen, S.C.; Song, G.; Cheng, J.; Meyers, P.; Bhojwani, D.; Jhanwar, S.; Maslak, P.; Fleisher, M.; Littman, J.; Offit, L.; Rau-Murthy, R.; Fleischut, M.H.; Corines, M.; Murali, R.; Gao, X.; Manschreck, C.; Kitzing, T.; Murty, V.V.; Raimondi, S.C.; Kuiper, R.P.; Simons, A.; Schiffman, J.D.; Onel, K.; Plon, S.E.; Wheeler, D.A.; Ritter, D.; Ziegler, D.S.; Tucker, K.; Sutton, R.; Chenevix-Trench, G.; Li, J.; Huntsman, D.G.; Hansford, S.; Senz, J.; Walsh, T.; Lee (Helen Dowling Instituut), M. van der; Hahn, C.N.; Roberts, K.G.; King, M.C.; Lo, S.M.; Levine, R.L.; Viale, A.; Socci, N.D.; Nathanson, K.L.; Scott, H.S.; Daly, M.; Lipkin, S.M.; Lowe, S.W.; Downing, J.R.; Altshuler, D.; Sandlund, J.T.; Horwitz, M.S.; Mullighan, C.G.; Offit, K.

    2013-01-01

    Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A

  9. The effect of central nervous system involvement and irradiation in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Taskinen, Mervi; Oskarsson, Trausti; Levinsen, Mette

    2017-01-01

    BACKGROUND: Central nervous system irradiation (CNS-RT) has played a central role in the cure of acute lymphoblastic leukemia (ALL), but due to the risk of long-term toxicity, it is now considered a less-favorable method of CNS-directed therapy. PROCEDURES: Retrospectively, we estimated the effect...

  10. Bilateral cytomegalovirus retinitis in a child with acute lymphoblastic leukemia while on maintenance chemotherapy

    Directory of Open Access Journals (Sweden)

    Vaidehi S. Dedania

    2016-08-01

    Full Text Available We report a case of bilateral cytomegalovirus retinitis in a 12 year-old with neutropenic fever after maintenance chemotherapy for acute lymphoblastic leukemia. Ophthalmologic examination for photophobia prompted a diagnosis of cytomegalovirus retinitis. With early diagnosis and prompt treatment, this patient had a favorable visual outcome.

  11. High frequency of BTG1 deletions in acute lymphoblastic leukemia in children with down syndrome

    DEFF Research Database (Denmark)

    Lundin, Catarina; Hjorth, Lars; Behrendtz, Mikael

    2012-01-01

    Previous cytogenetic studies of myeloid and acute lymphoblastic leukemias in children with Down syndrome (ML-DS and DS-ALL) have revealed significant differences in abnormality patterns between such cases and acute leukemias in general. Also, certain molecular genetic aberrations characterize DS...

  12. Clinical and genetic features of pediatric acute lymphoblastic leukemia in Down syndrome in the Nordic countries

    DEFF Research Database (Denmark)

    Lundin, Catarina; Forestier, Erik; Klarskov Andersen, Mette

    2014-01-01

    BACKGROUND: Children with Down syndrome (DS) have an increased risk for acute lymphoblastic leukemia (ALL). Although previous studies have shown that DS-ALL differs clinically and genetically from non-DS-ALL, much remains to be elucidated as regards genetic and prognostic factors in DS-ALL. METHODS...

  13. Physicians compliance during maintenance therapy in children with Down syndrome and acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Bohnstedt, C; Levinsen, M; Rosthøj, S

    2013-01-01

    Children with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have an inferior prognosis compared with non-DS ALL patients. We reviewed methotrexate (MTX)/mercaptopurine (6MP) maintenance therapy data for children with DS treated according to the Nordic Society of Pediatric Hematology...

  14. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  15. Correlation of chromosome patterns in leukemic cells of patients with exposure to chemicals and/or radiation

    International Nuclear Information System (INIS)

    Rowley, J.D.

    1989-10-01

    We have identified two new recurring translocations involving chromosome 5; one is a 3;5 translocation and the other involves a rearrangement between chromosomes 5 and 7. The first is t(3;5)(q25.1;q35). We studied five patients with AML and a t(3;5) in their leukemic cells. At diagnosis, four of the patients had a t(3;5) as their sole karyotypic anomaly; the remaining patient had additional structural and numerical abnormalities. Careful cytogenetic analysis indicated that the breakpoints of this rearrangement were 3q25.1 and 5q34, in contrast to the various breakpoints reported in earlier studies (3q21 to 3q25 and 5q31 to 5q35). The karyotypic, morphologic, and clinical characteristics of this group, as well as those of 15 previously reported patients with the t(3;5), were compared to identify any features that might warrant consideration of this anomaly as a specific syndrome. The median age of the group, 37 years, as younger than that of all patients with AML, 49 years. A preceding myelodysplastic syndrome was observed in three patients. We have no information regarding the occupation of most of these patients. Except for acute promyelocytic leukemia, each morphologic subtype occurred in these patients; however, the frequency of erythroleukemia (M6) was much greater than expected. 11 refs., 2 figs., 5 tabs

  16. GPR84 sustains aberrant β-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis.

    Science.gov (United States)

    Dietrich, Philipp A; Yang, Chen; Leung, Halina H L; Lynch, Jennifer R; Gonzales, Estrella; Liu, Bing; Haber, Michelle; Norris, Murray D; Wang, Jianlong; Wang, Jenny Yingzi

    2014-11-20

    β-catenin is required for establishment of leukemic stem cells (LSCs) in acute myeloid leukemia (AML). Targeted inhibition of β-catenin signaling has been hampered by the lack of pathway components amenable to pharmacologic manipulation. Here we identified a novel β-catenin regulator, GPR84, a member of the G protein-coupled receptor family that represents a highly tractable class of drug targets. High GPR84 expression levels were confirmed in human and mouse AML LSCs compared with hematopoietic stem cells (HSCs). Suppression of GPR84 significantly inhibited cell growth by inducing G1-phase cell-cycle arrest in pre-LSCs, reduced LSC frequency, and impaired reconstitution of stem cell-derived mixed-lineage leukemia (MLL) AML, which represents an aggressive and drug-resistant subtype of AML. The GPR84-deficient phenotype in established AML could be rescued by expression of constitutively active β-catenin. Furthermore, GPR84 conferred a growth advantage to Hoxa9/Meis1a-transduced stem cells. Microarray analysis demonstrated that GPR84 significantly upregulated a small set of MLL-fusion targets and β-catenin coeffectors, and downregulated a hematopoietic cell-cycle inhibitor. Altogether, our data reveal a previously unrecognized role of GPR84 in maintaining fully developed AML by sustaining aberrant β-catenin signaling in LSCs, and suggest that targeting the oncogenic GPR84/β-catenin signaling axis may represent a novel therapeutic strategy for AML. © 2014 by The American Society of Hematology.

  17. Effect of pentoxifylline on P-glycoprotein mediated vincristine resistance of L1210 mouse leukemic cell line

    International Nuclear Information System (INIS)

    Breier, A.; Uhrik, B.; Barancik, M.; Stefankova, Z.; Tribulova, N.

    1994-01-01

    Effect of pentoxifylline (PTX) on vincristine (VCR) resistance of multidrug resistant L1210/VCR mouse leukemic cell line was studied. Reversal effect of PTX (in concentration 50-150 mg dm -3 ) on vincristine resistance, i.e. potentiation of vincristine cytotoxicity on L1210/VCR cells by PTX was found. PTX alone in the above concentration did not exert any significant effect on sensitive or resistant cell lines in the absence of vincristine. Resistance of L1210/VCR cell line was found previously to be accompanied with overexpression of drug transporting P-glycoprotein. Indeed, lower level of 3 H-vincristine accumulation by resistant L1210/VCR cell line in comparison with sensitive L1210 cell line was observed. Accumulation of 3 H-vincristine by L1210/VCR cell line was significantly increased in the presence of PTX. PTX in the same condition did not exert any considerable effect on accumulation of 3 H-vincristine by nonresistant L1210 cells. Observable morphological damage was observed in 1210/VCR cells cultivated in medium containing vincristine (0.2 mg dm -3 ) and pentoxifylline (100 mg dm -3 ) in comparison with the non-damaged cells in the presence of vincristine or pentoxifylline alone. The results obtained indicate that pentoxifylline may be considered as a reversal agent in multidrug resistance. (author)

  18. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  19. Lack of correlation between immunologic markers and cell surface ultrastructure in the leukemic phase of lymphoproliferative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Golomb, Harvey M.; Simon, Deberah

    1977-01-01

    In a prospective study of malignant cells from 13 patients with the leukemic phase of lymphoproliferative diseases, we wished to determine whether any correlation between the immunologic markers and the cell surface ultrastructure. Five patients had chronic lymphocytic leukemia, four had malignant lymphomas, poorly differentiated lymphocytic type, two had the Sezary syndrome, and one each had acute prolymphocytic leukemia and acute lymphocytic leukemia. Cell separation and isolation was done at room temperature for all specimens. Immunologic markers tested for were surface immunoglobins, a B-cell property, and E-rosettes, a T-cell property. Three patients had T-cell diseases, 6 had B-cell diseases, and 4 were classified as ''null.'' All but one patient had moderate to large numbers of microvilli on their malignant cells. The single exception had a typical B-cell form of chronic lymphocytic leukemia. There appears to be no correlation between immunologic markers and cell surface ultrastructure; therefore, SEM appears not to be valuable in the diagnosis or classification of immunologic sub-types of certain lymphoproliferative diseases.

  20. Pulmonary leukemic involvement: high-resolution computed tomography evaluation; Comprometimento pulmonar nas leucemias: avaliacao por tomografia computadorizada de alta resolucao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paola de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina. Programa de Pos-graduacao em Radiologia; Marchiori, Edson [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Radiologia; Souza, Junior, Arthur Soares [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Radiologia

    2004-12-01

    Objective: To evaluate the role of high-resolution computed tomography (HRCT) in patients with leukemia and pulmonary symptoms, to establish the main patterns and to correlate them with the etiology. Materials and Methods: This is a retrospective study of the HRCT of 15 patients with leukemia and pulmonary symptoms. The examinations were performed using a spatial high-resolution protocol and were analyzed by two independent radiologists. Results: The main HRCT patterns found were ground-glass opacity (n=11), consolidation (n=9), airspace nodules (n=3), septal thickening (n=3), tree-in-bud pattern (n=3), and pleural effusion (n=3). Pulmonary infection was the most common finding seen in 12 patients: bacterial pneumonia (n=6), fungal infection (n = 4), pulmonary tuberculosis (n=1) and viral infection (n=1). Leukemic pleural infiltration (n=1), lymphoma (n=1) and pulmonary hemorrhage (n=1) were detected in the other three patients. Conclusion: HRCT is an important tool that may suggest the cause of lung involvement, its extension and in some cases to guide invasive procedures in patients with leukemia. (author)

  1. To the nucleolar density and size in apoptotic human leukemic myeloblasts produced in vitro by Trichostatin A

    Directory of Open Access Journals (Sweden)

    K Smetana

    2009-08-01

    Full Text Available The present study was designed to provide more information on nucleoli in apoptotic cells, which were represented in the present study by cultured leukemic myeloblasts (Kasumi-1 cells. The apoptotic process in these cells was produced by trichostatin A (TSA that is a histone deacetylase inhibitor with strong cytostatic effects. The selected TSA concentration added to cultures facilitated to study apoptotic and notapoptotic cells in one and the same specimen. The nucleolar diameter and density were determined using computer assisted measurement and densitometry in specimens stained for RNA. In comparison with not-apoptotic cells, in apoptotic cells, nucleolar mean diameter did not change significantly and nucleolar RNA density was also not apparently different. On the other hand, the cytoplasmic RNA density in apoptotic cells was markedly reduced. Thus it seemed to be possible that the transcribed RNA remained “frozen” within the nucleolus but its transport to the cytoplasm decreased or stopped. However, the possibility of the RNA degradation in the cytoplasm of apoptotic cells based on the present study cannot be eliminated. At this occasion it should be added that AgNORs reflecting nucleolar biosynthetic and cell proliferation activity in apoptotic cells decreased in number or disappeared. The presented results also indicated that large nucleoli intensely stained for RNA need not be necessarily related to the high nucleolar biosynthetic or cell proliferation activity and may be also present in apoptotic cells responding to the cytostatic treatment.

  2. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  3. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    Science.gov (United States)

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  4. Effects of vinegar–egg on growth inhibition, differentiation human leukemic U937 cells and its immunomodulatory activity

    Directory of Open Access Journals (Sweden)

    Shiu-Yu Wang

    2018-04-01

    Full Text Available Vinegar and eggs have rich nutrients. In this study, the mixed form of both derived products, vinegar–egg solution and its products (vinegar–egg concentrate and vinegar–egg condensate were chosen for an assessment of their biological activity. To further our understanding regarding the anticancer and immunomodulatory effects of vinegar–egg, we investigated its effects on the proliferation and differentiation of U937 cells. Vinegar–egg was treated using spray drying, freeze drying and vacuum concentration and used to stimulate human mononuclear cells. The conditioned media obtained from these cultures by filtration were used to treat U937 cells. Three conditioned media inhibited U937 cell growth by 22.1–67.25% more effectively than PHA-treated control (22.53%. CD11b and CD14 expression on the treated U937 cells were 29.1–45.4% and 31.6–47.2%, respectively. High levels of cytokines IL-1β, IFN-γ and TNF-α were detected in the three conditioned media. Vinegar–egg stimulates human mononuclear cells to secrete cytokines, which inhibit the growth of U937 cells and induce their differentiation. Keywords: Cytokines, Differentiation, Immunomodulatory activity, Leukemic U937 cells, Vinegar–egg

  5. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  6. Genomic Profiling of a Human Leukemic Monocytic Cell-Line (THP-1 Exposed to Alpha Particle Radiation

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available This study examined alpha (α- particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1 for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure.

  7. Human adenosine deaminase: properties and turnover in cultured T and B lymphoblasts

    International Nuclear Information System (INIS)

    Daddona, P.E.

    1981-01-01

    In this study, the properties and rate of turnover of adenosine deaminase are compared in cultured human T and B lymphoblast cell lines. 1) Relative to B lymphoblasts, the level of adenosine deaminase activity in extracts of T lymphoblast cell lines (MOLT-4, RPMI-8402, CCRF-CEM, and CCRF-HSB-2) is elevated 7-14-fold and differs by 2-fold between the C cell lines. 2) In both T and B lymphoblast extracts, the enzyme is apparently identical, based on K/sub m/ for adenosine and deoxyadenosine, K/sub i/ for inosine, V/sub max/ for adenosine, /sub S20,w/, isoelectric pH, and heat stability. Furthermore, by radioimmunoassay, the quantity of adenosine deaminase-immunocreative protein is proportional to the level of enzyme activity in all cell lines studies. 3) Using a purification and selective immunoprecipitation technique, the enzyme turnover could be assessed in cell lines labeled with [ 35 S]methionine. The apparent rate of adenosine deaminase synthesis, relative to total protein, is 2-fold faster in both T cell lines (RPMI-8402 and CCRF-CEM) than in the B cell lines (MGL-8 and GM-130). The apparent half-life (tsub1/2) for the enzyme degradation is 19 and 39 h, respectively, in CCFR-CEM and RPMI-8402, while the tsub1/2 in both B cell lines is 7-9 h. From the net rate of synthesis and degradation, the T cell lines, respectively, exhibit approximately a 6- and 12-fold difference in adenosine deaminase turnover relative to B cells, consistent with the observed differences in enzyme activity. This study suggests that while adenosine deaminase is apparently identical in both T and B lymphoblast cell lines, alterations in both the rate of enzyme synthesis and degradation contribute to its high steady state level in T cells

  8. Cytogenetic Profile and Gene Mutations of Childhood Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Nawaf Alkhayat

    2017-07-01

    Full Text Available Background: Childhood acute lymphoblastic leukemia (ALL is characterized by recurrent genetic aberrations. The identification of those abnormalities is clinically important because they are considered significant risk-stratifying markers. Aims: There are insufficient data of cytogenetic profiles in Saudi Arabian patients with childhood ALL leukemia. We have examined a cohort of 110 cases of ALL to determine the cytogenetic profiles and prevalence of FLT3 mutations and analysis of the more frequently observed abnormalities and its correlations to other biologic factors and patient outcomes and to compare our results with previously published results. Materials and methods: Patients —We reviewed all cases from 2007 to 2016 with an established diagnosis of childhood ALL. Of the 110 patients, 98 were B-lineage ALL and 12 T-cell ALL. All the patients were treated by UKALL 2003 protocol and risk stratified according previously published criteria. Cytogenetic analysis —Chromosome banding analysis and fluorescence in situ hybridization were used to detect genetic aberrations. Analysis of FLT3 mutations —Bone marrow or blood samples were screened for FLT3 mutations (internal tandem duplications, and point mutations, D835 using polymerase chain reaction methods. Result: Cytogenetic analysis showed chromosomal anomalies in 68 out of 102 cases with an overall incidence 66.7%. The most frequent chromosomal anomalies in ALL were hyperdiploidy, t(9;22, t(12;21, and MLL gene rearrangements. Our data are in accordance with those published previously and showed that FLT3 mutations are not common in patients with ALL (4.7% and have no prognostic relevance in pediatric patients with ALL. On the contrary, t(9;22, MLL gene rearrangements and hypodiploidy were signs of a bad prognosis in childhood ALL with high rate of relapse and shorter overall survival compared with the standard-risk group ( P  = .031.The event-free survival was also found to be worse ( P

  9. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Tong, Wing H.; Pieters, Rob; Kaspers, Gertjan J. L.; te Loo, D. Maroeska W. M.; Bierings, Marc B.; van den Bos, Cor; Kollen, Wouter J. W.; Hop, Wim C. J.; Lanvers-Kaminsky, Claudia; Relling, Mary V.; Tissing, Wim J. E.; van der Sluis, Inge M.

    2014-01-01

    This study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m(2) every 2 weeks) in

  10. Gene Dose Effects of GSTM1, GSTT1 and GSTP1 Polymorphisms on Outcome in Childhood Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Borst, Louise; Buchard, Anders; Rosthoj, Susanne

    2012-01-01

    Children with acute lymphoblastic leukemia (ALL) react very differently to chemotherapy. One explanation for this is inherited genetic variation. The glutathione S-transferase (GST) enzymes inactivate a number of chemotherapeutic drugs administered in childhood ALL therapy. Two multiplexing methods...

  11. Efficacy and Toxicity of Intrathecal Liposomal Cytarabine in First-line Therapy of Childhood Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Levinsen, Mette; Harila-Saari, Arja; Grell, Kathrine

    2016-01-01

    We investigated efficacy and toxicity of replacing conventional triple (cytarabine, methotrexate, and hydrocortisone) intrathecal therapy (TIT) with liposomal cytarabine during maintenance therapy among 40 acute lymphoblastic leukemia patients. Twenty-eight of 29 patients in the TIT arm received...

  12. A prospective study on drug monitoring of PEGasparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia

    NARCIS (Netherlands)

    W.H. Tong (Wing); R. Pieters (Rob); G.J. Kaspers (Gertjan); D.M.W.M. Te Loo (D. Maroeska W.); M. Bierings (Marc); C. van den Bos (Cor); W.J.W. Kollen (Wouter); W.C.J. Hop (Wim); C. Lanvers-Kaminsky (Claudia); M.V. Relling (Mary); W.J.E. Tissing (Wim); I.M. van der Sluis (Inge)

    2014-01-01

    textabstractThis study prospectively analyzed the efficacy of very prolonged courses of pegylated Escherichia coli asparaginase (PEGasparaginase) and Erwinia asparaginase in pediatric acute lymphoblastic leukemia (ALL) patients. Patients received 15 PEGasparaginase infusions (2500 IU/m2 every 2

  13. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    Science.gov (United States)

    2017-03-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  14. Hematogônias: distinção com blastos da leucemia linfóide aguda de células B por citometria de fluxo Hematogones: differentiation from B-lineage acute lymphoblastic leukemia by flow cytometry

    Directory of Open Access Journals (Sweden)

    Fátima M. G. Jorge

    2006-12-01

    Full Text Available Hematogônias são precursores normais de linhagem B que apresentam características morfológicas e, algumas vezes, imunológicas similares aos linfoblastos das leucemias linfóides agudas (LLA. O objetivo desse trabalho é realizar análise comparativa por citometria de fluxo, utilizando três cores, entre sub-populações de hematogônias e blastos da LLA-B, em crianças. O Grupo 1 constou de amostras de medulas ósseas, não neoplásicas, que apresentaram hematogônias identificadas pela microscopia óptica e o Grupo 2 de casos novos de LLA-B. O painel de anticorpos monoclonais utilizado era direcionado para: CD19, CD10, CD45, CD34, IgM, TdT e CD22. A análise das hematogônias, utilizando como parâmetro a intensidade de fluorescência de CD10 X CD45, mostrou três sub-populações representando células imaturas, intermediárias e maduras. A expressão dos marcadores CD34, IgM, TdT e CD22 reforçou esses achados. Os blastos leucêmicos se apresentaram formando uma única população, com expressão de positividade apenas para antígenos de imaturidade. Considerando não só a presença ou ausência de um determinado antígeno, mas sim a sua intensidade de expressão, verificamos que hematogônias e blastos apresentam perfis imunofenotípicos diferentes.Hematogones are normal B-lineage cell precursors with morphologic and sometimes immunophenotypic, similarities to neoplastic lymphoblasts. The aim of this work is to compare using flow cytometry sub-populations of B-lineage cells: normal bone marrow precursors (hematogones and lymphoblasts. Normal bone marrow from patients with hematogones observed by optical microscopy and new cases of acute lymphoblastic leukemia of B-cell precursors were included in the study. Antibodies directed against CD19, CD10, CD45, CD34, IgM and CD22 were used. Analysis of hematogones, using CD10 x CD45 fluorescence intensity as a parameter, showed three sub-populations: immature, intermediary and mature marker

  15. Abnormal Cell Properties and Down-Regulated FAK-Src Complex Signaling in B Lymphoblasts of Autistic Subjects

    Science.gov (United States)

    Wei, Hongen; Malik, Mazhar; Sheikh, Ashfaq M.; Merz, George; Ted Brown, W.; Li, Xiaohong

    2011-01-01

    Recent studies suggest that one of the major pathways to the pathogenesis of autism is reduced cell migration. Focal adhesion kinase (FAK) has an important role in neural migration, dendritic morphological characteristics, axonal branching, and synapse formation. The FAK-Src complex, activated by upstream reelin and integrin β1, can initiate a cascade of phosphorylation events to trigger multiple intracellular pathways, including mitogen-activated protein kinase–extracellular signal–regulated kinase and phosphatidylinositol 3-kinase–Akt signaling. In this study, by using B lymphoblasts as a model, we tested whether integrin β1 and FAK-Src signaling are abnormally regulated in autism and whether abnormal FAK-Src signaling leads to defects in B-lymphoblast adhesion, migration, proliferation, and IgG production. To our knowledge, for the first time, we show that protein expression levels of both integrin β1 and FAK are significantly decreased in autistic lymphoblasts and that Src protein expression and the phosphorylation of an active site (Y416) are also significantly decreased. We also found that lymphoblasts from autistic subjects exhibit significantly decreased migration, increased adhesion properties, and an impaired capacity for IgG production. The overexpression of FAK in autistic lymphoblasts countered the adhesion and migration defects. In addition, we demonstrate that FAK mediates its effect through the activation of Src, phosphatidylinositol 3-kinase–Akt, and mitogen-activated protein kinase signaling cascades and that paxillin is also likely involved in the regulation of adhesion and migration in autistic lymphoblasts. PMID:21703394

  16. Role of CD81 and CD58 in minimal residual disease detection in pediatric B lymphoblastic leukemia.

    Science.gov (United States)

    Tsitsikov, E; Harris, M H; Silverman, L B; Sallan, S E; Weinberg, O K

    2018-06-01

    Minimal residual disease (MRD) in B lymphoblastic leukemia has been demonstrated to be a powerful predictor of clinical outcome in numerous studies in both children and adults. In this study, we evaluated 86 pediatric patients with both diagnostic and remission flow cytometry studies and compared expression of CD81, CD58, CD19, CD34, CD20, and CD38 in the detection of MRD. We evaluated 86 patients with B lymphoblastic leukemia who had both diagnostic studies and remission studies for the presence of MRD using multicolor flow cytometry. We established our detection limit for identifying abnormal lymphoblasts using serial dilutions. We also compared flow cytometry findings with molecular MRD detection in a subset of patients. We found that we can resolve differences between hematogones and lymphoblasts in 85 of 86 cases using a combination of CD45, CD19, CD34, CD10, CD20, CD38, CD58, and CD81. Our detection limit using flow cytometry is 0.002% for detecting a population of abnormal B lymphoblasts. Comparison with MRD assessment by molecular methods showed a high concordance rate with flow cytometry findings. Our study highlights importance of using multiple markers to detect MRD in B lymphoblastic leukemia. Our findings indicate that including both CD58 and CD81 markers in addition to CD19, CD34, CD20, CD38, and CD10 are helpful in MRD detection by flow cytometry. © 2018 John Wiley & Sons Ltd.

  17. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival

    Science.gov (United States)

    Lustosa de Sousa, Daniel Willian; de Almeida Ferreira, Francisco Valdeci; Cavalcante Félix, Francisco Helder; de Oliveira Lopes, Marcos Vinicios

    2015-01-01

    Objective To describe the clinical and laboratory features of children and adolescents with acute lymphoblastic leukemia treated at three referral centers in Ceará and evaluate prognostic factors for survival, including age, gender, presenting white blood cell count, immunophenotype, DNA index and early response to treatment. Methods Seventy-six under 19-year-old patients with newly diagnosed acute lymphoblastic leukemia treated with the Grupo Brasileiro de Tratamento de Leucemia da Infância – acute lymphoblastic leukemia-93 and -99 protocols between September 2007 and December 2009 were analyzed. The diagnosis was based on cytological, immunophenotypic and cytogenetic criteria. Associations between variables, prognostic factors and response to treatment were analyzed using the chi-square test and Fisher's exact test. Overall and event-free survival were estimated by Kaplan–Meier analysis and compared using the log-rank test. A Cox proportional hazards model was used to identify independent prognostic factors. Results The average age at diagnosis was 6.3 ± 0.5 years and males were predominant (65%). The most frequently observed clinical features were hepatomegaly, splenomegaly and lymphadenopathy. Central nervous system involvement and mediastinal enlargement occurred in 6.6% and 11.8%, respectively. B-acute lymphoblastic leukemia was more common (89.5%) than T-acute lymphoblastic leukemia. A DNA index >1.16 was found in 19% of patients and was associated with favorable prognosis. On Day 8 of induction therapy, 95% of the patients had lymphoblast counts <1000/μL and white blood cell counts <5.0 × 109/L. The remission induction rate was 95%, the induction mortality rate was 2.6% and overall survival was 72%. Conclusion The prognostic factors identified are compatible with the literature. The 5-year overall and event-free survival rates were lower than those reported for developed countries. As shown by the multivariate analysis, age and baseline white

  18. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival

    Directory of Open Access Journals (Sweden)

    Daniel Willian Lustosa de Sousa

    2015-08-01

    Full Text Available OBJECTIVE: To describe the clinical and laboratory features of children and adolescents with acute lymphoblastic leukemia treated at three referral centers in Ceará and evaluate prognostic factors for survival, including age, gender, presenting white blood cell count, immunophenotype, DNA index and early response to treatment.METHODS: Seventy-six under 19-year-old patients with newly diagnosed acute lymphoblastic leukemia treated with the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia-93 and -99 protocols between September 2007 and December 2009 were analyzed. The diagnosis was based on cytological, immunophenotypic and cytogenetic criteria. Associations between variables, prognostic factors and response to treatment were analyzed using the chi-square test and Fisher's exact test. Overall and event-free survival were estimated by Kaplan-Meier analysis and compared using the log-rank test. A Cox proportional hazards model was used to identify independent prognostic factors.RESULTS: The average age at diagnosis was 6.3 ± 0.5 years and males were predominant (65%. The most frequently observed clinical features were hepatomegaly, splenomegaly and lymphadenopathy. Central nervous system involvement and mediastinal enlargement occurred in 6.6% and 11.8%, respectively. B-acute lymphoblastic leukemia was more common (89.5% than T-acute lymphoblastic leukemia. A DNA index >1.16 was found in 19% of patients and was associated with favorable prognosis. On Day 8 of induction therapy, 95% of the patients had lymphoblast counts <1000/µL and white blood cell counts <5.0 Ã- 109/L. The remission induction rate was 95%, the induction mortality rate was 2.6% and overall survival was 72%.CONCLUSION: The prognostic factors identified are compatible with the literature. The 5-year overall and event-free survival rates were lower than those reported for developed countries. As shown by the multivariate analysis, age

  19. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  20. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor.

    Science.gov (United States)

    Akhtar, Mahmood H; Hussain, Khalil K; Gurudatt, N G; Shim, Yoon-Bo

    2017-12-15

    A microfluidic structured-dual electrodes sensor comprising of a pair of screen printed carbon electrodes was fabricated to detect acetylcholine, where one of them was used for an enzyme reaction and another for a detection electrode. The former was coated with gold nanoparticles and the latter with a porous gold layer, followed by electropolymerization of 2, 2:5,2-terthiophene-3-(p-benzoic acid) (pTTBA) on both the electrodes. Then, acetylcholinesterase was covalently attached onto the reaction electrode, and hydrazine and choline oxidase were co-immobilized on the detection electrode. The layers of both modified electrodes were characterized employing voltammetry, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and quartz crystal microscopy. After the modifications of both electrode surfaces, they were precisely faced each other to form a microfluidic channel structure, where H 2 O 2 produced from the sequential enzymatic reactions was reduced by hydrazine to obtain the analytical signal which was analyzed by the detection electrode. The microfluidic sensor at the optimized experimental conditions exhibited a wide dynamic range from 0.7nM to 1500μM with the detection limit of 0.6 ± 0.1nM based on 3s (S/N = 3). The biomedical application of the proposed sensor was evaluated by detecting acetylcholine in human plasma samples. Moreover, the Ca 2+ -induced acetylcholine released in leukemic T-cells was also investigated to show the in vitro detection ability of the designed microfluidic sensor. Interference due to the real component matrix were also studied and long term stability of the designed sensor was evaluated. The analytical performance of the designed sensor was also compared with commercially available ACh detection kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Detection of a novel specificity (CTLA-4) in ATG/TMG globulins and sera from ATG-treated leukemic patients.

    Science.gov (United States)

    Pistillo, Maria Pia; Tazzari, Pier Luigi; Bonifazi, Francesca; Bandini, Giuseppe; Kato, Tomohiro; Matsui, Toshihiro; Nishioka, Kusuki; Conte, Roberto; Ferrara, Giovanni Battista

    2002-04-27

    T-cell costimulation has been shown to provide positive signals for T-cell activation and generation of effector activity. In this study, we analyzed the presence of antibodies (Abs) against the T-lymphocyte costimulatory molecules CD28, CTLA-4, CD80, and CD86 in anti-T-lymphocyte (ATG) and antithymocyte (TMG) globulin preparations to address their mechanism of action. We focused our attention on the role of CTLA-4-specific Abs in the immunosuppressive effect of ATG/TMG, because anti-CTLA-4 agonistic Abs may suppress T-cell proliferation and nonagonistic Abs may lead to T-cell depletion through an Ab-dependent cell cytotoxicity mechanism. ATG/TMG and patients' sera were tested for binding to recombinant human costimulatory molecules by ELISA techniques. CTLA-4 specificity was also analyzed by cytoplasmic immunofluorescence staining of a CTLA-4 transfectant by competitive inhibition immunofluorescence and by cell proliferation assay in allogeneic mixed lymphocyte reaction (MLR). Either ATG or TMG predominantly contained anti-CTLA-4 Abs, with higher reactivity in ATG followed by anti-CD86 and -CD28 Abs, whereas anti-CD80 Abs were found only in ATG. Anti-CTLA-4 Abs present in ATG/TMG recognized the native form of CTLA-4 molecule, and their removal reduced the effect of ATG in an allogeneic MLR. Kinetic studies indicated that such Abs were present in the sera of 12 ATG-treated leukemic patients up to 21 days after ATG administration. These data suggest that the novel anti-CTLA-4 Abs found in ATG may greatly contribute to its immunosuppressive effect, thus accounting for the absence of rejection and exceptionally low incidence of graft-versus-host disease in the group of patients analyzed.

  2. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Arora, Annu; Seth, Kavita; Kalra, Neetu; Shukla, Yogeshwer

    2005-01-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10 -3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  3. Documentation of normal and leukemic myelopoietic progenitor cells with high-resolution phase-contrast time-lapse cinematography.

    Science.gov (United States)

    Boll, I T

    2001-08-01

    The high-resolution phase-contrast, time-lapse cinematography using oil immersion lenses and 16-mm film demonstrates the kinetic cell events as maturation, locomotion, mitosis, and apoptosis of cells cultivated at 37 degrees C for up to 10 days. 0.5 v/v frozen-thawed sera with presumably high cytokine concentrations were added to the plasma or agar clot. Vital progenitor cells from human bone marrow and blood have a large, bright, unstructured nucleus with a large nucleolus and a narrow rim of cytoplasm (nuclear/cytoplasmic volume ratio = 0.7). Their nuclei are 6-14 micrometer in diameter and double their volume within 8 h. Many (70%) move at a mean speed of 2 micrometer/min, and many (30%) multiply with alpha-2alpha mitoses, generating progenitor cell families. Various disturbances during the course of mitosis lead to the formation of polyploid cells, thereby yielding the megakaryocytic cell line. Some of the progenitor cells undergo asymmetric alpha-alphan mitoses: One of the two initially identical daughter cells remains a progenitor cell in the morphological sense, whereas the other daughter cell - depending on the size of its mother cell - matures in the same culture medium to form a granulocytopoietic, monocytopoietic or erythrocytopoietic cell line. - In acute myeloid leukemias (AML), the blasts and their nuclei are slightly larger than the corresponding progenitor cells and move faster (5 micrometer/min). Symmetric alpha-2alpha mitoses permit unlimited multiplication of the leukemic blasts if contact with cytotoxic lymphocytes does not render them apoptotic. This results in more stromal cells than normal. Granulocytopenia, monocytopenia, and anemia occur due to the genetic impairment of signaling control for asymmetric alpha-alphan mitoses, and thrombocytopenia occurs due to the reduction in polyploidization. Copyright 2001 S. Karger GmbH, Freiburg

  4. PURIFICATION AND FRACTIONAL ANALYSIS OF METHANOLIC EXTRACT OF WEDELIA TRILOBATA POSSESSING APOPTOTIC AND ANTI-LEUKEMIC ACTIVITY

    Science.gov (United States)

    Venkatesh, Uday; Javarasetty, Chethan; Murari, Satish Kumar

    2017-01-01

    Background: Wedelia trilobata (L.) Hitch (WT), commonly known as yellow dots or creeping daisy, is a shrub possessing potent biological activities, and is traditionally used a medicinal plant in Ayurveda, Siddha and Unani systems of medicines, and it has also been tried against leukemia cell line MEG- 01. In the present study, purification and screening of the plant was done for bioactive compounds in methanolic extract of WT for apoptotic and anti-leukemia activity. Materials and methods: The methanolic extract of WT was initially purified through thin layer chromatography (TLC) and screened for the apoptotic and anti-leukemia activities. The positive band of TLC was subjected to silica gel column chromatography for further purification and the fractions obtained from it were screened again for anti-leukemia activity through thymidine uptake assay and apoptotic activity by DNA fragmentation, nuclear staining and flow cytometry assays. The fraction with positive result was subjected to HPLC for analysis of bioactive components. Results: Out of many combinations of solvents, the methanol and dichloromethane combination in the ratio 6:4 has revealed two bands in TLC, among which the second band showed positive results for apoptotic and anti-leukemic activities. Further purification of second band through silica gel chromatography gave five fractions in which the 3rd fraction gave positive results and it shows single peak during compositional analysis through HPLC. Conclusion: The single peak revealed through HPLC indicates the presence of pure compound with apoptotic and anti-leukemia activities encouraging for further structural analysis. PMID:28480428

  5. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling.

    Science.gov (United States)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-03-28

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation.

  6. Novel function of the chromosome 7 open reading frame 41 gene to promote leukemic megakaryocyte differentiation by modulating TPA-induced signaling

    International Nuclear Information System (INIS)

    Sun, X; Lu, B; Hu, B; Xiao, W; Li, W; Huang, Z

    2014-01-01

    12-O-tetradecanoylphorbol-13-acetate (TPA) activates multiple signaling pathways, alters gene expression and causes leukemic cell differentiation. How TPA-induced genes contribute to leukemic cell differentiation remains elusive. We noticed that chromosome 7 open reading frame 41 (C7ORF41) was a TPA-responsive gene and its upregulation concurred with human megakaryocyte differentiation. In K562 cells, ectopic expression of C7ORF41 significantly increased CD61 expression, enhanced ERK and JNK signaling, and upregulated RUNX1 and FLI1, whereas C7ORF41 knockdown caused an opposite phenotype. These observations suggest that C7ORF41 may promote megakaryocyte differentiation partially through modulating ERK and JNK signaling that leads to upregulation of RUNX1 and FLI1. In supporting this, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by ERK inhibition while JNK inhibition abrogated the upregulation of FLI1 by C7ORF41. Furthermore, we found that Y34F mutant C7ORF41 inhibited megakaryocyte differentiation. nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536, while MAPK/ERK was the potent repressor of C7ORF41. Finally, we showed that C7ORF41 knockdown in mouse fetal liver cells impaired megakaryocyte differentiation. Taken together, we have identified the function of a novel gene C7ORF41 that forms interplaying regulatory network in TPA-induced signaling and promotes leukemic and normal megakaryocyte differentiation

  7. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ... Show The actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial DNA on murine macrophage

  8. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy

    DEFF Research Database (Denmark)

    Schmiegelow, Kjeld; Müller, Klaus Gottlob; Mogensen, Signe Sloth

    2017-01-01

    During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both), bone toxicities (including osteonecrosis), thromboembolism, sinusoidal...... useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall...... obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia), high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically...

  9. Treatment of refractory/relapsed adult acute lymphoblastic leukemia with bortezomib- based chemotherapy

    Directory of Open Access Journals (Sweden)

    Zhao J

    2015-06-01

    Full Text Available Junmei Zhao,* Chao Wang,* Yongping Song, Yuzhang Liu, Baijun FangHenan Key Lab of Experimental Haematology, Henan Institute of Haematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, People’s Republic of China  *These authors contributed equally to this work Abstract: Nine pretreated patients aged >19 years with relapsed/refractory acute lymphoblastic leukemia (ALL were treated with a combination of bortezomib plus chemotherapy before allogeneic hematopoietic stem cell transplantation (allo-HSCT. Eight (88.9% patients, including two Philadelphia chromosome-positive ALL patients, achieved a complete remission. Furthermore, the evaluable patients have benefited from allo-HSCT after response to this reinduction treatment. We conclude that bortezomib-based chemotherapy was highly effective for adults with refractory/relapsed ALL before allo-HSCT. Therefore, this regimen deserves a larger series within prospective trials to confirm these results. Keywords: acute lymphoblastic leukemia, refractory, relapsed, bortezomib

  10. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Dania Lizet Quintanilla-Flores

    2014-01-01

    Full Text Available Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification.

  11. Prolonged Survival of Acute Lymphoblastic Leukemia with Intrathecal Treatments for Isolated Central Nervous System Relapse

    Directory of Open Access Journals (Sweden)

    Elan Gorshein

    2018-01-01

    Full Text Available Acute lymphoblastic leukemia is commonly cured when diagnosed in the pediatric population. It portends a poorer prognosis if present in adult patients. Although adults frequently achieve complete remission, relapse rates are substantial, particularly among the elderly and high-risk populations. In the absence of prophylactic intrathecal chemotherapy, more than half of patients may develop CNS involvement or relapse, which is associated with significant risk for systemic illness. This report describes a patient with acute lymphoblastic leukemia with repeated isolated CNS relapses. This case should remind clinicians that isolated CNS disease in the absence of systemic recurrence could successfully respond to intrathecal therapy and offer patients a favorable quality of life.

  12. A case of hypotriploid chromosome in a patient with acute lymphoblastic leukaemia.

    Science.gov (United States)

    Khan, Bilal Ahmed; Ali Baig, Mirza Faris; Siddiqui, Nadir

    2017-11-01

    TA 58-61, XXXX, hypotriploid chromosome was detected in the cytogenetics report of a 28 years old female patient, known case of B-cell Acute Lymphoblastic Leukaemia. On admission, the patient had normal physical examination findings and mental status, except history of fever spikes and generalized bone pains. The patient was admitted for induction of chemotherapy. Bone Marrow/Trephine biopsy report showed diffuse infiltration with blast cells with overall cellularity around 80-85% and suppressed normal haematopoiesis. Hypotriploid chromosome number in patients with B-cell Acute Lymphoblastic Leukaemia is a unique finding which, according to WHO classification of ALL, is an important prognostic factor itself and these cases have a favourable prognosis. There are only a few medical reports published about cases with similar presentations in Pakistan. Therefore, this case is very unique and further work should be done for better understanding of similar presentations and to find out more about its epidemiology.

  13. Children with low-risk acute lymphoblastic leukemia are at highest risk of second cancers

    DEFF Research Database (Denmark)

    Nielsen, Stine N; Eriksson, Frank; Rosthøj, Susanne

    2017-01-01

    BACKGROUND: The improved survival rates for childhood acute lymphoblastic leukemia (ALL) may be jeopardized by the development of a second cancer, which has been associated with thiopurine therapy. PROCEDURE: We retrospectively analyzed three sequential Nordic Society of Paediatric Haematology......], intermediate vs. standard risk: 0.16, 95% CI: 0.06-0.43, P diagnosis, ALL HeH, or t(12;21)[ETV6/RUNX1] were observed. A subset analysis on the patients with standard...

  14. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas

    2014-01-01

    BACKGROUND: Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) remains a therapeutic challenge. PROCEDURE: To explore leukemia characteristics of patients with CNS involvement at ALL diagnosis, we analyzed clinical features and early treatment response of 744...... leukemia and patients without such characteristics (0.50 vs. 0.61; P = 0.2). CONCLUSION: CNS involvement at diagnosis is associated with adverse prognostic features but does not indicate a less chemosensitive leukemia....

  15. Mosaic Down syndrome and acute lymphoblastic B cell-leukemia. Case report

    Directory of Open Access Journals (Sweden)

    Parra-Baltazar, Isabel Mónica

    2016-10-01

    Full Text Available Down syndrome (DS or trisomy 21 is a constitutional chromosomal abnormality, which may be mosaic in 1 % to 4 % of cases. DS mosaic diagnosis is difficult because most patients have a normal phenotype and show no significant clinical abnormalities. Patients with DS have a higher risk of developing acute leukemia such as acute lymphoblastic leukemia (ALL. We report the case of a 19-year old woman with mosaic trisomy 21 and ALL.

  16. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  17. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    Science.gov (United States)

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  18. The molecular genetic makeup of acute lymphoblastic leukemia | Office of Cancer Genomics

    Science.gov (United States)

    Abstract: Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention.

  19. Imaging findings of recurrent acute lymphoblastic leukemia in children and young adults, with emphasis on MRI

    International Nuclear Information System (INIS)

    Porter, Rosalyn P.; Kaste, Sue C.

    2004-01-01

    Acute lymphoblastic leukemia (ALL) is the most common of all childhood malignancies. Current remission rates approach 80%. Recurrent disease can present in a wide variety of ways. MR imaging plays a crucial role in the detection of disease relapse. Because other disorders can mimic recurrence of leukemia, it is important for the radiologist to judge recurrence from non-recurrence accurately in order to avoid unnecessary testing and emotional stress on the patient and family. (orig.)

  20. Imaging findings of recurrent acute lymphoblastic leukemia in children and young adults, with emphasis on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Rosalyn P. [Department of Diagnostic Imaging, St. Jude Children' s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794 (United States); Kaste, Sue C. [Department of Diagnostic Imaging, St. Jude Children' s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794 (United States); Department of Radiology, University of Tennessee, College of Medicine, Memphis, Tennessee (United States)

    2004-05-01

    Acute lymphoblastic leukemia (ALL) is the most common of all childhood malignancies. Current remission rates approach 80%. Recurrent disease can present in a wide variety of ways. MR imaging plays a crucial role in the detection of disease relapse. Because other disorders can mimic recurrence of leukemia, it is important for the radiologist to judge recurrence from non-recurrence accurately in order to avoid unnecessary testing and emotional stress on the patient and family. (orig.)

  1. Adrenocortical function and reserve in children treated for acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Pawlaczyk, B.; Malecka, E.H.; Krause, W.

    1993-01-01

    Serum cortisol and 17 OHS, 17 KS and DHA levels in 24-hour urine were determined in 30 children (22 girls and boys) 0.5 to 4 years after completion of therapy (radio- and chemotherapy) for acute lymphoblastic leukemia (ALL). Serum cortisol after Syncthen (adrenocortical reserve) was determined in 15 girls and 4 boys. The results show that therapy for ALL depresses glucocorticosteroid synthesis; however, it does not disturb the adrenal reserve or androgenesis. (author)

  2. Psychological Impact of Chemotherapy for Childhood Acute Lymphoblastic Leukemia on Patients and Their Parents

    OpenAIRE

    Sherief, Laila M.; Kamal, Naglaa M.; Abdalrahman, Hadel M.; Youssef, Doaa M.; Alhady, Mohamed A Abd; Ali, Adel SA; Elbasset, Maha Aly Abd; Hashim, Hiatham M.

    2015-01-01

    Abstract To assess the self-esteem of pediatric patients on chemotherapy for acute lymphoblastic leukemia (ALL) and psychological status of their parents. The psychological status of 178 children receiving chemotherapy for ALL and their parents was assessed using parenting stress index (PSI) to determine the degree of stress the parents are exposed to using parent's and child's domains. Self-esteem Scale was used to determine the psychological status of patients. The study revealed significan...

  3. Intracellular metabolites of mercaptopurine in children with lymphoblastic leukaemia: a possible indicator of non-compliance?

    OpenAIRE

    Lennard, L.; Welch, J.; Lilleyman, J. S.

    1995-01-01

    As part of a programme assessing the pharmacokinetics of oral thiopurines given for lymphoblastic leukaemia, we assayed intracellular metabolites of mercaptopurine in children from all over the United Kingdom who were given a standard dose of the drug. The metabolites we measured, thioguanine nucleotides and methylmercaptopurines, are products of two competing metabolic pathways and would be expected to show an inverse correlation. A total of 327 children from 17 centres in the UK were studie...

  4. Considerations in the design of clinical trials for pediatric acute lymphoblastic leukemia

    OpenAIRE

    Devidas, Meenakshi; Anderson, James R

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although outcomes for children with ALL have improved dramatically over the last 50 years, ALL remains the leading cause of childhood cancer death. In addition, high-risk patient subsets can be identified with significantly inferior survival. In the current era of therapies directed at specific molecular targets, the use of conventional randomized Phase III trials to show benefit from a new treatment regimen may not b...

  5. Dental Anomalies and Dental Age Assessment in Treated Children with Acute Lymphoblastic Leukemia

    OpenAIRE

    Khojastepour, L; Zareifar, S; Ebrahimi, M

    2014-01-01

    Background This cross sectional study was performed to evaluate dental ages and incidence of dental anomalies in children treated for acute lymphoblastic leukemia (ALL). Methods and materials A total of 25 ALL patient who passed at least 2 years of chemotherapy and 25 healthy sex and age matched children were evaluated. Dental age as well as dental anomalies in shape, size, number, and structure was recorded based on their panoramic radiographies which were taken for dental purposes. Results ...

  6. Development of acute lymphoblastic leukemia with IgH-EPOR in a patient with secondary erythrocytosis.

    Science.gov (United States)

    Sakamoto, Kenichi; Tanaka, Seiji; Tomoyasu, Chihiro; Tomii, Toshihiro; Yano, Mio; Takagi, Kazutaka; Yasuhiko, Tsutsumi; Uoshima, Nobuhiko; Komatsu, Hiroshi; Imamura, Toshihiko

    2016-12-01

    We report the first patient to develop ALL with a fusion gene of the erythropoietin receptor (EPOR) with immunoglobulin heavy chain (IgH) 22 years after a diagnosis of secondary erythrocytosis with unknown etiology. The IgH-EPOR rearrangement is known to induce increased expression of EPOR, and activates EPO-associated signal pathways by exogenous EPO stimulation, resulting in the increased proliferation and survival of IgH-EPOR-positive leukemic cells. Interestingly, this case may provide supporting the possibility that IgH-EPOR-positive ALL has a growth advantage under sustained high concentrations of EPO.

  7. In vitro cellular drug resistance adds prognostic information to other known risk-factors in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Lönnerholm, Gudmar; Thörn, Ingrid; Sundström, Christer

    2011-01-01

    Leukemic cells from 230 children with newly diagnosed B-cell precursor ALL were tested for in vitro drug resistance to a panel of anti-cancer drugs. Minimal residual disease (MRD) was measured by RQ-PCR. During follow-up, 24 relapses occurred in the 159 children with MRD...

  8. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli

    International Nuclear Information System (INIS)

    Crosby, R.M.; Richardson, K.K.; Craft, T.R.; Benforado, K.B.; Liber, H.L.; Skopek, T.R.

    1988-01-01

    The molecular nature of formaldehyde (HCHO)-induced mutations was studied in both human lymphoblasts and E. coli. Thirty HPRT - human lymphoblast colonies induced by eight repetitive 150 μM HCHO treatments were characterized by Southern blot analysis. Fourteen of these mutants (47%) had visible deletions of some or all of the X-linked HPRT bands, indicating that HCHO can induce large losses of DNA in human lymphoblasts. In E. coli., DNA alterations induced by HCHO were characterized with use of the xanthine guanine phosphoribosyl transferase (gpt) gene as the genetic target. Exposure of E. coli to 4 mM HCHO for 1 hr induced large insertions (41%), large deletions (18%), and point mutations (41%). Dideoxy DNA sequencing revealed that most of the point mutations were transversions at GC base pairs. In contrast, exposure of E. coli to 40 mM HCHO for 1 hr produced 92% point mutations, 62% of which were transitions at a single AT base pair in the gene. Therefore, HCHO is capable of producing different genetic alterations in E. coli at different concentrations, suggesting fundamental differences in the mutagenic mechanisms operating at the two concentrations used. Naked pSV2gpt plasmid DNA was exposed to 3.3 or 10 mM HCHO and transformed into E. coli. Most of the resulting mutations were frameshifts, again suggesting a different mutagenic mechanism

  9. Altered brain function in new onset childhood acute lymphoblastic leukemia before chemotherapy: A resting-state fMRI study.

    Science.gov (United States)

    Hu, Zhanqi; Zou, Dongfang; Mai, Huirong; Yuan, Xiuli; Wang, Lihong; Li, Yue; Liao, Jianxiang; Liu, Liwei; Liu, Guosheng; Zeng, Hongwu; Wen, Feiqiu

    2017-10-01

    Cognitive impairments had been reported in childhood acute lymphoblastic leukemia, what caused the impairments needed to be demonstrated, chemotherapy-related or the disease itself. The primary aim of this exploratory investigation was to determine if there were changes in brain function of children with acute lymphoblastic leukemia before chemotherapy. In this study, we advanced a measure named regional homogeneity to evaluate the resting-state brain activities, intelligence quotient test was performed at same time. Using regional homogeneity, we first investigated the resting state brain function in patients with new onset childhood acute lymphoblastic leukemia before chemotherapy, healthy children as control. The decreased ReHo values were mainly founded in the default mode network and left frontal lobe, bilateral inferior parietal lobule, bilateral temporal lobe, bilateral occipital lobe, precentral gyrus, bilateral cerebellum in the newly diagnosed acute lymphoblastic leukemia patients compared with the healthy control. While in contrast, increased ReHo values were mainly shown in the right frontal lobe (language area), superior frontal gyrus-R, middle frontal gyrus-R and inferior parietal lobule-R for acute lymphoblastic leukemia patients group. There were no significant differences for intelligence quotient measurements between the acute lymphoblastic leukemia patient group and the healthy control in performance intelligence quotient, verbal intelligence quotient, total intelligence quotient. The altered brain functions are associated with cognitive change and language, it is suggested that there may be cognition impairment before the chemotherapy. Regional homogeneity by functional magnetic resonance image is a sensitive way for early detection on brain damage in childhood acute lymphoblastic leukemia. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  11. Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group

    Science.gov (United States)

    Rau, Rachel E.; Dreyer, ZoAnn; Choi, Mi Rim; Liang, Wei; Skowronski, Roman; Allamneni, Krishna P.; Devidas, Meenakshi; Raetz, Elizabeth A.; Adamson, Peter C.; Blaney, Susan M.; Loh, Mignon L; Hunger, Stephen P.

    2018-01-01

    Background Erwinia asparaginase is a Food and Drug Administration approved agent for the treatment of acute lymphoblastic leukemia (ALL) for patients who develop hypersensitivity to Escherichia coli derived asparaginases. Erwinia asparaginase is efficacious, but has a short half-life, requiring six doses to replace one dose of the most commonly used first-line asparaginase, pegaspargase, a polyethylene glycol (PEG) conjugated E. coli asparaginase. Pegcristantaspase, a recombinant PEGylated Erwinia asparaginase with improved pharmacokinetics, was developed for patients with hypersensitivity to pegaspargase. Here, we report a series of patients treated on a pediatric phase 2 trial of pegcrisantaspase. Procedure Pediatric patients with ALL or lymphoblastic lymphoma and hypersensitivity to pegaspargase enrolled on Children's Oncology Group trial AALL1421 (Jazz 13-011) and received intravenous pegcrisantaspase. Serum asparaginase activity (SAA) was monitored before and after dosing; immunogenicity assays were performed for antiasparaginase and anti-PEG antibodies and complement activation was evaluated. Results Three of the four treated patients experienced hypersensitivity to pegcrisantaspase manifested as clinical hypersensitivity reactions or rapid clearance of SAA. Immunogenicity assays demonstrated the presence of anti-PEG immunoglobulin G antibodies in all three hypersensitive patients, indicating a PEG-mediated immune response. Conclusions This small series of patients, nonetheless, provides data, suggesting preexisting immunogenicity against the PEG moiety of pegaspargase and poses the question as to whether PEGylation may be an effective strategy to optimize Erwinia asparaginase administration. Further study of larger cohorts is needed to determine the incidence of preexisting antibodies against PEG-mediated hypersensitivity to pegaspargase. PMID:29090524

  12. Azithromycin prophylaxis and treatment of murine toxoplasmosis.

    Science.gov (United States)

    Tabbara, Khalid F; Hammouda, Ehab; Tawfik, Abdulkader; Al-Omar, Othman M; Abu El-Asrar, Ahmed M

    2005-03-01

    To evaluate the azithromycin effects alone and in combination with other agents in the prophylaxis and treatment of murine toxoplasmosis. A total of 280 BALB/c mice were included, and 2 x 103 Toxoplasma organisms of the RH strain Toxoplasma gondii strain ATCC50174 were given intraperitoneally to each mouse. In experiment one, 40 animals were given azithromycin 200 milligram/kilogram/daily for 3 days starting the day of inoculation, 40 mice were control. In experiment 2, the treatment was started 48 hours after inoculation and given daily for 3 days: one group received azithromycin 200 milligram/kilogram/day, the second group received pyrimethamine 25 milligram/kilogram/day, and the sulfadiazine 100 milligram/kilogram/day. The third group was control. In experiment 3, 7 groups of animals received one of the following (1) none, (2) azithromycin 200 milligram/kilogram/day, (3) pyrimethamine 25 milligram/kilogram/day and sulfadiazine 100 milligram/kilogram/day, (4) azithromycin and sulfadiazine, (5) azithromycin and pyrimethamine, (6) azithromycin with sulfadiazine and pyrimethamine, (7) sulfadiazine alone. Treatment was initiated 72 hours after inoculation for 3 days. The study was conducted at the Animal Care Facility of King Saud University, Riyadh, Kingdom of Saudi Arabia. Animals that received azithromycin simultaneously with inoculation survived, and all control animals died. All animals died in groups receiving single drug therapy. Animals treated with azithromycin and sulfadiazine showed a survival rate of 40%, sulfadiazine and pyrimethamine 40%, or azithromycin with sulfadiazine and pyrimethamine 95% (p<0.0001). Azithromycin alone was found to be effective in the prophylaxis of murine toxoplasmosis. Combination therapy was effective in the treatment of murine toxoplasmosis.

  13. Efficacy of posaconazole in murine experimental sporotrichosis.

    Science.gov (United States)

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  14. Irradiation Design for an Experimental Murine Model

    International Nuclear Information System (INIS)

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-01-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  15. Thrombopoietin inhibits murine mast cell differentiation

    Science.gov (United States)

    Martelli, Fabrizio; Ghinassi, Barbara; Lorenzini, Rodolfo; Vannucchi, Alessandro M; Rana, Rosa Alba; Nishikawa, Mitsuo; Partamian, Sandra; Migliaccio, Giovanni; Migliaccio, Anna Rita

    2009-01-01

    We have recently shown that Mpl, the thrombopoietin receptor, is expressed on murine mast cells and on their precursors and that targeted deletion of the Mpl gene increases mast cell differentiation in mice. Here we report that treatment of mice with thrombopoietin, or addition of this growth factor to bone marrow-derived mast cell cultures, severely hampers the generation of mature cells from their precursors by inducing apoptosis. Analysis of the expression profiling of mast cells obtained in the presence of thrombopoietin suggests that thrombopoietin induces apoptosis of mast cells by reducing expression of the transcription factor Mitf and its target anti-apoptotic gene Bcl2. PMID:18276801

  16. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    Science.gov (United States)

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  17. WHO-defined 'myelodysplastic syndrome with isolated del(5q)' in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations.

    Science.gov (United States)

    Patnaik, M M; Lasho, T L; Finke, C M; Gangat, N; Caramazza, D; Holtan, S G; Pardanani, A; Knudson, R A; Ketterling, R P; Chen, D; Hoyer, J D; Hanson, C A; Tefferi, A

    2010-07-01

    The 2008 World Health Organization (WHO) criteria were used to identify 88 consecutive Mayo Clinic patients with 'myelodysplastic syndrome with isolated del(5q)' (median age 74 years; 60 females). In all, 60 (68%) patients were followed up to the time of their death. Overall median survival was 66 months; leukemic transformation was documented in five (5.7%) cases. Multivariable analysis identified age >or=70 years (P=0.01), transfusion need at diagnosis (P=0.04) and dysgranulopoiesis (P=0.02) as independent predictors of shortened survival; the presence of zero (low risk), one (intermediate risk) or >or=2 (high risk) risk factors corresponded to median survivals of 102, 52 and 27 months, respectively. Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), isocitrate dehydrogenase 1 (IDH1) and IDH2 mutational analysis was performed on archived bone marrows in 78 patients; JAK2V617F and MPLW515L mutations were shown in five (6.4%) and three (3.8%) patients, respectively, and did not seem to affect phenotype or prognosis. IDH mutations were not detected. Survival was not affected by serum ferritin and there were no instances of death directly related to iron overload. The current study is unique in its strict adherence to WHO criteria for selecting study patients and providing information on long-term survival, practical prognostic factors, baseline risk of leukemic transformation and the prevalence of JAK2, MPL and IDH mutations.

  18. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels

    International Nuclear Information System (INIS)

    Cotten, M.; Laengle-Rouault, F.; Kirlappos, H.; Wagner, E.; Mechtler, K.; Zenke, M.; Beug, H.; Birnstiel, M.L.

    1990-01-01

    The authors have subverted a receptor-mediated endocytosis event to transport genes into human leukemic cells. By coupling the natural iron-delivery protein transferrin to the DNA-binding polycations polylysine or protamine, they have created protein conjugates that bind nucleic acids and carry them into the cell during the normal transferrin cycle. They demonstrate here that this procedure is useful for a human leukemic cell line. They enhanced the rate of gene delivery by (i) increasing the transferrin receptor density through treatment of the cells with the cell permeable iron chelator desferrioxamine, (ii) interfering with the synthesis of heme with succinyl acetone treatment, or (iii) stimulating the degradation of heme with cobalt chloride treatment. Consistent with gene delivery as an endocytosis event, they show that the subsequent expression in K-562 cells of a gene included in the transported DNA depends upon the cellular presence of the lysosomotropic agent chloroquine. By contrast, monensin blocks transferrinfection, as does incubation of the cells at 18 degree C

  19. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    Science.gov (United States)

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E

    2017-04-01

    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP , are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  20. Risk group assignment differs for children and adults 1-45 yr with acute lymphoblastic leukemia treated by the NOPHO ALL-2008 protocol

    DEFF Research Database (Denmark)

    Toft, Nina; Birgens, Henrik; Abrahamsson, Jonas

    2013-01-01

    The prognosis of acute lymphoblastic leukemia is poorer in adults than in children. Studies have indicated that young adults benefit from pediatric treatment, although no upper age limit has been defined.......The prognosis of acute lymphoblastic leukemia is poorer in adults than in children. Studies have indicated that young adults benefit from pediatric treatment, although no upper age limit has been defined....

  1. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    Science.gov (United States)

    Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria

    2012-01-01

    Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068

  2. Immunoreactivity, stability, pharmacokinetics and biodistribution of a monoclonal antibody to human leukemic B cells after three different methods of radioiodination

    International Nuclear Information System (INIS)

    Zhenping Zhu; Ghose, T.; Kralovec, Y.; Chunzheng Yang

    1994-01-01

    Dal B02, a murine monoclonal antibody against human chronic lymphocytic leukemia (CLL) was radioiodinated using chloramine T (Chl.T), Bolton-Hunter (B-H) or N-succinimidyl-p-iodobenzoate (PIB). The preparations had comparable radiochemical purity (>97%) and immunoreactive fraction (65-80%) but the Chl.T-based product was most susceptible to deiodination and loss of immunoreactivity. After i.v. injection into CLL-xenografted nude mice, the preparations had identical patterns of clearance from the blood but the PIB-based product led to more radioactivity in liver and spleen and less in the thyroid compared to the other preparations. The Chl.T-based product showed loss of immunoreactivity in circulation and less tumor-localized radioactivity 168 h after administration. The differences between the B-H-based and PIB-based products were less impressive than between PIB-based and Chl.T-based products. (author)

  3. [Virulence of Sporothrix globosa in murine models].

    Science.gov (United States)

    Cruz Choappa, Rodrigo; Pérez Gaete, Salomón; Rodríguez Badilla, Valentina; Vieille Oyarzo, Peggy; Opazo Sanchez, Héctor

    The sporothricosis disease is an infection caused by species included in Sporothrix schenkii complex. Verify the virulence of a strain of S. globosa using two different concentrations of inoculum by intraperitoneally and subcutaneously, into a mouse model. Nonrandomized pilot study, in murine inoculated with a strain of S. globosa (CBS 14.076M) by intraperitoneally and subcutaneously with inoculum concentrations of 0.5 and 4 McFarland. For this purpose 18 rodents CF-1 (ISP, Santiago, Chile) were used. The studied strain did not induce illness or injury on animals, they all survived and neither the tissue culture nor the histopathological analysis showed fungal growth or suggestive infection by organ abnormalities. The S. globosa strain did not present any virulence enough to cause disease at 0.5 and 4.0 McFarland concentration inoculum when inoculated in both intraperitoneally and subcutaneously, in murine models. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Disseminated fusariosis and endogenous fungal endophthalmitis in acute lymphoblastic leukemia following platelet transfusion possibly due to transfusion-related immunomodulation

    Directory of Open Access Journals (Sweden)

    Yong Ku

    2011-11-01

    Full Text Available Abstract Background To report a case of disseminated fusariosis with endogenous endophthalmitis in a patient with acute lymphoblastic leukemia. Transfusion-associated immune modulation secondary to platelet transfusion could play an important role in the pathophysiology of this case. Case Presentation A 9 year-old male with acute lymphoblastic leukemia complicated by pancytopenia and disseminated Intravascular coagulation was given platelet transfusion. He developed disseminated fusariosis and was referred to the ophthalmology team for right endogenous endophthalmitis. The infection was controlled with aggressive systemic and intravitreal antifungals. Conclusion Patients with acute lymphoblastic leukemia are predisposed to endogenous fungal endophthalmitis. Transfusion-associated immune modulation may further increase host susceptibility to such opportunistic infections.

  5. Clearance of 131I-labeled murine monoclonal antibody from patients' blood by intravenous human anti-murine immunoglobulin antibody

    International Nuclear Information System (INIS)

    Stewart, J.S.; Sivolapenko, G.B.; Hird, V.; Davies, K.A.; Walport, M.; Ritter, M.A.; Epenetos, A.A.

    1990-01-01

    Five patients treated with intraperitoneal 131I-labeled mouse monoclonal antibody for ovarian cancer also received i.v. exogenous polyclonal human anti-murine immunoglobulin antibody. The pharmacokinetics of 131I-labeled monoclonal antibody in these patients were compared with those of 28 other patients receiving i.p.-radiolabeled monoclonal antibody for the first time without exogenous human anti-murine immunoglobulin, and who had no preexisting endogenous human anti-murine immunoglobulin antibody. Patients receiving i.v. human anti-murine immunoglobulin antibody demonstrated a rapid clearance of 131I-labeled monoclonal antibody from their circulation. The (mean) maximum 131I blood content was 11.4% of the injected activity in patients receiving human anti-murine immunoglobulin antibody compared to 23.3% in patients not given human anti-murine immunoglobulin antibody. Intravenous human anti-murine immunoglobulin antibody decreased the radiation dose to bone marrow (from 131I-labeled monoclonal antibody in the vascular compartment) 4-fold. Following the injection of human anti-murine immunoglobulin antibody, 131I-monoclonal/human anti-murine immunoglobulin antibody immune complexes were rapidly transported to the liver. Antibody dehalogenation in the liver was rapid, with 87% of the injected 131I excreted in 5 days. Despite the efficient hepatic uptake of immune complexes, dehalogenation of monoclonal antibody was so rapid that the radiation dose to liver parenchyma from circulating 131I was decreased 4-fold rather than increased. All patients developed endogenous human anti-murine immunoglobulin antibody 2 to 3 weeks after treatment

  6. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina

    2016-08-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. Copyright© Ferrata Storti Foundation.

  7. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    Science.gov (United States)

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  8. The effects of inherited NUDT15 polymorphisms on thiopurine active metabolites in Japanese children with acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Moriyama, Takaya; Nishii, Rina; Lin, Ting-Nien

    2017-01-01

    Thiopurines [e.g. mercaptopurine (MP)] are widely used as chemotherapeutic agents in the treatment of pediatric acute lymphoblastic leukemia with dose-limiting hematopoietic toxicity. Recently, germline variants in NUDT15 have been identified as a major genetic cause for MP-related bone marrow...... children with acute lymphoblastic leukemia, we simultaneously measured both thioguanine nucleotides (TGN) in red blood cells and DNA-incorporated thioguanine (DNA-TG) in white blood cells. TGN levels were significantly lower in patients with NUDT15 deficiency, likely because of toxicity-related MP dose...

  9. Rapid progression of mediastinal tumor within a few days: A case report of T cell lymphoblastic lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Ran; Lee, Young Kyung; Jun, Hyun Jung; Jung, Eun Ah; Son, Jin Sung [Seoul Medical Center, Seoul (Korea, Republic of)

    2016-05-15

    T-cell lymphoblastic lymphoma is a highly aggressive tumor derived from lymphocyte of the thymus, which accounts for 2% of non-Hodgkin's lymphoma. The disease occurs most commonly in adolescent and young adult males. It often results in respiratory emergency because of high proliferation rate. In this case, we confirmed the rapid progression of T-cell lymphoblastic lymphoma through the chest CT scan with one week interval. Three days of empirical chemotherapy resulted in substantial reduction of mediastinal mass, pleural thickening and pleural effusion.

  10. Remission rate of acute lymphoblastic leukemia (all) in adolescents and young adults (aya)

    International Nuclear Information System (INIS)

    Vallacha, A.; Haider, G.; Kumar, D.

    2018-01-01

    To determine the remission rate in adolescent and young adult (AYA) patients with acute lymphoblastic leukemia (ALL). Study Design:Descriptive study. Place and Duration of Study:Department of Oncology, Jinnah Postgraduate Medical Centre (JPMC), Karachi from January, 2016 to March, 2017. Methodology:Adolescent and young adult (AYA) patients aged 15-39 years, newly diagnosed with acute lymphoblastic leukemia from January, 2016 to March, 2017. Diagnosis was confirmed by bone marrow trephine biopsy and immuno-phenotyping. All the patients were treated with daunorubicin, vincristine, prednisone, and L-asparaginase in the induction phase. The response evaluation was done on day 35 of the induction phase and the remission rate was assessed by the bone marrow examination. Results:Of the total 50 AYA patients diagnosed with ALL, 41 patients could complete induction phase and 9 patients died during the first week of induction, therefore excluded from the study. Forty (97.8%) patients were <35years of age, 28 (68.3%) were male, of female 10 (24.4%) were housewives, 33 (80.5%) patients belonged to Sindh, 28 (68.3%) presented with fever and body ache, 17 (41.5%) patients had precursor B cell type ALL, with 7 (17.1%) patients had hemoglobin of <7 g/dL,11 (26.8%) patients had white cell count of >30x10/sup 9//L, platelet count of <20x103/mu L in 6 (14.6%) patients and complete morphological remission was reported in 29 (70.7%) patients. Conclusion:The remission induction rate was 70.7% in the adolescents and young adults with acute lymphoblastic leukemia at the study centre. (author)

  11. Multimodal treatment with ALL-like chemotherapy, Auto-SCT and radiotherapy for lymphoblastic lymphoma.

    Science.gov (United States)

    Bersvendsen, Hanne; Kolstad, Arne; Blystad, Anne Kirsti; Aurlien, Ellen; Fosså, Alexander; Kvaløy, Stein O; Holte, Harald; Lauritzsen, Grete F

    2014-05-01

    Recommended treatment for lymphoblastic lymphomas, a highly aggressive, relatively rare lymphoma entity predominantly seen in teenagers and young adults, includes acute lymphoblastic leukemia (ALL)-like induction chemotherapy. Whether these patients should be consolidated with maintenance chemotherapy or autologous stem cell transplantation (Auto-SCT) and the use of radiotherapy are matters of debate. We reviewed treatment and outcome for 25 consecutive patients above the age of 15 years with lymphoblastic lymphoma (T-lineage; T-LBL, n = 19; B-lineage; B-LBL, n = 6) seen at a single center during a 12-year period (1999-2011). Patients were given an ALL-like chemotherapy induction regimen, and responding patients were consolidated with Auto-SCT and local radiotherapy when applicable. Median age at diagnosis was 33 years (range 15-65). Seventeen of the T-LBL patients had a mediastinal mass, three patients had central nervous system (CNS) involvement. Chemotherapy with intensified CNS prophylaxis induced an overall response rate of 92% (CR 84%, PR 8%). In total 23/25 (92%) patients underwent Auto-SCT in first remission while 13 of 14 eligible patients with mediastinal involvement received local radiotherapy. Twenty percent of the patients had hepatotoxicity grade 3-4 and 32% thromboembolic events (TE). Two patients (8%) died of treatment-related toxicity. One patient had progressive disease and died of lymphoma. Three patients have relapsed, but two of these (both B-LBL) are currently alive in second CR after Allo-SCT. With a median follow-up of 98 months (range 1-163) the 5- and 8-year PFS and OS are 76% and 84%, respectively. Combined intensive ALL-like induction and early consolidation chemotherapy followed by Auto-SCT and local radiation therapy resulted in high sustained cure rates.

  12. T-lymphoblastic leukemia/lymphoma in macedonian patients with Nijmegen breakage syndrome

    Directory of Open Access Journals (Sweden)

    Kocheva SA

    2016-06-01

    Full Text Available Nijmegen breakage syndrome (NBS is a rare autosomal recessive chromosomal instability disorder characterized by microcephaly, immunodeficiency, radiosensitivity and a very high predisposition to malignancy. The gene responsible for the disease, NBS1, is located on chromosome 8q21 and encodes a protein called nibrin. After identification of the gene, a truncating 5 bp deletion, 657-661delACAAA, was identified as the disease-causing mutation in patients with the NBS. In this report, we describe two patients with NBS and T-lymphoblastic leukemia/lymphoma in a Macedonian family. To the best of our knowledge, this is the first family with NBS reported from Macedonia. Both children presented with microcephaly, syndactyly and the development of T cell lymphoblastic lekemia/lymphoma at the age of 7 and 10 years, respectively. The molecular analysis of NBS1 genes in our patients showed homozygosity for the 657del5 mutation in the NBS1 gene. The parents were heterozygotes for the 657del5 mutation and they had no knowledge of a consanguineous relationship. The first child was treated with the International Berlin-Frankfurt-Münster (BFM-Non Hodgkin lymphoma (NHL protocol and achieved a complete remission that lasted for 21 months. Subsequently, he developed a medullar relapse with hyperleukocytosis and died due to lethal central nervous system (CNS complications. The second child was treated according to the International Collaborative Treatment Protocol for Children and Adolescents with Acute Lymphoblastic Leukemia 2009 (AIOP-BFM ALL 2009 protocol. Unfortunately, remission was not achieved.

  13. T-lymphoblastic leukemia/lymphoma in macedonian patients with Nijmegen breakage syndrome.

    Science.gov (United States)

    Kocheva, S A; Martinova, K; Antevska-Trajkova, Z; Coneska-Jovanova, B; Eftimov, A; Dimovski, A J

    2016-07-01

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosomal instability disorder characterized by microcephaly, immunodeficiency, radiosensitivity and a very high predisposition to malignancy. The gene responsible for the disease, NBS1 , is located on chromosome 8q21 and encodes a protein called nibrin. After identification of the gene, a truncating 5 bp deletion, 657-661delACAAA, was identified as the disease-causing mutation in patients with the NBS. In this report, we describe two patients with NBS and T-lymphoblastic leukemia/lymphoma in a Macedonian family. To the best of our knowledge, this is the first family with NBS reported from Macedonia. Both children presented with microcephaly, syndactyly and the development of T cell lymphoblastic lekemia/lymphoma at the age of 7 and 10 years, respectively. The molecular analysis of NBS1 genes in our patients showed homozygosity for the 657del5 mutation in the NBS1 gene. The parents were heterozygotes for the 657del5 mutation and they had no knowledge of a consanguineous relationship. The first child was treated with the International Berlin-Frankfurt-Münster (BFM)-Non Hodgkin lymphoma (NHL) protocol and achieved a complete remission that lasted for 21 months. Subsequently, he developed a medullar relapse with hyperleukocytosis and died due to lethal central nervous system (CNS) complications. The second child was treated according to the International Collaborative Treatment Protocol for Children and Adolescents with Acute Lymphoblastic Leukemia 2009 (AIOP-BFM ALL 2009) protocol. Unfortunately, remission was not achieved.

  14. Influence of socioeconomic status on childhood acute lymphoblastic leukemia treatment in Indonesia.

    Science.gov (United States)

    Mostert, Saskia; Sitaresmi, Mei N; Gundy, Chad M; Sutaryo; Veerman, Anjo J P

    2006-12-01

    A major reason for poor survival of childhood acute lymphoblastic leukemia in developing countries is treatment refusal or abandonment. This can be associated with parental socioeconomic status and attitudes of health care providers. Our study examined the influence of 2 socioeconomic status determinants, parental income and education, on treatment in an Indonesian academic hospital. Medical charts of 164 patients who received a diagnosis of acute lymphoblastic leukemia between 1997 and 2002 were abstracted retrospectively. Data on treatment results and parental financial and educational background were collected. Open interviews were conducted with parents and health care providers. Of all patients, 35% refused or abandoned treatment, 23% experienced treatment-related death, 22% had progressive or relapsed leukemia, and 20% had an overall event-free survival. Treatment results differed significantly between patients with different socioeconomic status; 47% of poor and 2% of prosperous patients refused or abandoned treatment. Although poor and prosperous patients used the same protocol, the provided treatment differed. Poor patients received less individualized attention from oncologists and less structured parental education. Strong social hierarchical structures hindered communication with doctors, resulting in a lack of parental understanding of the necessity to continue treatment. Most poor patients could not afford treatment. Access to donated chemotherapy also was inadequate. Treatment refusal or abandonment frequently resulted. There was no follow-up system to detect and contact dropouts. Health care providers were not fully aware that their own attitude and communication skills were important for ensuring compliance of patients and parents. Children's survival of acute lymphoblastic leukemia in developing countries could improve if problems that are associated with parental financial and educational background and medical teams' attitudes to treatment and

  15. Anatomy and Histology of the Human and Murine Prostate.

    Science.gov (United States)

    Ittmann, Michael

    2018-05-01

    The human and murine prostate glands have similar functional roles in the generation of seminal fluid to assist in reproduction. There are significant differences in the anatomy and histology of murine and human prostate and knowledge of the normal anatomy and histology of the murine prostate is essential to interpreting changes in genetically engineered mouse models. In this review, the normal anatomy and histology of both human and mouse prostate will be described. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Murine leukemia viruses: objects and organisms.

    Science.gov (United States)

    Rein, Alan

    2011-01-01

    Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes-protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera.

  17. Proliferative capacity of murine hematopoietic stem cells

    International Nuclear Information System (INIS)

    Hellman, S.; Botnick, L.E.; Hannon, E.C.; Vigneulle, R.M.

    1978-01-01

    The present study demonstrates a decrease in self-renewal capacity with serial transfer of murine hematopoietic stem cells. Production of differentiated cell progeny is maintained longer than stem cell self-renewal. In normal animals the capacity for self-renewal is not decreased with increasing donor age. The stem cell compartment in normal animals, both young and old, appears to be proliferatively quiescent. After apparent recovery from the alkylating agent busulfan, the probability of stem cell self-renewal is decreased, there is a permanent defect in the capacity of the bone marrow for serial transplantation, and the stem cells are proliferatively active. These findings support a model of the hematopoietic stem cell compartment as a continuum of cells with decreasing capacities for self-renewal, increasing likelihood for differentiation, and increasing proliferative activity. Cells progress in the continuum in one direction and such progression is not reversible

  18. Leukemia-Initiating Cells in T-Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Tan, Shi Hao; Bertulfo, Fatima Carla; Sanda, Takaomi

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC) theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs), which can generate leukemia in a xenograft setting, have been found in both human T-AL...

  19. Successful Treatment of Fanconi Anemia and T-Cell Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Terrie Flatt

    2012-01-01

    Full Text Available Fanconi anemia is associated with an increased risk of malignancy. Patients are sensitive to the toxic effects of chemotherapy. We report the case of a patient with Fanconi anemia who developed T-cell acute lymphoblastic leukemia. He experienced chemotherapy-related complications including prolonged neutropenia, grade IV vincristine neuropathy, and disseminated aspergillosis. He was successfully treated with modified dosing of cytarabine and intrathecal methotrexate followed by allogeneic bone marrow transplant. The aspergillosis was treated with systemic antifungal treatment and surgical resection. Now 30 months after bone marrow transplant the patient is without evidence of aspergillosis or leukemia.

  20. Trigeminal nerve involvement in T-cell acute lymphoblastic leukemia: value of MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Demet; Karaguelle, Ayse Tuba; Erden, Ilhan; Erden, Ayse E-mail: erden@ada.net.tr

    2002-10-01

    A 30-year-old male with T-cell acute lymphoblastic leukemia presented with facial numbness. Neurological examination revealed paresthesia of the left trigeminal nerve. Cerebrospinal fluid (CSF) cytology showed no atypical cells. Gadolinium-enhanced magnetic resonance (MR) imaging demonstrated enlargement and enhancement of intracranial portions of the left trigeminal nerve. The abnormal MR imaging findings almost completely resolved after the chemotherapy. Gadolinium-enhanced MR imaging is not only a useful procedure for the early diagnosis of cranial nerve invasion by leukemia but it might be helpful to follow the changes after the treatment.